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H I G H L I G H T S

• We present a new stochastic long-term energy model for a remote Arctic settlement.

• We show the importance of a proper representation of solar and wind variability.

• An energy system based on renewables is found feasible, reliable and affordable.

• Energy efficiency plays an important role in a transition to a low carbon settlement.

• Allowing some CO2 emissions reduces costs and improves energy security.
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A B S T R A C T

As transitioning away from fossil fuels to renewable energy sources comes on the agenda for a range of energy
systems, energy modelling tools can provide useful insights. If large parts of the energy system turns out to be
based on variable renewables, an accurate representation of their short-term variability in such models is crucial.
In this paper, we have developed a stochastic long-term energy model and applied it to an isolated Arctic
settlement as a challenging and realistic test case. Our findings suggest that the stochastic modelling approach is
critical in particular for studies of remote Arctic energy systems. Furthermore, the results from a case study of the
Norwegian settlement of Longyearbyen, suggest that transitioning to a system based on renewable energy
sources is feasible. We recommend that a solution based mainly on renewable power generation, but also in-
cluding energy storage, import of hydrogen and adequate back-up capacity is taken into consideration when
planning the future of remote Arctic settlements.

1. Introduction

Remote Arctic energy systems are usually characterised by a de-
pendence on imported fossil fuels [1,2]. Concerns about volatile fuel
costs, energy security, and climate change give rise to many remote
Arctic communities looking towards renewable energy sources as
potential solutions. Rapid cost-reductions and technological develop-
ment have led to renewables becoming an increasingly attractive op-
tion. Particularly solar and wind are emerging as mature and cost-
competitive technologies, even for energy systems in remote Arctic
locations.

The transition to future energy systems is often aided by the use of
energy modelling tools. Several tools exist, with various capabilities,
features and applications ranging from analysis of detailed power
systems to the global energy system (see reviews by Connolly et al.
[3], Ringkjøb et al. [4], Hall & Buckley [5] and Foley et al. [6]). Many

previous modelling studies have looked at remote isolated
communities, but there are only a few focusing on Arctic locations
[7,8]. For example, the HOMER (Hybrid Optimization of Multiple
Energy Resources) modelling tool [9] was applied to study the elec-
tricity system serving the small settlement at the island of Grimsey
located north of Iceland (66.5°N) [1]. They analysed three scenarios
for delivering electricity, respectively a diesel-wind, diesel-wind-hy-
drogen and a wind-hydrogen scenario. Their results showed that a
system consisting of wind, hydrogen and diesel was recommended,
achieving a renewable energy fraction of 92% and a payback period of
less than four years. Furthermore, the TIMES (The Integrated
MARKAL-EFOM System) modelling framework [10] was used to study
the energy system at the Faroe Islands (62°N) [11], highlighting the
importance of electrification of heating and concluding that renew-
able energy technologies will be competitive with fossil fuels in a very
short time, even in the Arctic. Streymoy, the largest island on the
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Faroe Islands, was also one of six islands investigated in a study using
a MATLAB/Simulink model to determine cost-optimal system config-
urations [12].

A larger literature has addressed remote and isolated locations at
lower latitudes, such as the island of Pulau Ubin north-east of Singapore
[13], the island of Dia in the Cretan Sea [14] and other locations in the
Mediterranean [15] Even though the climatic conditions in such loca-
tions are vastly different from the Arctic, several similarities make these
studies relevant also in an Arctic context. Many of these locations are
also dependent on imported fossil fuels, have a need of improving en-
ergy security and a large distance to highly populated areas. They are
therefore evaluating renewables as alternatives [8].

Wind and pumped hydro storage (PHS) was for example evaluated
for increasing the share of renewables and aid in desalination of water
on the S.Vicente Island in Cape Verde in a study using the modelling
tool H2RES [16]. Furthermore, a 100% renewable electricity supply for
Reunion Island was modelled in TIMES [17], with large amounts of
solar, biomass, and important contributions from storage and demand
response. TRNSYS [18] was used in combination with HYDROGEMS
[19] in a modelling study of the former wind/hydrogen demonstration
project at Utsira in Norway [20]. The goal of this demonstration project
was to demonstrate how hybrid renewable energy and hydrogen sys-
tems could provide electricity to communities in remote areas. The
authors concluded that the project successfully demonstrated the po-
tential of wind/hydrogen systems to supply remote locations, but that
technical improvements and cost reductions were needed to be com-
petitive with existing solutions.

In this study, we use the TIMES modelling framework to develop
and apply a new stochastic model for isolated Arctic settlements. The
model takes into account the variability of short-term solar and wind
generation as well as the uncertainty in electricity and heat loads. A
common approach, also when modelling larger energy systems, is to
treat solar and wind generation as deterministic inputs. This has pre-
viously been shown to potentially overestimate the contribution from
variable renewable energy sources and lead to suboptimal investments
[21–23]. Long term persistence is characteristic for geophysical time
series including solar and wind resources [24]. In a harsh Arctic cli-
mate, where security of energy supply is crucial for the inhabitants,
taking into account the possibility of periods with low solar and wind
resources is highly important.

Stochastic modelling of short-term variability in TIMES is a rela-
tively new technique, first applied in a study of the Danish energy
sector [22], but which to the authors’ knowledge has never been ap-
plied to local isolated energy systems. Our hypothesis is that a sto-
chastic approach is even more important in a small isolated energy
system than in a large national or international system. As has been
pointed out by Connolly et al. [3], TIMES models have mainly been
applied to study energy systems on larger scales up to the global energy
system, and are not commonly used to assess remote and isolated
communities. However, we believe that the stochastic approach enables
the use of TIMES-based long-term energy models to study small isolated
energy systems, thus widening the range of possible applications of the
TIMES modelling tool.

The importance of a stochastic approach is investigated through a
case study focusing on the Norwegian high-Arctic settlement of
Longyearbyen (78.2°N). Presently, the settlement covers its needs
for electricity and heat from Norway’s only coal-fired power plant
supplied by locally mined coal. With a declining coal industry, an old
energy infrastructure, and the use of greenhouse-gas-emitting coal as
the main source of energy, there is a need of planning for securing the
future energy supply. This makes this study highly relevant to

decision-making, and well suited for investigating the importance of a
stochastic modelling approach for remote communities in
general.

The objective of the present study is to develop a dynamic model to
analyse and optimise an affordable and reliable future supply of
electricity and heat primarily based on renewable energy sources
and test it on a realistic case where necessary data are available. The
model selects which energy system components to invest in over time
based on bottom-up cost estimates for available components,
minimizing total discounted investment and operational costs over the
time period. The study demonstrates the importance of a realistic re-
presentation of solar and wind variability in long-term energy
models, through the application of a stochastic modelling
approach.

2. The Longyearbyen case-study

Longyearbyen was founded in 1905 for coal mining purposes, and is
located on the Svalbard archipelago barely a thousand kilometres from
the North Pole (see Fig. 1). Now, the more than century long coal
mining era is coming to an end. Years of low coal prices have led to
economic difficulties for the state-owned mining company “Store
Norske Spitsbergen Kulkompani». In autumn 2017, the Norwegian
government decided a permanent closure of the mines Svea and
Lunckefjell [25]. This leaves the smaller mine number 7 as the only
Norwegian coalmine to be kept in operation on Svalbard, and its main
purpose is to supply the power plant in Longyearbyen. The coal reserves
in mine 7 are expected to be able to supply the power plant for 10 more
years, after which coal has to be imported if a new energy system is not
in place.

Since Longyearbyen houses the only coal-fired power plant in
Norway, there is particular political focus on reducing emissions
from Longyearbyen. The power plant is the main component of the
current energy system in the settlement, providing about 40 GWh
electricity and 70 GWh heat to the about 2100 year-round residents
and 150 000 person-days of visitors, mostly in summer [26,27]. Most
of the electricity is consumed in the industrial sector, whereas
households and the service sector consume the majority of heat [28].
The power plant was built in 1982 and faces challenges regarding
ageing equipment, though recent and comprehensive upgrades have
extended the potential lifetime of the plant for about another 20 years
[27].

In addition to the coal-fired power plant, there are five diesel gen-
erators to cover peak electricity demand and to serve as reserve gen-
eration capacity. There is also a reserve heat-exchanger that can be fed
directly with steam from the two coal-fired boilers in case of failure on
the back-pressure turbine. Six oil-fired boilers are also placed around in
the district heat network for reserve and to cover peak heat demand.
There is also a small amount of solar PV installed in the settlement,
about 57 kW on the airport and about 28 kW on residential buildings in
Longyearbyen [29]. In total, the energy supply in Longyearbyen emits
about 60 000 tons CO2 annually [11].

Against this background, there is a need of planning the future en-
ergy supply of Longyearbyen. The Norwegian Ministry of Petroleum
and Energy has already started investigating different options, and will
decide the future of Longyearbyen’s energy system in the near future
[30]. The Norwegian Government stresses that the future energy supply
in Longyearbyen should be sustainable and cost-effective, as well as
provide adequate security of supply.
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3. Modelling methodology

3.1. TIMES-Longyearbyen

TIMES (The Integrated MARKAL-EFOM System) is a modelling
framework widely used to develop models of local, national, interna-
tional or global energy systems [10]. It follows a bottom-up approach,
and performs long-term analyses of the entire or parts of the energy
system. The TIMES modelling framework uses linear programming to
minimise the total system cost, through optimal decision making on
infrastructure investments, systems operation and imports of energy
carriers. An extensive documentation detailing the TIMES modelling
framework can be found in [10].

Based on the TIMES modelling framework, we have developed and
applied the stochastic long-term energy model TIMES-Longyearbyen in
this study. TIMES-Longyearbyen consists of the single isolated region of
Longyearbyen. The base-year is 2015, and the base case global discount
rate has been set to 4% in compliance with recommendations from the
Norwegian Ministry of Finance in long-term socioeconomic studies

[31]. We also assess the sensitivity of the model results on the discount
rate in Section 4.6. The currency chosen is Norwegian kroner (NOK),
and all costs, prices etc. are given in 2015-NOK.

The model horizon is from 2015 to 2050, and investments are made
every 5th year (Fig. 2). In order to represent the operation of the
system, e.g. through demand profiles and variable renewables, we use a
high temporal resolution within each period (Fig. 2). Each year is re-
presented by 192 time-slices, distributed over 24 h over two days (one
weekday and one weekend day) per season; spring (March, April and
May), summer (June, July and August), autumn (September, October,
and November) and winter (December, January and February).

Load profiles for electricity and heat have been derived from two
real datasets of heat and energy generation from the power plant in
Longyearbyen (Longyear Energiverk), given on an hourly basis for 2017
and 2018 [32]. The datasets were used to calculate representative daily
load profiles, and as input for the stochastic modelling.

For each of these representative time-slices, the demand of heat and
electricity must be covered by the set of technologies in the model. For
the present study, in addition to the current system in Longyearbyen,

Fig. 2. Time-slice division in TIMES-Longyearbyen.

Fig. 1. Map of Svalbard and its surroundings.
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we have included a broad set of technologies available for future in-
vestments (solar photovoltaics, solar thermal, onshore- and offshore
wind, hydrogen electrolysers, hydrogen storage, hydrogen fuel-cells,
lithium-ion batteries, geothermal and seawater-based heat pumps,
electric boilers, underground thermal energy storage, diesel generators,
gas turbines, gas cogeneration plants and energy efficiency measures).
Costs of these technologies are as far as possible based on recent data
from the Norwegian Water Resources and Energy Directorate with the
aim to use costs that are both relevant in a Norwegian context and state
of the art in a quickly changing energy sector [33,34]. The present and
future costs of these technologies, as well as their technological para-
meters (efficiency, technical lifetime etc.), are summarised and refer-
enced in Table S1 in the supplementary materials.

Several technologies were omitted from the study due to qualitative
considerations, e.g. hydropower and biomass due to lack of potential.
Another example is electricity generation through an Organic Rankine
Cycle (ORC) using a low temperature geothermal heat source.
Preliminary test drillings have shown promising conditions for geo-
thermal energy in and around the settlement, with ground temperatures
significantly higher than experienced in mainland Norway [35]. With
its independence of weather conditions, year-round availability and its
ability of serving as a base-load generator, geothermal electricity may
become a useful component of the energy system in Longyearbyen.
However, due to the high uncertainty, both in terms of the actual re-
source potential and in terms of costs, geothermal electricity was not
assessed in this study.

Solar PV panels with single-axis tracking has a slightly higher per-
formance than fixed panels, but are omitted from the study due to
higher costs and the reduced durability associated with moving parts in
harsh arctic conditions with both snow and ice.

Another potential technology not modelled in this study, is carbon
capture and storage (CCS). Studies concerning the potential of CCS for
Longyearbyen have been undertaken at the University Centre in
Svalbard (UNIS) [36]. CCS could be an option to extend the operation
of the coal-fired power plant or used with new gas based generators. We
have not included CCS due to uncertainties about storage integrity,
costs and maturity of related technologies.

3.2. Projection of end-use energy demand

Projections of future end-use energy demand are supplied exogen-
ously to TIMES-Longyearbyen, and are important drivers for modelling
results. Since Longyearbyen is highly influenced by policy, this is a
challenging task.

Fig. 3 shows the historic evolution of heat- and electricity demand
in Longyearbyen from 2000 until 2015. A sharp population increase
from about 1500 to about 2100 residents between 2000 and 2010 was a
strong driver for increased heating needs in the settlement [37]. In the
period between 2010 and 2015, the population was quite stable and
lead to the heat demand stabilizing around 70 GWh (see Fig. 3). On the
other hand, the generation of electricity has been relatively constant

through the whole period, which can be explained by a gradual shift
from electricity demanding mining activities to less demanding activ-
ities such as tourism, culture and education. In our calculations of fu-
ture end use energy demand, we have assumed that the population is
kept stable at the current level.

The energy demand is split into three main sectors; households,
services and industry, where all three sectors require electricity and
heat as an energy service. We follow the methodology presented in
[38], where the development in end-use energy demand is calculated as
the product of an activity (e.g. m2) and an energy indicator (e.g. kWh/
m2y).

There is a large potential for increased energy efficiency in
Longyearbyen, particularly for heating. Firstly, the historic and present
cost-structure where the residents only pay for heating per square
meters and not for actual energy use, gives no incentives to reduce
energy consumption. Secondly, more than 50% of the building stock in
Longyearbyen was built before 1970 and is not very energy efficient
[28]. New buildings must adhere to current building regulations
(Norwegian standard TEK17), and we thus assume that new and re-
novated buildings will cut their specific heat usage from about 500
kWh/m2y to 150 kWh/m2y [39]. Due to the assumption of a constant
population towards 2050, the total building area stays the same but is
replaced by new and renovated buildings at a rate of 2.3% per year
[40]. In addition, we assume that energy efficiency in the service sector
increases by 1% per year due to the new building regulations [38]. The
development of electricity use in the household and service sector is
based on development in electricity use per capita in mainland Norway
[40]. In the industry sector, the mining activities and the coal-fired
power plant itself constitutes 30% of the electricity use in the settle-
ment. Since we assume that in 2030 both the coal-fired power plant is
decommissioned and the mining activities are stopped, this leads to a
reduction in electricity consumption of 12 GWh, visible as a significant
drop in Fig. 3. With these assumptions, the demand for electricity and
heat is projected to decrease by 13 GWh and 34 GWh respectively by
2050 (34% and 50%).

Additional energy efficiency improvement may be achieved as a
result of the model optimisation. It allows investments in energy effi-
cient equipment including heat pumps, solar thermal collectors and
four other energy efficiency measures; energy monitoring, insulation
and tightening, technical equipment and energy management (Table S2
in the supplementary material) [38,41].

Since the development in the settlement is highly dependent on
political considerations, our energy demand projection represents only
one of several possible scenarios for the future of Longyearbyen. We
have therefore assessed the sensitivity of the modelling results to the
demand projection by testing alternative demand projections (discussed
in Section 4.6).

3.3. Solar and wind resources

In this study, we apply hourly solar and wind electricity generation
estimates based on renewables.ninja, a web application based on the
GSEE model (Global Solar Energy Estimator) [42] and the VWF model
(Virtual Wind Farm) [43]. The models use meteorological data from the
MERRA reanalysis [44], as well as user-specified data such as the lo-
cation, hub-height, wind turbine model, orientation and tilt (Tables 1
and 2) as input to produce hourly datasets of solar and wind generation.

Five datasets spanning from 01.01.2000 until 31.12.2018 have been
retrieved, representing three possible locations for solar PV and two for
wind power in and around Longyearbyen. The specifications of the
solar and wind farms and their average capacity factors (the ratio of
actual energy generation during a given period to the potential gen-
eration if producing at nominal capacity during the same period) are
shown in Tables 1 and 2.

The datasets for solar PV generation have been used directly, and
their capacity factors are comparable to realised capacity factors onFig. 3. End use demand projection.
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already installed residential solar panels in Longyearbyen. Existing
solar panels, which were installed in 2013, have exceeded expectations
with an annual capacity factor of 7.1% [29]. In TIMES-Longyearbyen,
we limit the amount of residential solar installations by estimations of
available roof area based on [45].

For wind power, renewables.ninja offers a series of power curves for
various wind turbines, but to be able to model newer and bigger tur-
bines, we have used raw wind speed data retrieved from renew-
ables.ninja in combination with power curves of a 5MW [46] and a
10MW [47] wind turbine for onshore and offshore applications re-
spectively (Renewables.ninja has recently been updated with additional
wind power curves). As a quality control, the MERRA-based wind speed
data has been compared to observations from the Norwegian Meteor-
ological Institute from the relevant location Platåberget close to Long-
yearbyen in the period 03.02.2018 to 31.12.2018 [48], achieving a
good fit with the MERRA reanalysis data (correlation coefficient of
0.76).

Fig. 4, which shows the hourly capacity factor for solar and wind
through one climatological year (averaged over the 19-year period),

indicates that solar and wind could complement each other well in
Longyearbyen. The solar resource is strong during the summer months,
but not present during the polar night from October until March. In-
versely, the wind resource is at its strongest during winter from Sep-
tember to April, but weaker during summer.

3.4. Stochastic modelling approach

Stochastic modelling in TIMES involves taking into account the
uncertainty of various input parameters to the system optimisation
[49]. This contrasts deterministic model versions, in which the deci-
sion-making assumes that all input parameters are certain.

In TIMES-Longyearbyen, we model the short-term uncertainty of
seven stochastic parameters, corresponding to electricity generation
from solar PV (three possible locations), wind power (onshore and
offshore), and the demand of electricity and heat. For this application, it
is particularity important to capture the intermittency of solar and wind
to ensure energy system robustness. As already mentioned, the solar PV
and wind power data are based on Renewables.ninja [42,43], whereas
the electricity and heat data are based on real measurements from the
power plant in Longyearbyen [32].

A two-stage stochastic model is applied [50,51], and is illustrated by
its scenario tree in Fig. 5. Here, the first stage involves investment
decisions made over the whole modelling horizon based on the ex-
pected outcome of the operational scenarios but without knowing their
true realisations. This is a key property of the approach, as the invest-
ments are not only optimised for one set of load profiles and renewable
generation profiles, but take into account a wide range of possible
outcomes. This leads to a set of investments that are feasible and
identical for all sixty operational scenarios, important for e.g. security
of supply. The true outcome of the operational scenarios is first revealed
in the second stage, where operational decisions are made across all
scenarios and periods. Each branch in the second stage corresponds to

Table 1
Wind generation data.

Type Location Hub height (m) Turbine size (MW) Capacity Factor (%)

Onshore 78.2°N, 15.4°E (Platåfjellet) 90 5 26.3
Offshore 78.4°N, 14.7°E (Isfjorden) 119 10 31.9

Table 2
Solar generation data.

Type Location Orientation
(Azimuth)

Tilt Avg. Capacity Factor
(%)

Ground 78.2°N, 15.4°E
(Platåfjellet)

180° (south) 30°1 7.67

Rooftop 78.2°N, 15.8°E
(Longyearbyen)

315° (northwest) 20° 6.03

Rooftop 78.2°N, 15.8°E
(Longyearbyen)

135° (southeast) 20° 7.22

1 Optimal tilt obtained from the software PVSyst by Thorud [45]. There is no
sun during the polar night (March to October), which leads to a low optimal tilt
angle close to summer conditions.

Fig. 4. Solar and wind resources.
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one operational scenario, corresponding to different realisations of the
stochastic parameters, all with the same probability of occurrence. We
employ a multi-horizon structure [51], in which investment and op-
erational decisions are made simultaneously, and which assumes no
dependency of operational decisions between model periods. This
means there is no learning effect from observing operational scenarios,
which significantly reduces model size, and is also a good approxima-
tion of real decision processes since including such learning effects
would be similar to assuming perfect foresight of operational outcomes
over the modelling horizon [52].

In TIMES-Longyearbyen, we use sixty operational scenarios to de-
scribe our stochastic parameters. Increasing the number of scenarios
can improve the robustness of the results, but leads to increased com-
putational effort [54]. The sixty scenarios play an important role in the
stochastic modelling approach, as they should reflect the variability of
the parameters and in addition represent realistic operational situa-
tions. The scenarios are selected from historic datasets through a
method that combines two techniques called random sampling and
moment matching, based on [22]. This involves:

(1) Random sampling of historical days to construct 60 independent
scenarios, where each scenario follows the temporal structure of the
model and consists of two sampled days with hourly resolution per
season (192 time-slices). The approach gives consistent daily cor-
relations by sampling consecutive hourly values throughout the
day, and correlations between the seven uncertain parameters by
sampling concurrent days. We sample the days separately for each
of the four seasons, assuming no seasonal dependency, and repeat
the procedure for each investment period thus also capturing inter-
annual variability. A set of scenarios consists of 60 independent
scenarios * 24 h * 2 days * 4 seasons * 9 periods * 7 stochastic
parameters= 725 760 values.

(2) Repeating this procedure to generate a large amount of possible
scenario sets, in this case 10 000 sets.

(3) Calculating the first four moments (mean, variance, skewness and
kurtosis) for the historic data and for each of the 10 000 scenario
sets.

(4) Finding the deviation of the first four moments of each scenario set
to the historical datasets, and select the set of scenarios with the
lowest deviation and thus the best fit with the statistical properties
of the original datasets.

Fig. S9 in the supplementary materials presents a comparison of the
mean, variance, skewness and kurtosis profiles of the selected stochastic
scenarios and the historical datasets. The figures show that by following
the scenario generation method we achieve a reasonable approximation
to the historic data. Furthermore, Fig. S10 in the Supplementary
Materials compares the probability density functions of onshore wind
and solar PV generation, showing that our model captures their

intermittent power generation sufficiently well.
Fig. 6 below illustrates the difference between a deterministic and a

stochastic modelling approach. The deterministic profiles are based on
the expected value of each parameter, while the sixty stochastic sce-
narios are selected by the scenario generation method explained in the
previous paragraphs. The figure shows a day of solar generation during
summer, as well as onshore wind, electricity demand and heat demand
during a winter weekday. These days are chosen since generation and
consumption are highest during these respective seasons and days.
Fig. 6 clearly shows the extra variability modelled in a stochastic ap-
proach, with periods of both low and high generation from variable
renewables and periods of varying heat and electricity demand. The
ability of the energy system to support these realistic operational si-
tuations is important for security of supply in the settlement.

3.5. Model cases

We investigate four model cases, each distinguished either by their
modelling approach or by constraints that allow us to study specific
cases for Longyearbyen’s future energy system. All input parameters,
such as future technology costs, efficiencies, fuel costs and so on are
equal in all model cases. We also assume, in all cases, that the existing
coal-fired power plant is decommissioned within ten years from now, so
that by 2030 an entirely new energy system will be in place in
Longyearbyen. The four model cases are summarised in Table 3 below.

The first model case, DET, is a deterministic model version con-
strained to use only renewable energy sources, either locally available
or through imported hydrogen produced elsewhere, presumably in
mainland Norway and shipped to Longyearbyen. Its main purpose is to
illustrate the difference between a deterministic and a stochastic model
version, and to assess and compare the different investment strategies
in the two approaches. The DET case is not considered a realistic op-
timisation of Longyearbyen’s future.

The second case, ISO, is a stochastic model that constrains all import
processes to the island, resulting in a completely isolated energy system
that has to draw all its power and heat from locally available renewable
energy resources.

The third case, HYD, is a stochastic model that allows importing
hydrogen from mainland Norway. We also assume that the hydrogen is
produced by electrolysis using surplus Norwegian hydro- or wind power
rather than steam reformation of natural gas, and thus considered 100%
renewable. The cost of importing hydrogen has been set to 35 NOK/kg
H2 [55]. Due to the uncertainty surrounding this future price, the
sensitivity of the model results to the hydrogen price has been assessed.

The fourth case, FOS, is a stochastic model that permits import of
fossil fuels (diesel and/or natural gas) in addition to hydrogen. This has
the potential to reduce the storage requirements, help stabilise the grid
and reduce the total cost of the system. In addition, if only or primarily
used as back-up generation, it would lead to limited amounts of

Fig. 5. Illustration of a two-stage scenario tree with sixty operational scenarios (adapted from [53]).

H.-K. Ringkjøb, et al. Applied Energy 258 (2020) 114079

6



greenhouse gas emissions. In the final analysis, we run several addi-
tional cases each with a pre-determined maximum level of CO2 emis-
sions in Longyearbyen exploring options ranging from HYD to FOS.

4. Results and discussion

4.1. Deterministic (DET) versus stochastic modelling approach

A conventional deterministic modelling approach, which considers
only one operational scenario in its optimisation, can give valuable
insights, but in this particular case study it could lead to misleading
results.

The DET model case gives investments in a system heavily reliant on
wind power, supplemented by solar power and batteries to smoothen
intraday variability (Fig. 10). Heating is largely electrified, and is
generated through electric boilers as well as geothermal and seawater
based heat pumps. The electrification requires additional electricity,
which also plays a part in increasing the required installed electricity
generation capacity. In addition, the model decides to invest in energy
monitoring, the cheapest alternative of the modelled energy efficiency
measures.

As illustrated in Fig. 6, the solar and wind resources in the DET
model case are based on their climatological features and give an

inaccurate description of their true variability. This consequently leads
to an overestimation of the contribution of wind power in the model,
with wind unrealistically treated as a base-load generator. The case
clearly demonstrates that using a deterministic modelling approach
could lead to misleading results when variable renewables become a
major fraction of installed capacity.

The lack of realism in the DET model case is further evidenced by
testing the value of stochastic solution (VSS), a test that aims to eval-
uate the advantage of using a stochastic model version versus a de-
terministic one [22,56]. It works by fixing the first-stage decisions in
the deterministic model (the investments), and thereafter solving the
model using the stochastic operational scenarios. In other words, we
use the system typology that the deterministic model version invests in,
and test it for the sixty operational scenarios in the stochastic model
with no additional investments allowed. Applying the VSS to the DET
model case results in an infeasible model run. This indicates that the
system is not able to cover the demand in at least one of the operational
scenarios. The reason for this is the overestimation of the contribution
from wind energy in the deterministic version, which leads to in-
sufficient investments in reserve capacity making the energy system
unable to meet the demand in operational scenarios with e.g. un-
favourable wind and solar availability and/or high electricity and heat
demand. This shows the importance of having an adequate re-
presentation of short-term solar and wind variability.

The question remains whether our stochastic approach is suffi-
ciently robust to deal with long term persistence of the solar and wind
resources, in particular extended periods of low supply. Tsekouras and
Koutsoyannis [24] have shown that a significantly positive auto-
correlation (Hurst coefficient of 0.84) characterizes long time series of
wind and solar radiation in Europe. Zeyringer et al. [57] in a study of
the UK, used a high resolution model softly coupled to a TIMES based
energy system model to explicitly model impacts of interannual varia-
bility of weather. Our approach, based on [22], has the benefit of
preserving computational efficiency while allowing for a combined

Fig. 6. Deterministic and stochastic daily profiles of hourly capacity factors for solar generation during summer, as well as onshore wind generation, electricity
demand, and heat demand during a winter weekday. The thick bold line refers to the daily profile used in a conventional deterministic model, whereas the thin lines
in grey are the sixty stochastic profiles selected by the scenario generation method.

Table 3
Model Cases investigated in the study.

Model Cases Method Description

DET Det. Unrealistic case, included in order to compare model
techniques

ISO Stoch. Isolated system
HYD Stoch. Allowing imports of renewable hydrogen from mainland

Norway
FOS Stoch. No constraints, i.e. allowing also imports of fossil fuels
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stochastic treatment of both supply and demand. Inspection of the en-
ergy system configurations which emerge as results of the stochastic
modelling of Longyearbyen in the present study, see Sections 4.2–4.5,
convinces us that they have sufficient energy storage to be robust
against periods with persistent low solar or wind resources. However, a
more sophisticated treatment of the statistical properties of solar and
wind data (e.g. [58]) could be interesting for further development of
the model for wider applicability.

4.2. An isolated system (ISO)

The ISO case considers a completely isolated Longyearbyen, pow-
ered only by locally available renewable energy resources after 2030.
By following a stochastic modelling approach, the model finds the op-
timal system configuration that is able to meet the demand of heat and
electricity in all sixty operational scenarios modelled, even those with
unfavourable wind and solar conditions.

Large installed capacities of solar and wind as well as a full hy-
drogen value chain with both short- and long-term energy storage is
necessary for a robust and reliable isolated energy system. Fig. 7 shows
two examples of system operation in 2050 during a summer day (A) and
a winter day (B), which illustrate well the trend seen across the op-
erational scenarios. Detailed results for each scenario is found in Fig. S6
in the supplementary materials.

The fall and winter seasons are important design factors in all model
cases, but particularly in the ISO case. Due to colder temperatures the
demand of heat and electricity are higher during these seasons, the
polar night means there is no contribution from solar PV, and although
the wind resource is generally higher during fall and winter, there are
periods with little or no wind generation. To cover such periods, shown
in Fig. 7B, the model uses seasonally stored hydrogen produced in
periods of excess electricity (Fig. 7A). The model invests in large
amounts of hydrogen storage (31 GWh in 2030 and 22 GWh in 2050),
which in addition to covering the demand also needs to compensate for
boil-off losses during long-term storage and losses in the fuel cells.

The need for producing and storing large amounts of hydrogen with
a relatively low round-trip efficiency, the electrification of heating, and
relatively low capacity factors compared to dispatchable technologies
call for a large installed capacity of solar and wind. In 2030, the model
has invested in 119MW of solar PV capacity and 126MW of onshore
wind, corresponding to a total capacity of variable renewables ~50
times larger than the peak hourly electricity demand. This leads to
periods with large amounts of excess electricity generation. Fig. 7A
shows an example of how otherwise curtailed electricity is used in
electrolysers for hydrogen production, to be stored for use in other
seasons. Here batteries also play a useful role. The model decides to
invest in ~10MW of li-ion battery charging/discharging capacity and
~57 MWh of energy storage in 2030 (~11MW and ~51 MWh in 2050).
In Fig. 7A, one can see that batteries are not only useful for intra-day
balancing of demand and supply, but also for balancing the electrolyser
loads. By storing a large part of the solar peak in the middle of the day

and distributing it to the night, the batteries help the electrolysers to
work with a more stable load and avoids investments in large electro-
lyser capacities otherwise necessary to cover the solar peaks.

In the ISO case, all four energy efficiency measures (presented in
Section 3.2) are fully implemented, reducing the annual demand of
electricity and heat by about 10%. Due to the additional infrastructure
needed for power generation, investing in energy efficiency measures is
found to be economically attractive in this model case.

Introducing large fractions of variable renewables into a small iso-
lated system could lead to challenges in maintaining grid stability
[59–61]. Grid support services traditionally offered by fossil-based
technologies, such as frequency and voltage regulation, fault-ride-
through and spinning reserve must in this case be supplied through the
power electronics of renewables, hydrogen fuel cells and by energy
storage technologies. Introducing demand response or installing reserve
fossil fuel generators could further help maintain stability in the system.
Building such a system could spur further research on its detailed op-
eration.

4.3. Hydrogen import (HYD)

The high investments in storage and generating capacity seen in the
ISO case would be costly (Fig. 11). This motivates the HYD case, which
allows import of hydrogen from mainland Norway. The Norwegian
power system is characterised by large amounts of hydropower (96% of
electricity generation), and has a surplus of about 15 TWh in a normal
hydrological year [62]. Utilizing the flexibility of the Norwegian power
system, which is many times larger than the Longyearbyen system,
could reduce the infrastructure for local power and hydrogen produc-
tion compared to the ISO case. Under the assumption that the imported
hydrogen is produced from electrolysis powered by surplus renewable
electricity and transported by ship fuelled by hydrogen this model case
could still be considered 100% renewable. The amount of imported
hydrogen, averaged across all scenarios, is found to be 89 GWh and 60
GWh in 2030 and 2050 respectively. Scenario-specific results for the
HYD case are presented in supplementary materials S7.

The 35 NOK/kg import price used in this study [55] is assumed to
bear the costs of producing hydrogen in mainland Norway and the
transportation to Longyearbyen. Due to the uncertainty associated with
this price, we have assessed the sensitivity of the energy system ar-
chitecture and total system cost by additional model runs with results
displayed in Fig. 8. As expected, the amount of imported hydrogen
depends strongly on its price. For a price lower than 70 NOK/kg, all of
the required hydrogen is imported. For a price of 70 NOK/kg and
higher, an increasing share of local hydrogen production is found
economically attractive, but at the same time the total share of energy
generation from hydrogen fuel cells decreases while wind and solar
increase. Producing all hydrogen locally becomes economical only at a
very high import price (as shown in Fig. 8). At this point, the HYD case
becomes identical to the ISO case. However, a future hydrogen price
this high seems very unlikely. Glenk and Reichelstein [63] found a

Fig. 7. Examples of system operation in 2050 for a summer (A) and winter (B) day. Note the different scales for electricity generation in A and B.

H.-K. Ringkjøb, et al. Applied Energy 258 (2020) 114079

8



current break-even price for renewable hydrogen through electrolysis
in Germany of 3.23 €/kg (~32 NOK/kg), and predicted a decrease to
~2.3 €/kg (~22 NOK/kg) by 2030.

4.4. Fossil fuels (FOS)

Allowing use of fossil fuels could further reduce the costs of
Longyearbyen’s future energy system. For a system with no emission
restrictions, the model shows a preference towards fossil fuels, in-
vesting in new diesel generators, gas cogeneration turbines, pure gas
turbines and gas boilers (Fig. 10).

In the unrestricted FOS case, moving from coal to natural gas, diesel,
and some renewable capacity reduces the CO2 emissions with a factor
of 2/3 from 2015 to about 20 000 ton CO2 annually from 2030. Fig. 9
shows how the total system cost, and the share of renewables in final
energy demand varies with a constraint on CO2 emissions ranging from
no regulations (corresponding to the FOS case) to zero emissions (cor-
responding to the HYD case). The system cost first rises gradually as
emissions are beginning to be constrained, before increasing rapidly to
reduce the last tons of CO2. This shows that achieving some emission

reductions is relatively cheap, whereas the last tonnes of CO2 are very
costly to remove.

Allowing for some, but minor emissions could thus be an effective
way of considerably reducing the total system cost, and at the same
time increase redundancy and possibly reduce local environmental
impacts such as land-use and visual impact from large wind turbine
installations. As an example, allowing for 25% of CO2 emissions com-
pared to an unrestricted case (FOS) annually would only give about
10% higher total system cost.

4.5. Summary of key results

This section summarises key results on the energy system structure
and costs for the four investigated model cases. Tables with detailed
results on installed capacity and energy generation as well as scenario
specific figures can be found in the supplementary material to this
paper.

Fig. 10 shows a comparison of the installed capacities in the ISO,
HYD and FOS cases in 2030 and 2050 compared to today’s existing
capacity. Although the model optimisation suggests investment in new
infrastructure already in 2020, it decides to keep the coal-fired power
plant until decommission in 2030 in all cases, adding only some minor
investments in energy efficiency measures and onshore wind capacity.
Since the system composition also does not change much between 2030
and 2050, we only show the installed capacities in 2030 and 2050 in
Fig. 10 (complete results are available in the supplementary material).

Electrification of heating is seen in all model cases. Electric boilers,
heat pumps and heat from hydrogen fuel cells become the main source
for heating in all but the FOS model case, where gas boilers provide the
majority of heat to the settlement. Large investments in onshore wind
are also seen in all model cases. These results are consistent with the
Grimsey island study [1], which included fewer options, but also
showed that wind and hydrogen could be important parts of Arctic
energy systems.

Due to faster cost reductions for solar PV technologies than for wind
and despite its lower annual capacity factor, one can see that the share
of solar PV in the generation mix increases from 2030 to 2050 in all
model cases.

Fig. 10 also shows the total installed capacity of all model cases. As
expected, this is very high in the ISO case, about seven times larger than
the current installed capacity. In all other cases, the total installed ca-
pacity is comparable to today’s level, as these cases rely on fossil fuels
or import of hydrogen.

Since the coal-fired power plant is kept until 2030 in all model
cases, this leads to more similar annual system costs between cases for
the entire period 2015–2050 than for the period 2030–2050. As the
energy system costs are discounted back to 2015, earlier costs play a
more important role in the optimisation with respect to total costs than
later ones. This explains why the total discounted system costs (Table 4)
are more similar in comparison to the large differences seen in the
average annual system costs between 2030 and 2050 (Fig. 11).

In Fig. 11, one can see that the ISO case has the highest average
annual costs, about three times larger than the HYD case and about ten
times larger than the FOS case. This is due to the high requirements for
renewable energy capacity, storage and hydrogen infrastructure in an
isolated system, which also leads to a very capital-intensive system,
where ~84% of the annual costs in 2050 are related to investments. In
the HYD and FOS cases, on the other hand, imports of energy carriers
are the driving cost factors, corresponding to ~60% and ~50% of mean
annual costs respectively.

The average cost of energy (reflecting both electricity and heat)
shown in Table 4 is calculated between 2030 and 2050, thus only taking
into account the new energy system in each model case, consistently
with Fig. 11. We see that moving from the unconstrained FOS case to
the 100% renewable HYD case almost quadruples the cost of energy,
but constraining 2050 emissions to 5000 tonne CO2/year (~25% of the

Fig. 8. Sensitivity of energy generation in 2050 (bars) and total system cost
relative to a hydrogen price of 35 NOK/kg (line) to the cost of hydrogen.

Fig. 9. The impact of constraining emissions on the total system cost and
system composition.
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unconstrained 2050 emissions and less than 10% of 2015 emissions)
increase the average cost of energy for 2030–2050 by ~50%.

Even though our model has a relatively high temporal resolution in
comparison to other TIMES models, it is worthwhile to validate the
model against a less scaled down model. In order to do so, we devel-
oped another model version with 672 time-slices, modelling one full
week with hourly resolution per season. These two models are essen-
tially equal, with the only difference being the temporal resolution. In
order to maintain computational feasibility, we had to reduce the
number of stochastic scenarios from 60 to 15. In addition, the scenario
generation method selects a full week instead of individual days. We
tested the new model with our three main model cases (ISO, HYD and
FOS), achieving consistent results in comparison to our 192 time-slice
model. When comparing the value of the objective function, the total
system cost, all model cases results in a slightly lower total system cost
in the 672 time-slice model in comparison to the 192 time-slice model.
The HYD scenario has the highest deviation with 5.9%, whereas the ISO
case and the FOS case deviates 4.2% and 1.1% respectively.
Furthermore, the overall system composition stays the same in both
model cases, showing that our scaled down model has an adequate
temporal resolution.

4.6. The role of policy and regulations

Our modelling results suggest that a future energy system in
Longyearbyen based primarily on renewable energy sources is feasible,
reliable and achievable. Energy efficiency plays an important role, and
is a crucial part of our demand projection (hereafter denoted base). We
envision drastic improvements of energy efficiency in buildings as well
as reduced electricity demand due to changes in the industry sector.
The demand projection is based on a number of assumptions. If policies
fail to address energy efficiency, it could have a great impact on the size
and cost of the new required energy infrastructure in Longyearbyen.

To assess the sensitivity of our results, we have investigated the

impact of alternative demand projections (shown in Fig. 12). The status-
quo demand projection assumes no measures are incorporated to reduce
energy demand, leaving the demand of heat and electricity on today’s
level (~70 GWh heat and ~40 GWh electricity) until 2050. The high
demand projection is a more aggressive demand projection, which as-
sumes a doubling of energy demand towards 2050 (~140 GWh heat
and ~80 GWh electricity). For heat, this would mean a continuation of
the trend seen between 2000 and 2010 (continuous line in Fig. 3). This
would be consistent with a doubling of the population to about 4000
residents in 2050 and assuming that the specific heat demand (kWh/m2

y) remains on today’s levels. In addition, it assumes an increase in

Fig. 10. Share of (bars) and total (markers) installed capacity in all cases. See Table S4 in the supplementary materials for detailed results on installed capacity for all
investment periods.

Table 4
Key economic results.

Key economic results ISO HYD 5 Mt CO2 10 Mt CO2 15 Mt CO2 FOS

Total discounted system cost (bNOK) 4.93 2.21 1.51 1.40 1.37 1.36
Cost of energy (2030–2050 avg.) (NOK/kWh) 5.73 1.73 0.67 0.51 0.47 0.46

Fig. 11. Avg. annual system cost between 2030 and 2050.
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activities e.g. within tourism and/or research, as well as a large degree
of electrification (e.g. of the transport sector) that leads to a doubling of
the electricity demand. A projection with significantly lower future
energy demand than the base scenario is not considered realistic and
therefore not assessed.

Fig. 12 shows that an increase in energy demand gives significantly
more expensive systems in all model cases. The ISO case is the most
sensitive to changes in energy demand, linearly increasing its annual
system cost by 3.7 mNOK per GWh of increased energy demand. This is
expected due to the extra infrastructure needed to cover the higher
energy demand. The HYD and FOS cases are less sensitive to changes in
the demand, due to the availability of imports of energy carriers, and
have an increase in annual system costs of only 1.0 and 0.3 mNOK per
GWh respectively.

The selection of discount rate is expected to influence particularly
the balance between capital and operation intensive technologies. We
have tested all cases with a 2% and 6% discount rate in addition to the

base case 4%. The results displayed in Fig. 13, show that these changes
of discount rate have a discernible but not drastic impact on the results
for Longyearbyen. The overall composition of the system stays roughly
the same in all model cases, although a discount rate of 2% favours
investments in renewable capacity (high upfront investment, but low
operational costs), while a 6% discount rate favours investments in
fossil fuels or imported hydrogen (lower investments, but higher run-
ning costs).

An advantage of a renewable based system is its modularity, which
means that one can incorporate units into the system one at a time. This
can help sizing the system according to the actual development of a
highly uncertain future energy demand. Furthermore, a gradual tran-
sition to a system based on renewables, while phasing out the coal-fired
power plant in a controlled manner, could ease the operation and keep
security of supply in place. Modularity also improves system reliability,
as it is highly unlikely that several units fail at the same time.

For future work, the TIMES model of the settlement could be ex-
panded to also include the transportation sector. There are almost as
many snowmobiles as people and about 1500 cars in the settlement
[37]. Tourism is likely to lead to an increased use of tourist ships and
visits from large cruise ships. This puts sustainable tourism on the
agenda. Given energy demand projections for these sectors, an ex-
panded version of the present model could evaluate the potential of
electrification and the use of hydrogen in the transport sector, enabling
cross-sector synergies and potentially deeper decarbonisation of the
settlement.

Environmental aspects not captured by this modelling study should
be included in planning and policy making. As an example, the in-
stallation of new infrastructure, e.g. onshore wind turbines and ex-
tensive areas for solar panels, can disturb existing habitats in an already
constrained Arctic ecosystem and their impact should be carefully
considered before installation. The broader environmental impact of
lithium ion batteries should also be further assessed. Not only in terms
of greenhouse gas emissions and energy use in the production phase,
but also in terms of lifecycle impacts including materials usage, toxicity
and the social risk particularly related to the mining of cobalt [64,65].

We recommend that new policies ensure that energy efficiency is
prioritised, and that a new system should include renewable generating
capacity, energy storage, electrification of heating, and imports of hy-
drogen, in this case most likely from mainland Norway. Fossil fuel back-
up capacity could be installed to reduce costs and increase security of
supply in the settlement. A renewable based energy system in an Arctic
location such as Longyearbyen could also be a valuable research

Fig. 12. Sensitivity of annual system cost in 2050 to alternative demand pro-
jections. The average energy demand (electricity and heat) between 2030 and
2050 for the alternative demand projections is shown in the fig. inset.

Fig. 13. Sensitivity of the key model results on the discount rate.
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opportunity, and an example for others to follow.
The approach and the findings from this study should be relevant for

other Arctic communities. Although wind and solar resources vary from
place to place and are likely to influence the structure of the resulting
optimal energy system, most of the properties of the energy system
components studied here should be almost directly applicable to studies
of other locations.

5. Conclusion

Three main conclusions can be drawn from this work. First, in-
corporating an adequate modelling of the variability of renewables is
highly important for ensuring the robustness of modelling studies in
cases where a significant part of the energy supply is based on variable
renewables. Handling this variability is particularly important when
security of supply is of highest importance, such as in the case of a
remote Arctic settlement. A careful representation of the stochastic
properties of the solar and wind resources is recommended.

Second, the detailed and realistic case study shows that
Longyearbyen has the potential of being supplied by an energy system
based primarily on renewable energy sources with wind and solar as
both complementary and critical contributors. The potential of har-
nessing wind and solar in Arctic locations is significant, and when
utilised together they have beneficial complementary properties.
Energy efficiency is also of high importance, and policies and regula-
tions should be directed towards improving energy efficiency and re-
ducing energy usage. An isolated system based only on locally available
renewable resources is technically feasible, but requires high installed
capacities, and is found to have annual system costs about three times
larger than a case where import of hydrogen is allowed. Allowing for a
limited fraction of the energy supply to come from fossil fuel use could
significantly reduce system costs, increase robustness and system re-
liability while still obtaining major reductions of emissions compared to
cases where the use of fossil fuels is unconstrained.

Finally, the developed model tool could easily be expanded to op-
timise an extended energy system, which not only supplies the settle-
ment, but also tourist ships and other transportation needs. It could also
be adapted to other remote settlements with other starting and
boundary conditions. While specifics including costs of hydrogen im-
port can be expected to vary with location, one may speculate that the
major building blocks of the emerging system including wind, solar and
hydrogen storage will remain. These technologies in contrast to geo-
thermal and carbon storage have the advantage of being generic and
not so dependent on costly investigations of local conditions.
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