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Abstract

Given a set of imperfect weather or climate models, predictions can be improved by
combining the models dynamically into a so called ‘supermodel’. The models are op-
timally combined to compensate their individual errors. This is different from the stan-
dard multi-model ensemble approach (MME), where the model output is statistically
combined after the simulations. Instead, the supermodel can create a trajectory closer
to observations than any of the imperfect models. By intervening during the forecast,
errors can be reduced at an early stage and the ensemble can exhibit different dynam-
ical behavior than any of the individual models. In this way, common errors between
the models can be removed and new, physically correct behavior can appear.
In our simplified context of models sharing the same evolution function and phase
space, we can define either a connected or a weighted supermodel. A connected su-
permodel uses nudging to bring the models closer together, while in a weighted su-
permodel all model states are replaced at regular time intervals (i.e., restarted) by the
weighted average of the individual model states. To obtain optimal connection coeffi-
cients or weights, we need to train the supermodel on the basis of historical observa-
tions. A standard training approach such as minimization of a cost function requires
many model simulations, which is computationally very expensive. This thesis has
focused on developing two new methods to efficiently train supermodels. The first
method is based on an idea called cross pollination in time, where models exchange
states during the training. The second method is a synchronization-based learning rule,
originally developed for parameter estimation.
The techniques are developed on low-order systems, such as Lorenz63, and later ap-
plied to different versions of the intermediate-complexity global coupled atmosphere-
ocean-land model SPEEDO. Here the observations are from the same models, but with
different parameters. The applicability of the method to real observations is tested us-
ing sensitivity to noisy and incomplete data. The characteristics the individual models
should have in order to be combined together into a supermodel are identified, as well as
which physical variables should be connected in a supermodel, and which ones should
not. Both training methods result in supermodels that outperform both the individual
models and the MME, for short term predictions as well as long term simulations. Fur-
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thermore, we show that the novel use of negative weights can improve predictions in
cases where model errors do not cancel (for instance, all models are too warm with
respect to the truth). A crucial advantage of the proposed training schemes is that in
the present context relatively short training periods suffice to find good solutions. Al-
though the validity of our conclusions in the context of real observations and model
scenarios has yet to be proved, our results are very encouraging. In principle, the meth-
ods are suitable to train supermodels constructed using state-of-the art weather and
climate models.
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Chapter 1

Introduction

1.1 Weather and climate modeling

Should I take my raincoat with me or not? The relevance of a good weather forecast is
easy to grasp. With knowledge about specific (extreme) weather events, one can pre-
pare oneself and try to prevent physical or property damage. The importance of a good
climate forecast has become more recognized in the last decades. Our climate is not
stable, and currently we are experiencing a clear change. It is well established that cli-
mate change is real. However, the magnitude of the change and the impact on society
are still uncertain, and depend also on the actions that are taken.
To help to decrease the uncertainty, scientists continuously work to improve weather
and climate models. The climate system is very complex, with interactions across
scales over many orders of magnitude. The first climate models from the ’70s con-
sisted of only a large scale atmospheric component. Later, an ocean and land com-
ponent were added, and many other components with increasingly smaller scales such
as sea ice, aerosols, the carbon cycle, atmospheric chemistry etc. Since the models
have a limited resolution, not all physical processes can be fully resolved. In these
cases, modelers parametrize the effects of these processes. The different choices for
parametrizations often result in different behavior of the models. Since there are still
many unknown parameters and approximations in weather and climate models, it re-
quires a huge knowledge and computational effort to model and tune all of these as-
pects. We are still a long way from being to resolve all important processes, and so
huge uncertainties will remain for long-time to come.
Apart from the imperfect models, also the real-world observations have their imperfec-
tions. Using these observations as initial condition for a model forecast, automatically
results in forecast errors. To assess and possibly reduce the problem of both imper-
fect models and imperfect observations, ensemble techniques have been developed in
weather forecasting and climate prediction. Typically, ensembles are constructed by
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perturbing the initial conditions and using different models. In this way a probabilistic
forecast, a Multi-Model-Ensemble (MME), is generated to account for forecast uncer-
tainties.

1.2 Multi-model ensemble (MME)

An example of a MME can be found in the assessments of the Intergovernmental Panel
on Climate Change (IPCC). As can be seen in Fig. 1.1, there is no full consensus among
the models on the amount of warming in response to the same increase in greenhouse
gas concentrations. Often it helps to average across models of the MME, as model er-
rors tend to average out. This is the case when some models are biased warm while
other models are biased cold, compared to the ‘correct’ forecast. Although we do not
know the correct forecast, we often expect errors to be randomly distributed, and so
averaging would reduce them. In the IPCC reports, models are generally considered
equal when combined. The individual performance of the models is not taken into ac-
count, ‘bad’ models get the same weight as ‘good’ models. Furthermore, it is not taken
into account that models often share a common component, and hence common errors
because they have not been developed independently (Collins et al., 2013). Despite this
rather simple approach, the multi-model mean has been demonstrated to be quite use-
ful in the evaluation of the Coupled Model Intercomparison Project 5 (CMIP5) models.
In addition, not only the mean from a multi-model ensemble is useful to get a bet-
ter forecast, also the spread between the model predictions within the ensemble gives
information about the uncertainty (Collins et al., 2013).

Although the IPCC uses the multi-model approach in its assessments, the question re-
mains why exactly and under which conditions the multi-model approach is beneficial.
Weigel et al. (2008) tried to develop a theoretical framework to show the benefit of
the multi-model mean. They concluded on the basis of Gaussian toy models that the
multi-model approach can indeed enhance prediction skill and outperform the best in-
dividual model, provided that the individual models are overconfident. This means that
the individual model ensemble forecasts have a too small range, while being centered
at the wrong value. In that case the multi-model combination can widen the ensemble
spread and move the ensemble mean towards the truth. Moreover, as long as it widens
the ensemble spread in a right direction, also a ‘bad’ model can contribute towards the
multi-model combination. Weigel et al. (2008) remark that this MME approach is bet-
ter than simple ensemble inflation methods, where the ensemble spread is widened by
a multiplication factor to a realistic spread in case the models are overconfident, which
could destroy potential predictability.
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Figure 1.1: Surface air temperature change in 2081-2100 for a collection of individual models, dis-
played as anomalies with respect to the period 1986-2005 (Figure 12.9 from the IPCC Fifth Assessment
Report 2013, Collins et al. (2013)
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The IPCC approach of an equally weighted mean might be improved by allowing
weights to be non-identical for different models and variables, as well as allowing them
to vary in space and time. This is the idea of a so-called ‘superensemble’ (Krishnamurti
et al., 2016). In Krishnamurti et al. (2016) the superensemble consists even of more
than 10 million weights. Also negative weights are allowed in order to remove bias.
An important innovation is that models can also be combined in terms of physical pro-
cesses such as cumulus parameterization schemes. Krishnamurti and Sanjay (2003)
designed a single unified model, with one new weighted parametrization scheme based
on the parametrization schemes of the individual models. However, a full multi-model
ensemble seems to further improve the prediction, due to the large reduction in system-
atic errors of the models.
Although the superensemble method of Krishnamurti et al. (2016) results often in bet-
ter predictions, and while the results can be used to get a better understanding of error
growth in individual models as well, the method suffers from some significant short-
comings. The weights for the superensemble are determined during a training phase,
on the basis of the root mean squared error (RMSE) of the models with historical obser-
vations. If during this training phase certain events such as extrema have not been seen,
then the statistical weights will probably not give a good forecast for these events (Kr-
ishnamurti et al., 2016). Since the superensemble is a statistical approach rather than a
dynamical one, it is very well possible that the dynamical behavior of the models has
changed in the forecast phase. The statistically optimal weights from the training do
not need to be optimal for the forecast (Krishnamurti et al., 2016). An example of this
is given in Knutti et al. (2010), where it is shown that models with a large historical
temperature bias can give the same scenario for future warming as models with a small
bias, implying that a statistical combination of the models on the basis of past perfor-
mance does not need to be significant for the future. It would be better to go back to
the root of the model runs and reduce the errors in the earliest possible stage of the runs
by combining the models dynamically. Intervening this early can correct the dynamics
of the individual models, resulting in physically better justified runs. This is precisely
what supermodeling attempts to achieve.

1.3 Summary of Chapter 1 and outlook

Calculating a multi-model mean in order to combine different imperfect weather and
climate models can be helpful in the case the models can compensate for each other’s
systematic errors. However, the MME approach is a statistical one, where the individ-
ual runs are completed individually and only combined afterwards. This means that
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the average of the outputs does not necessarily represent a possible dynamical solu-
tion. Since the combined output has not been trained to improve the dynamics, it does
not guarantee more reliable out of sample projections. Instead of training a statistical
model combination, one can combine models dynamically in order to reduce model un-
certainty. This dynamical combination of models is called a supermodel.
The training of a supermodel is the topic of this thesis. Before training, first the struc-
ture of the supermodel needs to be defined. The next chapter lays this foundation and
summarizes the development of supermodeling throughout the years.
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Chapter 2

Supermodeling

2.1 Toward supermodeling: Interactive ensemble

In the previous chapter we have seen that the standard MME approach is to combine
the outputs of independently run models. Training on historical observations does
not necessarily produce a well-trained MME forecast. Our climate system is a non-
autonomous system due to the anthropogenic forcing, thus the optimal weights to com-
bine historical model means might not be optimal to combine future model means, if
the dynamics of the models are not appropriate. The interactive ensemble is a crucial
new approach to combine models to better represent dynamics. An interactive ensem-
ble is a multi-model ensemble where during the run the results of the different models
are combined. The new model states formed thereby are used to produce new initial
conditions with which the models can continue their run.

2.1.1 Multiple identical atmospheric models combined with one ocean model

The novel idea of intervening during a model run stems from Kirtman and Shukla
(2002). In their paper, they address the error growth within a coupled atmosphere-ocean
model. As long as a state-of-the-art Atmospheric Global Circulation Model (AGCM)
receives a correctly prescribed sea surface temperature (SST), this boundary forcing
is so strong that the interannual variability, especially above the tropical oceans, re-
mains well modeled to a large extent despite any errors in the AGCM (Richter et al.,
2018). The same holds for an Ocean Global Circulation Model (OGCM) driven with
heat fluxes and winds derived from historical reanalysis. Problems arise when the at-
mosphere is coupled to an ocean model. In a coupled atmosphere-ocean model the
ocean model receives heat, moisture and momentum fluxes from the atmosphere. The
other way around the atmosphere receives the SST from the ocean model, and uses it to
compute the heat and moisture fluxes that also affect the atmosphere. Errors intrinsic
to the AGCM (OGCM) lead to errors in the simulation of the heat fluxes (SST). In this
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Figure 2.1: Linear regression between NINO3.4 time series and global SSTA (Kirtman and Shukla,
2002).

way, coupling an OGCM to an AGCM leads to an error in the SST, which feeds back
onto the atmosphere, causing error growth. Poor parameterizations are major sources
of such errors. This can lead in some cases (as in Kirtman and Shukla (2002)) that
the AGCM simulates too vigorous internal atmospheric variability. This will affect the
simulation of coupled ocean atmospheric variability, such as El Niño. The interactive
ensemble is a way to reduce this effect. Since the internal variability of the atmosphere
is operating at a weather time scale, it is straightforward to cancel out this variability
by just averaging over multiple atmospheric trajectories; this strengthens the relative
importance of atmospheric variations related to the SST. Hence Kirtman and Shukla
(2002) created an ensemble out of one AGCM with six different synoptically indepen-
dent initial conditions. The OGCM sees the ensemble average of the fluxes. In this
case, the interactive ensemble performs clearly better than the standard technique of
one atmosphere coupled to one ocean model in terms of ENSO variability, and global
teleconnections associated with ENSO. See Fig. 2.1 for an example of the correlation
between NINO3.4 time series and global SSTA for the interactive ensemble and a stan-
dard coupled model. Even today AGCMs may simulate too strong internal variability
(Scaife and Smith, 2018), and the interactive ensemble approach could still be useful
to improve the simulation of climate. The interactive ensemble is a good example of
reducing the error by intervening during a model run.
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Figure 2.2: SST, precipitation and wind climatology (Shen et al., 2017).

2.1.2 Supermodeling: different atmospheric models coupled to one ocean model

Noise can be cancelled out by using the same atmospheric models, as we have seen in
Kirtman and Shukla (2002), and this can improve simulated variability when the rel-
ative importance of atmospheric noise to coupled ocean-atmosphere variability is too
large. But what if the climatology itself suffers from substantial errors? Then it could
be useful to have different models that can compensate for each other’s errors, as we
have seen in the MME approach in Chapter. 1. Unfortunately, many climate models are
subjected to the same type of model error, for example the double Intertropical Con-
vergence Zone (ITCZ) and cold tongue bias in the tropical Pacific (Lloyd et al., 2011;
Bellenger et al., 2014). Combining these models afterwards, as in MME, will hence
not result in a better estimation of the climatology. Interestingly, these systematic er-
rors in climatology do not necessarily have the same cause (Shen et al., 2017). If the
models have not taken too many time steps yet, the evolution of the model error still
can be described as linear (Carrassi and Vannitsem, 2016) and the error in a certain
variable does not impact other variables that much yet. This means that if the errors in
climatology come from different sources, it might be possible to cancel out errors that
emerge, if we correct the model errors in the beginning of the climatological run when
the errors are still univariate.
The approach of Shen et al. (2016) is to use two different atmospheric models in an in-
teractive ensemble. They used two different AGCMs, two versions of the COSMOS
model (Jungclaus et al., 2006), but with different convection schemes, Tiedtke (1989)
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(COSMOS(T)) and Nordeng (1994) (COSMOS(N)). Both versions of the COSMOS
model show a double ITCZ pattern (see Fig. 2.2). The interaction between the at-
mospheres and the ocean was built in the same way as in Kirtman and Shukla (2002),
meaning the individual heat, moisture and momentum flux from both atmospheres were
averaged and given to the ocean model. Instead of an equally weighted flux as in Kirt-
man and Shukla (2002), a weighted flux was calculated. The weights were trained by
a simplex method (Nelder and Mead, 1965), where the error was minimised between
30 year climatological SST runs of the interactive ensemble and SST observations over
a period of 30 years. The resulting combination of different models, a supermodel,
(called SUMO in Shen et al. (2016)) showed indeed much better climatological be-
haviour in the tropical Pacific (see Fig. 2.2). The double ITCZ error was alleviated and
in general there was an improvement of equatorial Pacific dynamics and the ENSO-
induced anomalies. The reason for this improved behaviour compared to the individual
models COSMOS(N) and COSMOS(T) lies within the fact that the models have differ-
ent convection schemes and thereby simulate different wind and equatorial upwelling
patterns. Combining these effects can compensate errors in the momentum fluxes, such
that in SUMO a single ITCZ can be formed (Shen et al., 2017).

2.1.3 Summary of Section 2.1

An interactive ensemble can improve the simulation of climate compared to the stan-
dard MME (see Fig. 2.3 for a schematic difference between the interactive ensemble
and MME), for example when the internal variability is overestimated compared to the
coupled dynamics, as in Kirtman and Shukla (2002). In this case, it was enough to re-
move the noise from the atmospheric models, but Shen et al. (2016) showed the usage
of an interactive ensemble with different atmospheric models, a supermodel, in order
to improve the climatology. With intervening during the simulation, errors can be re-
duced at an early stage and the ensemble can exhibit different dynamical behavior than
any of the individual models. In this way, common errors between the models can be
removed and new, more physically realistic behavior can appear.

2.2 A supermodel: synchronization between models

2.2.1 An atmospheric connected supermodel

Since the climatological SST of SUMO in Shen et al. (2016) is better than the result-
ing SST from any multi-model ensemble combination with weights between -1 and 2
(Shen et al., 2016), there must have been a non-linear interaction between the COSMOS
models during the run of SUMO that impacts the final result. The effect of these inter-
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Figure 2.3: Difference between the MME approach (left) and the interactive ensemble approach with
different atmospheric models, as in the supermodel of Shen et al. (2016) (right). The arrows indicate
the exchange between the models during the simulation.

actions becomes mainly clear in the tropical Pacific, since the climatology of SUMO
in this region is significantly different than the climatology of the individual imperfect
models. In other areas of the globe the effect is less clear, there the SUMO climatol-
ogy could be the result of an MME approach. In order to have effective interaction
over the full state space, the models should exchange more variables, and this can lead
to more different behaviour compared to the individual models. In Shen et al. (2016)
only the atmospheric fluxes were combined and given to the ocean. A natural next
step is to exchange variables between the atmospheric models themselves. Figure 2.4
shows the structure of this supermodel with the next level of sophistication, note the ex-
changes between the atmospheres as compared to the interactive ensemble of Fig. 2.3.
Both atmospheres calculate their own values, exchange them, and agree which combi-
nation of values would be best to proceed with. This ‘agreeing’ can be better described
in terms of synchronization. By synchronization we mean that the different runs are
correlated in time, in contrast to independent model runs such as in MME. In a super-
model, individual model runs are substantially influenced by other model runs during
the simulation, such that the effects of individual physical processes are at least partly
synchronized.

2.2.2 Type of synchronization

Communication between models, and therefore synchronization to some extent be-
tween the models, is a feature that distinguishes the supermodel from the MME and
hence allows the supermodel to be superior to the MME. Synchronization allows com-
pensation of errors in dynamics, and if the models are synchronized enough, a new
supermodel trajectory can be formed. The exact type of synchronization that is desir-
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Figure 2.4: The next step in supermodeling: to combine the atmospheric models as well. The arrows
indicate the exchange between the models during the simulation.

able in a supermodel depends on the individual models and also depends on the type
of improvement that the supermodel is expected to deliver, as will be clarified in the
next section. Nevertheless, a link can be made between the synchronization within a
supermodel and synchronization in data assimilation. Within data assimilation there is
a need for a consensus between a model and observations, while in a supermodel mod-
els should form a consensus with other models, but the idea of agreement remains the
same. One way of achieving this is by diffusive coupling, also called nudging. This
coupling has been applied to a Lorenz96 system and observations of the same system,
in Szendro et al. (2009). More important than exact synchronization is the ability of the
model to run freely after the coupling has been switched off (Szendro et al., 2009). Also
in supermodeling this is the case, first and foremost the coupling between the different
models should result in a qualitative similarity with the natural system, the ‘truth’.
An example of the qualitatively improved behaviour compared to the standard MME
was seen in Kirtman and Shukla (2002) and Shen et al. (2016). Although only the
fluxes were combined, there was some form of sychronization between the individual
models. In Shen et al. (2016) it is mentioned that this synchronization is strongest in
the tropical Pacific area, due to the fact that in that region the atmosphere is most sen-
sitive to changes in SST. Then, also in the interactive ensemble of Kirtman and Shukla
(2002) there must have been synchronization in that area. Since in Kirtman and Shukla
(2002) the models were identical, one would expect even more synchronization. On
the other hand, the models cannot have been synchronized fully, since then again there
would have been effectively only one atmospheric model left, and so atmospheric noise
would not be reduced. Hence this must be a case of partial synchronization, where the
atmospheric models are relatively well synchronized in the tropical Pacific area, but
display different behavior compared to fully synchronized models.
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For some applications, one would like to have more synchronization between the indi-
vidual models. If the individual models are not synchronized among themselves, such
as in the case of a MME, averaging the individual model trajectories into one new
trajectory cancels out the independent variability in the trajectories. The trajectory re-
sulting from MME is smoother than the individual model trajectories, because there is
a non zero probability that the individual trajectories are at different phases while their
average is taken. One could compare this variance reduction to the variance of the sam-
ple mean of independent variables. If the variance of the independent variables is equal
to σ2, then the variance of the sample mean of N variables is only equal to σ2

N . The
averaged MME trajectory does not extend over as many possible states in the phase
space as the supermodel trajectory. MME is also not meant to construct a new trajec-
tory, the motivation is to improve statistics like the mean and higher order moments. If
the supermodel on the other hand consists of synchronized models, variance reduction
is minimal and a rich attractor structure can be simulated. The trajectory that emerges
in this case can not only give an improvement for statistics like mean and variance, also
the sequence of events can be of much value.
To which extent is synchronization possible in a supermodel? Weather and climate
models exhibit chaotic behavior. Chaotic behaviour means that even for identical sys-
tems, if we start integrating from very close but different initial conditions, the trajec-
tories will diverge exponentially fast from each other, hence the prediction error will
increase over time (Lorenz, 1963; Vannitsem, 2017). Despite this non-predictable be-
haviour, it is still possible to synchronize identical deterministic chaotic models among
themselves perfectly, such that the systems are at exactly the same state at the same
time (Pecora et al., 1997). Even more so, perfect synchronization can be achieved with
relatively limited observations (Duane et al., 2007). In supermodeling however, we
work with non-identical models, the individual models do not share exactly the same
set of equations. Therefore identical synchronization is not possible within a super-
model.
In case the models differ only in parameter values, Afraimovich et al. (1986) described
the possibility of generalized synchronization. This means that for some systems a one-
to-one smooth mapping exists from one model to the other. If this mapping is known,
knowing one model state suffices to know the other model state. A disadvantage is that
producing this mapping is often not possible (Pecora et al., 1997; Weber et al., 2015).
Although producing this mapping might not be feasible, we can give some constraints
to the amount of synchronization necessary for a supermodel forecasting on a weather
timescale. By combining different models into a supermodel, the model trajectories
should be synchronized enough such that the supermodel is as chaotic as the true atmo-
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sphere on a weather timescale. The chaotic behaviour of the supermodel should occur
during the full length of the forecast. A common phenomenon within synchronization
theory is namely on-off intermittency. This means that periods of synchronization be-
tween the models are interrupted by periods of bursting away from each other, which
can lead to unexpected behaviour, as we shall see in Sect. 2.4.

2.2.3 Summary of Section 2.2

Continuing on the path of the hierarchy of supermodels, not only different atmospheric
fluxes, but also variables between the atmospheric models themselves can be combined.
This will increase the synchronization among models, and this in turn can help to im-
prove the dynamics of the models. The exact amount of synchronization is dependent
on the goal of improvement. If there is enough synchronization between the models
the resulting supermodel can give not only improved statistics, which is the aim of the
MME, but also improved trajectories. Hence not only the likelihood of certain states
can be seen, also the development from state to state, since the dynamics are better
represented.

2.3 Different forms of a supermodel

Let us formally write the model equations of a weather or climate model i as

ẋi = fi(xi,pi) (2.1)

where xi ∈ Rn is a high-dimensional state vector, fi : Rn→ Rn a non-linear evolution
function depending on the state xi, and on a number of adjustable parameters pi ∈ Rm.
In practice, weather and climate models generally differ in the representation of the cli-
mate state, i.e. the phase space where xi is defined, the evolution function and param-
eter values. Supermodeling so far has mainly been performed in a simplified context,
where the models share the same evolution function, f, and the same phase space, so
that xi ∈ Rn for all i. However, the models differ in the parameters, pi 6= p j if i 6= j.
We will furthermore denote the truth as given by the model f with a specific set of
parameters. The connections between the models are as yet univariate, meaning a cer-
tain element of the state vector of one model can only be coupled to the corresponding
element of the other model. Next, the possible different forms of a supermodel are
presented.

2.3.1 Connected supermodel

In Szendro et al. (2009), nudging terms were used to achieve synchronization between
the observations and the model. The same approach within supermodeling is a possi-
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bility, which is called a connected supermodel. The time-derivative for model i within
a connected supermodel is given by:

ẋi = f(xi,pi)+∑
j 6=i

Ci j(x j−xi). (2.2)

Note if the synchronization between the models tends to be perfect, the nudging term

∑ j 6=i Ci j(x j− xi) disappears. Since the individual models do not necessarily synchro-
nize perfectly, the supermodel solution based on N imperfect models is defined as

xs =
1
N

N

∑
i=1

xi. (2.3)

The nudging terms ∑ j 6=i Ci j(x j−xi) in Eq. 2.2 push the state of each model to the state
of the others at every time step. The size of the nudging coefficients Ci j ∈ Rn×n re-
flects the strength of the coupling between the models. They have the form of diagonal
matrices and can thus be written as Ci j = diag(ci j) with ci j ∈ Rn. The diagonal form
reflects the fact that each model state vector component is nudged towards the same
component of the other model. The approach can be extended to be multivariate al-
lowing for cross nudging, but this will require careful scaling of the variables. For
appropriate connections the models fall into a synchronized motion (Pecora and Car-
roll, 1990). Note that the states will be close for strong connections so that smoothing
and loss of variance due to the averaging in Eq. 2.3 will be limited. The supermodel
solution depends on the relative strengths of the connection coefficients. Different sets
of connection coefficients lead in general to different supermodel solutions.

2.3.2 Weighted supermodel

When the size of the connection coefficients is increasing toward infinity, the connected
supermodel converges toward a weighted supermodel. A weighted supermodel based
on N imperfect models is given by:

ẋi = f(xs,pi) (2.4a)

ẋs =
N

∑
i=1

Wiẋi, (2.4b)

where xs ∈ Rn represents the supermodel state vector and diagonal matrices Wi =

diag(wi) with wi ∈ Rn denote the weights. In the weighted supermodel the states are
imposed to be perfectly synchronized at the weighting step, when the models are com-
bined.
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2.3.3 Conditions for equivalence between a connected and weighted supermodel

In Wiegerinck et al. (2013) a sketch of a proof is given that for Ci j(i6= j)→∞ a connected
supermodel converges to a weighted supermodel. A reformulated and extended sketch
of the proof is given in the following:

Lemma 1. Combine the connected supermodel equations as in Eq. 2.2 into one equa-
tion for all N models, for each state variable l:

ẋl = f(xl,p)+Llxl (2.5)

where Ll ∈RN×N consists of all nudging coefficients cl
i j ≥ 0 between model i and j for

state variable l: 

−∑i 6=1 cl

1i cl
12 · · ·

cl
21 −∑i6=2 cl

2i · · ·
...

... . . .


 (2.6)

Without loss of generality, omit state variable l and rewrite Eq. 2.5 to

ẋ = f(x,p)+Lx. (2.7)

Then the eigenvalues λi of L are given by: 0 = λ1 ≥ λ2 ≥ λ3 ≥ ... .

Proof. First we prove that 0 is an eigenvalue of matrix L. Multiply L by x=(1,1, · · ·)T .
Then

Lx =



−∑i 6=1 c1i + c12 + · · ·

c21−∑i6=2 c2i + c23 + · · ·
...


=




0
0
...


 (2.8)

Hence λ1 = 0 is an eigenvalue of L.
Define vi = (vi

1,v
i
2, · · ·) as an eigenvector of L, corresponding to eigenvalue λi, with

1 < i≤ N. We want to show that λi cannot be larger than 0. Each eigenvector vi has a
maximal element vi

k := max{vi
1, · · · ,vi

N}. In case of multiple vi
j that have the maximal

value, choose one without loss of generality. For row k of Lx the following holds:

ck1vi
1 + ck2vi

2 + · · ·+ ck(k−1)v
i
k−1−∑

j 6=k
ck jvi

k + ck(k+1)v
i
k+1 + · · ·= λivi

k (2.9)

Assume first vi
k ≥ 0. Since vi

k is the largest element and all cki ≥ 0 ∀i 6= k it holds that

ck1vi
1 + ck2vi

2 + · · ·+ ck(k−1)v
i
k−1 + ck(k+1)v

i
k+1 + · · · ≤ ∑

j 6=k
ck jvi

k (2.10)

Hence λivi
k ≤ 0, hence λi ≤ 0.

If we assume vi
k ≤ 0, then

ck1vi
1 + ck2vi

2 + · · ·+ ck(k−1)v
i
k−1 + ck(k+1)v

i
k+1 + · · · ≥ ∑

j 6=k
ck jvi

k (2.11)

and hence λivi
k ≥ 0, hence λi ≤ 0.
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Theorem 1. If the connection coefficients ci j → ∞ for all i, j with i 6= j and with the
current value ci j > 0, and matrix L is mixing and diagonalizable, then Eq. 2.2 con-
verges to Eq. 2.4 with weights w = (w1,w2, . . .) the left eigenvector of L corresponding
to eigenvalue 0.

Sketch of a proof. In the following lines we give a sketch of the proof of the theorem.
First we show that if all connection coefficients ci j(i6= j) of L, that are not equal to zero,
go to infinity, the connected supermodel synchronizes to one solution for all models.
For simplicity we show a one dimensional case, where we assume the eigenvalues of L
to be real. Define u as the difference between two arbitrary models i and j: u = xi−x j.
Hence

u̇ = ẋi− ẋ j (2.12a)

= f i(xi)− f j(x j)+ ci j(x j− xi)− c ji(xi− x j) (2.12b)

= f i(xi)− f j(x j)− (ci j + c ji)u (2.12c)

Furthermore we assume f : X→R is a bounded continuous function, which is realistic
from a physical perspective. Hence there exists a real number M such that | f (x)| ≤
M ∀x ∈ X . We can derive

|u| ≤
∣∣∣∣

d
ci j + c ji

+ k exp(−(ci j + c ji)t)
∣∣∣∣ . (2.13)

with d and k < ∞. Hence, if all connection coefficients ci j,c ji→ ∞, then u converges
to zero, thus the models synchronize.
In the next part, we show that in the case of N models, we can write the synchronized
solution in terms of the left and right eigenvector of L corresponding to eigenvalue 0.
For L diagonalizable, there exists a basis of eigenvectors. Therefore we can write x as
a sum of right eigenvectors bi and coefficients αi(t):

x(t) = ∑
i

αi(t)bi. (2.14)

Since the left and right eigenvector corresponding to different eigenvalues are orthog-
onal, we can obtain coefficient αi from the inner product of x with the corresponding
left eigenvector ai of L. We choose ai such that aibi = 1. Then aix(t) = aiαi(t)bi =

αi(t)aibi = αi(t). Multiplying both sides of Eq. 2.7 by ai results in:

α̇i(t) = aif(x,p)+aiLx (2.15a)

= aif(x,p)+λiaix (2.15b)

= aif(x,p)+λiαi. (2.15c)



18 Supermodeling

We rewrite L as L = kM with k→ ∞ instead of ci j→ ∞. Then

α̇i(t) = aif(x,p)+ kλ̃iαi. (2.16)

Equation 2.16 has the same form as Eq. 2.12, such that αi(t) converges to zero if kλ̃i→
−∞. Since L is mixing (all models are directly or indirectly connected with each other),
L has a dominant eigenvalue: λ1 = 0 (Theorem of Perron-Frobenius). Since according
to Lemma 1, all eigenvalues are smaller or equal to zero, λi < 0 ∀i ∈ {2,N}. All modes
corresponding to negative eigenvalues will vanish, and therefore the solution for x will
converge to:

x(t) = α1(t)b1 (2.17)

Define the left eigenvector of L corresponding to λ1 = 0 as a1 = (w1,w2,w3, ...) with a1

normalized such that ∑i wi = 1. Then a1b1 = 1 and α1 = ∑i wixi = xs, with s denoting
the synchronized supermodel. This results in the synchronized states x(t) = α1(t)b1 =

(xs(t),xs(t), . . .)
To obtain the synchronized state dynamics, multiply Eq. 2.7 with the left eigenvector
a1. The term with L vanishes, and we are left with: ẋs = ∑N

i=1 wiẋi = ∑N
i=1 wi f (xs, pi),

corresponding to Eq. 2.4 for the weighted supermodel.

2.3.4 Connected or weighted?

Should either a connected or weighted supermodel be preferred? It is difficult to draw
a firm conclusion, because the answer depends on the specific type of applications.
Nevertheless some advantages and disadvantages of each approach can be named. Ac-
cording to Wiegerinck et al. (2013), a connected supermodel allows for more flexibility
in case the ensemble trajectories are not perfectly synchronized. For example, if the
models are stuck in a certain regime if one calculates a fixed weighted average super-
model state, but the individual models in a loosely connected supermodel are able to
escape. On the other hand, the optimal size of the connection coefficients after train-
ing the supermodel on the basis of observations is typically quite large in examples
of small scale systems such as Lorenz63 (Wiegerinck et al., 2013). The larger the co-
efficients, the stronger the models converge on a synchronized trajectory, which can
be described by a weighted superposition of the models as we have seen in the previ-
ous subsection. The possible flexibility advantage of the connected supermodel has not
been observed yet. For some training applications, near perfect synchronization, as im-
posed in a weighted supermodel, is also required, as we shall see later in the results.
Ideally, one would require in principle as much synchronization as possible, if the in-
dividual models are good enough to obtain one supermodel that closely describes the
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true system.
That said, creating this near-perfect supermodel is still utopian. A weighted average
for every variable might not be feasible because of disrupting physical balances. A
potential solution is to construct a hybrid model, where every time step a weighted av-
erage is calculated for the variables for which it is possible. For the ‘difficult’ variables
for which it is not possible, there could be a softer approach with nudging instead of a
weighted average. This approach will not disrupt the balances but still keep the vari-
ables from the different models in the neighborhood of each other, and this should be
an improvement compared to not connecting the variables at all.

2.3.5 Summary of Section 2.3

In our simplified context of models sharing the same evolution function and phase
space, we can define a connected or a weighted supermodel. A connected supermodel
uses nudging to bring the models closer, while in a weighted supermodel all models
receive as new state the same weighted average of the individual model states, thus
synchronization is imposed. If the nudging in a connected supermodel is strong enough,
it will converge to a weighted supermodel. Depending on the type of synchronization
needed or possible, either a connected or weighted supermodel is favorable.

2.4 Synchronization: what, where and when

Using a connected or weighted supermodel influences the degree of synchronization
among models, as described in the previous section. Other aspects that influence the
amount of synchronization are the variables being exchanged and how often this takes
place. In a real-world climate context, this is partly dependent on the amount of obser-
vational data available. Observational data are used to obtain an optimal combination
of the models to best simulate the observations. Another factor that could limit the
exchange between the models is the capacity of high performance computers.

2.4.1 Which variables should be exchanged?

As mentioned in the previous section, not all variables are suitable to be combined. For
example humidity is a variable that is known to be troublesome. On one hand, it be-
haves like a tracer, being advected around by the winds. On the other hand, it can have
a strong impact on the vertical stability, triggering convective events with strong mix-
ing of heat and moisture in the vertical and the release of latent heat in the atmosphere.
In the SPEEDO model (Severijns and Hazeleger, 2010) for example, a step function
determines whether convection will take place. Assume we have two models, where in
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only one of them convection takes place at a particular grid point and time step. After
the new model states have been calculated, the variables are exchanged and a new hu-
midity profile is defined for both models. The humidity state imposed by the exchange
will impact the vertical stability and may trigger strong convective events. We found
that these imbalances either make the models crash, or make the training and forecast
difficult because of the numerical shocks they introduce: inconsistencies that could in-
duce non-characteristic convective outbursts. Issues with humidity are known in data
assimilation too (Liu and Kalnay, 2005). Humidity has large variability in small scales
and large temporal variations. These two aspects make it also more difficult for train-
ing a supermodel.
Although humidity seems to be a difficult variable to exchange between the models,
one needs enough variables to be exchanged in order to maintain enough synchroniza-
tion between the models. Luckily, variables such as temperature and wind are more
continuous in time and space, thus making them easier to use in synchronization of the
models.

2.4.2 Where in space should the models be combined?

To reduce computation effort, it could be useful to couple only a part of the state vector,
in case coupling is necessary but full coupling too expensive. Coupling only a part of
the state vector can also be very useful in case not enough observations are available
for training in a certain area.

Gridpoint representation

Suppose our model is numerically solved using a gridpoint representation. Usually,
the observations we use to train the supermodel, are not available at each grid point,
and very commonly they are not even located on the same grid. If the supermodel is
constructed with global connections (i.e., the connection coefficient has the same value
for every grid point), it is straightforward to also apply these connections to the areas
where no observations are available, if this coupling is required. However, it is not
straightforward to train coefficients that vary regionally if data are not available at all
grid locations. In this case, one could choose to not couple the regions where no ob-
servations are available, as long as these regions are sufficiently synchronized (through
constraining the model elsewhere). It is difficult to obtain synchronized models when
only certain geographical parts are nudged, such as the tropics, the polar regions, only
land or only sea, since then certain physical processes are not connected. In these cases,
one could use some form of interpolation or a more advanced form of multivariate data
assimilation to determine connections in the areas without observations.
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Spectral representation

A possible reduction in the number of connections is to exchange less spectral coeffi-
cients, as discussed in Hiemstra et al. (2012). It is shown that in a QG-model (Marshall
and Molteni, 1993), in the case of identical models, only the first eleven out of a to-
tal of thirty wavenumbers, describing the largest scales, need to be nudged towards
each other to obtain complete synchronization. It is also possible to only combine in-
termediate and small scales. However, the fewer large scales are nudged, the more
wavenumbers are needed for full synchronization.
Another way of limiting information exchange is by only nudging in certain preferred
phase space directions. In Hiemstra et al. (2012), EOF vectors are used to define these
directions. The first EOF vector is in the direction where most of the variance is ex-
plained. Nudging along the dominant EOF vectors could be efficient since they effi-
ciently span the space embedding of the attractor. Nudging in a direction orthogonal
to the attractor is not very productive, since one of the characteristics of an attractor
is that model trajectories converge quickly on the attractor, without any form of nudg-
ing. Hence this direction can be omitted. Hiemstra et al. (2012) found that using EOF
vectors as basis vectors is more efficient than connecting original state variables in the
context of Lorenz63 and the QG-model. In Duane et al. (2006), the possibility of bred
vectors as basis vectors for the nudging is discussed. Bred vectors are useful to deter-
mine likely directions of forecast error (Toth and Kalnay, 1997). Duane et al. (2006)
notice that seemingly any basis that captures the essential physics in each local region
is necessary and sufficient for synchronization.

2.4.3 How often should models exchange?

In Eq. 2.2 and Eq. 2.4 the supermodel is defined as a combination of the time-
derivatives of the imperfect models. Therefore, the models are combined every time
step. However, the observations used to train the model may not be available every
time step. Should then the imperfect models in the supermodel be combined as fre-
quently as that the observations are available during training? And how should this
combination be constructed?
In the case of a connected supermodel, one could use so-called snapshot nudging. This
means that the nudging term in Eq. 2.2 is active only when an observation is available.
This is achieved by appending a δ -function equal to zero, except when an observa-
tion is encountered. In the case of a weighted supermodel one could simply combine
the states of the imperfect models instead of the tendencies. This can be done as of-
ten as desired. Since we started from the simplified assumption that the models share
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Figure 2.5: The x-component of 22 identical Lorenz63 systems nudged towards each other with different
nudging strengths, for (a): frequent (b): intermediate frequency and (c): infrequent coupling.

the same evolution function and phase space, the time steps of the different models will
coincide. Note that combining states in a weighted supermodel is different from com-
bining states in MME, as in MME the states are only combined after the runs have been
performed, while in a weighted supermodel the combined state is calculated with a cer-
tain frequency during the run. This combined state is then used as an initial condition
for each model to continue its trajectory.
If the observations are too sparse, it could happen that combining the models with this
same frequency leads to oscillation death. Oscillation death means that the supermodel
has a significant lower variance than the imperfect models individually. Figure 2.5
shows oscillation death in the case of a connected supermodel, with identical standard
Lorenz63 systems starting from different initial conditions. If the connection is strong
enough, all models will fully synchronize (Fig. 2.5a). If the connection is too weak
(Fig. 2.5c), the models do not synchronize at all. With a connection strength in be-
tween, it can happen that the models suddenly collapse to one or two seemingly fixed
points (Fig. 2.5b), sometimes interrupted by periods bursting apart. Similar ‘oscilla-
tion death’ can also be seen in a weighted Lorenz63 supermodel. Figure 2.6 shows an
example with three different imperfect models, that were only combined every 25 time
steps of 0.01. Apparently in Lorenz63 it is possible that the model tendencies exactly
counteract each other when either the connection is not strong enough or not frequent
enough. Whether more complex models are also easily affected by oscillation death is
still an open question. This unexpected behavior due to combining the models not fre-
quent enough is something to avert. On the other hand, if the observations for training
have a certain frequency in time, and the imperfect models exchange information more
often during the supermodel forecast run, the connection coefficients or the weights of
the supermodel might not be optimal.

2.4.4 Summary of Section 2.4

This section discussed which variables have to be exchanged between models in order
to synchronize their simulations, and where in space and how often the variables need
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Figure 2.6: The true and supermodel attractor (left) and the three imperfect model attractors (right).

to be exchanged. Variables such as temperature and wind do not seem to pose many
problems since they are relatively continuous. A variable like humidity on the other
hand seems more difficult to exchange. From a computational point of view or because
of spatial lack of observations, it can be impossible to combine every gridpoint or every
wavelength for a certain variable. In this case, synchronization can be still possible if
the necessary physical processes are captured within the elements that are coupled.
Coupling the models as frequent as possible in time however seems valuable, to avoid
issues such as oscillation death.

2.5 Training of supermodels

The basis for a supermodel is the approach to synchronize the models (in terms of ex-
changed variables, and their spatial and temporal exchange frequency). In this way a
supermodel can be seen as a time dependent graph, where the connected vertices ex-
change directly information with each other during a supermodel time step. Then the
length of the edges defines the connection strength. For a connected supermodel the
values of the edges are just the values of the connection coefficients, for a weighted
supermodel one could convert to connection coefficients, keeping in mind that the cor-
respondence is only exact in the limit of infinitely large connection coefficients. The
value of the connection coefficients or the weights does not have to be positive by def-
inition. If the individual models cannot compensate for each other, negative weights
can help to further improve the predictions. An example are the heat fluxes in Shen
et al. (2016), where one of the models contributed with its heat flux multiplied by a
negative weight to the supermodel. In this thesis we will further explore the possibil-
ities for negative weights. The aim of this thesis is to train supermodels: to define the
supermodel structure and the values of the connection strengths.
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2.5.1 Cost function

Previous training approaches often involved minimization of an appropriate cost func-
tion, like many optimization problems. However, the cost function value depends on
the model solution, and often multiple evaluations are necessary which makes it a costly
approach.
In Shen et al. (2016) a simplex-method is used, the Nelder-Mead algorithm (Nelder
and Mead, 1965). With this simplex method a cost function is calculated for different
weights. In Shen et al. (2016) more than 300 computations of the cost function and
hence more than 300 model runs were necessary to obtain a sufficient minimum. Since
the interactive ensemble was trained on minimizing the error in SST climatology, one
run corresponded to a simulation of 40 years, which made the training computationally
very expensive.
A less expensive cost function approach is used by van den Berge et al. (2011). A con-
nected supermodel is constructed that consists of imperfect model versions of small
scale systems such as Lorenz63. The cost function is minimized with the Fletcher-
Reeves-Polak-Ribiere-Conjugate Gradient method (Fletcher and Reeves, 1964). Com-
paring this method to the Nelder-Mead algorithm is difficult, since the latter one does
not rely on first-order derivatives as Conjugate Gradient methods do. Also the imper-
fect models of van den Berge et al. (2011) and Shen et al. (2016) are very different.
Both minimization methods however need in the order of 100 model evaluations. The
main computational difference lies within the fact that in van den Berge et al. (2011) the
cost function is only calculated for short term time intervals. This is even enhanced by
adding a γ t factor, where t is time, to the cost function, with γ < 1 such that differences
between the observations and the supermodel close to the time of the initialization have
a stronger impact on the connection coefficients than later on during the run. In Mirchev
et al. (2012) the same cost function approach is used, but instead of the γ factor a factor
w(t) is used, which is during the run equal to α t ,α < 1, except for the very last time
instant of each run, where w(t) = 1. This is to ensure that the supermodel trajectory
does not deviate too quickly from the observations.

2.5.2 Duration of the training time

Once the training method has been chosen, also the training duration needs to be
decided. Wiegerinck and Selten (2017) showed that in a driven Lorenz63 system
(Wiegerinck and Basnarkov, 2013) and a Quasi-Geostrophic (QG) atmospheric model
(Marshall and Molteni, 1993), a weighted supermodel trained on only short timescales
can result in a worse climatology than the individual models or a posterior ensemble.
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For example, the forecasts used to train the QG model were merely one day, while most
of the weather phenomena are captured within three or four days. One would therefore
expect that training using longer forecasts of several days is necessary to obtain an im-
proved supermodel weather forecast. Wiegerinck and Selten (2017) illustrated nicely
that training of the supermodel is dependent on the purpose of the supermodel, and that
short-term training does not always imply improved long-term behaviour.

2.5.3 Summary of Section 2.5

In order to train a supermodel, one needs first to define the structure of a super-
model: connected or weighted, which models are synchronized, which variables are
exchanged, with which spatial and temporal exchange frequency? The next step is to
train the values of the connection strengths. The previously used training approach of
minimizing a cost function is computationally very expensive, since it often requires a
lot of model runs. Furthermore, if one would like to have a supermodel that performs
well in the long-term, it is not always sufficient to train only on short-term, and this
makes training even more computationally demanding. Hence, there is a need for new
training methods that are computationally much more efficient than the cost function
approaches so far. The development of such methods is the objective of this thesis.
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Chapter 3

Objectives

The main objective of this thesis is to develop efficient algorithms to train supermod-
els: a combination of models that outperforms the constituent individual models and
the standard multi-model ensemble approach in the context of weather and climate pre-
dictions. Previously, supermodels were trained by algorithms that tried to minimize a
cost function, and this required many model simulations. The computational cost of
running state-of-the-art climate models is huge, hence there is a need for more efficient
training algorithms.
The first aim is therefore to develop new efficient training schemes. First the meth-
ods are developed and tested on low-order dynamical systems such as Lorenz63 and a
quasi-geostrophic model (Paper I). We start with a ‘perfect model approach’, such that
the ‘observations’ to train the supermodels are noise free and continuously available in
time. In reality, observations are not perfect and only available sparsely in time. We
therefore investigate the effectiveness of the methods in the context of noisy and sparse
in time observations and adapt the methods when required (Paper IV).
Having developed the training schemes in the context of the simpler systems, we pro-
ceed with larger scale systems and construct the first supermodel out of a global coupled
atmosphere-ocean-land model of intermediate complexity, SPEEDO (Paper II). As this
is the first time a supermodel is constructed by combining different atmospheric com-
ponents solving the moist primitive equations, therefore the second aim is to determine
which physical variables should be connected in a supermodel and which variables
should not.
Intuitively, the supermodel approach can only work if the individual models can com-
pensate for each others errors, for example when one model overestimates the temper-
ature and the other model underestimates. Therefore it is important to make precise
which characteristics the individual models should have in order to be successfully
combined into a supermodel (Paper I and III). In case the different individual mod-
els cannot compensate each others errors as required, we address the question whether
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negative connections or weights can help to improve the supermodel solution (Paper
III).
The supermodeling approach is not the only approach to combine different models dy-
namically. Another possibility is to ‘cross pollinate’ model trajectories (Smith, 2001;
Du and Smith, 2017). In this approach, model states are not combined into a super-
model state, but instead different models are selected to be used for different geographic
regions. Data assimilation is then used to combine the best model states from the dif-
ferent regions into new initial conditions for the models to continue their simulation
with. We compare both approaches in the context of a small scale Lorenz96 system
(Paper V).

To summarize, the main objectives are:

• To develop new efficient training schemes for supermodels that are not based on
minimization of a cost function.

• To use the training schemes to train a supermodel based on different versions
of the global coupled atmosphere-ocean-land model SPEEDO and compare the
methods.

• To show that the supermodels can outperform the individual imperfect models as
well as the standard multi-model ensemble approach.

• To identify more precisely the characteristics that the individual models should
have in order to be combined together into a supermodel.

• To investigate which physical variables should be connected in a supermodel, and
which ones not.

• To explore the options of negative connections between the models within a su-
permodel.

• To investigate the effectiveness of the training methods in the context of noisy and
sparse in time available observations, adapt the methods if necessary and make
them suitable for training state-of-the-art models.

• To compare the supermodel approach to the cross pollination approach of Du and
Smith (2017).



Chapter 4

Summary of results

In this thesis efficient training methods are developed to optimally combine different
models dynamically into a so-called supermodel with better weather and climate fore-
cast skill than the individual models. The training is the stage of the process where the
relative weights of each model within the supermodel are determined based on obser-
vational data. In Paper I a new training scheme is developed based on Cross Pollination
in Time (CPT), in which model trajectories are ‘crossed’, such that a larger ensemble
of trajectories can be constructed. The method is first tested on small scale dynami-
cal systems. In Paper II the ‘synch rule’, a new learning rule originally intended for
parameter estimation, is introduced and tested on the global atmosphere-ocean-land
model SPEEDO of intermediate complexity. In Paper III, CPT is successfully applied
to SPEEDO and using the synch rule, the novel concept of negative connections be-
tween models is introduced. The results in Papers I to III were obtained using noise-
free observations of the full systems. On the other hand, in Paper IV both methods are
adapted to train supermodels on the basis of noisy and sparse observations. In Paper V
the supermodeling approach is compared to another method called CPT II, also based
on the original CPT, to let models exchange information during the simulation. The
advantages and disadvantages of both approaches to combine models dynamically are
discussed.

Paper I: An efficient training scheme for supermodels
Francine J. Schevenhoven and Frank M. Selten
Earth System Dynamics, 8, 429-438 (2017)

In this study a new training method, based on the idea of cross pollinating different
model trajectories, is introduced. It is assumed that we have an observed trajectory,
called the ‘truth’. The training phase of CPT starts from an observed initial condition
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Figure 4.1: CPT in general (left) and CPT in the context of supermodeling (right).

in state space. From this initial state, the imperfect models run for a certain period each
ending in a different state. From these endpoints all models run again (Fig. 4.1 (left)).
For training a supermodel only those predictions that remain closest to the truth are
continued, the others are discarded. This results in a CPT trajectory (Fig. 4.1 right). In
a sufficiently long training phase, we can determine the frequency that a model is se-
lected to keep the CPT close to the truth. These frequencies determine the weights in
the supermodel. This CPT method leads to a dynamical combination of forecast models
(a weighted supermodel) with superior short-term forecast quality and improved clima-
tology. The method is applied to the Lorenz63 system and a quasi-geostrophic model.
Observations are obtained from a ‘perfect’ model. The imperfect models are versions
of the same model with perturbed parameters. The CPT training is very efficient, since
only one or possibly a few training iterations are necessary to obtain converged weights.
Furthermore, CPT is based on short-term trajectories, although it turned out that the er-
rors in the climatology are also greatly reduced. The results show that a supermodel
with weights trained by CPT can give significantly better predictions than a super-
model consisting of the same imperfect models with equal weights. The imperfect
model parameters should form a so-called ‘convex hull’ in order for the supermodel to
outperform the individual models: the imperfect model parameters surround the per-
fect parameter values. The convex hull implies that an additional imperfect model with
worse prediction skill than the other models might still contribute to a superior super-
model solution, as long as it can compensate the errors in the other models.
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Figure 4.2: Synch rule training. The supermodel weights are updated such that the supermodel syn-
chronizes with the truth.

Paper II: Simulating climate with a synchronization-based supermodel
Frank M. Selten, Francine J. Schevenhoven and Gregory S. Duane
Chaos, 27,126903 (2017)

This paper explores the options of using a synchronization-based learning algorithm
(the synch rule) which was originally intended for parameter estimation, to train a su-
permodel. During training, the weights are updated according to the rule such that the
supermodel synchronizes with the observations (see Fig. 4.2). The synch rule is based
on the covariance between the observation-supermodel synchronization error and the
inter-model state or tendency difference. In the experiments, the perfect model ap-
proach is used, in which the perfect and imperfect models are different parametric ver-
sions of the SPEEDO global climate model, an atmosphere model coupled to a land
and an ocean/sea-ice model with about 250,000 degrees of freedom. Connection terms
are introduced that synchronize the imperfect models on a common solution, referred
to as a connected supermodel. The resulting supermodels have a climatology and a cli-
mate response to a CO2 increase in the atmosphere that is closer to the perfect model
as compared to the imperfect models and the standard multi-model ensemble average.

Paper III: Improving weather and climate predictions by training of supermodels
Francine Schevenhoven, Frank Selten, Alberto Carrassi and Noel Keenlyside
Earth System Dynamics, 10, 789-807 (2019)



32 Summary of results

We apply both CPT and the synch rule method to different parametric versions of
SPEEDO to construct a weighted supermodel. The SPEEDO model has five prog-
nostic variables: temperature, vorticity, divergence, specific humidity and surface pres-
sure. Exchanging specific humidity and surface pressure deteriorate the supermodel
solution, probably because the exchange leads to imbalances and fast spurious adjust-
ments. On the other hand, a perfect SPEEDY atmosphere only fully synchronizes with
the observations when at least temperature, vorticity and divergence are nudged to the
observations. Therefore, in a weighted supermodel, at least these variables need to
be exchanged. The weights are trained using data from the perfect model with both
CPT and the synch rule training methods. Both training methods yield supermodels
that outperform the individual imperfect models in short-term forecasts as well as in
long-term climate simulations. Furthermore, the advantage of the supermodeling ap-
proach compared to the MME is shown. In one experiment, all imperfect models have
a warmer and wetter climatology than the truth, such that a MME with positive weights
will also result in a warmer and wetter climatology. The trained weighted supermodel
however has a climatology close to the truth. This is due to the fact that the model er-
rors are compensated at an early stage and not a posteriori as in a MME, where model
errors have propagated spatially across the globe and across the different meteorolog-
ical fields. In another experiment we explored the use of negative weights in order to
improve predictions in the case that model errors do not compensate; i.e., both imper-
fect models have parameter perturbations and climatological errors of the same sign.
A supermodel with negative weights trained using the synch rule results in stable and
credible simulations in which the short-term forecast errors as well as climatological
errors are reduced with respect to the imperfect models.

Paper IV: Training supermodels with noisy and sparse observations
Francine Schevenhoven and Alberto Carrassi
Manuscript in preparation

In this paper we show the potential of the CPT and synch rule training methods to train
a weighted supermodel on the basis of noisy and sparse in time observations. In Pa-
per III, both methods were able to improve weather and climate predictions in a perfect
observations setting by using different parametric versions of the global coupled atmo-
sphere–ocean–land model SPEEDO for both the imperfect models. In this work, the
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observations have been perturbed with different levels of Gaussian noise. Furthermore,
the observations are not available every model time step of 15 min, but only every hour,
6 hours or 24 hours. Still, with some adaptations to the training methods, both meth-
ods are able to give adequate weights. Another result of this paper is that not only the
synch rule, but also CPT is adapted such that it can handle negative weights as well.

Paper V: A comparison of different approaches to combine models dynamically
Francine Schevenhoven and Hailiang Du
Manuscript in preparation

In this manuscript we compare different approaches to cross-pollinate model trajecto-
ries. The main difference between our approach and CPT II of Du and Smith (2017)
is in the construction of the communication between the models. In the supermodeling
approach, forecasts are improved by weighting different model states into a new su-
permodel state, while in the approach of Du and Smith (2017) for each region in state
space only one model is chosen to use, and data assimilation is performed to assimilate
the new states into each of the individual models. Both methods are applied to different
parametric versions of the Lorenz96 system with noisy observations and result in fore-
casts of similar quality that clearly outperform the individual model forecasts. Another
experiment in this study uses a two-layer Lorenz96 system as perfect model and one-
layer Lorenz96 systems as imperfect models. In the presence of this unresolved scale
error the CPT supermodel training is still able to provide weights of good quality. This
is promising for future applications with state-of-the-art models and real observations.
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Chapter 5

Discussion and Future work

In this thesis I have shown that by combining models dynamically into a so-called
supermodel, weather and climate predictions can be improved. The focus in the the-
sis is on the development of efficient algorithms to train such a supermodel on the
basis of observations. I used two different forms for the supermodel, either (1): a con-
nected supermodel in which the individual models are nudged towards each other, or
(2): a weighted supermodel, in which a new supermodel state is calculated, which is
a weighted superposition of the individual model states. I introduced a new training
scheme based on Cross Pollination in Time (CPT) and adapted the already existing
synchronization rule (synch rule) for parameter estimation for training. The methods
were first applied to small dynamical systems such as Lorenz63 and second were ap-
plied to different versions of a climate model of intermediate complexity, the global
atmosphere-ocean-land model SPEEDO, and noisy and sparse in time observations.
The resulting trained supermodels outperformed the individual models, and an opti-
mally weighted Multi-Model Ensemble (MME) as well. This shows the advantage
of combining models dynamically instead of only statistically such as with MME. I
identified which physical variables should be exchanged among the models, such as
temperature and wind, and which variables are not suitable to combine dynamically,
such as humidity and surface pressure. Furthermore, I developed the convex hull prin-
ciple to determine which imperfect models should be combined. I discovered that a
‘bad’ model with poor forecast quality is able to improve the supermodel provided it
can compensate the erroneous behavior of the other models. If the convex hull cannot
be constructed with positive weights, I showed that negative weights can result in sta-
ble and plausible simulations with mitigated errors.
Both CPT and the synch rule are very efficient training methods. The synch rule re-
quires one year of simulation to obtain stable weights or connection coefficients. The
training period for CPT is even as short as a few weeks. Despite training on weather
time scale, the supermodels also showed improved behavior on climatological time
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scale, which is in line with the research of for instance Rodwell and Palmer (2007),
that climatological errors due to uncertainty in the model parameters develop quickly
during the first few days of weather forecasts. Nevertheless, it can be necessary to ex-
tend the training period if not all model errors originate from these ‘fast’ physics, for
example when the imperfections in the slower ocean and land components of the cli-
mate model are of importance. For longer training periods, both CPT and the synch
rule trajectories need to be nudged towards the observations, in order to remain in the
same phase as the observations. To further enable the trajectories to stay close to the
observations I presented other ideas for future work such as increasing the ensemble
size of possible trajectories or defining the distance between the observations and the
trajectories not only in terms of RMSE, but in terms of systematic errors, such as an er-
roneous double Intertropical Convergence Zone (ITCZ) for instance.
In principle CPT and the synch rule are both suitable for training a supermodel con-
sisting of several state-of-the-art models. The application of these methods is however
not straightforward. State-of-the-art models require much more computational time
than the SPEEDO model used in this thesis. The difference in computational cost of a
supermodel compared to a MME is the exchange between the models during the sim-
ulation. This exchange can be very expensive, for example, if new restart files need to
be written and read in order to let the models continue from a new supermodel state.
Combining the models every model time step is therefore not realistic. On the other
hand, models should be connected frequently enough, such that they remain in the same
phase, otherwise the supermodel trajectory will suffer from variance reduction. Hence
a certain balance needs to be found in the frequency of exchange among the models.
Another possible complicating factor is that state-of-the-art models can differ in reso-
lution and time step, hence making it more difficult to simply replace one model state
by another, as performed in this thesis. A possible solution is to create a common state
space, and to use techniques from data assimilation to transform the individual model
states towards the common space. This transformation will inevitably increase errors,
hence in future perhaps a more direct form of nudging one model state to the other
would be more efficient. Furthermore, in a supermodel an artificial model state is cre-
ated, that may disrupt physical balances and is therefore not suitable for the individual
models unless strongly adapted by data assimilation. Under these circumstances an-
other possibility to explore is to use CPT in the sense of Du and Smith (2017), such
that each geographic region is represented by only one model. Then again the models
can be connected every cross pollination time by data assimilation techniques, such as
pseudo-orbit data assimilation as used in Du and Smith (2017).
Apart from a different resolution and time step, state-of-the-art models can also differ



in numerical discretization and physics, which could complicate the training process
compared to the parametric error only in SPEEDO, since it might be more difficult to
follow the observations during training. A small experiment was performed in the con-
text of Lorenz96, to show that CPT also gave good results when the observations came
from a higher resolution model than the imperfect models in the supermodel. Addition-
ally, the experiments with sparse in time and noisy observations showed that even under
these circumstances both the CPT and the synch rule trajectories were able to follow
the observations if adaptations were made such as nudging towards the observations.
These results give us the confidence that both CPT and the synch rule are in princi-
ple suitable for state-of-the-art models. The preliminary work has been performed, the
training methods are ready to be applied to train a supermodel that can truly improve
the current state-of-the-art weather and climate predictions.
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Abstract

Weather and climate models have improved steadily over time as witnessed by objec-
tive skill scores, although significant model errors remain. Given these imperfect models,
predictions might be improved by combining them dynamically into a so-called “super-
model”. In this paper a new training scheme to construct such a supermodel is explored
using a technique called cross pollination in time (CPT). In the CPT approach the models
exchange states during the prediction. The number of possible predictions grows quickly
with time and a strategy to retain only a small number of predictions, called pruning,
needs to be developed. The method is explored using low-order dynamical systems and
applied to a global atmospheric model. The results indicate that the CPT training is effi-
cient and leads to a supermodel with improved forecast quality as compared to the indi-
vidual models. Due to its computational efficiency, the technique is suited for application
to state-of-the art high-dimensional weather and climate models.

1 Introduction

Weather and climate models remain imperfect despite continuous model development.
For example at middle to high latitudes, the simulated zonal wind stress maximum av-
eraged over an ensemble of state-of-the-art climate models lies 5 to 10° equatorward
of observationally based estimates, which means that on average the midlatitude winds
are too strong in the current models (IPCC, 2013).
Improving the models is a large research effort. A demanding aspect is that there are
many uncertain parameters and approximations because not all physical processes are
explicitly resolved. To model and tune all of these aspects requires a huge computa-
tional effort. Even if the optimal solution can be achieved, imperfections remain due to
the complexity of the climate system with interactions across scales over many orders
of magnitude. In order to improve predictions, it often helps to average across model
outcomes as model errors tend to average out. Branicki and Majda (2015) provide
some evidence that this multi-model ensemble method (MME) does indeed improve
predictions under certain conditions. However, it is not straightforward which imper-
fect models and what weights should be used for the MME forecast. Because of this,



almost all operational MME predictions are based on equal weights.
In contrast to the standard MME, an alternative approach is to let models exchange
information during the simulation which leads to new solutions. If the models comple-
ment each other, these solutions potentially stay closer to the observed trajectory than
the trajectories of the imperfect models individually. Hence, both the short-term pre-
dictability and the climate statistics will improve. The MME approach only combines
trajectories from an ensemble of models after the simulation. This can lead to improved
estimates of, for instance, the true mean state. It cannot, however, produce trajectories
that remain closer to observed trajectories as combining trajectories of different mod-
els leads to smoothing.
A successful approach of combining models is found in van den Berge et al. (2011),
where combining models into one large supermodel (SUMO) by prescribing connec-
tions between model equations is proposed. The connection coefficients are learned
from historical observations. The optimization of the coefficients is achieved by min-
imizing a cost function. In Wiegerinck et al. (2013), it is noted that the size of these
coefficients is typically very large. If the connection coefficients are large enough, the
system will quickly synchronize into a joint state. This joint state can be described as a
weighted superposition of the imperfect models referred to as weighted SUMO.
Since the minimization of a cost function can be computationally very expensive, we
propose a new procedure in this paper to construct such a weighted superposition of
imperfect models. The weights are learned from observed trajectories. This new learn-
ing process is based on an idea proposed by Smith (2001): cross pollination in time
(CPT). CPT “crosses” different model trajectories in order to create a larger solution
space with trajectories that potentially follow the observed evolution more closely.
Our training method for a weighted supermodel is developed using the Lorenz 63 sys-
tem (Lorenz, 1963) following the perfect-model approach. The model with standard pa-
rameter values generates observations and imperfect models are created by perturbing
the parameter values. Next, we apply the method to a more chaotic and realistic global
atmospheric model with 1449 degrees of freedom by Marshall and Molteni (1993).
Section 2 of this paper explains the training by cross pollination. Applications of the
method are described in Sect. 3 for the Lorenz 63 system and in Sect. 4 for the global
atmospheric model. The final section discusses the results and provides an outlook to
apply the developed approach to state-of-the-art models.



2 Training the supermodel

We assume that we have an observed trajectory, called the “truth”. The training phase
of CPT starts from an observed initial condition in state space. From this initial state,
the imperfect models run for one time step each ending in a different state. (See Fig.
1a.) From these endpoints all models run again. Continuing this process leads to a
rapid increase in the number of predictions with time. A larger region of the state space
thus can be explored. In order to retain only a small number of predictions, a pruning
step is required. We choose to continue only those predictions that remain closest to
the truth, the others are discarded, as is depicted in Fig. 1b.
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Figure 1: Cross pollination in time for 3 models, without pruning (a) and with pruning (b).

2.1 Determining weights

In the training phase, for each model, it is counted how often for a particular vari-
able its prediction remains closest to the truth. The probabilities thus obtained can be
used as weights for the corresponding time derivatives of the variables. This superposi-
tion of weighted imperfect models forms a supermodel which potentially has improved
prediction skill.

2.2 Iterative method

In order to obtain convergence towards a supermodel that reflects the truth in the best
possible way, the training is carried out iteratively. The first iteration step leads to
a first estimate of the weights of the supermodel. In the second iteration step, this
supermodel is added as an extra imperfect model. In the subsequent iteration steps, the



previously obtained supermodel is replaced by the newly obtained supermodel. If the
added supermodel is closer to the truth than the initial imperfect models, the constructed
trajectory in the CPT procedure receives fewer contributions from the initial imperfect
models. Ideally, learning stops when the supermodel remains closer to the truth than
the individual imperfect models for all time steps during the training.

3 Results Lorenz 63

In the Lorenz 63 system a chaotic attractor appears for certain parameter values. The
attractor has the shape of a butterfly and each “butterfly wing” contains an unstable
fixed point at its center, around which the trajectories alternately revolve in an unpre-
dictable pattern. The differential equations of the system contain system parameters
σ ,ρ,β . The state space is described by coordinates x,y,z (Eq. 1).

ẋ = σ(y− x) (1a)

ẏ = x(ρ− z)− y (1b)

ż = xy−β z (1c)

The standard parameter values are σ = 10,ρ = 28 and β = 8/3. Numerical solutions
are obtained by using a fourth-order Runge-Kutta time stepping scheme, with a time
step of 0.01.
The observed trajectory is generated by the model with these standard parameter val-
ues. Two different imperfect models are created with parameter values that deviate
about 30% from the standard parameter values, as denoted in Table 1. In the Appendix
it is explained why only two different imperfect models are considered and how the
imperfect parameter values are chosen.

Table 1: Standard and perturbed parameter values for the Lorenz 63 system.

Model σ ρ β
Truth 10 28 8/3

Model 1 12.25 19 3.3
Model 2 7.5 35 1.9

The behavior of these imperfect models is quite different from the truth as can be seen
in Fig. 2. Two stable fixed points characterize the attractor of model 1. Model 2 has a
chaotic attractor that resembles the truth, but its mean is shifted towards higher z values.
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Figure 2: Trajectories of the imperfect models (purple), together with the true trajectory (green).

The training period T is chosen to be 200 time steps, enough to revolve about two times
around the unstable fixed points. The number of iterations is 100. The same part of the
attractor is used for training in every iteration.
The weights wi, i ∈ {1,2} that are the result of the training phase are listed in Table
2. They determine the superposition of the imperfect models (Eq. 2). For all three
coordinates x,y,z, they sum up to 1.

ẋsuper =
2

∑
i=1

wx
i ẋi (2a)

ẏsuper =
2

∑
i=1

wy
i ẏi (2b)

żsuper =
2

∑
i=1

wz
i żi (2c)

After 45 iterations, the weights for ẏ and ż do not change anymore. The weights for
ẋ after 100 iterations are still not constant, but the values differ only from the third
decimal onwards.

Table 2: Weights of the supermodel of the Lorenz63 system.

Model wx
i wy

i wz
i

i = 1 0.5248 0.4385 0.5491
i = 2 0.4752 0.5615 0.4509

In the case of the Lorenz 63 system, the superposition of the imperfect Lorenz 63
models again forms a Lorenz 63 system, because the parameter values σ ,ρ,β appear
linearly in the differential equations. Hence, the supermodel is a Lorenz 63 system for
which the parameter values can be calculated. The supermodel parameters are almost



perfect, as is shown in Table 3. This is possible because for all three perturbed param-
eters, one of the models has an imperfect parameter value smaller than the standard
parameter value and the other model has one that is larger (Table 1). Hence, for each
of the parameters, one can find a linear combination of the imperfect parameter values
with positive weights whose sum is equal to 1, that represents the standard parameter
value (Eq. 3).

σsuper =
2

∑
i=1

wx
i σi (3a)

ρsuper =
2

∑
i=1

wy
i ρi (3b)

βsuper =
2

∑
i=1

wz
i βi (3c)

Table 3: Parameter values of the truth and the supermodel.

Model σ ρ β
Truth 10 28 8/3

Supermodel 9.993 27.983 2.669

If this supermodel is integrated for a long time period, the attractor of the supermodel
and the truth look quite similar, as can be seen in Fig. 3.
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Figure 3: Trajectory of the supermodel (blue), together with the true trajectory (green).

3.1 Climate measures

Straightforward measures to compare the attractor of the supermodel and the truth are
the mean, standard deviation and covariance. The calculation of these statistics is based



on 500 runs of 5000 time steps. The error estimation of a 95% confidence interval
is also calculated. In Table 4, it can be seen that the statistics of both the true and
the supermodel attractor are very similar. In particular, the standard deviations for
each of x,y and z are the same up to the first decimal. The largest differences are in
the covariance between x,z and y,z. However, these differences are within the 95%
uncertainty intervals and are thus not significant. The sizes of all confidence intervals
for both the truth and the supermodel are almost identical.

Table 4: The mean, standard deviation (SD) and covariance for the truth and the supermodel. The 95%
error estimation is given in brackets.

Truth Supermodel
Mean x 0.073 (0.099) 0.033 (0.098)
Mean y 0.073 (0.099) 0.034 (0.098)
Mean z 23.552 (0.012) 23.528 (0.012)
SD x 7.843 (0.010) 7.844 (0.009)
SD y 8.939 (0.011) 8.942 (0.010)
SD z 8.618 (0.012) 8.623 (0.012)

Cov. xy 61.529 (0.150) 61.547 (0.148)
Cov. xz 0.189 (0.266) 0.057 (0.268)
Cov. yz 0.247 (0.336) 0.109 (0.334)

3.2 Forecast quality

Along with the measures of the climate statistics of the models, a measure for the
quality of the “weather prediction” can also be constructed. This measure reflects the
forecast quality of the models on shorter time scales. The squared Euclidean distance
between the true trajectory and the trajectory of a model with a slightly perturbed initial
condition is calculated and averaged over a number of forecasts, as shown in Fig. 4.
On the true attractor, this value converges for large enough a forecast time T to a value
corresponding to the average distance between two arbitrary states. This distance is
used to normalize the measure of the forecast quality.



Figure 4: Measure of the forecast quality. At times ti a short integration of time T starts from observed
initial conditions and slightly perturbed conditions. The fixed time interval between times ti is denoted
by d.

The initial perturbation is chosen in the order of 10−1. The number of forecasts is equal
to 1000, and the distance between the initial states d is 10 time steps. Figure 5 shows
that the ability of the supermodel and the true model to predict the observed truth is
about the same. In comparison, the imperfect models lose their prediction skill very
quickly.
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Figure 5: Forecast quality of the imperfect Lorenz 63 models (purple) and the supermodel (blue) com-
pared to the true Lorenz 63 model (green).

4 Results for a quasi-geostrophic model

Given the encouraging results from the Lorenz 63 system, the CPT method is next
applied to a more complex model with 1449 degrees of freedom: a three level quasi-
geostrophic (QG) global atmosphere model developed by Marshall and Molteni (1993).
The model solves the quasi-geostrophic potential vorticity equation on the sphere using



a spectral method with spherical harmonic functions. A triangular T21 truncation is
used. The performance of this model is quite realistic. According to Corti et al. (1997),
the simulation of teleconnections and blockings in the Pacific and Atlantic regions is
“surprisingly accurate”. The evolution of the quasi-geostrophic potential vorticity at
the three levels is given by

q̇1 = J(ψ1,q1)−D1(ψ1,ψ2)+S1, (4a)

q̇2 = J(ψ2,q2)−D2(ψ1,ψ2,ψ3)+S2, (4b)

q̇3 = J(ψ3,q3)−D3(ψ2,ψ3)+S3, (4c)

where q is the potential vorticity, ψ the streamfunction, D(ψ) a linear operator that
represents dissipative terms and S a constant potential vorticity (PV) source. The index
i refers to the pressure level. Here, the potential vorticity is defined as

q1 = ∇2ψ1−R−2
1 (ψ1−ψ2)+ f , (5a)

q2 = ∇2ψ2 +R−2
1 (ψ1−ψ2)−R−2

2 (ψ2−ψ3)+ f , (5b)

q3 = ∇2ψ3 +R−2
2 (ψ2−ψ3)+ f (1+

h
H0

), (5c)

where f is the Coriolis parameter, R1 and R2 are the Rossby radii of deformation of the
200-500 hPa and 500-800 hPa layer, respectively, h is the orographic height, and H0 is
a scale height. To create different imperfect models, three parameter values are varied:

• τE timescale in days of the Ekman damping (τE in Eq. (A11) of Marshall and
Molteni (1993) )

• R1 Rossby radius of deformation of the 200-500 hPa layer

• R2 Rossby radius of deformation of the 500-800 hPa layer

Four different imperfect models are used for the CPT training phase; their parameters
are denoted in Table 5. The imperfect values of the Rossby radii of deformation are
chosen to differ by only a few thousandths from the true value since even a small de-
viation leads to very different behavior of the model. Numerical solutions are obtained
by using a fourth-order Runge-Kutta time stepping scheme, with a time step of 1/36
day.

Table 5: Parameter values of the imperfect QG-models.

Model τE R1 R2

Truth 2.0 0.1150 0.0720
Model 1 1.5 0.1165 0.0705
Model 2 1.5 0.1130 0.0725
Model 3 2.4 0.1130 0.0705
Model 4 2.4 0.1165 0.0725



The training period T is 100 time steps, which corresponds to an integration period of
about 3 days. Most of the development of weather systems can be captured within 3
days. The number of iterations is 20. With every iteration, a new part of the attractor is
used for training by continuing the observed trajectory to get a better sampling of the
attractor.
In Table 6 the resulting weights for the different levels are shown. After 20 iterations,
the weights are not completely converged, they differ a few percent per iteration, but
there is no increasing or decreasing trend. Note that at the 200 hPa level the super-
position of models consists solely of model 1 and model 2. The only parameter with
imperfections affecting this level is R1, and the imperfect value of this parameter is
equal for models 1 and 4. The same holds for models 2 and 3. Since at every time step
in the CPT training, every model receives the same state, the tendencies of models 1
and 4 are the same at this level and the same holds for models 2 and 3. Therefore the
corresponding weights of models 3 and 4 are 0 since these are never chosen during the
CPT training.

Table 6: Weights of the imperfect QG-models at 200, 500 and 800 hPa.

Model w200
i w500

i w800
i

i = 1 0.653 0.217 0.093
i = 2 0.347 0.459 0.235
i = 3 0.000 0.157 0.215
i = 4 0.000 0.167 0.457

In an additional experiment we left out the imperfect model with the poorest short- and
long-term predictability in order to test the hypothesis that the addition of a relatively
bad model can still improve the quality of the supermodel solution. The same imperfect
models are used. The model with the poorest predictability is model 1 (Table 7), so the
supermodel is constructed out of models 2, 3 and 4. Note that these three models still
span the same uncertainty range in the three parameters. The same CPT training phase
is applied.
The CPT training provides weights that determine a superposition of models that is
capable of following observed trajectories more closely. But to what extend do the
values of these weights matter? Is training really necessary? In order to assess this
we evaluated the quality of a supermodel with equal weights given to each imperfect
model in the superposition.



4.1 Climate measures

As measure of the long-term behavior of the quasi-geostrophic model we choose to
compare the geostrophic winds of the different models. The potential vorticity cal-
culated by the model determines these winds. The true model, imperfect models and
supermodel are integrated over 900 days in a perpetual winter simulation.
As statistical measure (RMSE), the errors in the 900-day average wind strength at the
200, 500 and 800 hPa level at each location are averaged over the globe:

RMSE =

√
1
N

N

∑
i=1

(‖utruth
i ‖−‖umod

i ‖)2,

with i denoting the grid point, u the zonal wind, v the meridional wind and N the total
number of grid points.

Table 7: The root mean squared error of the wind strength (ms−1) over 900 winter days. For the true
model, the average RMSE is given. The value for which 95% of the RMSE values is below that value is
given in brackets.

Model 800 hPa 500 hPa 200 hPa
Model 1 1.92 1.95 2.27
Model 2 1.80 1.37 2.31
Model 3 1.10 0.90 1.79
Model 4 1.42 1.36 2.06
True model 0.48 (0.65) 0.78 (0.92) 1.66 (2.05)
Supermodel 0.45 0.80 1.77
Supermodel equally weighted 1.56 1.51 2.63
Supermodel without worst imperfect model 1.42 1.38 2.09

We take a Monte Carlo approach to assess the uncertainty of the RMSE values. For 98
different initial conditions, a trajectory of 900 days is computed with the true model.
Then the RMSE is calculated for these trajectories with respect to one other true tra-
jectory of observations. The 95% percentile of these values is listed in Table 7. This
table reveals that, with respect to this climate measure, the supermodel is indistinguish-
able from the true model. The RMSE values of the imperfect models are significantly
larger. Note that the supermodel was not trained to reproduce the observed mean state,
but apparently training on a 3-day time scale is sufficient.
The RMSE values of the supermodel without the inclusion of the worst model are
comparable with the values of the second-best imperfect model (model 4). The RMSE
values of the equally weighted supermodel are even worse.
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Figure 6: Forecast quality of imperfect QG models (purple), the QG supermodel (dark blue), the QG
supermodel generated without the worst imperfect model in forecast quality (medium blue) and the QG
supermodel generated with equal weights (light blue) compared to the forecast quality of the true QG
model (green).

4.2 Forecast quality

As was done for the Lorenz 63 system, the forecast quality can be measured by calcu-
lating the mean squared error between the true trajectory and the trajectory of a model
with a slightly perturbed initial condition and then averaging this over a number of
forecasts. The mean squared error is taken over all three levels and all spectral coeffi-
cients. The number of forecasts is 100, and the distance d between the initial states is
1000 time steps. In LORENZ (1969) it is mentioned that an initial perturbation in the
smallest length scale leads to large errors in all scales after 2 weeks. For that reason the
initial perturbation is chosen in the order of 10−4 as it leads to an almost complete loss
of predictability after 14 days.
The forecast quality of the supermodel is not as good as that of the true model, but the
supermodel greatly improves the predictability as compared to the imperfect models
(Fig. 6).
The forecast quality of the supermodel without the inclusion of the worst model also
improves compared to the imperfect models, but is clearly not as good as the forecast
quality of the supermodel with inclusion of this worst model (Fig. 6). Thus, inclusion
of relatively bad models can still contribute towards a superior supermodel.
The equally weighted supermodel turns out also to perform better than the imperfect
models (Fig. 6), but significantly worse than the supermodel with the weights trained
by CPT. Hence, training does add value to the quality of the supermodel.



5 Conclusions

In this study we have demonstrated that a new training method based on cross pollina-
tion in time leads to a dynamical combination of forecast models (a weighted super-
model) with superior forecast quality and improved climatology. The CPT training is
based on short-term trajectories only, but it turned out that the errors in the climatology
are also greatly reduced. The results indicate that a supermodel with weights trained by
CPT can give significantly better predictions than a supermodel consisting of the same
imperfect models with equal weights.
State-of-the-art models are far more complex than the examples from this paper, but
in principle the approach is applicable to state-of-the-art models as well. With an in-
creased number of uncertain parameters, it is to be expected that more imperfect mod-
els are required to construct a supermodel with improved prediction skill. This will
increase the amount of computation time, but if during the CPT training, the number of
trajectories is pruned back to a single prediction, the computational cost of CPT grows
only proportionally to the number of imperfect models.
In this study the imperfect models differed in parameter values only but were struc-
turally identical. In reality, imperfect state-of-the-art weather models differ in struc-
ture, generally solving different equations on different grids using different numerical
methods. In this case, methods from data assimilation might be used in order to cross
states between models, as is done by Du and Smith (2017). Alternatively, a common
state space might be defined, with models projecting their states into this common state
space and the CPT training limited to this common state space.
In the case when a supermodel solution hardly improves the prediction skill as com-
pared to the imperfect models, one might experiment with the introduction of an ad-
ditional imperfect model that has in some sense the “opposite” error behavior as com-
pared to the other imperfect models. This additional imperfect model can have worse
prediction skill, but it might still contribute to a superior supermodel solution. For the
quasi-geostrophic atmosphere model in this study, it was demonstrated that a model
with poor forecast quality still contributed towards an improved supermodel.
A remarkable result of this study is that even if only a relatively small part of the
attractor is used for training, the method results in a supermodel with improved clima-
tology. There is evidence in Rodwell and Palmer (2007) that climatological errors de-
velop quickly during the first few days of weather forecasts, implying that a short-term
training can reduce climatological errors. If this result carries over to the state-of-the-
art models, then computationally expensive long climate simulations as in Shen et al.
(2016) can be avoided during training. Using relatively short integrations only can still



improve the climatology of a supermodel.
As indicated above, there are several ways to apply and further develop the CPT train-
ing methodology presented in this study. It is not only applicable to weather and cli-
mate models, but also to numerical models of other complex systems, for example
economical or biological models. Cross pollination in time as applied in this paper is
a promising approach for combining models dynamically in order to further improve
predictions.

Data availability

No data sets were used in this article.



Appendix A

The supermodeling approach only works well if the imperfect models are on “opposite”
sides of the truth. We took this into account in the choice of the imperfections. The
imperfect values of the parameters and the number of imperfect models is based on the
convex hull principle. In one dimension this convex hull principle basically says that if
there is one parameter value σ1 smaller than the true value σ and one parameter value
σ2 larger than the true value, there are positive weights w1,w2 such that a linear com-
bination w1σ1 +w2σ2 is exactly equal to σ . In case of Lorenz63, the equations for ẋ, ẏ
and ż each contain only one parameter that appears linearly in the equation. Since we
apply different weights for the different equations for ẋ, ẏ and ż, per equation we need
only two imperfect models to be able to reconstruct exactly the true parameter value
with positive weights. This convex hull principle can be extended to more dimensions:

Definition 1. Let x1, ...,xk be vectors in Rn and let λ1, ...,λk be nonnegative scalars
whose sum is unity.
(a) The vector ∑k

i=1 λixi is said to be a convex combination of the vectors x1, ...,xk.
(b) The convex hull of the vectors x1, ...,xk is the set of all convex combinations of these
vectors.

In this definition, the vectors xi, i ∈ 1, ...k represent the imperfect parameter values x
per model i and λi, i ∈ 1, ...k the corresponding weights. This convex hull generalizes
the ‘in between’ concept for one dimension. To be able to reproduce the n-dimensional
vector x, it has to lie inside the convex hull of vectors x1,x2, ...,xk.
We can write this as a matrix-vector equation, where the last row indicates that the sum
of the weights has to be equal to 1 and the vector x represents the true parameter values:




x1
1 x2

1 · · · xn+1
1

x1
2 x2

2 · · · xn+1
2

...
... . . . ...

x1
n x2

n · · · xn+1
n

1 1 · · · 1







λ1

λ2
...

λn

λn+1




=




x1

x2
...

xn

1




For parameter vectors of size n, we have n+ 1 constraints, since also the sum of the
weights has to equal 1. Hence we know that to be able to reproduce the true parameter
vector x, for n parameters that appear linearly in one differential equation for a state
variable, n+1 linearly independent vectors of these parameters are needed which form
a convex hull around the true parameter vector.



For the quasi-geostrophic model, the imperfect parameters do not appear linearly in
the equations. Therefore choosing the parameter perturbations such that they form a
convex hull around the true parameter values will not necessarily result in a model that
reproduces the truth. Nevertheless, in practice we found that this approach still worked
well. In this case, choosing the imperfect parameter values on opposite sides of the
truth created “opposite” behaviour such that the imperfect models could compensate
for each other.
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Abstract

The SPEEDO global climate model (an atmosphere model coupled to a land and an
ocean/sea-ice model with about 250.000 degrees of freedom) is used to investigate the
merits of a new multi-model ensemble approach to the climate prediction problem in a
perfect model setting. Two imperfect models are generated by perturbing parameters.
Connection terms are introduced that synchronize the two models on a common solution,
referred to as the supermodel solution. A synchronization-based learning algorithm is
applied to the supermodel through the introduction of an update rule for the connection
coefficients. Connection coefficients cease updating when synchronization errors between
the supermodel and solutions of the “true” equations vanish. These final connection co-
efficients define the supermodel. Different supermodel solutions, but with equivalent per-
formance, are found depending on the initial values of the connection coefficients during
learning. The supermodels have a climatology and a climate response to a CO2 increase in
the atmosphere that is closer to the truth as compared to the imperfect models and the stan-
dard multi-model ensemble average, showing the potential of the supermodel approach to
improve climate predictions.

Complex numerical codes are being used to predict the behavior of real-world
phenomena like the climate or the economy. In this study, we demonstrate that
predictions can be improved by forming an ensemble of inter-connected differ-
ent imperfect climate models that synchronize on a common solution, referred
to as the supermodel solution. This supermodel solution depends on the con-
nections. The connections are trained using observations of the truth such that
the supermodel minimizes synchronization errors when nudged to trajectories of
the truth. This is the first time that the potential of the supermodel approach is
demonstrated in the context of a complex global climate model. Due to its com-
putational efficiency, the synchronization-based learning approach is applicable
to state-of-the-art climate models with millions degrees of freedom and historical
observations of the Earth’s global climate system.



1 Introduction

Global climate models are complex numerical codes that integrate coupled sets of or-
dinary differential equations (ODEs) with prescribed time-dependent forcing terms in
time in order to produce projections of our future climate. It is commonly found that
a multi-model averaged climatology is closer to the observed climatology, which is
defined as the average over 30 years and is referred to as the climate normal. Model es-
timates tend to be distributed around the truth, and therefore, averaging across models
helps in reducing errors in the simulated mean state (Weigel et al., 2008). Although im-
proved climate statistics are useful, climate adaptation and impact studies often require
climate trajectories as input (Hazeleger et al., 2015). However, averaging trajectories
from multiple models without synchronization leads to undesired smoothing and vari-
ance reduction.
Here we follow an alternative, synchronization-based approach that produces improved
climate trajectories by combining climate models dynamically. This approach was in-
spired by a study in which two different atmosphere models were coupled to a single
ocean model leading to improved climate simulations when the ocean exchanged heat
with only one atmosphere model and momentum with the other (Kirtman et al., 2003).
Here, we dynamically combine models by introducing connection terms into the model
equations that nudge the state of one model to the state of every other model in the en-
semble, effectively forming a new dynamical system with the values of the connection
coefficients as additional parameters. For appropriately chosen connections, the mod-
els synchronize on a common solution that depends on the values of the connection
coefficients (Hiemstra et al., 2012; Lunkeit, 2001). This solution is referred to as the
supermodel solution (van den Berge et al., 2011). During a learning phase, the super-
model is nudged to an observed trajectory and the connection coefficients are adjusted
by update rules that depend on the synchronization error. The connection coefficients
cease to update when the synchronization is perfect.
So far, the supermodel approach was pioneered using relatively simple dynamical sys-
tems only (Duane, 2015; Mirchev et al., 2012; van den Berge et al., 2011) or with very
limited inter-model connections in a global climate model context (Shen et al., 2016).
Here, we demonstrate the potential of a fully connected supermodel constructed from
versions of a complex global climate model. This model, SPEEDO (Severijns and
Hazeleger, 2010) is described in section 2 which is followed by a discussion of the
supermodel implementation using SPEEDO in section 3. The synchronization-based
learning is explained in section 4 and is applied to the SPEEDO supermodel in section
5. In section 6 we discuss the merits of the supermodel approach in relation to the stan-



dard multi model ensemble approach. We conclude this paper with a summary of open
issues in section 7 and discuss the application of the synchronization-based supermodel
approach for state-of-the-art weather and climate models.

2 SPEEDO climate model

The SPEEDO climate model consists of an atmospheric component (SPEEDY) that
exchanges information with a land (LBM) and an ocean-sea-ice component (CLIO) us-
ing coupling routines (Fig. 1). The coupling routines perform re-gridding operations
between the computational grids of the different modules. A detailed description of
SPEEDO can be found in Severijns and Hazeleger (2010). The atmospheric model
SPEEDY solves the primitive equations on a sphere using a spectral method (Molteni,
2003). The primitive equations are derived from the Navier-Stokes equations with
suitable approximations for atmospheric flow at scales larger than a few kilometers
(Zdunkowski and Bott, 2003). The spectral expansion into spherical harmonics is trun-
cated at total wavenumber 30 which corresponds to a spatial resolution at the equator of
about 700 km. It has 8 vertical levels and relatively simple representations of radiation,
convection, clouds, precipitation and turbulent heat, water, and momentum exchange
at the surface. The solar radiation follows the daily and seasonal cycle. In principle the
model consists of 31680 coupled ODE’s for the spectral coefficients of the two hori-
zontal wind components U (east-west) and V (north-south), temperature T and specific
humidity q at the 8 vertical levels and the log of surface pressure ps. Calculations in
physical space are performed on a Gaussian grid with approximately 3.75 degree spac-
ing (48 × 96 grid-cells). Speedy exchanges water and heat at the 2115 land points of
the land model LBM that uses three soil layers and up to two snow layers to close the
hydrological cycle over land and a heat budget equation that controls the land temper-
atures. The horizontal discretisation is the same as for the atmosphere model. The land
surface reflection coefficient for solar radiation is prescribed using a monthly climatol-
ogy. Each land bucket has a maximum soil water capacity. The runoff is collected in
river-basins and drained into the ocean at specific locations of the major river outflows.
SPEEDY exchanges heat, water, and momentum with the ocean model CLIO (Goosse
and Fichefet, 1999). CLIO solves the primitive equations on a computational grid of
3° horizontal resolution and 20 unevenly spaced layers in the vertical. It has a rotated
grid over the North Atlantic ocean in order to circumvent the singularity at the pole.
It has a free-surface and is coupled to a three-layer thermodynamic-dynamic sea-ice
model. The sea-ice model takes into account the heat storage in the snow-ice system
and calculates the changes of snow and ice thickness in response to surface and bot-



tom heat fluxes. In the computation of ice-dynamics, sea ice is considered to behave as
a viscous-plastic continuum as it moves under the action of winds and ocean currents.
In total, CLIO has about 200.000 degrees of freedom. The SPEEDO equations can be
written as

ȧ = fa(a;pa)+ga(eh,ew,em) (1a)

ȯ = fo(o;po)+go(Poeh,Poew,Poem,Por) (1b)

l̇ = fl(l;pl)+gl(Pleh,Plew,r) (1c)

Here, we formulate the model in terms of ordinary differential equations (ODEs) on
a grid, instead of the more usual partial differential equations (PDEs), to be explicit
about the numerical scheme and also for consistency with the ODE scheme for learn-
ing inter-model connections which is presented in Section IV. The bold lowercase char-
acters represent vectors with a the atmospheric state vector, o the ocean/sea-ice state
vector, l the land state vector, eh the heat exchange vector between the atmosphere and
the surface, ew the water exchange vector, em the momentum exchange vector and r
the river outflow vector describing the flow of water from land to ocean. The exchange
vectors depend on the state of the atmosphere and the surface. The projection oper-
ators P represent the re-gridding operations between the computational grids. These
operations are conservative so that the globally integrated heat and water loss of the
atmosphere at any time at the surface equals the integrated heat and water gain of the
land and ocean. The non-linear functions f represent the cumulative contribution of the
modelled physical processes to the change in the climate state vector and depend on the
values of the parameter vectors p. Some of these parameters go through a daily and/or
seasonal cycle and/or have a spatial dependence like the reflectivity of the surface. The
non-linear functions g describe how the exchange of heat, water, and momentum be-
tween the subsystems affects the change of the climate state vector.

3 Supermodel

In this study, we consider the SPEEDO climate model with standard parameter values
as "truth" and create imperfect models of this truth by perturbing parameter values in
the atmospheric component. A supermodel is formed by connecting two imperfect
atmosphere models through linear nudging terms that nudge the state of model 1 to
model 2 and vice versa (see Fig. 2 and Eq. 2) and couple them to the same ocean and
land model. Both atmosphere models receive the same state information from the ocean
and land model and each calculates its own water, heat, and momentum exchange.
The ocean and land model receive the exchanges from both atmospheres and use the
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Figure 1: Schematic representation of the SPEEDO climate model. The atmosphere needs surface char-
acteristics (temperature, roughness, reflectivity and soil moisture) in order to calculate the exchange of
heat, water, and momentum. Coupler software communicates this information between the components
and interpolates between the computational grids.

average of the two as input. The supermodel state as at any time is defined as the
average of the two model states. For moderate inter-model nudging, it is found that the
atmospheres synchronize nearly completely, and therefore, by taking the averaged state,
no significant spatial or temporal smoothing is introduced. The SPEEDO supermodel
equations are given by

ȧ1 = fa(a1;pa
1)+ga(eh

1,e
w
1 ,e

m
1 )−C12[a1−a2] (2a)

ȧ2 = fa(a2;pa
2)+ga(eh

2,e
w
2 ,e

m
2 )−C21[a2−a1] (2b)

ȯ = fo(o;po)+go(Poeh,Poew,Poem,Por) (2c)

l̇ = fl(l;pl)+gl(Pleh,Plew,r) (2d)

as =
1
2
[a1 +a2] (2e)

where C denotes a diagonal matrix with connection coefficients on the diagonal, the
subscripts refer to the respective models, and the overbar denotes an average over the
two models.
The atmospheric components of the supermodel equation can be written as

ȧs =
1
2
[fa(a1;pa

1)+ fa(a2;pa
2)]+ (3)
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2
[ga(eh
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1 )+ga(eh
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w
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m
2 )]+

1
2
[C12−C21][a2−a1]
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Figure 2: Schematic representation of the SPEEDO climate supermodel. The two imperfect atmosphere
models exchange water, heat, and momentum with the perfect ocean and land models. The ocean and
land models send their state information to both atmosphere models. The atmosphere models exchange
state information with each other.

From this equation, a number of interesting observations can be made. For equal con-
nection coefficients (C12 = C21) the last term vanishes and the supermodel solution
becomes equal to the average of both imperfect model solutions. If the synchronization
is perfect (a1 = a2 = as), then the supermodel solution obeys the averaged imperfect
model equations with equal weights 1

2 . Solving the weighted averaged equations is re-
ferred to as weighted supermodeling (Wiegerinck and Selten, 2017) as distinct from
connected supermodeling. For unequal connection coefficients (C12 6= C21), with, for
instance, model 1 more strongly nudged to model 2 than vice versa, the last term is
non-zero and systematically pushes the connected supermodel solution every time-step
toward the state of model 2 (see Fig. 3).
Negative connection values imply that the model solutions are driven apart. This is
undesired as the aim is to synchronize the models on a common solution. Without
this constraint, the model with the negative coefficient will be driven away from the
other model solution. However, the two solutions could still remain close together, if
the other model gets a positive connection coefficient with larger value and chases the
model with the negative coefficient. In this study we will restrict to positive connection
coefficients only.

4 Synchronization-based Learning

The supermodel solution (Eq. 2) depends on the choice of the connection coefficient
values C. A learning algorithm that extends synchronization of states to synchroniza-
tion of parameters is applied in order to train the supermodel to follow trajectories from
the truth more closely as explained in section 4.2.



As =
1
2 (A1 + A2 )

A1

A2

A2 − A1

Figure 3: Graphical representation of one time-step of the connected supermodel. Black arrows denote
state vectors at initial time, grey arrows one time-step later. The change in the supermodel state (green
vector) is the averaged change of model 1 (red vector) and model 2 (blue vector) plus a vector due
to the nudging terms (yellow vectors) pointing in the direction of the model 2 state, assuming that the
model 1 state is more strongly pushed to the model 2 state than vice versa.

4.1 From state synchronization to parameter synchronization

Suppose we have two coupled dynamical systems:

ẋ = f(x;p) (4a)

ẏ = f(y;q)−K(y−x) (4b)

where p and q are vectors of parameters, K(y− x) is a nudging term that couples the
two systems, and K is a diagonal matrix of nudging coefficients. We will assume that
the equations are linear in the parameters p.
Suppose that when the two systems are identical, i.e. when p = q, the two systems
synchronize, that is, as t → ∞, y(t)→ x(t). We want to find some rule for varying
the parameters q, i.e. a dynamical equation such that even if the two systems are not
identical, p 6= q, the systems will still synchronize, and the parameters will become
equal, that is, as t → ∞, y(t)→ x(t), and q(t)→ p. The problem is that of “adaptive
observers" in the electrical engineering literature (Besançon et al., 2006; Zhang, 2002).
First, for concreteness, before stating the general rule for parameter estimation, we
show how such a rule might be derived for the simple case of two connected Lorenz
systems:

ẋ1 = σ(x2− x1) ẏ1 = σ(y2− y1)− c(y1− x1) (5a)

ẋ2 = ρx1− x2− x1x3 ẏ2 = ρ̃y1− y2− y1y3 (5b)

ẋ3 =−βx3 + x1x2 ẏ3 =−βy3 + y1y2 (5c)

where the subscripts refer to the state vector elements.
If ρ̃ = ρ , the two dynamical systems are identical and are known to synchronize for ap-



propriately chosen coupling constant c (Pecora and Carroll, 1990; Yang et al., 2006):
As t → ∞, (y1(t),y2(t),y3(t))→ (x1(t),x2(t),x3(t)), and e(t)2 → 0, where the syn-
chronization error e := (y1− x1,y2− x2,y3− x3). We claim that that in the case of
non-identical systems, with ρ̃ 6= ρ , we can still arrange for synchronization if we can
allow ρ̃ to vary as a new dynamical variable, specifically introducing the dynamical
equation for ρ̃:

˙̃ρ =−(y2− x2)y1 (6)

=−e2y1

To see why Eq. 6 implies (y1,y2,y3, ρ̃)→ (x1,x2,x3,ρ), consider the Lyapunov function
L := (y1− x1)

2 +(y2− x2)
2 +(y3− x3)

2 +(ρ̃−ρ)2. If we can show L(t)→ 0, we will
have the desired state and parameter synchronization. Consider the time derivative

L̇ = L̇0 +2 ˙̃ρ(ρ̃−ρ) (7)

where L0 := e2 is the part of the Lyapunov function formed from state errors alone. The
key point is that the time derivative of L0 differs from its value for ρ̃ = ρ , because the
dynamical equation for y2 is different. Specifically, in the derivative

L̇0 =
d
dt

(
(y1− x1)

2 +(y2− x2)
2 +(y3− x3)

2) (8)

= 2(y1− x1)
d
dt
(y1− x1)+2(y2− x2)

d
dt
(y2− x2)

+2(y3− x3)
d
dt
(y3− x3)

(where we do not include parameter error explicitly), every term on right hand side is
exactly of the same form as in the case of equal parameters, except for the term that
contains y2. The time-derivative factor in that term can be written as:

d(y2− x2)

dt
= (ρ̃−ρ)y1 +ρy1− y2− y1y3 (9)

−ρx1 + x2 + x1x3

= (ρ̃−ρ)y1 +
d(y2− x2)

dt
|ρ̃=ρ

where the last term is the value that the time-derivative would have if the parameters
were equal. Substituting Eq. 9 into Eq. 8 gives

L̇0 = 2(y1− x1)
d
dt
(y1− x1)+2(y2− x2)

d
dt
(y2− x2)|ρ̃=ρ (10)

+2(y3− x3)
d
dt
(y3− x3)+2(y2− x2)(ρ̃−ρ)y1

= L̇0|ρ̃=ρ +2(y2− x2)(ρ̃−ρ)y1



Inserting Eq. 6 and Eq. 10 into Eq. 7, we have

L̇ = L̇0|ρ̃=ρ +2(y2− x2)(ρ̃−ρ)y1 (11)

−2(y2− x2)(ρ̃−ρ)y1

= L̇0|ρ̃=ρ

Trajectories of the coupled identical systems monotonically approach synchronization
after some point in time, with L̇0|ρ̃=ρ < 0. So, by Eq. 11 the same can be said of the
trajectories of the non-identical systems, for which L̇ < 0. The reason is that the dy-
namical equation Eq. 6 is constructed so that changes in the time-derivative of L due to
explicit inclusion of parameter error in the Lyapunov function will exactly cancel the
changes due to the implicit effect on the states through the dynamical equations.
The above argument can be generalized to any pair of dynamical systems that are
known to synchronize, for given coupling, when the parameters are identical. Con-
sider two Lyapunov functions of state error and parameter error:

L0(e) := e2 = ∑
i

e2
i (12a)

L(e,r) := e2 + s2 = ∑
i

e2
i +∑

j
s2

j (12b)

where e = y− x, and s = q− p. Because L0 and L vanish only when all arguments
vanish, if we can show either that L0 → 0 or that L→ 0 , we have synchronization.
If L → 0, we also have parameter matching. We seek a dynamical equation for q
such that there is a simple relationship between the Lyapunov function for the case of
unequal parameters and that for the case of equal parameters. Since we already know
L0|p=q→ 0, because the identical systems synchronize, we then have L→ 0 as well.
To find a suitable parameter update rule, q̇ = u(x), we consider the time derivative of
L:

L̇ = L̇0 +2∑
j

s jṡ j (13)

= 2∑
i

eiėi +2∑
j
(q j− p j)q̇ j

recalling that ṗi = 0. We seek to decompose ėi in Eq. 13 as the sum of the value for a
system with q = p and a correction term due to the fact that q 6= p:

ėi = ėi|q=p +∑
j
(q j− p j)

∂ fi(y;p)
∂ p j

(14)



The partial derivative with respect to parameter p j is the co-factor of that parameter in
the ith dynamical equation, since the parameter only appears linearly. Inserting Eq. 14
in Eq. 13 yields:

L̇ = L̇0|q=p +2∑
i

ei ∑
j
(q j− p j)

∂ fi(y;p)
∂ p j

(15)

+2∑
j
(q j− p j)q̇ j

If we choose a parameter adaptation rule:

q̇ j =−∑
i

ei
∂ fi(y;p)

∂ p j
(16)

then the last two terms in Eq. 15 cancel and we have

L̇ = L̇0|q=p (17)

which we claim is enough to give L→ 0, and hence synchronization, in the unequal-
parameter case. That is because we already know that the Lyapunov function for the
equal-parameter case is monotonically decreasing for some finite region of state space,
i.e. L̇0|q=p ≤ 0 in this region, and L̇0|q=p = 0 only if x = y. We make an additional as-
sumption of “high-quality synchronization", needed for complete rigor but commonly
observed: We assume that after some time there is no bursting away from the synchro-
nization manifold, there is a finite distance from the manifold below which all points
belong to the attractive region, so once a trajectory enters the region it cannot leave,
since a decreasing L0 implies decreasing distance from the manifold. Then L̇ ≤ 0 in
this region as well, implying y(t)→ x(t), and q(t)→ p as desired. (Strictly speaking,
L̇≤ 0 could imply that L converges to a positive constant value, and not to 0, but since
L̇ = L̇0|q=p = 0 only if x = y, the strict inequality holds except possibly on the syn-
chronization subspace x = y, which is not dynamically invariant except when q = p.)
We have thus given all the elements of a proof that if the two systems synchronize (in
the “high-quality" sense) when parameters are identical, then both states and parame-
ters will synchronize when the dynamical equations are augmented with Eq. 16.
The rule Eq. 16 can be generalized a bit: If we start with a more general Lyapunov func-
tion L(e,s) = e2 +∑ j

1
δ j

s2
j , which is positive definite for arbitrary positive constants δ j,

we can derive a rule:
q̇ j =−δ j ∑

i
ei

∂ fi(y;p)
∂ p j

(18)

in place of Eq. 16. A still more general form of the parameter adaptation rule was
proved in Duane et al. (2007).



4.2 Synchronization-based learning of inter-model connections

We apply the parameter adaptation rule Eq. 18 to the inter-model connections in a su-
permodel based on two imperfect SPEEDY atmospheres. The configuration is depicted
in Fig. 4 with corresponding equations:

ȧ0 = fa(a0;pa
0)+ga(eh

0,e
w
0 ,e

m
0 ) (19a)

ȧ1 = fa(a1;pa
1)+ga(eh

1,e
w
1 ,e

m
1 )−C12[a1−a2]−K[a1−a0] (19b)

ȧ2 = fa(a2;pa
2)+ga(eh

2,e
w
2 ,e

m
2 )−C21[a2−a1]−K[a2−a0] (19c)

ȯ = fo(o;po)+go(Poeh
0,P

oew
0 ,P

oem
0 ,P

or) (19d)

l̇ = fl(l;pl)+gl(Pleh
0,P

lew
0 ,r) (19e)

as =
1
2
[a1 +a2] (19f)

Ċµν = uµν (19g)

where uµν denote parameter update rules for the connection coefficient values of model
µ nudged to model ν . The two imperfect atmosphere models (a1 and a2) are nudged
to the truth (a0) with fixed nudging strength K. Truth is represented by the SPEEDY
model with standard parameter values (a0). The ocean and land model send their state
information to all atmosphere models but receive the water, heat and momentum ex-
change from the true atmosphere only. The imperfect atmosphere models exchange
state information and are nudged to each other state. Note that intermittent nudging
of models to reality accomplishes the task of data assimilation in numerical weather
prediction (Duane et al., 2006; Yang et al., 2006), so during training the supermodel
effectively does continuous data assimilation. The parameter adaptation rule for a su-
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Figure 4: Schematic representation of the SPEEDO climate supermodel during synchronization-based
training.

permodel is obtained by forming the parameter vector q from the set of connection



coefficients Cµν ,ii, for µ and ν ranging over the labels of the separate models, and the
index i over the dimension of the state vector (Duane, 2015). If one assumes that the
truth is a supermodel for “correct" values of Cµν , and that the supermodel will syn-
chronize with this truth, then application of the rule Eq. 18 to the supermodel Eq. 19
using ei = as,i−a0,i gives:

Ċµν ,ii = δµν ,i[aµ,i−aν ,i][as,i−a0,i] (20)

where index i is the index of the state vector and the adaptation rates δµν ,i are arbitrary
constants. In principle, the adaptation rates can be chosen different for each element
of the state vector in the inter-model connections, but in this study, we will choose a
single adaptation rate for all elements and drop the subscripts from here on. The rule
Eq. 20 has a simple interpretation: the time integral of the right-hand side gives the
temporal covariance between truth-supermodel synchronization error, (as,i−a0,i), and
the inter-model nudging term, (aµ,i− aν ,i). It indeed makes sense to adapt the inter-
model nudging strength, for a given pair of corresponding variables, depending on
the sign and magnitude of this covariance. The connection coefficients cease updating
when this covariance is zero and/or the synchronization error vanishes. In principle one
could consider allowing different connection strengths for each state vector element.
For SPEEDY this would imply adapting N(N−1) times 31680 coefficients with N the
number of imperfect models in the supermodel. In this study we will impose spatial
invariance on the connection coefficients and only consider dependence on the physical
variable that is being nudged in order to keep the number of adjustable coefficients
relatively small. The nudging is applied to the velocity and temperature fields only,
not to surface pressure and atmospheric humidity. It turns out that synchronization of
the total state can be achieved by nudging these three fields only and an advantage
is that it requires less communication between the atmospheres during the simulation.
This choice for the nudging results in six connection coefficients for the inter-model
connections between two imperfect models. The adaptation rules for the connection



coefficients become

ĊT
µν = δ

8

∑
k=1

96

∑
i=1

48

∑
j=1

[Tν(λi,φ j, pk)−Tµ(λi,φ j, pk)] (21a)

× [T0(λi,φ j, pk)−Ts(λi,φ j, pk)]

ĊU
µν = δ

8

∑
k=1

96

∑
i=1

48

∑
j=1

[Uν(λi,φ j, pk)−Uµ(λi,φ j, pk)] (21b)

× [U0(λi,φ j, pk)−Us(λi,φ j, pk)]

ĊV
µν = δ

8

∑
k=1

96

∑
i=1

48

∑
j=1

[Vν(λi,φ j, pk)−Vµ(λi,φ j, pk)] (21c)

× [V0(λi,φ j, pk)−Vs(λi,φ j, pk)]

where λi denotes the longitude, φ j the latitude and pk the pressure level. Integrating
Eq. 21 to obtain finite-time changes ∆Cµν , it is seen that the right-hand sides of the re-
sulting equations correspond to the spatial and temporal covariance between the truth-
supermodel synchronization error and the inter-model nudging terms. The adaptation
rule in this case adjusts the connection coefficient of temperature, for example, between
model µ and ν when the temperature difference between model µ and ν spatially and
temporally covaries with the truth-supermodel synchronization error in temperature.
This procedure makes sense because the inter-model temperature difference is propor-
tional to the inter-model nudging term, and one wants to use more or less inter-model
nudging, in a given direction, depending on whether the nudging tends to decrease or
increase truth-supermodel synchronization error.

5 Results

5.1 Imperfect models

First, SPEEDO with standard parameter values (the "truth") was integrated for 400
years using present-day atmospheric CO2 concentrations. The global mean surface
temperature of this simulation rises from 13°C to about 14.2° during the first 50 years,
remains fairly stable for about 300 years, and subsequently starts to cool during the final
50 years (Fig. 5). Slow cooling trends in the deep ocean are present during the whole
simulation and in the end stabilize the ocean and reduce the mixing of heat from the
deep ocean to the cold surface waters in the North Atlantic. Consequently, the North
Atlantic surface waters cool, Arctic sea-ice expands, and the global mean surface tem-
perature drops.
From this simulation, we selected January 1, 2001, in the middle of the relatively stable



period as the initial condition for the supermodel experiments. We integrated SPEEDO
for 40 years for two sets of perturbed parameters (Table 1). The parameters concern pa-
rameterized descriptions of horizontal and vertical mixing processes due to unresolved
turbulent motions. Imperfect model 1 (red line) warms around 1.4° with respect to the
truth, and imperfect model 2 (blue line) cools around 0.5°. The amplitude of these cli-
mate differences are not unrealistic as differences of more than a degree in global mean
temperature are not uncommon between state-of-the-art climate models. For reference,
the perfect model was also integrated for 40 years (green line), referred to as the con-
trol simulation. It deviates from the truth due to the sensitive dependence on initial
conditions as it was initiated from a perturbed first of January 2001 state.
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Figure 5: Global mean temperature time-series for SPEEDO with standard parameter values (truth).
The perfect model and the two imperfect models were initiated in year 2001 and integrated for 40 years.

perfect imperfect 1 imperfect 2
relaxation timescale of convection 6 hours 4 hours 8 hours
relative humidity threshold 0.9 0.85 0.95
momentum diffusion timescale 24 hours 18 hours 30 hours

Table 1: Parameter values in perfect and imperfect models.

5.2 Synchronization

Before we start to connect the two imperfect models and train the connection coeffi-
cients, we first have a look at the synchronization errors when the models are nudged
to the truth.
During training, synchronization errors determine the updates to the connection co-
efficients. For effective training, synchronization errors should be significantly larger



for the imperfect models than for the perfect model for given model-to-truth nudging
strength K. Ideally, the trained supermodel will have synchronization errors close to the
perfect model. We investigated the magnitude of the synchronization error in relation
to the nudging strength K by running the configuration depicted in Fig. 6. The perfect
and imperfect models receive the state information from the truth at every time-step
and their states are nudged accordingly. Only the truth exchanges water, heat and mo-
mentum with the surface (ocean and land) models. The other models receive the state
information from the surface models, calculate each their own water, heat and momen-
tum exchange, but this information is not communicated back to the surface models.
The models are initialized from randomly perturbed January 1, 2001 states and inte-
grated for two weeks with K set to zero in order to allow the models to de-synchronize.
Next K is set to a value of 1/24 hours−1, and the integration is continued for the rest
of the year. Sensitive dependence on initial conditions and model errors cause a rapid
increase of the synchronization error during the first two weeks (Fig. 7a). The error
reduces rapidly when K is set to 1/24 hours−1 after two weeks, levels off within a cou-
ple of weeks and remains fairly stable for the remainder of the year. The perfect model
does not synchronize perfectly with the truth, but the average error is only 0.01°C.
Given daily fluctuations at given locations of tens of degrees, this is a very small syn-
chronization error. The synchronization error is about 10 times larger for imperfect
model 1 and 6 times for imperfect model 2. The synchronization error is almost in-
dependent of nudging timescale between 24 and 4 h for the perfect model, but for the
imperfect models, the errors are reduced by more than 60% over this range (Fig. 7b).
Note that nudging only part of the total state vector (the surface pressure field and the
humidity field are not nudged) is sufficient to achieve this high degree of synchroniza-
tion.
Based on these synchronization experiments, we choose a nudging timescale of 24 h.
The nudging keeps the imperfect models close to the truth, but at the same time, there
is room for a ten-fold reduction in synchronization error by updating the inter-model
connection coefficients.

5.3 Learning

In the first learning experiment, the SPEEDO supermodel was initialized at January 1,
2001 in the configuration depicted in Fig. 4 using initial connection coefficient values
in Eq. 21 equal to 1/8 h−1. The nudging timescale corresponding to K in Eq. 19 was
set to 24 hours as motivated in the previous section. The rate of learning δ in the update
rules of Eq. 21 was set to 24000. With these parameter choices, the SPEEDO super-
model was trained for 10 years by integrating Eq. 19 with update rules uµν given by
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Figure 6: Schematic representation of the SPEEDO configuration for the synchronization experiments.
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tion error during the final 10 months of the integrations as a function of nudging timescale.



Eq. 21. The six connection coefficients (CT
µν , CU

µν , CV
µν in Fig. 8ab) converge within

the first months to values that remain fairly stable during the remaining 10 years of the
training. A weak annual cycle is visible, suggesting that the optimal nudging coeffi-
cients have a weak seasonal dependence. It is obvious from the graph that C12 and C21

lie symmetrical around the initial value for each of the three variables. This is due to
the fact that according to the update rules Eq. 21 Ċµν = −Ċνµ . Another consequence
is that the asymptotic values depend on the initial value.
In the second learning experiment, the SPEEDO supermodel was initialized with con-
nection strengths equal to 1/24 h−1. Indeed the asymptotic values are different in this
case (Fig. 8cd). In addition the symmetry is broken due to additional constraints that
the connection values are not allowed to go below zero or above 1/4 hours−1. An up-
per bound is imposed in order to prevent numerical instabilities for too strong nudging
and allow some de-synchronization at times when the truth is hard to follow using ei-
ther imperfect models. The numerical instabilities could be prevented by reducing the
time-step but we chose to keep the time-step fixed at 30 minutes and impose an upper
bound on the nudging strength.
The learning experiments result in different supermodel solutions as defined by the
asymptotic connection values. These are summarized in Table 2. The synchronization
error when connected to the truth is similar for both supermodels (Fig. 9), despite the
difference in the connection values. The connections of supermodel 1 are about twice
as strong as the connections of supermodel 2. The relative strengths between the con-
nections are therefore about the same. This suggests that only the relative strengths
matter and that the supermodel solution is invariant under multiplication of all connec-
tions by a constant factor provided that the imperfect models synchronize. The initial
value of the coefficients during learning selects a particular factor.
It appears that short training periods suffice to train the inter-model connection coeffi-
cients, despite the long time-scales present in the climate. During the learning phase,
the imperfect atmosphere models receive the true ocean, land, and sea-ice states and
are able to learn how the true atmosphere interacts with these states. The imperfections
concern fast atmospheric processes (turbulence and convection) and can thus be trained
on these time scales. In order to verify that the training of the inter-model connection
coefficients does not depend on the ocean/sea-ice state, we repeated the learning ex-
periments starting in year 2151 of the reference simulation. The state of the ocean
and sea-ice is different and the thermo-haline circulation in the North-Atlantic basin is
about to collapse, causing a rapid cooling of the sea surface temperatures in the North-
Atlantic and a growth of the Arctic sea-ice cover. Nevertheless, the training converges
on similar connection values (not shown).



The trained supermodels have smaller synchronization errors as compared to both im-
perfect models (Fig. 9) but not as small as the perfect model. For comparison, we
evaluated the synchronization errors of the untrained supermodel with equal weights of
1/24 h−1. The training has reduced the synchronization error in the east-west compo-
nent of the wind at 850 hPa by only a small margin (Fig. 9).
It is hoped that the reduction in synchronization error when the supermodel is nudged
to truth will be reflected in improved simulations of climate when the supermodel is run
freely to simulate climate. If indeed only the relative strengths of the connections mat-
ter, then the two supermodel solutions should give similar results. In the next sections
we will investigate climate simulations of both supermodel solutions in comparison to
the perfect and imperfect models and to the untrained supermodel.
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Figure 8: Time-series of the connection coefficients during the training when initialized at 1/8 h−1 (a
and b) and 1/24 h−1 (c and d). The first 14 days of the training are plotted in the left panels, right
panels display the whole 10 year training period. The black dot denotes the initial values.

CT
12 CT

21 CU
12 CU

21 CV
12 CV

21

supermodel 1 0.22 0.03 0.17 0.08 0.17 0.08
supermodel 2 0.12 0.01 0.08 0.04 0.08 0.04

Table 2: Connection coefficient values of the two supermodel solutions.
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Figure 9: The globally averaged synchronization error in the east-west component of the wind at 850
hPa for different models when connected to the truth for different nudging strengths from similar syn-
chronization experiments as in Fig. 7b.

5.4 Climate

The two trained supermodels and the untrained supermodel are initialized at January
1, 2001 and integrated for 40 years. For both trained supermodels, the evolution of the
global mean temperature shows no sign of a drift with respect to the truth or the per-
fect model, unlike the imperfect models and the untrained supermodel (Fig. 10). The
synchronized evolution of the imperfect models in the untrained supermodel produces
a global mean temperature close to the average of the global mean temperature of the
two imperfect model evolutions.
In the trained supermodels, imperfect model 1 is more strongly nudged to imperfect
model 2 for all connections than vice versa (Table 2). In this case Eq. 3 implies that the
supermodel solution is systematically pushed away from the averaged solution toward
the evolution of imperfect model 2. This makes sense as the warming of imperfect
model 1 with respect to the truth is stronger than the cooling of imperfect model 2 (Fig.
10).
Another measure of the quality of the climate simulations are errors in the climato-
logical mean fields. As an example, Fig. 11 shows the error in the time average over
the final 30 years of the simulations of the east-west component of the wind at the
200 hPa pressure level (at about 10 km height). The mean winds of imperfect model
1 have errors that reach 5 m/s in the Southern Hemisphere. The error pattern has a
rich spatial structure but is to a considerable extent opposite in sign as compared to
imperfect model 2. An improved estimate of the true mean winds is obtained by tak-
ing the average of both models, commonly referred to as the multi-model average in
climate science. The error pattern of the multi-model average is very similar to the
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Figure 10: The global mean surface temperature evolution for the truth, the perfect model, the two im-
perfect models, the two trained supermodels, and the untrained supermodel. All models are initialised
at January 1, 2001, of the truth.

error pattern of the untrained supermodel with equal coefficients. Both trained su-
permodels have smaller errors than the untrained supermodel. The training based on
synchronization errors, essentially a training based on short-term prediction errors, has
also proved useful for supermodel simulation of long-term climate. For reference, the
bottom panel of Fig. 11 shows the errors of the perfect model. Due to sampling uncer-
tainties, the mean state of the truth is not exactly reproduced in a 30 year simulation
with the perfect model. The errors in the mean state of the trained supermodels are
larger as compared to those of the perfect model, especially in the tropical region. An
optimally weighted multi-model average was determined and is also shown in Fig. 11.
Adding 0.24 times the mean state of imperfect model 1 and 0.76 times the mean state
of imperfect model 2 leads to a similar estimate of the true mean state as provided by
either trained supermodels.
Globally averaged errors for a number of different climatological fields paint the same
picture (Fig. 12). The untrained supermodel has similar errors to the multi-model av-
erage. An optimally weighted multi-model average has smaller errors, comparable to
those of the trained supermodels, in the nudged variables and also in variables that
are not nudged, like precipitation and cloud-cover. There is still room for some im-
provement to match the small errors (due to sampling) obtained with the perfect model
simulation.
Ideally one should compare attractors in order to make judgements about the quality
of the climate simulations instead of just comparing the mean states. For such high-
dimensional systems as SPEEDO, the evaluation of the probability density in state
space is computationally too expensive since too much data is required in order to
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Figure 11: Difference in the east-west component of the wind at the 200 hPa pressure level averaged
over model years 2011-2040 for the various models with respect to the truth. Contours denote the areas
where the difference is larger than the sampling error at 95% confidence (solid for positive difference
and dotted for negative). Positive values imply stronger mean winds blowing eastward. Units: m/s.



yield representative results (Dool, 2011), but other statistical properties of the attrac-
tors might be compared. As an example, we evaluated the 95% percentile of three-
hourly sums of convective rainfall at each location. The results are plotted in Fig. 13.
The convective rainfall extremes are largest in tropical areas and in the regions of the
extra-tropical storm tracks (panel a). In general, imperfect model 1 overestimates and
imperfect model 2 underestimates the convective precipitation extremes (panel c and
d). Supermodel 1 simulates the precipitation extremes more accurately. The root mean
squared error is 1.2 mm/day as compared to 2.7 and 2 mm/day for imperfect model 1
and 2, respectively.
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normalized by 1.96 times the standard deviation of the 30 yearly values, divided by the square root
of 30. The normalized errors in this graph correspond to the root of the globally averaged squared
normalized differences. With this normalization, the perfect model has errors around value one.

5.5 Climate response

Climate models are commonly used to make projections of the future climate by as-
suming scenarios for future emissions of greenhouse gasses. Here, we explore whether
the trained supermodel is capable of simulating the climate change due to a doubling
of the CO2 concentration. In model year 2041, the CO2 concentration is doubled and
the various models are integrated for 30 years. Global mean temperature time-series
are plotted in Fig. 14. The global mean temperature in the supermodel remains close to
the truth after the doubling of CO2. Imperfect model 1 and 2 simulate a similar warm-
ing, but the reference state at the onset of doubling is warmer in imperfect model 1
and colder in imperfect model 2. In response to the CO2 change, also the atmospheric
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Figure 13: 95% percentile of convective precipitation three-hourly sums (mm/day) in the perfect model
(a), and differences with respect to the perfect model for supermodel 1 (b) and both imperfect models
(c and d). Calculations are performed for the years 2011-2040.



circulation changes (Fig. 15). The change of the east-west component of the wind at
850 hPa is best simulated by the supermodel, especially in the tropical regions around
Indonesia.
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6 Discussion: Supermodeling versus A Posteriori Combina-
tions of Model Results

When compared to the optimally weighted multi-model mean, the supermodel yields
similar accuracy. However, in addition the supermodel produces actual trajectories that
are closer to the true trajectories. Temperature time-series of imperfect model 1 are sys-
tematically too warm in most geographical locations and too cold in imperfect model
2. These time-series cannot be averaged to more accurately represent true time se-
ries since the time-series are not synchronized and their mean is not a solution of the
dynamical equations. In the supermodel the models converge on a synchronized time-
series with a more accurate mean temperature. For climate impact studies this is a great
advantage since it eliminates the need for bias corrections (correction of time-series in
order to remove the error in the mean).
One is interested not only in the mean behavior of the models and supermodel but
also in internal variability. The interesting properties of the various attractors are usu-
ally captured in probability density functions (pdfs). There is significant ambiguity
in methods to combine pdfs of different climate models as an improved estimate of
the true pdf. Suppose, as a thought experiment, that one has two different models of
the same system, each of which exhibits Gaussian statistics in some variable, but with
different means and different variances. That is, suppose that the pdf of some state
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Figure 15: Change in the east-west component of the wind at 850 hPa due to a CO2 doubling in
the perfect model (a) and the error in the simulated wind change for supermodel 1 (b) and for the
two imperfect models (c and d). The change is calculated by subtracting the average wind before
CO2 doubling during model years 2016-2040 from the average wind during 2056-2070. The contours
indicate regions where the difference is statistically significant at the 95% confidence level. The root of
the global mean squared error is plotted in the lower left corner.



variable x is given by pdfs P1,P2 in the two models:

P1(x) = N1 exp
(x−µ1)

2

2σ2
1

(22a)

P2(x) = N2 exp
(x−µ2)

2

2σ2
2

(22b)

where N1,2 are normalization factors. If the means are not greatly separated |µ1−µ2|<
σ1,σ2 and the shapes are similar, σ1 ≈ σ2, we might guess that the difference is due
to some systematic error and that the true distribution is a Gaussian with the average
mean:

Pm(x) = Nm exp
(x−µm)

2

2σ2 (23)

with µm = (µ1 + µ2)/2, and σ ≈ σ1 ≈ σ2. If we were instead to blindly average the
pdfs, we would in general have a non-gaussian distribution with σ > σ1,σ2, incorrectly
inflating the variance. So it might seem that a recipe for intelligently combining pdfs is
accessible.
But what if the true distribution were bimodal, with the means of the two modes more
widely separated than in the above case of small systematic error, and what if each
model, for reasons of its own dynamical imperfections, is biased in favor of one mode?
Then, a simple average of pdfs, which would capture the bimodality, would be prefer-
able to the “intelligent" combination described. Without prior information about the
form of the true distribution, no general prescription for combining the pdf’s is possi-
ble. It might not even be possible at all to combine the pdf’s of different models into a
pdf that reflects the true model well. In van den Berge et al. (2011) for example, two
periodic attractors and one stable fixed point attractor were used to construct a chaotic
supermodel. The supermodel has similar statistics compared to the true chaotic system,
while a combination of the pdf’s of the non-chaotic systems cannot give a good approx-
imation of the true chaotic pdf. The extent to which such extreme behavior occurs in
real climate models is an open question, but the construction of an actual dynamical
system is arguably the soundest way to represent the true physical variations within the
modelled climate.
The choice of models in a supermodel configuration is also more flexible than in multi-
model averaging. In cases where the constituent models are all on one side of the truth,
the introduction of an additional imperfect model into the supermodel that is on the op-
posite side can help to improve the supermodel (Schevenhoven and Selten, 2017). But
unlike the situation with multi-model averaging, the new imperfect model on the op-
posite side of the truth, included in the supermodel with significant weight, can be a
model with a highly unrealistic long-term climate, such as one with a fixed-point at-
tractor, when run in isolation.



Finally, it should be mentioned that there is one advantage of multi-model runs that
naively appears to be lost in supermodeling: the ability to extract spread information
from an ensemble of models, as an indicator of model error. But one can easily con-
sider an ensemble of supermodels (Duane et al., 2017), defined by variations in the
connection coefficients determined from fluctuations during the learning process or
from different learning strategies. The ensemble spread enables to gauge uncertainties
due to model errors and due to imperfect knowledge of the initial state. The supermod-
els have been trained to follow the truth more closely in the neighbourhood of observed
trajectories. Therefore, they can be expected to better reproduce the local lyapunov ex-
ponents and better represent the divergence of trajectories in medium-range forecasts
due to uncertainty in the initial condition.

7 Summary and Concluding Remarks

This is the first time that synchronization-based supermodeling is applied to complex
global climate models and its potential to improve climate simulations is demonstrated.
The SPEEDO climate model with standard parameter values is regarded as truth; two
imperfect models are constructed by perturbing three parameters. Due to the differ-
ent parameter setting, one model warms with respect to the truth, the other cools. A
supermodel is constructed by connecting the temperature and velocity fields of both
models through nudging terms, and the supermodel synchronizes on a common solu-
tion. Imposing spatial invariance while allowing different connection strengths for the
different meteorological fields yields six adjustable connection coefficients. Using the
fact that synchronization of states between two connected systems can be extended to
synchronization of parameters, when these vary between the two systems, the inter-
model connection coefficients within the supermodel are dynamically adjusted, along
with the states, so that the supermodel synchronizes with truth, from which it contin-
uously receives data in the learning phase. After a quick adjustment during the first
couple of weeks of the training, the coefficients exhibit only small fluctuations around
a stable long-term mean value during the ten year training period. These stable, long-
term mean values of the coefficients define the supermodel. During a 40 year climate
simulation, the supermodel preserves the correct global mean temperature. Moreover,
the globally averaged errors in all 30 year mean meteorological fields examined are
smaller than the errors in the imperfect models. In addition, the supermodel is able to
reproduce the correct warming in response to a doubling of the CO2 concentration.
The synchronization-based learning algorithm reaches locally optimal values of the
connection coefficients. There appears to be a degeneracy, as explained in Section 5.3



in that, depending on initial coefficient values, the algorithm picks from a family of
equally good coefficient values - we conjecture that what matters is not the absolute
value of the connection coefficients, but their relative strengths. On the other hand, a
more refined connection scheme might yield even better results. During learning, the
connection values exhibit a weak dependence on the seasonal cycle, for instance, sug-
gesting that a seasonal dependence of the connection strengths might further improve
the supermodel climate simulations.
There is no guarantee that the learning algorithm converges on the globally optimal
connection coefficients. Other learning approaches based on matching finite segments
of the trajectories instead of just the instantaneous states, as in van den Berge et al.
(2011), or minimization of errors in climate statistics like the mean or the variance over
multi-year long trajectories by iterative methods as in Severijns and Hazeleger (2005);
Wiegerinck and Selten (2017), might yield even better supermodel solutions.
In state-of-the-art weather forecasts, models are initialised from observed states that are
not on the model attractor. During the forecasts, the trajectories systematically transi-
tion to the model attractor, and in a couple of weeks most of the long-term climate
errors have developed (Jung et al., 2012). We therefore expect that the training based
on short-term prediction errors in this study could also be successfully applied to state-
of-the-art weather and climate models. We restricted the evaluation of the supermodel
to climate timescales, but we expect that short-term prediction errors are improved with
respect to the imperfect models since the learning is based on one time step predictions
of the truth. Weather prediction with supermodels remains to be evaluated.
In the present study, only imperfections in the atmospheric component have been con-
sidered. During the learning phase, the imperfect atmosphere models receive the true
ocean, land, and sea-ice states and can learn how the true atmosphere interacts with
these states. The imperfections concern fast atmospheric processes (turbulence and
convection) and can thus be trained on these time scales. It remains to be seen how
imperfections in the land- and ocean models affect the learning. In principle, the super-
model approach can be extended to include multiple imperfect ocean- and land models
with inter-model connections that can be included in the learning.
The magnitude of the synchronization errors between supermodel and truth is only
slightly reduced when the learning process is initialized with uniform connections.
Nevertheless, the climate properties of the supermodel with the learned coefficients
are much better than those of the supermodel with the initial connection coefficients.
It seems that even a small reduction of synchronization error in the training phase is
heuristically useful for correcting the dynamics of the model, but more work is needed
to assess the universality of this behavior.



Nonnegative connection coefficients are imposed during the learning in order to induce
synchronization of the imperfect models in the supermodel. One could allow nega-
tive coefficients during the learning. In that case one model tries to flee from the other
model, but at the same time the other model chases that model at a faster pace and the
imperfect model trajectories can still remain approximately in synch. Other regions
of phase space can be explored by the supermodel by allowing negative connections,
which might lead to an improved supermodel solution.
Although the supermodel is not trained to be able to simulate the correct response of
the climate to a perturbation like the doubling of the atmospheric CO2 concentration,
we find this to be the case in this study. The full extent of the robustness of the super-
model solution against variations in ancillary parameters remains to be determined.
In the perfect model approach of the present study, the truth is inside the model class
of imperfect models. It remains to be seen how well the supermodel scores when the
truth is outside of the imperfect model class, a situation that arises when climate mod-
els are used to simulate a much more complex reality (Wiegerinck and Selten, 2017).
In applying the supermodel approach to an ensemble of different, state-of-the-art cli-
mate models, it must be noted that the different models employ different numerical
representations of the various meteorological fields, and especially that they are formu-
lated on different numerical grids. SPEEDO models have been shown to synchronize
even when only some meteorological fields are connected, or only some spatial scales.
One solution to the problem of different numerical grids would be to transform the grid
representation to a spectral representation and do the exchange of state information and
nudging in spectral space only for wave-numbers that are well resolved in all partici-
pating models in the supermodel, and then transform the nudging tendencies back to
the respective grids. Synchronization of the constituent models might be expected, de-
spite the different grid representations.
In the present study we have assumed perfect knowledge of the truth. In reality obser-
vations of the truth are incomplete and noisy. The influence of noisy and incomplete
observations on the learning of the supermodel remains to be investigated, but we are
encouraged by the success of data assimilation for weather prediction under the same
circumstances.
We have applied the supermodel approach in the context of simulating the Earths cli-
mate, but its application domain is much wider. In any modeling context where dif-
ferent models exist of a complex, real system, like ecological systems or economical
systems, where data assimilation from the real systems yields truth-model synchroniza-
tion, and where enough good quality observational data are present, the supermodel ap-
proach potentially leads to more accurate predictions.
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Abstract

Recent studies demonstrate that weather and climate predictions potentially improve by
dynamically combining different models into a so-called “supermodel”. Here, we focus
on the weighted supermodel - the supermodel’s time derivative is a weighted superposition
of the time derivatives of the imperfect models, referred to as weighted supermodeling. A
crucial step is to train the weights of the supermodel on the basis of historical observa-
tions. Here, we apply two different training methods to a supermodel of up to four differ-
ent versions of the global atmosphere-ocean-land model SPEEDO. The standard version
is regarded as truth. The first training method is based on an idea called cross pollination
in time (CPT), where models exchange states during the training. The second method is
a synchronization-based learning rule, originally developed for parameter estimation. We
demonstrate that both training methods yield climate simulations and weather predictions
of superior quality as compared to the individual model versions. Supermodel predictions
also outperform predictions based on the commonly used multi-model ensemble (MME)
mean. Furthermore, we find evidence that negative weights can improve predictions in
cases where model errors do not cancel (for instance, all models are warm with respect
to the truth). In principle, the proposed training schemes are applicable to state-of-the-art
models and historical observations. A prime advantage of the proposed training schemes
is that in the present context relatively short training periods suffice to find good solutions.
Additional work needs to be done to assess the limitations due to incomplete and noisy
data, to combine models that are structurally different (different resolution and state repre-
sentation, for instance) and to evaluate cases for which the truth falls outside of the model
class.

1 Introduction

1.1 Premises and the multi-model-ensemble

Although weather and climate models continue to improve, they will inevitably remain
imperfect (Bauer et al., 2015). Nature is so complex that it is impossible to model all
relevant physical processes solely based on the fundamental laws of physics (think, for



instance, about the micro-physical properties of clouds that determine the cloud radia-
tional properties). Progress in predictive power crucially depends on further improving
our knowledge and the numerical representation of the physical processes the model
is intended to describe. Nevertheless, with the best possible models in hand, more ac-
curate predictions can be obtained by making good use of all of them, thus exploiting
multi-model information. In order to reduce the impact of model errors on predictions,
it is common practice to combine the predictions of a collection of different models in
a statistical fashion. This is referred to as the multi-model ensemble (MME) approach:
the MME mean prediction is often more skillful as model errors tend to average out
(Weigel et al., 2008), whereas the spread between the model predictions is naturally
interpreted as a measure of the uncertainty about the mean (IPCC, 2013). Although
MME tends to improve predictions of climate statistics (i.e., mean and variance), a ma-
jor drawback is that it is not designed to produce an improved trajectory that can be
seen as a specific climate forecast, given that averaging uncorrelated climate trajecto-
ries from different models leads to variance reduction and smoothing.
The foundation of modern weather and climate prediction rests on the assumption that
when an estimate of the climate state is at disposal at a particular instance in time, its
time evolution can be calculated by a proper application of a numerical discretization
of the fundamental laws of physics, supplemented by empirical relationships describ-
ing unresolved scales and a complete specification of the external forcing and boundary
conditions. Integration in time subsequently yields a predicted climate trajectory into
the future, and formally frames the climate prediction endeavor as a mixed initial and
boundary conditions problem (see, e.g., Collins and Allen, 2002; Hawkins and Sutton,
2009). Initial conditions, but also boundary conditions and external forcing are usually
estimated by combining data with models via data assimilation techniques (see, e.g.,
Carrassi et al., 2018, for a review). Errors in the time derivative (i.e. the model error)
propagate into errors in the predicted trajectory but model error also affects the model
statistics, so that the model and observed mean and variance differ, giving rise to model
biases.
An illustrative example of this propagation of model errors is presented in Rodwell and
Jung (2008) in relation to a change in the model’s prescribed aerosol concentrations in
the region of the Sahara. Already, within the first few hours of prediction, the different
aerosol concentration leads to changing the stability and convection in the region. This
in turn changes the upper air divergence and promotes the generation of large-scale
Rossby waves that travel horizontally eastward and northward into the Northern Hemi-
sphere during the subsequent week and finally impact the surface air temperatures in
Siberia. This example demonstrates that a specific model error can impact model pre-



diction skills on far regions and diverse variables. Furthermore, it suggests that, in
order to mitigate or in the best case to prevent model error from growing and affecting
the whole model phase space, it is better to intervene at each model computational time
step rather than a posteriori by combining outputs after a prediction is completed as in
the MME approach.

1.2 Supermodeling

Reducing model errors early in the prediction is precisely what supermodeling attempts
to achieve (van den Berge et al., 2011). In a supermodel, different models exchange
information during the simulation at every time step and form a consensus on a single
best prediction. An advantage over the standard MME approach is that the supermodel
produces a trajectory with improved long-term statistics. Improved trajectories are ex-
tremely valuable for calculations of the impact of climate on society. For instance, crop
yields, spread of diseases and river discharges all depend on the specific sequences of
weather events, not just on statistics (Challinor and Wheeler, 2008; Sterl et al., 2009;
van der Wiel et al., 2019).
The supermodeling approach was originally developed using low-order dynamical sys-
tems (Mirchev et al., 2012; van den Berge et al., 2011) and subsequently applied to
a global atmosphere model (Schevenhoven and Selten, 2017; Wiegerinck and Selten,
2017) and to a coupled atmosphere-ocean-land model (Selten et al., 2017). A partial
implementation of the supermodeling concept using real world observations was pre-
sented in Shen et al. (2016). In the original supermodeling concept, model equations
are connected by nudging terms such that each model in the ensemble is nudged to
the state of every other model at every time step. For appropriate connections, the en-
semble of models eventually synchronizes on a common solution that depends on the
strength of the connections. For instance, if all models are nudged to a particular model
that is not nudged to any other model, the ensemble will follow that particular solution.
By training connections on observed data, an optimal solution is found that is produced
by the connected ensemble of models. This type of supermodel is referred to as con-
nected supermodeling. Wiegerinck and Selten (2017) showed that in the limit of strong
connections the connected supermodel solution converges to the solution of a weighted
superposition of the individual model equations, referred to as a weighted supermodel.
A crucial step in supermodeling is the training of the connection coefficients (for con-
nected supermodels) or weights (for weighted supermodels) based on data, the obser-
vations. The first training schemes of supermodels were based on the minimization
of a cost function dependent on long simulations with the supermodel (Mirchev et al.,
2012; Shen et al., 2016; van den Berge et al., 2011). Given that iterations, and thus



many evaluations of the cost function, were necessary in the minimization procedure,
this approach turned out to be computationally very expensive. Schevenhoven and Sel-
ten (2017) developed a computationally very efficient training scheme based on cross
pollination in time (CPT), a concept originally introduced by Smith (2001) in the con-
text of ensemble weather forecasting. In CPT, the models in a multi-model ensemble
exchange states during the simulation, generating mixed trajectories that exponentially
increase in number in the course of time. As a consequence, a larger area of phase
space is explored, thus increasing the chance that the observed trajectory is shadowed
within the span of all of the mixed model trajectories. Given the above, CPT training is
then based on the selection of the trajectory that remains closest to an observed trajec-
tory. Another alternative efficient approach or training was introduced in Selten et al.
(2017) to learn the connections coefficients in a supermodel. Their method, hereafter
referred to as “synch rule” is based on synchronization and it is inspired by an idea
originally proposed in Duane et al. (2007) for general parameter learning.
Before supermodeling becomes suitable for the class of large-dimensional state-of-the-
art weather and climate models, we need to have training schemes that are computa-
tionally suitable for that context. In this paper, we develop, apply and compare CPT
and the synch rule to train a weighted supermodel based on the intermediate complex-
ity global coupled atmosphere-ocean-land model SPEEDO (Severijns and Hazeleger,
2010). Short-term supermodel prediction skill as well as long-term climate statistics
show that both training methods result in supermodels that outperform the individual
models. Furthermore, novel experiments with negative weights, as opposed to the stan-
dard case of weights larger than or equal to zero, suggest that even when the individual
model biases do not compensate for each other an improved supermodel solution can
be achieved.
In Sect. 2, the two types of supermodels, connected and weighted, are introduced in
detail. Section 3 describes the global coupled atmosphere-ocean-land model SPEEDO
and the construction of a SPEEDO supermodel. The two training strategies are de-
scribed in Sect. 4 with specific details when applied to the SPEEDO model in Sect. 5.
The results of the training are shown in Sect. 6. The final section discusses the results
and lists further steps to be taken towards training a supermodel based on state-of-the-
art weather and climate models using real-world observations.



2 Weighted and connected supermodeling

To make the supermodeling approach more explicit, we formally write the model equa-
tions of a weather or climate model i as

ẋi = fi(xi,pi), (1)

where xi is a high-dimensional state vector and fi a non-linear evolution function de-
pending on the state xi and on a number of adjustable parameters pi. In practice,
weather and climate models generally differ in the representation of the climate state,
i.e., the phase where xi is defined, the evolution function and parameter values. In this
stage of developing the supermodeling approach and training schemes, we simplify the
context and focus on a situation where the models share the same evolution function, f,
and the same phase space, so that xi ∈ Rn for all i. However, the models differ in the
parameters, pi 6= p j if i 6= j. The approach can be generalized using data assimilation
approaches (Du and Smith, 2017). We will furthermore denote the “truth” as given by
the model f with a specific set of parameters. An ensemble of imperfect models can be
dynamically combined in a weighted or connected supermodel.

2.1 Weighted supermodeling

A weighted supermodel based on two imperfect models is given by

ẋ1 = f(xs,p1) (2a)

ẋ2 = f(xs,p2) (2b)

ẋs = W1ẋ1 +W2ẋ2, (2c)

where xs ∈ Rn represents the supermodel state vector and diagonal matrices W1 =

diag(w1) with w1 ∈ Rn denote the weights. In the weighted supermodel, the states are
imposed to be perfectly synchronized. Training a weighted supermodel implies training
the weights wi.

2.2 Connected supermodeling

For completeness and for comparison of the weighted supermodels with the connected
supermodel from Selten et al. (2017), we introduce the equations for the connected
supermodel. A connected supermodel based on two imperfect models is given by

ẋ1 = f(x1,p1)−C12(x1−x2) (3a)

ẋ2 = f(x2,p2)−C21(x2−x1) (3b)

ẋs =
1
2
(ẋ1 + ẋ2), (3c)



Note the nudging terms (the rightmost terms in Eq. 3a and Eq. 3b) that push the state
of each model to the state of the other at every time step. The size of the nudging
terms C12 and C21 reflects the strength of the coupling between the two models. They
have the form of diagonal matrices ∈ Rn×n and can thus be written as C12 = diag(c12)

with c12 ∈ Rn. The diagonal form reflects the fact that each model state vector com-
ponent is nudged towards the same component of the other model. The approach can
be extended to be multivariate allowing for cross nudging, but this will require careful
scaling of the variables. For appropriate connections, the models fall into a synchro-
nized motion (Pecora and Carroll, 1990). Because in general the synchronization will
not be perfect due to the different parameter values, the supermodel solution xs is de-
fined as the average of the different model states. Note that the states will be close for
strong connections so that smoothing and loss of variance due to the averaging will be
limited. The supermodel solution depends on the relative strengths of connection coef-
ficients. Training a connected supermodel implies training the value of the connection
coefficients.
A connected supermodel allows for more flexibility in the event that the ensemble is not
perfectly synchronized (Wiegerinck et al., 2013). In regions of phase space of strong
divergence, for instance, one model can pull the ensemble along if it takes a very dif-
ferent trajectory. However, in Wiegerinck et al. (2013), it is noted that the size of the
connection coefficients after training is typically quite large. The larger the coefficients,
the stronger the models converge on a synchronized trajectory, which can be described
by a weighted superposition of the models (Wiegerinck et al., 2013). Since for some
training applications, perfect synchronization is required as we shall see in Sect. 4, only
weighted supermodels are considered in this paper. We do not limit ourselves to com-
bining only two imperfect models into a supermodel; also, combining four imperfect
models will be discussed.

3 SPEEDO climate model

The SPEEDO global climate model consists of an atmospheric component (SPEEDY)
that exchanges information with a land (LBM) and an ocean-sea-ice component (CLIO)
using coupling routines (Fig. 1). The coupling routines perform re-gridding operations
between the computational grids of the different modules. A detailed description of
SPEEDO can be found in Selten et al. (2017); Severijns and Hazeleger (2010).
The atmospheric model SPEEDY describes the evolution of the two horizontal wind
components U (east-west) and V (north-south), temperature T and specific humidity
q at eight vertical levels and the surface pressure ps. Relatively simple calculations



of heating and cooling rates due to radiation, convective transports, cloud amounts,
precipitation and turbulent heat, water and momentum exchange at the surface are per-
formed at a computational grid of approximately 3.75° horizontal spacing (48×96 grid
cells).
SPEEDY exchanges water and heat with the land model LBM that uses three soil layers
and up to two snow layers to close the hydrological cycle over land and a heat budget
equation that controls the land temperatures. The horizontal discretization is the same
as for the atmosphere model. The land surface reflection coefficient for solar radiation
is prescribed using a monthly climatology. Each land bucket has a maximum soil water
capacity. The runoff is collected in river-basins and drained into the ocean at specific
locations of the major river outflows.
SPEEDY exchanges heat, water and momentum with the ocean model CLIO (Goosse
and Fichefet, 1999). CLIO describes the evolution of ocean currents, temperature and
salinity on a computational grid of 3° horizontal resolution and 20 unevenly spaced
layers in the vertical. A three-layer thermodynamic-dynamic sea-ice model describes
the evolution of sea-ice in the event that ocean temperatures drop below freezing lev-
els. Heat storage in the snow-ice system is accounted for and snow amounts and ice
thickness evolve in response to surface and bottom heat fluxes. Sea ice is considered to
behave as a viscous-plastic continuum as it moves under the action of winds and ocean
currents.
Formally, the SPEEDO equations can be written as

ȧ = fa(a;pa)+ga(eh,ew,em) (4a)

ȯ = fo(o;po)+go(Poeh,Poew,Poem,Por) (4b)

l̇ = f l(l;pl)+gl(Pleh,Plew,r), (4c)

where a is the atmospheric state vector, o the ocean/sea-ice state vector, l the land
state vector, eh the heat exchange vector between atmosphere and surface, ew the wa-
ter exchange vector, em the momentum exchange vector and r the river outflow vector
describing the flow of water from land to ocean. The exchange vectors depend on the
state of the atmosphere and the surface but this dependency is not made explicit in Eq. 4
to simplify the notation. The projection operators P represent the regridding operations
between the computational grids. These operations are conservative so that the glob-
ally integrated heat and water loss of the atmosphere at any time at the surface equals
the integrated heat and water gain of the land and ocean. The non-linear functions f
represent the cumulative contribution of the modeled physical processes to the change
in the climate state vector and depend on the values of the parameter vectors p. Some
of these parameters go through a daily and/or seasonal cycle and/or have a spatial de-



pendence like the reflectivity of the surface. The non-linear functions g describe how
the exchange of heat, water and momentum between the subsystems affects the change
of the climate state vector.

Atmosphere

SPEEDY

Ocean/
sea-ice
CLIO

Land

LBM

Figure 1: Schematic representation of the SPEEDO climate model. The atmosphere needs surface
characteristics (temperature, roughness, reflectivity, soil moisture) in order to calculate the exchange of
heat, water and momentum. Coupler software communicates this information between the components
and interpolates between the computational grids.

3.1 SPEEDO supermodel

The training experiments of this study are evaluated in a noise-free observation frame-
work, with perfect observations generated by sampling a reference model trajectory.
This “perfect model” provides a set of time-ordered observations, called the “truth”.
We consider the SPEEDO climate model with standard parameter values as truth and
create imperfect models by perturbing parameter values in the atmospheric compo-
nent. A supermodel is formed by combining the imperfect atmosphere models through
a weighted superposition of the time derivatives of the imperfect models (Eq. 2) which
are each coupled to the same ocean and land model (Fig. 2). All atmosphere models
receive the same state information from the ocean and land model but each calculates
their own water, heat and momentum exchange. On the other hand, the ocean and land
model receive the multi-model weighted average of these atmospheric components;
this follows the interactive ensemble approach (Kirtman and Shukla, 2002). Following



Eq. 2 , the SPEEDO weighted supermodel equations are given by

ȧi = fa(as;pa
i )+ga(eh

i ,e
w
i ,e

m
i ) (5a)

ȯ = fo(o;po)+go(Poeh,Poew,Poem,Por) (5b)

l̇ = f l(l;pl)+gl(Pleh,Plew,r) (5c)

ȧs = ∑
i

Wiȧi, (5d)

where ȧs denotes the time derivative of the supermodel, Wi values denote diagonal
matrices with weights on the diagonal, i refers to imperfect model i, and the overbar
denotes a weighted average over the models.

Figure 2: Schematic representation of the SPEEDO climate supermodel based on two imperfect atmo-
sphere models. The two atmosphere models exchange water, heat and momentum with the perfect ocean
and land model. The ocean and land model send their state information to both atmosphere models.
The atmosphere models exchange state information in order to combine their time derivatives.

4 Learning methods

Two different learning strategies are evaluated in this study in order to train the
SPEEDO weighted supermodel: learning based on CPT as developed and applied to
low-order dynamical systems in Schevenhoven and Selten (2017), and learning based
on synchronization as applied to a connected SPEEDO supermodel in Selten et al.
(2017).

4.1 Cross pollination in time

The Cross Pollination in Time (CPT) learning approach is based on an idea proposed
by Smith (2001). CPT “crosses” trajectories of different models in order to create a
larger solution space. The aim is to generate trajectories that follow the truth more



closely. The training phase of CPT starts from an observed initial condition in state
space. For simplicity, assume the model is one-dimensional. From the same initial
state, the imperfect models compute one time step each ending in a different state.
Next, all models compute another time step from each of these new states. Continuing
this process leads to a rapid increase in the number of trajectories with time (Fig. 3a)
that will ultimately cover a larger area of the state space. Among the full set of mixed
trajectories, the one which is closest to the truth (i.e., to the data) is continued; the
others are discarded, resulting in a pruned ensemble, as is depicted in Fig. 3b.

Figure 3: Adapted from Schevenhoven and Selten (2017). A one-dimensional schematic of CPT for
three models, a full ensemble (a) and a pruned ensemble (b). Note that the “truth” has been drawn
here as a continuous line for illustrative purpose. In practice, the truth is only known at discrete times
(the observation times) and the distance with respect to model trajectories is computed at those times
only.

In the case of a multi-dimensional model, such as SPEEDO, it is possible that at each
time step different models are closest to the truth for different state variables and at dif-
ferent grid locations. In this case, we continue per state variable with the model that is
closest. This means that the initial state for the next time step can consist of a combina-
tion of models. As the values for the different state variables might not be in agreement
with each other, this creates imbalances that can lead to numerical instabilities. A (par-
tial) solution is to decrease the time step, as we shall see in Sect. 5.
The training period is terminated when the CPT trajectory starts to deviate from the
truth beyond a given pre-specified threshold. After training, an optimal trajectory is ob-
tained that is produced by a combination of different imperfect models (Fig. 4). Next,
we count how often during training each model has produced the best prediction of
a particular component of the state vector. This frequency of occurrences is used to



compute weights W for the corresponding time derivative of the state vector. This su-
perposition of weighted imperfect models forms a weighted supermodel, as expressed
in the example of Eq. 2.

t0 t10 t20t15t5

Time

Model 1
Model 2
Model 3
Truth

Figure 4: CPT trajectory after a training period of 20 time steps. Model 1 is used for 6 out of 20 time
steps; hence, model 1 will get a weight of 0.3.

4.2 Synchronization-based learning

For the training of a supermodel based on synchronization, a learning rule (the synch
rule) is used that updates the weights such that synchronization errors between truth and
supermodel are minimized. In contrast to CPT learning, initial values for the weights
need to be chosen and the weights are updated during training. Under certain condi-
tions, the supermodel will fall into synchronized motion with the truth as the weights
are updated and the supermodel is nudged to the truth (black arrows in Fig. 5).

Figure 5: At each observation (dots) of the truth (continuous black line), the weights of the imperfect
models (red, blue) are updated which gives a new supermodel solution (green dotted line). The black
arrows indicate the nudging to the truth.



The synch rule for the weights is an application of the general synchronization-based
parameter estimation approach suggested in (Duane et al., 2007). Recently, the synch
rule was applied to train the connections in a connected SPEEDO supermodel (Selten
et al., 2017). We follow a similar strategy and implement the synch rule to train the
weights of a weighted SPEEDO supermodel.
In the context of two dynamical systems that differ in parameter values only, the general
synch rule for parameter estimation is given by

ẋ = f(x;p) (6a)

ẏ = f(y;q)−K(y−x) (6b)

q̇ j =−δ j ∑
i

ei
∂ fi(y,q)

∂q j
, (6c)

where p and q are vectors of parameters. K(y− x) is a connecting term between the
two systems that nudges y towards x. K is a diagonal matrix of nudging coefficients,
K = diag(k). Suppose the two systems Eq. 6a and Eq. 6b synchronize if p = q; that is,
as t → ∞, y(t)→ x(t). We further assume that the parameters appear only linearly in
the model equations. Then it can be proven that, using the learning rule Eq. 6c, even if
the two systems are not identical, p 6= q, the systems will still synchronize and the pa-
rameters will become equal, q(t)→ p as t→∞. Here, q j denotes the parameter values,
with j indexing the elements of the parameter vector. Furthermore, ei = yi−xi denotes
the synchronization error at the current time step with i indexing the elements of the
state vector and δ j an adjustable rate of learning scaling factor. At every time step, the
update q̇ j for the weight q j is calculated.
In training a supermodel, we assume that the truth can be described by a weighted dy-
namical combination of imperfect models with the weights as adjustable parameters. In
this case, the function f corresponds to the supermodel time derivative, q corresponds to
the weights of the supermodel, x denotes the truth and y the supermodel solution. The
derivative of f with respect to a certain weight is the tendency of the imperfect model
belonging to that weight (see Eq. 2c). In our SPEEDO case, the truth cannot exactly be
described as a weighted superposition of imperfect models since the perturbed param-
eters do not appear linearly in the equations, yet the approximation is close enough for
the learning rule to work well.
Integration of the synch rule implies that as long as the time-series of the synchroniza-
tion error ei and the effect of the parameter on the imperfect model evolution ∂ fi(y,q)

∂q j
are

correlated, the parameter will be updated. For instance, when a parameter update sys-
tematically enhances warming in the model when the model is colder than the truth and
the same holds when the parameter update systematically cools the model when it is



too warm, then the updated parameter will decrease the synchronization error between
the model and truth over time. When this correlation vanishes, hence there is no sys-
tematic relation anymore between updating the parameter and the state of the model;
then systematic updates cease. When perfect synchronization is reached (hence ei = 0),
then naturally updates also stop.

5 Training in SPEEDO

In training the SPEEDO supermodel, we regard the atmospheric model with standard
parameter values as truth, whereas imperfect atmospheric models are created by per-
turbing those parameter values. Figure 6 depicts the configuration during training. All
atmosphere models are independently coupled to the same ocean and land model. They
each calculate their own water, heat and momentum fluxes and receive the information
from the ocean and the land model from the truth only.
During training, the truth and imperfect models all share their states. In the case of
CPT, this state information is used by each imperfect model to check which model is
closest to the truth and continue the integration from that state. In the case of the synch
rule, this state information is used to calculate the synchronization error between the
supermodel and the truth.

Figure 6: Schematic representation of the SPEEDO system during training (Selten et al., 2017).

Application of the synch rule to a weighted SPEEDO supermodel of two imperfect



models implies integration of the following set of equations:
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l̇ = f l (l;pl)+gl(Pleh
0,P
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0 ,r) (7e)

ȧs = W1ȧ1 +W2ȧ2 (7f)

Ẇi, j = −δ j(as, j−a0, j)ȧi, j, (7g)

where index 0 refers to the truth and Wi, j refers to the weight of model i and state vector
element j. During training, we choose a uniform nudging strength corresponding to a
24 h time scale, as motivated by Selten et al. (2017). They showed that, for this value of
K, two connected identical SPEEDO models (perfect model scenario) almost perfectly
synchronize with very small synchronization errors in temperatures of the order of
0.01°C. Imperfect models, on the other hand, have synchronization errors with respect
to the truth that are usually 10 times larger.

5.1 Construction of imperfect models

In order to be able to compare results of the weighted supermodels of this study to the
connected supermodels in Selten et al. (2017), we choose the same parameter values
for the imperfect models. These parameters are the convection relaxation timescale,
the relative humidity threshold and the momentum diffusion timescale. The reason to
perturb these parameters is because the uncertainty in climate models mostly lies in
the parameterization of clouds and convection, and perturbing these parameters in the
SPEEDO model results in a spread in the simulated climate that characterizes this un-
certainty. The parameters are listed in Table 1, where model 1 and model 2 correspond
to the imperfect models of Selten et al. (2017). The impact of the parameter perturba-
tions on the climate (i.e., long-term behavior) of the models is assessed on the basis of
40-year simulations initiated on 1 January of model year 2001 of a long control sim-
ulation as in Selten et al. (2017). Table 2 shows the global mean average difference
between the truth and the imperfect models of Table 1 for different variables. From the
table, it appears evident how the imperfect models all drift away from the truth giving
raise to biases. For example, the global mean temperature of imperfect model 1 rises
about 1.4°C within a couple of decades, whereas model 2 cools around 0.4°C. These
global mean temperature biases are comparable to the biases of state-of-the-art global
climate models compared to real-world observations (IPCC, 2013).



The first supermodel that we will train will consist of a weighted superposition of mod-
els 1 and 2. The second supermodel will consist of a weighted superposition of models
1, 3, 4 and 5. The parameter values of these models are chosen such that they form
a so-called convex hull around the true parameter values (see Schevenhoven and Sel-
ten, 2017, for a discussion on the convex hull principle). Note that we use only two
perturbed values for each parameter; the imperfect models differ only in the combina-
tion of these values, such that in the four-model supermodel, a convex hull is formed.
This implies that, provided the model functional dependence on the parameters is lin-
ear, the true parameter values can be obtained as a linear combination with positive
coefficients/weights of the four parameter values of the imperfect models. While these
conditions do not perfectly hold in this case, we expect that we can create a weighted
supermodel based on these four models that will be close to the truth. All of these four
models overestimate the global mean temperature and precipitation (Table 2). There-
fore, simply taking the MME mean with positive weights will not produce a climatol-
ogy closer to the truth. However, we expect that, based on the convex hull principle, the
weighted supermodel will nevertheless be able to produce a climatology that is closer
to the truth.
The third supermodel consists of a weighted superposition of models 1 and 6. In this
case, both imperfect models have parameter values that are smaller than the correspond-
ing true values. A weighted superposition with positive weights does not correspond to
a model with parameter values that are closer to the truth. Note that both models over-
estimate the average temperature and precipitation (Table 2); hence, taking the MME
mean with positive weights also does not produce a climatology closer to the truth. In
this case, we will explore whether a weighted supermodel with negative weights can be
trained in order to improve the climatology and short-term forecasts.

Table 1: Parameter values of perfect and imperfect models.

model convection
relaxation
timescale

relative
humidity
threshold

momentum
diffusion
timescale

perfect 6 hours 0.9 24 hours
model 1 4 hours 0.85 18 hours
model 2 8 hours 0.95 30 hours
model 3 4 hours 0.95 30 hours
model 4 8 hours 0.95 18 hours
model 5 8 hours 0.85 30 hours
model 6 3 hours 0.75 14 hours



Table 2: Global mean average difference between the imperfect models and the perfect model, calcu-
lated over the last 30 years of the simulation.

model temperature precipitation wind at wind at solar surface cloudcover
[C°] [mm/day] 200 hPa [m/s] 850 hPa [m/s] radiation [W/m2] [%]

mod 1 1.37 0.11 1.04 0.07 2.06 -1.59
mod 2 -0.38 -0.04 -0.31 -0.03 -1.13 0.87
mod 3 0.99 0.10 1.14 0.06 1.21 -1.03
mod 4 0.45 0.04 -0.04 -0.01 -0.20 0.10
mod 5 0.86 0.08 0.72 -0.01 -0.19 -0.12
mod 6 3.20 0.26 2.25 0.03 3.95 -3.37

5.2 Global weights

For both CPT and the synch rule, we choose to work with global weights, which means
that for each meteorological variable we use the same weight at every grid point. In
principle, one could allow different weights per each grid point but it could induce
dynamic imbalances that pull the model away from its attractor. The model’s reaction
is then to restore the dynamical balances and return to its own attractor (Pecora and
Carroll, 1990). In SPEEDO, this leads to the generation of fast gravity waves and fast
convective adjustments. An adequately small time step is required in order to prevent
numerical instabilities. We choose instead to use global weights in order to limit the
computational time.

5.3 Exchange of state information

The SPEEDO model has five prognostic variables: temperature, vorticity, divergence,
specific humidity and surface pressure (T, VOR, DIV, TR, PS). Best results were ob-
tained by limiting the weighted averaging of state information to temperature, vorticity
and divergence only. We suspect that exchanging specific humidity and surface pres-
sure leads to imbalances and fast spurious adjustments that deteriorate the supermodel
solution. We found that a perfect SPEEDY atmosphere only fully synchronizes with
the truth when at least temperature, vorticity and divergence are nudged to the truth
(not shown). Therefore, in a weighted supermodel, at least these variables need to be
exchanged.

5.4 Required time step

We found that smaller time steps were required during CPT training as compared to
standard integrations. Gravity waves induced by the state replacement during training
require a smaller time step in order to prevent numerical instabilities. We found that a
15 min time step was sufficient with our choice of imperfect models, which is half the



time step of the standard integration.

5.5 Initialization of the weights for the synch rule

In CPT training, the sum of the weights is normalized to 1. In the application of the
synch rule, on the other hand, the sum of the weights is not explicitly constrained. One
can start from zero weights and let the synch rule find the optimal set of weights. Ini-
tializing weights with a sum larger than 1 easily leads to numerical instabilities because
the weighted mean state becomes more energetic. Imposing the constraint of the sum
of weights being 1 during the training also led to numerical instabilities. We chose to
initialize with equal weights that sum to 1.

5.6 Rate of learning in the synch rule

The synch rule contains an adjustable rate of learning scaling factor δ j, with j the
index of the state vector. A large rate of learning is desirable since it leads to faster
convergence and shorter training periods. However, the parameters should vary on a
slower time-scale than the dynamical variables and this provides an upper bound for
the value of δ j. Furthermore, it turns out that if δ j is too large, the sum of the weights
can become greater than 1 which easily leads to numerical instabilities. The size of δ j

in the synch rule depends on the variable that is being exchanged and was determined
by trial and error during the training experiments. The largest values for δ j that resulted
in converged weights were on the order of 107 for divergence and vorticity and 10−4

for temperature. With these scaling factors, approximately similar rates of learning
were achieved for the different variables. This makes sense since the state values for
divergence and vorticity are much smaller than for temperature, so the product of δ j

and the state values in the synch rule is of the same order of magnitude.

5.7 Weights for the heat, water and momentum fluxes

In the experimental setup during training, we assume a perfect ocean and land models
which receive fluxes from the perfect atmosphere. However, in the supermodel setup,
perfect fluxes are not available and we use a weighted combination of the fluxes from
both imperfect models instead. In the connected supermodel of Selten et al. (2017), the
fluxes are averaged using equal weights. In this paper, we further optimize the weights
for the fluxes, because we found they have a big influence on the supermodel’s perfor-
mance. In particular, we selected weights given by the average of the three weights for
the prognostic variables. To check whether this choice was optimal, we used a least
squares minimization method in order to optimize the weights for the fluxes. During
one year of training, the fluxes from the perfect and imperfect models were saved at



every time step. The weights were determined by a least squares fit of a weighted sum
of the imperfect fluxes to the perfect fluxes. The flux weights obtained from the min-
imization method did differ slightly per flux (heat, water or momentum flux), but the
average weights were close to the average of the weights for the prognostic variables.

6 Results

We describe the learning results and the forecast short- and long-term capabilities of
the three supermodel configurations separately.

6.1 Supermodels based on two imperfect models

We first trained a weighted supermodel based on imperfect models 1 and 2 (see Ta-
ble 1), applying both CPT and the synch rule. As a benchmark, we compare the quality
of the weighted supermodel after training with the connected SPEEDO supermodel of
Selten et al. (2017). This supermodel is based on the same imperfect models and was
trained by the synch rule.
Ideally, both CPT and the synch rule should produce converged weights, i.e., weights
that remain stable if the training period is extended. The required length of the training
period for the convergence of the two methods turns out to be very different. For CPT,
a training period as short as a couple of days produces converged weights, whereas for
the synch rule it takes about a year. Note that we limit the CPT training period to a
week, as the CPT trajectory starts to deviate significantly from the truth after approx-
imately 10 days. The reason that CPT diverges from the truth is because we have a
limited ensemble size. With non-linear processes causing rapid error growth, the truth
soon falls outside the limited ensemble. The problem is exacerbated by replacing a
model state with state variables mixed from different models which introduces imbal-
ances that cause additional error growth.
In order to check the difference between the CPT weights during a year, the CPT
method is applied for each week during 1 year. After each week, the values for all
prognostic variables are reset to the truth, and the procedure is repeated. Figure 7a
shows the values of the weights during training. The weights for both temperature and
vorticity remain fairly constant. The weights for divergence vary within 0.04 of a mean
value. For the final supermodel weights, we just take the average over the whole year
(Table 3).
Using the synch rule, weights for temperature and vorticity converge within the first
couple of weeks, whereas for divergence the weights cannot be learned faster than
within a year in order to avoid numerical instabilities (see Fig. 7b) . When using the



synch rule, the weights converge to similar values as compared to the CPT training
(Table 3). Converged values of both methods are within 0.05. Whether these small
differences matter for climate and weather forecasts will be assessed in the next two
sections. Although not imposed, the training yields sum of weights equal to 1 as an
optimal solution.
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Figure 7: Calculation of weights for a supermodel constructed from two imperfect models using two
different training schemes. (a) CPT weights calculated during a training period of 1 week estimated for
each week of a year. (b) Weights for the synch rule during a training period of 1 year.

Table 3: Weights for the supermodel trained by CPT and the synch rule. Between brackets, the standard
deviation over the year (CPT) or the standard deviation over the last 10 weeks of training (synch rule)
is given.

model method T VOR DIV
model 1 CPT 0.30 (0.016) 0.39 (0.007) 0.35 (0.031)
model 2 0.70 (0.016) 0.61 (0.007) 0.65 (0.031)
model 1 synch rule 0.35 (0.0043) 0.38 (0.0018) 0.34 (0.0052)
model 2 0.65 (0.0043) 0.62 (0.0018) 0.66 (0.0053)

6.1.1 Climate measures

The imperfect models and the supermodel are integrated for 40 years in time, starting
from 1 January of model year 2001. The climatology is defined as the average over
years 11-40. The error in the climatology is defined as the root of the global mean
squared error (RMSE) between the model and the truth. In addition, the perfect model
is integrated for 40 years from a slightly perturbed initial condition, in order to obtain
an estimate of the sampling error, i.e., to estimate the representativeness of the errors
of the different models. Global mean time-series for surface air temperature, precipi-
tation, surface solar radiation and cloud cover for the different models show that both
weighted supermodels behave very similar and remain close to the perfect model (Fig.



8). The errors in the climatologies of the various fields of both supermodels are much
reduced as compared to both imperfect models and are indistinguishable from the sta-
tistical sampling error of the perfect model. Both training methods succeed in greatly
improving the simulation of the climate. Compared to the trained connected supermod-
els of Selten et al. (2017), the weighted supermodels have reduced climatological errors
(see Fig. 15). Training of a connected supermodel by the synch rule on the other hand
is more efficient as faster learning rates could be used, leading to convergence within 2
weeks of training.
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Figure 8: Global mean time-series for the perfect model, the imperfect models and the two supermodels
trained by CPT and the synch rule. The normalized root mean squared error (RMSE) in the climatology
of model years 2011-2040 with respect to the climatology of the truth is given in each panel. The
normalization is such that the expected value of the perfect model error is 1.

A spatial characterization of the performance of the supermodel in simulating the cli-
matology of the zonal wind at 200 hPa is given in Fig. 9. Clearly, both supermodels
outperform the imperfect models and their local errors are of similar magnitude as the
sampling error of the perfect model. We computed an optimal weighted average of the



climatology of both imperfect models (optimal in the sense that the RMSE in the clima-
tology is minimized) as in Selten et al. (2017). This MME mean climatology (Fig. 9f)
has errors of the same order of magnitude as both trained weighted supermodels due to
fact that the imperfect model errors are near-mirror images of each other.
In the context of simpler models, Schevenhoven and Selten (2017) noted that CPT
training of a couple of days duration was sufficient to reduce climatological errors
substantially, and this result carries over to the complex SPEEDO model used here.
This notion that errors in fast processes contribute substantially to errors in the long-
term mean state is also supported by other studies, for example, by Rodwell and Palmer
(2007). Since the climatological errors are reduced, we expect the trained supermodels
to produce better short-term forecasts as compared to the imperfect models.

6.1.2 Forecast quality

In order to assess the quality of short-term forecasts, we initialized the various models
from slightly perturbed states of the truth and integrated the models for 2 weeks. We
selected 25 initial states, 2 weeks apart, starting 1 January, so the forecasts cover almost
1 year. The quality of the forecast is measured by the RMSE in the global surface
air temperature forecast, averaged over the 25 forecasts, and is shown in Fig. 10. In
these forecasts, the atmosphere models are forced by the ocean and land conditions
of the truth; this is to exclude error growth related to the coupled interactions. As
expected, the RMSE in surface air temperature of the perfect model is the one growing
the slowest, and it is still as small as about 0.3°C at day 14. On the other hand, the
forecast errors of both imperfect models is 0.3°C around day 3 and grow to over 3°C
at day 14. Both trained weighted supermodels reach 0.3°C around day 8 and over
1°C at day 14. For comparison we computed the forecast error of the weighted mean
forecast of both imperfect models using the same weights as those used in Fig. 9 in the
calculation of the optimal climatology. This MME mean forecast has smaller forecast
errors than the imperfect models, yet both supermodels are clearly superior.

6.2 Supermodels based on four imperfect models forming a convex hull

As explained in Sect. 5.1, the parameter perturbations of models 1, 3, 4 and 5 form
a convex hull around the true parameter values (Table 1). We therefore expect to be
able to create a weighted supermodel based on these four models that will be close
to the truth, despite the fact that all four have a warmer climatology than the truth (see
Table 2). The weights are trained using both CPT and the synch rule in the same way as
in the previous case with two imperfect models and are shown in Fig. 11; nevertheless,
given that the supermodels are now based on four imperfect models, the number of



a: Imperfect model 1 b: Imperfect model 2

c: Supermodel CPT d: Supermodel synch
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Figure 9: Difference in the zonal wind at 200 hPa averaged over model years 2011-2040 for the var-
ious models with respect to the truth. Contours denote areas where the difference is larger than the
sampling error at 95% confidence (solid for positive difference, dotted for negative). Positive values
imply stronger mean winds blowing eastward. Units: ms−1.



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  2  4  6  8  10  12  14

R
M

S
E

Days

Temperature difference between model and truth

perfect
imp 1
imp 2

s-CPT
s-synch

multi-model

Figure 10: Forecast quality as measured by the root mean squared error (RMSE) of the truth and a
model with a perturbed initial condition. The control is the difference between the perfect model and
the perfect model with a perturbed initial condition.

weights is doubled. Again the weights during CPT training vary from week to week
within 0.05 and converge within a year using the synch rule. Weights for vorticity turn
out to be a special case since the change in vorticity as calculated by imperfect models 1
and 3 is equal to, respectively, models 4 and 5. The reason is that only the perturbation
in the momentum diffusion timescale affects the vorticity change, and model 1 and 3
have the same diffusion timescale as in models 4 and 5, respectively. Therefore, their
weights are equal. Table 4 denotes the final supermodel weights, where for vorticity
the weight is equally distributed over models 1 and 4 and model 3 and 5.
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Figure 11: CPT weights calculated during a training period of 1 week for 1 year (a) and the weights
for the synch rule for a training period of 1 year (b) with four imperfect models.

The values of the weights for vorticity trained by the synch rule are very close to the
values obtained by CPT training. This is not the case for temperature and divergence.



Table 4: Weights for the supermodel trained by CPT and the synch rule. Between brackets, the standard
deviation over the year (CPT) or the standard deviation over the last 10 weeks of training (synch rule)
is given.

model method T VOR DIV
model 1 CPT 0.01 (0.005) 0.19 (0.022) 0.12 (0.017)
model 3 0.33 (0.030) 0.31 (0.037) 0.28 (0.024)
model 4 0.40 (0.009) 0.19 (0.022) 0.41 (0.028)
model 5 0.26 (0.026) 0.31 (0.040) 0.19 (0.023)
model 1 synch rule 0.01 (0.0070) 0.19 (0.0007) 0.00 (0.0064)
model 3 0.42 (0.0072) 0.31 (0.0007) 0.27 (0.0047)
model 4 0.37 (0.0065) 0.19 (0.0007) 0.44 (0.0044)
model 5 0.20 (0.0062) 0.31 (0.0007) 0.29 (0.0029)

For temperature, CPT puts 10% less weight on imperfect model 3 compared to the
synch rule and a 10% stronger weight on model 1 for divergence. The synch rule
puts (almost) zero weight on imperfect model 1. This is because imperfect model 1
calculates exactly the same vorticity change as imperfect model 4; hence, the synch rule
suggests that imperfect model 1 has no added value in the weighted supermodel. Again,
the synch rule training yields sum of weights equal to 1 as an optimal solution. Using
these weights, we will compare the climatology and forecast skill of both supermodels.

6.2.1 Climate measures and forecast quality

We repeated similar climate integrations as in the case of the supermodels based on
two imperfect models and assessed the climatological errors. By comparing the 40-
year time-series of global mean values in Fig. 12, both supermodels remain close to
the perfect model and are clearly superior to all the imperfect models. Despite all im-
perfect models becoming too warm and precipitating too much on the global scale, the
supermodels balance model deficiencies and produce climate simulations that are close
to the truth. Inspection of the RMSE of the 30-year mean fields in the different fig-
ure panels indicates that for temperature the supermodel with weights from the CPT
training is substantially better than the supermodel with weights from the synch rule.
Recall that while imperfect model 1 almost does not contribute to the supermodel with
the weights from the synch rule, it does so for the supermodel with the weights from
the CPT training. Although imperfect model 1 has larger climatological errors than the
other imperfect models (Fig. 12), it nevertheless improves the quality of the CPT su-
permodel.
This experiment demonstrates the potential of supermodels to mitigate common errors,
and thereby clearly outperform the standard MME approach. Since all imperfect mod-
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Figure 12: Global mean time series for the truth, the perfect model, the imperfect models and the
two supermodels trained by CPT and the synch rule. Included is the RMSE of the model years 2011-
2040 with respect to the truth. The normalized RMSE in the climatology of model years 2011-2040
with respect to the climatology of the truth is given in each panel. The normalization is such that the
expected value of the perfect model error is 1.



els overestimate the global average temperature and simulate too much precipitation, a
standard weighted MME approach results in a climatological forecast worse than the
best imperfect model. In the case that the imperfect parameters form a convex hull
around the true parameter values, we may expect that a supermodel can be constructed
with a climatology much closer to the truth as compared to the best imperfect model.
In the case that the imperfect models do not form a convex hull around the true param-
eter values, allowing negative weights in the weighted supermodel might still improve
the climatology and forecast skill. This will be explored in the next section.
We repeated the same forecast experiment as in the case of the supermodel based on
two imperfect models. Also, in this case, the supermodels have forecast errors that are
substantially reduced as compared to the imperfect models, up to a factor of 3 smaller
(not shown). Both supermodels have comparable forecast skill in this measure.

6.3 Negative weights

The CPT training method only produces positive weights, since the weights are defined
as being equal to the frequency that the solution of a particular model is closest to the
truth during the training period. The synch rule training, on the other hand, does not
impose any constraint on the weights. The weights came out positive due to the convex
hull principle: the imperfect models considered so far surrounded the truth and with
positive weights the effect of the true parameter values can be approximated. But in
the event that the imperfect models have parameter values that are all smaller or larger
than the truth, only by allowing negative weights one can construct a linear superposi-
tion of imperfect models that is closer to the truth. To test if such a supermodel with
negative weights indeed shows the desired physical behavior and to test if we can ob-
tain such a model with the synch rule, we construct a weighted supermodel based on
two imperfect models (models 1 and 6) with parameter values on the same side of the
true parameter values (Table 1).
After a training period of 1 year using the synch rule, stable weights are obtained, which
indicates that at least a local minimum is reached. And as expected, the training pro-
duces negative weights (Table 5). In contrast to the previous experiments, however, the
weights for temperature, divergence and vorticity are quite different. The weights for
divergence are positive and do not substantially differ from the weights of the previ-
ous experiments. The weights for temperature and vorticity are negative for one of the
imperfect models and larger than 1 for the other such that the sum is again close to 1.
Stable climate simulations turn out to be possible with a weighted supermodel using
negative weights. The climatology of the supermodel has improved significantly com-
pared to both imperfect models, as displayed in Table. 6. Global mean values of the



Table 5: Weights for the supermodel trained by the synch rule. Between brackets the standard deviation
over the last 10 weeks of training is given.

model T VOR DIV
model 1 1.30 (0.016) 2.00 (0.011) 0.40 (0.010)
model 2 -0.30 (0.016) -1.00 (0.010) 0.60 (0.009)

Table 6: Global mean average difference with the perfect model, calculated over the last 30 years of
the simulation.

model temperature precipitation solar surface cloudcover
[C°] [mm/day] radiation [W/m2] [%]

model 1 1.37 0.11 2.06 -1.59
model 6 3.20 0.26 3.95 -3.37
supermodel 0.64 0.06 1.68 -1.16

various fields are closer to the truth, despite the fact that the global mean climatological
errors of both imperfect models have the same sign. Also, local model errors largely
have the same sign but are smallest for the supermodel as shown in Fig. 13 for the zonal
wind at 200 hPa. Nevertheless, despite the improvement, substantial errors still remain
in the supermodel solution.
The forecast errors are evaluated in a similar fashion as in the previous cases and shown
in Fig. 14. Although there is a significant improvement in quality for the supermodel
as compared to the imperfect models, the forecast error is still quite large. Closer cor-
respondence to the truth can only be expected if all prognostic variables are exchanged,
hence also specific humidity and surface pressure, and if the perturbed parameters ap-
pear linearly in the equations. Both conditions are not fulfilled in this case.

6.4 Summary of supermodel climate errors

We conclude this section with a summary of the climatological errors of the weighted
supermodels of this study and the connected supermodel of Selten et al. (2017) in
Fig. 15. The climatological errors of the weighted supermodels of this study based
on two imperfect models are of the order of the sampling error of the perfect model,
whereas the connected supermodel based on the same two imperfect models has sub-
stantially larger errors. Also, the weighted supermodel based on the four imperfect
models trained by CPT is indistinguishable from the truth with respect to its climato-
logical errors, whereas the synch-rule-trained weighted supermodel has substantially
larger errors. These results suggest that CPT training might yield more robust results.
The largest climatological errors remain for the supermodel with negative weights.



a: Imperfect model 1 b: Imperfect model 6

c: Supermodel synch

Figure 13: Difference in the east-west component of the wind at the 200 hPa pressure level averaged
over model years 2011-2040 for the various models with respect to the truth. Contours denote areas
where the difference is larger than the sampling error at 95% confidence (solid for positive difference,
dotted for negative). Positive values imply stronger mean winds blowing eastward. Units: ms−1.
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Figure 14: Forecast quality as measured by the RMSE of the truth and a model with a perturbed
initial condition. The control is the difference between the perfect model and the perfect model with a
perturbed initial condition.
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Figure 15: Overview the RMSE of the different supermodels (the connected supermodel of Selten et al.,
2017, and the weighted supermodels from the experiments of this paper) over the model years 2011-
2040 with respect to the truth.

7 Discussion and conclusions

We have demonstrated the potential of weighted supermodeling to improve weather and
climate predictions using the global coupled atmosphere-ocean-land model SPEEDO
in the presence of parametric error. Weighted supermodels are constructed based on
SPEEDO with perturbed parameters. The perturbations are chosen such that the spread
in imperfect models reflects the uncertainty in climate models realistically. The weights
are trained using data from the perfect model (i.e., our reference simulated truth) us-
ing two different training schemes having low computational cost. The first method
is based on CPT, where different model trajectories are “crossed” in order to create a
larger ensemble of possible trajectories. The second method is a synchronization-based
learning rule (synch rule), which adapts the weights of the different imperfect models
during training such that the supermodel synchronizes with the perfect model.
Both training methods yield supermodels that outperform the individual imperfect
models, in short-term forecasts as well as in long-term climate simulations. CPT train-
ing required shorter training periods (1 week as opposed to a year for the synch rule),
but both are much more efficient than cost-function-based approaches that are known to
require many climate simulations in an iterative process to reach convergence on opti-
mal weights (van den Berge et al., 2011; Shen et al., 2016). An advantage of the synch



rule is that it allows for negative weights that can potentially improve the weighted su-
permodel in case model errors do not compensate for positive weights. In addition,
CPT requires fairly good models such that mixed trajectories are able to track an ob-
served trajectory for some time. During the synch rule training on the other hand the
nudging terms keep the supermodel in the neighborhood of the observed trajectory and
is therefore more robust (i.e. less sensitive) with respect to the quality of the imperfect
models.
In the application of CPT in this study, we encountered numerical issues due to the par-
tial state replacement. A possible solution is the use of data assimilation techniques
to combine state information from different models in a dynamical consistent manner
(Asch et al., 2016; Carrassi et al., 2018). One straightforward solution along this line
could be based on the idea of Du and Smith (2017), in which pseudo-orbit data assim-
ilation is used instead of replacement of the entire state. Du and Smith (2017) have
already used this approach successfully for low-order dynamical systems. These data
assimilation techniques would also allow application of CPT in the event that the dif-
ferent models differ in state representation, for instance, different numerical grids.
The weighted supermodels of this study have smaller climatological errors as compared
to the connected supermodel based on the same two imperfect models in Selten et al.
(2017). Also, in the four-model experiment, the CPT supermodel has substantially
better climatology than the supermodel trained by the synch rule. This suggests that
synchronization with the truth can be difficult to obtain, especially when the imperfect
models that form the supermodel are not fully synchronized in the case of a connected
supermodel or when the weighted supermodel consists of several imperfect models.
Although it is a common result in synchronization theory that identical systems will
synchronize if the nudging strength is strong enough and if there are enough observa-
tions from the truth, in practice, this can be a challenge. The issues with synchronized-
based learning can be easily demonstrated using a low-order dimensional system (not
shown).
In the second supermodel experiment of this paper, the parameter perturbations of four
imperfect models were chosen such that they formed a so-called convex hull around
the true parameter values. This implies that a linear combination with positive weights
of these four models is able to reproduce the model equations with the true parameter
values, provided that the parameters appear only linear in the equations. This is not ex-
actly true in this case, but the trained weighted supermodel based on these four models
turned out to have a climatology close to the truth. As all four imperfect models have a
warmer and wetter climatology than the truth, simply taking the MME mean with posi-
tive weights thus does not improve the climatology. This experiment is a clear example



of the potential benefit of the supermodeling approach to ameliorate common model
errors. This benefit arises due to the fact that model errors are compensated at an early
stage, in the time derivative, and not a posteriori, as in the MME approach where model
errors have propagated spatially across the globe, across scales and across the different
meteorological fields and other components of the climate system.
In the final supermodel experiment, we have explored the use of negative weights in
order to improve predictions in the case that model errors do not compensate; i.e., both
imperfect models have parameter perturbations and climatological errors of the same
sign. A supermodel trained using the synch rule yielded negative weights. With these
weights, stable and credible simulations turn out to be possible and forecast errors as
well as climatological errors are reduced with respect to the imperfect models. Sub-
stantial errors remain as not all prognostic equations are combined (only temperature,
vorticity and divergence, not humidity and surface pressure) and the parameters do not
appear linearly in the equations.
Although the synch rule training does not impose that the weights sum to 1, the training
inevitably yielded sum of weights equal to 1. An example based on the Lorenz 1963
equations (Lorenz, 1963) serves to illustrate why this might be the case. The Lorenz
1963 equations are:

ẋ = σ(y− x) (8a)

ẏ = x(ρ− z)− y (8b)

ż = xy−β z, (8c)

where the standard parameter values are σ = 10,ρ = 28 and β = 8
3 . Assume we have

two imperfect models with imperfect parameters ρ1 and ρ2. Then ẏs = w1(x(ρ1− z)−
y)+w2(x(ρ2− z)− y), with “s” denoting the supermodel solution. We can rewrite this
as: ẏs = x(w1ρ1 +w2ρ2)− (w1 +w2)(xz+ y). To reproduce the standard parameter
model solution, two conditions must be satisfied: (w1ρ1+w2ρ2) = ρ and w1+w2 = 1.
Not only should the linear combination of imperfect parameter values match the true
parameter value, but also the weights have to sum to 1.
The ultimate goal of our research is to apply supermodeling to realistic climate mod-
els. But, will it work? Based on the current results, we believe that this is possible,
although the application is not as straightforward as for SPEEDO. First, state-of-the-art
models are far bigger and more complex, making their numerical computation a sub-
stantial burden. This makes numerical efficiency a key aspect to consider. Second, the
real world is not simply a perturbed parameter version of these complex models. In this
paper, we have worked under the hypothesis that model error only originates by error in
the model parameters in the atmosphere. The imperfect atmosphere models were cou-



pled to the same ocean and land model, which constrains the variability on longer time
scales. So far we have demonstrated that the long-term behaviour of the supermodel
improves while training only short-term prediction errors. It remains to be seen how
much the long-term evolution will improve in the presence of imperfections in the slow
components of the climate system. Furthermore, it is essential to extend the approach
to other sources of model error towards the application with real climate models. In
that case, on top of parametric error, model error can arise from the presence of unre-
solved scale, numerical discretization or incorrect physics.
Together with the realisms of the models (and of the related model error), those of the
observations are also of central importance. In all previous studies with supermodel-
ing, including the current, observations were assumed to be perfect, i.e., to be complete
and noise free. To use real data, it will thus be necessary to study the robustness of the
supermodeling approach to noisy and unevenly distributed observations and to extend
the methods to account for the observational noise. This latter problem is the subject of
ongoing research of scientists which are making use of ideas and techniques from data
assimilation. Data-assimilation-based supermodeling is also envisioned to account for
generic source of model error in the construction of the supermodel, and it will be the
subject of future research.
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