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Abstract 
Background: Parkinson disease (PD) is a major cause of death and disability and has 

a devastating global socioeconomic impact. It affects 1-2% of the population above the 

age of 65 and its prevalence increases as the population ages. Several biological 

processes have been implicated in Parkinson disease, including mitochondrial 

dysfunction, aberrant protein clearance, and neuroinflammation. To which degree 

these processes are cause, effect or bystander to disease initiation and progression, 

remains however largely unknown. Having limited understanding of the mechanisms 

underlying the pathogenesis and pathophysiology of Parkinson disease, we are unable 

to develop disease-modifying therapies and patients face a future of progressive 

disability and premature death.   

 There is a clear hereditary component to idiopathic PD, established through 

both twin studies and genome-wide association studies. However, only a minor 

fraction of the total estimated heritability can be explained by known associated 

genetic variability. It has been hypothesized that the cumulative effects of rare, low-

impact mutations spread across genes and biological pathways could explain some of 

this “missing heritability”.  

 

Aims: The aim of this work was to explore the genetic contribution to idiopathic PD, 

focusing on the cumulative effects of rare mutations.   

 

Materials and methods: The main study population utilized in all four papers was the 

ParkWest cohort, a Norwegian population-based cohort of incident PD. In paper I, 

ParkWest provided both cases and controls, including clinical longitudinal data up to 

and including 7 years after baseline. All ParkWest cases were whole-exome sequenced 

and combined with previously sequenced control samples to form the genetic cohort 

utilized in papers II-IV. Additionally, a whole-exome sequencing cohort from the 

Parkinson Progression Markers Initiative was used in papers II-IV. Finally, a publicly 

available chip-genotyped dataset (NeuroX) from the International Parkinson’s Disease 

Genomics Consortium was used as a replication cohort in paper IV. In paper I, we 

characterized the familial aggregation of Parkinson disease in the ParkWest cohort and 
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explored the effect of family history on disease progression. Subsequently, we used 

genetic data from multiple cohorts to assess the impact of rare, protein-altering 

mutations in mitochondrial biological pathways (paper III) and in genes previously 

linked to PD (paper II and IV).  

 

Results and conclusions: We show that, while familial aggregation is present in our 

Norwegian cohort, this has a slightly lower effect size compared to previous studies. 

Through regression analysis we also show that having a family history of PD among 

first degree relatives is associated with a slightly milder phenotype, which may be due 

to genetic variability.  

 In paper II, we attempted to replicate the results of a recently published study 

reporting an association between genetic variation in the TRAP1 gene and Parkinson 

disease. Our analyses did not replicate this association in our Norwegian cohort. 

Moreover, using stricter quality control parameters abolished the association in the 

same dataset used in the original study. Our results do not support the proposed role of 

TRAP1 in idiopathic PD.  

 In paper III, we sought to investigate the role of rare, amino acid changing 

variation in molecular pathways related to mitochondrial function. Using the sequence 

kernel association (SKAT) test, we detected a statistically significant enrichment in the 

pathway of mitochondrial DNA maintenance. Impaired mitochondrial DNA 

homeostasis has previously been shown to be present in PD neurons, and our results 

indicate that this dysfunction could be partly mediated by inherited genetic mutations.  

 In paper IV, we performed a targeted single gene and gene-set association study 

on genes that had previously been implicated in PD through genome-wide association 

studies. We identified 303 genes of interest, but did not find statistically significant 

associations, either in the single gene or gene-set analyses. Our results do not therefore 

support a major role for rare variant enrichment in genes tagged by GWAS, but cannot 

rule out effects with small effect sizes.  
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1. Introduction 
1.1 Parkinson disease 
In 1817, James Parkinson published “An essay on the shaking palsy”, describing the 

main clinical features of the disease that would later bear his name1. Today, Parkinson 

disease (PD) is recognized as the second most common neurodegenerative disorder 

after Alzheimer disease2. The clinical spectrum of PD comprises both motor and non-

motor features. Motor features comprise bradykinesia, resting tremor, rigidity and 

postural instability. Non-motor symptoms are diverse, and include olfactory loss, 

neuropsychiatric dysfunction, autonomic dysregulation, gastrointestinal dysmotility, 

sleep disorders, cognitive impairment and dementia3. Available treatments for PD are 

purely symptomatic and can achieve partial control of primarily motor symptoms for a 

period of time. In the absence of neuroprotective therapies, however, neuronal loss 

progresses inexorably, leading to increasing disability and premature death2.  

 The most important risk factor for PD is increasing age, with the prevalence 

ranging from 1.8% above the age of 65 years to approximately 3.0% above the age of 

80 years in Western populations4,5. Additionally, epidemiological studies have 

suggested several environmental factors as possible modulators of PD risk, including 

dairy consumption, exposure to pesticides, methamphetamine use and traumatic brain 

injury. Conversely, a negative association has been shown with tobacco use, caffeine 

intake, high serum urate and physical activity, suggesting that these may be protective 

against PD6. The sexes are unequally affected, with males having an increased lifetime 

risk compared to females; 2.0% and 1.3% respectively7.  

Due to high levels of disability, which affect both patients and caregivers, and 

the need for medical treatment for both PD and PD-related complications, there are 

high societal costs linked to PD. In the United States alone, the total economic burden 

of PD has been estimated at > $50 billion per year8, and the cost is expected to rise due 

to an ever increasing number of patients9. Given its ever-increasing prevalence, severe 

disability and high socioeconomic cost, PD is now one of the greatest challenges 

facing science, healthcare and society in the 21st century.  
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1.2 A primer on genetics and genetic association analyses 
The human genome consists of approximately 3.2 billion base pairs, spread across 23 

chromosomes10. It can broadly be divided into genes and intergenic regions, each 

making up roughly half the total size of the genome11. Genes consist of exons, introns 

and untranslated regions (UTRs). Exons are the protein-coding parts of the genome, 

while introns are spliced away during the synthesis of mRNA. Exons make up a 

relatively small part of the total size of the genome, <1%, and the complete protein-

coding part of the genome is referred to as the exome12. A typical human genome 

differs from the reference sequence at, on average, roughly 4.1 to 5 million sites, 

depending on the population. The vast majority (>85%) of this variation is in the form 

of single nucleotide variation/polymorphisms (SNV/SNP), but less than 1% of these 

variants are situated in coding regions13. The majority are located in intergenic or 

intronic regions.  

 The sequencing of the human genome was first completed during the first half 

of the 2000s, at the end of a more than a decade long effort by the Human Genome 

Project14,15. The technique used was Sanger sequencing, also referred to as first 

generation sequencing, which relies on capillary electrophoresis to read the sequence. 

As exemplified by the number of years needed to complete the human genome 

sequence, this technique would be too laborious for sequencing the entire genome of a 

large number of individuals. In the years after the completion of the Human Genome 

Project, next generation sequencing (NGS) techniques, which employ mass 

parallelization of sequencing reactions and allow the sequence to be read in real time, 

were developed16. However, these methods were initially prohibitively expensive, and 

there was another type of genotyping technique, building on the groundwork from the 

Human Genome project as well as the concept of linkage disequilibrium (LD), that 

revolutionized the field of complex disease genetics.  
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Figure 1. Recombination. During meiosis, paternally and maternally derived DNA 

(A) undergo recombination (B and C), or chromosomal crossover, to form novel 

chromatids in the gamete cells (D). Genetic regions in close proximity (I and II) are 

more likely to be passed on together than regions far apart (III), because increasing 

genetic distance increases the likelihood of a recombination event taking place 

between the two loci. 
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 During meiosis, homologous chromosomes undergo recombination where the 

DNA breaks and crossover to form two new, unique mixtures of maternally and 

paternally derived DNA (see Figure 1). This is an important process in all sexually 

reproducing eukaryotes, ensuring genetic diversity in subsequent generations. Across 

the genome, some sites are more likely to undergo recombination events, so-called 

hotspots, while other areas are more conserved17. This results in the phenomenon of 

LD, where genetic variation on loci in close proximity are not randomly distributed in 

the population18. This non-random distribution of SNPs can be quantified given a large 

enough sample, and the sequence of whole regions of the DNA can therefore be 

inferred by the genotyping of only a few, selected SNPs. In the early 2000s, The 

International HapMap Consortium developed an ever-growing public database with 

detailed information on LD structures in the human genome19. Using relatively cheap 

and fast SNP-arrays, researchers could use that information to preselect SNPs and 

genotype a large number of individuals in a genome wide association study 

(GWAS)20. Here, one takes advantage of the LD-structures in the genome and look for 

genotype-phenotype associations between common SNPs, typically situated in non-

coding regions, and disease. The actual causal variation is then assumed to be other 

variants in high LD with the associated SNPs20. Collectively, GWAS studies have 

revolutionized the field of complex trait genetics, and novel discoveries are 

continuously being made. As of December of 2019, a total of 166,103 SNP-phenotype 

associations have been described21. Despite their success, GWAS studies are not 

without their disadvantages. An important limitation is that the associated SNPs in 

most cases only act as proxies for the actual causal genetic variation. Additional 

assumptions and analyses are needed to connect a GWAS hit to an assumed causal 

gene. Furthermore, GWAS studies are not well suited to investigate rare mutations22.  

 GWAS studies are largely based on the hypothesis that common diseases are 

caused by common variants, but for complex traits and disorders, GWAS have 

generally failed to account for the majority of the observed heritability. This 

discrepancy has been described as the “missing heritability” problem23. For PD, even 

the most recent GWAS of more than 37,000 cases and 1.4 million controls explain, by 

their own estimation, only 16 – 36% of the total estimated genetic heritability24. One 
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hypothesis that has been put forth is that much of the missing heritability can be 

explained by rare variants with small effect sizes that are not well covered by the SNP-

arrays used in GWAS studies23. Rare variants (minor allele frequency [MAF] < 1%) 

make up more than 95% of all missense, nonsense and splicing mutations, making 

them an attractive target for genetic association studies25. Genetic sequencing is 

needed to capture and study these variants.  

  NGS techniques became commercially available around 2007-2008, and the 

price per whole genome quickly dropped from approx. $10 million to just $10,000 in 

just a few years, and the cost have continued to drop ever since26. A less expensive 

type of sequencing is exome sequencing, where you, as opposed to whole genome 

sequencing, capture only the protein-coding parts of the genome, i.e. the exome27. 

Sequencing data allows for novel approaches to genetic association testing. Since each 

rare mutation is expected to have only a minor effect by itself, prohibitively large 

sample sizes are needed to detect single variant associations (see Figure 1). Therefore, 

statistical methods have been developed that allow for testing the effects of an 

aggregate of multiple variants across a whole gene or region28. Using these methods, 

studies have documented region-based enrichment of rare variants for a multitude of 

complex disorders, including schizophrenia29, type 2 diabetes30, amyotrophic lateral 

sclerosis (ALS)31, age related macular degeneration (AMD)32 and hypertension33.  
 

1.2.1 Rare variant association testing 

At lower MAFs, the number of individuals needed to detect a single variant 

association with acceptable power (80%) at a genome-wide significance level (5 x 10-

8) increases exponentially (see Figure 2). For example, assuming a population 

prevalence for PD of 1% and an equal number of cases and controls, the number of 

individuals needed to detect a variant with a MAF of 1% and OR of 1.4 would be 

approx. 60,000 (calculated using Quanto v1.2.434). A similar variant with a MAF of 

0.1% would require approx. 600,000 individuals. In addition, each individual also 

carries a number of unique mutations (singletons), with estimates ranging from 

10,000-20,000 singletons per person depending on the population13.  
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Figure 2. Sample size estimates. Sample sizes needed to achieve 80% power at 

different MAFs for a single variant with OR 1.4, assuming an equal number of cases 

and controls and at a genome-wide significance level (5e-08).  

 

Being present in only one individual, they cannot be used in a traditional single variant 

association analysis. Given these limitations, it is clear that alternative approaches are 

needed to elucidate the contribution of rare variants to complex diseases such as PD.  

 A general strategy in rare variant association analyses is to group multiple 

variants together and perform the analysis on different aggregated measures. An a 

priori hypothesis is necessary in order to define meaningful groupings and interpret 

the results of the analysis and must specify both variant- and region-based parameters. 

Variant-based parameters define which variants are to be included in the analysis, and 

categories to consider are localization (exonic, intronic, intergenic), type 

(synonymous, nonsynonymous, splicing, stopgain, stoploss), function (loss-of-
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function, gain-of-function, likelihood of altered protein function) and MAF. Region-

based parameters define how to group the subsequently selected variants, and can for 

example be all genes, a subset of genes, promotor regions, or pathways. This strategy 

accomplishes two things: 1) an increase in power as multiple low-impact variants are 

grouped together, and 2) reducing the need for multiple testing correction compared to 

single-variant analyses. The standard genome-wide significance threshold for single 

variant analyses (5e-08)35 translates to Bonferroni-correcting for 1,000,000 tests36. 

Reducing the number of tests, even to all genes (~20,000), drastically lowers the 

significance threshold.  

 A wide variety of statistical methods of aggregating variants have been 

developed, and can broadly be divided into four main categories: 1) burden tests, 2) 

variance component tests, 3) combination tests and 4) other tests37. In addition, several 

methods for meta-analysis have been developed based on tests from these four 

categories.  
 

Burden tests 

Burden tests are based on the principle of summarizing genetic information across a 

region into one score statistic per individual, which can then be used for different 

methods of association testing37. One of the simplest versions of this is the cohort 

allelic sums test (CAST)38. Here, a binary score is generated by checking for the 

presence of at least one variant in the specified region. For a binary phenotype the 

results can then be collapsed into a 2x2 table, and a c2 test or Fisher’s exact test then 

be used to test for an association. The obvious limitation of this approach is that there 

is no differentiation between having one and multiple mutations in the region. The 

combined multivariate and collapsing (CMC) test is similar to CAST, but allows for 

subgrouping of variants, for example based on allele frequencies39.  

 Other burden tests incorporate individual variant weights into the calculation of 

the genetic score statistic. A common approach is to upweight rare variants, with the 

assumption that rarer alleles have a larger impact on the phenotype in question than 

common alleles. The Weighted Sum Test (WST) uses MAF to calculate individual 

variant weights (!!)28,40: 
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!! = 1/[&'(!)1 − &'(!+]"/$ 
 

Another weighting method upweights rare variants using beta densities41:  

 

-!! = ./01(&'(!, 4", 4$) 
 

Once the score statistic is generated, different statistical methods of association testing 

can be applied. For example, Madsen and Browning proposes the nonparametric 

Wilcoxon rank-sum test for the WST40, while others use the score statistic in a 

regression framework41. A major drawback with the burden tests is that all variants 

included are assumed to be causal and have the same effect size28. A subclass of 

burden tests, the so-called adaptive burden tests, attempt to address this issue. For 

example, the variable threshold (VT)42 test supposes that there is a value for MAF 

where variants below are much more likely to be causal, but that the threshold can 

vary between different genomic regions. The method calculates genetic scores for each 

region at different MAF thresholds and estimates the optimum threshold by 

permutation of phenotypes for each genomic region. VT also allows for weighing 

variants according to their predicted potential for disrupting protein function by using 

different algorithms, for example PolyPhen243 or CADD44. Other examples of adaptive 

burden tests include the data-adaptive sum test (aSum)45, the estimated regression 

coefficient test (EREC)46 and the step-up test47.   
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Figure 3. Coin toss experiment. Using a coin toss experiment to visualize the 

difference between burden and variance component tests, originally described by 

Neale et al48. Using a set of 10 coins, the plot shows the probability (y-axis) of 

obtaining a given number of heads (x-axis) using different types of coin sets (colors). 

The “Fair” coin set contains only coins with a probability (P) of  P=0.5 of coming up 

heads, the “Weighted” set contains coins with a P=0.6 of coming up heads, and the 

“Mixed” set contains a 10:80:10 mixture of P=0.9:P=0.5:P=0.1 of coming up heads. 

Imagine then that each coin represents one rare variant in a given gene, which is 
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either present (heads) or not (tails), and that the number of heads obtained after 

tossing all 10 coins once represents the number of rare variants for one individual in 

that gene. When, in a case-control setting, the variants have no correlation with a 

given phenotype, the number of variants will follow the binomial distribution with 

P=0.5, as for the “Fair” coin set. Burden tests are designed to detect instances where 

mean number of variants (heads) is either increased or decreased across the entire 

gene, like for the “Weighted” coin set (P=0.6). However, variance component tests 

excel in situations where both protective and risk variants are present, exemplified by 

the “Mixed” set. Here, the overall probability of coming up heads is the same as for 

the “Fair” set (P=0.5), but the increased variance of the outcomes (larger 

probabilities in the tail ends of the distribution) shows that there is likely a few unfair 

coins (variants) with high probabilities of coming up either heads or tails (risk or 

protective).  

 
 

Variance component tests 

Variance component tests were developed to address some of the limitations of the 

burden tests, and are able to accommodate variants with opposing directions of effect 

and different effect sizes within the same region37. While burden tests are able to 

detect differences in mean across a region, variance component tests look for 

differences in individual variant variances48. For the C-alpha test, the test statistic is 

calculated by comparing the observed individual variant counts with the expected 

variance, which within a null hypothesis of no effect will follow the binomial 

distribution48. Another example of a variance component test is the sum of squares 

(SSU) test49. One of the most flexible tests is the sequence-kernel association test 

(SKAT)41. SKAT uses a mixed model approach and can accommodate covariates and 

variable variant weights. These tests are all statistically related, and under certain 

conditions (flat weights, binary phenotype and no covariates), the C-alpha test, SSU 

test and SKAT are statistically equivalent28,41.  

 Figure 3 visualizes the main difference between burden and variance 

component tests through a hypothetical coin toss experiment.  
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Combination tests 

Combination tests attempt to combine burden and variance-component test statistics 

into one. The rationale behind is that burden tests are generally more powerful when 

all or most variants are causal, whereas variance-component tests are more powerful 

when a region contains a mixture of causal, neutral and protective variants50. One 

suggested approach is to use Fisher’s method of combining p-values from burden and 

variance-component tests51: 

 

(67ℎ/9 = −2 log(>%&'()*) − 2log	(>+,'-,*.)/.0120*)*3) 
 

Instead of combining p-values, SKAT-O combines tests statistics (Q) from burden and 

SKAT52: 

 

@2 = (1 − >)@4567 + >@%&'()* 
 

where 0 ≤ > ≤ 1, and an optimal value for p is estimated by calculating the minimum 
p-value across a range of values for p. The mixed effects score test (MiST) is another 

combination test that uses hierarchical (or mixed effects) modeling, and uses known 

variant characteristics (for example insertion, deletion, nonsense etc.) in an attempt to 

increase power53. The Q-tests also include a combination test approach, with a special 

focus on gene sets54. A weakness of the combination tests is that if the assumptions for 

either the burden or variance component tests are largely true, the combination test 

will be less powerful than either of them28. 
 

Other tests 

This category includes the exponential combination (EC) procedure, where the test 

statistic is the sum of exponential variant statistics, which improves power when only 

a few variants in the tested set is associated with the phenotype55. A replication-based 

strategy calculates test statistics for variants enriched in cases and controls separately, 

and uses permutation to compute p-values from a combined maximum statistic56. A 
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number of tests have also been developed to detect pleiotropic effects, including 

Multi-SKAT57 and MULVR/MULVR-O58. The IGOF tests are based on Pearson’s 

goodness-of-fit, and were developed specifically to detect gene-gene interaction 

effects59.  
 

Meta analyses 

As the number of sequencing studies continues to grow, using multiple datasets in a joint 

analysis has become an important tool in the detection of novel associations. The gold 

standard is considered to be a joint calling of all available datasets, a so-called mega-analysis, 

but this is both labor intensive and not always possible due to ethical concerns and privacy 

restrictions60. Meta-analyses are therefore an attractive alternative and has been shown to 

have comparable power when compared to mega-analyses61. General statistical methods of 

combining p-values across different studies can also be used in genetic association studies, for 

example Fisher’s method62, Stouffer’s method63 or the weighted Z-test64. Instead of 

combining p-values, several specific tools have been developed that combine test scores, 

derived from the methods outlined above, across datasets. Examples of tools with available 

tests in parenthesis include RAREMETAL65 (CMC, WST using Wilcoxon rank-sum test, VT 

and SKAT), MetaSKAT61 (WST, SKAT and SKAT-O) and Meta-Qtest66 (Q-tests).  

 

1.3 Parkinson disease genetics  
Familial clustering of PD has been observed as early as the late 19th century67, but the 

first attempt at a systematic study was published by the Swedish psychiatrist Henry 

Mjönes in 194968. He concluded, erroneously, that PD was a strictly autosomal 

dominant disease with low penetrance, but even at the time there were doubts 

regarding the validity of his results69. A more thorough exploration of the heritability 

of PD began with twin studies in the 1980s.  
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Figure 4. Concordance rates in twin studies. The figure shows concordance rates 

for a hypothetical disease. In general, the difference in concordance between MZ and 

DZ twins is attributed to heritable factors, for example genetic variation. By 

comparing DZ twins to siblings, the contribution of early environmental factors 

(shared) can also be differentiated. 

 

1.3.1 Twin studies 

Early twin studies found little evidence for a genetic component of PD in the general 

population70-73, but the studies were largely based on cross-sectional data with little or 

no follow-up. The most recent study found concordance rates of 11% for monozygotic 
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(MZ) and 4% for dizygotic (DZ) twins, with an estimated heritability of 34%74. The 

considerable difference between the concordance rates of MZ and DZ twins strongly 

indicates the presence of a heritable factor (see Figure 4). As PD is a strongly age-

correlated disease with a long subclinical phase75, studying clinical concordance rates 

can lead to underestimates of the true genetic contribution. When using positron 

emission tomography (PET) to identify and include dopaminergic dysfunction in 

heritability estimates, concordance rates have been as high as 75% for MZ and 22% in 

DZ twins76. Evidence from twin studies therefore strongly indicate a genetic 

component for PD.  
 

1.3.2 Monogenic PD 

The first time a genetic change was conclusively linked to PD was in 1997 when a 

mutation in the SNCA gene was found to cause an autosomal dominant form of PD77. 

Since then, many more genes, of both autosomal dominant and recessive inheritance, 

have been identified. Genes robustly associated with PD and/or parkinsonism include 

SNCA, LRRK2 and VPS35 causing autosomal dominant disease, and PRKN, PARK7, 

PINK1, ATP13A2, FBXO7, PLA2G6, DNAJC6, SYNJ1 and VPS13C as causes of 

autosomal recessive disease78. The phenotypical presentation varies among the 

different monogenic forms of PD. Broadly, the autosomal dominant forms (SNCA, 

LRRK2, VPS35) causes a phenotype fairly similar to that of classical, sporadic PD, 

with a later age of onset (around 50 years of age) and similar clinical characteristics79. 

Of the recessive genes, PRKN, PARK7 and PINK1 cause early-onset disease (around 

30 years of age), with a clinical phenotype similar to that of classical PD, but where 

dystonia is typically more prevalent and cognitive decline less frequent80. The 

remaining recessive genes generally cause a variety of atypical forms of PD. FBXO7 

causes a juvenile-onset (<20 years of age) syndrome characterized by equinovarus foot 

deformity, pyramidal signs and parkinsonism81,82. Mutations in ATP13A2 causes 

Kufor-Rakeb syndrome with juvenile-onset, parkinsonism, dementia, pyramidal signs 

and supranuclear upgaze paresis83,84. Various phenotypes have been reported for 

different mutations in DNAJC6. The c.801-2A>G splice-cite mutation causes juvenile-

onset parkinsonism85, while the c.2371C>T (p.Gln791*) nonsense mutation have been 
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reported in a broader syndrome of juvenile-onset parkinsonism, mental retardation and 

pyramidal signs86. Mutations in SYNJ1 causes juvenile-onset parkinsonism, typically 

accompanied by seizures and generalized dystonia87-90, while mutations in VPS13C 

cause early-onset parkinsonism similar to that of classical PD, but with rapid and 

severe disease progression and cognitive decline91. Finally, PLA2G6 mutations were 

first associated with infantile neuroaxonal dystrophy and neurodegeneration with brain 

iron accumulation92, terminology which were later consolidated into phospholipase-

associated neurodegeneration (PLAN). In 2009, mutations in PLA2G6 were described 

in patients with a clinical syndrome of early-onset parkinsonism and dystonia, or 

PLAN-DP, and later studies have confirmed the association93-95.  

 Several other genes have been nominated as possible causes of mendelian PD, 

including UCHL1, GIGYF2, HTRA2, EIF4G1, DNAJC13, TMEM230, LRP10 and 

CHCHD278,96,97. However, at present, they are either lacking replication or supportive 

evidence, or have been contradicted by later studies.  

 In addition, to the genes mentioned above, mutations in a number of other genes 

are known to cause degeneration of the dopaminergic neurons of the substantia nigra, 

with or without clinical parkinsonism. Mutations in POLG or TWNK encoding the 

mtDNA polymerase and helicase, respectively, cause mitochondrial disease with 

severe loss of the dopaminergic neurons in the substantia nigra similar to that seen in 

PD98. Intriguingly, this is not always accompanied by clinical parkinsonism, even in 

cases with severe nigrostriatal degeneration99,100. Perry syndrome is caused by 

mutations in DCTN1, and neuropathological studies shows gliosis and neuronal loss in 

the substantia nigra101. Clinically, parkinsonism and psychiatric symptoms are 

prominent. The spinocerebellar ataxias (SCAs) are a heterogeneous group of 

dominantly inherited ataxias caused by a mutations in a wide range of genes, with the 

number of distinct SCAs being close to 50 at present102. Degeneration of the substantia 

nigra has been documented for both SCA2 and SCA3, which are caused by CAG-

repeat expansions in ATXN2 and ATXN3 respectively103,104. Substantia nigra 

degeneration is also seen in ataxia-teleangiectasia, an autosomal recessive disease 

causes by mutations in the ATM gene105. Finally, nigrostriatal dopaminergic 
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dysfunction has also been documented in patients with missense mutations in OPA1, a 

gene typically associated with optic atrophy106. 

It’s estimated that approx. 5-10% of PD cases worldwide have monogenic 

causes107, but this varies widely between different population groups. For example, 

LRRK2-mutations are seen in as many as ~40% of cases among North African Arabs 

and ~25% of Ashkenazi Jews108, likely due to founder effects. It is worth noting the 

high degree of complexity associated with the link between PD and genetic mutations. 

Many of the genes that cause monogenic PD are in reality causing syndromes where 

parkinsonism is accompanied by a varying degree of other clinical features. Even the 

autosomal dominant genes, where the phenotype closely resembles classical PD, are 

complex in terms of genetic inheritance. Following the classical laws of Mendelian 

inheritance, genetically inherited diseases are either dominant or recessive, with 50% 

and 25% disease risk in offspring respectively. However, monogenic forms of PD 

display highly variable and age-dependent penetrance, suggesting that other factors, 

either genetic or environmental, act as important modulators78. This is particularly 

noticeable for LRRK2-mutations, where the penetrance estimates ranges from 26%-

42.5% and the incidence is highly age-dependent, similar to that of sporadic PD109,110.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

31 

Table 1. Overview of relevant PD-associated genes 

Category Inheritance Phenotype Genes 

Confirmed monogenic 

PD genes 

AD Classical 

LOPD 

SNCA, LRRK2, VPS35 

AR 

Classical 

EOPD 

PRKN, PARK7, PINK1 

Atypical 

JOPD/EOPD 

FBXO7, ATP13A2, 

DNAJC6, SYNJ1, VPS13C, 

PLA2G6 

Unconfirmed 

monogenic PD genes 
AD - 

UHCL1, HTRA2, GIGYF2, 

EIF4G1, DNAJC13, 

TMEM230, LRP10, 

CHCHD2 

Genes associated with 

degeneration of the 

substantia nigra 

- 

POLG, DCTN1, ATXN2, 

ATXN3, ATM, OPA1 

AD: autosomal dominant. AR: autosomal recessive. LOPD: late-onset Parkinson 

disease, EOPD: early-onset Parkinson disease, JOPD: juvenile-onset Parkinson 

disease, -: not relevant 
 

 

1.3.3 Familial aggregation of PD 

Familial aggregation of PD has been documented by numerous studies, with a 2008 

meta-analysis estimating the relative risk (RR) for PD patients to have a first degree 

relative with PD to be 2.9111. This estimate likely includes cases of monogenic PD, so 

the true estimate for idiopathic PD could be lower. A more recent analysis of death 

certificates in Utah found that first degree relatives of individuals who had PD as a 

cause of death had themselves a RR of 1.82 of death with PD compared to the non-

relatives112. As mentioned, a problem with these studies is that cases of monogenic PD 

are likely mixed in with sporadic cases, making it difficult to estimate the genetic 

contribution to non-mendelian PD from these results. In addition, many of the studies 
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are also based on data from specialized movement disorder clinics, where PD patients 

typically have a younger age of onset compared to the general population. Both 

familial aggregation113 and monogenic PD114 has been shown to be more prevalent in 

these patient groups, which would make the RR estimate less representative for 

sporadic PD.   
 

1.3.4 Risk variants 

The first GWAS of PD was published in 2006, but it and subsequent studies for the 

next few years yielded no genome-wide statistically significant associations115,116. The 

first GWAS that was able to find significantly associated SNPs was published in 2009, 

and identified three loci in close proximity to SNCA, MAPT and LRRK2117. To date, 

the strongest genetic risk factor for PD is mutations of the GBA gene118, which were, 

interestingly, not discovered by GWAS. Suspicion originally arose due to the high 

prevalence of PD among relatives of patients with Gaucher disease, an autosomal 

recessive disorder caused by GBA mutations119. A subsequent analysis found a >5-fold 

increase in PD risk among mutation carriers120, and an association between PD and 

non-coding variants around the GBA gene have later been established by GWAS121. 

The most recent and largest GWAS, comprising approx. 37,000 cases, 18,000 proxy 

cases (1st degree relatives of individuals with PD) and 1.4 million controls, identified 

90 independent variants across 78 loci24. Some of the variants are tagging genes 

known to cause monogenic PD, mainly SNCA and LRRK2, while the majority are near 

genes not otherwise known to be implicated in PD pathology.  
 

1.3.5 Parkinson disease genetics in the era of next generation sequencing 

NGS technologies have been employed in a variety of ways in the study of PD, 

ranging from diagnostic case-reports sequencing a few individuals, to large association 

studies with hundreds to thousands of cases. Table 2 contains a chronological 

overview of genetic association studies in PD where NGS was employed. Studies that 

focused on discovering mutations underlying mendelian PD are not listed, as in the 

case of the discovery of causal VPS35-mutations122,123. 
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The main message from this table is that the efforts to utilize NGS in the 

discovery of novel genetic contributions to the etiology of PD have, to some extent, 

been hamstrung by small sample sizes and the lack of a consistent methodological 

approach. Over the years, the methodologies of GWAS have gradually matured and 

consolidated, offering researchers a fairly clear-cut path124. In contrast, the variant 

selection process and statistical approaches utilized in the NGS studies are much more 

complex, and there is generally no clear consensus on how to best perform these 

studies. Even so, some guidelines and recommendations have been suggested. In 2012, 

Do et al.125 recommended including, at minimum, the following analyses as a baseline 

for exome sequencing studies in complex diseases: 
 

1) Whole-exome single variant association (SVA) analysis 

2) Two types of burden analyses, where rare variants are grouped together (for 

example within each gene) to increase statistical power: 

a. A traditional burden analysis where variants are assumed to have the 

same effect size and direction of effect 

b. A burden test that allows for opposite directions of effect within the 

same group 

3) Optionally, perform a restricted analysis of a subset of rare variants 

predicted to have a large impact on protein function (for example nonsense 

mutations, or variants predicted to be damaging by prediction algorithms) 

 

Very few of the studies listed in Table 2 follow these guidelines. This is likely due to 

the fact that larger sample sizes than what is currently available are probably needed to 

detect rare variant gene-enrichment on an exome wide scale. Studies have therefore 

focused on specific parts of the genome, either implicated by previous studies or a 

priori hypotheses. Examples include analyzing only genes implicated by GWAS126 or 

specific genes with suspected links to PD127. This reduces the need for multiple testing 

correction, thus increasing power, but also limits the overall scope of the study.  

The most promising results from NGS-based genetic association studies in PD 

have thus far come from pathway-based analyses. Pathways are groups of genes that 
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encode proteins that share some predefined trait or function. This can for example be 

proteins with subcellular co-localization (e.g. endoplasmic reticulum or mitochondria), 

proteins with similar mechanisms of signal transmission (e.g. G-protein coupled 

receptors), or proteins that together perform a specific function (e.g. DNA repair). 

There are several different databases of pathways available, each with different 

curating strategies. The most extensive is the Gene Ontology (GO) database, which 

currently contain >20,000 human pathways divided into three categories: biological 

process, cellular component and molecular function128,129. The pathways are generated 

both through manual curation and computational algorithms. Other databases include 

the Kyoto Encyclopedia of Genes and Genomes (KEGG)130, Reactome131 and 

Biocarta132, all of which rely more heavily on manual curation and annotation than 

GO.   

Pathway analyses can take many forms. One of the most straight forward 

methods is to take the n number of genes with the lowest p-values from a single gene 

analysis (SGA), and, through statistical analysis, identify pathways that contain a 

higher number of these genes than expected133. Sandor et al134 used this method to 

tentatively identify pathways related to extracellular matrix proteins as being enriched 

with genes from their list of top 300 genes from their single gene associations (SGA). 

Another method of pathway analysis is to expand the collapsing methods of single 

gene analyses and consider the pathway as a “mega-gene”. Using this method, Robak 

et al135 showed an enrichment of rare mutations in genes linked to lysosomal storage 

disorders , and we have shown a similar enrichment in mitochondrial pathways136. 
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1.4 Pathophysiological mechanisms in PD 
The motor symptoms that characterize PD are caused by the loss of dopaminergic 

neurons in the substantia nigra pars compacta (SNc)2. These neurons have projections 

to the basal ganglia, including the striatum, and exhibit an autonomous pacemaker 

function essential for the coordination of movement159. Parkinsonism becomes 

clinically apparent when at least 30% of the dopaminergic neurons in the SNc are 

lost160. Beyond the SNc, neuronal loss is also seen in the pedunculopontine nucleus, 

locus coeruleus, dorsal motor nucleus of the vagus, raphe nuclei, nucleus basalis of 

Meynert, ventral tegmental area, thalamus, hypothalamus, olfactory bulb, and the 

enteric nervous system161,162. The most consistent neuropathological finding in PD are 

Lewy bodies and Lewy neurites, collectively referred to as Lewy pathology. These 

neuronal inclusions were first described by Fritz Heinrich Lewy in 1912, and later 

named after him163. After the discovery of SNCA-mutations as a cause of monogenic 

PD in 1997, alpha-synuclein was identified as the main component Lewy 

pathology164,165. Under normal conditions, alpha-synuclein exists as both soluble 

monomers and multimers in the cytosol, predominantly in presynaptic terminals166,167. 

At some point, due to mechanisms that are currently largely unknown, alpha-synuclein 

becomes misfolded into a beta-pleated sheet structure, and goes on to form fibrils that 

later aggregate in Lewy bodies and Lewy neurites168. Although it is recognized as a 

neuropathological hallmark of PD, Lewy pathology is itself not exclusive to PD. It has 

been found in multiple disorders, including dementia with Lewy bodies (DLB), 

multiple system atrophy (MSA), Gaucher disease, Alzheimer’s disease and several 

lysosomal storage disorders169. In addition to alpha-synuclein, aggregates of tau and 

beta-amyloid can also be found in the brains of PD patients2. The predominant protein 

deposition can be used to classify the parkinsonian disorders into alpha-

synucleinopathies (PD, MSA) and tauopathies (progressive supranuclear palsy, 

corticobasal degeneration)170. 

  In 2003, Braak et al described a spreading pattern of Lewy pathology 

throughout the brain that correlated with increasing severity of clinical symptoms171. 

The proposed staging system divides the distribution of Lewy pathology into six 

stages, where the initial affected areas are located in the brainstem (stages 1-2, 
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preclinical disease), and later affects the midbrain (stages 3-4, early clinical disease) 

and neocortex (stages 5-6, late clinical disease)172. Since early sites of Lewy pathology 

were the olfactory bulb and enteric plexus of the stomach, the Braak hypothesis 

postulates that some unknown pathogen enters the body through the nasal or gastric 

cavities and triggers alpha-synuclein aggregation which then spreads throughout the 

nervous system173. Both this hypothesis and the staging system have been subject to 

criticism. In as much as 20-50% of patients, Lewy pathology does not appear to follow 

the proposed spreading pattern174,175. Moreover, the distribution of Lewy pathology 

does not fully correlate with neuronal cell death176,177. Selective neuronal vulnerability 

of the affected neuronal populations in PD has been suggested as a possible 

explanation for the spreading pattern of Lewy pathology and neurodegeneration178. 

Irrespective of the nature of the spreading pattern or the initial cause of alpha-

synuclein misfolding, there is evidence suggesting that misfolded alpha-synuclein can 

propagate in a prion-like fashion. For example, grafted nigral neurons in the striatum 

of PD patients has been found to be increasingly affected by Lewy pathology over 

time179,180, and introducing misfolded alpha-synuclein to healthy neurons have 

triggered the formation of Lewy pathology in mouse models181,182. However, there is 

ongoing debate whether alpha-synuclein aggregation is the true driving force behind 

the neurodegeneration in PD, or rather an epiphenomenon183. Regardless, Lewy 

pathology, together with neuronal degeneration in the SNc, remains the defining 

neuropathological characteristic of idiopathic PD, and is present in some, but not all 

cases of monogenic PD, (Table 3).  
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1.4.1 Pathophysiological clues from monogenic PD 

Mutations in SNCA, encoding alpha-synuclein, was the first identified cause of 

monogenic PD77. Beyond single point mutations, multiplications of SNCA also cause 

PD, with duplications198, triplications199 and quadruplications200 having been described 

thus far. Phenotypically, point mutations are varied in their presentation, while 

multiplications tend to cause earlier age of onset and a more rapid disease progression 

with increasing SNCA copy number79. This seemingly dose-dependent relationship, as 

well as the presence of alpha-synuclein containing Lewy pathology in several of the 

monogenic forms of PD (see Table 3), emphasizes the role of alpha-synuclein in PD 

pathology. In healthy neurons, alpha-synuclein is predominantly located in the 

presynaptic terminals, and is believed to regulate synaptic function201. Under normal 

conditions, there is an equilibrium between folded monomeric alpha-synuclein and 

multimeric, primarily tetrameric, alpha-synuclein167. The point mutations associated 

with monogenic PD have all been found to likely disrupt the folding of alpha-

synuclein, shift the balance towards unfolded monomers and induce aggregation167. As 

to how this, in turn, leads to neurodegeneration is the subject of ongoing debate202. 

Mutations and increased expression of alpha-synuclein have been found to affect 

mitochondria in multiple ways, possibly causing mitochondrial fragmentation, mtDNA 

damage, increased reactive oxygen species (ROS) production, and impaired 

respiratory chain function203. Reversely, mitochondrial dysfunction can itself lead to 

aggregation of alpha-synuclein204. A recent discovery provides a possible mechanism, 

where mitochondria seem to play a key role in the degradation of aggregation-prone 

cytosolic proteins by import into the mitochondria and subsequent destruction by 

mitochondrial proteases205.  

 The disease-causing mutations in LRRK2 are all located in or near the two core 

enzymatic domains, and have been found to either increase kinase or decrease GTPase 

activity206. Given that these are relatively broad enzymatic functions, the normal 

function of LRRK2 has been linked to a wide range of cellular processes, including 

cytoskeletal dynamics, autophagy, neuroinflammation, vesicle dynamics and 

mitochondrial function207. Regarding its role in pathology, LRRK2 mutations have 
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been associated with increased mitochondrial oxidative stress, as well as altered 

fission/fusion, mitophagy and mitochondrial trafficking208.  

 VPS35 encodes a key component of the retromer, and its main function is 

believed to be the sorting and retrograde transport of proteins from the endosome to 

either the plasma membrane or the trans-Golgi network209. It remains unclear how the 

mutations causing monogenic PD impact the function of VPS35, as both 

overexpression and knock-out models have been shown to cause 

neurodegeneration210,211. The underlying mechanisms remain unclear, but defective 

autophagy, disrupted synaptic transmission (through reduced recycling of the AMPA 

receptor GluR1) and impaired mitochondrial fission/fusion have been suggested209.  

 Multiple studies have described a causal relationship between CHCHD2-

mutations and familial PD96,97. The CHCHD-genes encode proteins that are mainly 

located in mitochondria212. In addition to the link between CHCHD2 and PD, 

CHCHD10 has also been linked to neurodegenerative diseases, specifically ALS and 

frontotemporal dementia, possibly by causing mitochondrial dysfuction213. CHCHD2 

acts as a transcription factor for proteins in the respiratory chain, especially during 

periods of hypoxia214. PD-associated mutations have been shown to cause both 

fragmentation of the mitochondrial reticulum and reduced oxidative phosphorylation 

in the respiratory chain215, as well as aggregation of alpha-synuclein216.  

 PINK1, parkin (PRKN) and FBXO7 are crucial modulators of mitophagy. In 

healthy mitochondria, PINK1 is continuously being imported into the mitochondria 

and degraded. Damaged mitochondria with depolarized membranes lose this ability, 

and PINK1 accumulates on the mitochondrial surface. Here, it phosphorylates and 

activates parkin, which in turn recruits ubiquitin and flags damaged mitochondria for 

mitophagy217. The PINK1/parkin-system has also been found to interact with other 

monogenic PD genes. Deficiency of DJ-1, encoded by PARK7, compromises 

mitochondrial function in a similar fashion to impairment of PINK1/parkin, and is 

believed to act as part of a parallel system of maintaining mitochondrial homeostasis 

where defects in one system can seemingly be rescued by up-regulation of the 

other218,219. Increased LRRK2 kinase activity, as caused by the most frequent PD-

associated mutation (G2019S), has also been found to inhibit PINK1/parkin-dependent 
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mitophagy by interfering with mitochondrial fission220. Reversely, VPS13C-mutations 

reduces mitochondrial membrane potential, and increases PINK1/parkin-induced 

mitophagy91. Finally, alpha-synuclein has been found to disrupt mitochondrial protein 

import, possibly affecting clearance of PINK1 from the mitochondrial membrane221.  

 ATP13A2 is a cation transporter, and contributes to zinc cation homeostasis in 

the cell222. Disruption of ATP13A2 has been shown to decrease mitochondrial 

membrane potential through accumulation of intra-mitochondrial Zn2+, resulting in 

mitochondrial fragmentation and ATP depletion223. A link between ATP13A2 and 

alpha-synuclein has also been suggested, where downregulated ATP13A2 function 

causes lysosomal dysfunction and reduced alpha-synuclein clearance from the cell224.   

 DNAJC6, encoding auxillin, and SYNJ1, encoding synaptojanin-1, both have 

functions important for synaptic vesicle endocytosis, i.e. recycling of vesicles in the 

synaptic terminal after neurotransmitter release. Auxillin facilitates recycling by 

stripping the vesicles of clathrin in cooperation with synaptojanin-1225. Finally, 

PLA2G6 has been linked to multiple previously discussed PD-associated cellular 

processes. It may affect the function of the retromer by binding to, among other, 

VPS35, and loss of PLA2G6 has been shown to disrupt mitochondrial function by 

causing respiratory chain dysfunction, abnormal morphology and impaired 

mitophagy226-228. 

 A common thread linking the various genes causing monogenic PD is that 

many encode proteins that are important for mitochondrial function. This is further 

emphasized when considering the genes where mutations are known to cause 

degeneration of the substantia nigra (Table 1). POLG and TWNK encode proteins in 

the mtDNA replisome, crucial for repairing and replicating mtDNA, while OPA1 is 

important for mitochondrial fusion and cristae organization229. Table 4 gives an 

overview of the PD-associated genes, including protein localization within the cell and 

theorized function under normal conditions.  
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1.4.2 Mitochondrial involvement in PD 

In the summer of 1976, Barry Kidston, a 23-year old college student, successfully 

synthesized 4-propyloxy-4-phenyl-N-methylpiperidine, a recreational drug with a 

supposedly opiate-like “high”. After self-administering the drug both intravenously 

and intramuscularly, and producing several additional batches of the drug, he 

eventually synthesized what he later referred to as a “sloppy batch” using reduced 

reaction times and higher temperatures in November of 1976. After injecting this 

batch, he quickly developed severe levodopa-responsive parkinsonism, with rigidity, 

tremor, a flat facial expression and muteness231. After succumbing to a cocaine 

overdose 18 months later, an autopsy revealed degeneration of the substantia nigra, 

and Lewy body-like pathology231. A few years later, in 1982, neurologist William 

Langston discovered a total of 7 similarly afflicted individuals, all having injected a 

type of “synthetic heroin”232. After obtaining samples from local dealers and police 

raids, a batch was eventually discovered that consisted almost entirely of 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP), a byproduct in the synthesis of the 

pethidine-analogue 1-methyl-4-phenyl-4-propionoxypiperidine (MPPP)232,233. While 

MPTP is itself not toxic, it crosses the blood-brain-barrier and is converted by 

monoamine oxidase B to the toxic metabolite 1-methyl-4-phenylpyridinium 

(MPP+)234. MPP+ is taken up in mitochondria, and acts as a complex I inhibitor in the 

respiratory chain235. Deficiency of complex I was ultimately documented in the 

substantia nigra of idiopathic PD patients, linking mitochondrial function to the 

pathogenesis of PD236. Subsequent studies of other substances that inhibit complex I, 

e.g. rotenone, have revealed consistent nigrostriatal degeneration and Lewy pathology 

formation in animal models237,238. Complex I is an essential component of the 

mitochondrial respiratory chain, where it generates electrons by oxidizing NADH from 

the Krebs cycle and glycolysis to NAD+. Complex I is thus essential for ATP 

production and redox balance in the cell239,240. Dopaminergic neurons, with their long, 

branching, unmyelinated axons and pacemaker firing-pattern, have particularly high 

energy demands241, which may explain their high vulnerability to impaired 

mitochondrial function and energy failure. Indeed, a long and highly branched axon 
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with a large number of synapses seem to be a common trait connecting most affected 

neuronal populations in PD178.  

 Mitochondria contain their own genome, mtDNA, which encodes 13 peptide 

subunits of the respiratory chain, as well as the tRNAs and rRNAs required for their 

transcription and translation (Figure 5). In contrast with the diploid nucleus, each 

mitochondrion contains multiple copies of mtDNA242. The total number of copies in 

each cell ranges from a few hundred to over 100,000 and correlates with the number of 

mitochondria, which again is reflective of the energy demand of the cell243-245.  

Replication of mtDNA is controlled by several proteins encoded by nuclear 

DNA (see Figure 6). Mitochondrial transcription factor A (TFAM) is a key regulator 

of both mtDNA transcription and replication, as it attaches to mtDNA and distorts the 

structure in order to enable binding of additional enzymes246. The core proteins 

responsible for mtDNA replication are Twinkle, DNA polymerase gamma (POLG), 

mitochondrial RNA polymerase (POLRMT) and mitochondrial single stranded DNA 

binding protein (mtSSB)247. Twinkle is a DNA helicase that separate the strands of the 

mtDNA, initiating binding and mtDNA replication by POLG. POLRMT is responsible 

for synthesizing RNA primers necessary for replication of the lagging strand247, and 

mtSSB, encoded by the gene SSBP1, binds to single stranded mtDNA and protects it 

from damage during the replication process248.  

 Repair of damaged mtDNA encompasses many of the same processes 

utilized in the repair of nuclear DNA. Single-stranded mtDNA damage can be 

corrected by way of base excision repair and mismatch repair, while nucleotide 

excision repair, important for nuclear DNA repair, has not been conclusively shown in 

mitochondria249,250. The main mechanisms of double stranded DNA breaks are non-

homologous end joining and homologous recombination, but there is conflicting 

evidence for whether these processes are occurring in mitochondria249,250. 
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Figure 5. Mitochondrial DNA. mtDNA encodes seven subunits of complex I (ND1-6 

and ND4L), one subunit of complex III (CYB), three subunits of complex IV (CO1-3), 

and two subunits of complex V (ATP6 and ATP8). In addition, it also encodes transfer 

RNA (gray) and ribosomal RNA (dark blue). Most are encoded by the heavy strand 

(outer ring), but ND6 and some transfer RNAs are encoded by the light strand. PH and 

PL indicate the promotor regions of the heavy and light strand respectively. The figure 

is based on data from Chocron et al251 and Mitomap252.   

 

mtDNA is particularly susceptible to oxidative damage in the form of both 

point mutations and deletions, as it is physically located near the ROS-generating 

respiratory chain253. Both accumulation of deletions and point mutations can lead to 



 
 

49 

impaired respiratory chain function254,255. Deletions has been shown to accumulate 

with age in multiple tissues, including the substantia nigra of both normally aged 

individuals and subjects with PD256. Increasing mtDNA copy number has been 

suggested as a compensatory mechanism to maintain a healthy supply of wild type 

mtDNA, ensuring that the cells energy demands are met. This increase in copy number 

has been documented in healthy subjects but seems to be deficient in substantia nigra 

neurons from PD cases257. In addition, an increased load of point mutations has also 

been described in early stage PD neurons258. Maintaining a healthy pool of wild type 

mtDNA is reliant on a multitude of biological processes, including base excision 

repair, mitochondrial biogenesis, mitochondrial dynamics (fission/fusion) and 

mitophagy259. Many monogenic PD genes encode proteins that serve important 

functions for all of these processes.  

 
Figure 6. mtDNA replisome. Twinkle separates the strands of the mtDNA, triggering 
mtDNA replication by POLG. On the lagging strand, POLRMT synthesizes primers to 

initiate replication. mtSSB attaches to and stabilizes single stranded mtDNA.  
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2. Aims 
Familial aggregation of PD has been observed in multiple cohorts, but generalizing 

risk estimates is complicated by the possibility undetected monogenic causes and the 

proportion of early onset cases. GWAS have identified a large number of risk variants 

for PD, but combined they only explain a small portion of the estimated heritability. 

Many of the genes responsible for monogenic PD encode proteins that are important 

for mitochondrial function, and mitochondrial dysfunction has been shown in 

idiopathic cases. Whether this dysfunction is influenced by genetic variation is not 

known. Finally, the variants identified by GWAS are typically located in non-coding 

regions. Identifying the functional impact of these variants is important in order to 

better understand the pathophysiology of PD.  

 

Paper I: The aim of this study was to characterize the familial aggregation of 

idiopathic PD in a cohort where known monogenic causes were excluded, and 

correlate family history with phenotype and progression.   

 

Paper II: The aim of this study was to independently replicate the finding that rare 
variation in TRAP1 is modulating the risk of PD.  

 

Paper III: The aim of this study was to investigate the contribution of rare genetic 

variation in genes important for mitochondrial function to the risk of PD.  

 

Paper IV: The aim of this study was to evaluate rare genetic variation in genes 
implicated by GWAS in PD.  
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3. Summary of results 

3.1 Paper I: Familial aggregation of Parkinson’s disease may affect 

progression of motor symptoms and dementia.  
In this study, we investigated the familial aggregation of PD in a Norwegian 

population-based cohort of incident PD, and explored the association between a 

positive family history and disease progression. The patients were diagnosed and 

included in the study between 2004-2006, and longitudinal data was available up until 

and including 7 years after baseline. All underwent whole exome sequencing to screen 

for known monogenic causes of PD. Controls were recruited during the same 

timeframe. A simplified family history was taken at baseline, and a detailed, validated 

questionnaire was introduced at year 3.  

Whole exome sequencing revealed one patient with a G2019S LRRK2-

mutation, who was subsequently removed from the analysis. Using the simplified 

questionnaire, there was no statistically significant difference between cases and 

controls regarding first degree relatives with PD. For the extended questionnaire, there 

was significant familial aggregation of first degree relatives with PD among the cases 

(OR = 1.99, p = 0.036). The effect size is comparable to estimates from previous 

studies, but at the conservative end of the spectrum. Possible reasons for this include 

our use of a validated questionnaire and exclusion of patients with known monogenic 

causes of PD.  

There was no association between a positive family history and motor 

phenotype when comparing patients with tremor dominant PD to those with postural 

instability and gait disorder (PIGD). In a regression analysis using generalized 

estimating equations (GEEs), however, we detected a statistically significant 

association between having a first degree relative with PD and the progression of 

motor function (as measured by the Unified Parkinson Disease Rating Scale [UPDRS] 

II, p = 0.008) and cognitive decline (as measured by the mini mental state examination 

[MMSE, p = 0.042). Specifically, patients with a positive family history seemed to 

deteriorate more slowly both in terms of UPDRS II progression and MMSE decline 

over the 7-year long follow up. Our results indicate that heritable factors, either 
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genetic or environmental, could contribute not only to inducing disease, but also 

modulate disease progression.  
 

3.2 Paper II: No evidence for rare TRAP1 mutations influencing the risk 

of idiopathic Parkinson’s disease 
This short report was a response to an article by Fitzgerald et al260, where they report a 

novel homozygous loss-of-function mutation in TRAP1 in a late onset PD patient. 

They go on to show enrichment of rare, predicted-to-be damaging variants in TRAP1 

in controls when compared with PD, using whole exome sequencing data from the 

Parkinson Progression Markers Initiative (PPMI).  

 Replicating the parameters of the association analyses, we did not find an 

association between TRAP1-mutations and PD in either direction in our Norwegian 

whole exome sequencing cohort. Furthermore, we show that by performing a stricter 

individual and variant quality control in the PPMI cohort, the rare variant enrichment 

signal detected by Fitzgerald et al disappears.  
 

3.3 Paper III: Rare genetic variation in mitochondrial pathways influences 

the risk for Parkinson’s disease 
GWAS have identified numerous genetic variants affecting the risk of developing PD, 

but they still, collectively, explain only a minor percentage of the total estimated 

heritability. Mitochondrial function plays an important role in the pathogenesis of PD. 

Many genes responsible for monogenic PD encode proteins that have functions in 

relation to mitochondria, and disruptions of the mitochondrial respiratory chain has 

been documented in neurons of PD patients.  

 We hypothesized that mutations in genes important for mitochondrial function 

could affect the risk of developing PD. Using whole exome sequencing data from two 

independent PD cohorts, the Norwegian ParkWest and the American PPMI cohort, we 

explored the impact of rare genetic variation in PD.  

 For the region-based enrichment analyses, we restricted our analyses to rare 

(MAF < 1%) mutations that were classified as either missense or predicted to be 

damaging based on multiple prediction algorithms. Genome-wide analyses of single 
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variants and single gene enrichment did not yield any statistically significant results 

after correcting for multiple testing. A power analysis showed that a cohort of 

approximately 8,000 – 11,000 individuals is needed in order to achieve 80% power in 

a genome-wide single gene enrichment analysis.  

We manually curated a total of 28 mitochondrial pathways, each consisting of 

genes that were considered to be part of the same biological pathway. Using the 

sequence kernel association test, we detected a statistically significant enrichment of 

rare missense mutations in the mitochondrial DNA homeostasis pathways, surviving 

multiple testing correction in the PPMI cohort and the meta-analysis. There was also 

an enrichment in the calcium homeostasis pathway, but it was only statistically 

significant in the meta-analysis.  

 

3.4 Paper IV: Meta-analysis of whole-exome sequencing data from two 

independent cohorts finds no evidence for rare variant enrichment in 

Parkinson disease associated loci 
GWAS have identified several risk loci for PD, but associating them with genes is 

challenging since most are in non-coding regions. We hypothesized that enrichment of 

rare, coding variants is likely to be found in regions tagged by GWAS, and that this 

could help identify pathologically relevant genes. Using results from the most recent 

GWAS, we identified 303 genes of interest around the associated SNPs.  

 Two whole exome sequencing cohorts were used in the analysis, the ParkWest 

and PPMI, both in single cohort-analyses and in a meta-analysis. In addition, we used 

a chip-genotyped dataset, NeuroX, as a replication cohort. In total, 190 genes were 

available for analysis when restricting variants to rare (MAF < 1%) missense, 

stopgain, stoploss and splicing mutations. We additionally performed gene-set 

analyses to identify possible enrichment of these variants across the complete set of 

genes, as well as a subset of rare LoF-variants.  

 After correcting for multiple comparisons using FDR, there were no statistically 

significant associations for either the single gene analyses or the gene-set analyses. 

Three genes, GALC, PARP9 and SEC23IP, were nominally significant (uncorrected p 

< 0.05) in either each of the two WES cohorts or in the meta-analysis, but none 
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replicated across all three cohorts. Our study does not support a major role of rare 

variants in genes implicated by GWAS, but cannot, due to being underpowered, rule 

out a role for rare variants with small effect sizes.  
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4. Materials and methods 
4.1 Study populations 

4.1.1 ParkWest – Paper I, II, III, IV 
The ParkWest study is a prospective longitudinal cohort study of incident PD, and 

sough to include all newly diagnosed cases from four Norwegian counties between 1 

November 2004 and 31 August 2006, with follow-up still ongoing as of 2020. A 

detailed description of the study population and methodology has been published 

previously261. The diagnosis of PD was made on the basis of the Gelb criteria262, and 

cases which later turned out to have atypical parkinsonism or other disorders rather 

than PD (19 in total) were continuously removed from the study. One case with a 

LRRK2-mutation (G2019S) was also excluded. In total, 192 cases with validated PD 

were used in our analyses.  

 For Paper I, age- and sex-matched controls were recruited in the same 

timeframe as the cases and followed up with the same frequency. 205 controls were 

originally recruited, but 2 later developed PD themselves and were removed from the 

study. 10 controls were also close relatives of some of the cases, and were therefore 

not used given the research question of Paper I.  

 For the genetic analyses of Paper II, III and IV, controls (n = 219) were 

provided by two previously sequenced in-house datasets. 167 were patients with testis 

cancer, and 52 were patients with acoustic neuroma. They had all been recruited at our 

hospital and had showed no clinical signs of any neurological or neurodegenerative 

disorders.  

 

4.1.2 Parkinson Progression Markers Initiative – Paper II, III, IV 

The Parkinson Progression Markers Initiative, or PPMI, is an observational clinical 

study that consists of several different longitudinal cohorts, including a de novo PD 

cohort, a monogenic PD cohort and a prodromal cohort263. Patients are primarily from 

the United States, but recruitment centers are also located in Europe and Australia. 

Whole exome sequencing data was available from the de novo PD cohort, comprising 

a total of 459 cases and 181 controls.  
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4.1.3 NeuroX – Paper IV 
The NeuroX dataset is managed by the International Parkinson’s Disease Genomics 

Consortium and consists of genotype data from 11,402 unrelated individuals (5,540 

cases and 5,862 controls) of European ancestry. The dataset is a combination of five 

previously genotyped cohorts from the United States, France, Germany and the UK264, 

and has been re-genotyped using the NeuroX platform265. The NeuroX exome array 

was designed to investigate neurodegenerative diseases and contains, in addition to 

around 240,000 standard Illumina chip variants, approx. 24,000 custom variants 

focusing on neurological disorders.     

 

4.2 ParkWest clinical data (paper I) 

4.2.1 Longitudinal data 

Longitudinal data were available up to and including 7 years after baseline. Motor 

function was examined every 6 months by way of the Unified Parkinson’s Disease 

Rating Scale (UPDRS)266, Hoehn & Yahr scale267 and the Schwab & England 

activities of daily living scale268. Cognitive function was measured using the mini 

mental state examination (MMSE) at baseline and after 1, 3, 5 and 7 years. All 

measurements were of patients in the ON state. Using data from the baseline visit and 

an established algorithm269, patients were subclassified into three groups: tremor 

dominant (TD), postural instability and gait difficulties (PIGD) or intermediate/mixed.  

 

4.2.2 Family data 

At baseline, study participants were given a simplified questionnaire that consisted of 

a yes/no question on whether they had any first- or second-degree relatives with PD. 

Three years later, a more thorough follow-up questionnaire was introduced. This 

questionnaire was a Norwegian translation of a validated questionnaire with an 

estimated sensitivity of 95.5% and specificity of 96.2% for detecting relatives with 

PD270. It consisted of a variety of questions, e.g. whether the interviewee had any 

relatives with a shuffling gait or tremor, and if they were ever examined by a 

neurologist. Any family member with a positive history was then classified as either 
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“possible”, “probable” or “definite” PD according to a diagnostic algorithm. The 

questionnaire is available in English from the original publication270, and the 

Norwegian version can be found in Appendix I of this thesis.   
 

4.3 Genetic data (paper II, III, IV) 

4.3.1 Sequencing and genotyping 

ParkWest (Paper II, III and IV) 

DNA was extracted from blood by routine procedures and sequenced at HudsonAlpha 

institute for Biotechnology (Huntsville, Alabama) on the Illumina HiSeq platform 

using Roche-NimbleGen Sequence Capture EZ Exome v2 (173 controls) and v3 (all 

PD and 46 controls) capture kits and paired-end 100 bp sequencing. Reads were 

mapped to the hg19 (GRCh37) reference genome using BWA v0.6.2271, polymerase 

chain reaction duplicates removed with Picard v1.118272 and the alignment refined 

using the Genome Analysis Toolkit (GATK) v3.3.0273 applying base quality score 

recalibration and realignment around indels recommended in the GATK Best Practices 

workflow274,275. Variants were called in all samples using the GATK 

HaplotypeCaller273 with default parameters. Variant quality score recalibration was 

performed using 99.9% sensitivity threshold273. Using BEDtools276 and VCFtools277, 

the remaining variants were filtered against the intersection of capture targets from the 

two capture kits. Variants with a total depth below 10X were marked as unknown (no-

call) using BCFtools278. Indel calls were excluded from downstream analysis, as they 

were found to be less reliable than single nucleotide variant calls.     

 

PPMI (paper II, III and IV) 

Sequencing and variant calling was performed by the PPMI, and the following 

information was provided by Dr. D.G. Hernandez and Dr. J.R. Gibbs, National 

Institute on Aging, Laboratory of Neurogenetics. DNA was extracted from blood and 

sequenced using Nextera Rapid Capture Expanded Exome Kit on the Illumina HiSeq 

2500 platform using 2x100 bp paired-end read cycles. FASTQ files (reads) were 

aligned using BWA271 against the hg19 reference human genome. Duplicate read 

removal, format conversion and indexing were performed with Picard272. GATK273-275 
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was used to recalibrate base quality scores and perform local realignments around 

indels for the aligned sequencing reads. The GATK HaplotypeCaller was used for 

variant calling and genotype likelihood generation. GATK CombineGVCFs and 

GenotypeGVCFs were used to perform joint genotyping for the cohort from the set of 

per subject genomic VCF files.  

 

NeuroX (paper IV) 

The NeuroX dataset was obtained through dbGaP (dbGaP Study Accession: 

phs000918.v1.p1). Individuals were genotyped on the NeuroX array, which is a 

custom array developed specifically for use in neurodegenerative diseases265, designed 

by a National Institute of Neurological Disorders and Stroke consortium. It consists of 

a core of standard Illumina exome variants from the Illumina HumanExome array v1.1 

(242,901 variants), and an additional set of custom variants (24,706) with a particular 

focus on neurologic disorders. The custom variants were selected based on results 

from previous GWAS, within-consortium sequencing pilot studies and systematic 

review of the literature, focusing on Alzheimer Disease, PD, multiple system atrophy, 

progressive supranuclear palsy, amyotrophic lateral sclerosis, multiple sclerosis, 

frontotemporal dementia, myasthenia gravis and Charcot-Marie-Tooth.  

 

4.3.2 Individual and variant quality control 

The quality control procedures followed were identical for both the ParkWest, PPMI 

and NeuroX datasets. All quality control procedures were performed using PLINK 

v1.90279, R280 and Eigensoft281,282.  

First, genetic data in variant call format (VCF) was recoded into binary PLINK 

format after indel removal where applicable. Individuals were excluded if they had a 

genotypic missing rate of > 2%, abnormal heterozygosity (± 3 standard deviations, 

calculated for rare and common variants separately), conflicting sex assignment, 

cryptic relatedness (identity by descent > 0.2) or non-European ancestry. Population 

stratification was studied using multidimensional scaling against the HapMap 

populations283.  
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Variants were excluded if the genotyping rate was < 98%, or if the genotype 

distribution departed from the Hardy-Weinberg equilibrium (p < 10-5). Variants with 

different call rates in cases and controls (p < 0.02) were excluded. Sex chromosomes 

were removed in all datasets, as well as monomorphic and multiallelic variants. 

Principal component analysis was carried out using Eigensoft using standard settings 

(5 iterations, 10 principal components, sigma 6). ANOVA of the first 10 principal 

components was performed with the significance level set to p < 0.01. Significant 

principal components were used as covariates in all downstream analyses.  

 

4.3.3 Variant annotation and filtering 

For all papers and datasets, variants were annotated using ANNOVAR284 according to 

the RefSeq gene transcripts285.  

 

Paper II 
As paper II was a replication study of the findings from Fitzgerald et al260, we 

followed their methods for variant filtering and classification. Rare variants were 

defined as variants with a MAF < 1% in the non-Finnish European ExAC dataset150. A 

total of six variant subsets were created: synonymous, nonsynonymous (i.e. missense, 

Sequence Ontology: 0001583) and four subsets with predicted-to-be-damaging 

variants of varying severity. Phred-like Combined Annotation Dependent Depletion 

(CADD) scores were used to predict each variant’s disruptive potential, and the four 

variant groups defined as CADD > 10, CADD > 15, CADD > 20 and CADD > 30. In 

this scoring system, variants are ranked according to their predicted disruptive 

potential compared to all other variants. A score > 10 means that the variant is 

predicted to be among the top 10% of disruptive variants, a score > 20 among the top 

1% etc.  

 

Paper III 

Two subsets of variants were extracted for use in downstream analyses. The first 

comprised all exonic variants defined as nonsynonymous, i.e. missense mutations. The 

second subset consisted of predicted-to-be-damaging variants, as defined by the 
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variants having a deleterious score in all of the following prediction algorithms: 

PolyPhen2 HumDiv43, PolyPhen2 HumVar43, MutationTaster286, SIFT287 and LRT288. 

Only rare variants were considered. In ParkWest, rare variants were defined as having 

a MAF < 1%. In the PPMI dataset there was an imbalance in the number of cases and 

controls, and rare variants were therefore defined as having a MAF < 1% in either 

cases or controls as to avoid any bias.   

 

Paper IV 

Two sets of variants were used in paper IV, one consisting of rare variants classified as 

either nonsynonymous (missense), stop-gain, stop-loss or splicing, another consisting 

of rare LoF-variants (stop-gain, stop-loss and splicing mutations). Rare variants were 

defined as having a MAF < 1% in the non-Finnish European population in the 

Genome Aggregation Database (gnomAD)289. 

 

4.3.4 Regions used in collapsing analyses 

Pathway curation (paper III) 

Pathways focused on various aspects of mitochondrial biology, and were defined as 

groups of genes encoding proteins with a functional and/or structural link to 

mitochondrial biochemistry. The pathways were manually curated based on data from 

MitoCarta v2.0290, a database of all known proteins with strong support for 

mitochondrial localization. After initial curation, the pathways were expanded by 

using STRING291 to identify genes encoding additional pathway-relevant proteins 

without known mitochondrial localization (and therefore not in MitoCarta). 

Specifically, we compiled a list for each pathway of additional candidate proteins 

ranked by the number and strength (STRING combined score) of STRING interactions 

with the original pathway. The resulting lists were manually inspected, and the 

original pathways supplemented with additional genes encoding proteins with known 

involvement in mitochondrial function, but without established mitochondrial 

localization. In total, 28 pathways focused on different aspects of mitochondrial 

function were generated. The complete unedited MitoCarta database was also included 

as a 29th pathway.  
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Genes of interest (paper IV) 
The aim of the study was to perform a focused genetic association analysis of genes 

implicated by GWAS in PD by using LD to identify nearby genes of interest. The 

most recent GWAS identified 90 PD-related SNPs24, and we defined genes of interest 

as any gene containing a variant in LD within a 2 megabase window around any of 

these. The threshold was set to R2 > 0.5, and if the variant in LD was located in an 

intergenic region the nearest gene was included. LD calculations were available from 

supplemental material of the original GWAS, and included a total of 303 genes that fit 

the inclusion criteria.  

 

4.4 Statistical analyses 
All statistical analyses were performed using either SPSS v22, PLINK v1.9279 or 

R/RStudio280,292. In R/RStudio, the specific packages used were SKAT293, 

MetaSKAT61 and metap294, in addition to more general data management packages.   

 

4.4.1 Paper I 

The statistical tests used were Pearson’s c2, Fisher’s exact test, independent-samples t-

test and Mann-Whitney U. Generalized estimating equations (GEEs) were used to 

analyze differences in disease progression between PD patients with a positive and 

negative family history. Depending on the distribution of the dependent variable, a 

gamma or linear model was used together with an exchangeable correlation structure. 

All regression models were adjusted for age and sex. P-values of < 0.05 were 

considered statistically significant. All analyses were performed using SPSS v22.  

 

4.4.2 Paper II 

Single variant association tests were performed for rare variants (see definition under 

section 4.2.3) using PLINK v1.9279. For ParkWest, single variants were analyzed using 

logistic regression with significant principal components as covariates (--logistic in 

PLINK). In PPMI, there were no significant principal components, and single variants 
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were analyzed using either c2 or Fisher’s exact test (--assoc or --fisher in PLINK). In 

this paper, rare variants were defined as having MAF < 1% in an external dataset 

(ExAC150). Therefore, some of the included variants had a within-cohort MAF > 1%. 

c2 was used for all variants with a within-cohort MAF >1%, and Fisher’s exact test for 

those with MAF <1%.  

A targeted rare variant enrichment analysis of TRAP1 was carried out using a 

weighted burden test, the sequence kernel association test (SKAT) and the optimal 

sequence kernel association test (SKAT-O). All analyses were done in R280 using the 

SKAT R package v1.3.2293 with default settings. Six variant subsets were analyzed in 

the ParkWest and PPMI datasets separately, with significant principal components as 

covariates. The p-values reported were not corrected for multiple testing.  

 

4.4.3 Paper III 

Single variant analyses were performed for common variants (MAF > 1%) using c2 (--

assoc in PLINK) for PPMI and logistic regression (--logistic in PLINK) with 

significant principal components as covariates for ParkWest using PLINK v1.9279. The 

significance threshold used for single variant associations was the broadly accepted 

genome-wide standard of p < 5 x 10-8.  

Rare variant enrichment analyses were performed on all genes and pathways 

containing ≥ 2 variants using a weighted burden test and the SKAT. Significant 

principal components were used as covariates, and all analyses were carried out in R280 

using the SKAT package v1.3.2293 with default settings. Using resampling, the 

minimum achievable p value (MAP) was calculated for all genes and pathways, and 

any gene/pathway with MAP above a Bonferroni-corrected threshold for statistical 

significance were excluded to reduce statistical noise. After the analyses, Bonferroni 

correction was applied to the p-values from the single gene analyses to correct for 

multiple comparisons. For pathway analyses, p-value thresholds for significance were 

calculated using the minP/maxT method295. Here, phenotypes are null-permuted 

(10,000 times for ParkWest and 100,000 times for PPMI), and for each permuted 

dataset the minimum p-value is extracted to form a minimum p-value distribution. The 
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significance threshold is then found at the 0.05-quantile of this distribution, 

representing a significance level of p < 0.05.  

For pathways, meta p-values were calculated using the optimally weighted Z 

test64, as implemented by the metap R package294. A power analysis for single gene 

associations were performed using the built-in functionality of the SKAT R package. 

By default, the package uses simulated data and simulated genes (genetic regions of 

random lengths). We modified the algorithms and used our ParkWest dataset instead 

of the simulated dataset, as well as the RefSeq gene transcripts instead of random 

regions285. The assumed prevalence of PD was set to 1.5%, and power calculations 

were carried out for different percentages of causal SNPs (10%, 25%, 50%, 75% and 

100%) using default weights. Only missense mutations with MAF < 1% were 

considered, and a genome-wide significance level of 2.5 x 10-6 was implemented 

(which corresponds to Bonferroni-correcting for 20,000 genes).  

 

4.4.4 Paper IV 

In both the single gene and gene-set analyses, rare variant enrichment analyses were 

performed using a weighted burden and the SKAT as implemented by the SKAT R 

package v.1.3.2.1293. Statistically significant principal components were used as 

covariates, and default settings were otherwise used. For the single gene analyses, only 

genes with at least two or more variants across the two whole exome sequencing 

cohorts combined (ParkWest and PPMI) were analyzed.  

 Meta-analysis was performed by using the Meta-SKAT R package v0.6061, and 

the same weighted burden test and SKAT as in the single cohort analyses. We 

hypothesized that genetic effects should be homogenous across studies, meaning the 

same mutation should have the same direction of effect in both cohorts, and did not 

perform a version of the test that allows for heterogenous genetic effects. All p-values 

were corrected for multiple comparisons by using FDR-correction296.  
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4.6 Ethical considerations 
These studies (paper I-IV) were approved by the Regional Committee for Medical and 

Health Research Ethics, Western Norway (REK 131/04). This thesis does not contain 

any information that could be used to identify specific individuals.  
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5. Methodological considerations 
5.1 Study populations 
Throughout all four papers, we have utilized data from the Norwegian ParkWest 

study, a longitudinal cohort of incident PD. All participants had been extensively 

followed up since 2004. This has ensured that the diagnostic certainty for these 

patients is very high. During the first few years, several patients were removed from 

the study as they were found to have another diagnosis than PD. Similarly, some of the 

controls also developed PD during the course of the study and were excluded. The 

remaining cohort is therefore of particularly high quality, and because all patients 

underwent genetic sequencing, we know that they do not have any known monogenic 

forms of PD (one case was found to harbor the G2019S LRRK2 mutation and was 

removed from all studies). This is especially important when studying the familial 

aggregation of idiopathic PD in paper I.  

 One clear disadvantage of the genetic studies (paper II-IV) is that the genetic 

controls differ from those in the ParkWest longitudinal cohort. Only PD patients from 

the original cohort underwent whole-exome sequencing, and controls were sourced 

from other, already sequenced, in-house datasets. 167 controls had been diagnosed 

with testis cancer, and 52 were patients with acoustic neuroma. All controls were 

diagnosed at our hospital, and none had shown any sign of neurodegenerative disease. 

Still, one must assume that some of these controls will or would go on to develop PD 

as they age. Some studies have found an increased risk of brain tumors in PD297, but 

crucially this relationship was not detected when the tumor diagnosis came first298. 

Similarly, there is, to our knowledge, no known relationship between testis cancer and 

PD299. The rate of “eventual PDs” in our control sample would therefore be roughly 

equal to the lifetime prevalence of PD (2.0% for men and 1.3% for women7). Given 

the sex distribution of our controls, this equates to approx. 4 individuals.  

 As the majority of our genetic controls came from a cohort of testis cancer, 

male individuals greatly outnumber females in our control group (approx. 87% males). 

While male individuals also make up the majority of our PD cases, they do so to a 

lesser extent (approx. 61%). Even though our analyses are limited to the autosome 
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(sex-chromosomes were removed during individual and variant quality control), a 

more equal ratio in cases vs controls would have been preferred. We do not believe, 

however, that it has had any substantial impact on our results. One could argue that 

since males are at greater risk of PD than females, such a high proportion of males 

could have led to more “eventual PDs” in our control sample. The prevailing theory of 

why women are less at risk for PD than men revolves around the neuroprotective 

effects of estrogen, i.e. an environmental exposure for all intents and purposes300. 

Assuming then that the 0.7% difference in lifetime risk of PD is due to females being 

protected by this environmental factor, the proportion of genetically predisposed 

individuals due to variation in the autosome would be equal for a female and male 

control sample.  
 

5.2 Statistical analysis of longitudinal data (paper I) 
For the regression analysis of the longitudinal data, we chose to use GEEs instead of a 

mixed model approach. GEEs are considered to be particularly robust to 

misspecification of the correlation matrix, but with reduced efficiency as a potential 

tradeoff301,302. A mixed model analysis could therefore potentially have been able to 

detect associations with a higher degree of statistical certainty.  
 

5.3 Genetic sequencing and quality control (paper II, III, IV) 

5.3.1 Genetic sequencing 

Sequencing/genotyping of the PPMI and NeuroX datasets were performed by their 

respective study groups, and the genetic data provided to us have been used 

extensively in published research. For the ParkWest dataset, all individuals were 

sequenced on the Illumina HiSeq platform, but with different versions of the Roche-

NimbleGen Sequence Capture EZ Exome (v2 for 176 controls and v3 for all PDs and 

46 controls). Because the two versions offer slightly different capture targets, only the 

intersecting regions were used in downstream analyses. Still, it is possible that this 

could introduce batch effects in our ParkWest data. We addressed this by strictly 

following GATK Best Practices guidlines274,275 for the variant calling, and using 

rigorous individual and variant quality control procedures.  
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5.3.2 Individual and variant quality control 
For individual and variant quality control, we followed established procedures for 

genetic association studies303. Principal component analysis was performed for all 

cohorts, and principal components with p < 0.01 in an ANOVA of the first 10 

principal components were included as covariates in all downstream analyses. As 

outlined in section 5.3.1, we were aware of the possibility of batch effects in our 

ParkWest cohort due to differences in capture kit versions between cases and controls. 

After quality control, however, we did not observe any p-value inflation in our 

quantile-quantile plots or clustering in our multidimensional scaling plots (see Figure 1 

in paper III). We therefore considered any potential batch effects to be sufficiently 

controlled. 

 We elected to use fairly conservative thresholds for both call-rate per person 

and call-rate per SNP (>98%). For genotype data, the threshold is usually between 

95% and 99%303. For whole exome data, on the other hand, less strict thresholds have 

generally been considered acceptable. Published studies have used thresholds ranging 

from 80% to 98%304,305. Rare variant enrichment analyses have been shown to be 

susceptible to type I errors when variant call-rates are low and differ between cases 

and controls, and we therefore elected to be conservative in order to reduce false 

positive signals306. Given that our cohort is relatively small, and that these strict 

thresholds further reduce power by removing samples and variants, an argument could 

certainly be made for a more inclusive approach.  
 

5.4 Variant filtering and annotation (paper II, III, IV) 

5.4.1 Rare variant definition 

Because GWAS largely focus on common genetic variation, rare variants have been 

proposed as a possible explanation for the missing heritability of many complex 

diseases, including PD307. Defining what constitutes a rare variant is, however, not set 

in stone. The upper MAF threshold for rare variants is typically considered to be 

somewhere between 0.5% and 5%308. Some also suggest a lower MAF threshold so as 

to distinguish rare variants from private mutations309. For our planned analyses, 
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focusing on collapsing multiple rare variants and looking for enrichment, a lower 

threshold would not be meaningful, as both rare and private mutations are equally 

relevant and available for analysis. As for the upper threshold, we elected to go with 

the commonly used figure of MAF < 1%309,310. There is an established inverse 

relationship between MAF and disruptive potential, where, on average, variants with 

lower MAFs are more likely to be classified as damaging by prediction tools such as 

CADD311. In selecting our rare variant threshold, we aimed to include as many 

biologically relevant mutations as possible, while limiting non-relevant variation.  

 In addition to selecting a rare variant threshold, it was also necessary to decide 

whether to apply it to within-cohort MAFs or use an external public database. Both 

approaches have been used in whole-exome studies in PD and have their advantages 

and disadvantages135,146. The overall aim of the rare variant filtering is to maximize the 

inclusion of variants that affect disease, while limiting the inclusion of non-relevant 

variation. Public datasets are typically very large, e.g. gnomAD contains > 141.000 

whole exomes/genomes289, and variants that are common here are therefore less likely 

to be disease-relevant. However, when using cohorts from relatively homogeneous 

populations, harmless variants that are rare or absent in public databases can still be 

common here due to founder effects. When whole exome or whole genome 

sequencing is used for diagnostic purposes, variants are typically filtered both against 

a public database and an in-house database of local genomes/exomes to remove as 

many non-pathogenic variants as possible312. In paper II, we replicated the 

methodologies used by Fitzgerald et al260, who used the publicly available ExAC 

dataset to filter rare variants150. In paper III we used within cohort MAFs to define rare 

variants, as our ParkWest dataset is fairly homogenous and we wanted to prevent the 

inclusion of non-relevant variation with high MAFs in our analysis. Finally, in paper 

IV we used MAFs in the publicly available gnomAD database (non-Finnish European 

subset), as this approach has become more popular among rare variant enrichment 

studies and avoids potential bias when there is a large discrepancy between the number 

of cases and controls in the dataset.  

  In our ParkWest dataset, the number of cases and controls is fairly equal. 

However, in the PPMI dataset, the ratio between cases and controls is 2.5:1. This can 
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cause an inclusion/exclusion bias in that risk variants more prevalent in cases are more 

likely to be excluded than protective variants more prevalent in controls when only 

cohort-wide MAFs are considered. We addressed this issue by including any variant 

with MAF < 1% in either the cases or controls separately. Another possible solution 

would be to include only variants with MAF < 1% in both cases and controls, but this 

was deemed to be overly conservative in our limited sample as it resulted in the 

exclusion of a high number of variants.  

 

5.4.2 Variant filtering 
In addition to restricting our analysis to rare variants, we also filtered variants based on 

type and function in order to limit the inclusion of non-relevant variants. Synonymous 

variants do not, by definition, alter the amino acid of the resulting protein, and are 

therefore generally considered to be much less likely to impact disease development 

than for example missense mutations. While there is increasing evidence that 

synonymous mutations can impact biological processes by affecting transcription313 

and mRNA stability314, they are generally viewed as neutral variants and not included 

in rare variant enrichment analyses315. Here, studies tend to focus on either 

missense/nonsynonymous29,134,135,137,146, predicted-to-be-damaging29,135,146 or loss-of-

function135,146 variants.   

 In paper II, following the methodology of Fitzgerald et al260, we performed 

enrichment analyses on nonsynonymous, synonymous and predicted-to-be-damaging 

variants. Phred-like CADD scores were used to group variants into four subgroups of 

increasingly deleterious mutations.  

 In paper III, we modeled our approach on the methodologies of Purcell et al29 in 

their paper on the polygenic burden of disruptive mutations in schizophrenia. Here, 

variants were grouped into three categories: disruptive, predicted-to-be-damaging 

(strict) and predicted-to-be-damaging (broad). Disruptive mutations included 

nonsense, splice-cite mutations and frameshift mutations. Five prediction algorithms 

were used to evaluate the disruptive potential of missense mutations: PolyPhen2 

HumDiv43, PolyPhen2 HumVar43, MutationTaster286, SIFT287 and LRT288. For the 

strict category, variants had to have a deleterious score in all five prediction 
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algorithms, while in the broad category, variants needed only to have a deleterious 

score in at least one. Because our datasets were substantially smaller than that used by 

Purcell et al29, using the same categories would be overly strict and result in too few 

variants to be able to do any meaningful analysis. We therefore opted to use two 

variant categories, one with all rare missense mutations, and one with variants with 

deleterious scores in all five previously mentioned prediction algorithms. Indels were 

not included, as these had been removed during quality control because they were 

found to be less reliable than single variant calls. Also not included in the missense 

category were nonsense and splice-cite mutations. The reason for this was that we 

treated our two groups as separate categories rather than one as a subset of the other. 

Retrospectively, it would perhaps have been more appropriate to have included these 

mutations in our missense category, which we go on to do in paper IV. There, we 

performed the analyses using two categories, one containing all rare missense, 

nonsense and splice-cite mutations, and a subset containing only nonsense and splice-

cite variants. The latter category was only used in the gene-set analyses, as the number 

of included variants was very low.  
 

5.5 Pathway selection (paper III) 
The major focus of paper III was the pathway analyses, and our aim was to investigate 

pathways relevant for mitochondrial function. Since our datasets were of limited size, 

the pathway selection process was of vital importance in order to focus the analyses 

and limit the number of “off-target” pathways. We originally examined already 

available pathway databases but found that they were not particularly well suited for 

our needs. For example, one of our eventual pathways was mitochondrial DNA 

maintenance. Looking at available pathways in the GO database128,129 (accessed 

through the Molecular Signatures Database v7.0316,317), there are three pathways 

related to this process: mitochondrial DNA repair (GO:0043504), mitochondrial DNA 

replication (GO:0006264) and mitochondrial DNA metabolic process (GO:0032042). 

Overall, they contain a limited number of genes, and several genes that we believe are 

biologically relevant are not listed. They do not, for example, contain the genes 

NEIL1, NEIL2 or SUCLA2, all of which have been linked to mitochondrial DNA 



 
 

73 

homeostasis318,319. Similarly, other databases (e.g. KEGG130 and Reactome131) contain 

very few pathways specifically targeted at mitochondrial function. We therefore 

elected to generate our own pathways based on the Mitocarta database290 and STRING 

tool291 and published the complete list as a supplement to paper III. The original 

allocation of Mitocarta genes into separate pathways was done by manual curation, 

relying on personal expertise and review of the published literature. As this “human 

approach” has weaknesses in terms of personal biases and knowledge gaps, we 

introduced an additional computational step with STRING to compensate for these and 

append our pathways with additional genes. Given our rather specific research 

question in paper III, we believe this was the best approach available, and using 

custom gene sets in rare variant enrichment analyses has some precedence29. Using 

pathways from established databases is still the most prevalent approach, and an 

alternative would have been to test all mitochondrial pathways in GO.  
 

5.6 Enrichment analysis (paper III, IV) 

5.6.1 Choice of test 

As outlined in the Introduction (section 1.2.1), there are numerous rare variant 

enrichment analyses available. We elected to follow guidelines outlined by Do et al125, 

and implement both a traditional burden test and a test that allows for opposite 

directions of effect within the same genetic region. Both the C-alpha test48, SSU 

test49and SKAT41 are examples of variance-component tests that can accommodate the 

presence of both risk and protective alleles. We chose to use the SKAT, as it is 

considered to be the most flexible of the three28. It is also a well-established test used 

in many rare variant enrichment publications127,320-323. For the burden test, the SKAT R 

package used in our analyses includes a weighted burden test that was deemed 

suitable. An adaptive burden test was considered, but ultimately not used. The main 

reason was that it would have had to be added as a third test and thus greatly increased 

the number of tests to correct for in our already low-powered dataset.  

 In recent years, omnibus tests, and particularly the SKAT-O, has become 

increasingly popular. We considered using SKAT-O in our analyses instead of the 

SKAT and burden tests, with the main advantage being a reduced number of tests 
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needed to do multiple comparisons correction for. However, it is potentially less 

powerful than the burden test or SKAT under certain conditions28. In addition, we 

considered the p-values from SKAT-O too be more difficult to interpret than 

presenting p-values for both burden and SKAT, as it would not be clear of the 

association is largely dependent on uni- or bidirectional effects. Still, given that our 

sample size was small, reducing the number of tests would have been advantageous. 

 In our analyses, we utilized prediction algorithms to filter variants into 

subgroups. One alternative would have been to use these prediction algorithms to 

assign individual variant weights, which has been utilized by some studies324. 

However, different algorithms can generate conflicting results325, and we therefore 

decided against using them in this way.  

 

5.6.2 Multiple testing correction 

The Bonferroni method of correcting for multiple comparisons is the most widely used 

in genetic association studies, likely due to its ease of use and strong control of the 

type I error rate326. It is, however, known to be overly conservative in situations where 

the tests are not independent. In GWAS for example, because variants are in LD with 

neighboring genomic regions, correcting for 106 tests is deemed sufficient even though 

the number of actual tests can be much higher326. In our pathway analysis (paper III), 

many genes are present in multiple pathways, and Bonferroni correction was therefore 

considered to be too conservative. We opted to use the Westfall & Young minP/maxT 

method295, where a distribution of minimum p-values is created from case-control 

permutated datasets. The critical p-value, for which p-values below are considered 

statistically significant, is then found at the 0.05-quantile in this distribution. This 

method adapts to the true correlation structure of the data, and avoids the worst-case 

assumption of the Bonferroni method (that tests are completely independent)326. One 

disadvantage is that it is computationally intensive, and the Bonferroni correction was 

therefore applied to the individual gene results.  

 In paper IV we implemented false discovery rate (FDR) correction296. FDR 

offers increased power compared to the Bonferroni method in situations with a large 



 
 

75 

number of false hypotheses, and would therefore also have been a viable option in 

paper III326.  

 

5.6.3 Meta-analysis 

We implemented meta-analyses for our whole-exome datasets (ParkWest and PPMI) 

in both paper III and paper IV. In paper III we used the optimally weighted Z-test64 to 

combine results for our pathway analyses. In retrospect, other methods could possibly 

have yielded better results. Combining p-values restricts the meta-analysis to 

combining information at the gene level, while meta-analyses that are based on 

combining tests statistics can incorporate information at the variant level. The latter 

type of meta-analysis has shown increased power when compared to the former327. In 

paper IV we therefore opted for the Meta-SKAT analysis suite61, where score statistics 

for each variant are combined in a meta-analysis. 
 

5.7 Genes of interest (paper IV) 
The basis of our analyses in paper IV was the most recently published GWAS by Nalls 

et al24, identifying 90 SNPs associated with PD. Using our whole-exome sequencing 

datasets, we wanted to explore nearby genes for rare variant enrichment. Nalls et al 

had already performed an LD-analysis of their 90 hits, identifying variants with R2 > 

0.5 in a 2 megabase window around the SNPs and the closest gene to all variants in 

LD. A list of all tagged variants and genes was included in their supplemental 

materials and included a total of 303 unique genes, and we decided to use those genes 

as our genes of interest. This was partly because the sample size in the Nalls et al 

study provided more accurate LD estimates than what we could achieve using publicly 

available data, and partly because using LD estimates from the same dataset as the 

GWAS meant that if a variant in LD was the true cause of the association it would be 

identified. The latter would not necessarily be the case when using LD estimates from 

a different population.  

 An alternative approach we considered was to use a Prix fixe-strategy126. Here, 

genes implicated by LD-calculations for all GWAS hits are analyzed, and one gene per 

GWAS-hit defined loci is selected as the most likely causal gene based on its 
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functional similarity to genes in the other loci. The underlying assumption is that there 

exist a few highly relevant biological pathways in PD, and that GWAS hits are likely 

identifying genes that are part of these few pathways. The Prix-fixe strategy aims to 

identify the genes that have the assumed highest likelihood of being part of the same 

pathways. This approach would have reduced the number of tested genes in our 

analyses to, at most, 90. We ultimately decided against using it, because it would 

likely prioritize genes in large pathways and therefore maybe miss associated genes in 

smaller pathways.  
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6. General discussion 
6.1 The familial aggregation of PD in the ParkWest cohort is comparable 

to previously published estimates (paper I) 
In this work we show that the relative risk of having a first-degree relative with PD 

was 2.0 for PD patients in our ParkWest cohort. This estimate is slightly lower 

compared to previous studies, generally suggesting an overall RR of 2.8111. There are 

several potential reasons for this discrepancy. The studies included in the meta-

analysis used various methodologies for validating the diagnosis of PD among 

relatives. Some incorporated direct examination or information from death certificates, 

while others relied solely on the reported family history. There is a known bias of 

family history data in PD, where PD patients are more likely to report false positive 

family histories than controls328. In our study, we used a validated questionnaire for 

taking the family history, which has been shown to have comparable sensitivity and 

specificity to direct examination270. In addition, our cohort consists of a true 

population-based sample where all known cases of monogenic PD were excluded. 

Some of the studies included in the meta-analysis used patients from specialized 

movement disorder or PD clinics, or included only young-onset cases, both of which 

increases the likelihood of including cases of monogenic PD in the analysis. 

Therefore, we believe that our estimates are highly accurate for idiopathic PD in our 

population.  

 

6.2 A family history of PD is associated with altered clinical progression 

(paper I) 
In our longitudinal analysis, we show that there is a small, but statistically significant, 

difference in the rate of decline/progression between PD patients with and without a 

positive family history. The effect was present in measurements of both cognitive 

(MMSE) and motor function (UPDRS II), and patients with a family history of PD had 

slightly lower rates of progression. Younger age of onset has been shown to be 

associated with less severe phenotypes and rates of progression329-331, and familial 

aggregation is especially pronounced among young-onset cases113,332. This is in 
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agreement with our finding that familial aggregation is associated with a slightly 

milder phenotype, even though there was no association between age of onset and 

family history in our data. It should be noted that the ParkWest cohort is population-

based. The average age of onset was 65.6 years, with only a single case < 40 years. 

Considering the limited number of young onset cases, our sample was therefore not 

particularly well suited to investigate the relationship between age of onset and 

familial aggregation. Other than MMSE and UPDRS II, progression along the Schwab 

& England activities of daily living scale and the Hoehn & Yahr scale were also tested 

for association with family history, but there were no detectable differences. We also 

investigated whether motor subtype was impacted by familial aggregation, but the 

results were negative.  

In our study, family history serves as a proxy for what is most likely genetic 

effects. Multiple studies have found that genetic variation can influence clinical 

progression in PD333-337, but results are not unequivocal338. Nevertheless, based on 

both available evidence in idiopathic PD and knowledge gained from observing the 

phenotypic variation in monogenic PD, it is highly plausible that genetic variation can 

contribute to the phenotypic heterogeneity seen in sporadic PD339,340.  

 

6.3 No evidence for rare TRAP1 mutations influencing the risk of 

idiopathic Parkinson’s disease (paper II) 
The basis for paper II was a study by Fitzgerald et al260, where they reported depletion 

of low-impact, as predicted by CADD-scores, variation in the gene TRAP1 in PD 

patients. We wanted to see if we could replicate their findings in a separate cohort, the 

ParkWest dataset. Following the same methods for variant selection and analysis, we 

did not find any association between TRAP1-variation and PD. In their study, 

Fitzgerald et al detected the TRAP1-association using whole exome sequencing data 

from the PPMI cohort. In our reading of their methods, we questioned certain aspects 

of their individual and variant quality control. Specifically, we had concerns regarding 

their threshold for variant call-rate (>90%) and the methods employed to control for 

population stratification. Because PPMI is a publicly available dataset, we were able to 

replicate the analyses by Fitzgerald et al using the same cohort, but with stricter 
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quality control. We used a variant call-rate threshold of > 98% and removed outliers 

iteratively (5 iterations instead of the single-step procedure used in the original study). 

With these stricter quality control measures, we failed to detect any association 

between TRAP1 and PD. Our analysis showcases that the thresholds and methods 

employed in the individual and variant quality control can greatly impact analyses that 

utilize collapsing of rare variants. In particular, controlling for population stratification 

is likely of high importance. Rare variants are typically highly segregated between 

even closely related populations341, and type I error rates can therefore be inflated if 

cases and controls are composed of different ethnicities.  

 

6.4 There is enrichment of rare missense variation in genes important for 

mitochondrial DNA maintenance in PD (paper III) 
In paper III, we show an association between rare, protein-altering mutations in the 

pathway of mtDNA maintenance and PD. The association was present in both the 

ParkWest and PPMI cohort and was the result of variation in multiple genes within 

this pathway. mtDNA encodes 13 proteins that all are part of the respiratory chain342. 

Maintenance of mtDNA is therefore important to maintain respiratory chain function, 

which is affected by both single point mutations and larger deletions254,255. Previous 

studies have found evidence for impaired mtDNA homeostasis in PD, with depletion 

of wild-type mtDNA256,257. Our analysis indicates that this impairment may be partly 

due to genetic variation in genes encoding the mtDNA maintenance pathway.  

The rare variant enrichment was detected using SKAT, which indicates that the 

effect is due to both risk-increasing and protective mutations. This is not surprising, 

given the complexity of biological pathways. It is conceivable that altered protein 

function may not only impair, but also enhance mtDNA maintenance, thereby 

increasing the pathways resilience to insults. Moreover, certain variants may be 

deleterious in one respect while beneficial in another. For instance, a mutation that 

impairs the proofreading capabilities of POLG, causing a premature ageing phenotype 

in mice, has been shown to also trigger a neuroprotective mechanism increasing 

mtDNA copy number. Interestingly, this increased mtDNA biogenesis renders the 
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dopaminergic substantia nigra of the animals resistant to PD-related neurotoxins such 

as MPTP343.  

In addition to mtDNA maintenance, our analysis also implicated the pathway of 

mitochondrial calcium homeostasis which reached statistical significance in the meta-

analysis. Mitochondria contribute to the buffering of cytosolic calcium, and the 

calcium concentration in the mitochondrial matrix regulates several key aspects of 

mitochondrial function344. Higher concentrations enhance the activity of enzymes in 

the Krebs cycle, and excessive mitochondrial calcium accumulation can trigger 

apoptosis344,345.  Deficiency of PINK1 has been shown to decrease mitochondrial 

calcium efflux, thereby inducing cell death346. Furthermore, inhibiting the 

mitochondrial calcium uptake machinery was found to be neuroprotective in PINK1-

deficient neurons347. Because the enrichment of the pathway was not significant in our 

individual cohort analyses, we consider our findings tentative, but still supportive of a 

role for mitochondrial calcium homeostasis in PD.  

Since the publication of our paper, other genetic studies of mitochondrial 

function in PD have been published. Using mitochondria-specific polygenic risk 

scores, Billingsley et al  used GWAS data to show that variation in genes spanning the 

entirety of mitochondrial function is associated with PD risk348. There is therefore 

ample evidence to suggest that genetic variation in mitochondrial genes affects the risk 

of PD and explains some of the observed missing heritability.  

 

6.5 Detecting single gene associations on an exome-wide level will likely 

require sample sizes in the order of 8,000 to 11,000 individuals (paper 

III) 
Using real world data, we show that the number of individuals needed to achieve 

acceptable power (80%) is around 8,000 individuals for SKAT and 11,000 individuals 

for burden (assuming an equal number of cases and controls, and that approximately 

50% of variants actually impact disease risk) in a genome-wide whole exome 

sequencing study of rare variant enrichment for PD. The largest, to date, whole exome 

sequencing dataset to appear in a peer-reviewed publication has been the study by 

Blauwendraat et al349, with 2,440 PD patients. It is therefore not surprising that no 
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studies identifying significantly enriched genes at a genome-wide level have yet been 

published in PD.  

 Power analyses for rare variant enrichment are highly complex, as they require 

several assumptions about the underlying genetic architecture and variant effects. Most 

statistical tests for rare variant enrichment include a power analysis in the original 

publication, where the proposed test is compared to other available methods under 

certain conditions. Because of the high degree of complexity generated by all of the 

variables (study design, type of tests compared, variant effects, frequency of variants, 

MAF cutoff, variant weights etc.), the results of these analyses are often not easily 

transferrable to any specific disease or research question. Our analysis therefore serves 

as a guide in terms of the required sample sizes needed for rare variant enrichment 

studies in PD specifically. Some studies have attempted to perform more easily 

transferrable power analyses, and their results are not dissimilar to ours. Moutsianas et 

al explored the power of gene-based rare variant enrichment methods for complex 

diseases, and found approximately 60% power with 10,000 individuals350. 

 

6.6 An analysis of 303 genes tagged by GWAS does not support a major 

role for rare variant enrichment in these genes (paper IV) 
In paper IV, we investigated 303 genes implicated in PD through GWAS results for 

rare variant enrichment. We hypothesized that rare variant enrichment in some of these 

genes could either be responsible for the nearby GWAS hit through LD, or that rare 

variant enrichment could, in addition to a common SNP association detected by 

GWAS, also impact disease risk in relevant genes. Our study is not the first to use this 

approach126, but a recently published GWAS in PD greatly expanded the number of 

known PD-associated loci351. We therefore considered further exploration of this 

hypothesis to be of value. In addition to a single gene analysis, we also incorporated a 

gene-set analysis to look for rare variant enrichment across the combined set of genes 

of interest.  

 Our analysis did not yield any statistically significant results after FDR-

correction for multiple comparisons, in neither the single gene analyses nor gene-set 

analyses. We did observe low raw p-values (p< 0.05) for three genes across multiple 
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datasets. GALC and SEC23IP were nominally significant in both of the whole exome 

sequencing cohorts (ParkWest and PPMI), while PARP9 was nominally significant in 

the meta-analysis and the genotyped cohort (NeuroX). However, none replicated 

across all three cohorts. While our study was likely underpowered to detect minor 

effects, our results do not support a major role for rare variant enrichment in genes 

tagged by GWAS. 

  Studies with approaches similar to ours have previously been published, with 

mixed results. In one study, LRRK2 was found to be enriched with rare missense 

variation137, while another found minor enrichment of common and rare missense 

variation across a combined GWAS-implicated gene set134. Finally, Jansen et al 

detected rare variant enrichment in both LRRK2, STDB1 and SPATA19146. Another 

approach has been to combine results from GWAS with data on expression 

quantitative trait loci (eQTL), thereby nominating candidate genes whose expression is 

regulated by PD-associated SNPs352-356. Additional discoveries have been made by 

also incorporating data on splicing QTL (sQTL) and methylation QTL (mQTL)357,358. 

Future discoveries will most likely be made by integrating multiple types of data 

(eQTL, sQTL, mQTL) with sequencing data.  
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7. Conclusions 
• Familial aggregation of PD is present in a population-based cohort of incidental 

PD, but to a lesser extent than what would be expected based on previous 

estimates. This is likely due to a combination of more accurate family history data, 

exclusion of monogenic PD cases and a relatively high proportion of late-onset 

cases in our cohort.  

 

• A positive family history of PD among first-degree relatives seems to modulate 

disease progression, as measured by UPDRS II and MMSE, resulting in a slightly 

milder phenotype.  

 
• A family history of PD does not impact disease subtype (tremor dominant vs 

PIGD) or age of onset.  

 
• TRAP1-mutations are not associated with PD in the ParkWest cohort, and the 

reported association in the PPMI cohort is questionable, as stricter thresholds in the 

individual and variant quality control procedures renders it undetectable.  

 
• Rare, protein-altering mutations in genes encoding proteins involved in the repair 

and synthesis of mtDNA are associated with PD. Impaired mtDNA maintenance 

likely plays an important role in the pathogenesis of PD, and some of this 

impairment may be due to inherited genetic variation.  

 
• Successful genome-wide, gene-based rare variant enrichment studies in PD will 

likely require sample sizes in excess of 8,000 to 11,000 individuals.  

 
• A targeted analysis of rare variant enrichment in genes suspected of being involved 

in PD pathophysiology through their proximity to GWAS hits does not support a 

major role for rare variant enrichment in these genes.  
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8. Errata 
Paper I: In the results, both the sensitivity and positive predictive value of the 
baseline questionnaire is reported as being 76.6% when compared to the extended 

questionnaire. This is incorrect and should be 69.4%.  
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Sir,

In their recent work, Fitzgerald et al. (2017) report a

novel homozygous TRAP1 loss-of-function mutation in a

patient with late-onset Parkinson’s disease. Further, they

show an enrichment of two subgroups of rare TRAP1 vari-

ants in controls compared to patients with Parkinson’s dis-

ease in the Parkinson’s Progression Markers Initiative

(PPMI) dataset (Parkinson Progression Marker Initiative,

2011). However, these associations are not significant

after correction for multiple testing. The enrichment is mea-

sured using the burden and SKAT-O (Lee et al., 2012)

tests. From this, the authors stipulate that rare, more

benign missense TRAP1 mutations are depleted in patients

with Parkinson’s disease.

Here, we sought to replicate these findings and investi-

gate the role of TRAP1 mutations in our exome sequencing

dataset, comprising 181 Parkinson’s disease cases from the

Norwegian ParkWest cohort (Alves et al., 2009) and 196

in-house controls (unpublished results). Following quality

control, variants were annotated using ANNOVAR

(Wang et al., 2010) according to the RefSeq gene tran-

scripts, dbNSFP v3.3a (Liu et al., 2016) and ExAC

(Lek et al., 2016). We identified 21 exonic variants in the

TRAP1 gene, of which 16 were non-synonymous (mis-

sense) and five were synonymous. We did not detect the

specific p.R47X mutation described by Fitzgerald et al., nor

did we find any other nonsense or splice mutations.

Two missense variants were present in cases only (in het-

erozygous form), but they were predominantly predicted to

be benign/tolerated across five different prediction algo-

rithms (SIFT, PolyPhen-2 HumVar/HumDiv, LRT and

MutationTaster). No single variant association test was sig-

nificant after correction for multiple testing.

For collapsing tests, we selected variants with minor allele

frequency (MAF)5 1% in the non-Finnish European ExAC

dataset. We created subsets of variants within TRAP1 based

on synonymy and CADD score similarly to Fitzgerald et al.

In addition to burden and SKAT-O, we also performed the
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SKAT test (Wu et al., 2011). Collapsing tests were per-

formed using the SKAT R package (Lee et al., 2016). We

found no evidence of variant enrichment in TRAP1, in any

of the tests/models tested in our population. The results are

summarized in Table 1.

Upon close examination of the analyses performed by

Fitzgerald et al. in the PPMI cohort, we raise a few questions

regarding aspects of the quality control and collapsing testing.

Firstly, the authors use a particularly lax threshold for variant

call-rate (590%). Missing genotypes may be due to genotyp-

ing errors, and region-based collapsing tests using rare vari-

ants are particularly susceptible to inflated type I error rates if

the distribution of missed calls differs between cases and con-

trols in a tested region (Auer et al., 2013). Another crucial

aspect when testing for rare variant associations is the control

of population stratification. Rare variants display very little

sharing between populations (Gravel et al., 2011), and failure

to control for this could therefore lead to spurious associ-

ations, especially in a heterogeneous sample such as the

PPMI. While removing individuals 3 standard deviations

(SD) from the mean of the first and second principal compo-

nent does reduce ethnic heterogeneousness to some degree, a

more prudent approach would perhaps have been to remove

outliers iteratively, as implemented by Eigensoft (Patterson

et al., 2006; Price et al., 2006).

Considering the above limitations, we sought to replicate

the findings of the study in the same PPMI dataset, but fol-

lowing a more stringent quality control procedure.

Specifically, we used a variant call-rate cut-off of 498%

and performed principal component analysis using

Eigensoft with standard filtering settings (five iterations, 10

principal components, sigma 6), in addition to removing

outliers (53 SD) across the first and second principal com-

ponents post-filtering. Rare variants were defined as variants

with MAF5 0.5% in the non-Finnish European ExAC data-

set to replicate the parameters described by Fitzgerald et al.

In this robustly quality controlled dataset, we detected no

nominally significant variant enrichment in TRAP1 by either

burden, SKAT-O or SKAT tests. The results of our replica-

tive PPMI analyses are summarized in Table 1.

In conclusion, while the reported p.R47X TRAP1 muta-

tion may indeed be deleterious to mitochondrial function, no

definite evidence is provided that this mutation is the cause

of Parkinson’s disease in the reported case. Moreover, we

found no evidence supporting that rare variation enrichment

in TRAP1 influences the risk of Parkinson’s disease in two

independent populations. We therefore believe that the pro-

posed role of TRAP1 in Parkinson’s disease is unsubstanti-

ated by the data presented in the study.
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ABSTRACT: Background: Mitochondrial dysfunction
plays a key role in PD, but the underlying molecular
mechanisms remain unresolved. We hypothesized that
the disruption of mitochondrial function in PD is primed
by rare, protein-altering variation in nuclear genes con-
trolling mitochondrial structure and function.
Objective: The objective of this study was to assess
whether genetic variation in genes associated with
mitochondrial function influences the risk of
idiopathic PD.
Methods: We employed whole-exome sequencing data
from 2 independent cohorts of clinically validated idio-
pathic PD and controls, the Norwegian ParkWest cohort
(n = 411) and the North American Parkinson’s Progres-
sion Markers Initiative (n = 640). We applied burden-
based and variance-based collapsing methods to assess

the enrichment of rare, nonsynonymous, and damaging
genetic variants on genes, exome-wide, and on a com-
prehensive set of mitochondrial pathways, defined as
groups of genes controlling specific mitochondrial
functions.
Results: Using the sequence kernel association test, we
detected a significant polygenic enrichment of rare, non-
synonymous variants in the gene-set encoding the path-
way of mitochondrial DNA maintenance. Notably, this
was the strongest association in both cohorts and sur-
vived multiple testing correction (ParkWest P = 6.3 ×
10−3, Parkinson’s Progression Markers Initiative P =
6.9 × 10−5, metaanalysis P = 3.2 × 10−6).
Conclusions: Our results show that the enrichment of
rare inherited variation in the pathway controlling mito-
chondrial DNA replication and repair influences the
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risk of PD. We propose that this polygenic enrichment
contributes to the impairment of mitochondrial DNA
homeostasis, thought to be a key mechanism in the
pathogenesis of PD, and explains part of the disor-
der’s “missing heritability.” © 2018 The Authors.
Movement Disorders published by Wiley Periodicals,

Inc. on behalf of International Parkinson and Move-
ment Disorder Society

Key Words: Parkinson’s disease; genetics; neurode-
generation; whole-exome sequencing; genetic associa-
tion studies

Parkinson’s disease (PD) affects 1.8% of the popula-
tion aged older than 65 years.1 Although the etiology of
PD remains unknown, mitochondrial dysfunction
clearly plays a role. Mutations in most of the genes caus-
ing familial PD, including SNCA,2 LRRK2,3 PINK1,
PRKN,4 PARK7 (DJ-1),5 and VPS35,6 have been shown
to disrupt mitochondrial quality control. Moreover,
impaired mitochondrial DNA (mtDNA) maintenance7,8

and widespread respiratory chain dysfunction9 occur in
the brains of individuals with idiopathic PD. The molec-
ular etiology underlying mitochondrial impairment in
idiopathic PD remains, however, unresolved.
Pathogenic mutations in several nuclear mitochon-

drial genes involved in mtDNA homeostasis have been
shown to cause severe nigrostriatal degeneration of a
similar type as the one that occurs in PD.10–13 More-
over, inherited variation in POLG14 and TFAM,15 both
of which are essential for mtDNA maintenance, has
been associated with an increased risk of idiopathic PD,
although the reported effects were generally weak and
have not been reproduced by large genome-wide associ-
ation studies. Therefore, it remains undetermined
whether mitochondrial dysfunction in PD can, to some
extent, be attributed to inherited genetic variation.
We hypothesized that the disruption of mitochondrial

function in PD is partly caused by synergistic effects of
rare genetic variation in nuclear genes controlling mito-
chondrial function. To test our hypothesis, we
employed whole-exome sequence data from 2 indepen-
dent, prospectively collected PD cohorts: the Norwe-
gian ParkWest study (ParkWest)16 and the Parkinson’s
Progression Markers Initiative (PPMI).17

Methods
Cohorts and Sequencing

We sequenced all individuals with clinically validated
PD (n = 192) from the Norwegian ParkWest study, a
prospective population-based cohort of idiopathic PD.16

Controls (n = 219) were provided from cohorts of previ-
ously sequenced individuals with testis cancer (n = 167)
or acoustic neuroma (n = 52) who had been recruited
and examined at our hospital and had no clinical signs of
neurodegenerative or other neurological disorders. DNA
was extracted from blood by routine procedures and
sequenced at HudsonAlpha Institute for Biotechnology

(Huntsville, Alabama) using Roche-NimbleGen
Sequence Capture EZ Exome v2 (173 controls) and v3
(all PD and 46 controls) kits (Roche, Brussels, Switzer-
land) and paired-end 100 bp sequencing on the Illumina
HiSeq platform (Illumina, San Diego, USA). The reads
were mapped to the hg19 reference genome using BWA
v0.6.2,18 polymerase chain reaction duplicates removed
with Picard v1.118,19 and the alignment refined using the
Genome Analysis Toolkit v3.3.020 applying base quality
score recalibration and realignment around indels recom-
mended in the GATK Best Practices workflow.21,22 Vari-
ants were called in all samples using the GATK
HaplotypeCaller20 with default parameters. Next, vari-
ant quality score recalibration was performed using
99.9% sensitivity threshold.20 The remaining variants
were filtered against the intersection of capture targets
(v2 and v3) using BEDtools23 and VCFtools.24 Variants
with total depth below 10X were marked as unknown
genotype (no-call) using BCFtools.25 Indel calls, which
were found to be less reliable than single-nucleotide vari-
ants, were excluded from downstream analyses.
Additional data used in the preparation of this article

were obtained from the PPMI database.17 Whole-
exome sequence data was available for 640 individuals
(459 cases, 181 controls). Sequencing had been per-
formed using the Illumina Nextera Rapid Capture
Expanded Exome Kit and paired-end 100 bp reads on
the Illumina HiSeq 2500 (Illumina, San Diego, USA).
Calling and alignment had been performed by the
PPMI. Indels were removed prior to variant quality
control (QC) using VCFtools.24

Variant Filtering and QC
Whole-exome sequence data were recoded into

binary PLINK input format, and QC of individual and
single nucleotide polymorphism (SNP) data was per-
formed on the ParkWest and PPMI datasets individu-
ally using PLINK v1.90.26 Individuals were excluded
if their genotypic data showed a missing rate >2%,
abnormal heterozygosity (±3 standard deviations, cal-
culated for common and rare variants separately),
conflicting sex assignment, cryptic relatedness (identity
by descent > 0.2), or divergent ancestry (non-Euro-
pean). Population stratification was studied using mul-
tidimensional scaling against the HapMap
populations.27
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SNPs were excluded as a result of genotyping rate
less than 98%, different call rates between cases and
controls (P < .02) or departure from the Hardy-
Weinberg equilibrium (P < 10−5). Only autosomes
were considered. Monomorphic and multiallelic vari-
ants were removed. The transition-transversion ratio
was calculated before and after QC. Principal com-
ponent analysis was performed using Eigensoft28,29

with standard filtering settings (5 iterations, 10 prin-
cipal components, sigma 6). Analysis of variance of
the first 10 principal components was performed
with significance level cutoff set to P < .01. For Park-
West, there were 2 significant principal components
(3 and 6) that were corrected for in downstream ana-
lyses. There were no significant principal compo-
nents for PPMI. All QC analyses were performed
using PLINK v1.9026 and R30 unless otherwise
specified.

Annotation and Subset Filtering
Datasets were annotated using ANNOVAR31 accord-

ing to the RefSeq gene transcripts, and 2 variant subsets
were extracted for further analyses. These were defined
as “nonsynonymous” and “damaging” according to
ANNOVAR. Nonsynonymous variants comprised mis-
sense changes (Sequence Ontology: 0001583). Damag-
ing variants comprised all single nucleotide changes
that had a deleterious score in all of the following 5 pre-
diction algorithms: PolyPhen2 HumDiv, PolyPhen2
HumVar, MutationTaster, SIFT, and LRT. In the Park-
West dataset, rare variants were defined as having a
minor allele frequency (MAF) of < 1%. Because the
PPMI cohort had a substantially uneven number of
cases and controls, rare variants were defined as having
a MAF of <1% in either cases or controls to avoid a
unidirectional variant inclusion bias.

Pathway Curation
The mitochondrial pathways were defined as groups

of genes encoding functionally and/or structurally
linked proteins directly involved in mitochondrial func-
tion. Pathways were manually curated from Mitocarta
v2.0,32 a collection of all known proteins with strong
support for mitochondrial localization. The pathways
were subsequently expanded using STRING33 to
include genes encoding additional proteins that are
involved in the pathways, but have no proven mito-
chondrial localization. Specifically, for each pathway
we compiled a list of additional candidate proteins
ranked by the number and strength (STRING combined
score) of STRING interactions with the original path-
way. The resulting candidate lists were manually
inspected, and the original pathways were supplemented
with additional genes encoding proteins with a known
involvement in mitochondrial pathways, but not

established mitochondrial localization (Supplemental
Table S1).

Genetic Association Analyses
Single-point association was performed for com-

mon variants (MAF > 1%) using the chi-square test
for PPMI and logistic regression with significant
principal components as covariates for ParkWest.
For collapsing tests, variants were annotated using
ANNOVAR and analyzed using a weighted burden34

and the sequence kernel association test (SKAT)35 as
implemented by the SKAT R package v1.3.2.36 In
these analyses, variants within a specified region (ie,
a gene or pathway) were combined to a single genetic
score that was subsequently tested for association in
a logistic regression framework. The burden test
assumes that all variants in a specified region are
causal and influence the phenotype in the same direc-
tion, that is, either increase or decrease the risk of
PD. Consequently, it suffers from a substantial loss
of power when these premises are not valid. SKAT
aggregates variants within a specified region without
considering the direction of effect for individual vari-
ants. Therefore, SKAT is better suited for detecting
associations where both risk and protective variants
and/or numerous noncausal variants are present. For
our analyses, standard weights were used,35 and only
rare variants were considered. Different methods of
per-hypothesis resampling were applied as described
by Lee and colleagues.36 Genes with only 1 variant
were excluded from the gene-based analyses as this
would be representative of single SNP associations
rather than true enrichment. Using resampling, the
minimum achievable P value (MAP) was determined
for each gene and pathway.36 Genes/pathways with
minimum achievable P values above the Bonferroni-
corrected threshold for statistical significance were
excluded to reduce statistical noise. In total, 3,441
gene tests were performed in the ParkWest cohort,
and 13,034 in the PPMI cohort (across all tests and
subsets). Meta P values for pathways were calculated
using the optimally weighted Z test37 as implemented
by the metap R package.38

Multiple Testing Correction
Single-variant gene and pathway meta-analysis asso-

ciations were corrected using the Bonferroni method.
To control the family-wise error in individual cohort
pathways, the minP/maxT method39 was implemented
using 10,000 null-permuted phenotype samples for
ParkWest and 100,000 for PPMI (different number of
permutations as a result of the difference in data-
set size).
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Power Analysis
The average statistical power of the gene-based

SKAT and burden test were calculated using the SKAT
R package v1.3.2.36 The disease model assumed a
prevalence of PD of 0.015 and used the empirical
MAFs of the ParkWest cohort. Power calculations
were carried out using different assumptions of the
percentage of causal SNPs (10%, 25%, 50%, 75%,
and 100%). The original function from the SKAT R
package was modified to calculate the average power
of the exonic regions instead of the default random
genomic regions.

Standard Protocol Approvals, Registrations,
and Patient Consents

These studies were approved by the Regional Com-
mittee for Medical and Health Research Ethics, West-
ern Norway (REK 131/04). Written, informed consent
was obtained from all participants.

Results

After alignment, variant calling and QC the final
ParkWest dataset comprised 377 individuals (181 cases
and 196 controls). Mean depth per individual was

FIG. 1. Quality control. (A) Quantile-quantile-plots of association for common variants using chi-square for Parkinson’s Progression Markers Initiative
and logistic regression with significant principal components (3 and 6) as covariates for ParkWest. (B) Population stratification (multidimensional scal-
ing) against HapMap populations (CEU, Utah residents with Northern and Western European ancestry; CHB, Han Chinese in Beijing, China; JPT, Japa-
nese in Tokyo, Japan; YRI, Yoruba in Ibadan, Nigeria). (C) Multidimensional scaling plots show no stratification between cases and controls in any of
the cohorts. All plots are based on data after quality control. C1, first principal component; C2, second principal component.
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80.2 and 92% of targeted bases were covered at
≥20-fold. In the ParkWest dataset we observed
130,500 variants, of which 61.1% (79,763) were
rare. We identified 56,429 nonsynonymous variants
and 8,646 damaging variants. The transition-
transversion ratio-ratio for exonic variants was 3.28
(3.23 before QC). The final PPMI dataset comprised
513 individuals (371 cases and 142 controls). We
observed 380,423 variants of which 73.6%
(280,099) were rare. We identified 107,130 nonsy-
nonymous variants and 16,644 damaging variants.
The transition-transversion ratio for exonic variants
was 3.13 (3.02 before QC). Synonymous and nonsy-
nonymous variants had a similar distribution in the
2 cohorts (Supplemental Table S2) as well as between
cases and controls (Supplemental Table S3). Singleton
variants comprised 37.4% of the ParkWest dataset
and 51.1% of the PPMI dataset (Supplemental
Table S4).
Population stratification analysis with HapMap con-

firmed that both cohorts consisted primarily of individ-
uals of Western and Northern European descent.

Quantile-quantile plots of common variant associations
after QC showed no inflation of test statistics, with
λ = 1.02 and λ = 1.03 for PPMI and ParkWest, respec-
tively. Multidimensional scaling showed no stratifica-
tion between cases and controls (Fig. 1). No single
variants produced exome-wide significant associations.
The lowest P value was for the SNP rs57859638
(P = 1.2 × 10−4), odds ratio (OR) = 0.47, MAF =
0.219) in IQCF1 for ParkWest, and for rs543304
(P = 1.1 × 10−5), OR = 0.49, MAF = 0.197) in BRCA2
in PPMI. The complete results are available in Supple-
mental Tables S5 and S6.

Gene-Based Analyses
Gene-based enrichment analyses for rare nonsynon-

ymous or damaging variants by burden test or SKAT
showed no significant associations after Bonferroni cor-
rection. Moreover, none of the top 10 nominally signifi-
cant genes replicated across both the ParkWest and
PPMI cohorts (Table 1). The results for all tested genes
are shown in Supplemental Tables S7 to S14.

TABLE 1. Top single gene results

Nonsynonymous rare variants

Burden SKAT

ParkWest PPMI ParkWest PPMI

Gene P value Gene P value Gene P value Gene P value

ZNF76 3.98 × 10−4 CHRM2 2.46 × 10−4 TSR1 2.57 × 10−4 CHRM2 1.16 × 10−5

KIF20B 4.74 × 10−4 UGT1A4 4.41 × 10−4 COL24A1 7.87 × 10−4 MC4R 2.64 × 10−4

KANK1 2.87 × 10−3 MC4R 5.27 × 10−4 WDFY4 1.52 × 10−3 RECQL4 2.80 × 10−4

BIRC6 4.03 × 10−3 GLTSCR1 6.76 × 10−4 LRRN2 2.99 × 10−3 CEP131 5.22 × 10−4

NUMA1 4.75 × 10−3 TG 1.05 × 10−3 ABCC11 3.50 × 10−3 KRTAP10-7 5.52 × 10−4

DNAJC17 4.80 × 10−3 CACNA1H 1.34 × 10−3 FAM214A 5.14 × 10−3 SETD4 6.35 × 10−4

ZNFX1 4.88 × 10−3 HORMAD2 1.41 × 10−3 GEMIN5 5.87 × 10−3 STEAP4 6.41 × 10−4

CP 5.02 × 10−3 BRPF3 1.46 × 10−3 USP6 6.05 × 10−3 MRPL4 7.64 × 10−4

MKI67 5.78 × 10−3 ITGA2B 1.47 × 10−3 LRRC75B 6.52 × 10−3 FER1L6 8.60 × 10−4

CFTR 6.52 × 10−3 ADGRG7 1.58 × 10−3 DFNB31 7.71 × 10−3 NDUFA9 9.26 × 10−4

Damaging rare variants

Burden SKAT

ParkWest PPMI ParkWest PPMI

Gene P value Gene P value Gene P value Gene P value

DFNB31 5.25 × 10−4 ATP8B4 1.75 × 10−3 DNAH2 2.79 × 10−3 ADAMTS14 1.70 × 10−3

ACACB 4.31 × 10−2 NRAP 6.72 × 10−3 DFNB31 2.95 × 10−3 PPP2R3A 2.85 × 10−3

LOXHD1 6.22 × 10−2 ATP4A 1.04 × 10−2 POLG 5.02 × 10−3 HADH 4.99 × 10−3

CFTR 6.51 × 10−2 TEP1 1.09 × 10−2 KIAA0196 2.24 × 10−2 LRP1B 5.61 × 10−3

LAMA1 1.56 × 10−1 DNAH11 1.13 × 10−2 DNAH3 2.63 × 10−2 PCDHB1 7.08 × 10−3

PITRM1 1.64 × 10−1 CSMD1 1.47 × 10−2 ACACB 3.82 × 10−2 INADL 9.07 × 10−3

DNAH2 1.73 × 10−1 PCDHB1 1.50 × 10−2 RELN 5.96 × 10−2 CEL 1.10 × 10−2

FAT2 1.92 × 10−1 BSN 1.66 × 10−2 PPFIBP2 6.20 × 10−2 UBXN11 1.10 × 10−2

TRIM63 2.26 × 10−1 CPXM1 2.08 × 10−2 SYNE2 1.19 × 10−1 RGS11 1.40 × 10−2

QRSL1 2.49 × 10−1 HHAT 2.10 × 10−2 MASP2 1.19 × 10−1 HHAT 1.60 × 10−2

Nominal P values given, no single gene association was statistically significant after multiple testing correction. PPMI, Parkinson’s Progression Markers Initiative;
SKAT, sequence kernel association test.
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Power analyses showed that our sample size was under-
powered for detecting single gene associations. Assuming
that 50% of the nonsynonymous variants in a gene influ-
ence the phenotype in any direction (ie, deleterious or pro-
tective), our calculations suggest that a sample size of
approximately 8,000 for the SKAT and 11,000 for the
weighted burden test are required to reach an average
power of 80% across all genes at a significance cut-off of
α = 0.05 and surviving Bonferroni correction for 20,000
genes (corrected α = 2.5 × 10−6; Fig. 2).

Pathway-Based Analyses
Starting with Mitocarta, we curated a total of

28 pathways with known molecular function, compris-
ing a total of 868 unique genes (including 100 non-
Mitocarta genes added after expansion with function-
ally relevant genes lacking evidence of mitochondrial
localization). The remaining Mitocarta proteins could
not be confidently assigned to a pathway because of
limited information regarding their function. The
entire noncurated Mitocarta list was also included as a
separate pathway. A complete description of the path-
ways is provided in Supplemental Table S1. After
excluding pathways with minimum achievable P value
above the threshold for statistical significance, we ana-
lyzed 26/18 pathways in ParkWest and 29/26 path-
ways in PPMI for nonsynonymous/damaging variants,
respectively.
Mitochondrial pathway analyses by burden test showed

no evidence of enrichment in PD. SKAT detected a signifi-
cantly skewed distribution of rare, nonsynonymous vari-
ants between individuals with PD and controls. The
2 most significant associations were found for the path-
ways of mtDNA maintenance and mitochondrial calcium
homeostasis (Table 2) in both the ParkWest and PPMI
cohorts. The strongest association was for mtDNA main-
tenance (ParkWestP = 6.3 × 10−3, PPMI P = 6.9 × 10−5,

meta P = 3.2 × 10−6), which survived multiple testing
correction. mtDNA maintenance was also among the top
results for damaging variants in both datasets, but did not
survive multiple testing correction. None of the other
mitochondrial pathways showed significant associations
that survived multiple testing correction or had significant
nominal P values in both cohorts, except from the meta-
analysis of mitochondrial calcium homeostasis (meta
P = 6.7 × 10−5). Detailed pathway results are available in
the supplemental data (Supplemental Table S15). Repeat-
ing the pathway analyses with rare synonymous variants
only yielded no significant results, indicating that the
observed enrichment is specific for protein-altering varia-
tion and does not reflect a generally skewed distribution
of rare variants in the material.
Gene-based SKAT analysis revealed no specific

mono- or oligogenic signals sufficient to drive the
observed association in both cohorts, suggesting multi-
ple genes contribute to the observed signal
(Supplemental Table S16). This is also visualized in
Figure 3, which shows the amount of variance contrib-
uted by each gene in the pathway. mtDNA maintenance
is a complex process requiring a well-orchestrated syn-
ergy of several biological pathways controlled by over-
lapping, but functionally distinct protein groups. To
assess whether the observed association was primarily
driven by a particular functional subnetwork, we subdi-
vided the mtDNA maintenance pathway into mtDNA
replication, mtDNA repair, and nucleotide homeostasis.
None of these subpathways alone was sufficient to
drive the overarching pathway signal and observed
association with PD (Supplemental Table S17).

Discussion

We show for the first time that idiopathic PD is asso-
ciated with a significant enrichment of rare, protein-

FIG. 2. Power analysis. Power estimation for sequence kernel association test (SKAT) and weighted burden test using the rare variant matrix from the
ParkWest dataset as basis for the simulation. Genome-wide significance levels were set to α = 2.5 × 10−6, assuming a total of 20,000 genes. The y-
axis shows the average power across all genes, and the x-axis shows total sample size. Simulations were made for different percentages of causal
variants.
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altering genetic variants in the pathway of mtDNA rep-
lication and repair. This association was significant in
both the ParkWest and PPMI cohorts and survived
multiple testing correction. Moreover, this association
was driven by the combined effects of multiple variants
and genes spanning the mtDNA homeostasis network,
consistent with a true polygenic signal.
The discrepancy between burden and SKAT in our

results suggests that protein-altering variation in the
genes controlling mtDNA maintenance can both be del-
eterious or protective for PD. Biological pathways gen-
erally have a high degree of complexity, such that
genetically determined variation in their function may
be phenotypically neutral or affect associated disease
traits in both directions (ie, increase or decrease the
risk). This may particularly apply to late-onset disor-
ders that are not likely to be affected by selection pres-
sure, such as PD. SKAT is a variance-component test,
which integrates pathway-level information without
consideration of the directionality of single-variant
effects and is therefore particularly powerful in the

presence of both protective and risk variants or numer-
ous noncausal variants.
Our results are highly consistent with prior knowl-

edge of mitochondrial involvement in PD. The disrup-
tion of mtDNA maintenance as a result of mutations in
genes controlling mtDNA replication and repair or mito-
chondrial nucleotide homeostasis causes nigrostriatal
degeneration with or without clinical parkinsonism.11–13

Moreover, we and others have shown that mtDNA
maintenance is impaired in idiopathic PD, resulting in
the accumulation of somatic damage and progressive
depletion of the wild-type mtDNA population.7,40 Based
on our results, we propose that this impairment may be
partly determined by inherited variation in the genes
encoding the pathway of mtDNA homeostasis.
The observation that genetic variation in the mtDNA

maintenance pathway appears to influence the risk of
PD in both directions is intriguing, but hardly surpris-
ing. Maintaining quantitative and qualitative mtDNA
integrity in aging neurons requires a balanced interplay
of multiple factors including replication processivity,

TABLE 2. SKAT analyses of pathways

Pathway

Nonsynonymous Damaging

ParkWest PPMI Meta ParkWest PPMI Meta

Amino acid metabolism 3.35 × 10−1 6.17 × 10−1 4.79 × 10−1 5.08 × 10−1 5.01 × 10−1 5.06 × 10−1

Apoptosis 5.08 × 10−1 5.52 × 10−1 5.44 × 10−1 5.74 × 10−1 7.40 × 10−1 7.29 × 10−1

Dopamine metabolism NA 4.41 × 10−1 NA NA NA NA
Fatty acid metabolism 3.88 × 10−1 4.18 × 10−1 3.66 × 10−1 5.91 × 10−1 6.41 × 10−2 1.58 × 10−1

Glycolysis/gluconeogenesis 7.43 × 10−1 3.92 × 10−1 5.86 × 10−1 5.65 × 10−1 3.65 × 10−1 4.38 × 10−1

Heat production 5.82 × 10−1 7.32 × 10−1 7.27 × 10−1 NA NA NA
Heme metabolism 8.43 × 10−2 8.86 × 10−2 2.74 × 10−2 NA 7.34 × 10−1 NA
Iron homeostasis 7.52 × 10−1 4.12 × 10−1 6.08 × 10−1 NA 9.11 × 10−1 NA
Iron-sulfur cluster building NA 7.76 × 10−1 NA NA 6.94 × 10−1 NA
PPAR signaling 9.60 × 10−2 8.68 × 10−2 2.99 × 10−2 5.57 × 10−1 2.17 × 10−1 3.08 × 10−1

Krebs cycle 9.75 × 10−2 1.57 × 10−2 6.62 × 10−3 5.45 × 10−1 4.56 × 10−2 1.13 × 10−1

Mitocarta 3.31 × 10−1 1.01 × 10−1 1.05 × 10−1 1.80 × 10−1 6.06 × 10−2 3.82 × 10−2

Mitochondrial acetylation 8.67 × 10−1 6.26 × 10−1 8.33 × 10−1 NA 5.75 × 10−1 NA
Mitochondrial calcium homeostasis 2.44 × 10−3 4.41 × 10−3 6.67 × 10−5a NA 1.63 × 10−3 NA
Mitochondrial dynamics and
quality control

6.98 × 10−2 2.62 × 10−1 7.42 × 10−2 3.08 × 10−2 5.52 × 10−1 1.32 × 10−1

Mitochondrial ribosome 2.97 × 10−2 1.56 × 10−1 2.30 × 10−2 2.40 × 10−2 3.87 × 10−1 6.62 × 10−2

Mitochondrial transcription 5.59 × 10−1 6.31 × 10−1 6.37 × 10−1 NA 9.81 × 10−1 NA
Mitochondrial translation 3.00 × 10−1 4.42 × 10−1 3.26 × 10−1 3.56 × 10−1 6.20 × 10−1 4.97 × 10−1

Mitochondrial transport 9.68 × 10−1 3.76 × 10−1 8.32 × 10−1 9.03 × 10−1 9.55 × 10−1 9.84 × 10−1

Mitochondrial tRNA homeostasis 2.93 × 10−1 1.29 × 10−1 1.12 × 10−1 2.74 × 10−1 5.36 × 10−1 3.73 × 10−1

mtDNA maintenance 6.35 × 10−3 6.95 × 10−5a 3.17 × 10−6a 1.29 × 10−2 1.91 × 10−2 1.25 × 10−3

NAD metabolism NA 6.27 × 10−1 NA NA 4.22 × 10−1 NA
One carbon and folate metabolism 2.30 × 10−1 6.15 × 10−3 8.63 × 10−3 3.30 × 10−1 1.92 × 10−2 3.16 × 10−2

Oxidative phosphorylation 8.24 × 10−1 1.47 × 10−2 1.47 × 10−1 4.24 × 10−1 3.03 × 10−3 1.36 × 10−2

Pyruvate metabolism 3.80 × 10−2 1.11 × 10−1 1.87 × 10−2 2.34 × 10−2 3.72 × 10−2 4.05 × 10−3

ROS metabolism 4.82 × 10−1 2.06 × 10−1 2.57 × 10−1 4.56 × 10−1 6.25 × 10−2 1.08 × 10−1

Steroid metabolism 5.61 × 10−1 2.30 × 10−1 3.22 × 10−1 NA 3.33 × 10−1 NA
Sulfur metabolism 7.87 × 10−1 1.00 1.00 9.70 × 10−1 9.71 × 10−1 9.96 × 10−1

Urea cycle 9.30 × 10−1 7.90 × 10−2 4.55 × 10−1 NA NA NA

Nominal P values given. mtDNA, mitochondrial DNA; NA, not analyzed; NAD, nicotinamide adenine dinucleotide; PPAR, peroxisome proliferator-activated recep-
tor; PPMI, Parkinson’s Progression Markers Initiative; ROS, reactive oxygen species; SKAT, sequence kernel association test; tRNA, transfer ribonucleic acid.
aStatistically significant after multiple testing correction.
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fidelity, nucleotide metabolism, repair mechanisms, and
the underlying mtDNA sequence. It is conceivable that
variation in the multitude of genes controlling any and
each of these processes may inhibit or enhance mtDNA
maintenance thus increasing or decreasing the risk of PD,
respectively. It is known for instance that mtDNA
haplogroup J, which is linked to higher rates of
mtDNA replication and transcription, is associated
with a decreased risk for PD.41 Intriguingly, even
apparently pathogenic mutations may have additional
beneficial effects. The murine POLG mutation p.
D257A impairs the enzymes proofreading activity,
resulting in increased somatic mtDNA mutagenesis and
an aged phenotype in mice. At the same time, how-
ever, this defect triggers a neuroprotective compensa-
tory mechanism increasing mtDNA copy number in
substantia nigra neurons, rendering them resistant to
neurodegeneration.42 Moreover, rare protective variants
have been shown in other complex disorders including
autoimmunity,43 cancer,44 ischemic vascular disease,45

and Alzheimer’s disease.46

The pathway of mitochondrial calcium homeostasis
also reached nominal significance in both cohorts, but
only survived multiple testing correction in the meta-
analysis. Functional evidence suggests that calcium
metabolism may be involved in neurodegeneration in
PD,47,48 and this could be partly genetically determined.

As this pathway did not survive multiple testing correc-
tion in either cohort, however, these results should be
interpreted with caution.
Gene-based tests, by either burden or SKAT, pro-

duced no exome-wide significant associations. Power
analyses based on our Norwegian cohort estimated
that a substantially larger sample, probably in the
order of 8,000 to 15,000, would be required to detect
exome-wide significant genic associations in idiopathic
PD by variance- or burden-based tests. Notably, this
estimate is based on a clinically homogeneous cohort
with validated phenotype, coming from a homoge-
neous founder population, which is ideal for studying
rare variants. Recruiting a PD sample of several thou-
sand individuals will require the combination of multi-
ple cross-sectional materials across several populations.
Such material will unavoidably be more phenotypically
and genetically heterogeneous. It is therefore likely that
even higher numbers will be required in a real-life
experiment compared to our simulated estimates. A
recent study employing a similar rare-variant collaps-
ing approach in a sample of �5,000 schizophrenia
cases and controls also failed to produce genic associa-
tions at exome-wide significance.49 Given the fact that
schizophrenia has a higher estimated heritability than
idiopathic PD, these results corroborate our estimates
that samples more than 5,000 individuals will be

FIG. 3. Gene-based variance in the mitochondrial DNA (mtDNA) maintenance pathway. Sequence kernel association test (SKAT)-based gene-based
variance for the mtDNA maintenance pathway in the ParkWest and Parkinson’s Progression Markers Initiative datasets for rare, nonsynonymous varia-
tion. Variance is a measure of SKAT-based enrichment (ie, the degree of skewed variant distribution between cases and controls) and is defined as the

sum of squared difference in minor allele frequency (MAF) between cases and controls for all variants within each gene, V =
XN

i = 0
ðMAFi

ctr −MAFi
PDÞ

2

. A
high variance score for a gene indicates that variants within that gene show a highly uneven distribution between cases and controls. [Color figure can
be viewed at wileyonlinelibrary.com]
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required to confidently detect gene-based effects in idi-
opathic PD (Fig. 2).
In conclusion, our data show that large samples are

required to identify rare genetic variation associated with
PD at the gene level. In contrast, we show that pathway-
based analysis of rare genetic variation is a powerful tool
for deciphering the genetic susceptibility to PD, even in
moderately sized samples. Our results suggest that rare,
nonsynonymous variation in the genes encoding the com-
plex pathway of mtDNA maintenance influences the risk
for idiopathic PD in 2 independent populations. We pro-
pose that this variation underlies part of the observed
impairment of mtDNA maintenance in the dopaminergic
substantia nigra of individuals with PD and may explain
part of the disorder’s “missing heritability.”The replication
of these findings in other sequencing cohorts of idiopathic
PDwill be essential to further validate these findings.
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Abstract

Parkinson disease (PD) is a complex neurodegenerative disorder influenced by both envi-

ronmental and genetic factors. While genome wide association studies have identified sev-

eral susceptibility loci, many causal variants and genes underlying these associations

remain undetermined. Identifying these is essential in order to gain mechanistic insight and

identify biological pathways that may be targeted therapeutically. We hypothesized that

gene-based enrichment of rare mutations is likely to be found within susceptibility loci for PD

and may help identify causal genes. Whole-exome sequencing data from two independent

cohorts were analyzed in tandem and by meta-analysis and a third cohort genotyped using

the NeuroX-array was used for replication analysis. We employed collapsing methods (bur-

den and the sequence kernel association test) to detect gene-based enrichment of rare, pro-

tein-altering variation within established PD susceptibility loci. Our analyses showed trends

for three genes (GALC, PARP9 and SEC23IP), but none of these survived multiple testing

correction. Our findings provide no evidence of rare mutation enrichment in genes within

PD-associated loci, in our datasets. While not excluding that rare mutations in these genes

may influence the risk of idiopathic PD, our results suggest that, if such effects exist, much

larger sequencing datasets will be required for their detection.

Introduction

Parkinson disease (PD) is a complex disorder influenced by the crosstalk between genetic and

environmental factors [1]. Monogenic causes account for a small fraction of cases, whereas the
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vast majority of patients have idiopathic disease. While genome-wide association studies

(GWAS) have revealed several susceptibility loci for idiopathic PD, these collectively explain

only a fraction of the disorder’s estimated heritability, and most have not been linked to path-

ways which can be targeted by therapies [2]. This is partly due to the uncertainty regarding

which genes actually drive the GWAS signals.

The associated variants in GWAS are typically located in noncoding regions of the genome

and assumed to be in linkage disequilibrium (LD) with causative variants in nearby genes [3].

Methods to identify candidate genes from GWAS range from simply choosing the closest gene

to more sophisticated algorithms [4], but all are, in essence, inferential by nature. Next genera-

tion sequencing technologies have enabled us to investigate the impact of rare genetic varia-

tion, which is theorized to explain parts of the “missing heritability” in complex diseases [5]. In

PD, rare variants have been implicated in sporadic disease both at the gene- [6] and pathway

level [7,8]. Whether rare variants can explain GWAS signals in PD, remains, however,

unknown.

We hypothesized that gene-based enrichment of rare, protein-altering variation is likely to

be found in regions tagged by single nucleotide polymorphisms (SNPs) associated with PD in

GWAS, and may help identify the causal genes driving these associations. To test our hypothe-

sis, we selected genes with variants in LD with associated SNPs from the most recent GWAS

meta-analysis[9], and tested for enrichment of rare, protein-altering variants in whole-exome

sequencing data from two independent cohorts.

Methods

Cohorts and sequencing

The Norwegian whole-exome sequencing (WES) cohort comprised 191 patients with PD from

the Norwegian ParkWest study [10] and 219 controls. The control group consisted of individ-

uals with testis cancer (n = 167) and acoustic neuroma (n = 52) who had been recruited and

examined at our hospital and had no clinical signs of neurodegenerative- or other neurological

disorders. DNA was extracted from blood by routine procedures and sequenced at HudsonAl-

pha Institute for Biotechnology (Huntsville, Alabama) on the Illumina HiSeq platform using

paired-end 100 bp sequencing and Roche-NimbleGen Sequence Capture EZ Exome v2 (173

controls) and v3 (all PD and 46 controls) capture kits. Reads were mapped to the hg19

(GRCh37) reference genome using BWA v0.6.2 [11], PCR duplicates removed with Picard

v1.118 [12], and the alignment refined using Genome Analysis Toolkit (GATK) v3.3.0 [13]

applying base quality score recalibration and realignment around indels recommended in the

GATK Best Practices workflow [14,15]. Variants were called in all samples using GATK Hap-

lotypeCaller [13] with default parameters. Next, Variant Quality Score Recalibration (VQSR)

was performed using 99.9% sensitivity threshold [13]. The remaining variants were filtered

against the intersection of capture targets (v2 and v3) using BEDtools [16] and VCFtools [17].

Variants with total depth below 10X were marked as unknown genotype (no-call) using

BCFtools [18]. In addition, we used a cutoff of at least 6 reads supporting each variant (alter-

nated allele). Indels were removed prior to downstream analyses. The depth distribution for all

variants and variants of interest is shown in S1 Fig.

Additional whole-exome sequencing data was obtained from the Parkinson Progression

Markers Initiative (PPMI) [19]. WES data was available from 640 individuals (459 cases and

181 controls). Control subjects were individuals without PD 30 years or older, without first

degree relatives with PD. Sequencing was performed on the Illumina HiSeq 2500 platform

using the Illumina Nextera Rapid Capture Expanded Exome Kit and paired-end 100 bp reads.
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Calling and alignment were performed by the PPMI. Indels were removed prior to variant

quality control using VCFTools [17].

SNP-chip data was obtained from the International Parkinson’s Disease Genomics Consor-

tium (IPDGC) (dbGaP Study Accession: phs000918.v1.p1). The dataset consisted of 11,402

individuals (5,540 cases and 5,862 controls) genotyped on the NeuroX array, comprising

approximately 240,000 standard Illumina exome variants and 24,000 custom variants focusing

on neurological diseases [20,21].

Individual and variant quality control

Sequencing and genotype data were recoded into binary PLINK input format, and quality con-

trol of individual and SNP data was performed for all three cohorts separately. Individuals

were excluded if they had an individual genotype missingness rate of > 2%, heterozygosity

outside +/- 3 standard deviations (calculated for common and rare variants separately), cryptic

relatedness (IBD > 0.2), conflicting sex assignment or non-European ancestry. Population

stratification was studies using multi-dimensional scaling against the HapMap populations

[22]. Variants were removed if they had a genotyping rate < 98%, different call rates in cases

and controls (p > 0.02) or departure from the Hardy-Weinberg equilibrium (p < 10−5). Only

autosomes were kept for downstream analyses. Principal component analysis was performed

using Eigensoft [23,24] with standard filtering settings. ANOVA of the 10 first principal com-

ponents was performed with the significance level set to p < 0.01. Significant principal compo-

nents were included as covariates in all downstream analyses. Outside of the principal

component analysis, all quality control procedures were performed using PLINK v1.90 [25]

and R [26].

Annotation and subset filtering

The datasets were annotated using ANNOVAR [27] according to the RefSeq gene transcripts,

and variants classified as nonsynonymous, stop-gain, stop-loss or splicing were extracted for

further analysis. Rare variants were defined as having a minor allele frequency (MAF) of < 1%

in the non-Finnish European population in gnomAD [28].

Selection of genes of interest

Genomic regions associated with PD where extracted from the largest and most recent, to

date, meta-analysis of GWASes, which identified 90 SNPs associated with PD at genome-wide

significance level [9]. We defined genes of interest as any gene containing a variant in LD

within a 2 megabase window around any of these 90 SNPs, with the threshold of LD set to R2

> 0.5. If a variant in LD was localized in an intergenic region, the nearest gene was included.

LD calculations were available from the supplementary material of the original study [9], and a

total of 303 genes fit the inclusion criteria (S1 Table).

Genetic association analyses

For each cohort, genes of interest were analyzed by two different tests: the burden test and the

sequence kernel association test (SKAT) [29], using the SKAT R package v1.3.2.1 [30] with

default settings. Statistically significant principal components, as determined by an ANOVA of

the first 10 principal components with significance level cutoff set to p < 0.01, were added as

covariates to all downstream analyses. Only genes with variants in both WES cohorts (Park-

West and PPMI) and at least two or more variants across cohorts were included. The meta-

analysis was performed using the MetaSKAT R package v0.60 [31], using the same burden test
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and SKAT as described above in a meta-analysis framework. For the meta-analysis, we hypoth-

esized that genetic effects should be homogenous across studies, meaning that the same muta-

tion should have the same direction of effect in both cohorts. NeuroX was used as a replication

cohort for the results from the WES analyses, and analyzed using the same methods. Only vari-

ants defined as rare were included. All p-values were corrected for multiple comparisons using

FDR (Benjamini-Hochberg) [32].

Gene set analyses

In addition to the single gene analyses, enrichment of genetic variation across all genes of

interest was explored in a gene set analysis. Only rare variants were included, and the com-

bined gene set was analyzed by burden and SKAT tests using the same methods and statistical

tools as for the single gene analyses. A subset of loss-of-function (LoF) variants (containing

only splicing, stop-loss and stop-gain variants) was extracted and similarly analyzed.

Ethical considerations

These studies were approved by the Regional Committee for Medical and Health Research

Ethics, Western Norway (REK 131/04), and all subjects gave written, informed consent. All

research was performed in accordance with the relevant guidelines and regulations.

Results

Using the inclusion criteria outlined previously, 168 genes of interest were analyzed in the sin-

gle gene analyses, comprising a total of 543 rare nonsynonymous, stop-gain, stop-loss or splic-

ing variants in the ParkWest cohort, and 1135 in the PPMI cohort. 160 of these genes were

available for replication analysis in the NeuroX dataset, comprising a total of 1380 variants.

For the gene set analysis, the number of included variants was 554 in the ParkWest, 1341 in

the PPMI and 1534 in the NeuroX cohorts. A total of 14 LoF variants were identified in the

ParkWest cohort, 17 in the PPMI cohort and 40 in the NeuroX cohort.

Gene-based analyses indicated three genes with nominally significant p-values (uncorrected

p < 0.05) across multiple cohorts: GALC, SEC23IP and PARP9. However, no gene reached sta-

tistical significance surviving multiple testing correction in either of the cohorts or the meta-

analysis (see S2 Table). Similarly, there were no statistically significant results in the gene set

analyses (see S3 Table). The top results of the gene enrichment analyses, ranked by nominal p-

value in the meta-analysis, are shown in the Tables 1 and 2.

Discussion

Our analyses revealed no statistically significant enrichment of rare variants in genes impli-

cated by previous GWAS in PD. Three genes (GALC, SEC23IP and PARP9) showed trends

across multiple cohorts, but none survived multiple testing correction. Nalls et al [9] con-

ducted rare variant burden analysis for SEC23IP finding no enrichment signal. Thus, it is

highly unlikely that SEC23IP is involved in PD. The variant tagging PARP9 (rs55961674) is a

weak expression quantitative trait loci (eQTL) for PARP9 in some tissues (nerve and thyroid)

[33]. However, it is also a strong splicing QTL (sQTL) for KPNA1, suggesting that this is a

more likely candidate gene. Finally, the variant tagging GALC (rs979812) is a strong eQTL for

GALC, supporting a potential role in PD [33]. GALC encodes the enzyme galactocerebrosidase,

and mutations in this gene cause Krabbe disease, a lysosomal storage disorder [34]. Current

evidence suggests that lysosomal dysfunction plays a key role in PD [35], and rare mutations

in a broad range of genes causing lysosomal storage disorders have been associated with PD

PLOS ONE No evidence for rare variant enrichment in Parkinson disease associated loci

PLOS ONE | https://doi.org/10.1371/journal.pone.0239824 October 1, 2020 4 / 9



[7]. Mutations of GBA in particular, the gene encoding the enzyme glucosylcerebrosidase that

carries out a very similar reaction to that of galactocerebrosidase, are the most common

genetic risk factor for PD and this association is driven by both common [36] and rare variants

[37]. A role for GALC in α-synucleinopathies is therefore not farfetched [38].

Taken together, our findings provide no evidence of rare mutation enrichment in PD

GWAS loci, in our datasets. These results do not support our initial hypothesis that gene-

based enrichment of rare mutations can be helpful in identifying causal genes in PD-associated

loci. It should be stressed that these findings do not disprove the hypothesis that rare muta-

tions in these genes may influence the risk of idiopathic PD. They do, however, suggest that if

such effects exist, much larger sequencing datasets will be required for their detection.

A few studies with similar approaches to ours have previously been published, using older

GWAS data. Foo et al [39] probed 39 genes implicated in PD by GWAS and described enrich-

ment of rare missense variation in LRRK2. Sandor et al [40] investigated 329 genes located

within GWAS loci, and detected a possible enrichment of missense variation, including both

common and rare mutations in their analysis, across the complete gene set. Finally, Jansen

et al [41] used a Prix fixe strategy to select one candidate gene per GWAS locus, and detected

Table 1. Top results for burden-based gene enrichment analyses.

Gene ParkWest PPMI Meta NeuroX

Variants P-value FDR Variants P-value FDR Variants P-value FDR Variants P-value FDR

SEC23IP 3 0.0276 0.9035 9 0.0332 0.9191 11 0.0040 0.6669 10 0.6819 0.9037

PARP9 3 0.0819 0.9035 9 0.0730 0.9191 11 0.0110 0.7058 7 0.0908 0.6353

GALC 4 0.8111 0.9035 5 0.0032 0.5335 8 0.0210 0.7058 7 0.2607 0.8180

NFKB2 1 0.0180 0.9035 7 0.2543 0.9191 7 0.0333 0.7058 6 0.7477 0.9037

ATP2A1 2 0.0518 0.9035 10 0.2232 0.9191 12 0.0416 0.7058 7 0.6897 0.9037

PBXIP1 1 0.3142 0.9035 8 0.0656 0.9191 9 0.0457 0.7058 10 0.6148 0.9037

CASR 1 0.6461 0.9035 4 0.0276 0.9191 4 0.0457 0.7058 6 0.5906 0.9037

ITGA8 2 0.1473 0.9035 10 0.1905 0.9191 12 0.0533 0.7058 18 0.6969 0.9037

VPS13C 26 0.2533 0.9035 24 0.1276 0.9191 42 0.0557 0.7058 49 0.0636 0.5420

CTSB 3 0.9743 0.9801 15 0.0279 0.9191 17 0.0688 0.7058 10 0.4903 0.9037

Genes are ranked by p-value in the meta-analysis. The FDR-column contains p-values after applying false discovery rate-correction.

https://doi.org/10.1371/journal.pone.0239824.t001

Table 2. Top results from SKAT-based gene enrichment analyses.

Gene ParkWest PPMI Meta NeuroX

Variants P-value FDR Variants P-value FDR Variants P-value FDR Variants P-value FDR

CASR 1 0.6461 0.9008 4 0.0012 0.2089 4 0.0029 0.4900 6 0.7926 0.9880

PARP9 3 0.1087 0.9008 9 0.1820 0.9393 11 0.0215 0.8873 7 0.0311 0.5528

GALC 4 0.0460 0.9008 5 0.0366 0.9393 8 0.0311 0.8873 7 0.8539 0.9880

NFKB2 1 0.0180 0.9008 7 0.9714 0.9944 7 0.0381 0.8873 6 0.2684 0.9257

SEC23IP 3 0.1313 0.9008 9 0.1113 0.9393 11 0.0469 0.8873 10 0.3037 0.9320

SCARB2 2 0.1983 0.9008 3 0.4048 0.9393 4 0.0829 0.8873 11 0.5043 0.9613

BTNL2 1 0.7423 0.9008 8 0.1152 0.9393 9 0.1085 0.8873 14 0.3768 0.9494

CTSB 3 0.4239 0.9008 15 0.1788 0.9393 17 0.1153 0.8873 10 0.0664 0.7225

PAM 5 0.1454 0.9008 13 0.2638 0.9393 17 0.1188 0.8873 11 0.8316 0.9880

TUFM 1 0.3609 0.9008 2 0.5208 0.9393 2 0.1205 0.8873 1 0.1826 0.9257

Genes are ranked by p-value in the meta-analysis. The FDR-column contains p-values after applying false discovery rate-correction.

https://doi.org/10.1371/journal.pone.0239824.t002
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rare variation association signals in LRRK2, STBD1 and SPATA19. While we could not repli-

cate enrichment for any of these genes in our datasets, it should be noted that our sample size

(n = 1050) is smaller than that of Jansen et al [6,41].

In addition to rare variant enrichment analyses, several other methodologies have been

employed to nominate causal genes from GWAS loci. eQTL studies integrate genotype and

gene expression date, to identify genes whose expression is regulated by PD associated SNPs

[42–46]. The effect of non-coding genetic variation on splicing of pre-mRNA (splicing QTLs

or sQTLs) has also recently been highlighted and used to further explore possible causal genes

in PD [47]. Finally, epigenetic quantitative trait loci, such as DNA methylation (mQTL), have

also been used in combination with GWAS and eQTL data with variable success [48].

PD is a complex disease of heterogeneous etiology. While there is a clear genetic compo-

nent, as evidenced by twin studies [49], known risk loci are primarily common mutations

which, collectively, only explain a fraction of the total estimated heritability [9]. As for other

complex disorders, much of the unexplained heritability is believed to be caused by rare vari-

ants [50]. Multiple studies have linked common mutations, either through the use of polygenic

risk scores [51] or machine learning algorithms [42], to motor progression and cognitive

decline. In addition, common genetic variation has also been shown to impact drug respon-

siveness in PD [52]. Similar applications of rare variants could potentially increase the predic-

tive precision of these models and provide clinicians with a powerful tool to individualize

treatment and follow-up for PD patients.

In conclusion, our results indicate that rare variant enrichment alone is unlikely to be help-

ful in identifying causal risk genes for PD in small to moderately sized cohorts. Larger studies

are needed to determine if rare variant enrichment with small effect sizes are present in these

genes. Future studies will likely need to integrate multiple types of data, including GWAS,

sequencing and various forms of QTL analyses as well as functional experiments in order to

better characterize the effects of rare coding variation in PD and identify novel genes and bio-

logical pathways.
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sent homozygous (1/1) variants. The vertical dashed line represents the cutoff of minimum 10

reads employed in the analyses.
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