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Abstract
In reservoir simulations, the radius of a well is inevitably going to be small compared to the horizontal length scale of the
reservoir. For this reason, wells are typically modelled as lower-dimensional sources. In this work, we consider a coupled
1D–3D flow model, in which the well is modelled as a line source in the reservoir domain and endowed with its own 1D flow
equation. The flow between well and reservoir can then be modelled in a fully coupled manner by applying a linear filtration
law. The line source induces a logarithmic-type singularity in the reservoir pressure that is difficult to resolve numerically.
We present here a singularity removal method for the model equations, resulting in a reformulated coupled 1D–3D flow
model in which all variables are smooth. The singularity removal is based on a solution splitting of the reservoir pressure,
where it is decomposed into two terms: an explicitly given, lower-regularity term capturing the solution singularity and some
smooth background pressure. The singularities can then be removed from the system by subtracting them from the governing
equations. Finally, the coupled 1D–3D flow equations can be reformulated so they are given in terms of the well pressure and
the background reservoir pressure. As these variables are both smooth (i.e. non-singular), the reformulated model has the
advantage that it can be approximated using any standard numerical method. The reformulation itself resembles a Peaceman
well correction performed at the continuous level.

Keywords Singularities · Green’s functions · Finite elements · Improved well modelling

1 Introduction

Accurate well models are of critical importance for reservoir
simulations. The well constitutes the driving force for
reservoir flow, in addition to being the main access point
of information about its state. The major challenge of well
modelling is that of scale disparity; a well has a radius
of ∼ 10 cm, while the reservoir might extend several
kilometres in the horizontal plane. From a computational
viewpoint, this makes it exceedingly expensive to resolve
the well as a 3D object in the grid representing the reservoir.
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For this reason, wells are typically modelled using either
zero-dimensional (0D) point sources or 1D line sources.

In this work, we take as a starting point the coupled
1D–3D flow model:

q + κ

μ
∇p = 0 in Ω, (1a)

∇ · q = β
(
p̂ − p̄

)
δΛ in Ω, (1b)

q̂ + κ̂

μ

dp̂

ds
= 0 in Λ, (1c)

dq̂

ds
= −β̂

(
p̂ − p̄

)
in Λ, (1d)

where Ω ⊂ R
3 denotes the reservoir domain and Λ =

∪wells
w=1Λw ⊂ R

1 a collection of line segments each
representing a well. The 1D domain is parametrized by
its arc length s. The parameters κ , κ̂ and μ denote
reservoir permeability, well permeability and fluid viscosity,
respectively, and are assumed to be positive and constant.
The variables p and q denote fluid pressure and flux in the
reservoir, p̂ and q̂ fluid pressure and flux in the well and
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p̄ the reservoir pressure averaged over the surface of the
borehole r = R:

p̄(z, R) = 1

2πR

∫ 2π

0
p(R, z, θ)dθ, (2)

as is illustrated in Fig. 1.
Physically, Eqs. 1a and 1b describe a Darcy-type flow in

the reservoir domain Ω , and Eqs. 1c and 1d a Poiseuille-
type flow in the well. The latter is a 1D flow equation, where
the radial and angular components have been neglected. For
a description of this model reduction method for the well
flow, we refer to the work of Cerroni et al. in [11]. The mass
flux q between reservoir and well is modelled using a linear
filtration law:

q = β(p̂ − p̄), (3)

which states that the connection flow between them is pro-
portional to their pressure difference. The proportionality
coefficients β, β̂ ∈ C1(Λw) are assumed piecewise con-
tinuous and allowed to vary along the well. The wells are
considered as concentrated line sources δΛ in the reser-
voir Eqs. 1a and 1b, with the line sources defined in the
following manner:
∫

Ω

f δΛ φ dΩ =
wells∑

w=1

∫
Λw

f (sw)φ(sw)dsw (4)

for all φ ∈ C0(Ω), with sw denoting the arc length of line
segment Λw.

Elliptic equations with line sources of the type Eq. 4 have
been used in a variety of applications, e.g. the modelling
of 1D steel components in concrete structures [29] or
the interference of metallic pipelines and bore casings in
electromagnetic modelling of reservoirs [38]. A coupled
1D–3D heat transfer problem was considered in the context

Fig. 1 A 1D domain Λ embedded in a 3D domain Ω representing the
reservoir. The reservoir domain Ω is allowed to be arbitrarily shaped.
The well is considered to be a thin cylinder of radius R � size(Ω).
For this reason, the radial and angular components of the well pressure
p̂ are ignored, so that it can be described as a 1D variable p̂ = p̂(s)

of geothermal energy in [5], where it was used to model
heat exchange between (3D) soil and a (1D) pipe. Coupled
1D–3D flow models have also been studied in the context
of biological applications, such as the efficiency of cancer
treatment by hyperthermia [31], the efficiency of drug
delivery through microcirculation [10, 35] and the study of
blood flow in the vascularized tissue of the brain [21, 36]. In
this work, we restrict ourselves to considering its application
in the context of reservoir modelling.

The main challenge with the coupled 1D–3D flow prob-
lem is that the line source induces the reservoir pressure
to be singular, thereby making its analysis and approxi-
mation non-standard. Typically, reservoir simulations are
performed using finite volume methods. The discretized
form of the coupling in Eqs. 1a–1d is then given by:

q = β(p̂ − pK), (5)

where pK denotes the average pressure in the grid block
containing the well. Due to the singularity, pK will not be
representative of the reservoir pressure at the bore hole;
this is typically accounted for by multiplying β with a well
index J . A correction of this type was first developed by
Peaceman in [33], where he considered the two-point flux
approximation method on uniform, square grids when the
well is aligned with one of its axes. Via an analytic solution
valid for simplified cases, he gave a well index depending
on the equivalent radius of the well, i.e. the radius at which
the reservoir pressure equals the well block pressure. The
equivalent radius depends, among other factors, on the
discretization scheme, placement of the well relative to the
mesh and reservoir permeability. The problem of finding
appropriate well indexes has been treated in a multitude of
works; Peaceman himself treated an extension of his method
to non-square grid blocks and anisotropic permeability
[34]. The extension to more generalized grids was treated
by e.g. Aaavatsmark in [1–3], to more generalized flow
models by e.g. Ewing in [18] and to more generalized
discretization schemes by e.g. Chen et al. in [12]. Many
authors have contributed to the extension to generalized well
placements; we mention here the work of King et al. in [24],
Aavatsmark in [4] and, of special relevance to our work, that
of Wolfsteiner et al. in [39] and Babu et al. in [7].

In this work, we take a different approach, in which
the singularities are explicitly removed from the governing
equations. We start by showing that the reservoir pressure p

admits a splitting:

p =
wells∑

w=1

E
(
β(p̂ − p̄)

)
ΨwGw + v, (6)

where Gw is a given logarithmic function that captures
the near-well behaviour of the reservoir pressure, E is
an extension operator E : H 2(Λ) → H 2(Ω), Ψw some
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smooth cut-off function and v ∈ H 2(Ω) some higher-
regularity remainder term. The key point here is that the
singular nature of the solution is explicitly captured by the
logarithmic terms Gw. With the splitting Eq. 6 in hand, we
can therefore remove the singular terms from the system
by straightforward subtraction. Finally, we reformulated a
coupled 1D–3D flow model that can then be reformulated so
it is given with respect to the high-regularity variables p̂ and
v. The main contribution of this article is the reformulation
of the coupled 1D–3D flow model into Eqs. 34a–34d, for
which the solution is smooth (non-singular). On a practical
level, this means the solution can be approximated using any
standard numerical method.

The technique of removing singularities is commonly
known for point sources; we refer here to [17, p. 14]
for a more in-depth explanation. It has previously been
studied in the context of reservoir models by e.g. Hales,
who used it to improve well modelling for 2D reservoir
models [22]. A splitting of the type Eq. 6 was introduced
by Ding [16] for the point source problem, where it was
used to formulate grid refinement strategies. We are, to the
best of our knowledge, the first to formulate a singularity
removal method for the coupled 1D–3D flow problem.
Central to this method is the construction of a function
Gw capturing the solution singularity; we use here a
function Gw found by integrating Green’s function for the
reservoir Eqs. 1a and 1b over the line Λ; we refer here
to our earlier work [20, Section 3.2]. This use of Green’s
functions to construct analytical and semi-analytical well
models has a rich history. Of special relevance to our
work, we mention that of Wolfsteiner et al. and Babu et al.
[7, 39], in which Green’s function was used to construct
analytical solutions with which to calculate the well index
J . More recently, Nordbotten et al. used Green’s functions
to construct analytical models to estimate leakage of CO2

stored in geological formations [32].
The singularity removal, and subsequent reformulation

of the model in terms of the smooth variables v and p̂, is
similar to the Peaceman well correction in that it leads to an
alteration of the inflow parameter β. We discuss this in more
detail in Section 7. It differs, however, in that it works on the
continuous level. It is therefore easily adapted to different
discretization methods, generalized well placements within
the domain and different types of boundary conditions.
Moreover, since our method gives an explicit representation
of the logarithmic nature of the solution, it allows us to
accurately represent the reservoir pressure in the whole
domain (including in the near vicinity of the well).

In our presentation of the method, we limit ourselves
to considering a linear reservoir equation with constant,
scalar-valued permeabilities and Poiseuille flow in the well.
The latter restriction is not critical to the methodology; the
well equation could for example be taken non-linear as

long as the well pressure remains sufficiently regular. To
be more precise, the method requires p̂ to be piecewise C1

on Λ. As for the reservoir equation, the reservoir pressure
could be replaced with a potential expression φ so that the
effect of gravity can be included. The singularity removal
and reformulation can be extended to handle spatially
varying, scalar-valued permeabilities as shown in [20]. For
an extension to tensor-valued permeabilities and non-linear
reservoir equations, we suggest using the solution splitting
in Eq. 6 to formulate a multiscale finite volume method
such as in [40], or a generalized finite element method
[37], where the analytic functions capturing the solution
singularity are used to enrich the set of basis functions.

For the discretization and numerical experiments, we
consider herein the Galerkin finite element (FE) method.
The FE approximation of the line source problem was
studied by D’Angelo [13] by means of weighted Sobolev
spaces, using similar techniques as those known for
e.g. corner-point problems [8]. D’Angelo proved that the
approximation of the coupled 1D–3D flow problem Eqs. 1a-
1b converges sub-optimally unless the mesh is sufficiently
refined around the well. The sub-optimal convergence
rates were found to be local to the line source by Köppl
et al. [26], meaning that they only pollute the pressure
approximation inside the well block. However, this means
the approximation of the coupled 1D–3D flow problem
will suffer until the mesh parameter h is smaller than
the well radius R. In practice, one therefore needs a
very fine mesh around the well for the FE approximation
of Eqs. 1a–1d to converge. This makes the problem
computationally expensive to solve. Different strategies
have been proposed to remedy this, e.g. Kuchta et al.
studied suitable preconditioners in [28]. Holter et al. then
applied this preconditioner to simulate flow through the
microcirculature found in a mouse brain [23]. An alternative
coupling scheme was introduced by Köppl et al. in [25],
where the source term was taken to live on the boundary of
the inclusions. The result is a 1D–(2D)–3D method where
the approximation properties have been improved, at the
expense of having to resolve the 2D boundary of the well.

The article is structured as follows. We start in Section 2
by defining the relevant function spaces for the problem.
In Section 3, we introduce in more detail the coupled
1D–3D flow model we take as a starting point. In
Section 4, we show that the reservoir pressure p admits a
splitting into lower-regularity terms that capture the solution
singularities, and a higher-regularity remainder term v.
With the splitting in hand, the singularities can then be
subtracted from the governing equations. The result is
the reformulated coupled 1D–3D flow model Eqs. 34a–
34d, posed in terms of the smooth variables p̂ and v. As
the solutions then enjoy significantly improved regularity,
this system can be approximated using standard numerical
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methods. The variational formulation and FE discretization
of the reformulated problem are given in Sections 5
and 6, respectively, and require only standard function
spaces. In Section 7, we discuss how this discretization
of the reformulated model resembles a Peaceman well
correction. We then conclude the article with two numerical
experiments, where we test the Galerkin FE method of
both the standard and reformulated coupled 1D–3D flow
models. We show that the singularity removal recovers
optimal convergence rates on uniform meshes, i.e. without
needing to refine the mesh around the well. Moreover, in
a manner similar to altering the well index, it makes the
approximation robust with respect to the ratio R/h.

2 Background and notation

The purpose of this section is to introduce the appropriate
function spaces for the coupled 1D–3D flow model. Let
Hk(Ω) be the Sobolev space:

Hk(Ω) = {u ∈ L2(Ω) : Dβu ∈ L2(Ω) for |β| ≤ k},
with β denoting a multi-index and Dβ the corresponding
weak distributional derivative of u. Hk(Ω) is a Hilbert
space endowed with an inner product:

(u, v)Hk(Ω) =
∑

|β|≤k

∫

Ω

DβuDβv dΩ .

We use a subscript to denote the subspace of Hk with zero
trace on the boundary, Hk

0 , i.e.:

Hk
0 (Ω) = {u ∈ Hk(Ω) : u|∂Ω = 0}.
As we will see, the reservoir solution p in Eqs. 1a–1d

fails to belong to H 1(Ω) due to the singular behaviour on Λ.
For this reason, we consider also a weighted Sobolev space.
To define it, let −1 < α < 1, and take L2

α(Ω) to denote the
weighted Hilbert space consisting of measurable functions
u such that:
∫

Ω

u2r2αdΩ < ∞,

where r denotes the distance of a point to Λ, i.e. r(x) =
dist(x, Λ). This space is equipped with the inner product:

(u, v)L2
α(Ω) =

∫

Ω

r2αuv dΩ .

For α > 0, the weight rα has the power to dampen
out the singular behaviour in the function being normed;
for α < 0, the weight function can induce or worsen
already singular behaviour. We therefore have the relation
L2−α(Ω) ⊂ L2(Ω) ⊂ L2

α(Ω) for α > 0. Letting now
H 1

α (Ω) be the Sobolev space:

H 1
α (Ω) = {u ∈ L2

α(Ω) : Dβu ∈ L2
α(Ω) for |β| ≤ k},

we will later find that the reservoir pressure solving Eqs. 1a–
1d belongs to H 1

α (Ω) for α > 0.
A practical use of this space is found, for example,

considering the logarithmic grading (refinement) that
is often performed on a mesh around the well. The
well introduces a logarithmic type singularity in the
reservoir pressure that cannot be resolved using linear
elements. Consequently, the convergence rates of standard
numerical methods degrade using uniform meshes. Optimal
convergence can be retrieved by a specific refinement of the
mesh around the well [6, 13, 16]. The exact convergence
rates and mesh grading requirements are closely related to
the weighted Sobolev space wherein the solution exists; in
fact, the graded mesh will be uniform with respect to the
weight function rα .

3Mathematical model

Here, we introduce in more detail the coupled 1D–3D
equation we take as a starting point. Let Ω ⊂ R

3

denote a bounded domain describing a reservoir, with
smooth boundary ∂Ω . We consider here steady-state,
incompressible Darcy flow:

q = − κ

μ
∇p, (7)

where q and p denote reservoir flow and pressure, μ

the fluid viscosity and κ a given positive and scalar
permeability. We consider also a collection of wells, each
considered to be a thin tube with fixed radius R and
centreline Λw. The centreline is parametrized by the arc
length sw. We denote by τττ sw its normalized tangent vector.
As the radius of the tube is small, we assume the radial and
angular components of the well pressure can be neglected,
meaning p̂|Λw = p̂(sw). The well flow domain Λ will then
consist of a collection of line segments, Λ = ∪wells

w=1Λw. We
consider on this domain Poiseuille-type flow:

q̂w = −R2

8μ

dp̂

dsw
τττ sw , (8a)

dq̂w

dsw
= − q

πR2
, (8b)

with q̂w and p̂w denoting flow and pressure in the well
and q the linear mass flux into or out of the well. d

dsw
denotes the derivative with respect to the tangent line, or
equivalently, the projection of ∇ along τττ , i.e. d

dsw
= ∇ ·τττ sw .

As the fluid flux in the well has a fixed direction, it can be
given as a scalar function q̂w, characterized by the property
q̂w = q̂wτττw. Note that the assumption of Poiseuille flow
is not critical; Eq. 8a could for example contain certain
non-linearities.
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Letting now Λ = ∪wells
w=1Λw denote the collection of line

segments Λw, the well pressure and flux can be written as
1D variables p̂, q̂ : Λ → R. The well and reservoir flow can
then be coupled together using a linear filtration law, which
states that the mass flux q between them is proportional to
their pressure difference:

q = 2πλRf (p̂, p̄) where f (p̂, p̄) = p̂ − p̄. (9)

The mass flux is given as the rate of transfer per unit length,
and the variable λ ∈ C2(Λ) denotes the permeability of the
borehole lateral surface. It accounts for the fact that the well
may not be in perfect contact with the reservoir, leading to
a pressure drop across the borehole. Letting Δpskin denote
this pressure drop, this can be expressed by the following
relation: q = 2πRλΔpskin.

The pressure difference f (p̂, p̄) between well and
reservoir uses an averaged value p̄(z; R) for the reservoir
pressure given in Eq. 2. This can be interpreted physically
as the reservoir pressure averaged around the borehole. The
flow in well and reservoir can be then modelled, in a fully
coupled manner, by the set of equations:

q + κ

μ
∇p = 0 in Ω, (10a)

∇ · q = βf (p̂, p̄)δΛ in Ω, (10b)

p = pD on ∂Ω, (10c)

q̂ + κ̂

μ

dp̂

ds
= 0 in Λ, (10d)

d

ds
q̂ = −β̂f (p̂, p̄) in Λ, (10e)

p̂ = p̂D on ∂Λ, (10f)

where κ̂ = R2/8, β = 2πRλ and β̂ = β/πR2. The
functions pD ∈ C2(Ω̄) and p̂D(Λ̄) denote given boundary
data. The connection flow from well to reservoir is modelled
by means of a generalized Dirac delta function δΛ, which
we understand in the sense of Eq. 4. Finally, this system can
be reduced to its conformal form by eliminating the 1D and
3D fluxes:

∇ ·
(

− κ

μ
∇p

)
= βf (p̂, p̄)δΛ in Ω, (11a)

p = pD on ∂Ω, (11b)
d

ds

(
− κ̂

μ

d

ds
p̂

)
= −β̂f (p̂, p̄) in Λ, (11c)

p̂ = p̂D on ∂Λ, (11d)

with f (p̂, p̄) = p̂ − p̄.

4 Splitting properties of the solution

In this section, we will show that the line source in the right-
hand side of Eq. 11a introduces a particular structure to the
solution of the coupled 1D–3D flow problem. We do this

by means of a splitting technique, in which the reservoir
pressure is split into a low-regularity term that explicitly
captures the singularity, and a regular component v being
the solution of a suitable elliptic equation. To start with,
we discuss in detail the splitting when Λ is assumed a
single line segment aligned with the z-axis, κ

μ
= 1 and

the well outflow q is a given function f ∈ C1
0(Λ). The

splitting is then especially simple; this case therefore serves
to illustrate the splitting method itself. We then generalize
it in two steps, handling first an arbitrary line segment and
κ
μ

�= 1, and finally the coupling between reservoir and well.
Finally, we use the splitting to reformulate the coupled 1D–
3D flow problem into the system Eqs. 34a–34d, wherein the
singularity has been removed and all variables are smooth.

4.1 Elliptic equations with a single line source

In this section, we consider the elliptic equation:

−Δp = f δΛ (12)

when Λ and Ω are as illustrated in Fig. 1, and f =
f (z) ∈ C1

0(Λ) is a given, smooth line source intensity
(assumed zero at the endpoints of Λ). The solution p

then admits a splitting into an explicit, low-regularity term
f (z)Ψ (r)G(r), and an implicit, high-regularity term v:

p = f (z)Ψ (r)G(r) + v(r, z). (13)

Here, G(r) captures the singular part of the solution, and is
given by:

G(r) = − 1

2π
ln(r), (14)

and Ψ (r) denotes some smooth cut-off function satisfying:

Ψ (r) = 1 for 0 ≤ r < Rε, (15a)

Ψ (r) ∈ (0, 1) for Rε < r < Rc, (15b)

Ψ (r) = 0 for r > Rc. (15c)

Assuming the cut-off radius Rc is chosen small enough to
satisfy Ψ (r) = 0 on ∂Ω , the regular component v can then
be defined as the solution of:

− Δv = F in Ω, (16a)

v = pD on ∂Ω, (16b)

where:

F = f ′′(z)G(r). (17)

To see that p given by Eq. 13 indeed solves Eq. 12, let us
first note that G = −1/2π ln(r) was so chosen because
it satisfies −ΔG = δΛ. To be more precise, G is the
fundamental solution of the Laplace equation in 2D, and
thus has the property:

−
∫

Ω

ΔG(r)φdΩ =
∫

Λ

φdΛ ∀φ ∈ C0(Ω). (18)
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Considering then the Laplacian of p given by Eq. 13,
a straightforward calculation shows that all but one term
vanish by construction, i.e.:

− Δp = ∫
Ω

f (z)Ψ (r)ΔG(r)φ dΩ . (19)

By Eq. 18, we then find that:

−Δp = ∫
Λ

f φ dΛ ∀φ ∈ C0(Ω),

and it follows that the p constructed in Eq. 13 indeed solves
Eq. 12 in a suitably weak sense.

Formally speaking, the splitting works by introducing
first the logarithmic term G for which the Laplacian returns
the line source with the required intensity f . The higher-
regularity term v is then used to correct the solution so
it solves the original problem. The existence of such a
function v follows from standard elliptic theory. As ln(r) ∈
L2(Ω), and f ′′(z) ∈ L2(Λ) by assumption, one can show
that the entire right-hand side F in Eq. 16a belongs to
L2(Ω) [20, Section 3.1]. Consequently, there exists v ∈
H 2(Ω) solving Eqs. 16a and 16b. The full solution p,
meanwhile, fails to belong to H 1(Ω). This can be shown
by straightforward calculation, as one has ln(r) ∈ L2(Ω)

but ∇ ln(r) /∈ L2(Ω). Instead, one has p belonging to the
weighted Sobolev space H 1

α (Ω) for any α > 0. It follows
that v is indeed the higher-regularity term in the splitting
Eq. 13. Formally, this means that v is smoother and better
behaved than the full solution p. This observation will be
central to the numerical method considered in Section 6.

4.2 Elliptic equations with an arbitrary line source

In this section, we consider the elliptic problem:

∇ ·
(

− κ

μ
∇p

)
= f δΛ, (20)

when the right-hand side is a line source δΛ located on a
single line segment Λ with endpoints a,b ∈ Ω . The line Λ

can be described by the parametrization y = a+τττs for s ∈
(0, L), where L = ‖b− a‖ denotes the Euclidean norm and
τττ = (b−a)/L is the normalized tangent vector of Λ. Letting
again f = f (s) ∈ C1(Λ) be a given line source intensity,
the solution p then admits a splitting into an explicit, low-
regularity term E(f )G(r), and a high-regularity component
v:

p = E(f )Ψ G + v. (21)

The function G is now given by:

G(x) = 1
4π

μ
κ

ln
(

rb+L+τττ ·(a−x)
ra+τττ ·(a−x)

)
, (22)

with rb(x) = ‖x − b‖ and ra(x) = ‖x − a‖. This function
was constructed by integrating the 3D Green function for
Eq. 11a (when posed in R

2) over the line segment Λ. It
thus satisfies the property ∇ · (− κ

μ
∇G) = δΛ [20, Section

3.2]. Next, E denotes an extension operator E : H 2(Λ) →
H 2(Ω) extending f so that it can be evaluated in the entire
domain Ω . Assuming again that the cut-off function Ψ

satisfies Ψ = 0 on ∂Ω , the regular component v is then
defined as the solution of:

− Δv = F in Ω, (23a)

v = pD on ∂Ω, (23b)

where:

F = GΔ(E(f )Ψ ) + 2∇(E(f )Ψ ) · ∇G. (24)

To see that the constructed p indeed solves the right
problem, let us start by inserting it into Eq. 20 construction;
all terms disappear except E(f )Ψ ΔG. Integrating this term
over the domain, we find that:

− Δp = −
∫

Ω

E(f )Ψ ΔGφ dΩ

=
∫

Λ

f φ dΛ, (25)

for all ∀φ ∈ C0(Ω), where we used the property that
E(f ) = f on Λ. It follows that the p constructed in Eq. 13
indeed solves Eq. 12 in a suitably weak sense.

By a similar argument as the one given in [20, Section
3.2], one finds that F given by Eq. 24 belongs to L2−ε(Ω)

for arbitrarily small ε > 0. It follows that there exists
v ∈ H 2−ε(Ω) solving Eqs. 23a and 23b. Moreover, a
straightforward calculation shows that G again fails to
belong to H 1(Ω). In fact, one has G ∈ H 1−ε(Ω). It follows
that v constitutes the higher-regularity component of the
solution split Eq. 21, meaning that v is smoother and better
behaved than the full solution p.

4.3 The coupled 1D–3D flow problem

Let us now consider the coupled 1D–3D flow problem
Eqs. 11a–11d. To start with, let us again consider a single
line segment Λ with endpoints a,b ∈ Ω . From the
discussion in the preceding section, it is natural to assume p

solving Eqs. 11a–11d admits a solution splitting of the type:

p = Ψ E(βf )G + v, (26)

with G being as in Eq. 22, Ψ being some smooth cut-
off function, f being the previously introduced pressure
difference f = p̂ − p̄ and v defined as the solution of:

− Δv = F(p̂, p̄; β) in Ω, (27a)

v = pD . on ∂Ω, (27b)

with:

F = GΔ(E(βf )Ψ ) + 2∇(E(βf )Ψ ) · ∇G. (28)
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Unlike in Sections 4.1 and 4.2, f = f (p̂, p̄) is now
implicitly given from p̂ and p̄ solving the coupled 1D–
3D flow problem. To reformulate Eqs. 11a–11d in terms
of p̂ and v, the right-hand side therefore needs to be
reformulated. To this end, let us first treat the pressure
difference p̂ − p̄. By the splitting Eq. 26 and the definition
of the averaging in Eq. 2, calculations reveal that:

p̄ = β
(
p̂ − p̄

)
Ḡ + v̄,

⇒ p̄ = βḠp̂ + v̄

1 + βḠ
,

⇒ p̂ − p̄ = p̂ − v̄

1 + βḠ
. (29)

Here, we used the simplifications E(f ) = f |Λ and
Ψ ≈ 1|Λ. This is motivated by the fact that the well
radius R is assumed negligible. From this, we can state the
reformulated coupled 1D–3D flow model:

− Δv = F(p̂, v̄; β∗) in Ω, (30a)

v = pD on ∂Ω, (30b)

−d2p̂

ds2
= β̂∗(p̂ − v̄) in Λ, (30c)

p̂ = p̂D on ∂Λ, (30d)

where:

F = GΔ
(
E(β∗(p̂ − v̄))Ψ

)

+2∇(E(β∗(p̂ − v̄))Ψ ) · ∇G, (31)

β∗ is given by:

β∗ = β

1 + βG(R)
, (32)

and β̂∗ = β∗/πR2.
The extension to multiple wells follows naturally by

applying the superposition principle. Considering now Λ =

∪wells
w=1Λw, with each line segment Λw having endpoints

(aw,bw) ∈ Ω , we can formulate a solution splitting:

p =
wells∑

w=1

E(β∗(p̂ − v̄))ΨwGw + v, (33)

where E : H 2(Λ) → H 2(Ω) is the same extension operator
as before,Gw is given by Eq. 22 with a = aw and b = bw,
Ψw is some smooth cut-off function with respect to line
segment Λw, and v solves:

− Δv = F(p̂, v̄; β∗) in Ω, (34a)

v = pD on ∂Ω, (34b)

−d2p̂

ds2
= −β̂∗(p̂ − v̄) in Λ, (34c)

p̂ = p̂D on ∂Λ, (34d)

with right-hand side:

F =
wells∑

w=1

GwΔ(E(β∗(p̂ − v̄))Ψw)

+2∇(E(β∗(p̂ − v̄))Ψw) · ∇Gw, (35)

and

β∗ = β

1 + ∑wells
w=1 βGwΨw

, β̂∗ = β∗

πR2
. (36)

The system Eqs. 34a–34d constitutes a reformulation of
the coupled 1D–3D flow model in terms of the smooth
variables v and p̂. For an example of what the splitting
might look like, the reader is invited to examine Fig. 2. As
the singularities here have been removed from the system, it
enjoys significantly improved regularity compared with the
standard formulation Eqs. 11a–11d.

Fig. 2 a FE approximations of p̂h and the reconstructed reservoir pressure ph for h = 1/8. b Full reservoir pressure ph and c background pressure
vh on the slice {(x, y, z) ∈ Ω : z = 0.5}
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5Weak formulation

In this section, we state a weak formulation of the
reformulated coupled 1D–3D flow problem Eqs. 34a–34d.
As the variables in this formulation are all smooth functions,
this can be done using standard Sobolev spaces. For the sake
of completeness, we give also a weak formulation of the
standard coupled 1D–3D flow problem Eqs. 11a–11d. The
reservoir pressure p therein contains a singularity; for this
reason, its weak formulation requires the use of weighted
Sobolev spaces.

Consider first the reformulated coupled 1D–3D flow
problem. Let V denote the product space V = V ×V̂ , where:

V = {u ∈ H 1(Ω) : u|∂Ω = pD}, (37)

V̂ = {û ∈ H 1(Λ) : u|∂Λ = p̂D}, (38)

normed by:

‖(v, p̂)‖2
V = ‖v‖2

H 1(Ω)
+ ‖p̂‖2

H 1(Λ)
. (39)

Multiplying Eqs. 34a and 34c with test functions φ ∈
H 1

0 (Ω) and φ̂ ∈ H 1
0 (Λ), respectively, integrating over their

respective domains, and performing an integration by parts,
we arrive at the following variational formulation:

Find (v, p̂) ∈ V such that:

a
((

v, p̂
)
, (φ, φ̂)

)
= 0 (40)

for all (φ, φ̂) ∈ V0, where:

a
((

v, p̂
)
, φ, φ̂)

)
= (∇v, ∇φ)Ω +

(
d

ds
p̂,

d

ds
φ̂

)

Λ

+ (
F1(β

∗(p̂ − v̄)), ∇φ
)
Ω

− (
F2(β

∗(p̂ − v̄)), φ
)
Ω

+(β̂∗(p̂ − v̄)), φ̂)Λ, (41)

and

F1(φ̂) =
wells∑

w=1

∇(ΨwE(φ̂))Gw, (42a)

F2(φ̂) =
wells∑

w=1

∇(ΨwE(φ̂))) · ∇Gw. (42b)

The full reservoir pressure can then be constructed from v

and p̂ by the relation:

p =
wells∑

w=1

E(β∗ (
p̂ − v̄

)
)Gw + v. (43)

Next, let us consider the standard coupled 1D–3D flow
model, and give its variational formulation as it was
proposed in [14]. Let Vα denote the weighted product space
Vα = Vα × V̂ , where:

Vα = {u ∈ H 1
α (Ω) : u|∂Ω = pD}, (44)

V̂ = {û ∈ H 1(Λ) : û|∂Λ = p̂D}, (45)

normed by:

‖(p, p̂)‖2
Vα

= ‖p‖2
H 1

α (Ω)
+ ‖p̂‖2

H 1(Λ)
. (46)

Multiplying Eqs. 11a and 11c with test functions v ∈
H 1−α,0(Ω) and v̂ ∈ H 1

0 (Λ), respectively, integrating over
their domain of support and performing an integration by
parts, we arrive at the variational formulation:

Find (p, p̂) ∈ Vα such that:

a
(
(p, p̂), (φ, φ̂)

)
= 0 (47)

for all (φ, φ̂) ∈ V−α,0, where:

a
((

p, p̂
)
, (φ, φ̂)

)
= (∇p, ∇φ)Ω +

(
d

ds
p̂,

d

ds
φ̂

)

Λ

− (
β

(
p̂ − p̄

)
, φ

)
Λ

+(β̂(p̂ − p̄)), φ̂)Λ, (48)

and the test space V−α,0 is the space of functions (φ, φ̂) ∈
V−α,0 with zero trace on the boundary. Notice here that
the test and trial spaces are chosen with opposite weight
functions; this is what ensures the continuity and coercivity
of the bilinear form Eq. 48. For a proof of the well-
posedness of this formulation, the reader is referred to [13,
14].

6 Numerical discretization

In this section, we show the block matrix resulting from
a finite element discretization of weak formulation of the
reformulated coupled 1D–3D problem. As the pressure
difference f (p̂, v̄) = p̂ − v̄ now uses the regular part
of the pressure, v ∈ H 2(Ω), we introduce here also the
simplification v̄h = vh|Λ; i.e. we take the trace of vh on Λ

rather than the average over the cylinder. This is motivated
by the fact that R is assumed negligible compared with the
mesh size h, and v is regular, meaning v̄ ≈ v|Λ. The result
is a “true” coupled 1D–3D flow model, in that it considers
only 1D and 3D variables, with no averaging performed over
a 2D cylinder. The same approximation is not possible for
the standard coupled 1D–3D flow model as the reservoir
pressure is there undefined on Λ.

We will now give the discretized form of the variational
formulation Eq. 40. For simplicity, let us assume Ω is
a polyhedron that readily admits a partitioning TT ,h into
simplicial elements T :

Ω̄ =
⋃

T ∈TT ,h

T .

The simplicial partitioning TT ,h forms a mesh, assumed
conforming, which can then be characterized by the mesh
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size h = maxT ∈TT ,h
hT . Next, we associate this mesh with

the usual (3D) Lagrange space of order 1, V h
u , given by:

V h
u = {vh ∈ C0

u(Ω), vh|T ∈ P1 where T ∈ TT ,h}.
Here, P

1 denotes the space of polynomials of degree 1,
and C0

u(Ω) the space of continuous elements that equal the
interpolation of u on the boundary, i.e.:

C0
u(Ω) = {p ∈ C0(Ω) : p|∂Ω = Ihu}. (49)

Next, we assume Λ admits a partitioning TI,h into line
segments I :

Λ̄ =
⋃

I∈TI,h

I,

assumed again to satisfy all the requirements of a
conforming mesh, and associated with the mesh size ĥ =
maxI∈TI,h

hI . For the discretization of V̂ , we use the (1D)
Lagrange space of order 1,

V̂ h
p̂

= {vh ∈ C0
û
(Λ), v̂|I ∈ P̂1 where I ∈ TI,h},

with C0
û
(Λ) interpreted as in Eq. 49.

Considering first the reformulated system Eq. 40, let

v =
N∑

k=1

vkφk, p̂ =
N̂∑

l=1

p̂l φ̂l , (50)

where {φ1, φ2, ..., φN } and {φ̂1, φ̂2, ..., φ̂
N̂

} are linear hat

functions spanning V h and V̂ h, respectively. Note next
that vh is a linear function used to approximate the high-
regularity term v ∈ H 2(Ω). For R � h, its average v̄h can
be well approximated by simply taking the trace v|Λ. The
pressure difference p̂ − v̄ is then given by:

p̂ − v̄ =
N̂∑

l=1

p̂l φ̂l −
N∑

k=1

vkφ̄k

=
N̂∑

l=1

φ̂l

(

p̂l −
N∑

k=1

Tk,lvk

)

. (51)

Here, T : V h → V̂ h is the discrete trace matrix,

characterized by the property φk|Λ = ∑N̂
l=1 Tk,l φ̂l .

Testing Eq. 40 with v = φi for i = 1, ..., N and v̂ = φ̂j

for j = 1, ..., N̂ , we arrive at the following discrete system:
[

A − CT T C

−M̂T T Â + M̂

] [
v

p̂

]
= 0. (52)

where A and Â are the standard stiffness matrices:

Ai,k = (∇φk, ∇φi), (53)

Âj,l = (
d

ds
φ̂l,

d

ds
φ̂j ). (54)

M̂ denotes the standard 1D mass matrix:

M̂j,l = (β̂∗φ̂j , φ̂l)Λ (55)

and C denotes the coupling block:

Ci,l =
wells∑

w=1

(
F1(β

∗φ̂l), ∇φi

)

Ω
−

(
F2(β

∗φ̂l), φi

)

Ω
. (56)

We will refer to this system as the Singularity Removal
Based FE method. After solving Eq. 52, a discretization of
the full reservoir pressure ph can be reconstructed using:

ph =
wells∑

w=1

β∗(p̂h − v̄h|Λ)Ik
hG + vh, (57)

where Ik
h denotes the interpolation onto the Lagrange space

of order k. As the interpolation of G(r) is fairly cheap,
the approximation property of ph can here be improved by
choosing the interpolation degree k high.

A more straightforward method can be found by
discretizing Eq. 47 directly; this is the finite element
formulation analysed in e.g. [13]. As we will compare the
performance of this method against the Singularity Removal
Based FE method, we give here its discretization for the
sake of completeness. Setting:

p =
N∑

k=1

pkφk p̂ =
N̂∑

l=1

p̂l φ̂l , (58)

The pressure difference p̂ − p̄ is then given by:

f = p̂ − p̄

=
N̂∑

l=1

p̂l φ̂l −
N∑

k=1

pkφ̄k

=
N̂∑

l=1

p̂l φ̂l −
N∑

k=1

M̂∑

m=1

Πm,kpkψ̂m, (59)

where Π is the discrete averaging matrix Π : V h → Xh

and {ψ̂1, ψ̂2, ..., ψ̂
M̂

} are the basis functions spanning X̂h.
Testing now Eq. 47 with v = φi for i = 1, ..., N and

v̂ = φ̂j for j = 1, ..., N̂ , we arrive at the following block
system for the discretization of Eq. 47:
[

A + βT T NΠ −βT T M̂

−βNΠ Â + βM̂

][
p

p̂

]
= 0. (60)

Here, N denotes the mass matrix given by:

Nm,l = (ψ̂m, φ̂l), (61)

for ψ̂m belonging to the discontinuous Galerkin space of
order 0:

X̂h = {vh ∈ L2(�), vh|I ∈ P0 where I ∈ TI,h}.
We will refer to this system as the standard FE method.
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7 Relation to the Peacemanwell model

In this section, we show that the reformulated coupled
1D–3D flow model Eqs. 34a–34d under certain conditions
reduces to the Peaceman well correction. We start by giving
a brief summary of the methodology Peaceman introduced
in his seminal work [33]. We then return to our reformulated
model, and show that with G(r) chosen so that its support
is the equivalent radius of the Peaceman well correction,
the reformulation results in a well index that equals the one
derived by Peaceman.

In reservoir simulations, the mass flux between well and
aquifer, q, is usually modelled in a manner analogous to that
in Eq. 11a:

q = J (pw − pK), (62)

where pw is the flowing pressure in the well, J its well
index, and pK the reservoir pressure averaged over the grid
cell K . In Section 4, we showed how the line source that
models the well introduces a logarithmic-type singularity in
the reservoir pressure. For wells with a radius much smaller
than the grid size h, i.e. R � h, pK is therefore likely to
constitute a poor representation of the reservoir pressure in
the near vicinity of the well.

The Peaceman well model accounts for this by altering
the well index J in Eq. 62 so that q better corresponds to the
numerical approximation of the pressure difference between
well and aquifer. Assuming radial flow, Darcy’s law in a
heterogeneous reservoir is given, per unit well length, by the
relation:

q

2πr
= − κ

μ

dp

dr
. (63)

Integrating this equation to a radius re,

2πκ

qμ

∫ pe

pw

dp = −
∫ re

R

dr, (64)

we find that:

q = 2πκ

μ

pw − pe

ln(re/R)
(65)

when pe = p(re). We also need to take into account the
pressure drop Δpskin across the skin of the well. To do so,
let S be the skin factor, defined by the relation:

S = 2πκ

qμ
Δpskin. (66)

Letting now re be the radius at which the reservoir pressure
equals the averaged grid cell pressure pK , Peaceman used
the following relation between q and the pressure difference
pw − pK [33]:

q = 2πκ

μ

pw − pK

ln(re/R) + S
. (67)

To utilize this correction, one must first identify the
equivalent radius re entering in Eq. 67. This radius generally
depends on the discretization method, the location of the
well within the grid and the permeability of the rock around
the well. Assuming for example square grid blocks and
a well at the center of an interior grid block, Peaceman
derived an equivalent radius re = 0.2h for the two-point
flux approximation [33].

The reformulation of the pressure difference f in terms
of p̂ and v bears a strong resemblance to the Peaceman well
correction in Eq. 67. In a practical sense, the reformulation
into Eq. 34a–34d can be interpreted as a non-local well
correction, which has a support in a region around the
well which may significantly exceed the grid resolution.
To see more clearly the similarity with the Peaceman well
correction, let us now consider a single well. We have then:

q = β

1 + μ
κ
βG

(p̂ − v̄). (68)

Next, we let now p̂ be the flowing well pressure pw. The
term G(r) contains the logarithmic component of the solu
tion; in a manner analogous to the Peaceman well correction,
we make it local to the cylinder of radius re by setting:

Gre(r) =
{ − 1

2π
μ
κ

ln(r/re) for r ≤ re,

0 otherwise.
(69)

Note that this G is not smooth enough to work for the
solution split Eq. 33, we use it here only for the sake of
comparison. By the definition of averaging Eq. 2, we have
G = −μ/2πκ ln(R/re). Inserting it in Eq. 68 yields the
relation:

q = β

1 − β
μ

2πκ
ln( R

re
)
(pw − v̄) (70)

= 2πκ

μ

pw − v̄

2πκ
μβ

+ ln( re
R

)
. (71)

Here, 2πκ/μβ can be substituted by the skin factor of the
well by recalling q = βΔpskin. This results in an expression
that equals the Peaceman well correction given in Eq. 67,
i.e.:

q = 2πκ
μ

pw−v̄

ln(
re
R

)+S
. (72)

The regular component v can be interpreted as a sort of back-
ground pressure, or more precisely, the component of the
reservoir pressure that can be approximated using linear func-
tions. We see then that the singularity removal constitutes
an alteration of β (which can be interpreted as a well
index) so that the mass flux function q better corresponds
to the numerically computed pressure difference between
well and reservoir, i.e. p̂ − v̄. For this reason, we expect
that the singularity removal, in a manner similar to the
Peaceman well correction, will improve the stability of the
FE approximation with respect to the ratio R/h.
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8 Numerical results

In this section, we perform numerical experiments to test
the approximation properties of the Singularity Subtraction
Based FE method given by Eq. 52. For the implementation,
we utilized the finite element framework FEniCS [30]. For
the first test case, we consider a single well with smooth
lateral well permeability β, and compare the results against
those obtained using the standard FE given by Eq. 60.
Our implementation of this method uses an earlier imple-
mentation from Kuchta [27], the same as was utilized for
the results of Holter et al. in [23]. The Singularity Removal
Based FE method was implemented by an extension of
this code, using also the mixed-dimensional functionality
of FEniCS developed and implemented by Daversin–Catty
[15]. For the second test case, we consider a discontinuous
lateral permeability β, and an extension operator that uses
radial basis function interpolation. We show here that the
reconstructed reservoir pressure ph converges optimally
when the Singularity Removal Based FE method is applied.

8.1 Convergence test for well with smooth lateral
permeability

In this section, we take Ω = (0, 1)3 and Λ = {(x, y, z) ∈
Ω : x = y = 1/2}. We want to test the capability of each
method in approximating the test problem:

pa = − 1

2π
(z3 + 1) ln(r) + va, (73a)

va = − 3

4π

(
zr2 (ln(r) − 1)

)
, (73b)

p̂a = 1 − ln(R)

2π

(
z3 + 1 − 3

2
R2z

)
, (73c)

with the following parameters:

κ = κ̂ = μ = 1, β = 2π, β̂ = 6z(1 − ln(R))

z3 + 1
. (74)

The solution, along with the splitting terms, are shown in
Fig. 2.

In order to test the stability of the approximation when
the well radius is small compared with the mesh size h, we
test using four different values for the well radius:

R ∈ {1.0e − 1, 1.0e−2, 1.0e − 3, 1.0e − 4}. (75)

Furthermore, we set Ψ = 1 and choose as the extension
operator:

E(f ) = f (z) for all (x, y, z) ∈ Ω . (76)

In this case, the reformulated FE method will approximate
the analytic solution for va given in Eq. 73b, meaning we
can compute its error directly using ‖va − vh‖.

Figure 3 shows the approximation errors, measured in the
L2 norm, when the problem was solved using a sequence
of increasingly fine meshes. The blue lines in Fig. 3a show
the approximation error of vh, measured in the L2 norm,
i.e. ‖vh − va‖L2(Ω) with va being the analytic solution in
Eq. 73b. For R < h, the errors are seen to be invariant with
respect to R, and the approximation of vh exhibits moderate
superconvergence. To expand upon this, we expect for this
approximation optimal convergence rates of order hl with
l = 2.0; we see here a slight super-convergence as l = 2.2.
For h > 1/8 and R = 0.1, our assumption of R < h is no
longer valid, and we see a degradation of the convergence

Fig. 3 Log-log plot of the
approximation errors obtained
using the standard FE method
(red) and the Singularity
Removal Based FE method
(blue) as the mesh size h

decreases. The approximations
were tested for different well
radius values R and is indicated
with a marker, where the radius
corresponding to each marker is
shown to the right slope=2.3

slope=2.0
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rates. To be more precise, we made in the construction of
the block matrix Eq. 52 the simplification v̄ = v|Λ, and this
is not justified for R ∼ h. Optimal convergence rates could
be restored by taking the average of vh rather than its trace.

The red lines in Fig. 3a give the approximation errors
for the full reservoir pressure using the standard FE method
described by Eq. 60. We give here the approximation error
of ph in the L2 norm, i.e. ‖ph − pa‖L2(Ω). For the standard
FE method, the convergence properties strongly depend on
the well radius R, with decreasing R leading to a reduction
in the convergence rate. The best convergence rates are seen
when R ∼ h, but even here, the convergence is sub-optimal
compared with the Singularity Removal Based FE method.
This can be explained by noting that the standard FE
method explicitly resolves the line source in the problem;
it was shown in [13] that this leads to a reduction in the
convergence rate of ph. We refer here to our comments in
[20, pp. 14–15] for a more in-depth explanation of this,
and remark only that the line source problem is expected
to converge with order h1−ε for ε > 0 arbitrarily small.
Thus, the convergence order hl with l = 1.4 surpasses the
theoretical expectation when R ∼ h.

The blue and red lines in Fig. 3b give the approximation
error of p̂h using the Singularity Removal Based and
standard FE methods, respectively. The approximation
error is also here measured in the L2 norm, i.e. using
‖p̂h − p̂a‖L2(Λ). We see here that the singularity removal
significantly improves the convergence properties of the
problem for R < h. The convergence rates degrade when
R > h. This is again due to the simplification v̄ = v|Λ used
in the construction of the block matrix Eq. 52, and could be
resolved by removing this simplification.

From Fig. 3b, is clear that the standard FE method
has trouble approximating the solution when R < h.
Moreover, the approximation error of p̂h is seemingly more
sensitive than ph with respect to the ratio R/h. This can be
understood by returning to the reservoir pressure splitting
p = β(p̂ − p̄)G + v, where G = −1/2π ln(r), and noting
that the error in ph is due to three separate issues, namely
the error in the approximation of the pressure difference, i.e.
‖p̂h − p̄h − (p̂a − p̄a)‖L2(Λ), the error in approximating
the logarithm, i.e. ‖ ln(r)h − ln(r)‖L2(Ω) and the error
in approximating v (which is comparatively small). The
standard FE method has trouble resolving the logarithmic
nature of the reservoir pressure around the well, leading
to a large approximation error in p̄. This further pollutes
the approximations of both p̂ and p. The effect is not as
noticeable for p as its approximation error is dominated
by the approximation error for ln(r). The well pressure
p̂, however, is in principle a smooth function, for which
the FE approximation should be comparatively small. Its
approximation error is therefore dominated by the term
‖p̄a − p̄h‖L2(Λ).

Fig. 4 SRB FE approximations of the reconstructed reservoir pressure
ph and well pressure p̂h. Isolines are plotted for ph

In summary, we see here that the standard FE method
has difficulty resolving the pressure difference p̂ − p̄ when
R < h, due to the fact that p̄ is then poorly approximated.
This further pollutes the approximations of both the well
and reservoir pressure. Explicitly subtracting the singularity
in p, which results in the Singularity Removal Based FE
described by Eq. 52, restores optimal convergence rates for
the reservoir pressure p, and improves the robustness of the
method with respect to a small well radius R.

8.2 Convergence test for well with discontinuous
lateral permeability

Let Ω = (0, 1)3 and

Λ = {(x, y, z) ∈ Ω : x = y = 1

2
, z ∈ (

1

4
,

3

4
)}. (77)

In this section, we will test the ability of the Singularity
Removal Based FE method in approximating the analytic
test problem:

pa = zG + va, (78a)

va = 1
4π

(rb − ra), (78b)

p̂a = sin(z) + 2, (78c)

when G is given as in Section 4.2:

G = 1

4π
ln(

rb − (z − b)

ra − (z − a)
). (79)

The problem parameters are then as follows:

κ = κ̂ = μ = 1, β = z

p̂a − p̄a

, β̂ = −β sin(z)

z
. (80)

Physically, this can be interpreted as modelling a well that
passes through the domain but is only in contact with the
reservoir when 1/4 < z < 3/4. This translates to a jump
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Table 1 The reservoir pressure approximation error pe = Ih(pa) − ph and well pressure approximation error p̂e = p̂a − p̂h when ph was
reconstructed using Eq. 82 with k = 1. Both errors were found to converge with optimal order, i.e. with l = 2 in the L2 norm and l = 1 in the H 1

norm

h ‖pe‖L2(Ω) ‖pe‖H 1(Ω) ‖p̂e‖L2(Λ) ‖p̂e‖H 1(Λ)

1/4 1.94e−02 1.88e−01 2.30e−3 2.51e−2

1/8 5.44e−03 4.99e−02 6.27e−4 1.26e−2

1/16 1.25e−03 9.26e−02 1.55e−4 6.27e−2

1/32 2.77e−04 4.50e−02 7.80e−5 3.32e−2

l 2.0 1.0 2.0 1.0

in the lateral permeability, with discontinuities at the points
(1/2, 1/2, 1/4) and (1/2, 1/2, 3/4).

As the cut-off function, we use the Gaussian function:

Ψ = exp(−dist(x, Λ)2

2c2
) (81)

with c = 0.04. For the extension operator E, we choose
spline interpolation with radial basis functions as given in
[9]. Given a discretized solution pair (vh, p̂h) to Eq. 52, we
can then reconstruct the discretized full reservoir pressure
by the relation:

ph = β∗(p̂h − w̄h)Ik
h(Ψ G) + vh, (82)

where Ik
h denotes the interpolation operator onto the

Lagrange elements of order k. Finally, the numerical error
associated with vh can be computed as:

pe = I k=1
h (pa) − ph, (83)

where pa is interpolated onto the Lagrange elements with
the same order as the solution vh.

The results of applying the SRB-FE method to solve
this problem are plotted in Fig. 4 for h = 1/8. The errors
and convergence rates are given for different mesh sizes
in Table 1. As is evident from this table, the SRB-FE
approximation of ph and p̂h both converge with optimal
order, i.e. we find that:

‖pe‖L2(Ω) ≤ Ch2‖I k=1
h (pa)‖H 1(Ω), (84)

‖pe‖H 1(Ω) ≤ Ch1‖I k=1
h (pa)‖H 2(Ω), (85)

‖p̂e‖L2(Λ) ≤ Ch2‖p̂‖H 1(Λ), (86)

‖p̂e‖H 1(Λ) ≤ Ch1‖p̂‖H 2(Λ). (87)

9 Conclusion

In this work, we have developed a singularity removal
method for the coupled 1D–3D flow model. This type of
model can be used to model the interaction of wells with
a reservoir. The well is endowed with its own 1D flow
equation, and modelled as a 1D line source in the reservoir

domain. This line source introduces a logarithmic type
singularity in the reservoir solution that negatively affects
the approximation properties of the problem. We provide
here a method for identifying and removing this singularity
from the governing equations. The result is a reformulated
coupled 1D–3D flow model in which all variables are
smooth.

As the reformulated model is posed in terms of smooth
variables, it has the advantage that it can be approximated
using any standard numerical method. In this work, we
have shown that the singularity removal restores optimal
convergence rates for the Galerkin FE method. Moreover,
it makes the approximation stable with respect to the ratio
R/h between well radius and mesh size.

A natural development of this work consists of extending
the singularity removal method to apply to (i) different
control modes for the wells, (ii) tensor-valued permeability
and (iii) a mixed formulation of the flow, where both
pressure and flux are approximated. We believe these
extensions would be particularly valuable in the context
of subsurface flow applications, as it would allow one to
capture the interaction between well and reservoir using
coarse grids. The extension to different control modes for
the wells, i.e. rate-controlled or pressure-controlled wells, is
straightforward; it can be achieved by altering the boundary
conditions for the well flow equations. As the singularity
subtraction is performed at the continuous level, it is
likewise straightforward to adapt the method to different
discretization methods [19]. The extension to tensor-valued
permeability is more challenging, and will be treated in
future work.
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