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Total alkalinity (AT) is an important variable in the regulation of the seawater carbonate
chemistry system, determining the capacity to buffer changes in pH. In the coastal
oceans, carbonate system dynamics are controlled by numerous processes such
as land-derived inputs, biological activity, and coastal water dynamics, and seasonal
alkalinity variations can play an important role in the regional carbon cycle. However, our
understanding of these variations on the East China Sea (ECS) shelf remains poor due
to limited observations. In order to estimate and investigate the seasonal variability of
AT on the ECS shelf, an artificial neural network (ANN) model was developed using five
cruise datasets from 2008 to 2018. The model used temperature, salinity, and dissolved
oxygen to estimate AT with a root-mean-square error (RMSE) of ∼7 umol kg−1, and
was applied to calculate AT for eight cruises during 2013–2016. In addition, monthly
water column AT for the period 2000–2016 was obtained using temperature, salinity,
and dissolved oxygen from the Changjiang Biology Finite-Volume Coastal Ocean Model
(FVCOM) Data. Spatial distributions, seasonal cycles and correlations of surface AT

indicated that the seasonal fluctuation of the Changjiang River discharge is the major
factor affecting seasonal variation of surface AT on the ECS shelf. The largest seasonal
fluctuations of surface AT were found on the inner shelf near the Changjiang Estuary,
which is under the influence of the Changjiang River discharge.

Keywords: artificial neural network, total alkalinity, seasonal variability, East China Sea shelf, Changjiang River
discharge

INTRODUCTION

Despite occupying a small proportion of the global surface area, coastal seas play an important
role in the global carbon cycle because they receive a large amount of terrestrial materials and
nutrients from rivers, rapidly transform different forms of carbon, and exchange large fluxes with
the open ocean and atmosphere (Gattuso et al., 1998). It has been suggested that coastal seas
may contribute greatly to the absorption of atmospheric carbon dioxide (e.g., Borges et al., 2005;
Cai et al., 2006), and are more sensitive to global climate changes and anthropogenic influences
such as global warming, eutrophication and ocean acidification (e.g., Doney et al., 2007; Cai et al.,
2011; Omar et al., 2019). However, the carbonate system in the coastal oceans can change in an
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unpredictable way under multiple environmental stressors,
and observational datasets often lack carbonate chemistry
measurements or include only one carbonate chemistry
parameter, while at least two are needed to fully characterize the
seawater carbonate system (Millero, 2007).

Several studies have attempted to develop multiple linear
regression (MLR) relationships to predict total alkalinity (AT)
from more commonly observed variables such as temperature
and salinity (e.g., Millero et al., 1998; Lee et al., 2006; Carter et al.,
2016, 2018; Fine et al., 2017). However, it has proved difficult
to find such relationships that maintain accuracy over large
scales. A new method of self-organizing multiple linear output
(SOMLO) was developed by Sasse et al. (2013), and showed a
19% improvement in predictive accuracy for dissolved inorganic
carbon compared to a traditional MLR approach. Superior
predictors have also been obtained using self-organizing maps
(Velo et al., 2013) or neural networks (e.g., Sauzède et al., 2017;
Broullón et al., 2019). To date, however, relatively few studies
have attempted to develop AT predictors specifically for coastal
regions, perhaps because of the complexity and heterogeneity
of the continental shelves. Alin et al. (2012) developed an MLR
model for AT in the southern California Current System, while
Gemayel et al. (2015) derived polynomial fits to estimate AT
in the Mediterranean Sea. As discussed by Friis et al. (2003),
simple linear regressions between salinity and AT may not be
suitable for broader coastal ocean regions. Numerous processes
in the coastal seas lead to the complexity of carbonate system
dynamics, which means that each specific region may have
different variation characteristics of AT in different seasons and
separate, regional algorithms may be required (e.g., Juranek et al.,
2009; Kim et al., 2010).

The East China Sea (ECS) is the largest marginal sea in the
western North Pacific Ocean and receives massive terrestrial
inputs from the Changjiang River (Gong et al., 1996). Hur et al.
(1999) investigated the monthly water mass variations in the
ECS using more than 40 years of historical data and a cluster
analysis approach. In order to reveal the seasonal variations of
major water masses in the ECS, Li et al. (2006) proposed a
simple spiciness index and found that monthly variations of the
water masses can be classified into three phases per year. Spatial
and temporal distributions of carbonate system parameters have
also been investigated in the ECS (e.g., Chou et al., 2009, 2013;
Qu et al., 2015, 2017), and were found to largely reflect the
distributions of various water masses in the ECS. The pattern of
carbon sources and sinks exhibits substantial seasonal variation
(Guo et al., 2015), and the ECS is generally considered as a sink
of atmospheric CO2 throughout the year except in fall (e.g., Shim
et al., 2007; Zhai and Dai, 2009). However, the seasonal variability
of AT in the ECS has been very little studied, mainly due to the
limited observational coverage. Developing methods to extend
the seasonal coverage of AT data may thus help to improve our
understanding of the ocean carbon cycle in the ECS.

Artificial neural networks (ANNs) have been proposed as
powerful tools for modeling uncertain and complex systems such
as ecosystems and for environmental assessment (e.g., Olden and
Jackson, 2002; Olden et al., 2004; Uusitalo, 2007; Raitsos et al.,
2008). Their main advantage compared with MLR models is

that they do not require an a priori model but rather “learn”
the model from training data (e.g., Hornik et al., 1989; Raitsos
et al., 2008). ANNs have been used to retrieve the partial pressure
of carbon dioxide (pCO2) (e.g., Friedrich and Oschlies, 2009;
Laruelle et al., 2017), AT (e.g., Bostock et al., 2013; Sasse et al.,
2013; Velo et al., 2013), and dissolved inorganic carbon (e.g.,
Bostock et al., 2013; Sasse et al., 2013). To our knowledge, no
empirical relationship for AT has yet been developed for the ECS
shelf, likely due to the limited observations and the complex
interaction of different water masses.

We developed an ANN to predict AT on the ECS shelf and
used it to investigate seasonal variability. This paper is structured
as follows: section “Materials and Methods” introduces the
research region and cruise data used to build the ANN; section
“Results and Discussion” shows the ANN model performance,
variable importance in the ANN model, and two applications: to
calculate surface AT for 8 cruises on the ECS shelf during 2013–
2016 using in situ measured temperature, salinity and dissolved
oxygen; to retrieve monthly AT for the period 2000–2016 on the
ECS shelf using the monthly temperature, salinity, and dissolved
oxygen from the Changjiang Biology Finite-Volume Coastal
Ocean Model (FVCOM) Data. Conclusions and perspectives are
summarized in the last section.

MATERIALS AND METHODS

Study Area and Observations
The ECS is framed by the Ryukyu Island chain in the east (Japan),
mainland China in the west, Taiwan in the south, and Cheju
Island (Korea) in the north. The winter monsoon from the north
lasts from September to April, while the summer monsoon from
the south lasts from July to August (Lee and Chao, 2003). The
Changjiang Diluted Water (CDW) spreads eastward in summer
during the prevailing southwest monsoon, while it is confined
to the western side of the shelf under the influence of the
northeast monsoon (Chou et al., 2009, 2013). The Taiwan Warm
Current (TWC) flows into the ECS through the Taiwan Strait,
the Kuroshio Current (KC) flows northeast along the shelf break
(e.g., Lee and Chao, 2003; Chou et al., 2009), and the Yellow
Sea Coastal Current (YSCC) enters the northern part of the ECS
under the influence of the northeast monsoon (Gong et al., 1996).

Four cruises were conducted in the ECS from 2017 to 2018.
Three cruises were carried out during the “National Natural
Science Foundation Shared Voyage Plan,” from 10 to 19 March
2018, 12–20 July 2018, 12–21 October 2018; the remaining
cruise was carried out during “Vulnerabilities and Opportunities
of the Coastal Ocean” on the ECS shelf during 12–24 May
2017. Water samples were collected at three or four different
depths during all cruises. One additional cruise dataset from
2 to 9 January 2008 in the ECS has been reported previously
by Chou et al. (2011) and was downloaded from the Carbon
Dioxide Information Analysis Center1. Temperature (T) and
salinity (S) profiles were obtained directly using a conductivity
temperature-depth/pressure (CTD) recorders (SBE 25plus or

1https://www.nodc.noaa.gov/ocads/oceans/RepeatSections/clivar_ORI_885.html
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FIGURE 1 | Sampling stations during five cruises on the ECS shelf. (A) The black diamond, red triangle, purple square, and green circle represent May 2017,
October 2018, July 2018, and March 2018, respectively; (B) January 2008 cruise reported by Chou et al. (2011). CDW, Changjiang Dilute Water; TWC, Taiwan
Warm Current; KC, Kuroshio Current; YSCC, Yellow Sea Coastal Current.

911plus). Measurement of dissolved oxygen (DO) followed the
Winkler procedure, as described previously by Zhai et al. (2014b).
AT samples were potentiometrically titrated with standardized
0.1 M HCl (0.7 M in NaCl) to the carbonic acid end point using
a VINDTA 3C system, as described by Mintrop et al. (2000).
Certificated Reference Materials (CRMs) were used to determine
a precision of ± 2 µmol kg−1 (Dickson et al., 2007). The final
number of data used by the ANN model was 699, and the
distribution of the sampling sites from the five cruises is shown
in Figure 1.

Artificial Neural Network Development
Similar to the input variables selected by Bostock et al. (2013),
we selected T, S, and DO as predictors into the ANN model. The
input variables also included the sampling position (longitude
and latitude) and sampling time (month). The sampling position
and time were included to help the network to learn spatio-
temporal patterns that cannot be explained by other input
variables (Sasse et al., 2013). The ANN we used is a feed-forward
multilayer perceptron (Tamura and Tateishi, 1997) with two
hidden layers. The neurons of each layer are connected with
the neurons of the previous layer and the next layer by weights
(Figure 2). The coefficients of the weight matrix are iteratively
tuned in the training step. Here we used the back-propagation
conjugate-gradient technique (Hornik et al., 1989). In order to
avoid overfitting, a ten-fold cross-validation was used to assess
model prediction accuracy. In this technique, all cruises data
was randomly divided into ten equal subsamples. One subsample
was used as the independent validation data (10% of all data),
which was always excluded from training, and the nine remaining

FIGURE 2 | Schematic representation of the neural network algorithm to
retrieve total alkalinity. Input variables are observed temperature, salinity, and
dissolved oxygen together with the geolocation (longitude and latitude) and
time (month) of sampling.

subsamples were together used as training data (90% of all
data). Within the training data, the data was further divided
randomly into a training set (70% of training data), validation
set (15% of training data), and testing set (15% of training
data). We compared performance in predicting the independent
validation data from the ten-fold cross-validation and selected the
optimal model based on the lowest root mean square error. All
calculations were done in the MathWorks Matlab environment.

There is no fixed criterion to set up the optimal number
of neurons in the two hidden layers, which was tested varying
between 1 and 30, respectively (Table 1). The optimal architecture
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TABLE 1 | Different model structures and their performance in the training step.

Model Number of neurons The training data The independent validation data

The first
hidden layer

The second
hidden layer

R2 RMSE (µ mol kg−1) MAE (µ mol kg−1) R2 RMSE (µ mol kg−1) MAE (µ mol kg−1)

1 4 4 0.88 12.5 8.5 0.92 9.6 7.0

2 8 4 0.89 11.7 8.0 0.93 8.8 6.3

3 8 8 0.91 10.3 7.8 0.94 7.5 5.4

4 16 4 0.92 9.5 7.4 0.94 7.3 5.7

5 16 8 0.93 8.9 7.0 0.94 7.6 5.6

6 16 12 0.94 8.4 6.6 0.93 8.5 6.7

7 16 16 0.94 8.5 6.8 0.93 8.9 6.4

8 20 4 0.95 7.9 6.0 0.92 9.5 7.3

9 20 8 0.96 7.6 5.7 0.91 8.8 6.3

10 20 12 0.96 7.4 5.4 0.95 6.7 5.5

11 20 16 0.95 8.0 6.1 0.92 9.1 7.2

12 20 20 0.94 8.4 6.7 0.92 8.7 6.9

13 24 4 0.92 9.4 7.3 0.90 9.9 7.1

14 24 8 0.93 9.0 7.0 0.92 9.0 6.8

15 24 12 0.93 8.9 6.9 0.91 9.1 6.9

16 24 16 0.95 8.0 6.0 0.91 9.7 7.7

17 24 20 0.94 8.5 6.8 0.92 8.9 6.7

18 24 24 0.92 9.4 7.4 0.93 9.0 6.6

19 30 4 0.92 9.5 7.4 0.89 9.7 7.8

20 30 8 0.93 9.0 7.0 0.91 9.4 7.1

21 30 12 0.94 8.5 6.7 0.90 8.5 7.2

22 30 16 0.95 7.9 5.9 0.88 10.2 8.1

23 30 24 0.93 8.9 7.0 0.90 9.2 7.7

24 30 30 0.91 10.1 7.7 0.95 6.9 5.8

Three statistics are the coefficient of determination (R2), the root mean squared error (RMSE), and the mean absolute error (MAE).

was composed of two hidden layers with twenty neurons in
the first and twelve neurons in the second. In order to avoid
bias toward high-value inputs/outputs and to eliminate the
dimensional influence of the data, all data used by the ANN
model were normalized using the following equation (e.g.,
Sauzède et al., 2015, 2016):

xi,j =
2
3
∗
xi,j −mean(xi,j)

σ(xi,j)
(1)

with σ the standard deviation of the considered input variable
or the output variable AT. Similar to the approach of Sauzède
et al. (2015, 2016), the longitude and month input variables were
transformed as follows to account for periodicity:

slongitude = sin
(
Lon ∗ π

180

)
, clongitude = cos

(
Lon ∗ π

180

)
(2)

smonth = sin
(
month ∗ π

6

)
, cmonth = cos

(
month ∗ π

6

)
(3)

The latitude variable was transformed into the range of the
sigmoid function (Sauzède et al., 2015) by divided by 90, then was
processed using Equation (1).

RESULTS AND DISCUSSION

The ANN Model Performance
To evaluate the performance of the ANN model, we compared
the model retrieved AT (ATM) with corresponding observations
(AO

T ) using several statistical indices: the mean absolute error
(MAE), the coefficient of determination (R2), and the root mean
squared error. The model simulated AT with RMSE = 7.4 µmol
kg−1 and R2 = 0.96 for the training data (90% of all
data, Figure 3A), and predicted AT with RMSE = 6.7 µmol
kg−1 and R2 = 0.95 for the independent validation data
(10% of all data, Figure 3B). The normal distribution of
the differences (ATM – AO

T ) shows that only a few points
exceed ±2RMSE (Supplementary Figure S1), and 52% of our
model determinations are within the normal accuracy for AT
measurements (internationally)± 4 µmol kg−1. Supplementary
Figure S4 shows the performance of model extrapolation for
longitude and month.

In order to further explore where the ANN model result in
differences beyond ±2RMSE, we plotted the distribution of the
differences larger than ±2RMSE against longitude and latitude
(Figure 4). These points are concentrated in an area strongly
influenced by Changjiang River runoff, Yellow Sea Coastal
Current (YSCC) and shelf seawater, and the wet season (May and
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FIGURE 3 | Comparison of AT retrieved by the ANN model with corresponding observations. (A)-training data (90% of all data); (B)-independent validation data
(10% of all data). The 1:1 line is shown in each plot as visual reference. N represents the number of data points. Three statistics are the mean absolute error (MAE),
the root mean squared error (RMSE), and the coefficient of determination (R2).

FIGURE 4 | Scatter diagram of the differences beyond ±2RMSE between
total alkalinity estimated by the ANN model minus the observations for all
cruises data.

July), during which Changjiang River is in flood (Supplementary
Figure S2). The reduced performance of the ANN model can
be primarily attributed to the sudden increase in the Changjiang
River discharge and appearance of seawater vertical stratification
during the wet season. During this special period, large amounts
of nutrients inputs from the Changjiang River can stimulate
primary production, seawater vertical stratification can hinder
material exchange in the water column, and massive freshwater
input can suddenly reduce salinity, all of which poses a challenge
for empirical modeling.

FIGURE 5 | Comparison of AT retrieved by the relations of Lee et al. (2006)
with corresponding surface observations. The 1:1 line is shown in each plot as
visual reference. N represents the number of surface data points. Three
statistics are the mean absolute error (MAE), the root mean squared error
(RMSE), and the coefficient of determination (R2).

Although the RMSE of 7.4 µmol kg−1 for AT we obtained
here was higher than the 6.4 µmol kg−1 obtained by Alin
et al. (2012), it was lower than obtained in other previous
studies. For example, Evans et al. (2013) derived a MLR to
estimate AT with RMSE of 9 µmol kg−1 in the northern Gulf
of Alaska, Gemayel et al. (2015) presented polynomial fits to
predict AT with RMSE of 10.6 µmol kg−1 in the Mediterranean
Sea. In addition, an empirical relationship between AT and S was
established for all seasons with the residual of 17 µmol kg−1

in the Washington State Coastal Zone (Fassbender et al., 2017).
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Furthermore, relationships between T and S with AT by Lee
et al. (2006) were applied to compute surface AT with RMSE of
17.6 µmol kg−1 (Figure 5), which suggests that this relationship
fails to compute AT in this shallow sea with the high river runoff
and the ANN model is a better approach than Lee et al. (2006)
on the ECS shelf.

Variable Importance in the ANN Model
To quantitatively estimate input variables that affect AT in
the ANN model, we used the following method: for each

FIGURE 6 | Variable importance estimates in the ANN model. For each input
variable separately, add 5% and calculate the resulting percentage change in
the predicted AT.

input variable separately, add 5% and calculate the resulting
percentage change in the predicted AT. The AT is positively
correlated with salinity and longitude, and negatively correlated
with temperature (Figure 6). The two variables with the greatest
weight are salinity and longitude, and the weights of other
variables are small and can almost be ignored when compared
with salinity and longitude. The significant positive correlation
between AT and salinity was also found by Zhai et al. (2014a).
The positive correlation between AT and longitude reflects the
distribution pattern of AT in space, which is similar to salinity
and generally increasing eastward from the China coastline to the
shelf break (e.g., Chou et al., 2013; Qu et al., 2017).

Model Applications
In order to retrieve AT on the ECS shelf, the monthly T, S,
and DO from the Changjiang Biology Finite-Volume Coastal
Ocean Model (FVCOM) Data2 were applied to the ANN model
as the input variables. The performance of monthly T, S, and
DO from the Changjiang Biology FVCOM model was shown in
Supplementary Figure S3. Monthly AT for the period 2000–2016
was obtained at the spatial resolution of the FVCOM output:
1–10 km in the horizontal, 10 depth levels in the vertical, and
12 months. Also, since AT was not measured during 8 cruises
from 2013 to 2016 on the ECS shelf, the surface AT was retrieved
through the ANN model using in situ measured T, S, and DO.

Surface Total Alkalinity Retrieved From Cruise
Observations
The distributions of retrieved AT in winter and summer
from 2013 to 2016 are shown in Figure 7. The distribution

2http://47.101.49.44/wms/demo

FIGURE 7 | Spatial distribution of surface ANN-derived AT of eight cruises from 2013 to 2016 on the ECS shelf.
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FIGURE 8 | Spatial distribution of monthly average surface ANN-derived total alkalinity using Changjiang Biology FVCOM Data on the ECS shelf from 2000 to 2016.
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FIGURE 9 | Comparison of monthly average surface total alkalinity on the ECS shelf [(122–124◦E;28.5–32.5◦N)]. Blue solid line represents retrieved AT using
Changjiang Biology FVCOM Data; black dotted line represents retrieved AT using Changjiang Biology FVCOM Data ±2RMSE; red point represents mearsured AT

from published papers (e.g., Chou et al., 2009, 2011; Zhai et al., 2014a; Qu et al., 2015, 2017); green point represents retrieved AT using in situ data from 2013 to
2016.

TABLE 2 | Summary information of surface total alkalinity on the East China Sea
shelf from 2007 to 2016.

Surveying time Total alkalinity (µ mol kg−1) References/data source

Mean SE

8–27 April 2007 2248.0 – Zhai et al., 2014aa

5–8 July 2007 2197.0 – Chou et al., 2009a

2–12 January 2008 2269.6 2.3 Chou et al., 2011a

17–27 August 2011 2171.2 – Qu et al., 2017a

15–29 June 2013 2205.0 – Qu et al., 2015a

4–20 March 2013 2261.9 4.9 This study*

17–28 August 2013 2187.3 9.9 This study*

21–28 February 2014 2268.4 2.1 This study*

10–17 July 2014 2189.0 8.4 This study*

11–21 March 2015 2258.1 3.0 This study*

9–20 July 2015 2197.1 5.3 This study*

7–19 March 2016 2259.4 4.2 This study*

4–28 July 2016 2136.5 4.1 This study*

Mean is monthly average value; SE is standard error. Superscript a stands for
measured value, and Superscript * stands for the ANN model value.

characteristics of AT we calculated in 2013–2016 are consistent
with that of AT previously published in other years during
summer and winter (e.g., Chou et al., 2009, 2011; Qu et al.,
2015, 2017). In winter, high AT is found in the north of the
study area, related with the YSCC, while low AT is confined to
a narrow coastal region (water depth <50 m), controlled by the
prevailing northeast monsoon. In summer, high AT is found in
the eastern and southeastern parts of the study area, related with
the intrusion of the TWC and the KC, while low AT is confined
mainly to the western and northwestern parts of the study area,
influenced by the CDW and the southwest monsoon.

FIGURE 10 | Seasonal cycles of surface, middle and bottom layer parameters
T, S, and AT on the ECS shelf from 2000 to 2016. (A)-temperature;
(B)-salinity; (C)-ANN-derived total alkalinity. Red, green, and blue circles show
surface, middle, and bottom layers, respectively.

Surface Total Alkalinity Retrieved From FVCOM
Output
The temporal and spatial variations of monthly surface AT from
2000 to 2016 based on FVCOM output are shown in Figure 8.
During the dry season (November to April of the next year),
AT values vary within a relatively narrow range, from ∼2130 to
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FIGURE 11 | Relationships between monthly surface salinity and ANN-derived total alkalinity on the ECS shelf from 2000 to 2016. The color bar represents
temperature.

∼2290 µmol kg−1, water of lower AT is confined to the coast
of mainland China (water depth <50 m), whereas waters of
higher AT are found in the north and southeast of the study
area. Generally, the surface distributions of AT corresponded
well to the winter circulation pattern, which is modulated by
the northeast winds lasting from September to April. Water with
higher AT in the north of the study area is strongly influenced
by YSCC, which is characterized by relatively low temperature

(Gong et al., 1996). Higher AT water in the southeast of the
study area (50–100 m water depth) reflects the intrusion of the
TWC and Kuroshio Branch Current (Luo et al., 2015), which is
characterized by high salinity. The narrow band of water with the
lower AT values is indicative of CDW, which is confined to the
western side of the shelf by the prevailing northeast monsoon
and identified by low surface salinity in autumn and winter
(Chou et al., 2013).
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During the wet season (May to October), AT values show a
wide range, from ∼2000 to ∼2270 µmol kg−1, water of lower
AT is confined mainly to the northwestern part of the study area,
near Changjiang Estuary, whereas water of higher AT is found in
the southeastern part of the study area. Concentrations generally
increase moving eastward from the coast to the shelf break, and
strongly reflect the summer circulation pattern. Water with low
AT in the northwestern part of the study area is indicative of
CDW, spreading eastwards under the influence of the southwest
monsoon and characterized by low salinity during the wet season.
Water with higher AT in the southeastern of the study area is
strongly influenced by the TWC, which flows into the ECS shelf
from the Taiwan Strait.

To assess the approach of combining the ANN model with the
Changjiang Biology FVCOM Data to estimate AT on the ECS
shelf, we compared retrieved AT using the Changjiang Biology
FVCOM Data with retrieved AT using in situ measured T, S, and
DO, and also published AT values (Table 2 and Figure 9). Overall
the agreement is good here and supports the reliability of the
ANN model on the ECS shelf.

Seasonality of Total Alkalinity Retrieved From FVCOM
Output
Seasonal cycles of surface, middle and bottom layer T and
S from FVCOM Data and ANN-derived AT were calculated
for the ECS shelf from 2000 to 2016 (Figure 10). The
cycles of AT and S in the middle and bottom layers are
consistent (Figures 10B,C), gradually decreasing from March to

September then slowly increasing from September to December,
after reaching minimum values in September. This reflects
the strong positive correlations between AT and S in the
middle and bottom layer. In the surface layer, seasonal salinity
variations strongly reflect freshening due to Changjiang River
discharge (Supplementary Figure S2). However, the seasonal
cycle of retrieved AT is lagged by 2 months relative to the
salinity cycle, reaching its minimum in September rather than
July (Figure 10C). It seems strongly weighted by the period
between July and October, when no data were available to

TABLE 3 | Monthly linear relationships (with 95% confidence bounds) between
surface total alkalinity and salinity in the study area.

Month Linear relationships R2 Data number RMSE (µ mol kg−1)

1 AT = 4.74 × S + 2116 0.95 1864 3.02

2 AT = 3.46 × S + 2150 0.73 1864 5.83

3 AT = 4.11 × S + 2126 0.87 1864 5.20

4 AT = 9.18 × S + 1964 0.99 1864 2.26

5 AT = 13.88 × S + 1814 0.98 1864 4.24

6 AT = 12.61 × S + 1849 0.95 1864 6.97

7 AT = 10.22 × S + 1913 0.98 1864 4.41

8 AT = 10.73 × S + 1876 0.95 1864 7.83

9 AT = 13.34 × S + 1775 0.98 1864 6.90

10 AT = 14.47 × S + 1749 0.98 1864 7.08

11 AT = 11.25 × S + 1877 0.97 1864 6.38

12 AT = 8.14 × S + 2004 0.90 1864 7.62

FIGURE 12 | Distribution of the seasonal amplitude (maximum minus minimum) of surface ANN-derived total alkalinity and salinity on the ECS shelf from 2000 to
2016. (A)-salinity; (B)-ANN-derived total alkalinity.
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train the neuronal network. In order to get more accurate
results, training cruises that cover well enough the seasonal
cycle are needed.

The surface, middle and bottom AT displays its maximum
in January and minimum in September, and the AT values
vary seasonally by up to ∼112 µmol kg−1 in the surface
layer, up to ∼78 µmol kg−1 in the middle layer, and up
to ∼66 µmol kg−1 in the bottom layer. This is an order
of magnitude higher than the open ocean AT variation
estimated by Lee et al. (2006).

Correlations and Seasonal Amplitudes of Surface
Total Alkalinity and Salinity Cycles
The retrieved surface AT distribution appears to reflect mixing
between different water masses during the dry and wet seasons.
During the dry season (November to April of the next year),
S and AT values vary within a relatively narrow range from 21
to 34 and from 2130 to 2290 µmol kg−1, respectively, while
during the wet season (May to October), S and AT values vary
within a relatively wide range from 15 to 34 and from 2000
to 2270 µmol kg−1, respectively. To further understand the
correlations between surface AT and S, monthly AT-S diagrams
(Figure 11) were created.

The study region is mainly influenced by three water masses:
the Yellow Sea Coastal Water (YSCW), the CDW, and the Taiwan
Strait Warm Water (TSWW). YSCW flows into the northern
part of the study area under the influence of coastal current
(Figure 1B) and is indicated by high AT (Figure 11), while
the CDW spreads eastward during the prevailing southwest
monsoon (Figure 1B), characterized by the lowest S and AT
(Figure 11). The remaining TSWW flows into the ECS through
the Taiwan Strait (Figure 1B), characterized by relatively high
S and AT. Monthly linear slopes and intercepts between AT
and S were fitted by Matlab cftool (R2013b) using the robust
least-squares fitting method (Table 3). There are seasonally
distinct slopes and the intercepts, with smaller slopes from 3.46
to 9.18 and higher intercepts from 1964 to 2126 µmol kg−1

during the dry season and greater slopes from 10.22 to 14.47
and lower intercepts from 1749 to 1913 µmol kg−1 during the
wet season. This difference may be mainly attributed to strong
YSCW and weak CDW during the dry season and strong CDW
during the wet season.

The magnitude of the seasonal variability of surface AT,
computed by differencing the maximum and minimum monthly
mean AT values in each grid point, has a spatial pattern that is
similar though not identical to that of the magnitude of seasonal
salinity variability (Figure 12). The largest seasonal fluctuations
of surface AT and salinity are found on the inner shelf near
the Changjiang Estuary, which is under the influence of the
Changjiang River discharge. In contrast, AT in the southeastern
part of the study area exhibits a very weak seasonality.

CONCLUSION AND PERSPECTIVES

We have developed an ANN model, and used it to calculate
surface AT for eight cruises during 2013–2016, and to

retrieve monthly AT for the period 2000–2016 on the
East China Sea shelf. The two most important predictor
variables were salinity and longitude, and seasonal variations
in retrieved AT could be mainly attributed to the seasonal
cycle of the Changjiang River discharge on the East China
Sea shelf.

The model has several potential applications. For example,
it can provide estimates of seawater AT with known accuracies
for the East China Sea shelf. Within this region the model
could be used as a cost-effective way to overcome restrictions
of limited marine observations conducted from ships, such
as coarse resolution and under-sampling of carbonate system
variables, and may be a valuable tool for understanding
the seasonal variation of AT in poorly observed regions.
This approach can also be applied to other regions to
estimate AT by suitably adapting the input variables and
network structure. In order to get more accurate seasonal
trend, training cruises that cover well enough the seasonal
cycle are needed.
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