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Abstract 

 

Cancer is the leading cause of death in the developed world. While treatment options 

and detection have improved over the last century, mortality rate remains high 

especially in metastatic disease. Traditional treatment for metastatic cancer is often life 

prolonging with limited curative intentions. Furthermore, many traditional treatment 

regimens such as chemotherapy and radiotherapy have considerable side effects that 

drastically reduce quality of life. Prostate cancer is the second most common cancer in 

men worldwide and has limited treatment options with curative intention.  

The introduction of checkpoint-inhibitors in treatment of melanoma showed that 

immune-response against cancer is possible, and that patients who respond have long 

survival.  

Dendritic cell-based immunotherapy has shown to work in animal models and is a 

promising method to stimulate an immune response against cancer. One of the easiest 

methods to obtain dendritic cells (DC) is by generation from monocytes. These 

monocyte-derived DC (moDC) can be loaded with antigens and used to stimulate 

immune responses. However, recent clinical trials using moDC for immunotherapy 

showed disappointing results.  

The overall goal of this thesis was to investigate factors that affect the properties of 

moDC such as culture conditions and maturation stimuli and how that affects their 

interaction with T-cells. 

In paper I the effect of OK432 as a maturation stimulus for moDC was investigated in 

various formats. Properties such as phenotype, cytokine profile, migratory capacity 

and T-cell stimulatory capacity was measured. The addition of PGE2 resolved the lack 

of migratory capacity in OK432 matured moDC. It was concluded that OK432 

together with CL097 and PGE2 is a promising cocktail for moDC maturation in 

immunotherapy. 

In paper II the effects of the culture dish surface on the generation of moDC was 

investigated. Properties such as phenotype and cytokine profile were measured. 

Overall, the surface adhesion properties of cell culture dishes used significantly 

affected many properties of moDC in both immunogenic and tolerogenic culture 

conditions. 

In paper III, moDC from patients with metastatic prostate cancer were investigated to 

determine if patient cells were capable of responding to maturation stimuli such as the 
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OK432 cocktail developed in paper I. MoDC from patients showed a mature 

phenotype and were able to stimulate autologous T-cells in an antigen-specific 

manner.     
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1. Introduction 

 

1.1 The importance of the immune system 

Since the dawn of life, the ecosystem is in a constant evolutionary race striving for 

survival through various methods. The main categories of life sustenance can broadly 

be categorized into primary producers, such as photosynthetic plants and subsequent 

consumers which involve herbivores and their predators. The most prevalent form of 

energy consumption among species is parasitism, siphoning energy from the 

organism’s host. Without protection from parasitism, host organisms suffer the 

consequences of lower energy efficiency and usually lower chance of survival[1]. In 

the context of an infection with parasitical bacteria, viruses, fungi, protozoa or 

helminths, they are called pathogens, but this can also include malignant conditions 

which by extension can also be considered parasitical due to their energy draining 

features [2-4]. There are however also organisms that strive on symbiotic relationships 

with their host organism, which while surviving on the energy their hosts provide  

benefit the host organism overall through mechanisms such as aid in digestion[5]. 

While co-existing in this environment, it is in the best interest of living organisms to 

deter parasites and either encourage or ignore symbiotic relationships. To this end, 

larger multicellular-organisms have evolved a complex multi-layered system capable 

of distinguishing and rejecting harmful organisms from safe organisms called the 

immune system which is crucial for survival and many animal studies have shown that 

a disabled immune system often leads to early demise in a non-sterile environment or 

upon challenge with a pathogen[6, 7]. The human immune system is no exception. 

This leads to an evolutionary race between the parasitical pathogens and the human 

immune system where pathogens continuously evolve new ways to evade rejection 

from their hosts for their own survival. As the replication rate of most pathogens are 

considerably higher than that of humans, the mutational drive is in their favour. As 

congenital specific detection of each new mutation in the myriads of pathogens is 

impossible for the slow replicating larger host organisms, their immune system has 

evolved methods to effectively neutralize such threats with a combination of a 



 

 

14 

germline preserved innate immune system for broad general protection, and an 

adaptive immune system hypermutating to specialize against specific pathogens[8]. 

1.1.1 The innate immune system 

Often regarded as the first line of defence, the innate immune system is the 

evolutionary preserved part and is especially important early in life. One of the most 

obvious defences against pathogens are physical barriers such as our skin. Not only 

does it act as a physical barrier, but skin cells also secrete anti-microbial peptides such 

as defensins and cathelicidins which are capable of neutralizing many different 

pathogens[9]. The mucosa lining the gastrointestinal tract, the respiratory tract and the 

urogenital tract also contain both physical and chemical properties to deter pathogenic 

infection[10, 11]. Past the outer barriers, the liver also secretes immunogenic proteins 

as part of the complement system which is capable of neutralizing and coat pathogens 

through a process called opsonization. This not only has the potential of neutralizing 

pathogens, but also makes opsonized pathogens easier to detect for the rest of the 

immune system. Apart from barriers of the innate immune system, there are many 

different specialized cells with unique roles that comprise the active part of the innate 

immune system consisting of macrophages, neutrophils, eosinophils, natural killer 

cells (NK cells), monocyte, dendritic cells (DCs) and others as shown in figure 1 [12]. 

Lately a new class of innate immune cells were classified into three different groups in 

2013 by Spits at al named innate lymphoid cells that appears to be important in 

mucosal immunity but are not shown in the figure [13]. How innate immune cells 

function, communicate with other cells and react to their environment is dictated by 

chemical signalling molecules of the immune system called cytokines such as 

interferons (IFN), interleukins (IL), and chemokines as well as surface proteins such as 

adhesion molecules affects the tissue localization of immune cells and how they bind 

and interact with other cells [14].   
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Figure 1. Overview of the central role dendritic cells play in the immune system. Upon 

activation of dendritic cells through antigen binding to pattern-recognition receptors, 

including C-type lectin receptors, leucine-rich repeat-containing receptors and Toll-

like receptors, dendritic cells will secrete cytokines that activate natural killer cells 

and modulate T cell differentiation. Recognition of antigen-Major Histocompatibility 

Complex on dendritic cells by the T Cell Receptor will also impact on T cells 

expansion. Figure adapted from Silva et al [15]. Reprinted and modified with 

permission from Elsevier  

 

1.1.2 Receptors and signalling pathways of the innate immune system 

While pathogens are continuously replicating and mutating, most of them have 

evolutionary conserved regions that the cells of the innate immune system have 

evolved receptors for. In fact, immune cells have myriads of different receptors 

targeting various pathogenic stimuli. These pattern recognition receptors (PRRs) can 

recognize components directly from pathogens called pathogen associated molecular 

patterns (PAMPs) such as lipopolysaccharides (LPS) which are absent in all human 

cells and highly associated with pathogenic gram-negative bacteria[16, 17]. One of the 
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most researched PRRs belong to the group called Toll-like receptors (TLR) which 

humans have 10 of and comprises of 6 surface receptors and 4 intracellular receptors 

as shown in figure 2 [18].  

 

 

Figure 2. Overview of Toll-like receptors found in human and mouse, main ligands 

and cellular localization (hTLR and mTLR denote Toll-like receptor retricted to 

human and mouse respectively). Figure republished with permission from El-Zayat et 

al [18]. 

 

Each Toll like receptor triggers an intracellular downstream signalling cascade upon 

binding to its respective PAMP ligand, usually resulting in the activation of NFκB 

through the MyD88 pathway or TIR-domain-containing adapter-inducing interferon-β 

(TRIF) pathway. A simplified overview of the main TLR activated signalling cascades 

is presented in figure 3.  
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Figure 3. Intracellular signalling pathways involved in cellular responses to Toll-like 

receptor activation. Following TLR binding to its corresponding ligand information is 

transferred through a series of steps ultimately resulting in the transcription of genes 

modifying cellular responses. TLR activation commonly leads to the production of 

Type I IFN though the activation of interferon regulatory factor (IRF) and 

inflammatory cytokines through NFκB and AP1. Figure by Anwar et al. [19] 
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NFκB is a key regulator of many genes involved in inflammation and controls among 

others the production of pro-inflammatory cytokines in immune cells. TRIF activation 

can also lead to activation of TANK-binding kinase 1 (TBK1), subsequently ending in 

production of type 1 interferons through translocation of phosphorylated interferon 

regulatory factor 3/7 (IRF3/7) into the cell nucleus [20]. An additional branch for both 

pathways mentioned above is through activation of mitogen-activated protein kinase 

(MAPK) resulting in activation of activator protein 1 (AP-1) which regulates genes 

affecting proliferation[21]. The immune cells have also evolved receptors to detect 

signals of cellular stress and destruction, such as free deoxyribonucleic acid (DNA), 

organelle components or other cell particles normally not in the extracellular matrix, 

called damage associated molecular patterns (DAMPs). These receptors are crucial for 

immune cells to detect pathogens and cellular damage in the surrounding tissue and 

highly dictate their subsequent response to such stimuli [17, 22]. 

1.1.3 Immune cells of the innate immune system 

Usually the first cells to encounter infiltrating pathogens, macrophages are immune 

cells residing in tissues and received its name due to its size and strong ability to “eat” 

particles in a process called phagocytosis which is one of the methods used by immune 

cells to neutralize pathogens. Apart from their role in combating pathogens, they play 

a key role in regulating the response of the immune system as well as regulating tissue 

repair after local damage. Cross-talk between macrophages and other immune cells is 

vital in determining how the immune system reacts towards pathogens as they have the 

ability to promote inflammation by secreting proinflammatory cytokines such as 

tumour necrosis factor α (TNF-α) and recruiting other immune cells, notably 

neutrophils through chemokines such as IL-8, to neutralize potential pathogens 

causing the inflammation. In this inflammatory state, they are often called M1 

macrophages. However, they also play a key role in tissue repair and 

immunosuppression in the absence of pathogenic stimuli which is often referred to as 

M2 macrophages. Macrophages are alongside DCs considered antigen presenting cells 

(APCs) because of their ability to process and present peptide antigens on major 

histocompatibility complex class II (MHC II) [23-26]. 
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Neutrophils are the most numerous immune cells usually numbering over half the total 

amount of white blood cells in humans. They are blood circulating immune cells that 

respond to inflammation and recruited through localized vasodilation caused by tissue 

residing cells and subsequent migration into target tissue. As the most abundant innate 

immune cell, they have strong anti-pathogenic capabilities through phagocytosis, 

degranulation resulting in release of degrading enzymes and creation of extracellular 

traps formed by DNA fibers and proteins [27]. 

Monocytes are large blood circulating immune cells with the capability of developing 

into macrophages. They are able to migrate into tissue to replenish local macrophage 

numbers and under certain circumstances develop into DCs. While monocytes do have 

antigen presenting capabilities similar to their post-differentiated specialized versions, 

whether this has a function in their undifferentiated form in vivo remains unclear [25, 

28].  

Eosinophils, basophils and mast cells are important cells for their anti-helminthic 

responses being able to stimulate and coordinate physiological and immunological 

reactions against large pathogens otherwise highly resistant to other immune cells [29-

31]. 

NK cells are often regarded as the innate immune system’s anti-viral specialists as 

they can neutralize infected host cells. They are considered the primary immune cells 

capable of eliminating cells not expressing major histocompatibility complex class I 

(MHC I) through probing cell surfaces with various MHC I binding receptors. This 

mechanism usually acts as a safeguard against pathogens or malignancies that attempt 

to hide from the immune system through manipulating antigen presenting functions 

[32].  

Dendritic cells are one of the most recently discovered immune cells by Steinman and 

Cohn in 1973 and are often described both as sentinel cells and as professional APCs 

[33]. This is because unlike macrophages who primarily affect and regulate local 

tissue site, the primary role of DCs is to present antigens to other immune cells and 

communicate the context of the antigen presented. Acting as the scouts of the immune 

system, DCs, as their name suggests, have long probing dendrites to be able to gather 
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antigens from most of the human body. Upon uptake of antigen together with 

stimulation, DCs undergo a maturation process which enhances their ability to present 

antigens by upregulating expression of MHC class II and costimulatory molecules 

CD80 and CD86 as well as upregulate their expression of CC-chemokine receptor 7 

(CCR7) which stimulates chemotaxis towards lymph nodes to meet näive T-cells. A 

commonly used marker for mature DC is CD83 as it is clearly upregulated in mature 

DCs, but its function is as of yet not very clear [34]. Those antigen presenting 

properties and their ability to activate cells of the adaptive immune system are why 

DCs are considered the link between the innate and the adaptive immune system [35, 

36].  

1.1.4 Limitations of the innate immune system 

As the evolutionary conserved part of the immune system, innate immune cells are by 

nature limited in their specificity as their PRRs are germline encoded. While this can 

protect against most pathogenic species, there are many exceptions. As pathogens 

replicate and mutate, strains develop that have properties that helps avoiding the 

immune system. This could be by hiding or weakly express conserved regions to avoid 

strong PRR binding, changing properties of capsule or membrane to resist detection or 

neutralization, manipulating immune cell signalling pathways, structure mimicry to 

host antigens, release of decoy superantigens and by various other means as shown in 

figure 4. While some cells of the innate immune system have shown memory function 

and degrees of adaptability, it is not enough to overcome all the immune evasive 

strategies pathogens evolve. To cover the insufficiencies of the innate immune system, 

slower replicating organisms evolved the adaptive immune system to overcome those 

constraints and widely believed to have originated from Gnathostomes hundreds of 

millions of years ago [2, 37-42]. 
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Figure 4. Immune evasion strategies of viral and bacterial pathogens. Viral and 

bacterial pathogens employ a number of strategies to avoid mediators of an immune 

response and their subsequent destruction. These strategies range from inhibition of 

antigen presentation and inflammatory responses, inhibition of phagocytosis and 

modulation and degradation of cellular receptors. Figure from Finlay and McFadden 

2006 [40]. Reprinted with permission from Elsevier. 
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1.2 The adaptive immune system  

As pathogens continuously evolve and acquire new structural changes that can 

interfere with detection by our germline inherited PRRs, it is unfeasible for every 

immune cell to be capable of reacting against every possible genetic rearrangement of 

these new pathogenic strains or pre-emptively have enough quantity of diverse 

immune cells to cover every possible new strain. To solve this conundrum, the 

adaptive immune system has evolved with a reactive strategy that maintains very high 

variability in what it can react against that only gets expanded when required in a 

process called clonal expansion. In comparison to the innate immune system, the 

adaptive immune system requires time to adapt to new challenges but offers a much 

more robust and specific immune response [8]. 

1.2.1 The development and cells of the adaptive immune system 

The adaptive immune system mainly consists of T-cells and B-cells and their subtypes 

and the humoral immunity. Compared to the innate immune system, the adaptive 

immune system has a much wider repertoire of possible antigens it can recognize. 

The way which the adaptive immune system can cover such a diverse repertoire of 

potential receptors for new antigens is due to somatic recombination of Variable gene 

segments, Diversity gene segments and Joining gene segments (V(D)J). These gene 

segments are responsible for coding the binding site of adaptive immune cell receptors 

called B-cell receptors (BCR) and T-cell receptors (TCR) for B and T cells, 

respectively. Due to the highly diverse ways which the V(D)J segments can be 

rearranged and recombined, the resulting TCRs and BCRs are able to bind to novel 

antigens that have never been encountered before [43, 44].  

As mentioned previously, due to V(D)J recombination during the development of 

progenitor adaptive immune cells, peptides expressed in our own body are not 

excluded from this coverage. As mounting an immune reaction towards the host’s own 

cells is highly detrimental, it is crucial to neutralize immune cells which can bind self-

peptides in an immunogenic way, known as autoreactive immune cells. The process of 

neutralizing autoreactive cells is called negative selection which leads to the concept 
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of self-exclusion by the immune system called central tolerance. Similarly, immune 

cells which do not have the capability of mounting a strong immune response are of 

limited use to the immune system and are therefore also removed. To undergo these 

processes, a specialized organ prominent in childhood called the thymus is where 

progenitor cells undergo maturation by receiving a survival stimuli if they bind 

strongly to MHC molecules and a signal to undergo programmed cell death (apoptosis) 

or go into anergy if they bind strongly to self-peptides presented by medullary thymic 

epithelial cells. Some of the self-reactive immune cells can also turn into protective 

regulatory cells that inhibits immune reactions towards their antigen. A similar process 

also happens with B-cell progenitors in the bone marrow where positive and negative 

selection also occur [45-48].  

The key to an adaptive immune response lies with how it interacts with MHC 

molecules which are one of the main triggers activating the adaptive immune cells. As 

previously mentioned, the immune system keeps a vast repertoire of immune cells 

capable of reacting towards various peptides, but without having their ligand presented 

to them, they remain circulating and inactive. These cells are called näive immune 

cells and they circulate between peripheral lymph nodes. [49, 50]. As the primary 

presenter of antigens from peripheral tissue to immune cells residing in the lymph 

node, DCs are the primary activators of an adaptive immune response in T-cells. How 

DCs present the antigen is crucial in determining what type of response the naïve T-

cells will have and this can generally be split into 3 key signals as shown in figure 5, 

the first being the peptide presented on MHC binding to the TCR, the second being co-

stimulatory or inhibitory molecules on the surface of the cells binding to their ligands 

and the third being the secreted cytokines from the DCs [51]. If all 3 signals are pro-

inflammatory, bound naïve T-cells are selected to undergo a process called clonal 

expansion where T-cells with the strongest binding to the antigen presented undergoes 

extensive division resulting in large amounts of clonal daughter cells [52, 53]. Naïve 

B-cells also undergo a similar process where strong attachment to presented antigens 

in an inflammatory context leads to clonal expansion [54].  
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The 3 signals determine which subset of adaptive immune cells gets clonally expanded 

and influences their function. In the context of a peptide presented in the context of 

high co-stimulatory signals from CD80 and CD86 on the surface of DCs together with 

secreted proinflammatory cytokines such as IL-12p70, naïve T-cells can develop into 

effector CD4+ T-helper cells (Th cells) or CD8+ cytotoxic T-lymphocytes (CTLs). 

Conversely if the signals skew towards inhibitory signals such as expression of 

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) on T-cells or programmed 

death ligand 1 (PD-L1) and 2 (PD-L2) on DC, which are part of signal 2 together with 

secretion of regulatory cytokines such as transforming growth factor beta (TGF-β) as 

part of signal 3, leads to no reaction or expansion of regulatory T cells (Tregs) that 

suppresses immune reactions [55-57].        
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Figure 5. The three signals of antigen presentation. T cell activation requires three 

signals from APCs such as DCs to become activated or primed. First, T cells must 

recognise their cognate antigen in context with HLA. Second, T cells require a 

costimulatory signal (CD80/86) from the APC. Finally, cytokines from immune cells 

and the microenvironment determine the T cell phenotypic fate. Conversely APCs can 

inhibit T cell responses through presentation and binding of programmed death ligand 

1 (PD-L1) and 2 (PD-L2) with T-lymphocyte-associated protein 4 (CTLA-4) together 

with regulatory cytokines. Figure from Yi and Appel 2013 [51] republished with 

permission from John Wiley & Sons Ltd 
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1.2.2 The functions of the adaptive immune system 

Due to the selective nature of how effector cells of the adaptive immune system 

develops as described in the previous section, the adaptive immune response is much 

more specific than the innate immune system and can thus mount a much more robust 

immune response with very small risk of autoreactivity. The immune response can 

roughly be split into two categories, namely cellular immunity and antibody mediated 

immunity also known as humoral immunity [8, 58, 59]. 

T-cells are the cells responsible for cellular immunity and different subsets carry 

different roles. The 3 main subtypes of T-cells are CD4+ Th-cells, CD8+ CTLs and 

Tregs. Th-cells mediate immune responses by secreting cytokines and providing 

stimuli to other immune cells, notably macrophages and B-cells, to mount a much 

stronger immune reaction than they would otherwise. This results in more rapid 

phagocytosis and elimination of pathogens expressing the peptide binding to the Th-

cells. They are also vital in regulating the response of other immune cells such as 

CTLs and NK cells through cross talk [41, 60-62]. The response they induce is highly 

dependent on the phenotype as well as the cytokine profile of these cells such as 

expression of CD40L on the surface and secretion of IL-6 and IFNγ [63, 64]. 

CTLs on the other hand take a more direct approach in eliminating pathogens by 

storing and releasing granules containing perforins and granzymes upon being 

presented their TCR specific peptide by MHC on target cells [65]. They are especially 

adept at eliminating targets that hide within other cells and therefore resistant to 

phagocytosis such as viruses and are also vital in eliminating own cells that express 

PAMPs associated with malignancy [66, 67].  

A prolonged immune response can be highly detrimental as chronic inflammation is 

related to various ailments and can often result in diseases or be part of a group of 

diseases called autoinflammatory diseases if no autoantigen is known [68]. Therefore, 

it is important to not prolong immunogenic responses more than necessary and to 

tolerate harmless or symbiotic organisms such as many gut bacteria. If the immune 

system is unable to completely neutralize a pathogen after prolonged immune activity 

but detects limited further pathological activity from its target, in many cases it instead 
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learns to tolerate it. Tregs are the key regulatory cells responsible for suppressing 

unwanted immune responses against such targets and are prevalent in tissue close to 

symbiotic or harmless organisms. They do so by secreting immunosuppressive 

cytokines such as IL-10 and TGF-β as well as expressing inhibitory surface molecules 

such as CTLA-4 [69-71].  

The humoral immunity provided by B-cells consists of antibodies which are secreted 

BCRs. Depending on the type of stimuli they receive during the maturation process, 

the receptor undergoes isotype switching to fit the context in which the target chemical 

molecule is presented. Similarly to the proteins of complement system of the innate 

immune system, but in a much more specific manner, antibodies coat and opsonize 

their targets both to label them as targets for other immune cells as well as neutralizing 

the functions of the target [8, 72, 73].     

A shared trait among adaptive immune cells is the need for continuous survival 

stimuli. This is in the form of cytokines such as IL-2, a key survival signal, which is 

auto secreted by T-cells upon binding antigen to their respective TCR. In B-cells, 

several cytokines such as IL-21 and IL-4 are considered survival signals and are 

mainly secreted by Th-cells residing in the follicles of lymph nodes [74-76]. However, 

once the target peptide is eliminated from the body and survival stimuli is no longer 

provided, most of the effector cells of the adaptive immune system undergo apoptosis 

as they no longer are needed. However, a subpopulation of long surviving dedicated 

memory cells of both T and B lineage remains post-clearance of antigen in anticipation 

of a reoccurrence of their target antigen and are ready to undergo clonal expansion 

upon re-detection of target antigen. This way the adaptive immune response bypasses 

the time needed during novel naïve activation of adaptive immunity as well as 

immediately clonally expand antigen specific T-cells which is why establishment of 

memory is the core objective of vaccination [77-79]. 
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1.2.3 The vulnerabilities of the adaptive immune system  

While the adaptive immune system is extremely powerful and versatile, it is not 

without its flaws. There is a possibility for central tolerance to fail, and autoreactive 

immune cells escape neutralization which can lead to autoimmune diseases such as 

Myasthenia Gravis and Systemic lupus erythematosus [48, 80, 81]. Even if the 

adaptive immune system targets a pathogen associated antigen, the response needs to 

be appropriate for the purpose of eliminating the threat. If the immune response is not 

robust enough, the pathogen might escape elimination resulting in continuation of the 

disease, but conversely if the immune reaction is too strong, it can lead to a breakdown 

of immune regulation and cause a deadly physiological condition called a cytokine 

storm [82, 83].  

There are also ways how pathogens can evade even the adaptive immune system by 

similar mechanism to how pathogens evade the innate immune system such as 

mimicry, diversion with superantigens or even directly inactivating components of it. 

A well-known pathogen that is capable of deactivating the adaptive immune response 

is human immunodeficiency virus (HIV) which infects CD4+ Th-cells resulting in 

their eventual destruction and leading to acquired immunodeficiency syndrome 

(AIDS) [84, 85].  

The ability to undergo clonal expansion can also be a double-edged sword in some 

circumstances if the regulatory mechanisms such as requirement of survival stimuli 

fail, a rapid uncontrolled expansion of immune cells leads to a group of cancers called 

lymphomas and leukemias [86, 87].           

Overall, the innate and adaptive immune systems complement each other by covering 

many of each other’s weaknesses, namely the innate immune system covering for the 

slow initial phase of the adaptive immune response and the adaptive immune system 

covering for the innate immune systems limited repertoire of receptor specificity. 

Together this makes for a very powerful biological system that has protected us since 

the dawn of humankind. 
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1.3 Cancer 

Humans are living longer than they have ever lived before. Myriads of factors 

contributing to this are among others the advance of modern medicine and better 

coverage for necessities such as clean water, food security and housing has drastically 

improved life expectancy all over the world. The introduction of vaccines has 

drastically reduced death by previously common diseases such as smallpox and polio 

[88, 89]. In fact the rapid rise of average life expectancy all over the world since the 

past century is lauded as one of the greatest accomplishments in human history and is 

still projected to continue rising in the future [90, 91]. General better health awareness 

and better access to a diverse diet has also reduced the impact of lifestyle related 

mortality factors such as smoking and cardiovascular diseases in high income 

countries [92-94]. As cancer is a disease with incidence risk increasing by age, all of 

those factors has led to cancer becoming the most common cause of death in 

developed countries [95-97]. 

Cancer is one of the leading causes of death worldwide with the World Health 

Organization (WHO) reporting 9.6 million casualties in 2018 and accounts for almost 

double the amount of deaths compared to cardiovascular diseases in developed 

countries [95, 98]. Cancer is a very broad group of different diseases with different 

mortalities, progression and symptoms but with certain common traits. In one of the 

most influential papers published about cancer in 2011 titled “Hallmarks of Cancer: 

The Next Generation”, Hanahan and Weinberg outline eight biological conditions that 

are hallmark features of cancer [4]. These consist of evading growth suppressors, 

avoiding immune destruction, enabling replicative immortality, tumour-promoting 

inflammation, activation of invasiveness and metastasis, inducing angiogenesis, 

genome instability and mutation, resisting signals of cell death, deregulation of cellular 

energetics and sustaining proliferative signalling as shown in figure 6. This modern 

interpretation of cancer activity has paved the way for more targeted therapies against 

these hallmarks [99-103]. However, many such targeted therapies are only recent 

discoveries and are still under research, development and optimization.      
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Figure 6. The hallmarks of cancers and potential targets for therapy as presented by 

Hanahan and Weinberg 2013. Cancers acquire functional capabilities that allow 

cancer cells to survive and proliferate (inner ring). Drugs which interfere with these 

capabilities have been developed for their potential use as cancer therapeutics. Figure 

from Hanahan and Weinberg 2013 [4]. Republished with permission from Elsevier.     

 

1.3.1 Cancer as a genetic disease  

Unlike pathogens such as bacteria and viruses, cancer is by its nature a disease caused 

by genetic modification of our own cells leading to uncontrolled growth. Every time a 

cell undergoes mitosis, its DNA must be pulled apart and replicated. Each time this 

happens, there is an inherent risk of spot mutations or minor changes to the genome 

during the replication stage. Mutations can also be instigated by viruses that alter the 

genome for their own survival and replication such as Epstein-Barr virus and Human 

Papilloma virus. Spot mutations are necessary for evolution of the species as outlined 
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beautifully in the concept by Darwin in his revolutionary work “On the Origin of  

Species” where mutations positively affecting a cells contribution to the survival of its 

multicellular system gets its genome inherited by its descendants [104]. By the same 

system, there is a risk of mutations hitting key growth regulating genes resulting in 

uncontrollable growth or mutations rendering the cell unviable. To prevent this from 

occurring, our cells have many checks and balances involving various enzymes that 

scan and repair genetic errors during mitosis. Our genome also encompasses sequences 

coding for proteins acting as regulators of growth and genetic stability[105]. 

One of the most studied and most commonly occurring mutation resulting in cancer 

are mutations in sections of the tumour protein p53 gene, a transcription factor 

comprising of five regions with high degree of conservation crucial in maintaining 

genetic stability and regarded as one of the most important tumour suppressor genes 

[106]. Ever since its discovery in 1979, its role in cancer has been extensively studied 

and many experiments have shown that it is vital for cell-cycle arrest, induction of 

senescence or induction of apoptosis in cells before they develop into cancers. 

Knockout experiments of p53 in mice have shown that these mice have a dramatically 

reduced lifespan solely due to development of early tumours cementing the importance 

of tumour suppressor genes in preventing cancer [107-109]. 

While tumour suppressor genes are important in the prevention of cancer, there are 

also genes that are over-expressed or mutated in certain types of cancers that 

contribute to their growth and survival referred to as oncogenes. Prominent examples 

include HER2 and BRCA1/2 in breast cancer [110, 111] and BCR-ABL in chronic 

myelogenous leukemia (CML) [112, 113].  

Further evidence of cancer being a genetic disease can be observed epidemiologically 

by assessing environmental risk factors. A key driver for mutations is oxidative stress 

and tissue conditions that promote this such as chronic inflammation or lifestyle habits 

such as smoking clearly increases the risk of developing cancer [114-117].           
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1.3.2 Immune evasion in cancer 

As previously mentioned, most potential cancers are stopped at conception by checks 

and balance mechanisms during DNA replication. However, even if tumour suppressor 

genes fail to stop the development of cancer, there is emerging evidence for the role of 

immune surveillance, the hypothesis that many pre-cancerous cells are eliminated by 

the immune system before they can develop into full blown cancer by recognizing 

onco-antigens as non-self. Several animal experiments show rejection of 

transplantation of tumour tissue in syngeneic animals, but tolerance of healthy tissue. 

This alongside detection of tumour infiltrating lymphocytes (TILs) in the grafts upon 

rejection provides evidence that the immune system is capable of detecting onco-

antigens and react against cancer [118, 119]. While tumour graft experiments cannot 

be conducted on human twins for ethical reasons, TILs are highly associated with 

better prognosis in many types of cancers [120-122]. Many of the discoveries in 

animal models regarding immune surveillance, however, have been hard to translate 

into human settings as concepts such as IFNγ and perforin treatment that appear to 

contribute to anti-tumour immune responses in mice were not observed in human 

patients of various cancer types [123]. 

The prevalent model for immune outcomes regarding cancer is the concept of the three 

E’s, namely Elimination, Equilibrium and Escape [124]. As discussed previously, 

there is ample evidence that the immune system is indeed able to eliminate cancers. 

However, cancers are not homogenic diseases, and unless the immune system manages 

to eliminate all cancer cells, it might instead promote Darwinian selection of the cells 

that escape elimination. Equilibrium is the proposed state in which immune cells 

continue to eliminate and control the growth of detectable tumour cells, but at the 

same time driving a selective survival of immune resistant tumour cell strains. The 

final phase of this model results in immunological escape, where detectable tumour 

strains have mostly been eliminated and now the tumour consists primarily of immune 

resistant strains which growth can no longer be controlled as shown in figure 7 [119, 

124].  
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Figure 7. The three E’s of cancer immunity (Elimination, Equilibrium and Escape). 

The figure illustrates the prevalent model for immune outcomes regarding cancer. In 

the elimination phase, innate and the adaptative systems act to destroy developing 

tumors. If unsuccessful and a rare cancer cell variant survives, it may enter the 

equilibrium phase, where outgrowth is prevented by actions of components of the 

immune system in particular T cells, NK cells, IL-12 and IFNγ. An outcome of 

selective pressure on tumor cells may result in tumor cells that are able to escape the 

regulation by the immune system. These tumor cells enter the escape phase and cause 

clinically apparent disease. Figure from Schreiber et al 2011. Reprinted with 

permission from American Association for the Advancement of Science.  
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Due to the nature of cancer originating as a genetic defect of our own cells, they are 

inherently different from pathogens who have clear components or molecular patterns 

that humans do not have. While some cancers have prominent antigens that do not 

normally exist in our body such as BCR-ABL fusion protein in CML, the very 

existence of CML to begin with shows that just expression of an aberrant protein is not 

always enough to elicit a robust immune response [125]. To further use CML as an 

example, despite BCR-ABL fusion being a requirement for CML diagnosis and clearly 

related to malignancy, there are reports that a small amount of healthy individuals have 

this mutation in the normal population, suggesting that immune cells that recognize 

this fusion protein are indeed either absent or inactive in patients [126]. Evidence that 

the immune system can be activated to react against BCR-ABL was shown in recent 

experiments showing promising result in BCR-ABL vaccination capable of 

stimulating an immune response against BCR-ABL expressing cells [127, 128]. 

The difficulty in detecting clear PAMPs in often DAMPs rich cancer 

microenvironment can lead to further immune evasion through the function of 

regulatory cells. As mentioned previously, the phenotype of innate immune cells 

depends on their environmental context through binding on PRRs. As many tumour 

cells do not express clear PAMPs that are detectable in a pathogenic context by innate 

immune cells, the main stimuli they receive are that of DAMPs due to destructive 

tumour activity, and there are numerous studies that show these tumour associated 

macrophages (TAMs) as promoters of tumour growth, angiogenesis and drivers of 

metastasis [129-132]. The metabolic rate of cancers also leads to a hypoxic 

microenvironment as well as induce pH changes that further promotes angiogenesis 

due to secretion of Vascular Endothelial Growth Factor (VEGF) by pericytes as a 

response [133].  

Cancer cells are also able to convert local fibroblasts into cancer-associated fibroblasts 

(CAFs) through various stimuli such as cytokine stimulation and alternation of their 

extracellular matrix. This in turn aids cancer in both growth and immune evasion by 

hiding in a capsule of immunosuppressive non-cancerous cells [134, 135].    
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Furthermore, there is ample amounts of evidence showing that many types of cancer 

attract Tregs through chemokines induced by the hypoxic microenvironment such as 

CCL12, CCL22 and CCL28 or directly secreted by the tumour cells themselves which 

leads to local immunosuppression through secretion of regulatory cytokines or 

expression of inhibitory surface molecules [136-138]. 

Additionally, it has been shown that some types of cancer such as malignant 

melanomas and non-small celled lung cancer directly inhibit effector immune cells by 

expressing inhibitory molecules such as PD-L1 [139, 140].  

1.3.3 Classical therapies for cancer and limitations 

Treatment for cancer has always been highly affected by the timing of diagnosis. By 

far the most successful and oldest method of therapy has been surgical resection with 

wide margins or complete removal of the affected organ if possible. The globally 

recognized standard of charting the progress of cancer is through the Tumour- Node-

Metastatsis Classification of Malignant Tumors (TNM) developed by the Union for 

International Cancer Control (UICC) (Figure 8). While different cancers have different 

criteria for their TNM staging, the core concept remains the same.  
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Classification Definition 

Tumor 

Tx Tumor cannot be evaluated 

T0 No evidence of a primary tumor 

T1-4 

a-b-c  

Refers to size of tumor  

Letters refer to specifics of different 

cancers 

Nearby lymph nodes 

Nx Nearby lymph nodes are not evaluated 

N0 No cancer cells are found in nearby 

lymph nodes 

N1, N2, N3 etc Cancer cells are found in the written 

amount of nearby lymph nodes 

Distant metastasis 

MX Metastasis cannot be measured  

M0 Cancer has not spread to other parts of 

the body 

M1 Cancer has spread to written amount of 

other parts of the body 

 

Figure 8. General criteria for the different TNM staging parameters.  

The figure illustrated how to interpret the three different main parameters of TNM 

staging classification as established by UICC. Figure created based on UICC 

guidelines 8th edition [141]. Created with permission from John Wiley and Sons Ltd.   
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While surgery is highly relevant in early stages of cancer and prognosis is usually 

good as long as the tumour has low TNM staging, once metastasis occurs the 

prognosis usually drops drastically, but to what degree depends on the cancer type and 

can be disputed depending on how cause of death is classified [142-144].] 

The traditional methods of treating metastatic cancer are by chemotherapy, which is an 

umbrella term for treatment with various drugs aimed at inhibiting growth processes 

such as mitosis. As uncontrolled growth is one of the hallmarks of cancers, inhibitors 

of mitosis were some of the first chemotherapy drugs used. This led to the 

development of anti-folates which inhibit de-novo DNA synthesis even though the 

mechanisms of action were unknown at that time [145]. Today the anti-folic drug 

methotrexate introduced in 1950 is one of the most widely used drugs in treatment of 

cancer and other conditions where reduction of proliferating cells are beneficial [146, 

147].  

Platinum-based chemotherapy is another example of chemotherapeutic drug targeting 

mitosis by inhibiting DNA replication. Most notably the drug cisplatin revolutionized 

the treatment of testicular cancer, which turned a 90% 1 year mortality rate pre-

cisplatin discovery into roughly 95% 10 year survival [148]. On other malignancies, 

the effects have been somewhat limited, and many studies show that cancer resistance 

towards the drug occurs rapidly. There are also severe side effects due to the toxicity 

induced by platinum-based chemotherapy [149-151]. Other widely used chemotherapy 

drugs include anti-microtubule agents and topoisomerase inhibitors which both also 

inhibit mitotic activity. 

A shared trait among many of the old widely used chemotherapeutic drugs is therefore 

their non-specific nature, as cell division, while being a hallmark of cancer, is by no 

means specific for malignant cells. Most notably healthy cells that require ample 

amounts of cell division include cells of the gastrointestinal tract and hair follicular 

cells. It is therefore no surprise that some of the most common side effects caused by 

these chemotherapeutic agents are diarrhea, constipation, vomiting, mucositis and hair 

loss [151-153]. 
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The introduction of radiotherapy was enabled after the discovery of X-rays by Röntgen 

in 1895 and has been used as therapy against various cancers since then [154]. 

However, even with advances for over a hundred years, the limitations of radiotherapy 

remain largely the same. Similar to surgical resection, radiotherapy is unable to 

distinguish between healthy tissue and malignant tumours and relies on other methods 

such as imaging or staining techniques to determine treatment location. This means 

radiotherapy is often considered a supplementary treatment option such as reducing 

tumour size or burden before treatment with another more specific method, or as 

primary treatment with curative intention in non-metastatic cancers located where 

surgery is infeasible. It is also considered a staple of palliative management of late 

stage cancers. As radiotherapy inflicts considerable tissue damage to the treatment 

location, it is considered of limited use for curative intentions in metastatic cancer 

[155, 156].      

1.3.4 Prostate cancer  

The second most common cancer occurring in men and also the fifth leading cause of 

death worldwide is prostate cancer with 1,276,106 new cases and 358,989 deaths in 

2018 based on Global Cancer Observatory estimates [157]. While many low grade 

prostate cancers only require active surveillance, a subset of these patients develop 

metastatic prostate cancer which require intervention [158]. One of the main 

reasonings for why active surveillance is the modus operandi for prostate cancer 

around the world is due to the majority of cases being low grade that have limited 

benefit from treatment, the high incidence of the disease and side effects of treatment 

potentially being more detrimental than the progression of disease itself [159]. As 

prostate cancer is often discovered in elderly patients where surgical resection and 

extensive chemotherapy have considerable risk of complications, this factor is also 

taken into account when deciding treatment options [160]. 

For the patients who do develop metastatic prostate cancer, treatment options are often 

considered mainly life-prolonging rather than curative, and the progression of disease 

varies considerably. One of the first investigations done specific for prostate cancer is 
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determining its androgen dependency. Many metastatic prostate cancer cells express 

androgen receptors which they rely upon for growth signals upon binding. Therefore, 

androgen deprivation hormonal therapy remains one of the first choice treatment 

options for metastatic prostate cancer [161, 162]. However, not all metastatic prostate 

cancers are androgen dependent, and usually even with androgen deprivation therapy, 

metastatic prostate cancer usually develop resistance over time. This is then usually 

referred to as castrate-resistant disease. Treatment of castrate-resistant disease usually 

involves anti-mitotic chemotherapy agents together with radiotherapy for palliative 

care [163, 164]. Due to the resistance developing nature of metastatic prostate cancer 

and the mainly life prolonging treatment options today, there is an urgent need for 

development of curative approaches for this patient group. 

1.4 Immunotherapy  

As we understand more of the hallmarks of cancer, it is evident that the traditional 

methods of surgical resection, mitosis inhibiting chemotherapy and radiotherapy have 

limited effect or severe side effects in treatment of metastatic cancer. While one 

approach to solve this problem is by simply improving early detection and increase 

chance of treating cancer in early TNM stages, the feasibility of this approach has its 

own limitations by sensitivity and specificity of diagnostic methods and the vast 

amount of different unspecific clinical manifestations [165-167]. As pre-metastatic 

detection for all cancer is currently unfeasible, better treatment options for metastatic 

cancer is still required. 

An ideal treatment for cancer would involve specific targeting of malignant cells with 

limited or no effect on healthy cells. As discussed previously the immune system has 

plenty of evidence both clinically and experimentally that it has the capability of 

mounting an immune response against cancers, and the methods in which cancer 

avoids detection by the immune system were also highlighted. Therefore, treatment 

options aimed at activating the immune system against metastatic cancer while 

suppressing the immune evasive capabilities of tumours is a promising aspect still 

under exploration [168, 169].  
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One of the earliest documented attempts of inducing an immune response against 

cancer was conducted by Coley in 1891 but utilizing a bacterial vaccine consisting of 

heat killed bacteria in the treatment of inoperable sarcomas and reported a seemingly 

beneficial effect on survival for these patients [170]. While the concept of immune 

surveillance was proposed by Ehrlich in 1909, it took a long time before 

immunotherapy as a therapy for w-hen immunosurveillance fails re-emerged as a 

prominent topic in the treatment of cancer. A large contributing factor for this was due 

to the introduction of radiotherapy and the discovery of tumoricidal effects of chemical 

weapons used during world war I and II, notably mustard gas and its derivatives, 

which pioneered the development of the first chemotherapeutic drugs in use and 

became the “hot topic” for the latter half of the 20th century [171, 172]. During this 

period, onco-immunologists largely focused on stimulating and enhancing an immune 

response towards cancer with limited success. The first clinical trial with cytokine 

treatment utilizing IL-2 started in 1983 and ended with no increased immune reaction 

against cancer and only side effects in the patients involved [173].  

1.4.1 Dendritic cell immunotherapy 

The concept of using DC and their capability of inducing an adaptive immune 

response was pioneered by none other than one of the discoverers of these cells Ralph 

Steinman [174]. During his final years he was diagnosed with metastatic pancreatic 

adenocarcinoma in and decided to use himself as a case study for the potential of 

dendritic cell-based immunotherapy. Convincing his colleagues and collaborators, he 

was treated with RNA/peptide-loaded autologous dendritic cells in combination with 

chemotherapy, CTLA-4 checkpoint inhibitor and GVAX (GM-CSF-Gene-transduced 

allogeneic-irradiated pancreatic cancer cells). Sadly, he died just 3 days before 

posthumously being awarded the Nobel prize in medicine in 2011, but by then he had 

survived for four and a half years with a diagnosis that on average kills within a year 

and only about 1% 5 year survival rate [51, 175]. 

The potential of dendritic cells have shown great promise in animal models where 

dendritic cell based immunotherapies have shown capability of inducing tumour 
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specific CTLs and subsequent remission [176-178]. Dendritic cell based 

immunotherapy has also shown increased efficiency at eradicating tumours in mouse 

models when combined with checkpoint inhibitors [179].    

Clinical trials involving dendritic cell-based immunotherapies on humans, however, 

have shown limited efficacy. While there are some phase II trials showing 

improvement in outcome in metastatic melanoma, phase III trials have largely been 

inconclusive or ineffective in their outcome [180-182]. What all the clinical trials on 

DC based vaccines show, however, is that adverse events are limited, and the safety 

profile is high [183]. Furthermore, many of the trials have clear individual outliers 

with long term survival, suggesting that while statistically non-significant, it is likely 

that certain subgroups of patients could benefit greatly from DC immunotherapy. This 

phenomenon echoes the initial trial results of checkpoint-inhibitors, where overall 

increase in survival was modest, but certain individuals in the treatment group had 

long lasting progression free survival [184, 185]. DC based immunotherapy is also 

marred with lack of standardization between groups. Many trials vary in duration of 

vaccination, DC concentration of vaccination, location of administration and many 

other variables. This makes it difficult to compare the results of many of the clinical 

trials [186]. Other factors that might contribute to the disappointing results of moDC 

vaccine trials could be how response rate is defined. As many of the trials use 

statistical methodology from chemotherapy trials where patients often see results 

within weeks, the delayed but long lasting effect of immunotherapy that might take 

months and several sessions to work might be overlooked in those clinical trials and 

therefore new methods are in development to accurately measure the effect of delayed 

response rate [187].  

One of the main hurdles for utilizing DCs for therapy, is their accessibility. Shortly 

after the discovery of DCs 1973 and shown how potent they were at inducing an 

adaptive immune response [188], there were attempts of isolating DCs for the purpose 

of immunotherapy. One of the first feasible methods of getting adequate numbers of 

DCs in vitro was generating them from their hematopoietic progenitors identified by 

CD34+ [189]. As those were collected from the bone marrow, feasibility of this 



 

 

42 

method was limited. It was not until 1994 that a method of generating DCs from 

monocytes was discovered by stimulating them with IL-4 and granulocyte-

macrophage colony-stimulating factor (GM-CSF) to generate monocyte-derived DC 

(moDCs)[190]. This enabled generation of ample amounts of DCs from peripheral 

blood as around 10% of circulating PBMC comprise of monocytes. While there are 

some people who argue about the difference between conventional DC and moDC, 

there are studies that show moDC have comparable or even superior 

immunostimulatory effect [191].  

While moDCs have been shown to be able to trigger an immune response and have 

shown to be quite potent in vitro, as most clinical trials with moDC shows, there is 

room for improvement. As moDCs generated from monocytes by IL-4 and GM-CSF 

are immature, they only have a weak immunostimulatory effect on T-cells, they are 

not optimal for the purpose of immunotherapy [192]. Upon maturation, however, their 

immunostimulatory capabilities increase significantly, but what kind of immune 

response observed depends highly on the 3 signals conveyed to naïve T-cells [51].  

Mirroring the function of DCs in vivo, the context of how an antigen is taken up 

dictates much of the function of moDCs. This is affected by many factors, but some of 

the most important factors are the cytokines or stimulants used to mature moDC and 

the duration of stimuli [193-195]. Other factors such as what type of container used, 

and isolation method used for the moDC also affect their functionality [196].  The lack 

of standardization between laboratories working on moDC makes it difficult to 

compare many of the different findings and subsequently hard to determine if the low 

success rate of DC immunotherapy in clinical trials are due to patient conditions that 

makes treatment unfeasible, or if the DCs used were inadequate for their purpose. As 

we understand more about the maturation process of moDCs and the challenges of 

cancer however, it is evident that some of the more commonly used maturation 

processes are inadequate for immunotherapy. The common consensus nowadays is 

that CD8+ TILs are highly important as it is one of the biggest predictive factors for 

better prognosis, therefore moDC capable of inducing a robust CD8+ response are 

desirable [197]. This means high expression of MHC class II, co-stimulatory 
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molecules and a cytokine profile that skews naïve T-cells towards development of 

tumour specific CTLs where among others, IL-12p70 is quite important [198]. 

One of the most popular maturation cocktails used was published in 1997 by Jonuleit 

et al and utilized a combination of IL-1β, IL-6, TNF-α and PGE2 (Jonuleit cocktail) 

and as the gold standard of the time, has been uses in many clinical trials [199]. As 

clinical trials continued to disappoint, however, people started investigating if there are 

problems with the moDCs generated. One of the major problems with the Jonuleit 

cocktail stimulated moDC was the low amount of IL-12p70 secreted which is vital for 

inducing a CD8+ response [200]. It later became apparent that PGE2 plays a 

paradoxical role when it comes to moDC maturation, as it provides a key signal to 

upregulate CCR7 in moDCs which triggers migration towards lymph nodes, but at the 

same time also downregulates their immunostimulatory abilities [201, 202]. There is 

also ample amount of evidence suggesting PGE2 to be an immunosuppressive cytokine 

in cancer as DAMP signal [203, 204]. Despite the limitations of PGE2, expression of 

CCR7 is absolutely crucial for dendritic cells in order to migrate to lymph nodes as 

several studies show that DC lacking expression of CCR7 fail migrate [205, 206].  

The limitations of the Jonuleit cocktail spurred the development of several other 

alternatives, such as interferon-based, TLR agonist based and 

polyinosinic:polycytidylic acid (Poly I:C) based ones that are currently being tested 

both in vitro and in clinical trials [200, 207, 208].  

Apart from to the generation method of the moDC, changing site of injection, 

increasing dosage or frequency of moDC vaccine, and/or addition of adjuvant therapy 

like IL-2 injection or chemotherapeutic drugs were investigated in hope of triggering 

an effective immune response against cancer [209-211].  

As limited success has been observed in DC based immunotherapy, postulations 

started regarding whether it was possible to skip the antigen presentation factor all 

together and instead directly alter T-cells to recognize known onco-antigens. With 

better techniques in gene transduction with viral vectors and more recently with the 

rising prominence of genome editing through clustered regulatory interspaced short 

palindromic repeat associated protein 9 (CRISP/CAS9), direct customization of TCR 
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has risen in prominence [212, 213]. One such method is the development of chimeric 

antigen receptor T-cells (CAR-T) which bypasses many of the tolerogenic challenges 

faced by normal T-cells by artificially inducing expression of TCR with an 

intracellular domain that leads to direct activation [214]. The nature of custom 

designing TCR to recognize cancer relies upon that the cancer has a known onco-

antigen, which is the reason why CAR-T was initially only approved for B-cell cancers 

as they often have specific markers such as CD19, CD20 and CD22 [215-217]. 

However, as often observed with cancer in many clinical trials, long lasting effect has 

been limited as selection pressure eventually leads to antigen escape by promoting 

malignant cells not expressing the targeted antigen [218].    

1.4.2 The rise of checkpoint inhibitors 

It was not until 2009 after the pioneering works of Allison and Honjo on their research 

on immunological checkpoint molecules that a paradigm shift occurred in the 

immunotherapeutic approach to cancer. People started to realize that attempting to 

force an immune reaction without considering the inhibitory factors had limited 

chance of success [219-221]. 

Several clinical trials investigating the effects of CTLA-4 and PD-1 inhibitors in 

treatment of metastatic melanoma were conducted in the early 2000s and the results 

had immediate impact upon the field of oncology. Compared to conventional 

chemotherapy, the long year survival rate of grade 4 metastatic melanoma patients 

improved between 10-20% to over 40% after treatment with various checkpoint 

inhibitors. A striking feature among the surviving patients is the reduced occurrence of 

relapse due to development of drug resistance that plagues traditional treatment 

options for this patient group and while traditional treatment often had severe side 

effects drastically reducing quality of life, checkpoint inhibitors often have milder side 

effects in comparison [221-224]. 

While melanoma was the first success story of check-point inhibitor treatment, clinical 

trials involving the use of checkpoint inhibitors in other cancers quickly followed with 

varying results. Shortly afterwards, promising results were observed in non-small 
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celled lung cancer and renal cancer where checkpoint inhibitors led to significant 

improvement in survival [225-227]. 

Since their rise to prominence, there are currently over a thousand clinical trials 

investigating the effect of checkpoint inhibitors on various metastatic cancers where 

most of them are combination therapies of various checkpoint inhibitors in 

combination with each other, or with targeted therapies, chemotherapies or 

radiotherapies [228, 229]. However, a clear trend is that monotherapy with checkpoint 

inhibitors does not yield the best survival rates, and that prognostic markers for which 

patients benefit from checkpoint inhibitor therapies are severely lacking [230]. While 

there are markers such as PD-L1 expression on tumour that in theory should be 

predictive for PD-1 and PD-L1 inhibition therapy, the predictive value is still low 

indicating that just inhibition of checkpoint molecules are insufficient in activating an 

immune response against cancer in many patients [231].   

A clear trend can be observed when it comes to what types of cancer checkpoint 

inhibitors are effective in. Tumour mutational burden (TMB) observed in tumours is 

clearly associated with beneficial effect of checkpoint inhibitor therapy [232-234]. It is 

likely due to increased chance for the immune system to detect tumour-specific 

antigens which have higher prevalence in cancers with high TMB as shown in figure 

9.  
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Figure 9. Tumor mutational burden across several types of cancer 

The figure shows number of mutations compared to amount of neoantigens detected 

across several types of cancers (A) and the prevalence of somatic mutations across 

several types of cancer (B). The study by Büttner et al shows that high TMB highly 

correlates with the two cancers responding most to checkpoint inhibitors being 

NSCLC and melanoma. Figure from Büttner et al, 2019 [233]. Reprinted with 

permission from BMJ Publishing Group Ltd.     
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1.4.3 OK432 in immunotherapy 

The concept of using pathogenic components to stimulate the immune system is still 

widely researched today, and strikingly similar to Coley’s work in 1891, an 

immunostimulatory drug comprising of freeze-dried Streptococcus pyogenes named 

OK432 was approved in 1975 in Japan after earlier studies conducted by Okamoto et 

al found anti-cancer activity in haemolytic streptococci [235]. OK432 is currently one 

of the primary drugs of choice for unresectable lymphatic haemangioma after Ogita et 

al reported remarkable shrinkage of tumour in over 90% of paediatric patients [236]. 

As the only side effects appears to be slight fever in a minority of the patients, the drug 

quickly became a common adjuvant for various ailments in Japan. With the emergence 

of moDC for immunotherapy, Japanese researchers were quick to postulate the 

potential of OK432 in stimulating these cells and early research indicated that OK432 

matured moDC could induce tumor specific CTLs [237]. Further research a decade 

later by Hovden et al investigated the mechanisms of how OK432 stimulated moDC 

and found out it partially acted as a TLR3 agonist and managed to stimulate moDCs 

into secreting IL-12p70. The main issue with OK432 matured moDCs though was the 

lack of chemotaxis as they had negligible expression of CCR7 [238, 239].      

1.4.4 Challenges of immunotherapy 

As discussed previously, while there is potential for DC based immunotherapy and 

both in vitro and animal studies have shown great promise, it is evident by the clinical 

trials there are many challenges facing not just DC based immunotherapy, but 

immunotherapy in general. 

As demonstrated clearly by clinical trials involving immunotherapy of various forms, 

there is a high degree of individual variation on what patients benefit from therapy. A 

flaw of the common nomenclature is that cancer is an umbrella term for ailments with 

similar clinical features, but it does not necessarily translate well into immunology as 

cancer subtypes and heterogeneity differ considerably when it comes to tumour 

specific antigen expression, tumour microenvironment and direct effect on the immune 

system [240, 241]. 
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By investigating the effect of various cancers on the immune system, a more precise 

decision can be made on determining what cancers immunotherapy have higher 

likelihood to work on. As covered earlier, mutational burden of the cancer type 

correlates with the outcome of immunotherapy, but for clinical trials the average age 

of included individuals likely plays a role. It is a well-known fact that immune 

impairment is more prevalent with age and as most cancers are heavily associated with 

age, many individuals might have limited benefit from immunotherapy [242]. It has 

also been shown that for many cancers, moDC generated from patients have impaired 

functions [243, 244]. Shinde et al reported several distinct properties regarding moDC 

generated from multiple myeloma patients when compared to healthy controls. While 

antigen-uptake ability and T cell stimulatory ability was similar to that of healthy 

controls, moDC from multiple myeloma patients had lower viability, impaired CCR7 

expression and altered cytokine profile [243].   

Another challenge for immunotherapy is the ethical decisions surrounding inclusion 

criteria for clinical trials. In theory, DC based immunotherapy has more benefit the 

earlier it is introduced as to promote the elimination phase of the three Es and 

minimize the risk of prolonged Equilibrium state and subsequent Escape despite 

treatment. However, as experimental treatments in general only get approved for 

patients where all other options have been exhausted, many patients included have had 

anti-mitotic chemotherapy which impairs the immune system and hampers the effect 

of immunotherapy long after treatment end [245, 246]. 

Other precautions are that of side effects. While as mentioned more or less all the 

clinical trials investigating moDC therapies have been shown to have minimal side 

effects, as shown by trials combining CTLA-4 inhibitor and PD-1 inhibitor, therapies 

that are well tolerated by monotherapies can quickly become detrimental once 

combined without adequately assessing therapeutic windows [247, 248].While animal 

models have been useful as safety screening for many different drugs, their use for 

evaluating immunotherapeutic methods needs to be carefully evaluated.  
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1.4.5 Challenges of immunotherapy in prostate cancer 

While immunotherapy in the form of checkpoint inhibitors has become a huge success 

in cancers like melanoma and non-small celled lung cancer, checkpoint inhibitors have 

had limited success in prostate cancer trials [249]. There are many factors that make 

prostate cancer challenging for the immune system. Compared to many other cancers, 

prostate cancer has relatively low mutagenic burden and limited expression of cancer 

specific antigens. In addition, metastatic prostate cancer appears to have strong 

capability of transforming local fibroblasts into CAFs and skew local macrophages 

into M2 phenotype [250, 251]. While immunotherapy might appear bleak for such 

conditions, there have been reported case studies where immunotherapy appears to 

work [252]. There are also clinical trials investigating DC-based immunotherapy 

efficacy in metastatic prostate cancer where integrity of the immune system is a 

prognostic factor and trials where similarly to initial results using checkpoint inhibitors 

in other cancers, see a subset of patients that appear to have long term benefits after 

immunotherapy [253, 254]. These findings do suggest that while difficult, 

immunotherapy might be viable for a specific subset of patients.   
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2. Aims    

The overall aim of the project was to increase our understanding of how different 

culture conditions affect moDC and the potential of OK432 as a maturation stimulus.  

The specific aims were: 

1: To investigate how OK432 in combination with other compounds affects maturation 

and T cell stimulatory capacity of moDCs compared to the gold standard at that time, 

the Jonuleit cocktail  

2: To investigate how culture dish surfaces with different adherence properties affect 

moDC properties regarding phenotype and functionality  

3: To investigate if the OK432 based stimulation cocktail is applicable on cells from 

metastatic prostate cancer patients . 
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3. Material and methods 

 

3.1 Cohort information 

The project was conducted according to the Declaration of Helsinki. All anonymised 

biological material in the form of buffy coats used for paper I was collected at the 

Blood Bank of the Haukeland University Hospital after written informed consent was 

collected. As the study was a technical and methodological development work that 

used anonymised biological material, no approval from the regional ethical committee 

was required.  

 

For paper II, freshly drawn peripheral blood was collected from 19 healthy volunteers 

into BD Vacutainer ACD-A 10 ml citrate tubes (BD, Franklin Lakes, USA). Informed 

consent was obtained from all donors. Informed consent was gathered from all donors 

and approved by the regional ethical committee Western Norway (REK Vest; 

#2009/686). 

 

In paper III, monocytes were isolated by elutriation from leukapheresis preparations of 

6 prostate cancer patients included in the clinical trial (Clinical.trials.gov. ACT2001 -

NCT02423928; EudraCT Number: 2014-001898-14) in a certified Good 

Manufacturing practices (GMP) grade lab at The Section of Cell Therapy (Oslo 

University Hospital, Oslo; Norway). The study was approved by the Norwegian 

Regional Ethical Committee (REK #64205; REK#2014/1052). 

3.2 Blood collection, PBMC and monocyte isolation and cryopreservation 

PBMCs were separated by density gradient centrifugation (Lymphoprep™, Axis-

Shield, Norway). Monocytes were then isolated using plastic adherence, which utilizes 

monocytes’ tendency to stick to plastic surfaces to separate them from non-adherent 

cells (NACs) (Paper I & III). For certain experiments fresh blood collected from 

healthy volunteers were collected in BD Vacutainer ACD-A 10 ml citrate tubes (BD, 

Franklin Lakes, USA) and PBMCs were separated by density gradient centrifugation. 
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Monocytes were then separated by negative isolation with Monocyte Isolation Kit II 

(Miltenyi Biotec Norden AB, Lund, Sweden) which utilizes antibody coated magnetic 

beads binding to non-monocyte PBMCs running through a magnetic funnel. In 4 of the 

experiments, anti-CD-61 microbeads (Miltenyi Biotec Norden AB, Lund, Sweden) 

were also added to reduce platelets (Paper II). DCs were frozen in some of the 

experiments in X-vivo 20 medium (Lonza) with 10% DMSO in Mr. Frosty freezing 

containers (both Sigma-Aldrich) at -80 °C (Paper I & III).  

3.3 Cell culture, DC generation and maturation 

In paper I, moDCs were generated by culturing isolated monocytes in RPMI 1640 

(Lonza) with 10% FCS, 100 units/ml penicillin, 100µg/ml streptomycin, IL-4 (20 

ng/ml) and GM-CSF (100 ng/ml) (both ImmunoTools, Friesoythe, Germany) at 

37 °C and 5% CO2 humidified atmosphere in adherent cell culture plates (Nunclon Δ, 

Thermo Fischer Scientific, USA; Paper I).  

In paper II, moDCs were generated by culturing isolated monocytes in CellGro DC 

medium (CellGenix) in both adherent and non-adherent culture plates (Nunclon 

Hydrocell & Nuncleon Sphera, Thermo Fischer Scientific, USA). In paper I and paper 

II, the cells were cultured for 3 days with replenishment of IL-4 and GM-CSF on day 

2, while in paper III, thawed moDCs from prostate cancer patients were cultured in 

Cellgro DC medium in same concentration of IL-4 and GM-CSF for two days. One 

hour prior to maturation stimuli, 1 µg/ml tuberculin-purified protein derivate (PPD, 

Statens Serum Institut, Denmark) was used as recall antigen (Paper I & II & III) before 

stimulation with various stimulation cocktails as shown in table 1. As all blood was 

collected from residents in Norway who had mandatory Bacillus Calmette-Guèrin 

Vaccine (BCG) vaccination from 1948-1994 and all donors/patients were in that age 

group, PPD was deemed fit as recall antigen [255]. After maturation, moDCs were 

used for co-culture or for analysis on an LSRFortessa (BD Biosciences) flow 

cytometer.  

Table 1. Monocyte-derived dendritic cell stimulation cocktails used in the different 

experiments 
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Cocktail name Content Paper 

Jonuleit cocktail IL-1β (10 ng/ml, Immunotools) 

IL-6 (1000 U/ml, Immunotools) 

TNF-α (10 ng/ml, Immunotools) 

PGE2 (1 µg/ml, Sigma-Aldrich) 

I & II 

LPS LPS (100 ng/mg, Sigma-Aldrich) II & III 

OK432  OK432 (0.1 KE/ml, Chugai Pharmaceutical Co. Ltd) I 

OK432 + CL097 OK432 (0.1 KE/ml) 

CL097 (1 µg/ml, Invivogen) 

I 

OK432 cocktail OK432 (0.1KE/ml) 

CL097 (1 µg/ml) 

PGE2 (0.5 µg/ml) 

 

I & III 

Lövgren cocktail TNF-α (10 ng/ml) 

IFN-γ (1000 U/ml, Sigma Aldrich) 

R848 (2.5 µg/ml, Invivogen) 

PolyI:C (20µg/ml, Sigma Aldrich) 

I & III 

Kalinski cocktail TNF-α (50 ng/ml) 

IL-1β (25 ng/ml) 

IFN-α (3000 U/ml, Immunotools) 

IFN-γ (1000 U/ml) 

PolyI:C (20µg/ml) 

I 

Zobywalski cocktail TNF-α (10 ng/ml) 

IL-1β (10 ng/ml) 

IFN-γ (5000 U/ml) 

PGE2 (0.25 µg/ml) 

R848 (1 µg/ml) 

PolyI:C (20 ng/ml) 

I 

IL-10 IL-10 (10 ng/ml; Immunotools) II 

DexVD3 Dexamethasone (1 µM; Sigma Aldrich) 

1α, 25-Dihydroxyvitamin D3 (VD3) (1 nM; Enzo Life 

sciences) 

II 
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3.4 Blocking antibodies 

In paper II, blocking antibodies against CD11a, CD11b, CD11c, CD18 or E-cadherin 

(all 10µg/ml; Invitrongen/Thermo Fisher, USA) were added to moDC culture during 

generation to investigate the effect of those surface molecules on cell to cell and cell to 

culture dish adhesion. Morphology was analysed by light microscopy using a Cytation 

5 Cell imaging-reader (BioTek instruments). 

3.5 moDC – NACs co-culture 

In paper I and II, mixed leukocyte reaction (MLR) co-culture was performed. After 

generation of moDC, co-cultures with either autologous or allogeneic NACs were 

setup in X-vivo 20 medium with addition of IL-2 (50 U/ml) and IL-7 (10 ng/ml; both 

Immunotools) in Nunclon Δ well plates and incubated at 37 °C and 5% CO2 humidified 

atmosphere for 5-7 days. Some of the NACs were labelled with carboxyfluorescein 

diacetate succinimidyl ester (CFDA-SE; Invitrogen) according to manufacturer’s 

instructions (papers I & II). After culturing, the NACs were used for IFNγ secretion 

assay and/or analysis on an LSR Fortessa or Accuri C6 (BD Biosciences) flow 

cytometer. 

MLR is a method to measure T-cell proliferation capacity of moDC through co-

culture. In an allogeneic co-culture, the MHC molecule will be recognized as foreign 

and trigger clonal expansion of recipient T-cells, but in autologous co-culture, clonal 

expansion is not triggered without a stimulatory antigen presented by the APCs 

(Figure 10)      
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Figure 10. Allogeneic mixed leukocyte reaction 

Antigen presenting cells of donor allogeneic peripheral blood lymphocytes (PBL) have 

their MHC molecules (blue) recognized by recipient T-cells triggering activation and 

proliferation (A), but autologous MHC does not get recognized by recipient T-cells 

and no activation or proliferation occurs (B). Figure from The Immune response: 

basic and clinical principles, T. Mak and M. Saunders, [256], modified with 

permission from Wolters Kluwer Health, Inc. 

3.6 Flow cytometry 

To analyse the phenotype of the generated moDCs and induced T-cells, flow 

cytometry was utilized. Flow cytometry is a commonly used tool both in research and 

clinic to measure and analyse large amounts of cells and other particles in a suspension 

an accurate manner. The strength of the method lies in its ability to measure multiple 

features on an individual particle in a heterogenous mixture. Flow cytometry utilizes 

hydrodynamic focusing to force particles to pass in a single file through the laser 

beam. Particles are generally labelled with fluorochrome-attached antibodies or 

fluorescent dyes specific for a target of interest, for example a cell surface receptor.  
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The light scatter from the laser beam hitting the particle or fluorescence emitted by 

excited fluorochromes is converted into electronic signals by photomultiplier tubes 

(PMTs). These electronic signals from each particle can then be analysed. The use of 

multiple lasers and optical filters allows excitation and detection of emission at 

different wavelengths for the identification of different fluorochromes and hence 

targets (cell receptors etc.) by their unique excitation and emission spectra 

simultaneously. Expression levels of targets can then be quantified, or alternatively the 

combination of identified features can be used to identify cell subsets.  A typical flow 

cytometry setup for moDC is shown in figure 11. Fluorochrome panel design and 

protocols were determined by study purpose and antibodies were titrated to minimise 

non-specific staining. While one or two study specific markers were included or 

excluded, in general the analysed markers comprise of signal 1 marker HLA-DR, 

signal 2 markers CD80, CD83 and CD40, maturation marker CD83, chemokine 

receptor CCR7 and checkpoint markers PD-L1 and PD-L2 with some additions 

depending on the study [238, 257-259]. The whole list of markers used is shown in 

Table 2 and Table 3 for moDC and T-cells respectively.  
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Figure 11. Typical flow cytometry experiment on moDC isolated by plastic adherence.  

PBMC can be isolated through density gradient centrifugation with Ficoll and 

cryopreserved or cultured. On adhesive surface conditions, monocytes will adhere to 

culture container at 37 °C, 5% CO2 humidified atmosphere while NACS will remain 

suspended. The monocytes can then be generated into moDC with or without 

maturation stimuli. The resulting moDC can then be co-cultured with NACs or stained 

and analysed. NACs after co-culture with moDC can also be stained and analysed.  

The flow cytometer is setup to optimize detection of individual fluorochromes and 

minimize run-to-run variation by adjusting voltages of PMTs. Analysis is subsequently 

performed by various software available, spectral overlaps of fluorochromes are 

corrected (compensation) and cell subtypes are identified by their antigen expression 

indicated by their respective fluorochrome in a process called gating. Figure inspired 

by Maecker et al [260]. Reprinted and modified with permission from Springer 

Nature.  
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Table 2. Monoclonal antibodies with fluorophores used for moDC panel in the 

different projects 

Fluorochrome  Surface marker Clone Used in paper 

FITC CD14 18D11 I + II + III 

PE CD1a HI149 I + II + III 

PE-Cy7 CD40 5C3 I + II + III 

Alexa Fluor 647 CD86 IT2.2 I + II + III  

Brilliant Violet 421 CCR7 G045H7 I + II + III  

PE-CF594 CD83 HB15e I + II + III  

Horizon V500 HLA-DR G46-6 I + II + III  

Brilliant Violet 605 CD80 2D10 I + II 

PerCP-Cy5.5 CD38 HIT2 I + II 

FITC CD18 TS1/18 II 

PerCP-Cy5.5 CD11c 3.9 II 

APC-Cy7 HLA-A,B,C W6/32 II 

PE-Cy7 PD-L1 MIH1 II 

Alexa Fluor 647 PD-L2 MIH14 II 

Brilliant Violet 421 CD11b ICRF44 II 

Brillivant Violet 785 CD80 2D10 III 

Brilliant Violet 711 PD-L1 29E,2A3 III 

APC-Cy7 PD-L2 MIH18 III 

PerCP Cy5.5 4-1 BBL 5F4 III 

¨ 
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Table 3. Monoclonal antibodies with fluorophores used for T-cell panel in paper III 

Fluorochrome  Antibody clone 

AF488 CD20 2H7 

AF488 CD56 NCAM1 

PerCP-Cy5.5  CD8 RPA-T8 

PE  CD28 CD28.2 

PE-Cy7  CD127 A019D5 

PE/Dazzle594  CD137 4B4-1 

APC-Cy7  CD4 RPA-T4 

AF700  CD3 UCHT1 

APC  CCR7 G043H7 

BV785  CD45RO UCHL1 

BV605 CD45RA HI100 

BV650  CD25 BC96 

BV421 CTLA-4  BNI3 

BV711 CCR5 3A9 

BV510 PD1 EH12.2H7 

 

 

3.7 Chemotaxis assay 

In paper I, moDCs were added to the upper chamber of an 8µm transwell membrane 

96-well plate (Corning Lifesciences) and left to migrate towards CCL19 (100 ng/ml, 

Immunotools), a ligand of CCR7, in X-vivo 20 medium for 4 h at 37 °C, 5% 

CO2 humidified atmosphere before quantification with a CASY cell counter (Roche) 

which uses a low voltage field across a medium to detect cell size by electric 

resistance. As membranes act as electric insulators, detection pores in the machine 

registers the resistance encountered by the electric field to measure the size of cells. As 

dead cells are often either very small or have broken membrane integrity, their signals 

are considerably smaller than those of living cells. The method can also be used to 

differentiate small cells from large cells.  
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3.8 IFN-γ secretion assay 

Analysis of T-cell activity by measuring their IFN- γ secretion was performed in all 

papers. After 7 days moDCs and NACs co-culture with or without 5 days resting 

period, some NACs were isolated and cultured with mature autologous moDCs with or 

without PPD loaded for 16 hours in X-vivo 20 at 37 °C, 5% CO2. The IFN-γ secretion 

was then measured using an assay kit (Miltenyi Biotec). The method utilizes 

conjugated antibodies bound to surface molecules on T-cells with a receptor for IFN- γ 

which it catches upon secretion by its bound cell. The caught IFN-γ is then bound by a 

detection antibody with fluorochrome attached and subsequently analysed on a flow 

cytometer. CD4 and CD8 antibodies were used to distinguish the cells from each 

other. T-cells stimulated with Staphylococal enterotoxin B from Staphylococcus 

aureus (SEB), a superantigen, was used as positive control, while co-cultures with 

moDC without PPD loaded was used as negative control.   

3.10 ELISA (Paper I) 

Cell culture supernatant was stored at -20 °C. To quantify IL-12p70 and IL-10 

secretion into the supernatant, sandwich enzyme-linked immunosorbent assays 

(ELISA; BioLegend) were utilized according to the manufacturer’s instructions. The 

samples were run in technical duplicates to reduce variability. The concept uses a 

capture antibody coated on a well plate and subsequent binding with a biotinylated 

detection antibody. Horseradish peroxidase (HRP) is then added to form an Avidin-

Biotin complex which reacts with 3,3’,5,5’-tetramethylbenzidine (TMB) substrate 

which in turn results in a measurable colorimetric reaction that can be quantified by a 

microplate reader. Concentrations of antigen in medium are determined by comparing 

with a parallel-run standard curve. 
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3.11 Luminex assay 

Cytokine and chemokine concentrations from culture supernatant after moDC 

maturation were determined using a 25-plex Luminex assay cytokine and chemokine 

panel (Invitrogen, catalogue number LHC0009) and run on a Luminex 100 System 

(Luminex Corporation, Austin, TX) according to the manufacturer’s instructions 

(Paper I & II). 

The method utilizes polystyrene beads with unique tagged fluorochromes, biotinylated 

antibodies and Steptavidin/Phyocerythrin to detect cytokines or chemokines. Similar to 

ELISA, the concentrations are then calculated from a standard curve.  

3.12 Data analysis 

Visualization and analysis of flow cytometry data was done using Flowjo (Tree Star). 

Identification of cell subsets were done using light scatter properties in combination 

with expression levels of different receptors, and various controls including unstained 

cells and Fluorescence Minus One (FMO). Statistical analysis of measurements was 

performed in Prism 5 (Graphpad). Significance between samples were tested using 

Kruskal-Wallis one-way analysis of variance (ANOVA) test (paper I & III) or 2way 

ANOVA test (paper II) with Dunn’s post-test (paper I & II & III) or Bonferroni post-

test (paper II). All statistical formulas and post-tests used are for non-parametric 

analysis due to individual variation of the immune system and the low amount of study 

subjects. Significance value was set to P < 0.05. 
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4. Summary of the main results 

Paper I 

Different maturation stimuli comprising of, OK432 alone, OK432 + CL097 and 

OK432 cocktail were tested on the generation of moDC from healthy donor donors 

and was compared to the Jonuleit cocktail. Surface molecules HLA-DR, CD83, CD1a, 

CD80, CD86, C40, CD38, CCR7 and CD14 were measured by flow cytometry to 

determine phenotype. All cells showed high expression of HLA-DR. All maturation 

cocktail stimulated cells showed increased maturation marker CD83 compared to 

unstimulated control, and high expression of co-stimulatory molecules CD80 and 

CD86. OK432 stimulated cells had low expression of CCR7 but was elevated above 

expression by Jonuleit stimulated cells with the addition of CL097 and PGE2. OK432 

cocktail was also the most capable of inducing CD80 and CCR7 among the cocktails 

tested. 

Migration assay showed increased migratory capacity by moDCs stimulated with 

PGE2, and almost no migratory activity was seen in moDCs matured without PGE2. 

Jonuleit matured moDCs showed highest amount of transwell migration while OK432 

cocktail matured moDCs had around half as much but significantly higher than 

controls. 

To measure cytokines, Luminex multiplex analysis of 26 different cytokines was 

performed. All OK432-matured DCs had a significant increase in IL-12p70 secretion 

compared to Jonuleit cocktail and immature control that was further elevated with the 

addition of CL097 but decreased by PGE2. This pattern was also observed with 

RANTES/CCL5, MIP-1α/CCL3, and MIP-1β /CCL4. IL-12p40 was highly elevated 

by OK432 cocktail, but not statistically significant compared to the other matured DC 

populations. IL-10 secretion was detected at low levels. IL-8 secretion was 

significantly reduced by the addition of OK432. IL-7 was increased in every matured 

DC population. IL-17 secretion was increased by OK432 alone but decreased with the 

addition of CL097 or PGE2. IL-16, IL-1RA, IFN-γ, IFN-α, MCP-1, IL-2R, and IL-13 

secretion did not show obvious differences between sample groups. IP-10, IL-2, IL-5, 
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IL-13, or Eotaxin was secreted at very low levels while IL-4, GM-CSF, IL-1β, IL-6, 

and TNF were excluded from the analysis as they were used in the culture media.  

MLR was performed to investigate T-cell stimulatory capacity. OK432 stimulated 

moDCs were superior to Jonuleit cocktail stimulated moDCs at inducing T-cell 

proliferation with OK432 cocktail stimulated moDCs being the most potent.  IFN-γ 

assay was used to determine antigen-specificity of those expanded cells and showed 

that while OK432 cocktail stimulated moDCs were able to induce antigen-specific T-

cells, it was not significantly more than Jonuleit cocktail stimulated moDCs.  

To compare OK432 based maturation stimuli with other more recent maturation 

cocktails, an IL-12p70 ELISA was performed on moDCs stimulated by Jonuleit 

cocktail, OK432 + CL097, OK432 cocktail, Kalinski cocktail, Lövgren cocktail and 

Zobywalski cocktail. All cocktails induced higher IL-12p70 secretion compared to 

Jonuleit cocktail with Lövgren cocktail inducing significantly higher secretion than the 

rest. OK432 based cocktails induced similar level of IL-12p70 secretion to the other 

cocktails otherwise. 

Paper II 

The effect of surface adherence on the generation of moDC was investigated by 

comparing generation on standard cell culture dishes and non-adherent culture dishes. 

Two immunogenic conditions comprising of LPS and Jonuleit cocktail stimulated 

moDC and two tolerogenic conditions comprising of IL-10 and DexVD3 stimulated 

moDC were tested on the different surfaces. 

In all conditions generated on non-adherent surface culture dishes, homotypic 

clustering could be observed by light microscopy. Several blocking antibodies were 

tested against known molecules associated with adhesion, CD11a, CD11b, CD11c, 

CD18 and E-cadherin. Blocking CD18 resulted in reduced homotypic clustering while 

blocking CD11a or CD11b appeared to promote homotypic clustering. 

Phenotype under the four different conditions was investigated by flow cytometry with 

a panel of 15 different surface molecules. The results showed that all surface 

molecules were influenced by the culture dish used. Particularly interesting, 
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checkpoint molecule PD-L1 was decreased on moDCs stimulated with the Jonuleit 

cocktail in a non-adherent culture dish while PD-L2 was increased. The differences 

were noted to depend both on culture dish adherence and stimuli. 

Cytokine production was investigated using a 25-plex Luminex platform and showed 

cytokine production varied depending on the treatment and the surface used. In 

general, LPS-DC had the highest production of most cytokines. Most cytokines were 

overall secreted at lower levels on non-adherent surface. While the cytokine profile of 

the DC cultured in tolerogenic conditions as well as control showed limited differences 

in cytokine profile regardless of culture dish surface, the LPS stimulated DCs had 

significant profile differences. IL-10 and TNF-α secretion was increased in all LPS 

stimulated DCs on standard cell culture dish compared to non-adherent surface, while 

the opposite was true for IL-15 and MIG.  

In order to investigate the possibility that isolation impurities might have an impact on 

the clustering, phenotype, and cytokine production, four of the monocyte isolation 

procedures were performed using additional anti-CD61 beads to remove platelets. 

Both the phenotype of the generated DC populations and their produced cytokines did 

not show any clear differences between the preparations with and without residual 

platelets 

Lastly, the T cell stimulatory capacity of the generated moDC populations was 

analysed in an allogeneic MLR. No obvious differences were observed between the 

different surfaces, regardless of the DC population used as stimulator. The 

proliferation of monocyte-depleted PBMC co-cultured with the tolerogenic moDC 

populations was less than with immature DC. The immunogenic moDC populations 

was further analysed in an autologous setting with an IFN-γ assay. Both LPS- and 

Jonuleit-cocktail stimulated cells were able to induce antigen specific autologous 

CD4+ and CD8+ T cells, with slightly higher numbers of IFN-γ producing T cells 

upon using LPS-stimulated DC, independent of the culture dish used. 
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Paper III 

To investigate the potential of OK432 cocktail matured moDC on T-cells from cancer 

patients, moDCs were collected from patients with metastatic prostate cancer and 

stimulated with either OK432 cocktail, Lövgren cocktail or left untreated as negative 

control. Phenotype of moDC was investigated using a panel of 11 different surface 

markers. All analysed moDC populations yielded phenotypically mature DC with high 

expression of MHC class II, co-stimulatory molecules CD40, CD80 and CD86, and moderate 

expression of maturation marker CD83 including the negative control. Checkpoint molecules 

PD-L1 and PD-L2 were also highly expressed. In contrast to paper I, using moDC from 

healthy donors, the addition of PGE2 in the cytokine cocktail did not positively affect CCR7 

expression.  

Phenotypic analysis with a 15-marker panel showed that T-cells co-cultured with the OK432 

cocktail stimulated moDC for 7 days significantly increased the proportion of 

CD25+/CD45RO+ cells among both CD4+ and CD8+ cells. This population was also 

relatively low in CD127 expression. No significant difference was observed in checkpoint 

molecules CTLA-1 or PD-1.   

IFN-γ secretion assay was used to investigate antigen-specific T-cell activity, but large 

interindividual variations and low number of samples make significance hard to interpret. 

However, IFN-γ secretion by T-cells was increased after stimulus by PPD loaded moDC 

compared to stimulus with moDC without PPD loaded in all samples suggesting that it is 

possible to induce antigen-specific reaction in T-cells from metastatic prostate patients. 
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5. Discussion 

5.1 Methodological considerations  

5.1.1 Culture, treatment and storage condition of cells 

Many laboratory and logistical methods can influence the phenotype of PBMCs and 

their behaviour. This has been shown in several studies where investigators found out 

that PBMC varied considerably depending on factors such as storage time, storage 

concentration, whether it is whole blood or buffy coats, temperature, workflow and 

cryopreservation [261]. 

In particular, yield after cryopreservation differs considerably between methods, but 

just higher viability does not necessarily mean best preservation method as there are 

studies showing that freezing medium can significantly alter the cell functions [262]. 

Generated moDCs are no exception to this as shown in an earlier study [263].  

Medium used for cell culture in vitro is considerably different than in vivo. Conditions 

such as natural physiological changes, cell to cell communication, physical and 

chemical conditions are all altered. It is known that too high or too low concentration 

of cell culture can affect cell functions [264].  

Culture duration was also a consideration during our study design. Different groups 

often use different protocols on how long monocytes should be cultured with IL-4 and 

GM-CSF and how often the cytokines should be replenished [200, 265, 266]. In our 

group we determined on preliminary results that after 3 days, the cells had drastically 

reduced CD14 expression, a monocyte marker, and highly elevated HLA-DR and 

CD1a used as markers for moDC differentiation which is in line with a study by 

Schendel et al [266].   

While working with cells, mechanical stress from centrifugation, pipetting and 

temperature differences can lead to cell apoptosis or necrosis and yields in the various 

experiments varied considerably. Many immune-cells are naturally sensitive to such 

conditions due to having DAMP receptors and can be stimulated to secrete various 

cytokines as a result [267]. While one strives to keep treatment equal between 
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samples, practically it is not possible as the samples themselves are not equal in terms 

of concentration upon sampling, stickiness in the case of monocyte adherence, and 

other factors. However, if the differences are large enough, conclusions can be drawn 

even with slight margins of error. 

5.1.2  Considerations in moDC stimulation 

As one of the main investigative aims of the project, OK432 with its TLR3 stimulatory 

capability along with other factors was considered a prime candidate for moDC 

stimulation in cancer immunotherapy. The rationale behind utilizing OK432 over a 

TLR3 ligand is due to the nature of what OK432 is, which are freeze dried 

Streptococcus particles, which means it can stimulate immune cells more than just in a 

TLR3 dependent manner. The hope is that OK432 can stimulate immune cells into 

interpreting cancer antigens as pathogenic by proxy. Due to the long history of OK432 

used clinically in Japan as adjuvant for various cancers, it has shown to be a safe 

substance to inject into humans, and by extension cells cultured with it.  

The addition of CL097, also known as Imidazoquinoline, as an TLR7/8 agonist was to 

improve the immunogenic stimuli on moDC further. As it has been used in 

dermatological products since 1997 where the first Imidazoquinoline creams were 

approved by the FDA and its safety profile is well known as a skin product [268].   

5.1.3 Special considerations on MLR 

In several of our experiments we used MLR to measure T-cell stimulatory capacity. To 

investigate the T-cells ability to undergo clonal expansion, PPD was picked as recall 

antigen. Due to Norway’s vaccination programme, it is to be expected that donors 

have memory cells specific for PPD, and therefore proliferate upon successful 

presentation by APC. This gives valuable information about the quality and properties 

of the APCs but does not represent presentation of cancer neoantigen and ability to 

react towards that. As knowledge about choice of cancer antigens is limited and patient 

availability is limited, investigating the APC properties of moDC on a recall antigen 

was deemed adequate for initial impression.  
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The nature of MLRs also might affect the analysis as proliferation means conditions 

are not constant in each population. Notably we had to change medium and replenish 

cytokines to avoid apoptosis by lack of survival stimuli. While the fewer proliferating 

samples were treated at the same time as the highly proliferating samples, what effect 

the temporary reduction in survival cytokines and nutrients had is unknown.         

5.1.4 Special considerations on flow cytometry 

In flow cytometry, there are some error potentials that are hard to avoid. To keep cells 

in a single file by hydrodynamic focusing, the speed of acquisition matters 

considerably. Too high acquisition speed leads to risk of doublets, which means two 

cells passing the laser at the same time and resulting in data error. While this can be 

mitigated to some degree with adjusting the speed and good gating, it does lead to 

some slight error. The staining procedure can be time sensitive as fluorochromes 

naturally loses fluorescence when exposed to light. This can be mitigated to some 

extent by keeping the stained samples away from or blocking light, but not always 

feasible. The choice of fluorescent antibodies and the concentration of the staining 

procedure also matters greatly. Titration of antibodies and adjustment of voltages prior 

to analysis are crucial for accurate measurement of data. For paper III this became an 

issue as patient samples were very limited and varied, therefore titration was done on 

blood from healthy donors which had some differences. This becomes more complex 

the more fluorochromes included as there are limits to the span of the electromagnet 

spectrum and fluorochromes that can fit in a single panel. When two fluorochromes 

are close to each other on the electromagnetic spectrum, overlap can occur. This is 

something we encountered with some of our fluorochromes, and some concessions had 

to be made to reduce spillover. Limiting spillover is a fine balance between adequate 

separation between positive and negative signals as too high signal usually means 

more spillover, while too low signal means it becomes difficult to separate positive 

from negative. Mitigating spillover requires compensation, which is a mathematical 

method of subtracting overlap signals from the respective channels, but it depends 

heavily on the quality of positive and negative controls, autofluorescence of cells and 

correct gating [269]. We used OneComp eBeads (eBioscience) stained with antibodies 
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for fluorochrome compensation and unstained cells for autofluorescence 

compensation, but slight differences can still be made in compensation calculation. 

The choice of staining condition also matters as binding happens faster in higher 

temperature due to thermodynamic activity. However, higher temperature leads to 

more internalization of surface receptors in T-cells which can affect the analysis. 

Therefore, we stained T-cells for 30 minutes on ice while moDCs were stained in 

room temperature for 10 minutes. As dendritic cells are sufficiently large that they 

appear as a clear population compared to debris and other cells in forward scatter and 

side scatter plots in flow cytometry, gating around them is not a difficult task as dying 

or dead cells are clearly smaller. This is harder to gate around regarding T-cells which 

are smaller and therefore harder to separate from debris and dead cells. Therefore, we 

used Pacific Orange as a live-dead stain. 

5.1.5 Special considerations on migration assay 

For chemotaxis assay, transwell methods, while easy to setup, have limited relevance 

physiologically as concentration of target chemoattractant differs from physiological 

response and the static nature of wells hardly represent the vascular or lymphatic 

system. While it does convey information about cells ability to migrate through a 

membrane, how reflective it is of behaviour in vivo is highly debatable [270]. The 

choice of using a CASY cell counter was also due to feasibility, but as the purpose was 

to show that the cells could migrate and controls were not supposed to migrate at all, 

the slight variance in counting was deemed of little relevant. 

5.1.6 Special considerations on IFNγ assay 

Measurement of T-cell using an IFN-γ based assay is a reliable way of detecting the 

number of activated T-cells. Several studies show that antigen-specific T-cells indeed 

starts secreting IFN-γ upon activation [271-273]. The ratio between moDCs and T-

cells are quite important for this measurement, and while the start ratio is similar for 

all samples, the end ratio can differ based on individual variations due to apoptosis or 

proliferation which in turn can affect the results, but this is likely not significant due to 

the short amount of co-culture time (18h). There are concerns that the antibodies 
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binding to cells can affect them to some degree, but according to the developers of this 

method it has no negative impact on the cells [273, 274]. 

5.1.7 Special considerations on ELISA  

For ELISA, the concentration of cytokines frozen from supernatant is influenced by 

the number of cells in the culture. As individual variation is observed when it comes to 

viability during the generation of moDC and subsequent yield of them, it is no surprise 

that total cytokine profile of the culture will be affected. As we are comparing 

maturation treatment of moDC, there should be variations on how immune cells of 

individuals react to the different cocktails and subsequently affect the total cytokine 

profile. We can therefore only report how the treatment acts upon the cells as a group 

rather than how it affects individual cells. To correct for this, results from both ELISA 

and Luminex are compared to viability data during cell harvesting. As proteins 

degrade over time and with increased temperature and ELISA is a lengthy procedure, 

some loss is to be expected during the processing even if being kept on ice for as long 

as possible [275]. Many of the same limitations can be applied to Luminex assays as 

well.  

5.1.8 Special considerations on statistical analysis 

For statistical analysis, the methods picked are appropriate for the studies. However, 

due to the low number of included samples it can be difficult to interpret. Outliers can 

heavily skew the grand mean and can mainly be mitigated by larger sample size which 

is not always possible due to cost or available study population. While trends can be 

observed even with small sample sizes, one should be careful to draw conclusions 

even with statistical significance.  

5.2 Implications of research results 

As clinical trials using moDC show that results are varied and often negative in 

immunotherapy, and generation methods of moDC vary considerably between labs, 

investigating what influences the generation process becomes crucial. While steps 

towards better reproducibility and standardisation is underway with fully automated 

cell generation methods such as CliniMACS Prodigy by Miltenyi Biotec, availability 
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to such equipment is currently limited. While generation of immature moDC is 

generally agreed upon to rely on the method established by Sallusto and Lanzavecchia 

in 1994 [190], this is not the case for maturation methods. For a long period of time, 

the maturation cocktail developed by Jonuleit et al has been used for many clinical 

trials but was deemed insufficient for the purpose of immunotherapy. As referred to 

previously, many groups have developed their own cocktails for the maturation 

process of moDC, and how the blood/PBMC is processed and stored also vary 

significantly. As there is no standard on how to mature moDC for the purpose of 

immunotherapy, we set out to investigate potential new cocktails and other factors and 

compare them to that of other protocols. As CCR7 expression and migration to lymph 

node are crucial for adaptive immune response, our focus was finding a cocktail that 

both induced CCR7 expression in moDC as well as immunogenic phenotype. As our 

studies have shown, moDCs are heavily affected by various factors that might be 

overlooked normally during generation and therefore explain many of the variable 

results seen in the clinical trials. The burst of excitement generated by the success of 

checkpoint inhibitors and how it mainly works in specific cancer types and subset of 

patients has spurred numerous clinical trials on the basis that the methodology is not at 

fault, but rather the target population. Many of the clinical trials with moDC has 

followed the same philosophy with disappointing results. Hopefully our research can 

contribute to better understanding and possible standardization on moDC generation 

methodology. 

5.2.1 The role of OK432 in moDC maturation and the effects of PGE2 

As one of our goals was to determine OK432 matured moDC as candidate for 

immunotherapy, the properties of the OK432 matured moDC had to be compared to 

the gold standard at the time and prominent cocktails used by other groups [199-201, 

207]. As our results show, the cells have properties that are desired for immunotherapy 

which are high expression of HLA-DR, costimulatory molecules CD80 and CD86 and 

secretion pro-inflammatory cytokine IL-12p70.  
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The main problem for OK432 matured moDC as described previously by Hovden et al 

[238], was the lack of CCR7 expression which meant that moDC matured only with 

OK432 would in theory not migrate towards lymph nodes and therefore have limited 

clinical value. As the Jonuleit cocktail managed to mature moDC with high expression 

of CCR7 but limited immunogenic properties, several groups started investigating 

which component in the cocktail contributed to this phenomenon. It was subsequently 

determined that PGE2 was crucial for CCR7 expression in moDC but was also 

immunosuppressive [202, 204]. As CCR7 expression is crucial for DC migration to 

lymph nodes, we hypothesized that the stimulatory and inhibitory functions of PGE2 

might be concentration dependent and that the Jonuleit cocktail used too much of it. 

Strikingly in paper I, we observed that migratory capability was almost linearly 

correlated with the amount of PGE2 added to the maturation cocktail. The results of 

our finding support the notion that PGE2 is a key up-regulator of CCR7 for moDC. 

Why this apparent paradox role exist requires further research, but it might play a role 

in local inflammatory homeostasis. As shown by Hangai et al [204], PGE2 is released 

by apoptotic cells which in turn inhibits inflammatory conditions. This could mean 

that PGE2 in high concentration acts as a DAMP and that DCs might mature with more 

tolerogenic properties without adequate PAMP stimuli. This is in line with what we 

know about macrophages who change phenotype towards immunosuppressive and 

regulatory M2 phenotype in the presence of PGE2 [276]. A clinical support for this 

hypothesis is observed in pregnancy, an immunosuppressive state, where serum PGE2 

is elevated [277].  

The main notable difference between OK432 matured moDC compared to Jonuleit 

cocktail matured moDC was in their cytokine profile, which showed that OK432 

matured moDC had a much more promising profile. The high secretion of IL12p70 is 

already a good indicator, but interestingly one of the most obvious differences was 

observed in IL-8 which was significantly reduced for every sample included. Initially 

as this was part of the 25 Luminex panel, it was not deemed one of the cytokines of 

interest, but subsequent investigation into literature showed that elevated IL-8 is 

associated with reduced clinical benefit from checkpoint inhibitors in cancers [278]. 
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Furthermore IL-8 is a chemokine that mainly attracts neutrophils, which in turn might 

have a negative effect for the purpose of immunotherapy as neutrophil infiltration in 

tumours appears to be a negative prognostic marker in contrast to CD8+ TILs [120, 

279]. This negative role is supported by observations that recruitment of neutrophils to 

lymph nodes can have an inhibitory effect on the adaptive immune response in cancers 

[280]. Therefore, the observed low IL-8 secretion by OK432 moDC appears to be a 

positive trait for the purpose of immunotherapy. It should also be noted that all OK432 

matured moDC had elevated IL-12p70 and IL-12p40 compared to Jonuleit cocktail 

matured moDC. The addition of CL097 appeared to increase IL-12p70 with OK432, 

but did not affect secretion of IL-12p40 suggesting CL097 to primarily be an 

proinflammatory stimuli. The addition of PGE2 significantly increased secretion of IL-

12p40 when added onto OK432 with CL097 but also resulted in less IL-12p70. This 

suggests that PGE2 might be partially responsible for inactivating IL-12p70 into its 

inactive form IL-12p40. 

5.2.2 Cell culture surface should not be ignored 

Commonly observed in many papers involving cell culture, the flasks and containers 

used for culture are not stated. It has often been taken for granted that in vitro 

conditions are reflective on in vitro conditions. The established process of erythrocyte 

and plasma transfusion and the safety profile of those clinical methods add to the 

notion that cells do not change significantly during transport or processing. In fact 

procedures such as freezing plasma for transfusion are considered safe, and for 

military personnel, frozen erythrocytes are also in for clinical use [281, 282]. This 

however might be limited by the functions of the components as erythrocytes and 

platelets have limited role outside of their primary functions. As the immune cells are 

highly sensitive to their environment and have drastic different functions depending on 

the context of what they detect, the same assumptions cannot be made. It is known that 

immune cells have homing and anchoring capabilities such as macrophages to specific 

tissues, and that they have stretch sensitive cellular components that alter their 

functions [283-285]. It is not hard to imagine that the adherence of cell surfaces can 

impact the functions of immune cells that are known to adhere to tissue.  
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In paper II, we showed that adherence plays a significant role in how moDC mature 

under different stimuli. Interestingly homotypic clusters could be observed in all 

conditions without adhesion to plate surfaces and this persisted for days, suggesting 

that monocytes and moDC actively seek adherence to other cells or surfaces. We also 

showed that blocking CD18 drastically reduced this phenomenon while blocking 

CD1a and CD1b increased the homotypic clustering which resulted in the hypothesis 

that CD1a and CD1b might act as a competitive inhibitor to the adhesive functions of 

CD18 which is in line with a study by Sàndor et al [286]. 

In addition, we showed that cell phenotype of generated moDC is also affected by 

culture surface conditions especially in inflammatory conditions. Possible explanations 

to this might be due to the contextual nature of immune cells in general, as cells often 

use adhesion signals to contextualize their location and surroundings. Monocytes do 

not normally reside in tissue, but are instead circulating in the bloodstream or in the 

spleen and differentiate into other cells once migrated into other tissues [287]. 

Therefore, it is sensible that their differentiation status differs whether they are 

attached to a surface or not. How cell to cell adhesion affects their differentiation 

function, however, remains to be seen as we have yet to investigate the effects of 

CD18 blockage on moDC generation. There is also a possibility that the changes 

observed are due to conditions within the clusters as in cancer, the centre of tumours 

often have necrotic conditions due to lack of access to nutrients [288]. 

For the purpose of immunotherapy, the culture dish surface appears to depend on what 

stimuli used as we saw different effects of surface adhesion with different stimulation 

conditions. What simulates in vivo conditions better is also questionable as immature 

DC reside in tissue awaiting stimuli, whereas mature DC loses anchoring properties to 

local tissue and migrate towards lymph nodes. Therefore physiologically speaking 

during generation, monocytes should technically be in non-adherent culture dishes 

with fluidic movement to simulate blood flow and switched to adherent culture dishes 

once generated into immature moDC, but this is logistically not very feasible. The 

overall message from our study in paper II is therefore to always provide information 
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regarding culture dish used and be mindful about data interpretation depending on 

culture dish used. 

5.2.3 Challenges with studying cells from cancer patients  

It is a well-known fact that cancer patients often have altered immune systems 

compared to healthy individuals [289]. As we found OK432 cocktail matured moDC 

to have properties that appeared beneficial for immunotherapy, we wanted to 

investigate whether moDC from prostate cancer patients reacted similar to healthy 

controls with the same treatment. There were however notable challenges due to 

various factors. Firstly, moDC for the purpose of immunotherapy requires a certified 

GMO grade lab for generation which is not available at our location, therefore patient 

PBMCs had to be shipped to Oslo for generation and shipped back. The cells were 

cryopreserved in liquid nitrogen, but this adds a factor which we did not have in our 

previous OK432 matured moDC studies. Additionally, considerable amount of 

apoptosis was observed in the cells once thawed and it is impossible to determine what 

role logistics played as no healthy control samples were sent parallel with the prostate 

cancer patient samples. 

As generation of GMO grade moDC for therapeutic purposes was very expensive, 

there were limitations to how many samples we could obtain, and combined with the 

considerable cell loss after thawing, meant that there were restrictions on how many 

samples could be run (paper III). Our results, however, showed that moDCs from 

prostate cancer patients showed fairly similar mature phenotype regardless whether 

they were stimulated by a maturation cocktail or not, suggesting processes during 

generation of immature moDC or aftercare resulted in a mature phenotype. It is known 

that cryopreservation can activate immature moDC [263], but choices were limited 

without a local GMP grade lab. Ideally there should be no cryopreservation or delay 

between collection of patients PBMC and generation of moDC for therapeutic 

purposes, but logistically this is not currently possible.  

Regardless of the lack of differences observed in the moDC phenotype of prostate 

cancer patients, we observed high expression of checkpoint molecules PD-L1 and PD-
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L2. The T-cells stimulated also showed high expression of PD-1 on the majority of 

CD4+ and CD8+ cells, suggesting that immunotherapy on these patients likely benefit 

from checkpoint inhibitors. Whether this is a property of prostate cancer patients, 

however, is not answerable in our study as we do not have healthy controls included in 

the logistics portion of the study. However, our study is in line with some observations 

by another study that show increased PD-1 expression by T-cells in prostate cancer 

patients [290].    

The expansion of CD25+ memory cells by OK432 cocktail matured moDC in prostate 

cancer patients is interesting, but what it indicates is somewhat questionable. As 

OK432 contains components of Streptococcus pyogenes, a very common bacteria, it 

should come as no surprise that memory cells are activated if moDC present these 

antigens. We did use PPD as a recall antigen and PPD antigen specific IFN-γ response 

was observed regardless of moDC treatment, but as only 3 patients were included with 

varying results it is hard to draw any conclusions. 
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6. Conclusions 

The challenges and results from the three studies included in this thesis highlight the 

complex nature of moDC generation and how easily monocytes are affected by various 

factors that are often overlooked. Future studies on applicability of moDC for 

immunotherapy should take into consideration of those factors when developing their 

protocols. 

OK432 matured moDCs show promising aspects for immunotherapy due to phenotype 

with high expression of HLA-DR, CD83, CD80, CD86 and most importantly, the lack 

of CCR7 expression was remedied with the addition of PGE2 in the cocktail with 

limited immunosuppressive effect. IL-12p70 secretion by moDC was further increased 

with the addition of CL097. The functionality of the CCR7 expression was confirmed 

by transwell assay. T-cell response could be induced by OK432 cocktail matured 

moDC and IL-12p70 secretion by OK432 cocktail matured moDC was comparable to 

many other maturation cocktails.  

Surface adhesion properties of culture dishes highly impact the phenotype and 

cytokine profile of generated moDC in many ways that vary depending on culture 

condition. It is highly suggested future studies take these considerations into account 

and always include details about culture conditions apart from medium and stimulants. 

Logistical considerations should be considered when designing moDC studies. Patient 

materials might not be as readily available, and cryopreservation needs to be evaluated 

for feasibility regarding moDC for immunotherapy. T-cells from metastatic prostate 

cancer patients included in our study were capable of being stimulated by autologous 

moDC. 
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7. Future perspectives  

 

While we have done many preliminary studies on the potential of OK432 as a 

maturation stimulus for moDC, more remains to be done regarding their feasibility for 

immunotherapy. The results from paper I revealed some interesting features that 

should be taken into consideration. Notably the cytokine profile of OK432 cocktail 

matured moDC having reduced IL-8 should be investigated whether it is functional or 

not. It might be interesting to conduct a migration assay to check autologous 

neutrophil chemotaxis towards these moDCs compared to those matured by the 

Jonuleit cocktail.  

The findings regarding PGE2 are particularly interesting as while its effect on 

chemotaxis has been confirmed by other studies to be relevant, limited studies have 

been done on the effect of different concentrations of PGE2 on migratory capability of 

moDC [201, 291]. 

Apart from the significant findings in paper I, the number of samples are on the low 

side, so more repetitions are always welcome to clarify some of the results. 

Additionally, as we have revealed in paper II, different stimuli affect cells differently 

depending on cell culture surface. Therefore, it might be interesting to investigate 

OK432 cocktail matured moDC compared with Jonuleit cocktail matured moDC in 

different culture surface conditions as that was observed regarding Jonuleit cocktail 

and LPS stimulated moDC. 

The findings of paper II also suggest that reconsiderations need to be highlighted 

among immunologists regarding the culture containers used as clearly monocytes react 

differently to surface adhesion than many other cells. Additionally, it would be 

interesting to see whether these changes are concentration dependent as clearly the 

cells in non-adherent surface containers formed homotypic clusters and the density of 

the clustering effect itself might contribute to the changes observed. As we revealed 

CD18 to be the main contributor to the clustering effect, what role CD18 plays in 

moDC generation should also be investigated as well as the role of CD11a and CD11b 
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as potential competitive inhibitors. It would also be interesting to see if blocking CD18 

affects cells generated in standard cell culture dish surfaces. 

Finally, the study conducted in paper III did not meet its goal of determining whether 

moDC generated from metastatic prostate cancer patients could benefit from OK432 

cocktail stimulation because control for the logistics part of the study was not 

included. This makes it impossible to determine if changes observed are due to 

processes such as cryopreservation, handling and delay or properties associated with 

the disease. Therefore, future studies should ideally avoid factors that might influence 

the results and always include controls undergoing the same treatment.  

What did differ in paper III, however, is that there appears to be a clear expansion of 

CD25+ memory T cells by OK432 cocktail stimulated moDC. While we did use PPD 

as recall antigen, it remains to be seen if OK432 stimulated moDC also expand CD25+ 

cells in the absence of recall antigen and could be investigated in the future. 

The final key message of our findings is the necessity to include checkpoint inhibitors 

when using moDC for immunotherapy. High expression of checkpoint molecules was 

observed in both paper II and paper III regardless of moDC treatment, therefore it is 

unlikely to achieve notable immunogenic stimuli without inclusion of checkpoint 

inhibitors.  
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Monocyte-derived dendritic cells (moDC) are an important scientific and clinical source

of functional dendritic cells (DC). However, the optimization of the generation process

has to date mainly been limited to the variation of soluble factors. In this study, we

investigated the impact of the cell culture dish surface on phenotype and cytokine

profile. We compared a standard cell culture dish to a non-adherent culture dish for two

immunogenic maturation conditions, two tolerogenic conditions, and an unstimulated

control. Phenotype, cytokine profile and T cell stimulatory capacity were determined after

a 3-day culture. Light microscopy revealed an increase in homotypic cluster formation

correlated with the use of non-adherent surfaces, which could be reduced by using

blocking antibodies against CD18. All surface markers analyzed showed moderate

to strong differences depending on the culture dish surface, including significantly

decreased expression of key maturation markers such as CD80, CD86, and CCR7

as well as PD-L1 on cells stimulated with the Jonuleit cytokine cocktail cultured on a

non-adherent surface. Significant differences in the secretion of many cytokines were

observed, especially for cells stimulated with LPS, with over 10-fold decreased secretion

of IL-10, IL12-p40, and TNF-α from the cells cultured on the non-adherent surface. All

immunogenic moDC populations showed similar capacity to induce antigen-specific T

cells. These results provide evidence that the DC phenotype depends on the surface

used during moDC generation. This has important implications for the optimization of

DC-based immunotherapy development and underlines that the local surrounding can

interfere with the final DC population beyond the soluble factors.

Keywords: homotypic clusters, monocytes, monocyte-derived dendritic cells, immunogen, tolerogen, adhesion,

non-adherent culture plate, cytokines

INTRODUCTION

Dendritic cells (DC), positioned between the innate and adaptive immune system, play a central
role in a great variety of immunological settings. They play an important role for the pathogenesis
of many diseases, and are increasingly also under investigation as a clinical tool to treat a great
diversity of different challenging conditions, ranging from cancer to autoimmunity (1). The role
of DC in medicine has already been highlighted by their discoverer Ralph M. Steinman (1, 2),
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ranging from infectious diseases over autoimmunity to cancer
(3–5). However, the complexity of the pathogenic settings in
the immune system and the diversity of DC subtypes are
contributing to an enduring challenge to understand and apply
DC biology. Many obstacles have to be overcome on the way
to clinics, but the understanding of the in vitro system for
the development of DC applications is of special importance.
As DC are a central sensing unit collecting all information
before a possible activation of the adaptive immune system,
it is not surprising that the culturing environment can have
a great impact on the cellular phenotype and thus on the
induced immune response. Commonly, blood monocytes are the
major source of cells to generate DC ex vivo, mainly because
they are readily accessible. Monocyte-derived DC (moDC) are
then generated by use of conditioning soluble factors, usually a
combination of GM-CSF and IL-4, to induce the DC program
in monocytes, followed by a maturation cocktail that mimics an
in vivo maturation condition leading to the desired phenotype.
For example, one of the commonly used maturation cocktails for
immunogenic DC is one that imitates an inflammatory situation
in the skin (referred to as “Jonuleit cocktail”), containing IL-1β,
IL-6, TNF, and prostaglandin E2 (PGE2) (6). Moreover, serum-
free formulations are recommended to ensure reproducibility
and achieve compliance with clinical requirements (7). However,
only the impact of soluble factors is commonly considered, the
adhesional culture properties are hugely ignored in most in vitro
protocols. If mentioned at all, standard cell culture plates are
recommended. Alone the in vivo regulation of DC adhesion upon
maturation (8, 9) gives an indication that adhesional signaling
might be of importance in a potentially more diverse way than
can be expected from an unspecific surface of a plastic cell culture
dish. In connection with the culturing conditions, we observed an
early increase in DCmarkers on immature DC when cultured on
non-adherent surfaces compared to standard cell culture dishes
(10). In the same study, we observed an increase in homotypic
clustering of the cells on non-adherent surfaces compared to
cells on standard cell culture plates. Thus, the choice of the
culture dish can potentially have a significant impact on the DC
phenotype and function by either supporting the early, integrin-
mediated adhesion followed by low homotypic clustering, or
by reducing culture dish interactions leading to an increase in
clustering and thus cluster-mediated cell-cell interactions.

The aim of the present study was to investigate the
effect of the culture dish surface on the phenotype and the
cytokine production of differentially stimulated immunogenic
and tolerogenic moDC populations. We found that both
phenotype and cytokine secretion are modulated in a treatment-
dependent manner. Moreover, using blocking antibodies, we
determined CD18 as the most important molecule for the
homotypic cluster formation.

MATERIALS AND METHODS

Dendritic Cell Generation
Freshly drawn peripheral blood was collected from 19 healthy
volunteers into BD Vacutainer ACD-A 10ml citrate tubes (BD,
Franklin Lakes, USA). Informed consent was obtained from

all donors. The study was approved by the regional ethical
committee Western Norway (REK Vest; #2009/686). The age of
the donors was ranging from 23 to 67 years. Monocytes were
isolated as described previously (10). In short, peripheral blood
mononuclear cells (PBMC) were isolated by density gradient
centrifugation using Lymphoprep (Axis- Shield, Oslo, Norway).
The PBMC were washed twice and centrifuged at 220 g for
8min at 4◦C, respectively, in order to further increase the
leukocyte to platelet ratio. Monocytes were further isolated
using the Monocyte Isolation Kit II (Miltenyi Biotec Norden
AB, Lund, Sweden). In four experiments, additional anti-CD61
microbeads (Miltenyi Biotec Norden AB, Lund, Sweden) were
added to reduce residual platelet numbers. The final untouched
monocyte fraction was washed, counted on a CASY cell counter
and resuspended in serum free CellGro DC medium (CellGenix
GmbH, Freiburg, Germany). During culture, Nunclon 1 6-
well plates and Nunc HydroCell 6-well plates were used in
comparison as representative standard culture dish and non-
adherent culture dish, respectively (Thermo Fisher Scientific,
Waltham, USA). For the MLR and the blocking antibody
experiments, the non-adherent culture dish was changed to Nunc
Sphera (Thermo Fisher Scientific, Waltham, USA), the newer
line of non-adherent culture plates, due to discontinuation of
the HydroCell series. 0.75 × 106 monocytes/ml CellGro DC
medium were plated per surface and per maturation stimulus,
supplemented with IL-4 (20 ng/ml) and GM-CSF (100 ng/ml)
(ImmunoTools, Friesoythe, Germany). IL-4 and GM-CSF were
replenished after 2 days, 24 h before cell harvesting.

For 5 of the donors, blocking experiments were performed.
For the other 14 donors, five different DC populations were
generated for each surface, two of them immunogenic (LPS
and Jonuleit cytokine cocktail, respectively), two tolerogenic
(Dex/VD3 and IL-10, respectively) and one control sample
without additional stimulus. LPS (100 ng/ml; Sigma-Aldrich,
Taufkirchen, Germany) and the Jonuleit cytokine cocktail
[10 ng/ml of IL-1β, 10 ng/ml of TNF, 1,000 U/ml of IL-
6; all ImmunoTools, Friesoythe, Germany, and 1µg/ml of
prostaglandin E2 (PGE2); SigmaAldrich, Taufkirchen, Germany]
were added 24 h before harvesting, respectively. For the
generation of DexVD3 DC, 1µM of dexamethasone (Dex;
Sigma- Aldrich, Taufkirchen, Germany) was added at the start
of culture, and replenished 24 h before harvesting together
with 1 nM of 1α, 25-Dihydroxyvitamin D3 (VD3) (Enzo Life
Sciences, Farmingdale, NY). For the generation of IL-10 DC,
IL-10 (10 ng/ml) was added at culture start and replenished
24 h before harvesting (Miltenyi Biotec Norden AB, Lund,
Sweden). As DMSO (Sigma-Aldrich, Taufkirchen, Germany)
was used as a solvent for Dex and VD3, a corresponding
amount of DMSO was added to the control samples (DMSO
iDC). All cells were harvested after 3 days in culture. Cell-
free supernatants were stored at −20◦C for later cytokine
detection. The remaining cells were washed off the surfaces
with PBS (without magnesium and calcium; Lonza, Verviers,
Belgium) containing 2mM EDTA (Sigma- Aldrich, Taufkirchen,
Germany). The viability of the generated DC population for
each condition was determined by annexin-V and 7-AAD
staining using the Annexin V Apoptosis Detection Kit (eFluor
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450) from eBioscience (AH Diagnostics, Oslo, Norway) and a
LSRFortessa cell analyzer (BD, Franklin Lakes, USA) located at
the Core facility for Flow cytometry, Dept. of Clinical Science,
University of Bergen.

Blocking Antibodies
In some experiments, blocking antibodies against CD11a (clone
HI111), CD11b (clone ICRF44), CD11c (clone 3.9), CD18
(clone TS1/18; all 10µg/ml; BioLegend, San Diego, CA, USA),
or E-cadherin (clone HECD-1; 10µg/ml; Invitrogen/Thermo
Fisher, Waltham, MA, USA), all low endotoxin, azide free,
were added in the growth medium for 3 days during moDC
generation. As a control, the moDC were cultured with mouse
IgG1 (BioRad, Hercules, CA, USA) supplemented in the growth
medium in the same concentrations as the blocking antibodies.
A cell population with no additional antibodies served as
a negative control. After 3 days of culture, the morphology
of the generated moDC populations was analyzed by light
microscopy using a Cytation 5 Cell imaging-reader (BioTek
instruments,Winooski, VT, USA), before the cells were harvested
for phenotyping.

Immunostaining
The phenotype of the generated moDC populations was analyzed
using the surface markers shown in Table 1. Cells were pre-
incubated for 5min using 2 µl of FcR blocking reagent (Miltenyi
Biotec Norden AB, Lund, Sweden) per up to 106 cells in 150 µl
cold PBS containing 0.5 % bovine serum albumin (BSA; Sigma-
Aldrich, Taufkirchen, Germany), followed by an incubation with
the titrated amounts of antibodies for 15min in the same buffer.
The flow cytometry analysis was performed at the Core facility for
Flow cytometry, Dept. of Clinical Science, University of Bergen,
using a BD LSRFortessa cell analyzer.

TABLE 1 | Mouse monoclonal anti-human antibodies with fluorophores and clone

IDs used for flow cytometry analysis.

Antigen Fluorophore Clone

CD14 FITC 18D11

CD1a PE HI149

CD38 PerCP-Cy5.5 HIT2

CD83 PE-CF594 HB15e

CD40 PE-Cy7 5C3

CD86 Alexa Fluor 647 IT2.2

CD80 Brilliant violet 605 2D10

HLA-DR Horizon V500 G46-6

CD197 (CCR7) Brilliant violet 421 G043H7

CD18 FITC TS1/18

CD11c PerCP-Cy5.5 3.9

HLA-A,B,C APC-Cy7 W6/32

CD274 (PD-L1) PE-Cy7 MIH1

CD273 (PD-L2) Alexa Fluor 647 MIH14

CD11b Brilliant violet 421 ICRF44

Cytokine Detection
For the detection of cytokines in the cell medium after DC
generation, we used a magnetic microbead based 25-plex
human cytokine kit for the Luminex platform (Invitrogen
Corp., Carlsbad, USA). The cytokines measured were IL-
1β, IL-10, IFN-α, IL-6, IL-12, RANTES (CCL5), Eotaxin
(CCL11), IL-13, IL-15, IL-17, MIP-1α (CCL3), GM-CSF, MIP-
1β (CCL4), MCP-1 (CCL2), IL-5, IFN-γ, TNF-α, IL1RA, IL-
2, IL-7, IP-10 (CXCL10), IL-2R, MIG (CXCL9), IL-4, and IL-
8. All supernatants were thawed and analyzed simultaneously.
Measured median fluorescence intensity (MFI) values below the
standard-curve were set to the detection limit and cytokines
withMFI-values above the standard-curve were approximated by
extrapolating linearly.

Mixed Leukocyte Reaction (MLR)
In order to analyze the T cell stimulatory capacity of the
generated moDC populations, we performed allogeneic mixed
leukocyte reactions (MLR) as described previously (11). 5
× 104 moDC were co-cultured with 2 × 105 monocyte
depleted PBMC stained with CFDA-SE (Vybrant CFDA-SE
Cell Tracer Kit, Thermo Fisher Scientific, Waltham, USA)
for 5–7 days in X-Vivo20 medium supplemented with IL-7
(10 ng/ml) and IL-2 (50 U/ml; both ImmunoTools, Friesoythe,
Germany). At least 30,000 events were collected on a BD
Accuri C6 instrument at the Core facility for Flow cytometry,
University of Bergen.

IFN-γ Secretion Assay
An IFN-γ secretion assay (Miltenyi Biotec, catalog number
130-054-202) was utilized to analyze the capacity of the
generated DC populations to induce antigen specific T cell
responses as described previously (11). In short, 2.5 × 106

autologous monocyte-depleted PBMC were co-cultured with
5 × 105 PPD-loaded DC populations for 7 days in X-
Vivo20 medium supplemented with IL-7 (10 ng/ml) and IL-
2 (50 U/ml). The IFN-γ secretion assay was performed
according to the manufacturer’s manual. As stimulators, PPD-
loaded DC stimulated with LPS were used, and unloaded
LPS-DC served as negative control. 2 × 105 DC were co-
cultured with 8 × 105 induced monocyte-depleted PBMC
for 16 h. Staphylococal enterotoxin B from Staphylococcus
aureus (SEB; 1µg/ml; Sigma-Aldrich) was added as positive
control. Prior acquisition on a BD LSR Fortessa, the cells
were stained with anti-CD4 FITC (M-T466, Miltenyi Biotec)
and anti-CD8-APC (RPA-T8, Biolegend), as well as 7-AAD
(ebioscience). A minimum of 2 × 105 events were collected
in the Lymphocyte gate. FlowJo was used to analyze the data,
and % IFN producing cells were calculated according to the
following formula:

% IFNγ producing cells among CD4+ =

# of IFNγ+ CD4+ cells in the sample

# of total CD4+ cells in the sample
× 100
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IFN-γ producing CD8+ T cells were calculated accordingly. The
% IFN-γ producing cells from DC without PPD was subtracted
from the values with PPD.

Statistical Analysis
The statistical analyses were performed with Graph-Pad Prism
(v5.02). Statistical significance was determined by comparing the
cells of the two different surfaces for each treatment using a 2way
ANOVA test in combination with the Bonferroni post-test or
Dunn’s post-test, significance criterion<0.05. Significance values
in figures are given in grades P < 0.05 (∗), P < 0.01 (∗∗), and
P < 0.001 (∗∗∗). Median values for each surface and treatment
are marked with a line. Measured values are given as the mean±

the standard deviation (SD) if not stated otherwise.

RESULTS

The Lack of Surface Adherence Leads to
Increased Homotypic Cluster Formation
That Can Be Reduced by Blocking CD18
Using light microscopy, we observed an increase in cell
cluster formation on the non-adherent culture dish in
comparison to the standard cell culture dish for all moDC
populations (Figure 1, Figure S1). Considerably smaller
clusters were also observed on the standard cell culture
dish, especially for the immunogenic stimulation conditions
with LPS or the Jonuleit cocktail (Figure S1). Viability was
not influenced by the different surfaces (data not shown).
In order to determine the molecules responsible for this
clustering behavior, we added various blocking antibodies
to the culture. Blocking CD18 reduced clustering on the
non-adherent plates (Figure S2), while blocking CD11a and
CD11b appeared to promote homotypic clustering, independent
of the surface used. Blocking CD11c and E-cadherin had
inconsistent results.

Culture Dish Adherence Influences
Phenotype and Cytokine Production of
moDC
We further investigated phenotypic differences depending on the
treatment and surface conditions by analyzing expression levels
of 15 different surface markers using flow cytometry (Figure 2).
The expression of all cell surface molecules was influenced by
the culture dish used. Interestingly, the use of a non-adherent
culture dish decreased expression of PD-L1 on cells treated with
the Jonuleit cocktail, while the other PD-ligand, PD-L2 (CD273),
was highly expressed.

Cytokine production varied depending on the treatment and
the surface used (Figure 3). In general, LPS-DC had the highest
production of most cytokines. Regarding the influence of the
culture dish surface, most cytokines were overall secreted at
lower levels on non-adherent surface. Interestingly, the levels of
exogenously added cytokines GM-CSF and IL-4 varied a lot. GM-
CSF levels were higher on the standard cell culture dish than on
the non-adherent surface, while IL-4 levels were lower. While
the cytokine profile of the DC cultured in tolerogenic conditions
as well as control showed limited differences in cytokine profile
regardless of culture dish surface, the LPS stimulated DCs had
significant profile differences. Interestingly, IL-10 and TNF-α
secretion was increased in all LPS stimulated DCs on standard
cell culture dish compared to non-adherent surface, while the
opposite was true for IL-15 and MIG.

Blocking of adhesion molecules resulted in little differences in
surface expression of most markers analyzed (data no shown).

Additional Platelet Reduction During
Monocyte Isolation Has No Distinct Effect
on Phyenotype and Cytokine Production
In order to investigate the possibility that isolation impurities
might have an impact on the clustering, phenotype, and cytokine
production, four of the monocyte isolation procedures were

FIGURE 1 | Homotypic cell clusters form on the non-adherent surface but less on the standard culture dish. Representative microscopy pictures of iDC (DMSO) at the

end of the 3-day culture on (A) a standard cell culture dish and (B) a non-adherent culture dish. The increase in cell cluster formation on non-adherent dishes relative

to standard dishes could be observed for all treatments (n = 8).
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FIGURE 2 | Influence of the culture dish on the phenotype of differentially stimulated moDC. The phenotype was analyzed by flow cytometry using the indicated

surface molecules. % positive cells or median fluorescence intensity (MFI) are shown. Color code: Control (DMSO)—green, immunogenic DC populations (LPS &

Jonuleit cytokine cocktail)—red, tolerogenic DC populations (Dexamethasone with vitamin D3 & IL-10)—blue. Squares (left): standard culture dish; circles (right):

non-adherent culture dish. The median is marked with a line. Significance values are given in grades *P < 0.05, **P < 0.01, and ***P < 0.001. Black significance

grades are the result of a collective 2 way ANOVA testing for all treatments, red grades are from separate tests for the iDC/tolDC and immunogen subgroups (n = 8).
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FIGURE 3 | Influence of the culture dish on the cytokine production of differentially stimulated moDC. Cytokines were measured in cell free culture supernatants of the

generated moDC populations. Color code: Control (DMSO)—green, immunogenic DC populations (LPS and Jonuleit cytokine cocktail, respectively)—red, tolerogenic

DC populations (Dexamethasone with vitamin D3 and IL-10, respectively)—blue. Circles (left): standard culture dish; squares (right): non-adherent culture dish. The

median is marked with a line. Significance values are given in grades *P < 0.05, **P < 0.01, and ***P < 0.001. Black significance grades are the result of a collective 2

way ANOVA testing for all treatments, red grades are from separate tests for the iDC/tolDC and immunogen subgroups (n = 6).

performed using additional anti-CD61 beads to remove platelets.
While the monocyte purity without the use of anti-CD61 beads
was >85 %, it increased to >95 % when additional anti-CD61
beads were used (Figure S3), confirming that platelets were the

main impurity. However, both the phenotype of the generated
DC populations and their produced cytokines did not show
any clear differences between the preparations with and without
residual platelets (data not shown).
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The Cell Culture Surface Does Not
Influence the T Cell Stimulatory Capacity
of moDC
Lastly, we analyzed the T cell stimulatory capacity of the
generated moDC populations. Using allogeneic MLR, no
obvious differences were observed between the different surfaces,
regardless of the DC population used as stimulator (Figure S4).
As expected, the co-culture with the immunogenic DC
populations (LPS and Jonuleit-cocktail stimulated cells) resulted
in higher proliferation compared to the immature control DC.
The proliferation of monocyte-depleted PBMC co-cultured with
the tolerogenic moDC populations was even less than with
immature DC. We further analyzed the immunogenic moDC
populations in an autologous setting. Both LPS- and Jonuleit-
cocktail stimulated cells were able to induce antigen specific
autologous CD4+ and CD8+ T cells, with slightly higher
numbers of IFN-γ producing T cells upon using LPS-stimulated
DC, independent of the culture dish used (Figure 4).

DISCUSSION

In this study, we analyzed the influence of the cell culture
surface on differentially stimulated moDC. The formation of cell
clusters was increased for all cells cultured on the non-adherent
culture dishes. Cell clusters on the standard culture dish were
in comparison very small and only forming after immunogenic
stimulation, suggesting a different clustering mechanism. The
phenotype was in many cases significantly modulated depending
on the cell culture dish. A total of 17 of the 25measured cytokines
were secreted at significantly different levels depending on the
culture dish by moDC stimulated with LPS. However, the T cell
stimulatory capacity was not influenced by the culture surface.

As immature DC are known to have tolerogenic functions
(12), and based on the similarities in phenotype and cytokine

production between the iDC and tolDC in our study, iDC/tolDC
will be discussed collectively. In contrast, due to the distinct
differences observed between LPS-DC and Jonuleit-DC, they will
be discussed separately.

Immature DC and Tolerogenic DC
The typical monocyte/macrophage marker CD14 was expressed
at high levels in all iDC/tolDC populations on the standard
culture dish, but at lower levels in the non-adherent culture dish,
with the exception of DexVD3 DC. This is in line with a previous
study showing that culturing monocytes in suspension rather
than adherent conditions leads to a rapid reduction in CD14
(13). Thus, using CD14 as a marker for successful DC generation
when comparing adherent with suspension protocols might not
be the best choice. Nevertheless, the prevention of the suggested
internalization of CD14 by DexVD3 treatment is interesting and
should be investigated further.

The lack of DC maturation marker CD83 on all iDC/tolDC
populations confirmed their immature state. Interestingly,
iDC cultured on non-adherent surfaces showed a slight but
statistically significant increase in CD1a, CD83, and CD80
expression, indicating that the formation of clusters might lead
to a “spontaneous” DC maturation. This hypothesis is further
strengthened by our observation that blocking CD11b, resulting
in increased homotypic clustering on the non-adherent surface,
also led to increased expression of costimulatory molecules
and MHC. This effect was not observed in the other tolDC
populations. However, further studies will have to investigate the
effect of the clustering on the tolerogenic function of the different
moDC populations in vitro and in vivo.

LPS Matured DC
LPS-stimulated moDC on standard cell culture dishes were, as
expected, CD83+ CD40high CD86high CD80+ MHC-IIhigh and
increasingly CCR7+. Using a non-adherent culture dish leading

FIGURE 4 | Antigen-specific T cell induction is not influenced by the culture dish conditions of the moDC. Autologous PBMC depleted of monocytes were co-cultured

with PPD-loaded DC generated on the indicated surface and matured with indicated stimuli for 7 days, and antigen-specific IFN-γ secretion by CD4+ and CD8+ cells

was analyzed by flow cytometry with LPS-DC as stimulators (± PPD). Delta LPS: moDC cultured on a conventional culture dish, stimulated with LPS; Hydrocell LPS:

moDC cultured on a non-adherent culture dish, stimulated with LPS; Delta Jonuleit: moDC cultured on a conventional culture dish, stimulated with Jonuleit cytokine

cocktail (TNF, IL-6, IL-1β, and PGE2 ); Hydrocell Jonuleit: moDC cultured on a non-adherent culture dish, stimulated with Jonuleit cytokine cocktail. Each color-coded

symbol represents results from one individual (n = 9).
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to the formation of clusters had a great impact on the phenotype
and cytokine secretion of the LPS-DC. Interestingly, based on
the CD83 expression, the percentage of mature DC did not
change, indicating that the observed changes reflect a change
of polarity but not maturation. Especially interesting was the
decrease in secretion of CC chemokine family members CCL3,
CCL4, and CCL5, which are all ligands of CCR1 and CCR5. These
chemokines attract mainly cells of the innate immune system like
granulocytes (14), monocytes/macrophages (15), NK cells (16),
mast cells (17), or immature dendritic cells (18) but also CD8+ T
cells (16, 19). Interestingly, IL-8, another chemokine of the innate
immune system attracting neutrophils (20), was not modulated
and secreted in equally high amounts. Strikingly, the chemokines
CXCL9 and CXCL10, both ERL-negative ligands of CXCR3, were
significantly more secreted. Especially CXCL10 had been nearly
absent on LPS-DC on the standard culture dish, but was secreted
by moDC on the non-adherent culture dish. Both chemokines of
the CXC family have been associated with supporting T helper 1
differentiation in vivo (21) but their receptor CXCR3 appears also
to be essential during wound healing (22). CXCL9 and CXCL10
have also been reported to recruit activated IFN-γ expressing NK
cells, CD8+ T cells and CD4+ T cells (23). The anti-inflammatory
cytokines IL-1RA, IL-2R, and IL10 were also secreted at lower
levels. Also IL-6 secretion was reduced considerably. IL-6 has
been associated with maintaining immature DC (24) but is also
linked to T helper 17 polarity (25). While IL-17 was not secreted
as much, it also was reduced upon use of non-adherent culture
dishes. Interestingly, IL-15 secretion was significantly increased
by LPS-DC cultured on a non-adherent cell culture dish. IL-15
is a cytokine secreted mainly by monocytes/macrophages and
dendritic cells (26, 27) and has gained a special interest as it
is required for the differentiation of NK cells, effector CD8+ T
cells and memory CD8+ T cells (26). IL-15 is also involved in
antiviral immunity by formation of IL-15-IL-15Rα complexes
able to induce IFN-γ mediated responses independent of type I
IFN (23).

Taken together, LPS-DC shift from a CC chemokine response
to a CXC chemokine response when modifying the culture dish
from a standard cell culturing condition to a non-adherent cell
culture dish. The high CD40 expression and high secretion of
chemoattractants by cells cultured on the standard cell culture
dish might be an example of an “all out” immune response,
which is only kept under control by anti- inflammatory cytokines
like IL-1RA, IL2R, and IL-10. The moderation of many of these
factors on the non-adherent culture dish combined with an
upregulation of CD86, IL-15, and the T cell chemoattractants
CXCL9 and CXCL10 suggest a rather directed response, probably
of a T helper 1 direction. Further in vitro and in vivo studies
are needed to analyze the functional impact of the non-adherent
culture dish during LPS- DC generation.

DC Matured With Jonuleit Cytokine
Cocktail
Interestingly, Jonuleit cytokine cocktail stimulated DC behaved
very differently than LPS-DC. CD83 expression was significantly
reduced when using a non-adherent cell culture dish, indicating
less mature DC. Thus, most of the other observed changes in
phenotype markers can be explained with the lower amount of

mature DC. Surprisingly, there was no significant difference in
the cytokine production except for GM-CSF between Jonuleit-
DC cultured on standard cell culture and non-adherent cell
culture dishes. In comparison to iDC/tolDC,most cytokines were
not secreted significantly different.

Taken together, the impact of the change in cell culture surface
seems more predictable for the Jonuleit DC. The use of a non-
adherent culture dish will probably not induce a different polarity
but would reduce the number of immunostimulatory DC. While
this is interesting with regard to in vivo mechanisms controlling
inflammation, a non-adherent cell culture surface might not be
the best choice when aiming at high numbers of immunogenic
DC to be used for immunotherapy, even though the T cell
induction capacity was not impaired. However, we here used a
recall antigen (PPD), and did not analyze the capacity to induce
naive T cells, meaning the effect of culture dish adherence on
DCs ability to process and present novel antigens remains to
be explored. This suggests that future studies on the matter
should consider utilizing another antigen with no prior memory
presence and isolate naïve T-cells with negative selection prior to
T cell induction capacity analysis. Another possibility to address
this question would be to test the T cell induction capacity of
DC on naïve T-cells from transgenic mice with known antigen
specificity. In our experiments, the cytokines contained in the
Jonuleit cocktail have rather broad inflammatory functions and
give more of a “danger” stimulus, while LPS binds to TLR4, an
innate pattern recognition receptor with specific function and
predefined certainty of pathogenic recognition. The close contact
with “self ” in the clusters might rather calm down the unspecific
stimulation. The LPS-DC on the other hand can rather be sure of
an immediate danger and can than only be modulated to change
polarity instead of remaining dormant. This gives an indication
of when the change to the non-adherent culture conditions might
lead to new subtypes of DC.

Possible Mechanisms for the Induction of
the Observed Culture Dish Dependent
Differences
Based on microscopy observations, the main consequence of
using a standard cell culture dish during moDC generation is an
early adherence phase, while moDC cultured on a non-adherent
surface form homotypic clusters. Usually, adherent monocytes
will detach during the first day in DC culture conditions
(10, 28). After the detachment, the characteristics of the cell
culture dish should not influence the floating cells any longer.
However, the early adhesion prevents the floating cells to cluster
afterwards. It is unclear if the early adhesion is only important to
control clustering or if the early adhesion alone already triggers
signaling pathways which will lead to the phenotype differences,
independent of the following clustering. Intriguingly, all three
integrins analyzed, CD11b, CD11c, and CD18, were significantly
higher expressed onmoDC cultured on the non-adherent culture
dishes (Figure 2). However, it is unclear if this is connected to the
mechanism inducing the phenotype changes. Integrin-binding
has been shown to induce DC maturation (29), and there is
evidence suggesting that the conversion of monocytes to DC can
be supported by specific integrin-binding (30).
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Based on the high expression levels, we chose to utilize
blocking antibodies against CD11a, CD11b, CD11c, CD18, and
E-cadherin. It has been shown previously that CD11d/CD18 and
CD11c/CD18 play a role in myeloid cell adhesion and spreading
(31, 32). Surprisingly, only anti-CD18 consistently reduced the
homotypic cluster formation in our study, suggesting other
additional molecules to be involved. In contrast, blocking CD11b
led to increased clustering in all our samples. This phenomenon
has previously been observed by another study on blocking
CD11b on moDC that suggests CD11b to be a competitive
inhibitor of other more prominent integrins, thus resulting in
stronger adhesive properties of moDC when blocked (33).

Homotypic clusters did not only form more intensively on
the non-adherent surface, but they also persisted over days, thus
showing a totally different dynamic as the early surface adhesion
on the standard adherent dish. However, as detached monocytes
on the standard dish did not form homotypic clusters prior to
stimulation, there might also be a different integrin regulation
involved in the homotypic aggregation at that point. Homotypic
clustering or aggregation of DC has been observed in vitro and
in vivo, but its natural function is unknown. However, support
for both maturation and antigen-transfer as possible mechanism
has been observed (34). It is tempting to speculate that differently
matured cell types like infiltrating monocytes, locally developing
DC and resident mature DC populations might cooperate in
this way, helping immature cells to mature and transfer the
original antigen-information to developing migrating cells in
order to stimulate the adaptive immune system without having
to abandon the site of inflammation. However, the effects
reported and assigned to the homotypic cluster formation
might also overlap with the reduction of integrin activation or
other interactions of the cells with their surroundings. Further
investigations will have to distinguish between these sources of
influence. Future experiments should also address other culture
surface conditions such as glass or other container conditions
such as culture bags.

CONCLUSIONS

The use of a non-adherent surface instead of a standard
culture dish can have a great impact on the phenotype and the
cytokine production of differently stimulated moDC. Further
investigations will be required in order to elucidate the molecular
mechanisms for the effect, but differences in the early direct
surface interactions and in the frequency and amount of cell-
cell interactions, influenced by homotypic cluster formation,
might play a deciding role. This study proves that monocytes
are crucially influenced by the near surrounding during the

development into dendritic cells. This has a potential application
for DC mediated immunotherapy, where the cellular phenotype
is essential for the success of the treatment.
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Supplementary file 

Figure S1: Homotypic cell clusters form on the non-adherent surface but less on the 

standard culture dish. Representative microscopy pictures of all generated DC populations 

at the end of the 3-day culture on a non-adherent culture dish (Nunc hydrocell) and a standard 

cell culture dish (Nunc delta). (n = 8) 
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Figure S2: The effect of blocking cell adhesion molecules on homotypic cell clustering. 

Representative images of moDC cultured in non- adherent surface dish (upper row) and on 

standard surface dish (lower row) with the addition of IgG1 (untreated), anti-CD11a, anti-

CD11b, anti-CD11c, anti-CD18, anti-E-Cadherin (anti-E-cad.) and a combination of all 

antibodies (Mix) after 3 days. Clustering on the non-adherent surface was notably reduced 

with the addition of anti-CD18 and increased with the addition of anti-CD11b. (n=5) 
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Figure S3: Improvement of the monocyte purity was achieved by further platelet 

removal. Representative Casy cell counter image overlay showing the initial monocyte purity 

with no further platelet removal (red) and with platelet removal using anti-CD61 microbeads 

(green). (n = 4)  



4 

Figure S4: Mixed leukocyte reaction (MLR). Three-day moDC cultured on standard culture 

dish (Nunc Delta) or non-adherent culture dish (Nunc Sphera) with the addition of indicated 

compounds were subsequently co-cultured with allogeneic CFDA-SE stained monocyte 

depleted PBMC for 5-7 days. DMSO: immature moDC with DMSO control; Jonuleit: moDC 

stimulated with (TNF, IL-6, IL-1 and PGE2); LPS: moDC stimulated with LPS; DexVD3: 

moDC cultured with dexamethasone and VD3; IL-10: moDC cultured with IL-10. Percentage 

cell proliferation of monocyte depleted PBMC was analyzed by flow cytometry and shown as 

box plots with whiskers and median line. (n = 6)   
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