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Abstract
Adipose-derived stem cells (ASC) have been used as an alternative to bone marrow mesenchymal stem cells (BMSC) for bone 
tissue engineering. However, the efficacy of ASC in bone regeneration in comparison with BMSC remains debatable, since 
inconsistent results have been reported. Comparing ASC with BMSC obtained from different individuals might contribute 
to this inconsistency in results. Therefore, this study aimed to compare the bone regenerative capacity of donor-matched 
human ASC and BMSC seeded onto poly(l-lactide-co-ε-caprolactone) scaffolds using calvarial bone defects in nude rats. 
First, donor-matched ASC and BMSC were seeded onto the co-polymer scaffolds to evaluate their in vitro osteogenic dif-
ferentiation. Seeded scaffolds and scaffolds without cells (control) were then implanted in calvarial defects in nude rats. 
The expression of osteogenesis-related genes was examined after 4 weeks. Cellular activity was investigated after 4 and 
12 weeks. Bone formation was evaluated radiographically and histologically after 4, 12, and 24 weeks. In vitro, ASC and 
BMSC demonstrated mineralization. However, BMSC showed higher alkaline phosphatase activity than ASC. In vivo, human 
osteogenesis–related genes Runx2 and collagen type I were expressed in defects with scaffold/cells. Defects with scaffold/
BMSC had higher cellular activity than defects with scaffold/ASC. Moreover, bone formation in defects with scaffold/BMSC 
was greater than in defects with scaffold/ASC, especially at the early time-point. These results suggest that although ASC 
have the potential to regenerate bone, the rate of bone regeneration with ASC may be slower than with BMSC. Accordingly, 
BMSC are more suitable for bone regenerative applications.
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Introduction

Repair of skeletal defects resulting from trauma, degen-
erative diseases, and tumor resection remains a medical 
challenge. Cell-based tissue engineering using mesenchy-
mal stem cells (MSC) has emerged as a new approach 

for regeneration of damaged skeletal tissues. MSC are 
undifferentiated multipotent cells of mesenchymal origin 
with self-renewal capacity and potential to differentiate 
into cells of mesenchymal origin when exposed to specific 
growth signals (Shanti et al. 2007). MSC play a central 
role in maintenance and regeneration of body tissues, and 
these cells can be isolated from different body organs and 
tissues (Beane and Darling 2012). Bone marrow MSC 
(BMSC) have been widely used in tissue engineering 
(Marolt et al. 2010). However, limited amounts of MSC 
exist in bone marrow, as they represent only 0.001–0.01% 
of the nucleated cells (Pittenger et al. 1999). This has led 
to an increased interest in MSC from other sources, espe-
cially adipose tissue. Adipose-derived stem cells (ASC) 
exist in large amounts and can be isolated from adipose 
tissue from multiple sites with minimum discomfort for 
the patients (Fraser et al. 2006; Raposio et al. 2016). ASC 
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share morphology and immunophenotype characteristics 
with BMSC, and like BMSC, ASC have multilineage dif-
ferentiation capacity and a great potential for regenerative 
applications (Mizuno et al. 2012).

For bone tissue engineering (BTE) applications, the effi-
cacy of BMSC in regenerating bone has been investigated in 
many in vivo studies (Dang et al. 2017; Kanczler et al. 2008; 
Koob et al. 2011; Zong et al. 2010). Similarly, the in vivo 
bone regenerative capacity of ASC has been studied (Levi 
et al. 2010; Peña González et al. 2016; Yoon et al. 2007). 
Previous studies have also compared the in vivo capacity of 
ASC and BMSC in bone regeneration to evaluate the effect 
of these MSC for BTE (Bothe et al. 2018; Degano et al. 
2008; Freitas et al. 2019; Jo et al. 2013; Kang et al. 2012; 
Kargozar et al. 2018; Kim et al. 2014; Lin et al. 2009; Nie-
meyer et al. 2010; Stockmann et al. 2012; Walmsley et al. 
2016; Wen et al. 2013; Xu et al. 2017). Many of these stud-
ies reported similar bone regenerative ability of ASC and 
BMSC (Degano et al. 2008; Freitas et al. 2019; Jo et al. 
2013; Kang et al. 2012; Kim et al. 2014; Lin et al. 2009; 
Stockmann et al. 2012; Walmsley et al. 2016; Wen et al. 
2013), whereas a greater in vivo capacity of BMSC in bone 
regeneration was reported in other studies (Bothe et al. 2018; 
Kargozar et al. 2018; Lin et al. 2009; Niemeyer et al. 2010; 
Xu et al. 2017). However, only a limited number of these 
in vivo studies compared human ASC and BMSC (Bothe 
et al. 2018; Degano et al. 2008; Jo et al. 2013; Kargozar 
et al. 2018; Kim et al. 2014; Wen et al. 2013; Xu et al. 2017), 
and most of these studies compared human ASC and BMSC 
from different individuals, which might influence the results 
(Mohamed-Ahmed et al. 2018). Therefore, comparing the 
in vivo bone regenerative capacity of donor-matched human 
BMSC and ASC should provide more reliable results.

Scaffold, which act as a carrier and provide structural 
support for cells, must be osteoconductive to be used in 
BTE. This means that bone cells can adhere to the scaf-
fold, produce extracellular matrix (ECM), and eventually 
form bone on the surface and inside the pores of the scaf-
folds (Albrektsson and Johansson 2001). Synthetic poly-
mers have been used for scaffold production (Hutmacher 
2000). Among different polymers, poly(l-lactide-co-ε-
caprolactone) (poly(LLA-co-CL)) scaffolds have been exten-
sively investigated by our group, both in vitro and in vivo, 
and their suitability for BTE applications has been dem-
onstrated (Dånmark et al. 2010; Idris et al. 2010a, 2010b; 
Xing et al. 2013; Yassin et al. 2017). In a previous study, 
we compared donor-matched ASC and BMSC in terms of 
proliferation and differentiation under two-dimensional (2D) 
conditions (Mohamed-Ahmed et al. 2018). However, 2D 
conditions do not represent the in vivo three-dimensional 
(3D) environment (Fitzgerald et al. 2015). Therefore, the aim 
of this study was to compare the bone regenerative capac-
ity of donor-matched human ASC and BMSC seeded onto 

poly(LLA-co-CL) scaffolds using critical-size calvarial bone 
defects in nude rats.

Material and methods

Isolation and expansion of human ASC and BMSC

Subcutaneous adipose tissues and bone marrow aspirates 
were obtained from three young donors (female 8 years; 
males 9 and 12 years) at the Department for Plastic, Hand, 
and Reconstructive Surgery, National Fire Damage Center, 
Bergen, Norway, with informed parental consent. ASC were 
isolated as previously described (Mohamed-Ahmed et al. 
2018). In brief, after washing with phosphate-buffered saline 
(PBS) (Invitrogen, Carlsbad, CA, USA) with 5% antibiot-
ics (penicillin/streptomycin; GE Healthcare Life Sciences, 
South Logan, UT, USA), adipose tissue was digested with 
0.1% collagenase type I (Worthington Biochemical Corpo-
ration Lakewood, NJ, USA) in PBS for 60 min. An equal 
amount of culture medium (Dulbecco’s modified Eagle’s 
medium (DMEM) (Invitrogen) with 10% fetal bovine serum 
(FBS) (Hyclone, GE Healthcare Life Sciences) and 1% anti-
biotics) was added to neutralize the collagenase before cen-
trifugation at 2000 rpm for 5 min. Supernatant was removed 
and the pellet was suspended in culture medium and cultured 
in a 75-cm2 culture flask (NUNC™, Thermo Fisher Scien-
tific, Waltham, MA, USA). BMSC were isolated as previ-
ously described (Mohamed-Ahmed et al. 2018). In brief, 
after filtering the aspirate with a 70-μm cell strainer (Fisher 
Scientific, Hampton, NH, USA), the aspirate was diluted 
with an equal amount of culture medium and then centri-
fuged at 1800 rpm for 10 min. The supernatant was removed 
and the cell pellet was suspended in culture medium and 
cultured in a 75-cm2 culture flask. ASC and BMSC were 
incubated under humidified conditions at 37 °C with 5% 
 CO2. Cells were then washed with PBS after 24 h, before 
culture medium again was added, and then changed twice 
a week. BMSC and ASC were subcultured at a density of 
5 × 103 cells/cm2, and cells at passage 4 were used in this 
study.

Characterization of ASC and BMSC

ASC and BMSC were characterized based on expression of 
the surface markers, CD34, CD45, CD73, CD90, CD105, 
HLA-DR (BD Biosciences, San Jose, CA, USA), and Stro-1 
(Santa Cruz Biotechnology, Dallas, TX, USA) according to 
manufacturer’s recommendations. Samples without mono-
clonal antibodies were used as control. Flow cytometry was 
performed in a BD LSRFortessa Cell Analyzer (BD Bio-
sciences). Flow cytometry data were analyzed using analysis 
software (FlowJo V10, Flowjo, LLC, Ashland, OR, USA).
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Scaffold fabrication and preparation

Poly(LLA-co-CL) scaffolds were fabricated using a sol-
vent casting-particulate leaching method as previously 
described (Danmark et al. 2011). Briefly, required amounts 
of monomer, initiator, and catalysts were bulk polymer-
ized for 72 h at 110 °C in an inert atmosphere. The formed 
copolymer was precipitated in cold hexane and methanol 
three times. The copolymer was dissolved in chloroform 
and poured into a glass mold containing sodium chlo-
ride. After evaporation of the solvent, salt particles were 
leached by soaking in deionized water and the salt-free 
scaffolds were vacuum dried. The scaffolds were porous 
with 90–500 μm pore size and high interconnectivity. For 
sterilization, scaffolds were exposed to a dose of 2.5 Mrad 
electron beam radiation from a pulsed electron accelera-
tor (Mikrotron, Acceleratorteknik, Stockholm, Sweden) 
at 6.5 meV, in an inert atmosphere (Danmark et al. 2011). 
Porous scaffolds of 5 mm diameter and 1.2 mm thickness 
were placed in a 96-well plate (NUNC™, Thermo Fisher 
Scientific, Waltham, MA, USA) and pre-wetted overnight 
with culture medium under humidified conditions at 37 °C 
with 5%  CO2 before seeding of cells.

Cell attachment and in vitro proliferation

ASC and BMSC were seeded onto scaffolds at a seeding 
density of 1 × 105 cells/scaffold for the in vitro experi-
ments. Preparations of scaffold/ASC and scaffold/BMSC 
were incubated under humidified conditions at 37 °C with 
5%  CO2. To investigate attachment of cells after 1 day, 
scaffold/ASC and scaffold/BMSC were fixed in 3% glu-
taraldehyde (Merck, Readington, NJ, USA), dehydrated 
in graded ethanol solutions, vacuum dried, and sputter-
coated with platinum. Scaffolds were then imaged using a 
scanning electron microscope (SEM) (Jeol, Tokyo, Japan) 
at 5 kV. After 1 day of seeding, seeded scaffolds were 
cultured in osteogenic medium (culture medium supple-
mented with 0.05 mM l-ascorbic acid 2-phosphate, 10 nM 
dexamethasone, and 10 mM β glycerophosphate (Sigma-
Aldrich)). In vitro cell proliferation was evaluated at days 
1, 7, 10, and 14 using Quant-iT™ PicoGreen™ dsDNA 
Assay Kit (Invitrogen). Cells were lysed with 200 µl of 
0.1% Triton-X100 buffer (Sigma-Aldrich, St. Louis, MO, 
USA), followed by two freezing-thawing cycles at − 80 °C. 
Equal amounts of lysate solution and PicoGreen dye were 
added into a 96-well plate, and fluorescence intensity was 
measured using a microplate reader (FLUOstar OPTIMA, 
BMG Labtech, Offenburg, Germany) at 485 nm excitation 
and 525 nm emission. A DNA standard curve was made 
using solutions with known DNA concentration.

Evaluation of in vitro osteogenic differentiation

To evaluate the in vitro osteogenic capacity of ASC and 
BMSC, culture medium was replaced with osteogenic 
medium 1 day after seeding. As control, seeded scaffolds 
were cultured in normal culture medium. Alkaline phos-
phatase (ALP) was measured using p-Nitrophenyl Phos-
phate Liquid Substrate System (Sigma-Aldrich) at days 3, 
7, and 14. Samples were lysed in 0.1% Triton-X100 buffer, 
followed by two freezing-thawing cycles at − 80 °C. Equal 
amounts of lysate solution and p-Nitrophenyl Phosphate 
Liquid Substrate were added into a 96-well plate, incu-
bated for 30 min at 37 °C, and absorbance was measured 
using the microplate reader at 405 nm. To assess calcium 
deposition after 21 days, scaffold/cells were fixed with 4% 
paraformaldehyde (Merck), stained with 2% Alizarin red S 
(Sigma-Aldrich) for 30 min, washed, and left to dry over-
night. The stain was dissolved in cetylpyridinium chloride 
(Sigma-Aldrich) for quantification using a microplate reader 
at 540 nm absorbance.

In vivo experiment design

ASC and BMSC were cultured in osteogenic medium 
for 4 days before seeding onto scaffolds at a density of 
1 × 106 cells/scaffold. The scaffolds were then shaken on 
an orbital shaker (Eppendorf, Hamburg, Germany) for 30 s. 
Scaffold/ASC and scaffold/BMSC were incubated over-
night under humidified conditions at 37 °C with 5%  CO2 
before implantation. Twenty-six 10-week-old female nude 
rats, weighing 250–300 g, were anesthetized with sevo-
flurane (SevoFlo®, Abbott Laboratories Ltd, Berkshire, 
UK) and  O2 gas mixture using a custom-made mask. The 
surgical site was shaved and scrubbed with chlorhexidine 
(HiBiSCRUB®, Regent Medical Ltd, Lancashire, UK) 
before making a 2-cm sagittal incision in the midline using 
a sterile scalpel (B. Braun, Melsungen, Germany). Calvaria 
were exposed after dissection and periosteal elevation. Two 
defects, 5 mm diameter (one defect in each parietal bone), 
were carefully created in each rat using a saline-cooled tre-
phine drill (Hager & Meisinger GmbH, Neuss, Germany), 
leaving the dura mater undamaged. Scaffold/ASC, scaffold/
BMSC, and pre-wetted scaffolds without cells (control) were 
randomly implanted in the 52 defects. The periosteum and 
skin were sutured with interrupted stitches (VICRYL®, 
Ethicon, Somerville, NJ, USA). The rats were injected 
subcutaneously with Buprenorphine (Temgesic 0.3 mg/kg, 
Indivior UK LTD, Berkshire, UK) as postoperative analge-
sia. After recovery from anesthesia, the health of the rats 
was regularly monitored. The rats were euthanized by an 
overdose of  CO2 at weeks 4 and 24, and the calvaria were 
harvested and kept in RNAlater (Invitrogen) at − 80 °C for 
further investigations.
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Real‑time quantitative polymerase chain reaction 
(qPCR)

RNA was extracted from the week 4 samples using a Max-
well® 16 LEV simplyRNA kit (Promega, Madison, WI, 
USA). RNA amount and purity were measured using Nan-
odrop ND-1000 Spectrophotometer (Nanodrop Technolo-
gies, Wilmington, DE, USA). cDNA was synthesized using 
a High-Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems, Foster City, CA, USA). Real-time qPCR, 
using TaqMan Fast Universal PCR Master Mix (Applied 
Biosystems), was completed using a Stepone™ Real-Time 
PCR System (Applied Biosystems). The expression of the 
osteogenesis-related human genes runt-related transcrip-
tion factor 2 (Runx2) (Hs00298328_s1) and collagen type 
I (Hs00164099_m1) and rat genes Runx2 (Rn01512298_
m1) and collagen type I (Rn01463848_m1) was detected. 
Human (Hs02758991_g1) and rat (Rn01749022_g1) glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH) genes 
were used as an endogenous control. All primers were from 
Applied Biosystems. The expression of the rat genes was 
presented relative to control (scaffolds without cells) while 
the expression of the human genes was presented relative to 
scaffold/BMSC. Data were analyzed by the  2−Δ∆CT method.

Immunofluorescence staining of the human nuclei 

Sections from the week 4 samples were processed for immu-
nofluorescence staining of the human nuclei. The sections 
were washed twice with 0.1% Tween 20 (Sigma-Aldrich) in 
PBS (TPBS) for 5 min and then blocked for 30 min at room 
temperature with 10% normal goat serum (Dako, Glostrup, 
Denmark) in TPBS. After blocking, the sections were incu-
bated overnight at 4 °C with mouse monoclonal anti-nuclei 
antibody (MAB1281, Millipore, Temecula, CA, USA; dilu-
tion 1:20) in TPBS with 1% goat serum. After two washes 
with TPBS for 5 min, the sections were incubated for 45 min 
at room temperature with goat anti-mouse IgG secondary 
antibody in TBST (Alexa Fluor 488, Life Technologies, 
Carlsbad, CA, USA; dilution 1:250). The sections were then 
washed twice with PBS and stained at room temperature 
with 4′,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich; 
dilution 1:2000) for 5 min. After washing with PBS, images 
were taken using an inverted fluorescent microscope (Nikon 
Eclipse Ti, Tokyo, Japan).

Positron emission tomography/computed 
tomography (PET/CT) imaging

Rats were subjected to 18F-sodium fluoride ((18F)NaF) PET/
CT in vivo imaging on a nanoScan small animal scanner 
(Mediso Medical Imaging System Budapest, Hungary) at 
weeks 4 and 12. During anesthesia, each rat was injected 

with the radioactive tracer (≈ 13.5 (18F)NaF MBq in saline 
solution − total volume 1 ml) through the tail vein. After 
40 min, a PET emission scan of 20 min was performed 
to measure the uptake of the tracer. For attenuation cor-
rection of the PET images, a CT scan of the same ana-
tomical volume as the PET scan was acquired (voxel size 
125 × 125 × 250 μm, energy 50 kV, exposure time 300 ms, 
projections 480, and binning 1:4). CT scanning was also 
used for analysis of bone formation in the defects (voxel 
size 20 × 20 × 20 μm, energy 70 kV, exposure time 300 ms, 
projections 720, and binning 1:1) by evaluating bone den-
sity (BD) and bone volume (BV). PET and CT images were 
reconstructed on a dedicated Mediso workstation. Data were 
analyzed using PMOD software (PMOD Technologies LLC, 
Zurich, Switzerland). Volume-of-interest (VoI) was manu-
ally drawn for each bone defect and was used for both the 
PET and CT quantifications. For the PET, the standardized 
uptake value (SUV) mean, within the VoI, was quantified. 
For the bone formation quantification, an isocontour with a 
threshold of 741 HU within the VoI was applied. The thresh-
old was determined by scanning a dedicated bone mineral 
density phantom (Bruker microCT, Kontich, Belgium). 
Bone formation was quantified and presented as BV nor-
malized to BD.

Micro‑CT scanning

Rat calvaria at weeks 4 and 24 were fixed in 4% paraform-
aldehyde for 24 h. Micro-CT scanning of the calvaria was 
performed using SkyScan1172 (Bruker microCT) for quan-
tification of new bone formation (Vo et al. 2015). Samples 
were scanned with an X-ray source of 60 kV/200 µA, a 
0.5-mm aluminum filter for a 10-µm resolution, and a 0.4° 
rotation step. The projection image was reconstructed using 
NRecon ReconstructionVR CT software (Bruker microCT). 
The quantitative analysis of the image was performed by 
CTan software (Bruker microCT). A global threshold of 
90–255 was applied to all calvaria after determining the 
standardized cylindrical VoI, 5 mm in diameter and 1.3 mm 
in height. Data were reported as the percentage binarized 
object volume measured within this VoI, defined as bone 
volume (BV), tissue volume (TV), and BV/TV.

Histological analysis

After scanning, the rat calvaria harvested at weeks 4 and 
24 were maintained in 10% ethylenediaminetetraacetic acid 
(EDTA) solution (Merck) for 4 weeks for decalcification. 
Calvaria were then cut into two halves. Each defect was 
identified and embedded in paraffin. Serial sections of 6 µm 
were stained with H and E.
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Statistical analysis

For statistical analysis, a two-tail Student’s t test was applied 
to determine the statistical significance of the differences 
between the groups. The results are presented as mean ± SD. 
P values < 0.05 were considered statistically significant and 
are indicated in the figures by an asterisk.

Results

Morphologic and immunophenotypic 
characterization of ASC and BMSC

ASC and BMSC, adhering to the plastic culture flask, dem-
onstrated a fibroblast-like morphology (Fig. 1 a and b). ASC 
and BMSC were expanded up to passage 4 without visible 
morphologic changes. ASC and BMSC demonstrated high 
expression of the surface markers CD73, CD90, and CD105. 

The negative expression of the surface markers CD34, 
CD45, and HLA-DR was seen for both ASC and BMSC. 
ASC and BMSC demonstrated the expression of Stro-1, but 
the expression was higher in BMSC (Fig. 1 c and d).

Cell attachment and proliferation 
on the poly(LLA‑co‑CL) scaffolds

The attachment of ASC and BMSC on the poly(LLA-co-
CL) scaffolds was confirmed 1 day after seeding. ASC and 
BMSC were attached and spread on the scaffold, as con-
firmed by scanning electron microscope (SEM) images 
(Fig. 2a–d). ASC and BMSC proliferated on the scaffolds 
from day 1 to 10; then, the proliferation decreased at day 14. 
This decreased proliferation was statistically significant for 
BMSC (p < 0.05), but not ASC. Greater amount of DNA 
was detected in scaffolds seeded with ASC compared with 
scaffolds seeded with BMSC, reaching significance at days 
7 and 14 (p < 0.01) (Fig. 2e).

Fig. 1  Morphology and immunophenotype characteristics of BMSC 
and ASC. a, b Representative microscopic images of BMSC and 
ASC; scale bar 100 µm. c Histograms showing flow cytometry analy-
sis of BMSC and ASC, antibody control (blue) and the stained cells 
(red). d Surface marker expression on BMSC and ASC. Dash, ≤ 10% 

expression; single plus sign, 11–50% expression; double plus sign, 
51–90% expression; and triple plus sign, > 90% expression. BMSC, 
bone marrow mesenchymal stem cells; ASC, adipose-derived stem 
cells
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In vitro osteogenic capacity

ASC and BMSC seeded on the scaffolds in osteogenic 
medium showed in vitro osteogenic capacity, confirmed by 
ALP activity at days 3, 7, and 14, and Alizarin red S staining 
at day 21. ASC and BMSC showed a similar trend in ALP 
activity up to day 14. At day 3, the ALP activity in ASC was 
significantly higher than in BMSC (p < 0.01) (Fig. 2f). How-
ever, at days 7 and 14, BMSC showed significantly higher 
ALP activity than ASC (p < 0.05). Both BMSC and ASC 
showed the highest ALP activity at day 7. No differences 

in the in vitro mineralization were detected between ASC 
and BMSC (Fig. 2g–k). ASC and BMSC in control culture 
medium did not show signs of mineralization.

In vivo gene expression and human nuclei staining

The expression of the human and rat osteogenesis–related 
genes Runx2 and collagen type I was detected at week 4 
(Fig. 3 a and b). The rat genes Runx2 and collagen type I 
were expressed in defects treated with scaffold/ASC, scaf-
fold/BMSC, or scaffold without cells. No differences in 

Fig. 2  BMSC and ASC attachment, proliferation, and osteogenic dif-
ferentiation on scaffolds. a–d SEM images of attached BMSC and 
ASC on the scaffold at day 1; scale bars 100 µm and 10 µm. White 
arrows indicate cell sheets. e Proliferation of BMSC and ASC on the 
scaffold at days 1, 7, 10, and 14. f ALP activity assay of BMSC and 
ASC on the scaffold at days 3, 7, and 14. g–j Representative images 

of Alizarin red S staining of BMSC and ASC on the scaffold at day 
21; scale bar 100 µm. k Graph with quantitative data of Alizarin Red 
S staining. BMSC, bone marrow mesenchymal stem cells; ASC, adi-
pose-derived stem cells; SEM, scanning electron microscope; ALP, 
alkaline phosphatase. *p < 0.05; **p < 0.01; ***p < 0.001
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the expression of the rat genes were detected among the 
three groups. Defects treated with scaffold/ASC or scaffold/
BMSC showed the expression of the human genes Runx2 
and collagen type, while, as expected, the control defects 
showed no expression of these human genes. There were 
no differences in the expression of the human genes Runx2 
and collagen type I between the defects treated with scaf-
fold/ASC or scaffold/BMSC. Immunofluorescence staining 
showed human nuclei embedded in the newly formed bone 
in defects treated with scaffold/ASC or scaffold/BMSC after 
4 weeks (Fig. 3 c and d). No signal of human nuclei was 
detected in the control defects (Fig. 3e).

Cellular activity and bone formation

Cellular activity and bone formation in the defects were 
investigated using PET/CT imaging 4 and 12  weeks 
postoperatively. At week 4, the SUV mean of the tracer 

uptake in the defects with scaffold/BMSC was higher than 
in the defects with scaffold/ASC or control (p < 0.05) 
(Fig. 4a–g). At week 12, the uptake tended to increase 
compared with week 4 in all defects, but as seen at week 
4, the defects with scaffold/BMSC showed significantly 
higher uptake than defects with scaffold/ASC or con-
trol (p < 0.05). The CT analysis at week 4 showed that 
new bone started to form in all the defects (Fig. 4h–n). 
However, greater amount of bone was formed in defects 
with scaffold/cells compared with control, reaching sig-
nificance level for scaffold/BMSC (p < 0.05). At week 
12, the amount of bone was increased in the scaffold/
cells groups. This was significant in defects with scaf-
fold/BMSC (p < 0.05), but not in defects with scaffold/
ASC. The defects with scaffold/BMSC or scaffold/ASC 
showed significantly greater bone formation than the con-
trol defects (p < 0.01). The defects treated with scaffold/
BMSC had the greatest amount of bone formation.

Fig. 3  Expression of the 
osteogenesis-related genes and 
human nuclei staining in defects 
with scaffold/BMSC, scaffold/
ASC, and scaffold without cells 
after in vivo implantation for 
4 weeks. a Rat gene expression. 
b Human gene expression. c–e 
Immunofluorescence staining 
of human nuclei in the newly 
formed bone; scale bar 50 μm. 
BMSC, bone marrow mesen-
chymal stem cells; ASC, adi-
pose-derived stem cells; Runx2, 
runt-related transcription factor 
2; HNuc, human nuclei; DAPI 
4′,6-diamidino-2-phenylindole



 Cell and Tissue Research

1 3

Bone formation evaluated by micro‑CT

Bone formation was evaluated using micro-CT 4 and 
24 weeks postoperatively (Fig. 5). At week 4, the mean 
percentage of BV/TV in the defects treated with scaffold/
BMSC was 18.1 ± 5.6%, significantly greater than the 
defects with scaffold/ASC or control with 8.9 ± 3.5% and 
7.8 ± 3.7%, respectively (p < 0.05). At week 24, the BV/
TV was significantly increased to 27.4 ± 4.8% in defects 

with scaffold/BMSC and 24.2 ± 2.7% in defects treated 
with scaffold/ASC compared with week 4 (p < 0.01). 
The increase of BV/TV in defects treated with control 
scaffolds to 11.8 ± 4.8% was not statistically significant. 
The BV/TV in defects treated with scaffold/BMSC or 
scaffold/ASC was significantly higher than the control 
defects (p < 0.001). The highest BV/TV was observed in 
the defects treated with scaffold/BMSC.

Fig. 4  Osteogenic cellular activity and bone formation in defects with 
scaffold/BMSC, scaffold/ASC, and scaffold without cells after in vivo 
implantation for 4 and 12 weeks. a–f Representative images of sagit-
tal sections from the PET/CT scanning. White arrows indicate defect 
area. g Quantitative graph based on the PET data. h–m Representa-
tive CT scanning images showing bone formation in the defects. n 

Quantitative graph based on the CT data. BMSC, bone marrow mes-
enchymal stem cells; ASC, adipose-derived stem cells; PET/CT, posi-
tron emission tomography/computed tomography; SUV, standardized 
uptake value; BV, bone volume; BD, bone density. Number sign indi-
cates a significant difference (p < 0.05) between different time-points 
of the same group. *p < 0.05; ** p < 0.01
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Histological evaluation of bone formation

Histological evaluation by H and E staining at week 4 
revealed collagen matrix formation with new bone forma-
tion, which is mainly located at the edges of the defects 
in the three groups. However, islands of new bone could 
be seen in the defects treated with scaffold/cells (Fig. 6). 
At week 24, considerable degradation of the scaffold was 
detected. Defects treated with scaffold/BMSC or scaffold/
ASC showed abundant areas of mature new bone formation 
with osteocytes, not only at the edges, but also in the center 
of the defects. More non-mineralized collagen matrix for-
mation was observed in the control defects, with new bone 
formation mainly along the edges of the defect.

Discussion

The majority of previous studies have compared the bone 
regenerative capacity of ASC and BMSC from differ-
ent donors. In this study, we examined and compared this 
capacity using donor-matched human ASC and BMSC. 
Harvesting ASC and BMSC from the same donor results in 
a more robust comparison by reducing the biological inter-
donor variations, resulting from comparing the two types 
of MSC from different donors. In addition, harvesting ASC 
and BMSC from a homogenous group of young donors 

limits the possible age-related variations in the osteogenic 
differentiation capacity of MSC. Although limited effects 
of aging on this capacity have been reported (Beane et al. 
2014; Siddappa et al. 2007), some studies found that aging 
negatively influences the properties of MSC, including the 
osteogenic differentiation capacity (Choudhery et al. 2014; 
Stolzing et al. 2008). Also, ASC and BMSC were obtained 
from both male and female donors. Previous studies have 
shown comparable osteogenic differentiation capacity of 
MSC obtained from male and female donors (Siddappa et al. 
2007; Siegel et al. 2013). The harvested ASC and BMSC 
showed similar fibroblast-like morphology when cultured 
as monolayer and both demonstrated immunophenotype 
characteristics of MSC (Bourin et al. 2013; Dominici et al. 
2006) with Stro-1 expression in both types of stem cells. A 
connection between the multipotency of MSC, especially for 
the osteogenic potential, and the expression of this marker 
has been proposed previously (Dennis et al. 2002; Rada et al. 
2012). For example, Stro-1-positive BMSC demonstrated 
osteogenic potential confirmed by mineralization in vitro 
and formation of bone tissue in vivo (Dennis et al. 2002). 
Likewise, Stro-1-positive ASC showed osteogenic potential 
both in vitro and in vivo (Rada et al. 2012).

Whereas 2D culture conditions are not representative 
for the in vivo environment, 3D culture conditions, such as 
culture of cells in a 3D scaffold, offer better representation 
(Fitzgerald et al. 2015). Before the in vitro examination and 

Fig. 5  Micro-CT analysis of bone formation in defects with scaf-
fold/BMSC, scaffold/ASC, and scaffold without cells after in  vivo 
implantation for 4 and 24  weeks. a–f Representative images show-
ing bone formation. g Graph showing quantitative data based on 
the analysis. BMSC, bone marrow mesenchymal stem cells; ASC, 

adipose-derived stem cells; CT, computed tomography; BV, bone 
volume; TV, tissue volume. Number sign indicates a significant dif-
ference (p < 0.05) between different time-points of the same group. 
*p < 0.05; ***p < 0.001
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the in vivo implantation, the attachment of ASC and BMSC 
on the poly(LLA-co-CL) scaffolds was confirmed. Cellular 
attachment and growth are affected by the physicochemi-
cal properties of the scaffold, particularly the porosity of 
the scaffold (Sobral et al. 2011). A scaffold that is suitable 
for bone tissue engineering must be highly porous with an 
interconnected pore structure. This provides a higher sur-
face area for cell adhesion and eventually promotes tissue 
ingrowth. It was found previously that after 3 h of seeding, 
around 50% of MSC were attached on the poly(LLA-co-CL) 

scaffolds (Yassin et al. 2017). In our study, the amount of 
DNA in scaffolds seeded with ASC and BMSC at day 1 was 
at the same level. This indicates that similar number of ASC 
and BMSC attached to the scaffolds after seeding. Although 
similar trend of proliferation was observed, ASC showed 
higher proliferation than BMSC. This is in agreement with 
a previous study that found higher proliferation in ASC than 
donor-matched BMSC under 3D culture condition (Wu et al. 
2015). However, in that study, this may be influenced by 
the reported higher attachment of ASC to the scaffold. 3D 

Fig. 6  H and E staining of coronal sections of defects with scaffold/
BMSC, scaffold/ASC and scaffold without cells after in vivo implan-
tation for 4 and 24  weeks (a–l); scale bars 500  µm and 100  µm. 

BMSC, bone marrow mesenchymal stem cells; ASC, adipose-derived 
stem cells; OB, old bone; NB, new bone; CM, collagen matrix; S, 
scaffold; and black arrows, osteocytes
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culture studies that compared ASC and BMSC from differ-
ent donors have shown either higher proliferation of ASC 
than BMSC (Rath et al. 2016) or similar proliferation of the 
two types of MSC (Ardeshirylajimi et al. 2015).

Increased ALP activity is an early sign of in vitro oste-
ogenic differentiation, and it is essential for initiation of 
mineralization of the ECM (Murshed et al. 2005), which is 
considered a late sign of osteogenic differentiation. Aliza-
rin red S staining revealed mineralization and confirmed 
the in vitro osteogenic differentiation of 3D cultured ASC 
and BMSC. However, higher ALP activity was detected 
in BMSC. After 3 days in osteogenic medium, total ALP 
activity in ASC was slightly higher than in BMSC. This is 
most likely due to the higher number of ASC than BMSC. 
Although a higher number of ASC were still present after 
day 7, the ALP activity in BMSC was higher than in ASC, 
indicating that the ALP activity from each single cell of 
BMSC was much higher than for ASC. ALP activity has 
been proposed as an indicator for the in vivo bone forming 
capacity of the cells, since bone formation in vivo correlated 
with in vitro ALP activity, but not in vitro mineralization 
(Janicki et al. 2011). A previous study found that BMSC had 
greater in vitro osteogenic capacity, in terms of ALP activity 
and mineralization, than donor-matched ASC under both 
static and dynamic 3D culture conditions (Wu et al. 2015). 
Results from 3D cultured ASC and BMSC, obtained from 
different donors, have shown conflicting results, with both 
a higher in vitro osteogenic potential of BMSC compared 
with ASC (Ardeshirylajimi et al. 2015) and a lower in vitro 
osteogenic differentiation capacity of BMSC compared with 
ASC (Rath et al. 2016). Thus, harvesting MSC from dif-
ferent individuals may have a direct effect on the results 
(Mohamed-Ahmed et al. 2018).

The osteogenic capacity of ASC and BMSC was studied 
here both in vitro and in vivo, as the in vitro osteogenic 
capacity of MSC might not correlate with the capacity to 
form bone in vivo (Mendes et al. 2004). The calvarial defect 
model was selected in the current study because the struc-
ture of the calvarial bone allows the creation of standard-
ized and reproducible defects, with adequate support for the 
implanted material from the underlying dura and the over-
lying periosteum and skin (Gomes and Fernandes 2011). It 
is assumed that in vivo osteogenic capacity of human MSC 
is enhanced when pre-differentiated in osteogenic medium 
prior to in vivo implantation (Ma et al. 2014). It has also 
been reported that the bone regenerative capacity of MSC 
can be promoted by chondrogenic differentiation rather than 
osteogenic differentiation of MSC before in vivo implanta-
tion, which results in bone formation through endochondral 
ossification (Brocher et al. 2013; Thompson et al. 2016). 
However, undifferentiated human MSC have also shown the 
capacity of bone regeneration in calvarial defects in rats and 
mice (Carvalho et al. 2014; Zong et al. 2010). This might be 

explained by osteogenic signal from the orthotropic environ-
ment and the underlying dura mater that stimulates MSC to 
form bone through intramembranous ossification (Levi et al. 
2011). In contrast to the orthotropic environment, an ectopic 
environment lacks these stimulating osteogenic signals. In 
the ectopic environment, undifferentiated BMSC, but not 
ASC, have shown capacity to form bone, indicating intrinsic 
osteogenic capacity of BMSC (Brennan et al. 2017; Brocher 
et al. 2013). After implantation, we investigated the expres-
sion of two osteogenesis-related genes to evaluate the early 
osteogenic potential in vivo. Runx2 is essential for osteo-
blastic differentiation and synthesis of bone matrix (Long 
2011), whereas collagen type I is a major protein in bone 
matrix involved in the mechanical properties by providing 
elasticity and toughness of the bone (Viguet-Carrin et al. 
2006). Our results suggest that human ASC and BMSC may 
have actively contributed to the new bone formation, as the 
expression of both rat and human osteogenesis–related genes 
Runx2 and collagen type I was detected in the defects with 
scaffold/ASC or scaffold/BMSC. Nevertheless, the new bone 
formation might not be only attributed to the osteogenic dif-
ferentiation of implanted ASC and BMSC, as paracrine sig-
nals produced by ASC and BMSC might have stimulated 
bone regeneration through different mechanisms (Oryan 
et al. 2017). For instance, implanted MSC may recruit and 
stimulate endogenous MSC and bone forming cells, in addi-
tion to a stimulating effect on angiogenesis. These MSC may 
also modulate the immune response in the defect environ-
ment to favor healing. It should be noted that the expres-
sion of the human genes in the defects with scaffold/ASC 
or scaffold/BMSC indicates that these cells survived during 
the first weeks of in vivo implantation. The survival of the 
implanted human cells and their contribution in the bone 
formation process were confirmed by detection of human 
nuclei embedded in the newly formed bone in defects treated 
with scaffold/ASC or scaffold/BMSC. This is in agreement 
with previous reports showing survival of human MSC in 
calvarial defects in immunocompromised mice (Bothe et al. 
2018; Degano et al. 2008). However, in these reports, higher 
number of human BMSC survived compared with ASC.

In vivo imaging techniques, such as PET/CT scanning, 
offer a useful longitudinal non-invasive monitoring of the 
bone formation process (Fragogeorgi et al. 2019). Moreo-
ver, it can result in substantial reduction of the number of 
animals needed for different biological studies as well as 
the biological variability, as the same animals are examined 
over time (Lauber et al. 2017). The metabolic activity of 
the cells in the defect was monitored by PET/CT scanning 
that measures the uptake of the radioactive tracer into the 
defect site. The tracer uptake in the defects was relatively 
low. This might be explained by a reduction in the delivery 
of the tracer to the defect sites due to low vascularization of 
the calvarial bone (Viateau et al. 2008). The cellular activity 



 Cell and Tissue Research

1 3

in defects treated with scaffold/BMSC was higher than in 
defects treated with scaffold/ASC. This cellular activity is 
related not only to the implanted cells but also to the endog-
enous cells, meaning that more endogenous cells were 
recruited to the defects treated with scaffold/BMSC than 
those treated with scaffold/ASC. This might be due to dif-
ferences between the secretome of human BMSC and ASC, 
which plays an important role in recruiting and stimulating 
the endogenous cells (Pires et al. 2016).

The defects treated with scaffold/BMSC showed acceler-
ated and greater bone formation than defects treated with 
scaffold/ASC, especially at the early time-point. After 
4 weeks, defects with scaffold/BMSC had significantly 
greater bone formation than defect with scaffold/ASC. At 
the later time-points (12 and 24 weeks), although the dif-
ference between defects with scaffold/BMSC and defect 
with scaffold/ASC was not statistically significant, defects 
with scaffold/BMSC showed the greatest bone formation. 
This indicates that the use of BMSC for bone regenerative 
applications results in faster and greater bone formation 
and, accordingly, better healing of bone defects. The supe-
rior in vivo bone forming capacity of BMSC in comparison 
with ASC can be linked to the higher expression of Stro-1 
and ALP activity detected in vitro.

The formation of mature new bone was seen at the edges 
as well as in the center of the defects with scaffold/cells, 
unlike the control defects with poly(LLA-co-CL) scaf-
fold without cells. Poly(LLA-co-CL) scaffold as a carrier 
for MSC supported in vivo bone formation as previously 
shown (Xing et al. 2013; Yassin et al. 2017). This scaffold 
is osteoconductive, but it is not bioactive in a way that 
stimulates osteogenesis (Yassin et al. 2017). This ensured 
that the active bone regeneration process was because of 
the MSC and not due to the scaffold. However, complete 
regeneration of the defects was not seen regardless of the 
type of the cells during our observation period. This might 
be explained by the relatively slow degradation of this 
scaffold as reported previously (Danmark et al. 2011), 
since degradation of the scaffold provides a space for sub-
sequent new bone formation. Besides that, bone healing 
is impaired in immunodeficient animals when compared 
with immunocompetent animals (Rapp et al. 2016). Using 
different materials as scaffold, superior bone regenera-
tive capacity of BMSC to ASC was observed in previous 
studies (Bothe et al. 2018; Kargozar et al. 2018; Xu et al. 
2017). One of these studies compared human ASC and 
BMSC from the same donors using 2% hyaluronic acid 
hydrogel as a carrier for the cells and found that BMSC 
had stronger osteogenic potential than ASC both in vitro 
and in vivo (Xu et al. 2017). However, in that study, ASC 
and BMSC were from old donors and new bone forma-
tion was examined only after 6 weeks. On the other hand, 
other studies reported similar bone regenerative capacity 

of human ASC and BMSC in rats and mice (Degano et al. 
2008; Jo et al. 2013; Kim et al. 2014; Wen et al. 2013). 
However, unlike our study, ASC and BMSC used in these 
studies were obtained from different donors, which may 
have affected the results. Apart from MSC obtained from 
humans, the bone regenerative capacity of ovine ASC was 
found to be inferior to BMSC (Niemeyer et al. 2010), but 
ASC and BMSC obtained from other species showed com-
parable bone regenerative capacity (Freitas et al. 2019; 
Kang et al. 2012; Lin et al. 2009; Stockmann et al. 2012).

In summary, this study compared the bone regenerative 
capacity of donor-matched human ASC and BMSC. These 
two types of MSC showed in vitro osteogenic potential. 
However, when these cells were implanted in calvarial 
defects in nude rats, BMSC showed greater capacity of 
bone regeneration than ASC, especially at early time-
points. These results suggest that although ASC have the 
potential to regenerate bone, the rate of bone regenera-
tion with ASC may be slower than with BMSC. Accord-
ingly, BMSC are more suitable for bone regenerative 
applications.
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