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Abstract

Parkinson disease (PD) is a complex neurodegenerative disorder influenced by both envi-

ronmental and genetic factors. While genome wide association studies have identified sev-

eral susceptibility loci, many causal variants and genes underlying these associations

remain undetermined. Identifying these is essential in order to gain mechanistic insight and

identify biological pathways that may be targeted therapeutically. We hypothesized that

gene-based enrichment of rare mutations is likely to be found within susceptibility loci for PD

and may help identify causal genes. Whole-exome sequencing data from two independent

cohorts were analyzed in tandem and by meta-analysis and a third cohort genotyped using

the NeuroX-array was used for replication analysis. We employed collapsing methods (bur-

den and the sequence kernel association test) to detect gene-based enrichment of rare, pro-

tein-altering variation within established PD susceptibility loci. Our analyses showed trends

for three genes (GALC, PARP9 and SEC23IP), but none of these survived multiple testing

correction. Our findings provide no evidence of rare mutation enrichment in genes within

PD-associated loci, in our datasets. While not excluding that rare mutations in these genes

may influence the risk of idiopathic PD, our results suggest that, if such effects exist, much

larger sequencing datasets will be required for their detection.

Introduction

Parkinson disease (PD) is a complex disorder influenced by the crosstalk between genetic and

environmental factors [1]. Monogenic causes account for a small fraction of cases, whereas the
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vast majority of patients have idiopathic disease. While genome-wide association studies

(GWAS) have revealed several susceptibility loci for idiopathic PD, these collectively explain

only a fraction of the disorder’s estimated heritability, and most have not been linked to path-

ways which can be targeted by therapies [2]. This is partly due to the uncertainty regarding

which genes actually drive the GWAS signals.

The associated variants in GWAS are typically located in noncoding regions of the genome

and assumed to be in linkage disequilibrium (LD) with causative variants in nearby genes [3].

Methods to identify candidate genes from GWAS range from simply choosing the closest gene

to more sophisticated algorithms [4], but all are, in essence, inferential by nature. Next genera-

tion sequencing technologies have enabled us to investigate the impact of rare genetic varia-

tion, which is theorized to explain parts of the “missing heritability” in complex diseases [5]. In

PD, rare variants have been implicated in sporadic disease both at the gene- [6] and pathway

level [7,8]. Whether rare variants can explain GWAS signals in PD, remains, however,

unknown.

We hypothesized that gene-based enrichment of rare, protein-altering variation is likely to

be found in regions tagged by single nucleotide polymorphisms (SNPs) associated with PD in

GWAS, and may help identify the causal genes driving these associations. To test our hypothe-

sis, we selected genes with variants in LD with associated SNPs from the most recent GWAS

meta-analysis[9], and tested for enrichment of rare, protein-altering variants in whole-exome

sequencing data from two independent cohorts.

Methods

Cohorts and sequencing

The Norwegian whole-exome sequencing (WES) cohort comprised 191 patients with PD from

the Norwegian ParkWest study [10] and 219 controls. The control group consisted of individ-

uals with testis cancer (n = 167) and acoustic neuroma (n = 52) who had been recruited and

examined at our hospital and had no clinical signs of neurodegenerative- or other neurological

disorders. DNA was extracted from blood by routine procedures and sequenced at HudsonAl-

pha Institute for Biotechnology (Huntsville, Alabama) on the Illumina HiSeq platform using

paired-end 100 bp sequencing and Roche-NimbleGen Sequence Capture EZ Exome v2 (173

controls) and v3 (all PD and 46 controls) capture kits. Reads were mapped to the hg19

(GRCh37) reference genome using BWA v0.6.2 [11], PCR duplicates removed with Picard

v1.118 [12], and the alignment refined using Genome Analysis Toolkit (GATK) v3.3.0 [13]

applying base quality score recalibration and realignment around indels recommended in the

GATK Best Practices workflow [14,15]. Variants were called in all samples using GATK Hap-

lotypeCaller [13] with default parameters. Next, Variant Quality Score Recalibration (VQSR)

was performed using 99.9% sensitivity threshold [13]. The remaining variants were filtered

against the intersection of capture targets (v2 and v3) using BEDtools [16] and VCFtools [17].

Variants with total depth below 10X were marked as unknown genotype (no-call) using

BCFtools [18]. In addition, we used a cutoff of at least 6 reads supporting each variant (alter-

nated allele). Indels were removed prior to downstream analyses. The depth distribution for all

variants and variants of interest is shown in S1 Fig.

Additional whole-exome sequencing data was obtained from the Parkinson Progression

Markers Initiative (PPMI) [19]. WES data was available from 640 individuals (459 cases and

181 controls). Control subjects were individuals without PD 30 years or older, without first

degree relatives with PD. Sequencing was performed on the Illumina HiSeq 2500 platform

using the Illumina Nextera Rapid Capture Expanded Exome Kit and paired-end 100 bp reads.
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Calling and alignment were performed by the PPMI. Indels were removed prior to variant

quality control using VCFTools [17].

SNP-chip data was obtained from the International Parkinson’s Disease Genomics Consor-

tium (IPDGC) (dbGaP Study Accession: phs000918.v1.p1). The dataset consisted of 11,402

individuals (5,540 cases and 5,862 controls) genotyped on the NeuroX array, comprising

approximately 240,000 standard Illumina exome variants and 24,000 custom variants focusing

on neurological diseases [20,21].

Individual and variant quality control

Sequencing and genotype data were recoded into binary PLINK input format, and quality con-

trol of individual and SNP data was performed for all three cohorts separately. Individuals

were excluded if they had an individual genotype missingness rate of> 2%, heterozygosity

outside +/- 3 standard deviations (calculated for common and rare variants separately), cryptic

relatedness (IBD > 0.2), conflicting sex assignment or non-European ancestry. Population

stratification was studies using multi-dimensional scaling against the HapMap populations

[22]. Variants were removed if they had a genotyping rate < 98%, different call rates in cases

and controls (p> 0.02) or departure from the Hardy-Weinberg equilibrium (p< 10−5). Only

autosomes were kept for downstream analyses. Principal component analysis was performed

using Eigensoft [23,24] with standard filtering settings. ANOVA of the 10 first principal com-

ponents was performed with the significance level set to p< 0.01. Significant principal compo-

nents were included as covariates in all downstream analyses. Outside of the principal

component analysis, all quality control procedures were performed using PLINK v1.90 [25]

and R [26].

Annotation and subset filtering

The datasets were annotated using ANNOVAR [27] according to the RefSeq gene transcripts,

and variants classified as nonsynonymous, stop-gain, stop-loss or splicing were extracted for

further analysis. Rare variants were defined as having a minor allele frequency (MAF) of< 1%

in the non-Finnish European population in gnomAD [28].

Selection of genes of interest

Genomic regions associated with PD where extracted from the largest and most recent, to

date, meta-analysis of GWASes, which identified 90 SNPs associated with PD at genome-wide

significance level [9]. We defined genes of interest as any gene containing a variant in LD

within a 2 megabase window around any of these 90 SNPs, with the threshold of LD set to R2

> 0.5. If a variant in LD was localized in an intergenic region, the nearest gene was included.

LD calculations were available from the supplementary material of the original study [9], and a

total of 303 genes fit the inclusion criteria (S1 Table).

Genetic association analyses

For each cohort, genes of interest were analyzed by two different tests: the burden test and the

sequence kernel association test (SKAT) [29], using the SKAT R package v1.3.2.1 [30] with

default settings. Statistically significant principal components, as determined by an ANOVA of

the first 10 principal components with significance level cutoff set to p< 0.01, were added as

covariates to all downstream analyses. Only genes with variants in both WES cohorts (Park-

West and PPMI) and at least two or more variants across cohorts were included. The meta-

analysis was performed using the MetaSKAT R package v0.60 [31], using the same burden test
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and SKAT as described above in a meta-analysis framework. For the meta-analysis, we hypoth-

esized that genetic effects should be homogenous across studies, meaning that the same muta-

tion should have the same direction of effect in both cohorts. NeuroX was used as a replication

cohort for the results from the WES analyses, and analyzed using the same methods. Only vari-

ants defined as rare were included. All p-values were corrected for multiple comparisons using

FDR (Benjamini-Hochberg) [32].

Gene set analyses

In addition to the single gene analyses, enrichment of genetic variation across all genes of

interest was explored in a gene set analysis. Only rare variants were included, and the com-

bined gene set was analyzed by burden and SKAT tests using the same methods and statistical

tools as for the single gene analyses. A subset of loss-of-function (LoF) variants (containing

only splicing, stop-loss and stop-gain variants) was extracted and similarly analyzed.

Ethical considerations

These studies were approved by the Regional Committee for Medical and Health Research

Ethics, Western Norway (REK 131/04), and all subjects gave written, informed consent. All

research was performed in accordance with the relevant guidelines and regulations.

Results

Using the inclusion criteria outlined previously, 168 genes of interest were analyzed in the sin-

gle gene analyses, comprising a total of 543 rare nonsynonymous, stop-gain, stop-loss or splic-

ing variants in the ParkWest cohort, and 1135 in the PPMI cohort. 160 of these genes were

available for replication analysis in the NeuroX dataset, comprising a total of 1380 variants.

For the gene set analysis, the number of included variants was 554 in the ParkWest, 1341 in

the PPMI and 1534 in the NeuroX cohorts. A total of 14 LoF variants were identified in the

ParkWest cohort, 17 in the PPMI cohort and 40 in the NeuroX cohort.

Gene-based analyses indicated three genes with nominally significant p-values (uncorrected

p< 0.05) across multiple cohorts: GALC, SEC23IP and PARP9. However, no gene reached sta-

tistical significance surviving multiple testing correction in either of the cohorts or the meta-

analysis (see S2 Table). Similarly, there were no statistically significant results in the gene set

analyses (see S3 Table). The top results of the gene enrichment analyses, ranked by nominal p-

value in the meta-analysis, are shown in the Tables 1 and 2.

Discussion

Our analyses revealed no statistically significant enrichment of rare variants in genes impli-

cated by previous GWAS in PD. Three genes (GALC, SEC23IP and PARP9) showed trends

across multiple cohorts, but none survived multiple testing correction. Nalls et al [9] con-

ducted rare variant burden analysis for SEC23IP finding no enrichment signal. Thus, it is

highly unlikely that SEC23IP is involved in PD. The variant tagging PARP9 (rs55961674) is a

weak expression quantitative trait loci (eQTL) for PARP9 in some tissues (nerve and thyroid)

[33]. However, it is also a strong splicing QTL (sQTL) for KPNA1, suggesting that this is a

more likely candidate gene. Finally, the variant tagging GALC (rs979812) is a strong eQTL for

GALC, supporting a potential role in PD [33]. GALC encodes the enzyme galactocerebrosidase,

and mutations in this gene cause Krabbe disease, a lysosomal storage disorder [34]. Current

evidence suggests that lysosomal dysfunction plays a key role in PD [35], and rare mutations

in a broad range of genes causing lysosomal storage disorders have been associated with PD
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[7]. Mutations of GBA in particular, the gene encoding the enzyme glucosylcerebrosidase that

carries out a very similar reaction to that of galactocerebrosidase, are the most common

genetic risk factor for PD and this association is driven by both common [36] and rare variants

[37]. A role for GALC in α-synucleinopathies is therefore not farfetched [38].

Taken together, our findings provide no evidence of rare mutation enrichment in PD

GWAS loci, in our datasets. These results do not support our initial hypothesis that gene-

based enrichment of rare mutations can be helpful in identifying causal genes in PD-associated

loci. It should be stressed that these findings do not disprove the hypothesis that rare muta-

tions in these genes may influence the risk of idiopathic PD. They do, however, suggest that if

such effects exist, much larger sequencing datasets will be required for their detection.

A few studies with similar approaches to ours have previously been published, using older

GWAS data. Foo et al [39] probed 39 genes implicated in PD by GWAS and described enrich-

ment of rare missense variation in LRRK2. Sandor et al [40] investigated 329 genes located

within GWAS loci, and detected a possible enrichment of missense variation, including both

common and rare mutations in their analysis, across the complete gene set. Finally, Jansen

et al [41] used a Prix fixe strategy to select one candidate gene per GWAS locus, and detected

Table 1. Top results for burden-based gene enrichment analyses.

Gene ParkWest PPMI Meta NeuroX

Variants P-value FDR Variants P-value FDR Variants P-value FDR Variants P-value FDR

SEC23IP 3 0.0276 0.9035 9 0.0332 0.9191 11 0.0040 0.6669 10 0.6819 0.9037

PARP9 3 0.0819 0.9035 9 0.0730 0.9191 11 0.0110 0.7058 7 0.0908 0.6353

GALC 4 0.8111 0.9035 5 0.0032 0.5335 8 0.0210 0.7058 7 0.2607 0.8180

NFKB2 1 0.0180 0.9035 7 0.2543 0.9191 7 0.0333 0.7058 6 0.7477 0.9037

ATP2A1 2 0.0518 0.9035 10 0.2232 0.9191 12 0.0416 0.7058 7 0.6897 0.9037

PBXIP1 1 0.3142 0.9035 8 0.0656 0.9191 9 0.0457 0.7058 10 0.6148 0.9037

CASR 1 0.6461 0.9035 4 0.0276 0.9191 4 0.0457 0.7058 6 0.5906 0.9037

ITGA8 2 0.1473 0.9035 10 0.1905 0.9191 12 0.0533 0.7058 18 0.6969 0.9037

VPS13C 26 0.2533 0.9035 24 0.1276 0.9191 42 0.0557 0.7058 49 0.0636 0.5420

CTSB 3 0.9743 0.9801 15 0.0279 0.9191 17 0.0688 0.7058 10 0.4903 0.9037

Genes are ranked by p-value in the meta-analysis. The FDR-column contains p-values after applying false discovery rate-correction.

https://doi.org/10.1371/journal.pone.0239824.t001

Table 2. Top results from SKAT-based gene enrichment analyses.

Gene ParkWest PPMI Meta NeuroX

Variants P-value FDR Variants P-value FDR Variants P-value FDR Variants P-value FDR

CASR 1 0.6461 0.9008 4 0.0012 0.2089 4 0.0029 0.4900 6 0.7926 0.9880

PARP9 3 0.1087 0.9008 9 0.1820 0.9393 11 0.0215 0.8873 7 0.0311 0.5528

GALC 4 0.0460 0.9008 5 0.0366 0.9393 8 0.0311 0.8873 7 0.8539 0.9880

NFKB2 1 0.0180 0.9008 7 0.9714 0.9944 7 0.0381 0.8873 6 0.2684 0.9257

SEC23IP 3 0.1313 0.9008 9 0.1113 0.9393 11 0.0469 0.8873 10 0.3037 0.9320

SCARB2 2 0.1983 0.9008 3 0.4048 0.9393 4 0.0829 0.8873 11 0.5043 0.9613

BTNL2 1 0.7423 0.9008 8 0.1152 0.9393 9 0.1085 0.8873 14 0.3768 0.9494

CTSB 3 0.4239 0.9008 15 0.1788 0.9393 17 0.1153 0.8873 10 0.0664 0.7225

PAM 5 0.1454 0.9008 13 0.2638 0.9393 17 0.1188 0.8873 11 0.8316 0.9880

TUFM 1 0.3609 0.9008 2 0.5208 0.9393 2 0.1205 0.8873 1 0.1826 0.9257

Genes are ranked by p-value in the meta-analysis. The FDR-column contains p-values after applying false discovery rate-correction.

https://doi.org/10.1371/journal.pone.0239824.t002
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rare variation association signals in LRRK2, STBD1 and SPATA19. While we could not repli-

cate enrichment for any of these genes in our datasets, it should be noted that our sample size

(n = 1050) is smaller than that of Jansen et al [6,41].

In addition to rare variant enrichment analyses, several other methodologies have been

employed to nominate causal genes from GWAS loci. eQTL studies integrate genotype and

gene expression date, to identify genes whose expression is regulated by PD associated SNPs

[42–46]. The effect of non-coding genetic variation on splicing of pre-mRNA (splicing QTLs

or sQTLs) has also recently been highlighted and used to further explore possible causal genes

in PD [47]. Finally, epigenetic quantitative trait loci, such as DNA methylation (mQTL), have

also been used in combination with GWAS and eQTL data with variable success [48].

PD is a complex disease of heterogeneous etiology. While there is a clear genetic compo-

nent, as evidenced by twin studies [49], known risk loci are primarily common mutations

which, collectively, only explain a fraction of the total estimated heritability [9]. As for other

complex disorders, much of the unexplained heritability is believed to be caused by rare vari-

ants [50]. Multiple studies have linked common mutations, either through the use of polygenic

risk scores [51] or machine learning algorithms [42], to motor progression and cognitive

decline. In addition, common genetic variation has also been shown to impact drug respon-

siveness in PD [52]. Similar applications of rare variants could potentially increase the predic-

tive precision of these models and provide clinicians with a powerful tool to individualize

treatment and follow-up for PD patients.

In conclusion, our results indicate that rare variant enrichment alone is unlikely to be help-

ful in identifying causal risk genes for PD in small to moderately sized cohorts. Larger studies

are needed to determine if rare variant enrichment with small effect sizes are present in these

genes. Future studies will likely need to integrate multiple types of data, including GWAS,

sequencing and various forms of QTL analyses as well as functional experiments in order to

better characterize the effects of rare coding variation in PD and identify novel genes and bio-

logical pathways.

Supporting information

S1 Fig. Variant depth distribution. A) Depth distribution of all variants called across all sam-

ples. B) Depth distribution for the subset of variants called within the predefined regions of

interest across all samples. Red bars represent heterozygous variants (0/1), and blue bars repre-

sent homozygous (1/1) variants. The vertical dashed line represents the cutoff of minimum 10

reads employed in the analyses.

(PDF)

S1 Table. Genes of interest.

(PDF)

S2 Table. Complete results from gene-based rare variant enrichment analyses.

(PDF)

S3 Table. Gene set analyses.

(PDF)
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