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Abstract
We consider L-scheme and Newton-based solvers for Biot model under large deformation. The mechanical deformation
follows the Saint Venant-Kirchoff constitutive law. Furthermore, the fluid compressibility is assumed to be non-linear. A
Lagrangian frame of reference is used to keep track of the deformation. We perform an implicit discretization in time
(backward Euler) and propose two linearization schemes for solving the non-linear problems appearing within each time
step: Newton’s method and L-scheme. Each linearization scheme is also presented in a monolithic and a splitting version,
extending the undrained split methods to non-linear problems. The convergence of the solvers, here presented, is shown
analytically for cases under small deformation and numerically for examples under large deformation. Illustrative numerical
examples are presented to confirm the applicability of the schemes, in particular, for large deformation.

Keywords Large deformation · Biot’s model · L-scheme · Newton’s method · Poroelasticity

1 Introduction

The coupling of flow and mechanics in a porous medium,
typically called poromechanics, plays a crucial role in many
socially relevant applications. These include geothermal
energy extraction, energy storage in the subsurface, CO2

sequestration, and understanding of biological tissues. The
increased role played by computing in the development and
optimization of (industrial) technologies for these applica-
tions implies the need for improved mathematical models in
poromechanics and robust numerical solvers for them.

The most common mathematical model for coupled
flow and mechanics in porous media is the linear, quasi-
stationary Biot model [8–10, 52]. The model consists of two
coupled partial differential equations, representing balance
of forces for the mechanics and conservation of mass and
momentum for (single-phase) flow in porous media.

In terms of modelling, Biot’s model has been extended
to unsaturated flow [14, 37], multiphase flow [27, 28, 34,
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36, 47], thermo-poroelasticity [20], and reactive transport
in porous media [33, 48], where nonlinearities arise in
the flow model, specifically in the diffusion term, the
time derivative term, and/or in Biot’s coupling term. The
mechanics model can also be extended to the elasto-
plastic [3, 56], the fracture propagation [35], and the
hyperelasticity [21, 22], where the nonlinearities appear in
the constitutive law of the material, in the compatibility
condition and/or the conservation of momentum equation.
Furthermore, elastodynamics or non-stationary Biot, i.e.,
Biot-Allard model [38], includes a convolution in the media
parameters, like the permeability and/or the mechanical
elasticity tensor. In this paper, we are going to explore a
general case that allows large deformations. The mechanical
deformation follows the Saint Venant-Kirchoff constitutive
law and the fluid compressibility in the fluid equation is
assumed to be non-linear. This model formulation is needed
to later consider extensions of Biot’s model to plasticity,
more general hyperelastic materials, and elastodynamics.

Finding closed-form solutions for coupled problems is
very difficult, and commonly based on various simplifica-
tions. We, therefore, resort to numerical approximations.
In general, there are two approaches to solve such prob-
lems, a monolithic, or fully coupled, and splitting, or weakly
coupled scheme. In general, the fully coupled schemes
for fluid potential and mechanical deformation are stable,
have excellent convergence properties, and ensure that the
numerical solution is consistent with the underlying con-
tinuous differential equations [29, 55]. Despite obvious
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advantages, the monolithic solvers for the fully coupled
problem are more difficult to implement, and show diffi-
culties solving the resulting linear system. In the weakly
coupled approach, while marching in time, the flow prob-
lem (or the mechanics) is time-lagged, thereby decoupling
the two problems. Due to the complexities associated with
the fully coupled scheme, the industry standard remains to
use weakly coupled or iteratively coupled approaches [19,
41, 51, 58]. Weakly coupled schemes, where there are no
iterations within a time step, have particularly been ques-
tioned in previous works [18, 23, 41, 44]; they have been
shown to lack robustness and even convergence, if not prop-
erly designed. A splitting approach takes somewhat of a
middle path; at each time step, it decouples the flow and
mechanics, but iterates so that the convergence is achieved.
Undrained and fixed-stress schemes are examples of split-
ting schemes. However, the main difference between them
is that fixed-stress scheme stabilizes the flow problem while
the undrained scheme stabilizes the mechanics. In order to
ensure the robustness and accuracy of the resulting compu-
tations, it is essential to understand the efficiency, stability,
and convergence of monolithic and splitting solvers, in
particular in the presence of non-linearities.

In this work, we present monolithic and splitting approa-
ches for solving this non-linear system, that is, non-linear
compressibility and the Saint Venant-Kirchoff constitutive
law for stress–strain relationship. Moreover, we rigorously
study the convergence of our solvers, including the Newton-
based ones, under the assumption of small deformations. As
for the splitting approach, a stabilization term is added in
the mechanics equation to ensure convergence, resembling
the undrained splitting method (see [31, 39]).

We use linear continuous Galerkin elements for the
discretization of the mechanics equation and mixed finite
elements for the flow equation [7, 24, 30, 42, 57]. Precisely,
the lowest order Raviart-Thomas elements are used [17].
We expect, however, that the solution strategy discussed
herein will be applicable to other combinations of spatial
discretizations such as those discussed in [40, 49] and the
references therein. Backward Euler is used for the temporal
discretization.

To summarize, the new contributions of this paper are:

• We propose Newton- and L-scheme-based monolithic
and splitting schemes for solving the Biot model under
small or large deformation.

• The convergence analyses of all solvers are shown
rigorously under the assumption of small deformations.

• The convergence of splitting algorithms is shown
through numerical examples for a general non-linear
Biot model that includes large deformations.

Wemention some relevant works in this direction. For the
convergence analysis of the undrained split method applied

to the linear Biot model, we refer to [5, 6, 12, 25, 26,
39]. For a discussion on the stabilization/tuning parameter
used in the undrained split approach, we refer to [12, 15].
A theoretical investigation on the optimal choice for this
parameter is performed in [53]. The linearization is based
on either Newton’s method, or the L-scheme [37, 43, 47]
or a combination of them [14, 37]. For monolithic and
splitting schemes based solely on L-scheme, we refer to
[11]. Multirate time discretization or higher order space-
time Galerkin method has also been proposed for the linear
Biot model in [1] and [6], respectively.

The paper is structured as follows. In the next section,
we present the mathematical model. In Section 3, we
propose four iterative solvers. Section 4 shows the
analysis of iterative solvers under the assumption of small
deformations. Numerical results are presented in Section 5
followed by the conclusion in Section 6.

2 Governing equations

We consider a fluid flow problem in a poroelastic bounded
reference domain Ω ⊂ R

d , d ∈ {2, 3} under large
deformation. A Lagrangian frame of reference is used to
keep track of the invertible transformation x := {x(X, t) =
X+u(X, t) : X ∈ Ω → x ∈ Ωt }, whereΩt is the deformed
domain at time t and u represents the deformation field. The
gradient of the transformation and its determinant are given
by F = ∇ x(X, t) and J = det(F). All differentials are with
respect to the undeformed coordinates X, unless otherwise
stated. We summarize in Table 1 the list of symbols herein
used.

We will now write the conservation of momentum
and mass equation in Ω . The conservation of momentum
represents the balance between the first Piola-Kirchhoff
poroelastic stress � in Ω and the forces acting on Ωt , and
is given by:

−∇ · � = ρbg, (1)

where ρb = J�b is the bulk density in Ω , �b is the bulk
density in Ωt , and g is gravity.

We exploit the relation � = F� since the constitutive
laws are developed for the second Piola-Kirchhoff poroelas-
tic stress �. This stress tensor is composed of the effective
mechanical stress �eff and the pore pressure p by the
following relation:

� = �eff − JF−1F−�p,

where JF−1F−� ensures that pressure p exerts an isotropic
stress in Ωt . We assume an isotropic poroelastic material
with constant shear modulus μ and a non-linear function
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Table 1 Nomenclature

Parameters

First Piola-Kirchhoff poroelastic stress � Displacement u

Second Piola-Kirchhoff poroelastic stress � Mass flux q

Second Piola-Kirchhoff effective stress �eff Pressure p

Green strain tensor E Fluid density ρf

Transformation’s gradient F Bulk density �b

Transformation’s determinant J Source term Sf

Lamé’s first parameter λ Biot’s constant α

Lamé’s second parameter μ Biot’s modulus M

Kinematic fluid viscosity νf Fluid content Γ

Lagrangian permeability tensor K Lagrangian gravity G

Eulerian permeability tensor k Eulerian gravity g

Poroelastic stress tensor σpor Effective stress tensor σ

Body forces f Time step counter n

Linearized strain tensor ε Iterative counter i

Incremental operator δ Mesh size h

Partial derivate operator ∂ Time step size τ

of the volumetric strain c(·) [11, 54]. The effective stress is
given by Saint Venant-Kirchhoff constitutive law: �eff =
2μE+ c (tr(E)) , where the Green strain tensor E is defined
by:

E = 1

2

(
∇u + ∇�u + (∇u)�∇u

)
.

The conservation of fluid mass is given by:

Γ̇ + ∇ · q = Sf . (2)

We consider a fluid mass Γ = Jρf φ of a slightly
compressible fluid, where φ is the porosity in Ωt and ρf

the fluid density and Sf the source term in Ω respectively.
The mass flux is given by q = ρf,ref qv , where ρf,ref

is the reference density of the fluid and qv is the first
Piola transform of the corresponding volumetric flux in Ωt .
The time derivative of the fluid content Γ̇ = Γ̇ (u, p) is
considered to be a function of the pressure and the pore
volume change due to the deformation field. We consider
Darcy’s law:

qv = − 1

ρf,ref

K(∇u)
(∇p − ρf,refG

)
, (3)

whereK = JF−1kF−� is the corresponding transformation
of themobility tensor k inΩt andG=F�g. Finally, the general
non-linear Biot model considered in this paper reads as:

Find (u,q, p) such that:

− ∇ · � (∇u, p) = ρbg, in Ω×]0, T ],
q = −K(∇u)

(∇p − ρf,refG(∇u)
)
, in Ω×]0, T ],

Γ̇ (u, p) + ∇ · q = Sf , in Ω×]0, T ].
(4)

To complete the model, we consider Dirichlet boundary
conditions (BC) and initial conditions given by (u0, p0)

such that Γ (u0, p0) = Γ0 and �(u0, p0) = �0 at time
t = 0. The functions Γ0 and �0 are supposed to be given
(and to be sufficiently regular).

In practice, the initial data u0 and p0 are not independent
and can be obtained by solving the flow equation for p0 and
then solving the mechanics equation for getting u0.

3 Iterative solvers

In this section, we present several monolithic and splitting
iterative solvers for Eq. 4. First, we propose the Newton
method which is well known for having locally quadratic
convergence. Secondly, we combine the Newton method
with a stabilized splitting method similar to the undrained
splitting method. Finally, for the third and fourth solvers, we
propose monolithic and splitting L-schemes. The L-scheme
can be interpreted as either a stabilized Picard method or
a quasi-Newton method. This scheme is robust but only
linearly convergent. Moreover, it can be applied to non-
smooth but monotonically increasing non-linearities. For
example, for the case of Hölder continuous (not Lipschitz)
non-linearities we refer to [13]. As it is a fixed point scheme,
it can be speeded up by using the Anderson acceleration [2,
15]. To summarize, the main advantages of the L-scheme
are:

– It does not involve computation of derivatives.
– The arising linear systems are well-conditioned.
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– It can be applied to non-smooth nonlinearities.
– It is easy to understand and implement.

The iterative solvers will be written using an incremental
formulation. In this regard, we introduce naturally defined
residuals for the non-linear Eq. 4.

Fmech(u, p) = −∇ · � (∇u, p) − ρbg,

Fdarcy(u, p) = q + K(∇u)
(∇p − ρf,refG(∇u)

)
,

Fmass(u, p) = Γ̇ (u, p) + ∇ · q − Sf . (5)

We will denote by δ(·)i = (·)i − (·)i−1 the incremental
operator, i the incremental counter, ∂(·) the partial derivative
operator with respect to (·).

3.1 Amonolithic Newton

The Newton method is usually the first choice of the
linearization methods due to its quadratic convergence.
However, the convergence is local and it requires relatively
small time steps to ensure the quadratic convergence [46].
The method starts by using initial solution

(
u0,q0, p0

)
,

solves for
(
δui , δqi , δpi

)
satisfying:

−∇ ·
(
∂u�

(
∇ui−1, pi−1

)
∇δui − ∂p�

(
∇ui−1, pi−1

)
δpi

)

= −Fmech(ui−1, pi−1),

δqi + ∂u

(
K(∇ui−1)

(
∇pi−1 − ρf,ref G(∇ui−1)

))
δui

+K(∇ui−1)∇δpi−1 = −Fdarcy(ui−1, pi−1),

∂pΓ̇ (ui−1, pi−1)δpi + ∂uΓ̇ (ui−1, pi−1)δui + ∇ · δqi

= −Fmass(ui−1, pi−1), (6)

and finally updates the variables:

(
ui ,qi , pi

)
=

(
ui−1,qi−1, pi−1

)
+

(
δui , δqi , δpi

)
.

Where ∂u� is a fourth-order tensor representing the partial
gradient of � with respect u.

3.2 An alternate Newton

The alternate Newton method combines a splitting method
with the Newton linearization. We introduce a stabilization
parameter Ls ≥ 0 to stabilize the mechanics equation. Thus
resembling the undrained splitting scheme, even though the
iterative steps start with the flow problem first as in the
fixed stress method. The precise condition on Ls to ensure
convergence is shown in Theorem 2. The method consists
of two steps: starting with the initial condition

(
u0,q0, p0

)
:

Step 1: Solve for
(
δqi , δpi

)

δqi + K(∇ui−1)∇δpi−1 = −Fdarcy(ui−1, pi−1),

∂pΓ̇ (ui−1, pi−1)δpi + ∇ · δqi = −Fmass(ui−1, pi−1),

(7)

and update the variables
(
qi , pi

)
=

(
qi−1, pi−1

)
+

(
δqi , δpi

)
.

Step 2: Solve for δui satisfying

−∇ ·
(
∂u�

(
∇ui−1, pi

)
∇δui − Ls(∇ · δui ) I

)

= −Fmech(ui−1, pi), (8)

and update the variable

ui = ui−1 + δui .

3.3 Amonolithic L -scheme

A monolithic L-scheme requires three constant tensors
Lu, Lp, Lq ∈ R

d×d and two positive constants Lp and
Lu as linearization parameters. A practical choice of the
linearization parameters will be discussed in the numerical
section. We refer to [11, 23] for a discussion regarding the
best choice for the linearization parameters Lp and Lu.

The method starts with the given initial solution(
u0,q0, p0

)
and solve for

(
δui , δqi , δpi

)
:

− ∇ · Lu∇δui − ∇ · Lpδpi = −Fmech(ui−1, pi−1),

δqi + K(∇ui−1)∇δpi + Lqδui = −Fdarcy(ui−1, pi−1),

Lpδpi + Luδui + ∇ · δqi = −Fmass(ui−1, pi−1),

(9)

and then update the variables
(
ui ,qi , pi

)
=

(
ui−1,qi−1, pi−1

)
+

(
δui , δqi , δpi

)
.

3.4 A splitting L-scheme

The splitting scheme requires fewer linearization terms: two
constants Lu ∈ R

d×d , Lp ≥ 0 and a positive stabilization
term Ls . This makes it suitable for quick implementation
since there is no need to calculate any Jacobian. The method
is split in two steps, given initial solution

(
u0,q0, p0

)
:

Step 1: Solve for
(
δqi , δpi

)

δqi + K(∇ui−1)∇δpi = −Fdarcy(ui−1, pi−1),

Lpδpi + ∇ · δqi = −Fmass(ui−1, pi−1), (10)

update the variables
(
qi , pi

)
=

(
qi−1, pi−1

)
+

(
δqi , δpi

)
.
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Step 2: Solve for δui

− ∇ ·
(
Lu∇δui + Ls(∇δ · ui ) I

)
= −Fmech(ui−1, pi), (11)

and then update the variables

ui = ui−1 + δui .

4 The Biot model under small deformations

The convergence analysis of the iterative solvers proposed
cannot be addressed with standard techniques [11, 14,
15, 37, 39]. This is due to the non-linearities being
non-monotone. Nevertheless, a rigorous analysis can be
performed for the case of small deformations. Accordingly,
we assume the porous medium to be under small
deformation and present the convergence of the iterative
solvers proposed in the previous section.

Under small deformation, the difference between Ωt and
Ω can be neglected. The gradient of the transformation
is approximated by F ≈ I and the determinant of the
transformation by J ≈ 1. Additionally, the Green strain
tensor E can be approximated by the infinitesimal strain
tensor E ≈ ε = 1

2

(∇u + (∇u)�
)
. Then, the poroelastic

stress tensor can be expressed by:

�(u, p) = σ(u, p) = 2με(∇u)+c(tr(ε(∇u)))−αpI, (12)

where α is the Biot constant. The mobility tensor is
considered isotropic K(u, p) = kI, but the results of the
convergence analysis can be extended without difficulties
to a more general anisotropic case. Additionally, the time
derivative of the volumetric deformation is approximated by
J̇ ≈ ∇ · u̇. In this regard, the fluid mass can be expressed as:

Γ̇ (u, p) = ḃ(p) + α∇ · u̇, (13)

where the relative density b(·) is a non-linear function of the
pressure p. The variational formulation for the Biot model,
under small deformation, reads as follows:

For each t ∈ (0, T ], find u(t) ∈ (
H 1

0 (Ω)
)d
, q ∈

H(div, Ω), and p(t) ∈ L2(Ω) such that there holds:

(ε(u), ε(v)) + (c(∇ · u) − αp,∇ · v) = (ρbg, v), ∀v ∈ (H(Ω))d ,

(
K−1q, z

)
− (p, ∇ · z) = (

ρf g, z
)
, ∀z ∈ H(div, Ω),

(
ḃ(p) + α∇ · u̇, w

) + (∇ · q, w) = (
Sf , w

)
, ∀w ∈ L2(Ω), (14)

with the initial condition:

(b(p0) + α∇ · u0, w) = 0, ∀w ∈ L2(Ω). (15)

In the above, we have used the standard notations. We
denote by L2(Ω) the space of square integrable functions
and by H 1(Ω) the Sobolev space H 1(Ω) = {v ∈
L2(Ω) ; ∇ v ∈ L2(Ω)d}. Furthermore, H 1

0 (Ω) is the space

of functions in H 1(Ω) vanishing on ∂Ω and H(div; Ω) the
space of vector valued function having all the components
and the divergence in L2(Ω). As usual, we denote by (·, ·)
the inner product in L2(Ω), and by || · || its associated norm.

Next, we make structural assumptions on the non-
linearities:

(A1) c, b : R → R differentiable with c′ and b′ Lipschitz
continuous.

(A2) There exists a constant αc such that c′(ξ) > αc,
∀ ξ ∈ R.

(A3) There exists a constant αb such that b′(ξ) > αb,
∀ ξ ∈ R.

(A4) There exists constant km > 0 and kM such that
km ≤ k(ξ) ≤ kM, ∀ξ ∈ Ω .

For the discretization of problem (14), we use continuous
Galerkin finite elements for the displacement variable and
mixed finite elements for the flow variables [24, 42]. More
precisely, we use linear elements (Qd

1) for the displacement
and lowest order Raviart-Thomas (RT) for d = 2, or
Raviart-Thomas-Nedelec (RTN) for d = 3 [17], for the
flow variables: flux and pressure. Backward Euler is used
for the temporal discretization.

Let Kh be a regular decomposition of Ω into quadri-
lateral elements K for d = 2, and hexahedral elements
for d = 3. We use quadrilateral and hexahedral elements
because the implementation in deal.II is tailored to these [4].
We denote the diameter of the element K by hK , and the
global discretization mesh diameter by h := maxK∈Kh

hK .
We introduce the finite element spaces Pp following the
lines of Brezzi and Fortin [17] which are spaces of polyno-
mials of degree p, for each component of the position vector
x. With that, we define the following vector-valued space:

Q
d
p(K) :=

{{
ϕ : K → R

2
∣∣ϕ ∈ Pp(K) × Pp(K)

}
, if d = 2{

ϕ : K → R
3
∣∣ϕ ∈ Pp(K) × Pp(K) × Pp(K)

}
, if d = 3.

which is a space of vector-valued polynomials of degree p

at each component. The continuous Galerkin (cG(1)) space
is defined as:

Vh :=
{
vh ∈ C(Ω)

∣∣∣vh|K ∈ Q
d
1(K), ∀K ∈ Kh

}
.

The mixed finite element (MFEM(0)) spaces are defined
as:

Zh :=
{{

zh ∈ H(div;Ω)
∣∣zh|K ∈ RTN0(K), ∀K ∈ Kh

}
, if d = 2{

zh ∈ H(div;Ω)
∣∣zh|K ∈ RTN0(K), ∀K ∈ Kh

}
, if d = 3,

and

Wh :=
{{

wh ∈ L2(Ω)
∣∣wh|K ∈ P0(K), ∀K ∈ Kh

}
, if d = 2{

wh ∈ L2(Ω)
∣∣wh|K ∈ P0(K), ∀K ∈ Kh

}
, if d = 3.
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The spaces cG(1) and MFEM(0) are not uniformly inf-
sup stable for poromechanics problems. However, a small
enough h can be used to avoid oscillations [50].

For N ∈ N, we discretize the time interval uniformly and
define the time step τ = T

N
and tn = nτ . We use the index

n for the primary variables un, qn, and pn at corresponding
time step tn. In this way, the fully discrete weak problem
reads:

For n ≥ 1 and given
(
un−1

h ,qn−1
h , pn−1

h

)
find(

un
h,q

n
h, p

n
h

) ∈ (Vh,Zh, Wh), such that:

(
ε(un

h), ε(vh)
) + (

c(∇ · un
h), ∇ · vh

) − (
(αpn

h, ∇ · vh

) = (ρbg, vh),

(
K−1qn

h, zh

)
− (

pn
h, ∇ · zh

) = (
ρf g, zh

)
,

(
b(pn

h) − b(pn−1
h ), wh

)
+

(
α∇ · (un

h − un−1
h ), wh

)

+τ
(∇ · qn

h,wh

) = τ(Sf , wh),

(16)

for all (vh, zh, wh) ∈ (Vh,Zh, Wh).
Following the notation previously introduced, we denote

by n the time level, whereas i will refer to the iteration
number of the Newton method. We further denote the
approximate solution of the linearized problem (16) by
(un,i

h ,qn,i
h , p

n,i
h ). At this stage, we can introduce the

notations:

en,i
u = un,i

h − un
h,

en,i
q = qn,i

h − qn
h,

e
n,i
p = p

n,i
h − pn

h.

These will be used subsequently in the convergence analysis
of the monolithic Newton method and the alternate version.
For the monolithic and splitting L-scheme, the convergence
analysis can be found in [11].

4.1 Convergence analysis of themonolithic Newton
solver

In this section, we analyze the monolithic Newton solver
introduced in Section 3 used for solving the Biot model
under small deformation given in Eq. 16. As we have
previously stated, we perform the analysis for the case
of small deformation. Here, we present a variational
formulation of the scheme and demonstrate its quadratic
convergence in a rigorous manner. The monolithic Newton
solver reads as follows:

For i = 1, 2, . . . solve:
(
ε(un,i

h ), ε(vh)
)

+
(
c(∇ · un,i−1

h ) + c′(∇ · un,i−1
h )∇ · δun,i

h ,∇ · vh

)

−
(
αp

n,i
h ,∇ · vh

)
= (ρbg, vh),

(
K−1qn,i

h , zh

)
−

(
p

n,i
h ,∇ · zh

)
= (

ρf g, zh

)
,

(
b(p

n,i−1
h ) + b′(pn,i−1

h )δp
n,i
h − b(pn−1

h ), wh

)

+
(
α∇ · (un,i

h − un−1
h ), wh

)

+τ
(
∇ · qn,i

h , wh

)
= τ(Sf ,wh), (17)

∀ (vh, zh, wh) ∈ (Vh,Zh, Wh), where the initial approxima-
tion (un,0

h qn,0
h , p

n,0
h ) is taken as the solution at the previous

time step, that is (un−1
h ,qn−1

h , pn−1
h ).

In order to prove the convergence of the monolithic
Newton solver, the following lemma will be used.

Lemma 1 If f : R → R is differentiable and f ′ is Lipschitz
continuous, then there holds:

|f (x)−f (y)+f ′(y)(y−x)| ≤ Lf ′

2
|y−x|2, ∀ x, y ∈ R,

and Lf ′ the Lipschitz costant of f ′.

The proof can be found at p. 350 in [32], for example.
Next, the following result provides the quadratic

convergence of the Newton method (17) for τ sufficiently
small.

Theorem 1 Assuming (A1)–(A4), the monolithic Newton

solver in Eq. 17 converges quadratically if τ = O(h
d
2 ).

Proof By subtracting Eq. 16 from Eq. 17, taking as test
functions en,i

u , en,i
q , and e

n,i
p and rearranging some terms to

the right-hand side we obtain:
(
ε(en,i

u ), ε(en,i
u )

)
+

(
c′(∇ · un,i−1

h )∇ · en,i
u , ∇ · en,i

u

)

−
(
αen,i

p ,∇ · en,i
u

)

=
(
c(∇ · un

h) − c(∇ · un,i−1
h ) + c′(∇ · un,i−1

h )∇
·en,i−1
u ,∇ · en,i

u

)
, (18)

(
K−1en,i

q , en,i
q

)
−

(
en,i
p ,∇ · en,i

q

)
= 0, (19)

(
b′(pn,i−1

h )
(
p

n,i
h − pn

h

)
, en,i

p

)
+

(
α∇ · en,i

u , en,i
p

)

+τ
(
∇ · en,i

q , en,i
p

)

=
(
b(p

n,i−1
h ) − b(pn−1

h ) + b′(pn,i−1
h )

(
p

n,i−1
h − pn

h

)
, en,i

p

)
, (20)
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where we have rewritten:

c′(∇ · un,i−1
h )∇ · δun,i

h = c′(∇ · un,i−1
h )∇ · (un,i

h − un,i−1
h )

= c′(∇ · un,i−1
h )(∇ · un,i

h − ∇ · un
h)

−c′(∇ · un,i−1
h )(∇ · un,i−1

h − ∇ · un
h)

= c′(∇ · un,i−1
h )

(
∇ · en,i

u − ∇ · en,i−1
u

)
,

We obtain an analogous expression for the term with
b′(·). From (A1), c(·) is differentiable with c′(·) Lipschitz
continuous, then from Lemma 1 we have:

|c(x) − c(y) + c′(y)(y − x)| ≤ Lc′

2
|x − y|2, ∀ x, y ∈ R,

(21)

where Lc′ represents the Lipschitz constant of c′(·). Then,
by using Young’s inequality (a, b) ≤ ||a||2

2γ
+ γ ||b||2

2
, for

γ ≥ 0, and by choosing x = ∇ · un
h and y = ∇ · un,i−1

h

in Eq. 21, from Eq. 18 we obtain the following bound, for
any γ ≥ 0:

||ε(en,i
u )||2 +

(
c′(∇ · un,i−1

h )∇ · en,i
u , ∇ · en,i

u

)
−

(
αen,i

p , ∇ · en,i
u

)

≤ L2
c′

8γ
||∇ · en,i−1

u ||4
L4(Ω)

+ γ

2
||∇ · en,i

u ||2. (22)

Next, by using the inverse inequality for discrete spaces
|| · ||L4(Ω) ≤ Ch−d/4|| · || [16], (p. 111) the latter reads:

||ε(en,i
u )||2 +

(
c′(∇ · un,i−1

h )∇ · en,i
u , ∇ · en,i

u

)
−

(
αen,i

p , ∇ · en,i
u

)

≤ C1h
−d

L2
c′

8γ
||∇ · en,i−1

u ||4 + γ

2
||∇ · en,i

u ||2. (23)

Finally, by using (A2) and choosing γ = αc, we obtain
the following inequality:

||ε(en,i
u )||2 +αc

2
||∇ · en,i

u ||2 −
(
αen,i

p , ∇ · en,i
u

)

≤ C1h
−d

L2
c′

8αc

||∇ · en,i−1
u ||4. (24)

In a similar way, we obtain the following expression from
Eq. 20:

τ
(
∇ · en,i

q , en,i
p

)
+αb

2
||en,i

p ||2 +
(
α∇ · en,i

u , en,i
p

)

≤ C2h
−d

L2
b′

8αb

||en,i−1
p ||4. (25)

Adding Eqs. 24, 25, and 19 multiplied by τ yields:

||ε(en,i
u )||2 + αc

2
||∇ · en,i

u ||2 + αb

2
||en,i

p ||2 + τ
(
K−1en,i

q , en,i
q

)

≤ C1h
−d

L2
c′

8αc

||∇ · en,i−1
u ||4 + C2h

−d
L2
b′

8αb

||en,i−1
p ||4. (26)

By defining αc,b = min
(
1, αc, αb, τ

kM

)
and Cc,b =

max

(
C1L

2
c′

αc
,

C2L
2
b′

αb

)
, we can rewrite Eq. 26 as:

‖∇ · en,i
u ‖2 + ‖en,i

p ‖2 ≤ Cc,bh−d

αc,b

(
‖∇ · en,i−1

u ‖4 + ‖en,i−1
p ‖4

)
. (27)

Using ‖∇ · en,0
u ‖ ≤ Cτ , ‖en,0

p ‖ ≤ Cτ (which can be
proven), the quadratic convergence of Newton’s method is
ensured if:

Cc,bh−d

αc,b

τ 2 ≤ 1

which holds true for τ 2h−d = O(1), i.e. τ = O(h
d
2 ).

4.2 Convergence analysis of the alternate Newton
solver

In this section, we present the splitting Newton solver for
solving the non-linear Biot model given in Eq. 16. We
present the solver in a variational form and demonstrate its
linear convergence.

Let i ≥ 1, Ls ≥ 0 and (un,i−1
h ,qn,i−1

h , p
n,i−1
h ) ∈

(Vh,Zh, Wh) be given.

Step 1: Find (qn,i
h , p

n,i
h ) ∈ (Zh, Wh) such that:

(
K−1qn,i

h , zh

)
−

(
p

n,i
h , ∇ · zh

)
= (

ρf g, zh

)
,

(
b(p

n,i−1
h ) + b′(pn,i−1

h )δp
n,i
h − b(pn−1

h ), wh

)

+τ
(
∇ · qn,i

h , ∇wh

)

+
(
α∇ · (un,i−1

h − un−1
h ), wh

)
= τ(Sf , wh), (28)

∀ (zh, wh) ∈ (Zh, Wh)

Step 2: Find un,i
h ∈ Vh such that:

(
ε(un,i

h ), ε(vh)
)

+
(
c(∇ · un,i−1

h ) + c′(∇ · un,i−1
h )∇

·δun,i
h , ∇ · vh

)

+
(
Ls∇ · δun,i

h , ∇ · vh

)
−

(
αp

n,i
h , ∇ · vh

)
= (ρbg, vh), (29)

∀vh ∈ Vh.
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Table 2 Test cases with different non-linear compressibility b(·) and
non-linear volumetric strain for c(·)
Case b(p) c(∇ · u)

1 ep (∇ · u)3 + ∇ · u
2 ep (∇ · u)3

3 ep 3
√

(∇ · u)5 + ∇ · u
4 p2 ∇ · u2

Theorem 2 Assuming (A1)–(A4) and Ls ≥ α2

αb
, the

alternate Newton solver in Eqs. 28–29 converges linearly if
τ is small enough.

Proof The proof is similar to that of Theorem 1. Neverthe-
less, for the sake of completion, we give it in Appendix A.

5 Numerical examples

In this section, we present numerical experiments that
illustrate the performance of the proposed iterative solvers.
We study two test problems: a 2D academic problem

with a manufactured analytical solution, and a 3D large
deformation case on a unit cube. All numerical experiments
were implemented using the open-source finite element
library Deal II [4]. For all numerical experiments, a
Backward Euler scheme has been used for the time
discretization. We consider continuous Galerkin cG(1) for
u and lowest order of mixed finite element MFEM(0) for
q and p. However, we would like to mention that any
stable discretization can be considered instead. We define
the iterative difference ε at iteration i as follows:

εi := ‖pi − pi−1‖ + ‖qi − qi−1‖ + ‖ui − ui−1‖,

and as a stopping criterion for the solvers, we use εi ≤ 10−8.
This stopping criterion is sufficient since the convergence
results from Theorems 1 and 2 can also be obtained with
this iterative difference [11].

Test problem 1: an academic example for Biot’s model
under small deformation

We solve the non-linear Biot problem under small
deformation in the unit-square Ω = (0, 1)2 and until final
time T = 1. This test case was proposed in [11] to study the

Fig. 1 Iterative difference εi at last time step t = 1: to the right b(p) = ep , c(∇ · u) = 3√u5 + ∇ · u, to the left b(p) = p2, c(∇ · u) = (∇ · u)2
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Fig. 2 Number of iteration for different time steps size at last time step t = 1: to the right b(p) = ep , c(∇ · u) = 3√u5 + ∇ · u, to the left
b(p) = p2, c(∇ · u) = (∇ · u)2

performance of the monolithic and splitting L-scheme. We
extend the Newton method and the alternate Newton method
described in Section 4.

Here, we use a manufactured right-hand side such that
the problem admits the following analytical solution:

p(x, y, t) = tx(1 − x)y(1 − y), q(x, y, t) = −k∇p,

u1(x, y, t) = u2(x, y, t) = tx(1 − x)y(1 − y),

which it has homogeneous boundary values for p and u.
For small deformations and vanishing rotations, there

is no distinction between the reference and the deformed
domains. In this regard, we solve problem (16) using the
iterative solvers proposed in Section 4. The mesh size and
the time step are set as h = τ = 0.1. For this case, all initial

Table 3 Boundary conditions for Traction and Rotation case
respectively

Face Flow Mechanics

Top p = 0 u = (R(θ(t)) − I) X0

Bottom p = 0 u · n = 0

Lateral p = 0 � · n = 0

conditions are zero. The linearization parameters Lp and Lu

are equal to the Lipschitz constant Lb and Lc corresponding
to the non-linearities b(·) and c(·) [11].

Fig. 3 Magnitude of the deformation field at final time t = 1 for test
problem 2
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Fig. 4 Iterative difference εi at the last time step t=1 for test problem 2

In order to study the performance of the considered
solvers, we propose in Table 2 several test cases with dif-
ferent non-linear compressibility b(·) and non-linear volu-
metric strain for c(·). Figure 1 shows the performance of the
numerical methods at the last time step T = 1. The mono-
lithic Newton method shows quadratic convergence in all
cases. Nevertheless, the alternate Newton and the L-scheme
methods show linear convergence as predicted in Section 4.

Figure 2 shows the performance of the considered solvers
for different time steps. The Newton method has better
convergence for smaller time steps while the L-scheme has
it for larger time steps; all this is in agreement with the
Theorems 1 and 2. The performance of the solvers are
independent of the mesh discretization.

Test problem 2: a unit cube under large deformation

We now solve a large deformation problem on the unit
cube Ω = (0, 1)3. A Lagrangian frame of reference is
necessary to keep track of the deformed domainΩt at time t .

Fig. 5 Number of iterations at time t = 1.0 using different time step sizes: to the left h = 1/23, and h = 1/24 to the right

We study the performance of the iterative solvers presented
in Section 3 for solving Eq. 4. The material is supposed to be
isotropic, with constant Lamé parametersμ and a non-linear
volumetric strain c(·).

We will compare the iterative solvers for a torsion case
on a unit cube. On the top face, we apply the rotation
tensor R(θ) of a time-dependent angle θ(t) = π/4 t , which
gives a rotation of π/4 at T = 1. We set homogeneous
initial condition for (q0, p0) and ∇u0 = (R(θ) − I). In the
alternate Newton method, the stabilization parameter is set
to Ls = 1. In the L-scheme method, the linearization tensor
parameters are set as follows: Lu = ∂u� (∇u0, p0) , Lp =
∂p� (∇u0, p0) , Lq = ∂pK (∇u0) , Lp = ∂pΓ (∇u0, p0),
and Lu = ∂uΓ (∇u0, p0). The mesh size and the time step
are set as h = τ = 2−3. We denote by top face of the unit
cube the region z = 1, the bottom face z = 0, and the lateral
faces are x = 0, x = 1, y = 0, and y = 1. The boundary
conditions are listed in Table 3 and the magnitude of the
displacement field is shown in Fig. 3.

We compare the performance of the iterative solvers
proposed in Section 3, and we observe that the numerical
convergence is in accordance with the theory developed
in Section 4, even though the analysis is done for
small deformation. The monolithic Newton solver shows
quadratic convergence and the alternate Newton solver
shows linear convergence (see Fig. 4). None of these solvers
is affected by the time step or mesh size. In contrast, the
monolithic L-scheme shows a higher number of iteration
for larger time steps (see Fig. 5). All splitting solvers have a
slightly faster convergence when the stability term is used
(we use Ls = 1.0).

6 Conclusions

We considered Biot’s model under small and large
deformations. Different solvers based on the L-scheme
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and Newton’s method, in combination with monolithic
and splitting schemes, were presented. The only quadratic
convergent scheme is the monolithic Newton solver. The
splitting Newton solver requires a stabilization parameter,
otherwise the linear convergence cannot be guaranteed. The
monolithic and alternate Newton solvers are robust with
respect to the mesh size and time step size. The analysis
of the solvers and illustrative numerical experiments were
presented. We tested the performance of the solvers on two
test problems: a unit square under small deformation and a
unit cube under large deformation.
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Appendix A: Convergence proof
of the alternate Newtonmethod

The following result provides the linear convergence of the
alternate Newton method in Eqs. 28 and 29 for τ sufficiently
small. In order to prove convergence , the following lemmas
will be used.

Lemma 2 Let {xk}k≥0 be a sequence of real positive
number satisfying:

xn ≤ ax2
k−1 + bxk−1 ∀n ≥ 1, (30)

where a, b ≥ 0. Assuming that

ax2
0 + b ≤ 1

holds, then the sequence {xk}k≥0 converges to zero.

The result can be shown by induction; see p. 52 in [45]
for more details.

Theorem 3 Assuming (A1)–(A4) and Ls ≥ α2

αb
, the

alternate Newton splitting method in Eqs. 28 and 29
converges linearly if τ is small enough.

Proof By subtracting problems Eqs. 28 and 29 and
16, taking as test functions en,i

q , e
n,i
p , and en,i

u , and
rearranging some elements to the right-hand side we
obtain:

(
K−1en,i

q , en,i
q

)
−

(
en,i
p , ∇ · en,i

q

)
= 0, (31)

(
b′(pn,i−1

h )(pn
h − p

n,i
h ), en,i

p

)
+

(
α∇ · en,i−1

u , en,i
p

)
+ τ

(
∇ · en,i

q , en,i
p

)

=
(
b(pn

h) − b(p
n,i−1
h ) − b′(pn,i−1

h )(pn
h − p

n,i−1
h ), en,i

p

)
. (32)

The mechanics equation then gives:

(
ε(en,i

u ), ε(en,i
u )

)
+

(
c′(∇ · un,i−1

h )∇ · en,i
u , ∇ · en,i

u

)

+Ls

(
∇ · δun,i

h , ∇ · en,i
u

)
−

(
αen,i

p , ∇ · en,i
u

)

=
(
c(∇ · un

h) − c(∇ · un,i−1
h ) + c′(∇ · un,i−1

h )∇
·en,i−1
u , ∇ · en,i

u

)
. (33)

By using similar steps as in Theorem 1, we obtain the
following:

||ε(en,i
u )||2 +

(
c′(∇ · un,i−1

h )∇ · en,i
u , ∇ · en,i

u

)

+Ls

(
∇ · (en,i

u − en,i−1
u ), ∇ · en,i

u

)
−

(
αen,i

p , ∇ · en,i
u

)

≤ L2
c′

8γ1
||∇ · en,i−1

u ||4
L4(Ω)

+ γ1

2
||∇ · en,i

u ||2. (34)

Next, by using the inverse inequality || · ||L4(Ω) ≤
Ch−d/4|| · || [16], and by using the following formula

(x − y, x) = ||x||2
2

+ ||x − y||2
2

− ||y||2
2

, by choosing

x = ∇ · eun,i and y = ∇ · en,i−1
u , we obtain from Eq. 34:

||ε(en,i
u )||2 +

(
c′(∇ · un,i−1

h )∇ · en,i
u ,∇ · en,i

u

)

+Ls

2
||∇ · (en,i

u − en,i−1
u )||2

Ls

2
||∇ · en,i

u ||2 −
(
αen,i

p ,∇ · en,i
u

)
+ ≤ C1h

−d
L2
c′

8γ1
||∇ · en,i−1

u ||4

+γ1

2
||∇ · en,i

u ||2 + Ls

2
||∇ · en,i−1

u ||2. (35)

Finally, by reorganizing Eq. 35, using (A2) and choosing
γ1 = αc, we obtain the following inequality:

||ε(en,i
u )||2 +

(
αc + Ls

2

)
||∇ · en,i

u ||2 + Ls

2
||∇ · δen,i

u ||2

≤ C1h
−d

L2
c′

8αc

||∇ · en,i−1
u ||4 + Ls

2
||∇ · en,i−1

u ||

+
(
αen,i

p , ∇ · en,i
u

)
. (36)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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In a similar way, we obtain the following expression
from Eq. 20:

τ

kM

||en,i
q ||2+αb

2
||en,i

p ||2 ≤ C2h
−d

L2
b′

8αb

||en,i−1
p ||4−α

(
∇ · en,i−1

u , en,i
p

)
.

(37)

Adding Eqs. 36 and 37 yields:

τ

kM

||en,i
q ||2 + αb

2
||en,i

p ||2 + ||ε(en,i
u )||2 + Ls

2
||∇ · δen,i

u ||2

+
(

αc + Ls

2

)
||∇ · en,i

u ||2

≤ C2h
−d

L2
b′

8αb

||en,i−1
p ||4 + C1h

−d
L2
c′

8αc

||∇ · en,i−1
u ||4

+Ls

2
||∇ · en,i−1

u ||2 +
(
α∇ · δen,i

u , en,i
p

)
. (38)

By using Young’s inequality (a, b) ≤ ||a||2
2γ

+ γ ||b||2
2

,

for γ > 0 and choosing b = e
n,i
p and a = ∇ · δen,i

u , we
bound the coupling term (for γ2 > 0):

(
α∇ · δen,i

u , en,i
p

)
≤ α2

2γ2
||∇ · δen,i−1

u ||2 + γ2

2
||en,i

p ||2. (39)

Then by using Eq. 39 and choosing γ2 = αb
2 , we obtain

from Eq. 38:

τ

kM

||en,i
q ||2 + αb

4
||en,i

p ||2 + ||ε(en,i
u )||2+

(
Ls

2
− α2

2αb

)
||∇ · δen,i

u ||2

+
(

αc + Ls

2

)
||∇ · en,i

u ||2 ≤ h−d

8

(
C2

L2
b′

αb

||en,i−1
p ||4

+C1
L2
c′

αc

||∇ · en,i−1
u ||4

)

+Ls

2
||∇ · en,i−1

u ||2. (40)

Since Ls ≥ α2

αb
, we obtain:

τ

kM

||en,i
q ||2 + αb

4
||en,i

p ||2 +
(

αc + Ls

2

)
||∇ · en,i

u ||2

≤ h−d

8

(
C2

L2
b′

αb

||en,i−1
p ||4 + C1

L2
c′

αc

||∇ · en,i−1
u ||4

)

+Ls

2
||∇ · en,i−1

u ||2. (41)

By using ||∇ · en,0
u || ≤ Cτ , ||en,0

p || ≤ Cτ which can be
proven and the estimate in Lemma 2, the convergence is

ensured if τ = O(h
d
2 ).
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