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ABSTRACT 

Background:  

The pathogenesis of paraneoplastic cerebellar degeneration (PCD) with Yo-

antibodies is unclear. The disease is generally accepted as immune-mediated, but 

whether the Yo antibodies themselves are pathogenic or if T cells are responsible for 

the neurodegeneration is not known. Yo antibodies are, nevertheless, good 

biomarkers for the disease.  

The primary target of Yo antibodies was until recently thought to be CDR2. We 

showed, however, that these antibodies bind to CDR2L and not CDR2. CDR2L is 

present on both bound and free ribosomes in the cytoplasm of cerebellar Purkinje 

neurons as well as other cells types, but the cellular function and spatial conformation 

remains unknown. 

 

Objective:  

Paper I: To determine the major antigen of Yo antibodies in PCD patients. 

Paper II: To define the subcellular location of both CDR2 and CDR2L and potential 

interaction partners.  

Paper III: To generate a protocol for Purkinje neuron culture from both embryonic 

and postnatal rats that can be used for further characterization of PCD pathogenesis. 

 

Methods: 

Paper I: Patient samples (serum and CSF), cerebellar tissue (human and rat), cancer 

cell cultures (OvCar3 and HepG2), immunostaining, immunoprecipitation, 

fluorescent immunoblotting and recombinant DNA transfection. 

Paper II: Patient samples (serum and CSF), cerebellar tissue (human), cancer cell 

cultures (OvCar3 and HepG2), Purkinje neuron cultures (rat), mass spectrometry-
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based proteomics, immunostaining, proximity ligation assay, super-resolution 

microscopy and immunoprecipitation. 

Paper III: Culturing of dissociated rat cerebellar tissue, immunostaining, Purkinje 

neuron counting, dendritic branch analysis, lentiviral transfection and micro-electrode 

array recordings. 

 

Results: 

Paper I: We demonstrated that CDR2L, and not CDR2, is the major antigen target of 

Yo antibodies. These antibodies do, however, bind recombinant CDR2. 

Paper II: We found that CDR2L is predicted to interact with several ribosomal 

proteins and that it indeed does interact with the ribosomal protein rpS6. Interaction 

partners of CDR2 included the nuclear speckle proteins eIF4A3, SON and SRSF2. 

Paper III: We found that a support layer, pH stability and co-factor supplements were 

essential to generate rat cerebellar cell cultures with high yield of mature Purkinje 

neurons.  

 

Conclusions: 

Paper I: The finding that Yo antibodies bind endogenous CDR2L, and not CDR2, 

allows us to rethink the mechanisms involved in Yo-mediated PCD. The binding of 

recombinant CDR2 suggests that these proteins have common epitopes which is not 

surprising considering their 45% amino acid sequence identity. Furthermore, test 

assays using CDR2L instead of CDR2 could be more sensitive, reducing the large 

amounts of false-positive results obtained today. 

Paper II: Previous studies suggested that Yo antibodies bind a ribosomal target, but 

the locations of CDR2 and CDR2L were unknown. Our finding that CDR2L interacts 

specifically with ribosomal proteins, while CDR2 interacts with nuclear speckle 

proteins, adds further support for CDR2L being the primary Yo antibody target. Since 
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one of the interaction partners of CDR2, eIF4A3, translocates from the nucleus to the 

ribosome, where it interacts with rpS6, this also adds an indirect link between 

CDR2L and CDR2. Whether CDR2L and CDR2 have similar roles or are involved in 

related processes in protein transcription and translation remains to be resolved. 

Paper III: We established a robust primary culture protocol that gave high yields of 

mature Purkinje neurons from both embryonic and postnatal rats. These cultures were 

well suited to high-throughput screening, genetic manipulation and 

electrophysiological recordings and will be useful for exploring both 

neurodegenerative and regenerative mechanisms. 
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1. INTRODUCTION 

1.1 The Nervous System 

1.1.1 Anatomy of the brain 

The brain is divided into three major parts: the forebrain, the midbrain and the 

hindbrain. The forebrain includes thalamus, hypothalamus, subthalamus, epithalamus 

and the cerebrum with cerebral cortex, white matter and the basal ganglia. The 

midbrain connects the middle brain and brainstem while the hindbrain includes the 

medulla, pons and cerebellum. The main focus of this thesis will be cells in the 

cerebellum. 

1.1.2 Cerebellum 

The cerebellum plays an important role in motor control and may also be involved in 

some cognitive functions. In contrast to the irregular convolutions of the cerebral 

cortex, the cerebellar cortex has a highly regular arrangement, creating finely spaced 

parallel grooves. The cerebellum contains more neurons than the total from the rest of 

the brain, although it takes up only around 10% of the brain volume. Damage to the 

cells of the cerebellum produce disorders in fine movement, balance, posture and 

motor learning. The cerebellar cortex is commonly divided into three layers: the 

molecular layer, the Purkinje layer and the granular layer (Fig. 1).  

1.1.2.1 The molecular layer 

The molecular layer is the outermost layer of the cerebellar cortex and includes the 

dendritic trees of Purkinje neurons, a huge array of parallel fibers from the granule 

cells, as well as stellate and basket cells. Most of the parallel fibers synapse on 

Purkinje neurons1 where they transmit excitatory signals using glutamate as 

neurotransmitter. Stellate and basket cells are interneurons that use the 

neurotransmitter GABA to inhibit the neuronal excitability of Purkinje neurons.  
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1.1.2.2 The Purkinje layer 

The Purkinje layer includes the bodies of Bergman glial cells and Purkinje neurons. 

The latter are among the largest neurons in the brain: they receive more synaptic 

input than any other cell in the brain with estimates as high as 200,000 spines per 

Purkinje neuron2. This synaptic input comes mainly from the parallel fibers of 

granule cells. Purkinje neurons are also GABAergic and thus forward inhibitory 

signals to their connections in the deep cerebellar nuclei.  

1.1.2.3 The granule layer 

Granule cells are among the smallest and most numerous neurons in the brain 

accounting for around 75% of the neurons in the brain3. These neurons use glutamate 

as neurotransmitter and thus exerts excitatory effects through their synaptic 

connections with Purkinje neurons.  

1.1.2.4 Mossy and climbing fibers 

In addition to the cells of the cerebellum, the excitatory mossy fibers and climbing 

fibers enter the cerebellum from outside and play a dominant role in cerebellar 

signaling. Both fibers continue through the cerebellar cortex and connect with the 

deep cerebellar nuclei, which are clusters of grey matter lying in the white matter at 

the core of the cerebellum. The deep nuclei are considered to be the main signaling 

output from the cerebellum.  
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Figure 1: The layers of the cerebellar cortex, including the molecular layer, Purkinje cell layer and the granule 

cell layer. Reprinted by permission from Minnesota Veterinary Anatomy, University of Minnesota, 

http://vanat.cvm.umn.edu/neurHistAtls/cataPages/cataCNS.html. 

1.2 Cells of the Nervous System 

The major cells of the nervous system are neurons, glial cells and endothelial cells, 

with neurons being the most abundant. Although estimates vary4, it is thought that 

there are around 80-90 billion neurons in the brain5 and around 50 billion glial cells6, 

7. Endothelial cells, supporting blood supply, account for up to 20 billion cells present 

in the brain8, giving a ratio between neurons, glial cells and endothelial cells of 

approximately 5:3:1 and a total number of cells of around 150 billion. 

1.2.1 Neurons 

Neurons are conduits that receive electrical and chemical input through branched 

dendrites and relay the signal via the cell soma. The signal, called an action potential, 

travels through its axon to other cells. The surface of dendrites contains hundreds to 



 16 

thousands of spines2, 9, to which other cells can connect and make synapses to 

transmit their message. Purkinje cells are the neurons with most spines with estimates 

as high as 200,000 spines per cell. Most of these spines create synapses with parallel 

fibers from granule cells as well as a lower number of synapses with climbing fibers 

from the medulla2.  

Neurons are typically classified into three types: motor (efferent neurons), sensory 

(afferent neurons) and interneurons. The mechanism of neural signaling is mostly the 

same, with information received through dendrites and forwarded through axons, but 

neurons differ in both morphology, location and function.  

Interneurons can be subdivided into local and relay interneurons. The former has 

short axons and are responsible for receiving and forwarding information within a 

small region. Relay interneurons, on the other hand, have long axons that connect 

different neural regions. Interneurons primarily use the inhibitory neurotransmitters 

GABA or glycine, although there are also excitatory ones using glutamate or 

acetylcholine. Interneurons create complex circuits needed for complex tasks.  

Sensory neurons are located in the brainstem and spinal cord where they receive 

information from sensory organs and forward these signals to central structures of the 

brain. Sensory neurons have a single axon that splits into two: one part with dendrites 

in the end that connects to distant parts of the body to sense stimuli, and another part 

that forwards the information to the brain via the spinal cord. Sensory neurons are 

activated upon stimulation of our senses, either through physical or chemical stimuli 

and glutamate is present in all types of neurons in sensory ganglia. 

Motor neurons are divided into upper and lower motor neurons. Upper motor neurons 

are located in the motor cortex of the cerebrum as well as in the brainstem and project 

their axons through the spinal cord where they connect to lower motor neurons either 

directly or through interneurons. Lower motor neurons are located in the brainstem 

and spinal cord and act as a link between upper motor neurons and muscles/glands. 

Upper motor neurons transmit their signals through glutamate, while lower motor 

neurons activate muscle through acetylcholine.   
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1.2.1.3 Purkinje neurons 

The Purkinje neurons of the cerebellum are among the largest neurons in the brain 

and consist of a massive, planar dendritic tree extending into the molecular layer as 

well as an axon extending through the granule layer to the deep cerebellar nuclei. 

These neurons receive excitatory stimuli from the parallel fibers of granule cells as 

well as climbing and mossy fibers entering from outside of the cerebellum, while 

stellate and basket cells perform inhibitory stimuli. Purkinje neurons integrate all 

information available in the cerebellar cortex and forward inhibitory stimuli to the 

deep nuclei in the white matter of the cerebellum. 

The somas of Purkinje neurons form a single-celled layer as illustrated in Figure 2. 

Their dendrites form a planar shape with minimal overlap, which is achieved through 

dynamic local branch growth behavior10. This dendritic shape allows each parallel 

fiber from granule cells to travel through and synapse with large numbers of Purkinje 

dendrites. Of the estimated 200,000 synapses on each Purkinje neuron, the vast 

majority synapse with parallel fibers. On average, parallel fibers form just under two 

synapses with each Purkinje neuron it travels through11.  

Being the sole output of the cerebellar cortex, any disturbance of Purkinje neuron 

signaling will cause severe symptoms12-14. This includes ataxia, which manifests in 

patients as reduced coordination that can affect balance and walking, speech and/or 

eye movement etc. Purkinje neuron disturbances can be triggered through genetic 

mutations (e.g. spinocerebellar ataxia), autoimmunity (e.g. gluten), toxic exposures 

(e.g. alcohol) or other neurodegenerative diseases (e.g. Creutzfeldt-Jakob disease)15-

17. In these patients, cerebellar atrophy and Purkinje neuron loss can be seen post 

mortem. 
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Figure 2: Purkinje neurons of the cerebellum displayed from different angles through calbindin staining. 

Reprinted by permission from Springer Nature, License #4967950299555: Springer Nature, The Cerebellum, 

Dendritic Self-Avoidance and Morphological Development of Cerebellar Purkinje Cells, Fujishima K et al. 

201810. 

1.2.2 Glial cells 

Glial cells (also called neuroglia or glia) are non-neural cells of the nervous system 

that support neurons structurally and metabolically. They have multiple functions 

including forming myelin around axons, providing nutrients, holding neurons in place 

and removing pathogens and dead neurons. In the central nervous system, these cells 

include oligodendrocytes, astrocytes, ependymal cells and microglia, while glial cells 

of the peripheral nervous system include Schwann cells and satellite cells.  

Glial cells are essential for neural development and maintenance. Oligodendrocytes 

insulates neurons through myelin; astrocytes deliver nutrients, support the blood-

brain barrier and assist in repair and regeneration of neurons18; microglia are 

phagocytes of the innate immune system that monitors the central nervous system and 

removes cellular debris, dead cells and pathogens as well as stimulating the adaptive 

immune system when needed; ependymal cells are involved in the production and 

regulation of cerebrospinal fluid. 

The ratio of glial cells versus neurons varies between different regions of the nervous 

system. In the human spinal cord, there are estimated to be six times as many glial 

cells as neurons, while there are around equal amounts in the cerebral cortex. In the 

cerebellum however, there are around 20 times as many neurons as glial cells7, 
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mostly due to the enormous amount of cerebellar granule neurons, which alone are 

estimated to outnumber all other neurons in the nervous system combined19. 

1.3. The Immune System 

The immune system monitors the body and removes dead and damaged cells as well 

as substances that are found foreign and potentially harmful. The term immunity is 

derived from the Latin word immunitas, which referred to the protection from legal 

prosecutions offered to Roman senators during their tenure in office. This intricate 

system is divided into two parts: an innate part that provides an early and broad line 

of defense, and an adaptive part that generate a more powerful and specialized 

response. The immune system can also, unfortunately, target self molecules, in which 

the response is called autoimmune. The different cells of the immune system are 

displayed in Figure 3.  

1.3.1 The innate immune system 

The innate system is initiated immediately when required, and the main components 

of the system include (1) physical and chemical barriers, (2) specialized cells, (3) 

blood proteins and (4) cytokines. If foreign substances breach the epithelial barriers 

comprising skin, respiratory passages and the gastrointestinal tract, they will 

encounter the cells of the innate system stimulating the process of inflammation. 

Inflammation is driven by leukocytes and plasma proteins that are recruited to the 

breach site as a form of rapid defense. This immediate defense is mediated mainly 

through cytokines produced by a variety of immune cells. Cytokines are small 

signaling proteins that initiate the resistance to foreign substances such as microbes, 

viruses, toxins and cancer cells, with subsequent killing of infected cells by natural 

killer cells (NK cells). This initial defense further stimulates the adaptive system 

when needed for a more specific immune response.  
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1.3.2 The adaptive immune system 

The adaptive system specifically targets foreign substances, and this requires time for 

initiation. Once established, this system has an ability to “remember” the substance 

and thus can generate a more vigorous response to repeated exposure. The main 

components of the adaptive system are cells, called lymphocytes, and antibodies. The 

latter are molecules produced by a subset of the lymphocytes. Substances targeted by 

the adaptive immune system are called antigens.  

There are two types of adaptive immune response - humoral immunity and cell-

mediated immunity. The former is mediated by antibodies produced by B 

lymphocytes (B cells) that tag foreign substances for removal. The latter is mediated 

by T lymphocytes (T cells) and targets substances such as bacteria and viruses that 

survive and proliferate inside host cells, where they are inaccessible to circulating 

antibodies. Both B and T cells are derived from hematopoietic stem cells in the bone 

marrow. The name B cell originate from their first detection in the bursa of Fabricius 

in birds and are matured in the bone marrow, while T cells got their name from their 

origin of maturation in the thymus. 

1.3.2.1 T cells 

Each T cell expresses specific antigen-binding receptors, called T cell receptors, on 

their cell membrane. When a T cell is presented with an antigen by antigen-

presenting cells (APCs) such as dendritic cells, macrophages or B cells, they are 

activated and differentiate. This stimulation is mediated through major 

histocompatibility complex (MHC) molecules on the surface of the APCs. MHC 

molecules are present in all jawed vertebrates, and in humans they are called human 

leucocyte antigens (HLA). Class I MHC are found on most nucleated cells and 

present endogenous peptides, while class II MHC molecules, found on APCs, present 

exogenous peptides to T cells. This antigen-presentation occurs both in the blood 

stream and in the lymphatic system, often in lymph nodes where these immune cells 

accumulate.  
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Once activated, T cells differentiate into either cytotoxic T cells (CD8+ cells) or T 

helper (Th) cells (CD4+). Cytotoxic T cells are responsible for the destruction of 

infected cells and tumor cells. Following resolution, most of the cytotoxic T cells are 

removed, but a small subset is kept as memory T cells that can be activated quickly 

on repeated exposure to the same antigen. Th do not have cytotoxic or phagocytic 

properties, but are important for regulating the immune response. There are several 

subsets of Th cells, with Th1, Th2 and Th17 being the most frequent and the subset of 

Th cells that are generated will depend on the antigen. Th1 produce interferon gamma 

(IFN-γ) to stimulate removal of bacteria and viruses or other intracellular pathogens, 

as well as stimulating B cells. Th2 cells release cytokines to stimulate removal of 

parasites and maturation of B cells. Th17 cells release a different subset of cytokines 

and are particularly associated with chronic infections20. As with cytotoxic T cells, a 

fraction of the Th cells is kept as memory cells. 

1.3.2.2 B cells 

B cells have receptors that can recognize and bind pathogens directly without the 

need of APCs. These receptors are specific antibodies bound to the B cell’s surface. 

Depending on the antigen that binds to these receptors, B cells can either clear the 

pathogen directly or ingest and present the antigen to Th cells for further activation 

and differentiation. In both scenarios, the B cells differentiate into antibody-secreting 

plasma cells, while memory B cells are usually only seen in the latter scenario21.  

Plasma cells are able to continuously release antibodies at an astounding rate of 

several thousand molecules per second22. These antibodies enter the circulation and 

tissues to provide protection against pathogens. When the antibodies bind to antigens, 

other immune cells are able to detect and destroy the pathogens. Once this is done, 

the plasma cells undergo apoptosis while the memory B cells persists in case of re-

exposure.   
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Figure 3: The different immune cells of the innate and adaptive immune system including their progenitors 

Reprinted by permission from PeproTech Inc. 

1.3.3 Autoimmunity 

Under normal conditions, lymphocytes should not react against an individual’s own 

molecules. Lymphocytes that do, are normally eliminated, inactivated or modified. 

This is managed through a process called tolerance. All humans are born with similar 

antigen receptor gene segments that recombine randomly to create a large and diverse 

repertoire before being expressed in lymphocytes. A lot of these receptors can 

recognize self-molecules and therefore needs to be removed. When the process of 

tolerance fails to remove self-reacting lymphocytes, autoimmunity can occur, causing 

tissue damage that is potentially lethal.  
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1.3.4 Autoantibodies 

T cell receptors are bound to the cell itself, while B cells fill up their plasma 

membrane with receptors and subsequently release a lot of these as free-floating 

antibodies. Antibodies directed against self-molecules are called autoantibodies. 

These can be pathological at one site, causing disease, and simultaneously non-

pathological at other sites as in the case of removing cancer cells, as will be discussed 

later.  

1.3.5 Immune system and cancers 

When a cancer develops in the body, cancer cells are usually eliminated by cytotoxic 

cells such as CD8+ T cells and NK cells23. Sometimes, less immunogenic cancer cells 

are able to avoid the immune system, making them able to expand and travel to other 

tissues, a process called metastasis. Tumor growth and spread are not the only risks 

associated with cancer. Cancers can also trigger autoimmunity, a process that 

stimulates the immune system to kill otherwise healthy cells. 

Treatment with immune checkpoint inhibitors (ICIs) has led to increased survival and 

long-term remission, even in patients with metastatic cancer24. ICIs are monoclonal 

antibodies that target cytotoxic T-lymphocyte antigen 4 (CTLA4), programmed cell 

death 1 (PD-1) protein or its ligand PD-L1, ultimately inhibiting regulatory effects of 

T cell activation25. However, when these checkpoints of the immune system are 

blocked, releasing the brakes of T cell activity, several side effects can occur 

including worsening of pre-existing and de novo development of autoimmune 

neurological diseases as paraneoplastic neurological syndromes26, 27. 

1.3.6 Immune system in the central nervous system 

The brain, along with organs such as the eye, testes and placenta, is protected from 

many of the immune responses found in the rest of the body. These sites are so-called 

immune-privileged sites. In the brain, this protection is thought to be mediated by the 

blood-brain barrier consisting of vascular endothelium, the choroid plexus 
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epithelium, and the glia limitans that together cover the surface of the central nervous 

system and its blood vessels28. The different brain barriers can be seen in Figure 4. 

The brain is, however, connected to the peripheral immune system through an 

exchange system between the cerebrospinal fluid (CSF) and interstitial fluid (ISF), 

termed the glymphatic system29. Lymphatic vessels are also found in the dura mater, 

indicating that ISF can drain to lymphoid tissues through subarachnoid CSF30, 31. 

Since different parts of the brain differ in their communication with the immune 

system, the anatomy of the brain must be taken into consideration when considering 

the impact of immune-privilege. 

Many neurodegenerative diseases are associated with a dysregulated immune 

response. Immune cells in the CNS are associated with various diseases such multiple 

sclerosis and Alzheimer disease32-34. Paradoxically, the presence of immune cells in 

the CNS has been shown to decrease disease progression in some animal models: The 

lack of T cells in animal models of amyotrophic lateral sclerosis and Alzheimer 

disease resulted in a faster disease progression35, 36. Thus, the different immune cells 

in the CNS associated with neurodegenerative diseases have to be thoroughly 

investigated to understand which cells are pathogenic and which have a protective 

role in the disease course. 
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Figure 4: The barriers of the brain, including the meninges, astrocytes, endothelial and epithelial cells. 
Reprinted by permission from Springer Nature, License #4967960606352: Springer Nature, Neuroimmune 

Communication, The movers and shapers in immune privilege of the CNS, Engelhardt B et al. 201728. 

 

1.4 Paraneoplastic Neurological Syndromes 

The term paraneoplastic syndrome is used to describe symptoms or signs that result 

from damage to organs or tissues distant from the site of a malignant neoplasm or its 

metastasis37. This damage can be caused either by molecules secreted by the tumor or 

by an immune response targeted at tumor molecules that also recognizes 

endogenously expressed proteins elsewhere in the body. In the latter scenario, the 

resulting autoimmunity can be disease causing and potentially lethal37, 38.  

Paraneoplastic syndromes affecting the nervous system are called paraneoplastic 

neurological syndromes (PNS)39. Although the exact pathogenic mechanisms are 

unknown, the major steps are considered to be as follows: first, the immune system 

initiates an anti-tumor response; second, one or more of the antigens targeted by the 

immune system is also present and accessible in healthy cells of the nervous system; 

third, healthy cells are damaged and eventually killed by the immune system, either 
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through antibodies from plasma cells or through effector T cells (or both; Fig. 5)40. It 

is not necessary that the tumor antigens are exactly the same as the molecules found 

in the normal cells: Each antibody and effector T cell only target parts of an antigen, 

thus self-molecules need only to contain parts resembling the tumor antigen to be 

targeted through molecular mimicry. 

In PNS, neurological signs usually appear prior to identification of the cancer which 

is often too small to be discovered initially41-43. The incidence of PNS varies from 

study to study44, but paraneoplastic sensory neuronopathy seems to be the most 

abundant (0.7% of cancer diagnosis), followed by paraneoplastic encephalitis (0.3% 

of cancer diagnosis) and paraneoplastic cerebellar degeneration (0.2% of cancer 

diagnosis)45. The most common cancers associated with PNS are small cell lung 

cancer, gynecological cancers, breast cancer and lymphoma27 and the median age of 

onset in PNS patients has been reported to be in the early 60s38, 46. The cancer is 

almost always diagnosed within five years after the onset of the PNS47. 

As pathogenesis of the neurological dysfunction is not well understood, the 

cornerstone of PNS therapy is early identification and treatment of the underlying 

tumor. 
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Figure 5: Proposed pathogenesis of PNS. Antigen-presenting cells, such as dendritic cells, present tumor 

antigens to CD4+ T cells, CD8+ T cells and B cells; CD8+ T cells and B cells mature into cytotoxic T cells and 

antibody-secreting plasma cells, respectively, with subsequent attack against both the nervous system (lower 

right), neuromuscular junctions (upper right) and the tumor cells (upper left) expressing the same antigen. 

Reproduced with permission from Darnell and Posner (2003)37, Copyright Massachusetts Medical Society. 
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1.4.1 Onconeural antibodies 

Antibodies associated with tumors that also bind molecules in neural tissues are 

called onconeural antibodies48. These antibodies can bind either intracellular or cell 

surface antigens. Most intracellular PNS antibodies are onconeural while cell surface 

PNS antibodies are not always related to a cancer27. Cell surface autoantibodies are 

thought to have a direct pathogenic role49, while intracellular autoantibodies are often 

referred to as T cell mediated50, 51. 

Detection of onconeural antibodies is used to define PNS and determine the 

underlying associated cancer. Table 1 shows the most important PNS-associated 

autoantibodies. The most well characterized ones are the Yo, Hu, Ri, CRMP5, 

Ma1/Ma2 and amphiphysin antibodies27, 47. These antibodies have recognizable 

patterns when used to stain tissues of the nervous system, as well as specific detection 

of the associated proteins in recombinant assays such as line blots or cell-based 

assays. Both methods should be used to confirm a PNS diagnosis, as the methods 

separately can yield a high number of false positive results52-54.  
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Table 1: PNS autoantibodies, their targets and associated PNS and underlying 

associated cancers. 

Antibody Antigen PNS Cancer 

Yo CDR2L/CDR2, 

intracellular 

PCD Ovarian, breast and fallopian 

tube 

Hu HuD,  

intracellular 

Encephalomyelitis, sensory 

neuronopathy 

neuronopathy 

 

 

SCLC, NSCLC and extra-

thoracic cancers 

Ri NOVA1/NOVA2, 

intracellular 

Brainstem encephalitis and 

opsoclonus 

Breast, lung and other cancers 

Tr DNER, 

intracellular 

PCD Hodkin lymphoma 

Ma/Ma2 Ma1/Ma2, 

intracellular 

Limbic encephalitis and 

brainstem encephalitis 

Testicular, lung and other 

cancers 

Amphiphysin Amphiphysin, 

intracellular 

SPS, encephalo-myelitis, 

sensorimotor neuropathy 

SCLC, breast and other 

cancers 

SOX1 SOX1, 

intracellular 

LEMS and PCD SCLC, NSCLC and extra-

thoriac cancers 

CRMP5 CRMP5, 

intracellular 

Encephalomyelitis, sensorimotor 

neuropathy 

SCLC, NSCLC, thymoma and 

extra-thoracic cancers 

MAP1B MAP1B, 

intracellular 

Encephalomyelitis and/or 

sensorimotor neuropathy 

SCLC, NSCLC and extra-

thoriac cancers 

NMDAR GluN1, 

cell surface 

Encephalitis Teratoma 

AMPAR GluA1/GluA2, 

cell surface 

Limbic encephalitis and non-focal 

encephalitis 

Lung, thymus, breast and 

other cancers 

GABABR B1 (GABABR), 

cell surface 

Limbic encephalitis, cerebellar 

ataxia,opsoclonus myoclonus 

syndrome  

SCLC 

mGluR5 mGluR5, 

cell surface 

Non-focal encephalitis Hodgkin lymphoma 

VGCC P/Q VGCC P/Q, 

cell surface 

LEMS, PCD SCLC 

Abbreviations: PCD, paraneoplastic cerebellar degeneration; SPS, stiff person syndrome; LEMS, Lambert-

Eaton myasthenic syndrome; SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer. Reprinted by 

permission from Springer Nature, License #4973870581810: Springer Nature, Nature Reviews Clinical 

Oncology, Paraneoplastic neurological syndromes in the era of immune-checkpoint inhibitors, Graus F et al27. 
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1.4.2 Paraneoplastic cerebellar degeneration 

Paraneoplastic cerebellar degeneration (PCD) is one of the most common PNS and 

comprises a heterogenous group of disorders that are usually associated with 

gynaecological55-65, breast66-70 or lung cancer38, 71-74. Association with other cancers 

such as esophageal cancers75-77, gastric cancers78, 79, cholangiocarcinoma80, uveal 

melanoma81 and prostatic adenocarcinoma82 have also been reported. The extensive 

loss of Purkinje neurons in these patients (Fig. 6) lead to a variety of cerebellar 

symptoms such as ataxia, dysarthria and nystagmus. Involvement of the neocortex, 

limbic system, basal ganglia, spinal cord and the peripheral nervous system have also 

been described83. 

Of the approximately 38 onconeural antibodies described in PCD patients, the most 

frequently detected are Yo antibodies followed by Hu, Tr and Ri antibodies84. These 

four antibodies make up over 90% of the PCD cases85. Despite the presence of these 

antibodies in sera and CSF of PCD patients, and the fact that they are good clinical 

diagnostic markers, their pathogenic relevance remains poorly understood.  

Since antigen-specific cytotoxic T cells are found in peripheral blood of Yo-PCD 

patients86 and CSF of Hu-PCD patients73, some consider cytotoxic T cells to be the 

main effectors of neuronal loss. In the Yo-PCD study, cytotoxic T cells reacting with 

recombinant CDR2 peptides were found in the acute phase in one patient that had the 

class I MHC subtype HLA-A-*0201, but not in the chronic phase in three patients 

(two HLA-A*0201+ and one HLA-A*0201-). Memory T cells were found in both 

HLA-A*0201+ chronic patients, but not in the acute patient (HLA-A*0201+) or the 

chronic HLA-A*0201- patient. Although the complex mechanisms are not yet 

understood, exploration of HLA alleles in PCD patients has identified genetic 

variants associated with protective or susceptible properties87. 

Since most relevant PCD antigens are intracellular, a first step in pathogenesis is 

thought to be the presentation of these antigens on the surface of cancer cells by class 

I MHC molecules to cytotoxic T cells. Under normal circumstances self antigens 

would not elicit an immune response. If, however, cytotoxic T cells are activated 



 31 

against this self antigen in the tumor, these could potentially travel to the cerebellum 

and attack Purkinje neurons. This has been demonstrated in an animal model of PCD 

in which massive CD8+ T cell infiltration into the cerebellum, surrounding the 

Purkinje neuron soma and dendrites, appeared to be responsible for the neuronal 

loss50. These authors hypothesized that MHC class I molecules present on Purkinje 

neurons88 were upregulated by INF-γ secretion by the surrounding CD8+ T cells, 

rendering them susceptible to killing by the CD8+ T cells. Also observed in this 

model was microglia infiltration surrounding Purkinje neurons, similar to that 

demonstrated in patients89. 

In vitro studies have, however, demonstrated that Purkinje neurons are able to 

internalize both IgG and IgM90. Antibody internalization occur in other neurons as 

well91. Purkinje neurons internalize both non-specific and specific antibodies, 

however, the non-specific ones were rapidly cleared, while specific antibodies were 

able to cause neuronal damage90, 92. This is in line with in vitro studies of PCD 

pathogenesis: Yo antibodies cause neuronal loss in the absence of T cells93, 94. Thus, 

greater knowledge is needed to understand the interplay between tumors, immune 

components and the neuronal damage in PCD patients. 

 

Figure 6: A) Cerebellar section from a control patient with Purkinje somas present (black box) and B) 

cerebellar section from a PCD patient where almost all Purkinje neurons are absent. M = molecular layer, P = 

Purkinje layer and G = granule layer; 20x objective. 
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1.4.3 Yo-associated PCD 

Yo antibodies were first reported in patients with PCD almost four decades ago55, 95. 

These antibodies react with cerebellar degeneration‐related (CDR) proteins present in 

Purkinje neurons and are associated with Purkinje neuron death and severe cerebellar 

degeneration. Yo antibodies have been found to bind three different CDR proteins: 

CDR1, CDR2 and CDR2‐Like (CDR2L)96-101. However, CDR1 is no longer 

considered as a marker for Yo-PCD102, and CDR2L, rather than CDR2, is 

demonstrated to be the major Yo antigen101. 

In Yo-associated PCD patients, the tumor diagnosis is usually established within a 

year of the onset of neurological signs103, 104. However, in some cases the tumor 

diagnosis takes several years, and in some cases the cancer is first found 

postmortem103. The long duration between onset of neurological symptoms and 

cancer detection seen in some of these patients could be due to an effective anti-

tumor response, limiting its growth104.  

In normal cerebellar tissue, Yo antibodies bind Purkinje neurons as well as stellate 

and basked cells in humans, mice, rats and guinea pigs55, 58, 93, 95, 97, 105-116. Yo 

antibodies also bind normal ovary tissue as well as cancerous tissue of the ovary114, 

116, cervix, lungs and colon117. These Yo antibodies are predominantly of IgG1 

subclass, while IgG2, IgG3 and IgG4 are only found in some patients118. 

There have been several attempts to produce an animal model of Yo-associated PCD 

using transfer of Yo antibodies or immunization with recombinant CDR2, all of 

which have been unsuccessful109, 119-121. Possibly, our understanding of disease 

pathogenesis will remain limited until such a model is established. As CDR2L is now 

demonstrated to be the major antigen of Yo antibodies101, a model system using this 

protein as target could potentially be successful. 
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1.4.4 Cerebellar degeneration-related proteins 

The amino acid sequence for all three CDR proteins is known and shows that CDR2L 

and CDR2 have 45% sequence identity, while the sequence identity with CDR1 is 

low. However, the information about the spatial structure and function of these 

proteins associated with Yo-PCD is limited.  

CDR2 was considered the main Yo antigen for two decades86, 114, 115, 122. This 

assumption was based primarily on the finding that only the CDR2 gene is expressed 

in tumors obtained from PCD patients114. However, in subsequent studies it has been 

demonstrated that both CDR2 and CDR2L are extensively expressed in normal as 

well as in malignant tissues116, 123 and that the CDR2L protein is highly expressed in 

PCD tumors, while CDR2 is not124. Moreover, protein deposits of CDR2L were 

detected in germinal centers of all Yo‐associated PCD tumors with tertiary lymphoid 

structures124, suggesting an ongoing local immune response against CDR2L. Finally, 

we have recently demonstrated that Yo antibodies bind endogenous CDR2L, and not 

CDR2. The antibodies were, however, able to bind recombinant CDR2 proteins101. 

1.4.4.1 CDR2 

CDR2 (RefSeq NP_001793.1) was first described in 1991125. The protein is 454 

amino acids long, however, spatial structure and function are not fully understood. 

The mRNA and amino acid sequences, as well as the amino acid profile, can be seen 

in Appendix 9.1. 

CDR2 protein was isolated by screening a human expression library with isolated 

cDNA clones showing epitopes that were recognized by sera from patients with 

PNS98. The calculated molecular weight of the amino acid sequence is 51.9 kDa 

(Appendix 9.1.3) and reported molecular weights range from 52 to 62 kDa100, 108, 122. 

Five human isoforms for CDR2 have been mapped computationally (The Uniprot 

Consortium), which could explain the different localizations found for CDR2 when 

using different antibodies101, 116. 
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The protein contains a leucine zipper dimerization motif at amino acid 171-192, 

consisting of repeats of leucine residues forming an amphiphilic α-helix99. It has been 

shown that CDR2 can homodimerize through this leucine zipper motif, and 

heterodimerize with other leucine zipper motif-containing molecules115. 

In the cerebellum, CDR2 is expressed in the nuclei (strong) and cytoplasm (weak) of 

Purkinje neurons and stellate and basket cells100, 101, 116, 126. The same localizations 

have been shown in both healthy and cancerous tissues101, 117, 126.  

1.4.4.2 CDR2L 

CDR2L (RefSeq NP_055418.2) was first discovered in 1997 and is a 465 amino acid 

long protein sharing around 45% sequence identity with CDR2114. The mRNA and 

amino acid sequences, as well as the amino acid profile, can be seen in Appendix 9.2. 

CDR2L has also been named CDR3 as it was the third CDR protein discovered. As 

for CDR2, the structure and function are not fully understood. The calculated 

molecular weight of the amino acid sequence is 53.0 kDa (Appendix 9.2.3), although 

molecular weights as high as 62 kDa have been reported in western blot analysis100. 

No isoforms have yet been described for CDR2L. 

CDR2L is present in the cytoplasm of Purkinje neurons and stellate and basket 

cells100, 101, 116, 126. It is also present in both healthy and cancerous tissues of the ovary, 

mamma, prostate and testis116. Of note, recombinant CDR2L has been observed in the 

plasma membrane of transfected HeLa cells100. Endogenous CDR2L has, however, so 

far only been observed intracellularly.  
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2. AIMS OF THE STUDY 

The main aims of this thesis were to determine the major target of Yo antibodies and 

find the subcellular location of this antigen, and to create a Purkinje neuron culture 

suitable for the further characterization of the CDR proteins.  

Objectives: 

a. Determine if CDR2 or CDR2L is the major antigen of Yo antibodies. 

(Paper I) 

b. Investigate the subcellular localization of CDR2 and CDR2L in both 

cancer cells and Purkinje neurons. (Paper II) 

c. Develop a Purkinje neuron culture from rats for further characterization of 

the CDR proteins. (Paper III) 
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3. METHODS 

3.1 Patient Samples 

Sex- and age-matched CSF and sera samples from patients with Yo antibodies (PCD 

patients) and without Yo antibodies and no neurological disease or underlying cancer 

(negative controls) were obtained from the Neurological Research Laboratory, 

Haukeland University Hospital (Regional Committees for Medical and Health 

Research Ethics (REK), #2013/1480). 

3.2 Cerebellar Tissue 

Cerebellar sections were cut from fresh frozen normal human tissue (REK, 

#2013/1503) or rat tissue (FOTS 20135149/20157494/20170001). Heat-induced 

epitope retrieval was performed prior to immunostaining.  

3.3 Cell Culturing 

OvCar3 (American Type Culture Collection (ATCC), #HTB-161) and HepG2 

(ATCC, #HB-8065) cancer cell lines were maintained and subcultivated on poly-D-

lysine-coated coverslips (Neuvitro, #GG-18-1.5-pdl) according to the manufacturer’s 

protocol. Cells were washed twice with 0.1 M phosphate-buffered saline (PBS), fixed 

(4% paraformaldehyde in PBS, Thermo Fisher Scientific, #28908, 15 minutes), and 

quenched (50 mM NH4Cl, Sigma-Aldrich, #254134, 5 minutes) prior to 

immunostaining. 

3.4 Immunostaining 

Fixed OvCar3 and HepG2 cells as well as cerebellar sections were permeabilized in 

0.5% Triton X-100 (Sigma-Aldrich, #11332481001) in PBS for 5 minutes, washed in 

0.5% gelatin (Sigma-Aldrich, #G7041) in PBS (3x 15 minutes), blocked in 10% 

SEABLOCK (Thermo Fisher Scientific, #37527) in PBS for 30 minutes, and 



 37 

incubated with primary antibodies overnight at 4 °C. Following incubations, cells and 

sections were washed in gelatin-PBS, incubated with secondary antibodies for 2 

hours at room temperature, and mounted using ProLong Diamond with DAPI 

(Thermo Fisher Scientific, #P36962). The following antibodies were used: rabbit 

anti-CDR2 (Sigma-Aldrich, #HPA018151), rabbit anti-CDR2L (Protein Technology, 

#14563-1-AP), mouse anti-rpS6 (Cell Signaling, #2317/Santa Cruz, #sc-74459), 

mouse anti-SON (Santa Cruz, #sc398508), mouse anti-eIF4A3 (Santa Cruz, #sc-

365549), mouse anti-SRSF2 (Abcam, #ab11826), Alexa Fluor 488/594-labeled goat 

anti-human (Thermo Fisher Scientific, #A-11013/#A11014), Alexa Fluor 488/594-

labeled goat anti-rabbit (Thermo Fisher Scientific, #R37116/#R37117), STAR580-

labeled goat anti-mouse (Sigma-Aldrich, #52403), STAR635P-labeled goat anti-

rabbit (Sigma-Aldrich, #53399), and Alexa Fluor 488/594-labeled goat anti-mouse 

(Thermo Fisher Scientific, #R37120/#R37121). 

3.5 Fluorescent Immunoblotting 

The cerebellar and cancer cell lysates were obtained using a Total Protein Extraction 

Kit (Millipore, Billerica, MA, #2140). Proteins were separated on a 10% TGX gel 

and transferred to a low-autofluorescence poly-vinylidene difluoride (PVDF) 

membrane. Antibodies consisted of rabbit anti-CDR2L, rabbit anti-CDR2, Yo-CSF, 

anti-rabbit Alexa Fluor 488, and anti-human Alexa Fluor 647 (Thermo Fisher 

Scientific, #A-21445). G:Box (Syngene, Frederick, MA) was employed for 

visualization. 

3.6 Immunoprecipitation 

OvCar3 and HepG2 cells were lysed in RIPA lysis buffer (Bioscience, #786-490) 

containing protease inhibitor cocktail (Sigma-Aldrich, #11873580001), 1 mM 

phenylmethylsulfonyl fluoride (PMSF, Sigma-Aldrich, #P7626), 1 mM sodium 

fluoride (NaF, Sigma-Aldrich #S6776) and 1 mM sodium orthovanadate (Na3VO4, 

Sigma-Aldrich #450243). The lysate was centrifuged (22,000 g, 4 °C, 15 minutes) 

and the supernatant was collected. 



 38 

Following the Bio-Rad SureBeads immunoprecipitation protocol, the proteins were 

immunoprecipitated from OvCar3 cell lysate by using Protein G Magnetic Beads 

(Bio-Rad Laboratories, Hercules, CA, #161-4023). Immunoprecipitated proteins were 

separated on a 10% TGX gel (Bio-Rad, #456-1035) and transferred to a PVDF 

membrane using the Trans-Blot Turbo Transfer kit (Bio-Rad, #170-4274). Western 

blot analysis was performed to detect the immunoprecipitated target proteins. The 

antibodies used were rabbit anti-CDR2L, mouse anti-CDR2, Yo-CSF, TidyBlot (Bio-

Rad, #STAR209PA) and horseradish peroxidase anti-mouse IgG (Dako, Carpinteria, 

CA, #P0260). 

3.7 Mass Spectrometry-based Proteomics 

Proteins of interest were immunoprecipitated from HepG2 or OvCar3 cell lysates 

using the antibodies listed in Table 1 of Paper 2. A negative control consisting of 

beads and cancer cell lysate was also included. The samples were loaded on a 10% 

TGX gel and run approximately 1 cm into the resolving gel. Each lane was cut into 

cubes of approximately 1 mm2 and hydrated in Milli‐Q water (20 minutes, room 

temperature). The following paragraphs (including 3.7.1) describes the protocol used 

by the Proteomic Unit at University of Bergen to obtain the mass spectrometry-based 

data.  

Detergents (i.e. sodium dodecyl sulfate) and salts were removed by washing the gel 

in 25 mM ammonium bicarbonate (Sigma‐Aldrich, #09830‐500G) and 50% 

acetonitrile (VWR, #34967‐2.5L). Cysteine reduction and alkylation were 

accomplished with a 45‐minute incubation in 10 mM dithiothreitol (Amersham 

Biosciences, #171318‐02) at 56 °C followed by a 30‐minute incubation in 55 mM 

iodoacetamide (VWR, #M216‐30G) at room temperature in the dark. After washing 

in 25 mM ammonium bicarbonate and 50% acetonitrile, dried gel pieces were 

hydrated on ice for 20 minutes with a minimum volume of 6 ng/µL trypsin 

(sequencing‐grade modified, Promega, #V511A) in digestion buffer (20 mM 

ammonium bicarbonate, 1 mM calcium chloride (Sigma‐Aldrich,#C7902)), then 

covered with digestion buffer and incubated for 16 h at 37 °C. Trypsin activity was 
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quenched by acidification with trifluoracetic acid (VWR, #1.08218.0050), and 

samples were desalted using StageTip C18 columns (Empore disk‐C18, Agilent Life 

Sciences, #12145004) and the eluted peptides were dried and dissolved in 2% 

acetonitrile, 1% formic acid (VWR, #84865.260). 

About 0.5 µg tryptic peptides were loaded onto an Ultimate 3000 RSLC system 

(Thermo Fisher Scientific) connected online to a Q‐Exactive HF mass spectrometer 

(Thermo Fisher Scientific) equipped with EASY‐spray nano‐electrospray ion source 

(Thermo Fisher Scientific). All samples were loaded and desalted on a pre‐column 

(Acclaim PepMap 100, 2 cm x 75 µm ID nanoViper column, packed with 3 µm C18 

beads) at a flow rate of 5 µL/min with 0.1% trifluoracetic acid. Peptides were 

separated during a biphasic acetonitrile gradient (flow rate of 200 nL/minute) on a 

50‐cm analytical column (PepMap RSLC, 50 cm x 75 µm ID EASY‐spray column, 

packed with 2 µm C18 beads). Solvent A and B were 0.1% formic acid in water and 

100% acetonitrile, respectively. The gradient composition was 5% B during trapping 

(5 minutes) followed by 5–7% B over 0.5 minutes, 7–22% B for the next 59.5 

minutes, 22–35% B over 22 minutes, and 35–80% B over 5 minutes. Elution of very 

hydrophobic peptides and conditioning of the column was performed during a 10‐

minute isocratic elution with 80% B and 15 minutes of isocratic conditioning with 

5% B, respectively. 

Charged peptides were analyzed by the Q‐Exactive HF, operating in the data‐

dependent acquisition mode to automatically switch between full‐scan MS and 

MS/MS acquisition. Mass spectra were acquired in the scan range 375–1500 m/z with 

a resolution of 60,000 at m/z 200 after an accumulation of 3,000,000 charges 

(maximum trap time set at 50 ms in the C‐trap). The 12 peptides with the most 

intense signals above an intensity threshold of 50,000 counts and with charge states 

of 2 to 6 were sequentially isolated and accumulated to 100,000 charges (maximum 

trap time set at 110 ms) to a target value of 1 × 105 or a maximum trap time of 110 

ms in the C‐trap with isolation width maintained at 1.6 m/z (offset of 0.3 m/z) before 

fragmentation in the higher energy collision dissociation cell. Fragmentation was 

performed with a normalized collision energy of 32%, and fragments were detected 
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in the Q‐Exactive at a resolution of 60,000 at m/z 200 with first mass fixed at m/z 

110. One MS/MS spectrum of a precursor mass was allowed before dynamic 

exclusion for 30 seconds with “exclude isotopes” on. Accurate mass measurements in 

MS mode were accomplished by enabling the lock‐mass internal calibration of the 

polydimethylcyclosiloxane ions generated in the electrospray process from ambient 

air (m/z 445.12003). 

3.7.1 Database searching and criteria for protein identification 

Tandem mass spectra data were extracted with Proteome Discoverer (version 

2.3.0.523, Thermo Fisher Scientific) and were searched against human, reviewed 

protein sequences (SwissprotKB database, release 08‐2018) with Sequest HT and MS 

Amanda search engines. The following search criteria were used: 

carbamidomethylation of cysteine (fixed modification), oxidation of methionine and 

acetyl of the protein N‐terminus (variable modifications), a maximum of two missed 

trypsin cleavages, 0.02‐Da fragment ion mass tolerance, and 10‐ppm precursor ion 

tolerance. Search results from PD were loaded into Scaffold 4 (version 4.9.0, 

Proteome Software Inc.), and all spectra were searched with the X! Tandem search 

engine against identified proteins to identify nonspecific trypsin cleavages. 

Peptide and protein identifications were filtered to achieve a false discovery rate < 

1.0% (based on searching the reversed human database). Grouping of proteins 

sharing identical peptides was enabled. In order to evaluate the likelihood of the 

predicted interactions, the following criteria were established: (1) nonspecific 

bindings were removed based on the negative control (without primary antibodies); 

(2) the number of recognized peptides was set to at least two; (3) proteins that were 

identified by more than one of the antibodies to CDR2L or CDR2 were considered as 

more likely partners; (4) the likelihood of interaction was evaluated based on the 

predicted cellular location of each protein of interest. Protein‐protein interactions 

were analyzed using the STRING database. STRING implements all publicly 

available sources of known and predicted protein‐protein associations, together with 

computational analysis to evaluate potential connectivity networks. 
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3.8 Recombinant DNA and Transfection 

Full-length CDR2 (OriGene Technologies, Rockville, MD, #RG204900) and CDR2L 

(OriGene Technologies, #RC206909) were ligated into a pCMV6-AC-GFP vector 

(OriGene Technologies, #PS100010). Following polymerase chain reaction, correct 

CDR2 and CDR2L vector sequences were confirmed using BioEdit v7.2.5. One Shot 

TOP10 Escherichia coli (Life Technologies, Carlsbad, CA, #C4040-10) were used for 

amplification, E.Z.N.A. Plasmid DNAKit (Omega Bio-Tek, Norcross, GA, #D6942) 

for purification, and Lipofectamine 3000 (Thermo Fisher Scientific, #L3000008) for 

transfection. 

3.9 Super-Resolution Microscopy 

A Leica TCS SP8 Stimulated Emission Depletion (STED) 3X confocal microscope 

equipped with a 93x glycerol objective (NA 1.3) and a 100x oil objective (NA 1.4) 

was used for imaging. The output of the adjustable white light excitation laser (up to 

1.5 mW per line; pulsed) was kept between 1% and 20% and the STED laser (775 

nm; up to 1.5 W) between 20% and 30%. Detection range for the emission: 410-470 

nm for DAPI, 500-550 nm for Alexa Fluor 488, 605-625 nm for Alexa Fluor 

594, 590-625 nm for STAR580 and 645-700 nm for STAR635P. Gating (between 1 

and 6 ns) was applied for all channels as well as minimum three intensity averages. 

The lateral resolution was consistently measured to be between 40 and 50 nm. All 

experiments were run with negative controls, containing only secondary antibodies, 

simultaneously for laser intensity thresholding.  

3.10 Proximity Ligation Assay 

The proximity ligation assay was performed using the commercially available 

Duolink kit from Sigma-Aldrich (#DUO92101). Fixed OvCar3 cells were 

permeabilized for 5 minutes using 0.5% Triton X-100 diluted in PBS and blocked 

with 10% SEABLOCK in PBS. Primary antibodies against Hsp60 (EnCor 

Biotechnology, #CPCA-HSP60), CDR2, CDR2L, SON, and SRSF2 were applied for 
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1 hour (1:100 in blocking solution), followed by 3x 5-minute washes with Wash 

Buffer A supplied with the kit. Probes (+ and -) were diluted in blocking solution 

(1:5) and added to the cells for 1 hour (37 °C). The cells were washed 3x 5 minutes 

with Wash Buffer A and incubated with ligation buffer (1:5) and the ligase enzyme 

(1:40) for 30 minutes (37 °C). After 2x 5-minute washes with Wash Buffer A, 

amplification buffer (1:5) and the polymerase enzyme (1:80) were diluted in distilled 

water and applied to the cells for 100 minutes (37 °C, in the dark), followed by three 

10-minute washes with Wash Buffer B (supplied with the kit). Prolong Diamond with 

DAPI was used to mount the coverslips (overnight, 4 °C). Mounted cells were stored 

at -20 °C. 

3.11 Purkinje Neuron Culture 

Neuronal culture preparation: All procedures were performed according to the 

National Institutes of Health Guidelines for the Care and Use of Laboratory Animals 

Norway (FOTS 20135149/20157494/20170001). Wistar Hannover GLAST rat pups 

(n = 328), embryonic day 18 (E18) to postnatal day 10 (P10), were used for neuronal 

culture preparation. 

Following anaesthesia and decapitation, the brains were rapidly transferred into 

preparation solution (ice-cold EBSS solution (Gibco, #24010043) containing 0.5% 

glucose (Sigma, #G8769) and 10 mM HEPES (Gibco, #15630056)). The meninges 

and the medulla oblongata were carefully removed, and the cerebellum was separated 

from the pons and the midbrain. The cerebellum (and pons for the support layer) was 

transferred to a 15 mL tube containing 20 U/mL papain (Worthington, #LK003178) 

solved in preparation solution and warmed up to 36 ◦C. The tube was placed in the 

incubator for 15 minutes at 36◦C with occasionally rotation to digest the tissue. The 

papain solution was removed with a fire polished Pasteur pipette and the digestion 

was stopped by adding pre-warmed stop media (advanced DMEM/F12 solution 

(Gibco, #12634010) containing 0.5% glucose (Sigma, #G8769) and 10% foetal 

bovine serum (FBS, Gibco, #10500064); 36 °C). After 5 minutes of deactivation, the 

stop media was removed and 250 µL growth media (containing 10% FBS) was added 
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per cerebellum. Finally, the tissue/media suspension was pipetted with a fire polished 

Pasteur pipette 100 times until the cells were separated. 

Support layer: 375,000 cells/mL (from cerebellum and pons) were seeded on pre-

coated coverslips from Neuvitro (#GG-12-1.5-PDL, 24 well, 500 µL/well; #GG-18-

1.5-PDL, 12 well, 1 mL/well; #GG-25-1.5-laminin, 6 well, 2 mL/well). The support 

layers were maintained in 6-, 12- or 24-well plates submerged in growth media (45% 

advanced DMEM/F12 solution (Gibco, #126340010), 45% NBM solution 

(Miltenyibiotec, #130-093-570), 1.5% B-27 serum-free supplement (Gibco, 

#17504044), 1.5% NB-21 serum-free supplement (Miltenyibiotec, #130-093-566), 

1% NaPyruvate (Invitrogen, #11360088), 1% heat-inactivated FBS (Invitrogen, 

#10500064), 2% GLUTAMAX (Gibco, #35050038), 5 mg/mL D-glucose and 10 mM 

HEPES (Invitrogen, #15630056); 36°C). Half of the culture medium was replaced 

once a week.  

Purkinje neuron layer (PN layer): E18 and P0 Purkinje neuron cultures: 500,000 

cells/mL (from cerebellum) were seeded on support layers of different in vitro ages. 

P10 Purkinje neuron cultures: 750,000 cells/mL from the vermis of the cerebellum 

were seeded on support layers of different in vitro ages. The growth media was 

supplemented with insulin (Invitrogen, #12585014; 1:250, stock 4 mg/mL), 

progesterone (Sigma, #P8783; 1:2000, stock 80 mM), insulin-like growth factor 1 

(IGF1; Promokine, #E-60840; 1:40000, stock 1 µg/µL) and the protein kinase C 

inhibitor K252a (Alomone, #K-150; IC50 25 nM). In cultures that were maintained 

for more than 28 days in vitro the IGF1 and progesterone concentration were reduced 

to 10 ng/mL and 20 µM, respectively. K252a was supplemented for 21 days before 

the washout process started; its optimal concentration was experimentally evaluated 

for each tested culture type. Half of the culture medium was replaced twice a week 

for cultures in 6 well plates and every second day for 12 and 24 well plates. The 

experiments done to investigate the culture parameters and their Purkinje neuron 

yield were performed randomly (three to six probes per experimental setting and five 

independently repeats for each group and condition). 
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Lentiviral gene editing: L7 promoter (full length 1005 bp) were cloned by SBI 

System Bioscience into the pCDH-L7-MCS-copGFP construct (#CS970S-1) and viral 

particle with a yield of 2.24 x 109 ifus/mL were produced. Lysed cerebellum of E18 

or P0 rats (suspended in growth media without serum) were incubated for 10 minutes 

at 37 °C with 1.22 x 106 viral particles/mL and seeded onto a support layer (tested on 

both coverslips and live cell imaging dishes (35 mm, Ibidi, #80136)). Media was 

replaced after 3 days and transfection efficiency was evaluated by live cell imaging 

microscopy 24 hours post transfection, as well as daily until 21 DIV and weekly up to 

DIV 169 days. Lentiviral transfection of Purkinje neurons was also tested one day 

after feeding on 15 DIV and 29 DIV cultures (2.5 x 106 viral particles/mL). The 

neural morphology of GFP-expressing Purkinje neurons was done by capturing ten 

independent 3x3 tile scans (Zyla camera configuration; 2048x2048; CFI Plan 

Apochromat Lambda dry objective 10x (NA 0.45; pixel size 603 nm) or 20x (NA 

0.75; pixel size 301 nm)) by the Andor Dragonfly microscope system (Oxford 

Instruments company). The viral transfection of the cultures was repeated three times.  

Immunostaining: The Purkinje neuron cultures were washed with pre-warmed 0.1 M 

PBS (1xPBS; Gibco, #70013016) and fixed with 1.5-4% paraformaldehyde (PFA, pH 

6-7.2; Thermo Scientific, #28908) containing 0.5% sucrose for 15 minutes at 36°C. 

Tris-based or citric acid-based heat induced antigen retrieval (pH 9 and pH 6; 45 

minutes, 85 °C) were performed to enhance the staining of some of the markers. The 

cultures were quenched with 1xPBS containing 50 mM NH4Cl (PBSN), 

permeabilized with 0.2% Triton X-100 (Sigma, #T9284) in PBSN (5 minutes, 36°C), 

washed with PBSN containing 0.5% cold water fish gelatin (Sigma, #G7041; PBSNG, 

3x15 minutes), and incubated with primary antibodies overnight at 4 °C in PBSNG 

containing 10% Sea Block (Thermo Scientific, #37527), 0.05% Triton X-100 and 100 

μM glycine (Sigma, #G7126). The cultures were rinsed with PBSNG (3x20 min) and 

incubated with secondary antibodies produced in donkeys conjugated to 

CF488/594/647 dyes (1:400; Biotium, #20014, #20115, #20046, #20015, #20152, 

#20047, #20074, #20075, #20169, #20170) for 2 hours at room temperature in PBSNG 

containing 2.5% Sea Block. To remove unbound secondary antibodies, the cultures 
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were washed with PBSN (3x 20 minutes) and MilliQ water before mounted to 

microscope glasses using Prolong Glass Antifade Reagent (Invitrogen, #P36981). 

The mounted cultures were kept two days in room temperature in the dark, followed 

by long term storage at 4°C.  

Purkinje neuron count and imaging: Counting of Purkinje neurons was performed 

manually and blind by screening the coverslips with a Leitz Diaplan Fluorescence 

microscope (equipped with CoolLED pE-300white illuminator). Branch analysis of 

the dendritic trees and determination of maturity and synaptic interaction was done by 

taking 10 Z-stack images per coverslip (5 independent and randomized experiments) 

at 0.5-1 μm intervals (Zyla camera configuration; 2048x2048) at the Andor 

Dragonfly microscope system (CFI Plan Apochromat Lambda S LWD 40x NA 1.14 

water objective (pixel size 151 nm); 60x NA 1.20 oil objective (pixel size 103 nm) or 

CFI SR HP Apo TIRF 100x NA 1.49 oil objective (pixel size 60 nm)). The images 

were superimposed with Fusion software (Oxford Instruments). 3D surface 

visualization of synapses was performed using IMARIS 9.3.1 (Oxford Instruments) 

and the filament tracer tool.  

Dendritic tree branch analysis: The dendritic development (length and order) of the 

Purkinje neurons was evaluated by analyzing 10 Purkinje neurons per experiment in 

10 independent experiments using the ImageJ plugin Simple_Neurit_Tracer 

(Neuroanatomy). 

Micro-electrode array (MEA) recordings: E18 cultures at a concentration of 500,000 

cells/mL were plated onto 24 well plates of the Multiwell-MEA-system precoated 

with PDL (Multi Channel System-MCS, Reutlingen, Germany). Each well contained 

12 PEDOT-coated gold micro-electrodes (30 µm diameter, 300 µm space, 3x4 

geometrical layout) on a glass base (#890850, 24W300/30G-288). The amplifier (24 

bit; bandwidth: 0.1 Hz to 10 kHz, modifiable via software; default 1 Hz to 3.5 kHz; 

sampling frequency per channel: 50 kHz or lower, software controlled; input voltage 

range: ± 2500 mV), stimulator (current stimulation: max. ± 1 mA; voltage 

stimulation: max. ± 10 V; stimulation pattern: pulse or burst stimulation sites freely 
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selectable) and heating element (regulation: ± 0.1 °C) was integrated in the 

Multiwell-MEA head stage (driven by the MCS-Interface Board 3.0 Multiboot). The 

Multiwell recording platform was covered by a mini-incubator (5% CO2 and 

balanced air). Electrophysiological signals were acquired at a sampling rate of 20 

kHz (Multiwell-Screen software). Plates were tested every second day for 

spontaneous activity from 5 DIV. Raw voltage traces were recorded for 120 seconds 

(analyzed using offline MCS-Multiwell-Analyzer) to calculate spike rate and burst 

activity. Two experimental settings were tested: recording of spontaneous spike 

activity using (1) the Purkinje neuron culture media (up to 63 DIV) and (2) Purkinje 

neuron culture media until 28 DIV and then media change to organotypic brain slice 

culture media (30% advanced DMEM/F12 solution, 20% MEM solution (#41090028; 

Gibco), 25% EBSS solution (#24010043; Gibco), 25% heat-inactivated horse serum 

(#H1138; Sigma), 2% GLUTAMAX, 5 mg/ml D-glucose and 2% B-27 serum free 

supplement) for 45 days.  

3.12 Methodological Considerations 

A majority of the methods used in this thesis are dependent on commercial 

antibodies. Whereas the production and verification of antibodies has matured 

throughout the years to assure minimal cross-reactivity, there is still a possibility that 

a portion of the antibody binding is “unspecific” – that the antibodies bind other 

molecules with identical or similar epitopes to the primary target.  

For the different CDR2 antibodies available, the binding patterns varied considerably. 

If this is due to cross-reactivity or different isoforms of CDR2 is not yet known. 

However, all CDR2 antibodies used were able to bind CDR2 and none of them 

displayed the same binding pattern as Yo antibodies. For the CDR2L antibody used, 

it was reassuring to see that the binding pattern was identical to that of Yo antibodies 

in all methods tested, i.e. that they indeed do target the same molecules. 
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4. RESULTS 

4.1 Paper I 

In sections of human and rat cerebellum, the CDR2L antibody bound to cytoplasmic 

structures in Purkinje neuron somas that overlapped completely with Yo antibody 

staining (taken from both CSF and serum). The CDR2L and Yo staining also 

overlapped in stellate and basket cells. However, staining of CDR2 was primarily 

found in the nuclei of these neurons, and did not colocalize with the CDR2L or Yo 

antibody staining. Performing immunofluorescence blots with lysed cerebellar tissue 

showed overlap between Yo and CDR2L at approximately 55 kDa, while CDR2 was 

only present at 62 kDa.  

OvCar3 cells also express CDR2L and CDR2 endogenously. The same results were 

found in these cells: Yo and CDR2L colocalized in the cytoplasm, while no overlap 

was found with CDR2 (Fig. 7A). Immunofluorescence blots and co-IP of lysed 

OvCar3 cells confirmed the co-reactivity of Yo and CDR2L (Fig. 7B and C) 

HepG2 cells were found to express high levels of CDR2, while CDR2L was absent. 

When recombinant CDR2L-GFP was transfected into the HepG2 cells, the Yo and 

CDR2L antibodies were able to bind, giving a complete fluorescent overlap with the 

GFP attached to the recombinant CDR2L. The CDR2 antibody did not bind the 

CDR2L-GFP protein. Upon transfection of CDR2-GFP however, both the Yo, 

CDR2L and CDR2 antibody were able to bind the recombinant protein. Similar 

results were obtained for all PCD samples tested. 
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Figure 7: Yo antibodies bind to CDR2L, but not CDR2, in OvCar3 cells. Scale bars: 10 μm. A) Upper row: 

OvCar3 cells stained with Yo (CSF; green) and anti-CDR2L (red); Yo and CDR2L are colocalizing, giving the 

same granular, cytoplasmic staining pattern (seen as yellow in the merge image). Lower row: OvCar3 cells 

stained with Yo (CSF; green) and anti-CDR2 (red); Yo does not colocalize with CDR2. B) Fluorescent 

immunoblot of OvCar3 lysate. Anti-CDR2L and Yo (CSF) stain the same 55-kDa band; anti-CDR2 does not. 

Secondary antibody controls were negative. C) Western blot of proteins immunoprecipitated from the OvCar3 

lysate by Yo (CSF) or CDR2L. The protein precipitated by Yo antibodies was recognized by the CDR2L 

antibody on western blot (i) and vice versa (ii); no relationship was observed between Yo or CDR2L and 

CDR2101. 
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4.2 Paper II 

To ensure antibody specificity, CDR2L and CDR2 were immunoprecipitated from 

OvCar3 lysates and analyzed by mass spectrometry-based proteomics. The 

commercial antibodies raised against CDR2L and CDR2 were found to be specific. 

Yo antibodies bound CDR2L, but not CDR2, thus strengthening the conclusions in 

Paper I. The same experiments were performed in HepG2 cells: Yo antibodies were 

not able to bind CDR2. 

The mass spectrometry-based proteomics also gave information about potential 

interaction partners of the two proteins. After applying the inclusion-criteria, CDR2L 

were predicted to interact with 50 ribosomal proteins that were tightly connected, 

while CDR2 was predicted to interact with the nuclear speckle proteins eIF4A3, SON 

and SRSF2 (Fig. 8).  

Using super-resolution microscopy, CDR2L was found to colocalize with the 

ribosomal protein rpS6 in both OvCar3 cells, human cerebellum and in rat Purkinje 

neuron cultures. CDR2 colocalized with the nuclear speckle proteins SON, eIF4A3 

and SRSF2. The same results were found through proximity ligation assay in OvCar3 

cells. Co-immunoprecipitation of OvCar3 and HepG2 lysate showed that CDR2L 

indeed interacts with rpS6 and CDR2 with SON and eIF4A3. 
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Figure 8: Protein‐protein interaction networks visualized by STRING. A) CDR2L was predicted to interact 

with ribosomal proteins (rpS6, red box). The nodes indicate proteins, and the edges represent protein‐protein 

associations. B) Protein‐protein interaction network of nuclear speckles proteins, SON, eIF4A3, and SRSF2, 

predicted to interact with CDR2. eIF4A3 (red) directly interacts with SON (light green) and SRSF2 (blue). C) 

eIF4A3 (yellow) interacts with rpS6 (blue), indicated by colored edges. Predicted binding partners, CDR2L 

(green) and CDR2 (red), are manually gated (black, dotted lines). Color‐coded edges; light blue: curated 

databases, dark blue: gene co‐occurrence, pink: experimentally determined, green: text mining. Interactions 

with a medium score of 0.400 or more are shown126. 
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4.3 Paper III 

Growing rat cerebellar cells directly on pre-coated (poly-D-lysine or laminin) glass 

coverslips gave limited Purkinje neuron survival. Therefore, cerebellar cells (37,500 

cells/mL) were plated and grown for one to six weeks to create a three-dimensional 

support layer before additional cerebellar cells (50,000-75,000 cells/mL) were added 

on top (Purkinje neuron layer; PN layer) and grown for an additional three to four 

weeks.  

The age of the rats (embryonic day 18 to postnatal day 10; E18 to P10) when plating 

the support layer did not affect the survival of the Purkinje neurons in the PN layer. 

However, there was a strong correlation between the in vitro age of the support layer 

and the rat age of the PN layer: For E18 PN layers, the highest Purkinje neuron 

survival was found when plated onto a support layer of 14 days in vitro (DIV); for P0 

PN layers when plated onto a support layer of 21 DIV; and for P10 PN layers when 

plated onto a support layer of 28 DIV (Fig. 9A). In conclusion, the older the rat age of 

the PN layer, the more mature the support layer should be to ensure high Purkinje 

neuron survival. 

For the support layer, exchanging half of the growth medium with fresh medium once 

a week was sufficient to keep the pH stable. Due to the high number of cells after 

plating the PN layer, half of the media had to be exchanged twice a week for 6 well 

plates and every second day for 12 and 24 well plates. Media replacement once a 

week led to non-physiological pH fluctuations and cell death.  

Adding the protein kinase C (PKC) inhibitor K252a to the growth media gave more 

well-developed Purkinje neuron dendrites in E18 and P0 PN layers; it did not affect 

the branching and maturation of dendrites in P10 PN layers (Fig. 9B). However, 

addition of K252a improved Purkinje neuron survival in P0 and P10 PN layers; no 

difference was observed for E18 PN layers (Fig. 9D). Six times as many Purkinje 

neurons survived when 10 nM K252a was added to P0 PN layers compared to 

cultures without K252a; for P10, 28 times as many Purkinje neurons survived when 

adding of 25 nM K252a to the media. 
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Furthermore, addition of 40 µM progesterone to the growth medium gave increased 

dendritic branching in E18 PN layers (Fig. 9E); no difference was found for P0 and 

P10 PN layers. In cultures without both K252a and progesterone, adding insulin and 

insulin-like growth factor 1 (IGF1) was sufficient to maintain long-term growth of the 

other cerebellar cell types (Granule, Golgi, Lugaro, unipolar brush, stellate and basket 

cells).   

The cultured neurons had active synapses as demonstrated by immunofluorescent 

staining using the synaptic markers voltage-gated calcium channels (VGCC), 

metabotropic glutamate receptor 1 (mGluR1), post-synaptic density protein 95 

(PSD95), glutamate-decarboxylase 65 (GAD65), glycine transporter 2 (GlyT2), α-

synuclein and bassoon (Fig. 9G).  

Moreover, electrophysiological measurements of the E18 PN layers were performed 

(Fig. 9H). Using a 24 well multielectrode array, E18 PN layers gave spontaneous 

activity at 11 DIV (0.15 Hz) with spike frequency increasing until 21 DIV (2.56 Hz). 

This spike frequency was observed until 63 DIV, however the spike pattern became 

increasingly erratic after 28 DIV. 

The cerebellar cultures were also well suited for genetic engineering. Lentiviral 

particles were used to express green fluorescent protein (GFP) in Purkinje neurons 

through implementation of the Purkinje neuron-specific L7 promoter (Fig. 9I). The 

virus particles were added at the day of seeding, and GFP could be seen after 3 DIV. 

At 14 DIV, over 60% of the Purkinje neurons were GFP positive, and the GFP signal 

were still present at 169 DIV. Transfection of the viral particles into Purkinje neurons 

at 14 DIV and 28 DIV were also successful, although the transfection rate declined 

the older the cultures were.  

In summary, three main factors were found to be important for well-developed 

Purkinje neurons: (1) a three-dimensional support layer, (2) pH stability and (3) co-

factor supplements.  
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Figure 9: Evaluation of age-dependent rat Purkinje neuron culture. (a) Interdependent relationship of Purkinje 

neuron yield and in vitro age of the support cell layer (DIV 7 to 48) for E18, P0 and P10 derived-Purkinje 

neurons. (b) Representative Purkinje neuron skeletons depended on derived neuron age, support layer and 

protein kinase C (PKC) antagonist K252a. Scale bar: 20 µm. (c) Analysis of dendritic branch structure towards 

length and branch orders for Purkinje neurons derived from E18, P0 and P10 tissue without and with 25 µM 

K252a to modulate PKC activity. (d) Interdependent relationship of Purkinje neuron yield and concentration-

dependent PKC activity modulation for E18, P0 and P10 derived Purkinje neurons. (e) Representative skeleton 

of an E18 derived-Purkinje neurons visualizing the effect of 40 µM progesterone on dendritic branching. Scale 

bar: 20 µm. (f) Immunohistochemical representation of the major cell types (white) forming the support layer: 

unipolar brush cells (CAL, calretinin), granule cells (GABAARα6), Golgi cells (NG, neurogranin; GlyT2), 

Lugaro cells (GlyT2), stellate and basket cells (PAV, parvalbumin), fibers such as mossy and climbing 

(VGluT2; PP, peripherin), oligodendrocytes (CNP1) as well as microglia (IBA1). Nuclei staining DAPI (blue). 

Scale bar: 50 µm. (g) Immunohistochemical representation of mature Purkinje neurons (green; CB, calbindin; 

PCP2, Purkinje cell specific protein 2) positive for post- and presynaptic biomarkers (magenta). Postsynaptic: 

VGCC, mGluR1, and PSD95 including 3D IMARIS reconstruction of the positive synapses of a chosen 

Purkinje neuron dendrite. Pre-synaptic: α-synuclein (α-syn; marker of glutamatergic synaptic terminals from 

granule cells/parallel fibres and unipolar brush cells), GAD65 (marker of axon terminals from stellate and 

basket cells), bassoon (marker of the active zone of mossy fiber terminals and parallel fiber terminals between 

Golgi cells and granule cells, and between basket cells and Purkinje neurons) and synapsin I (synaptic vesicle 

phosphoprotein of mature CNS synapses). Nuclei staining DAPI (blue). Scale bar: 20 µm. (h) MEA recorded 

spike patterns (10s) with a cut-out (1s) at day 21 in vitro following Purkinje neuron maturity. (i) Live-cell 

imaging of E18 derived Purkinje neuron expressing lentiviral-induced GFP from day of seeding (DIV0) up to 2 

months (DIV53). Scale bar: 50 µm (Uggerud 2020, submitted). 
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5. DISCUSSION 

5.1 Paper I 

The three CDR antigens bound by Yo antibodies were identified in the late 80’s and 

early 90’s96, 99, 125. For over two decades CDR2 was considered as the main antigen 

for the Yo antibodies present in PCD patients86, 114, 115, 122. This assumption was based 

primarily on the finding that CDR2 mRNA was the only variant expressed in PCD-

associated tumors114. In addition, CDR2 protein expression appeared restricted to the 

brain and testis. However, later studies showed that both CDR2 and CDR2L are 

present in several normal tissues, as well as cancerous tissue associated with PCD116, 

124. 

In 2013, Yo antibodies were found to also bind CDR2L, and the coexistence of 

paratopes against both CDR2 and CDR2L was a strong indicator of PCD100. In paper 

I, we showed that it is CDR2L, and not CDR2, that is the major target for Yo 

antibodies101. These antibodies do not bind endogenous CDR2, but do, however, bind 

recombinant CDR2. This led to the hypothesis that recombinant CDR2 shares one or 

several epitopes with CDR2L. This also explains why clinical tests can use 

recombinant CDR2 to verify a positive PCD result. However, as CDR2-based line 

blot assays give a high number of false-positive results (<10% specificity), it is 

believed that assays using CDR2L would be more sensitive52-54.  

As most (if not all) Yo-associated PCD patients are recognized by the recombinant 

CDR2 assays, a paratope against a common epitope shared between CDR2L and 

CDR2 might be necessary to cause PCD (Fig. 10). This is in line with our finding that 

only patients with Yo antibodies towards both recombinant CDR2L and CDR2 have 

PCD, while patients with antibodies only binding one of the proteins do not54, 100. 

Since Yo antibodies were not found to bind a common linear epitope between 

CDR2L and CDR2127, the pathogenic epitope is likely conformational. Thus, the 

epitope can only be verified once the three-dimensional structures of these proteins 

are established. 
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Figure 10: Proposed hypothesis of how Yo antibodies are able to bind both recombinant CDR2 and CDR2L, 

but only CDR2L under native conditions. A) Illustration of the initial, polyclonal response of Yo antibodies 

toward CDR2L in the tumors of PCD patients. B) A tumor cell with the polyclonal Yo antibodies targeting the 

CDR2L protein; CDR2 is unaffected as the epitope that is common to CDR2L (blue) is hidden by post-

translational modifications or a partnering molecule (white fold covering the blue epitope). C) The Yo 

antibodies also bind to CDR2L in cerebellar Purkinje cells; however, they do not bind CDR2 as the common 

epitope (blue) is hidden here as well (by modifications or partnering molecules; white fold). D) When patient 

sera or CSF is applied to a line blot with recombinant CDR2 attached, binding of the common epitope (blue) is 

possible as it is not hidden by post-translational modifications or partnering molecules in the recombinant 

version101. 
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5.2 Paper II 

Little is known about the pathogenesis of Yo-associated PCD, however a two-step 

hypothesis has been proposed: 1) production of anti-tumor immune components 

directed towards the Yo antigen (Yo antibodies and cytotoxic T cells targeting the 

same Yo epitopes) followed by 2) targeting of the Yo antigen in Purkinje neurons as 

a secondary effect. It has also been shown that Yo antibodies can induce Purkinje 

neuron loss in cerebellar slice cultures in the absence of T cells93, 94, 128. 

To elucidate the mechanism causing Purkinje neuron death in Yo-associated PCD, 

the localization and function of the target proteins must be established. Yo antibodies 

are known to bind to clusters of ribosomes as well as vesicles within the trans face of 

the Golgi107, 111, but no studies have used specific antibodies against CDR2L and 

CDR2 to determine their subcellular localization.  

There are several commercial antibodies against both CDR2L and CDR2, each with 

different localization patterns. Binding pattern varies particularly with CDR2 

antibodies, possibly reflecting the five different predicted isoforms for this protein 

(The UniProt Consortium). In paper II, we showed that the CDR2L and CDR2 

antibodies bound their predicted targets without cross-reactivity to other CDR 

proteins. Furthermore, Yo antibodies were found to only bind CDR2L, thus 

confirming the results in paper I.  

In addition to confirming antibody specificity, the mass spectrometry analysis 

revealed several ribosomal proteins as potential interaction partners of CDR2L, and 

various nuclear speckle proteins as potential partners for CDR2. Through super-

resolution microscopy, proximity ligation assay and co-immunoprecipitation, we 

found that CDR2L colocalized with rpS6 and CDR2 colocalized with SON and 

eIF4A3. This corresponds well with a previous study which showed that the Yo 

antigen interacts with c-Myc115, a regulator of ribosome biogenesis and protein 

synthesis129, and that CDR2 interacts with nuclear proteins such as PKN, MRGX, 

MRG15130-132.  
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Although CDR2L and CDR2 share 45% sequence homology, they are not necessarily 

associated with the same functions in the cell. However, eIF4A3, one of the partners 

found for CDR2, is known to translocate from the nucleus to the ribosome where it 

interacts with rps6, the interaction partner of CDR2L133, 134, thus establishing an 

indirect connection between CDR2 and CDR2L (Fig. 11). The potential role of 

CDR2L and CDR2 in this pathway will have to be further analyzed. 

 

Figure 11: Hypothesis of CDR2L and CDR2 involvement in protein synthesis in Purkinje neurons. CDR2 

localizes to the nucleus and directly interacts with nuclear speckle protein eIF4A3. eIF4A3, in conjugation with 

other cytoplasmic initiation factors, facilitates mRNA binding to the 40S ribosomal subunit. This event is 

important for mRNA maturation and translation, ultimately resulting in the synthesis of new proteins. CDR2L 

interacts with ribosomal subunit protein rpS6; therefore, we propose that CDR2L and CDR2 are both involved 

in the process of protein synthesis. Furthermore, Yo antibody (green) binding to CDR2L in Purkinje neurons of 

PCD patients may, therefore, interfere with the function of the ribosomal machinery, resulting in disrupted 

mRNA translation and/or protein synthesis126. 
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5.3 Paper III 

To investigate the mechanisms causing PCD, and other neurodegenerative disorders, 

good model systems are vital. Rat and mouse models are commonly used in 

biomedical research, and several protocols for generating cerebellar cultures from 

mice, including some with healthy Purkinje neurons, have been published135-139. Rats 

are, however, more physiologically, genetically and morphologically similar to 

humans, and mimic many of the human neurodegenerative disease mechanisms better 

than mice models do140-150. In addition to being more comparable to humans in many 

aspects, rats are around ten times heavier than mice and are less easily stressed by 

human contact151, making rats easier to handle as well as being easier to dissect.  

Protocols for rat cerebellar cell cultures are, however, limited. These either report 

poor Purkinje neuron survival and dendritic development or do not demonstrate 

neuronal activity152, 153. Furthermore, no other protocol has demonstrated high yields 

of Purkinje neurons by the use of postnatal rat pups. This led us to explore ways of 

creating a more robust rat cerebellar culture protocol with high yield of mature and 

synaptically active Purkinje neurons that could be generated from both embryonic 

and postnatal rat pups. 

The main factors found to be important for well-developed Purkinje neurons were (1) 

a support layer, (2) pH stability and (3) co-factor supplements (Fig. 12). The support 

layer provides cell-to-cell communication in the form of juxtacrine as well as 

paracrine factors that can help Purkinje neurons, and other cells of the cerebellum, to 

grow and mature. Fluctuations in pH, visible by the shift of media color (by using 

Phenol red; yellow indicating acidic pH, orange neutral and pink basic), caused 

extensive cell death and decreased Purkinje neuron survival. By changing the media 

more often, pH was stabilized and cell death minimized.  

As for co-factor supplements, the PKC inhibitor K252a154 was found to be important 

for both dendritic length and branch orders of E18 and P0 PN layers. It did, however, 

cause decreased dendrite length when applied to P10 PN layers although it did not 

affect the branch orders. Inclusion of K252a in the media also led to increased 
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numbers of surviving Purkinje neurons in P0 and P10 PN layers, while no changes 

were seen for E18 PN layers. In addition to K252a, progesterone also led to more 

mature dendrites in E18 PN layers; no difference was observed for P0 and P10 PN 

layers.  

The neurons in the cultures were positive for all tested synaptic markers, as well as 

being both electrically active and possible to genetically manipulate at all stages of 

maturation. This demonstrates that the protocol is robust and versatile and can thus be 

used in a wide variety of cerebellar studies.  

To summarize, three elements were essential for high yield of active Purkinje 

neurons: (1) a support layer, (2) pH stability (media should be prepared fresh on the 

day of use and the support layers should be fed 24 hours prior to the plating of a PN 

layer), and (3) co-factor supplements (repeated thaw-freeze cycles should be 

avoided).  

 

 

Figure 12: Optimized rat Purkinje neuron culture protocol. Each tested culture desired different conditions of 

support and activity independent of the starting tissue age. Whereas the supplementation of insulin-like growth 

factor 1 (IGF1) and progesterone (PROG) induced a stable environment to obtain high survival rates of 

Purkinje neurons, PKC mainly shaped the dendritic tree development (exception: P10 derived neurons where 

the survival was highly dependent on the inhibition of PKC but not their dendritic tree development). The 

optimized protocol for all tested tissues relied on the time point of placing the Purkinje neuron (PN) layer and 

the inclusion of IGF1, progesterone and K252a. The K252a concentration was adjusted as follows: DIV 1-10: 



 61 

E18 - 5 nM, P0 - 10 nM, P10 - 25 nM; DIV 10-22: 25 nM; DIV 22-28: washout phase (DIV 22-24: 12.5 nM; 

DIV 24-26: 6.75 nM; DIV 26-28: 3.35 nM). At DIV 28 the IGF1 and progesterone concentration was reduced 

to proceed to long term culture conditions. The protocol allows to grow a stable Purkinje neuron culture for up 

to 6 months (DIV 163) in a 6 to 24 well format (Uggerud 2020, submitted). 
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6. ADVANCES AND FUTURE ASPECTS 

With CDR2L now established as the major antigen target of Yo antibodies, we can 

reexamine the neurodegenerative mechanisms involved in PCD. Where earlier 

models focusing on CDR2 did not elicit PCD symptoms112, 120, 121, 155, it is now 

possible to try and create an animal model of Yo-mediated PCD driven by CDR2L. 

Moreover, many neurodegenerative diseases have immune-related aspects and 

exploration of the immune mechanisms involved in PCD will be beneficial for these 

diseases as well. 

As the specific immune mechanism causing Purkinje neuron loss in PCD is 

unresolved, it will be vital to investigate further the cellular functions of CDR2 and 

CDR2L. We will need to elucidate how the binding of these proteins by internalized 

Yo antibodies causes neurodegeneration, while the presence of other antibodies does 

not92-94. CDR2L could be directly involved in the cellular biosynthesis through an 

effect on ribosomes, resulting in disruption of protein synthesis and subsequent cell 

death. Alternatively, or perhaps additionally, CDR2L binding by Yo antibodies may 

cause disturbances in calcium homeostasis in Purkinje neurons92, 93 with subsequent 

disruption of protein synthesis156.  

Investigation of whether CDR2L is present in the plasma membrane, as has been 

shown for recombinant CDR2L in HeLa cells100, will also be important. The presence 

of CDR2L in the plasma membrane, making it accessible to the environment, could 

contribute both to increased antibody internalization and targeting by cytotoxic 

immune cells. Furthermore, dysregulated regulatory immune cells are likely involved 

in the pathogenesis, where CDR2L is recognized in the tumor as non-self. The 

activation of B and T cells in the tumor and how they execute the neuronal damage 

needs to be further explored, as well as which of the immune components that 

perform the final effector role. As it has been demonstrated in vitro that both 

antibodies and T cells can be responsible for PCD-associated neurodegeneration50, 93, 

94, one could speculate that both components can be involved simultaneously, with 
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the antibodies causing internal disturbances and T cells releasing cytotoxic granules 

on the outside. 

The protocol we derived for cerebellar cultures giving viable Purkinje neurons has 

already been used in the exploration of Yo-associated PCD126. These cultures can be 

used in combination with Yo antibodies conjugated to fluorescent dyes to study the 

internalization process, binding patterns and possible functional role in living 

Purkinje neurons. Additionally, as PCD can be used as a model system for 

autoimmune diseases, the cultures can also be used to resolve other neuronal 

mechanisms. In our laboratory these cultures are already being used to model 

demyelination and to investigate if stem cells are able to remyelinate the affected 

axons. 
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7. CONCLUSIONS 

Paper I: The finding that Yo antibodies bind endogenous CDR2L, and not CDR2, 

allows us to rethink the mechanisms involved in Yo-mediated PCD. The binding of 

recombinant CDR2 suggests that these proteins have common epitopes which is not 

surprising considering their 45% amino acid sequence identity. Furthermore, test 

assays using CDR2L instead of CDR2 could be more sensitive, reducing the large 

amounts of false-positive results obtained today. 

Paper II: Previous studies suggested that Yo antibodies bind a ribosomal target, but 

the locations of CDR2 and CDR2L were unknown. Our finding that CDR2L interacts 

specifically with ribosomal proteins, while CDR2 interacts with nuclear speckle 

proteins, adds further support for CDR2L being the primary Yo antibody target. Since 

one of the interaction partners of CDR2, eIF4A3, translocates from the nucleus to the 

ribosome, where it interacts with rpS6, this also adds an indirect link between 

CDR2L and CDR2. Whether CDR2L and CDR2 have similar roles or are involved in 

related processes in protein transcription and translation remains to be resolved. 

Paper III: We established a robust primary culture protocol that gave high yields of 

mature Purkinje neurons from both embryonic and postnatal rats. These cultures were 

well suited to high-throughput screening, genetic manipulation and 

electrophysiological recordings and will be useful for exploring both 

neurodegenerative and regenerative mechanisms. 
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9. APPENDIX 

9.1 CDR2 

9.1.1 CDR2 mRNA sequence 

          1 gccaaagtgc cacgttgggc ccggcggcgg cgtgaagact ggcggctgcg tgagactccg 

        61 gctccaggcg ttcgcaccgt aatgcccggc cgttggggcc gtcggtaggc gcgaggcgag 

      121 tcgaggcagc cggccggtcg gcggccgccg gcgggaacgg ggctgaggcg gcgcagcgga 

      181 gtctgggcgg cggcgcgtcc cgcccgaggg cggctctggc tgagggcgga ggggccgggg 

      241 aagagcccgg ggcagcggct gaggcgggac ggcggcgggg gccgctgccc ctagaagacc 

      301 cagccgagat gctggcggaa aacctggtag aggagtttga gatgaaggag gacgagccgt 

      361 ggtacgacca ccaggacctc cagcaagatc ttcaacttgc tgctgagctt gggaagacat 

      421 tactggatcg gaacacagag ttggaggact ctgttcagca gatgtataca accaatcagg 

      481 agcagttaca ggaaattgag tatctgacga agcaagtgga acttctacgg cagatgaacg 

      541 aacaacatgc aaaggtttat gaacaattag acgtcacagc aagggaactg gaagaaacaa 

      601 atcaaaagct agttgctgac agcaaggcct cacagcaaaa gattctgagc ctgactgaaa 

      661 cgattgaatg cctgcaaacc aacattgatc acctccagag ccaagtggag gagctgaagt 

      721 catctggcca agggagaagg agcccgggaa agtgtgacca ggagaaaccg gcacccagct 

      781 ttgcatgtct gaaggagctg tatgacctcc gccaacactt cgtgtatgat catgtgttcg 

      841 ctgagaagat cacttccttg caaggtcagc caagccctga tgaagaggaa aatgagcact 

      901 tgaaaaaaac agtgacaatg ttgcaggccc agctgagcct ggagcggcag aagcgggtga 

      961 ctatggagga ggaatatggg ctcgtgttaa aggagaacag tgaactggag cagcagctgg 

     1021 gggccacagg tgcctaccga gcacgggcgc tggaactaga ggccgaggtg gcagagatgc 

     1081 gacagatgtt gcagtcagag catccatttg tgaatggagt tgagaagctg gtgccagact 

     1141 ctctgtatgt tcctttcaaa gagcccagcc agagcctgct ggaagagatg ttcctgactg 

     1201 tgccggaatc acatagaaag cctctcaagc gcagcagcag tgagacgatc ctcagcagct 

     1261 tggcagggag tgacatcgtg aagggccacg aggagacctg catcaggagg gccaaggctg 

     1321 tgaaacagag gggcatctcc cttctgcacg aagtggacac gcagtacagc gccctgaagg 

     1381 tgaagtatga agagttgctg aagaagtgcc aagaggaaca ggactccctg tcacacaagg 

     1441 ctgtgcagac ctccagggct gcagccaagg acctgactgg agtgaacgcc cagtctgagc 
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     1501 ctgttgccag cggctgggaa ctggcctctg tcaacccaga gcccgtgagt tcccctacaa 

     1561 cacctccaga atacaaagcg ttgtttaagg agatctttag ttgcatcaag aaaactaagc 

     1621 aggaaataga tgaacagaga acaaaatacc gatcactctc ctctcattct taattgaacc 

     1681 tctagctcta ctactaattt gcctattgcc tatcgcctct ctctcccatt cagacaagtg 

     1741 tttgtagact ctgaagccta atgttactca tgacgtttgc ctcattgctt tgcttattta 

     1801 gcaaatgcat acaacgagga aaggaggtgg ctagtggtat cagttctctg atccacttcc 

     1861 atttaagctc cccaggaaat cccatgacaa actggcctct ggctggcgcg ctgattagac 

     1921 ttcagttcct gaaaaggacc agtggaggga agagctatac ttctggagaa gtaggcctgg 

     1981 agttactaca gtatggggga aaagggtcga gttagaacaa agctaaggca attcctattg 

     2041 cttccttgcg caacttctca aaacgatgaa agtcagaagg ctgtcaaact caaatatctt 

     2101 tgcaaacagt ttgaatactg tgaattcatt acgaagaatg ttcgagagaa agcaggggtc 

     2161 taatccaaaa gaaatgtcat taaccaatac tccaagtcct tgagttttgt tatatctgaa 

     2221 ctagttgaac tgtgactgac aggtaatcct aatatatcca aatccaactg aataccaaat 

     2281 tgagatggca aatttttgtt tgatataagt tagcttgtta gcatatgccc tagagggcct 

     2341 ccatccctgt attctaatgt ttttactcaa agctctagcc tttaggatag gtgaatatgt 

     2401 aaatctttta tcactttctc aaattcaaac taaaggggaa agatcaaacc ccttcccttc 

     2461 ctacctgttt tctgagctgg ctgacttgcc agccacaagc tgctcttgca gagttcttac 

     2521 cattcctgta aatgttttga cttgttgcag aaattcctat ctactttatt aagcagtatt 

     2581 gatctgactg tggaaacatc ctctcacttg cattctttta acttaaaact atttaagaac 

     2641 tgatgttccg attattgtat atatttttct aaaaaccaaa taaagctacc tatgaaaatg 

     2701 aa (RefSeq: NM_001802.1) 

9.1.2 CDR2 amino acid sequence 

MLAENLVEEFEMKEDEPWYDHQDLQQDLQLAAELGKTLLDRNTELEDSVQ

QMYTTNQEQLQEIEYLTKQVELLRQMNEQHAKVYEQLDVTARELEETNQKL

VADSKASQQKILSLTETIECLQTNIDHLQSQVEELKSSGQGRRSPGKCDQEKP

APSFACLKELYDLRQHFVYDHVFAEKITSLQGQPSPDEEENEHLKKTVTMLQ

AQLSLERQKRVTMEEEYGLVLKENSELEQQLGATGAYRARALELEAEVAEM

RQMLQSEHPFVNGVEKLVPDSLYVPFKEPSQSLLEEMFLTVPESHRKPLKRSS

SETILSSLAGSDIVKGHEETCIRRAKAVKQRGISLLHEVDTQYSALKVKYEELL
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KKCQEEQDSLSHKAVQTSRAAAKDLTGVNAQSEPVASGWELASVNPEPVSS

PTTPPEYKALFKEIFSCIKKTKQEIDEQRTKYRSLSSHS (RefSeq: NP_001793.1) 

9.1.3 CDR2 amino acid profile 

 

9.2 CDR2L 

9.2.1 CDR2L mRNA sequence 

          1 aagatgcagc ggcggctccg gttgtcgccg ggcgggccag gagcagcgcg gacccgagcc 

        61 gggcaggggg cgcccgccac ggcacccgcg cgctcctagc gccccagacc cgcctgcggg 

      121 cccggatcct ccttgccact gtcccacccg ccgtccctgc cactccaccc tttgtgtcgc 

      181 cgcagcccgg tgcccccggc tctgcgggac cccggccggg ccggaccctg gcaaagcgcc 

      241 aggccccgcg tgggctcccg gcgagcggtt gatggcgagg gggcgcggcg cgggctctgt 

      301 agcccgagtt cccgacgctg gaggcccggc ccgcctcagc cgcattgtcc cgggccgcgc 

      361 gcaccggccc tgagctgcgc cgccgcagca cccgcccgcc gcccgcgggg ccatgcggag 

      421 agccgccggg atggaggact tctccgcgga ggaagaggag tcctggtacg accagcagga 

      481 cctggagcag gacttgcacc tagctgcgga gctggggaag actctgctgg agaggaacaa 

      541 ggagctggag gggtccctgc agcagatgta ctccaccaat gaggaacagg tgcaggagat 

      601 cgagtaccta accaagcagc tggacacgct gcggcacgtg aacgagcagc acgccaaagt 
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      661 ctatgagcag ctggacctga cagcccggga cctggagctg accaaccaca ggctggtgct 

      721 ggagagtaag gctgcccagc agaagatcca tgggctgacg gagaccattg agcgcctcca 

      781 ggctcaggtg gaggagctgc aggcccaggt ggagcaactg agaggcctgg aacagctgcg 

      841 agtgctccgg gagaagcggg aacgcaggcg taccatccac accttcccct gcctcaagga 

      901 gctgtgcacc agcccccggt gcaaggatgc tttccgccta cacagttcct ccctggagct 

      961 gggcccgcgg cccctggagc aggagaacga gcggctgcag accctggtgg gggcgctgcg 

     1021 ctcccaggtg agccaggagc ggcagcgcaa ggagcgggcg gagcgcgagt acaccgcggt 

     1081 gctgcaggag tactcggagc tggagcgcca gctgtgcgag atggaggcct gtcgcctgcg 

     1141 tgtgcaggag ctggaggccg agctgctgga gctgcagcag atgaagcagg ccaagaccta 

     1201 cctactgggt ccggacgacc acctggccga ggccctgctc gcacccctca cgcaggcccc 

     1261 tgaggccgac gatccccagc ccggccgcgg ggacgacttg ggcgcccagg acggggtctc 

     1321 ctcaccggca gcctctccag gccacgtggt gcgcaagagc tgcagcgaca ctgcgctcaa 

     1381 cgccatcgtg gccaaagacc cagccagccg gcacgcgggc aacctcacac tgcacgccaa 

     1441 cagcgtgcgc aagcggggca tgtccatcct gcgggaggtg gacgagcagt accacgcgct 

     1501 gctggagaag tacgaggagc tgctgagcaa gtgccggcag cacggggccg gagtgcggca 

     1561 cgccggcgtg cagacctcgc gccccatctc ccgggacagc tcgtggaggg acctgcgcgg 

     1621 gggtgaggag ggccagggtg aggtcaaggc aggagagaag agcctgagcc agcacgtgga 

     1681 ggccgtggac aagcggctgg aacagagcca gcccgagtac aaggcgctct tcaaagagat 

     1741 cttctccagg atccagaaga ccaaggctga catcaacgcc accaaagtca agacgcacag 

     1801 cagcaagtga cccttctccg gcctgcagcc tcccccaggg tggaagccgt ggggtccctc 

     1861 aggcctgggc ggtgcagctt ccagagagcg agcgcccttt agcggcctgc caccacagca 

     1921 cgcggcctcc tgatccggaa gcacgcagca tgttccctgc tgagcggagg cagcccacct 

     1981 gtcctgcctc ccaggagccc ttggccacct cgcgccagcc caaaggcgca gctctgagtt 

     2041 caaagccaaa tgtccccact accccaggga tcccccagct cccccagccc ctggcttcct 

     2101 gaccctgcgc ctcaccctca gactggtgac caggcttctg aaagccattc tggatcagtt 

     2161 ggcttttttt ttttttttgg ttaagtttgt tttttctaag agatttgcaa tgcaaggtct 

     2221 ccttgacccc ttgccacaac tggaaacact tgaaagggga ccccagggcc agctgtttca 

     2281 ggggtttcct ggaccaccca ctgcttctcc ccaaccctga tgcgctgaca ttcccttagc 

     2341 accagctgtc ccacctccag ggtcctgacc aggtcagaga tgtcccctgc catgcagagc 

     2401 aggaagcctc agctgggcct ggagtgtccc tgctccagcc ctgccaggga caggtttctc 

     2461 cctggatact cttggcccac cgcagatctg tagccagtca gaggaggagg agaaggagcc 
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     2521 cctcagcaga gtggtgcagt ttcgctcaga gcttgtctcc ttggcttcca accccagaaa 

     2581 tgcctgctgg gccttaagct ttccaggggc cggggcagtg gggagccccc atcccttcac 

     2641 accgccacca actaaccaag cttggcctct gactcccgtc tctgtgcttg cccccatctc 

     2701 agggaccatg atgtctcagt cactccacgc tccccacagg ccaaccctgg cacaggtcat 

     2761 gtctgcagcc cccagaatgt tctggacatg caccaccagc cggtggtccc aatgtccacc 

     2821 cctgcctccc cttcactggg gactggggtt ttcgccccat gctgcatcgt gttgtattgg 

     2881 gatggggctg aggaacatgc tccctccctc cctcccataa aatgcctgct cttcacctcc 

     2941 cacctttgtg gggggctttt gaggacccag ctgcgtcagg agttttgctt caagatgtca 

     3001 gaaagtcaag ttcagctaag agacacccag gtccccagct tgccctgagc agcccttcag 

     3061 ggcttctggt tccttctgcc gcccttcctg agaccttaga aaccagaaga gccatacagt 

     3121 cagtggaagg cgggggggcc ctggcctctg caccgggatc ccagtgggaa ccttcatgcc 

     3181 ttatttattt ctaatgggta aaggggtttt cttaccaagc atccctgacc tcctggagac 

     3241 accacctgct ttccgggcgg cactgtgatg ggagctggtg gcgactgagt ccttctgtac 

     3301 gtgcaactgg gaaacttttg tcctttgagg ctaggcagct ccctgccctc cgtgtgtgtc 

     3361 tgttatctgg gggagaggag tgtggaaggg ttgggggaag agctccagcc tgtctgctcc 

     3421 ccagctctgt agtggcagac cagcgtcacc tttgaagtat acgtgagaga aatatattta 

     3481 caaatgcttt attctcttct ttaataaaaa atgcaccagt attctaaaag caaaaaaaaa 

     3541 aaaaaa (RefSeq: NM_014603.2) 

9.2.2 CDR2L amino acid sequence 

MRRAAGMEDFSAEEEESWYDQQDLEQDLHLAAELGKTLLERNKELEGSLQQ

MYSTNEEQVQEIEYLTKQLDTLRHVNEQHAKVYEQLDLTARDLELTNHRLV

LESKAAQQKIHGLTETIERLQAQVEELQAQVEQLRGLEQLRVLREKRERRRTI

HTFPCLKELCTSPRCKDAFRLHSSSLELGPRPLEQENERLQTLVGALRSQVSQ

ERQRKERAEREYTAVLQEYSELERQLCEMEACRLRVQELEAELLELQQMKQ

AKTYLLGPDDHLAEALLAPLTQAPEADDPQPGRGDDLGAQDGVSSPAASPG

HVVRKSCSDTALNAIVAKDPASRHAGNLTLHANSVRKRGMSILREVDEQYH

ALLEKYEELLSKCRQHGAGVRHAGVQTSRPISRDSSWRDLRGGEEGQGEVK

AGEKSLSQHVEAVDKRLEQSQPEYKALFKEIFSRIQKTKADINATKVKTHSSK 

(RefSeq: NP_055418.2) 
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9.2.3 CDR2L amino acid profile 
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The pathogenesis of Yo-mediated paraneoplastic cerebellar
degeneration (PCD) is unclear. We applied cerebrospinal
fluid and serum from PCD patients as well as CDR2 and
CDR2L antibodies to neuronal tissue, cancer cell lines, and
cells transfected with recombinant CDR2 and CDR2L to elu-
cidate which is the major antigen of Yo antibodies. We
found that Yo antibodies bound endogenous CDR2L, but
not endogenous CDR2. However, Yo antibodies can bind
the recombinant CDR2 protein used in routine clinical test-
ing for these antibodies. Because Yo antibodies only bind
endogenous CDR2L, we conclude that CDR2L is the major
antigen of Yo antibodies in PCD.

ANN NEUROL 2019;86:316–321

Paraneoplastic cerebellar degeneration (PCD) is one of
the most common paraneoplastic neurological syn-

dromes.1 In PCD patients, the immune system targets a tumor
antigen that is also expressed endogenously in the nervous sys-
tem.2 Among the most frequently detected onconeural anti-
bodies in PCD patients are Yo antibodies.3 Yo reactivity with
cerebellar degeneration-related (CDR) proteins present in
Purkinje cells is associated with Purkinje cell death4 and severe
cerebellar degeneration.5

Yo antibodies react with 2 proteins, CDR2 (RefSeq
NP_001793.1) and CDR2-like (CDR2L; RefSeq NP_
055418.2), that have 45% sequence identity.6 CDR2 has
previously been considered as the main Yo antigen.6–9 This
assumption is based in part on the finding that only the CDR2
gene is expressed in tumors obtained from PCD patients.6

However, recent studies have demonstrated that both
CDR2 and CDR2L are widely expressed in normal as
well as in malignant tissues10,11 and that the CDR2L
protein, but not CDR2, is highly expressed in PCD
tumors.12 Furthermore, CDR2L protein deposits are
detected in germinal centers of all Yo-mediated PCD

tumors with tertiary lymphoid structures,12 suggesting
an ongoing local immune response against CDR2L. In line
with this, we have shown that preabsorption with CDR2L
abolishes Yo antibody staining of human Purkinje cells
completely, whereas preabsorption with CDR2 does not.13

To determine which onconeural antigen is the major
target of Yo antibodies, we studied the reactivity of Yo anti-
bodies toward both native and recombinant CDR2 and
CDR2L proteins. Our findings show that Yo antibodies react
only to native CDR2L, and not to CDR2, suggesting that
CDR2L is the major target of these antibodies in vivo.

Materials and Methods
Patient Samples
Five sex- and age-matched cerebrospinal fluid (CSF)/serum patient
samples with Yo antibodies (PCD patients) and 5 without Yo anti-
bodies (controls) were obtained from the Neurological Research
Laboratory, Haukeland University Hospital (Regional Committees
for Medical and Health Research Ethics (REK), #2013/1480).10

Cerebellar Tissue
Cerebellar sections were cut from fresh frozen normal human tis-
sue (REK, #2013/1503) or paraformaldehyde (PFA)-perfused rat
brains (The Norwegian regulation of the use of animals in
research, #20157494) that required additional heat-induced epi-
tope retrieval prior to immunostaining.14

Cell Cultures
The OvCar3 (American Type Culture Collection [ATCC], #HTB-
161) and the HepG2 (ATCC, #HB-8065) cancer cell lines were
maintained and subcultivated on poly-D-lysine–coated coverslips
(Neuvitro, Vancouver, WA; #GG-18-1.5-pdl) according to the
manufacturer’s protocol. Cells were washed (2 × 0.1M phosphate-
buffered saline [PBS]), fixed (15 minutes, 4% PFA-PBS; Thermo
Fisher Scientific, Waltham, MA; #28908), and quenched (5 minutes,
50mM NH4Cl; Sigma-Aldrich, St Louis, MO; #254134) prior to
immunostaining.
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Immunochemistry
Cancer cells and cerebellar sections were permeabilized (5 minutes,
0.5% Triton X-100-PBS; Sigma-Aldrich, #11332481001), washed
(3 × 15 minutes, 0.5% gelatin-PBS; Sigma-Aldrich, #G7041),
blocked (30 minutes, 10% SEABLOCK; Thermo Fisher, #37527),
incubated with primary antibodies (overnight, 4�C), washed, incu-
bated with secondary antibodies (2 hours, room temperature),
and mounted (ProLong Diamond with DAPI; Thermo Fisher Sci-
entific, #P36962). Antibodies consisted of rabbit anti-CDR2
(AA270-392; Sigma-Aldrich, #HPA018151; cerebellar sections and
HepG2 cells), mouse anti-CDR2 (full-length; LSBio, Seattle, WA;
#C181958; OvCar3 cells), rabbit anti-CDR2L (AA116-465; Pro-
tein Technology,Wuhan, Hubei, P.R.C #14563-1-AP), antihuman
Alexa Fluor 488/594 (Thermo Fisher Scientific, #A-11013/#A-
11014), antirabbit Alexa Fluor 488/594 (Thermo Fisher Scientific,
#R37116/#R37117), antirabbit STAR635P (Sigma-Aldrich,
#53399-500UG), and antimouse Alexa Fluor 488/594 (Thermo
Fisher Scientific, #R37120/#R37121). A Leica (Wetzlar, Germany)
SP8 STED 3X confocal microscope equipped with a × 100 1.4
numerical aperture oil objective was used for imaging.

Immunoprecipitation
Following the Bio-Rad SureBeads immunoprecipitation protocol,
the proteins were immunoprecipitated from OvCar3 cell lysate by
using Protein G Magnetic Beads (Bio-Rad Laboratories, Hercules,
CA; #161-4023). Immunoprecipitated proteins were separated on
a 10% TGX gel (Bio-Rad, #456-1035) and transferred to a poly-
vinylidene difluoride (PVDF) membrane using the Trans-Blot
Turbo Transfer kit (Bio-Rad, #170-4274). Western blot analysis
was performed to detect the immunoprecipitated target proteins.
Antibodies consisted of rabbit anti-CDR2L, mouse anti-CDR2,
Yo-CSF, TidyBlot (Bio-Rad, #STAR209PA), and horseradish per-
oxidase antimouse IgG (Dako, Carpinteria, CA; #P0260).

Fluorescent Immunoblotting
The cerebellar and cancer cell lysates were obtained using a Total
Protein Extraction Kit (Millipore, Billerica, MA; #2140). Proteins
were separated on a 10% TGX gel and transferred to a low-
autofluorescence PVDF membrane. Antibodies consisted of rabbit
anti-CDR2L, rabbit anti-CDR2, Yo-CSF, antirabbit Alexa Fluor
488, and antihuman Alexa Fluor 647 (Thermo Fisher Scientific,
#A-21445). G:Box (Syngene, Frederick, MA) was employed for
visualization.

Recombinant DNA and Transfection
Full-length CDR2 (OriGene Technologies, Rockville, MD;
#RG204900) and CDR2L (OriGene Technologies, #RC206909)
were ligated into a pCMV6-AC-GFP vector (OriGene Technologies,

FIGURE 1: Yo antibodies bind to CDR2L, but not CDR2, in
cerebellar Purkinje cells. Scale bars = 10μm. (A) Sections of fresh
frozen human cerebellum. Upper row: Section stained with Yo
(cerebrospinal fluid [CSF]; green) and anti-CDR2L (red); the
antibodies colocalize in the cytoplasm (seen as yellow in the
merge image). Lower row: Section stained with Yo (CSF; green)
and anti-CDR2 (red); no colocalization is seen between Yo and
CDR2. (B) Sections of paraformaldehyde (PFA)-perfused rat
cerebellum. Upper row: Section stained with Yo (CSF; green) and
anti-CDR2L (red); CDR2L colocalize with Yo. Lower row:
Section stained with Yo (CSF; green) anti-CDR2 (red); no
colocalization is seen. (C) Sections of PFA-perfused rat cerebellum.
Upper row: Section stained with Yo (serum; green) and anti-
CDR2L (red); Yo and CDR2L colocalize in the Purkinje cells
(outlined) as well as in the stellate and basket cells (arrows). Lower

row: Section stained with Yo (serum; green) and anti-CDR2 (red);
no colocalization is seen between Yo andCDR2. These images are
a z-stack merge, as not all stellate/basket cells were in the same
focal plane as the Purkinje cells; thus, the cytoplasmic staining
found over or under the nuclei may appear nuclear although it is
not (eg, the Yo serum staining is not nuclear). (D) Fluorescent
immunoblot of rat cerebellar lysate. Anti-CDR2L and Yo (CSF)
stain the same band at 55kDa; anti-CDR2 does not. Secondary
antibody controlswere negative.
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#PS100010). Following polymerase chain reaction, correct CDR2
and CDR2L vector sequences were confirmed using BioEdit v7.2.5.
One Shot TOP10 Escherichia coli (Life Technologies, Carlsbad, CA;
#C4040-10) were used for amplification, E.Z.N.A. Plasmid DNA
Kit (Omega Bio-Tek, Norcross, GA, #D6942) for purification, and
Lipofectamine 3000 (Thermo Fisher Scientific, #L3000008) for
transfection.

Results
CDR2L and Yo Staining Overlap
In sections of human and rat cerebellum, CDR2L showed a
cytoplasmic staining pattern in Purkinje cell somas that over-
lapped completely with the Yo antibody staining from both
CSF and serum (Fig 1). CDR2L and Yo also colocalized in
the stellate and basket cells. In contrast, CDR2 primarily

stained the nuclei of these neurons and gave no overlap with
the Yo antibodies. Under denaturing conditions, immuno-
fluorescence blots of rat cerebellar lysate showed that
CDR2L and Yo were recognized at 55kDa, whereas CDR2
was only visible at 62kDa.

CDR2L and Yo Colocalize in Ovarian Cancer Cells
In OvCar3 cells, which express both CDR2 and CDR2L
endogenously, we found that CDR2L and Yo colocalized
in the cytoplasm, whereas CDR2 showed no colocalization
with Yo (Fig 2A). The coreactivity of the CDR2L and Yo

FIGURE 2: Yo antibodies bind to CDR2L, but not CDR2, in
OvCar3 cells. Scale bars = 10μm. (A) Upper row: OvCar3 cells
stained with Yo (cerebrospinal fluid [CSF]; green) and anti-
CDR2L (red); Yo and CDR2L colocalize, giving the same
granular, cytoplasmic staining pattern (seen as yellow in the
merge image). Lower row: OvCar3 cells stained with Yo (CSF;
green) and anti-CDR2 (red); Yo does not colocalize with CDR2.
(B) Fluorescent immunoblot (IB) of OvCar3 lysate. Anti-CDR2L
and Yo (CSF) stain the same 55kDa band; anti-CDR2 does not.
Secondary antibody controls were negative. (C) Immunoblot of
proteins immunoprecipitated (IP) from the OvCar3 lysate by
Yo (CSF) or CDR2L. The protein precipitated by Yo antibodies
was recognized by the CDR2L antibody on Western blot (i) and
vice versa (ii); no relationship was observed between Yo or
CDR2L and CDR2.

FIGURE 3: HepG2 cells, with a high endogenous level of CDR2,
are not stained by Yo antibodies. However, Yo antibodies
are able to bind recombinant CDR2. Scale bars = 10μm.
(A) Untransfected HepG2 cells (first row) and HepG2 cells
transfected with a vector expressing recombinant CDR2L-
GFP (second and third row; green) were incubated with Yo
(cerebrospinal fluid [CSF]; red), anti-CDR2L (first and second row;
magenta), and anti-CDR2 (third row; magenta). Nuclei were
stained with DAPI. Only upon expression of recombinant CDR2L
was Yo and CDR2L antibody staining observed. The CDR2
antibody did not bind the recombinant CDR2L protein.
(B) Untransfected HepG2 cells (first row) and HepG2 cells
transfected with a vector expressing CDR2-GFP (second and
third row; green) were incubated with Yo (CSF; red), anti-CDR2
(first and second row; magenta), and anti-CDR2L (third row;
magenta). Native CDR2 is present in untransfected HepG2 cells,
but no Yo staining was found.When recombinant CDR2-GFPwas
present, both the Yo and CDR2L antibodywere able to bind.
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antibodies was confirmed by both fluorescent Western blot-
ting and immunoprecipitation (see Fig 2B, C).

Yo Antibodies Detect Recombinant CDR2 and
CDR2L
Yo and CDR2L staining was absent in untransfected HepG2
cells, whereas CDR2 was present in the nuclei of these cells
(Fig 3). In HepG2 cells transfected with recombinant CDR2

or CDR2L linked to green fluorescent protein (CDR2-GFP
and CDR2L-GFP), however, Yo antibodies colocalized with
both CDR2L-GFP and CDR2-GFP. Similar results were
obtained for all PCD samples tested.

Discussion
We demonstrate that Yo antibodies in the CSF and serum
of PCD patients consistently react with CDR2L in human

FIGURE 4: Proposed hypothesis of how Yo antibodies are able to bind both recombinant CDR2 and CDR2L, but only CDR2L under
native conditions. (A) Illustration of the initial, polyclonal response of Yo antibodies toward CDR2L in the tumors of paraneoplastic
cerebellar degeneration patients. (B) A tumor cell with the polyclonal Yo antibodies targeting the CDR2L protein; CDR2 is
unaffected, as the epitope that is common to CDR2L (blue) is hidden by post-translational modifications or a partnering molecule
(white fold covering the blue epitope). (C) The Yo antibodies also bind to CDR2L in cerebellar Purkinje cells; however, they do not
bind CDR2, as the common epitope (blue) is hidden here as well (by modifications or partnering molecules; white fold). (D) When
patient sera or cerebrospinal fluid is applied to a line blot with recombinant CDR2 attached, binding of the common epitope (blue)
is possible, as it is not hidden by post-translational modifications or partnering molecules in the recombinant version.
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and rat brain tissue as well as in cultured cancer cells.
Despite sequence homology between CDR2 and CDR2L,
Yo antibodies did not cross-react with endogenously
expressed CDR2. These findings were confirmed by using
HepG2 cells that express CDR2 endogenously, but not
CDR2L; Yo antibodies were not able to bind the endoge-
nous CDR2 in these cells either. We therefore conclude
that CDR2L is the major antigen of Yo antibodies under
native conditions. This result indicates that previous
research on Yo-mediated PCD has focused on a protein
that is not the major antigenic target of Yo antibodies.

CDR2L and Yo antibodies gave a granular, cytoplas-
mic staining pattern that colocalized in both human and
rat Purkinje cells, as well as in stellate and basket cells. In
contrast, CDR2 reactivity primarily occurred in the nuclei
of these neuronal cells, where Yo antibody staining was
absent. In the human cancer cell lines OvCar3 and HepG2,
we found strong staining of CDR2 in the nuclei, as well as
some cytoplasmic staining. Similar CDR2 staining has also
been found in other cancer cell lines and tissues.15

We found that none of our PCD patient samples
cross-reacted with endogenous CDR2. Thus, CDR2L-
exclusive epitopes appear to be the major targets of Yo anti-
bodies under native conditions. Furthermore, we observed
competitive binding between the CDR2L and the Yo anti-
bodies, whereas the CDR2 antibody staining was not
affected by high Yo antibody concentrations (data not
shown). This is in line with our previous results showing that
the reactivity of Yo antibodies in the Purkinje cells disappears
completely when preabsorbed with recombinant CDR2L
protein, but only partially with recombinant CDR2.13

In routine clinical testing for onconeural antibodies,
line blots and cell-based assays use recombinant CDR2 as
the antigen target for Yo antibodies (Euroimmun, www.
euroimmun.com; ravo Diagnostika, www.ravo.de). Because
we did not find any reactivity of Yo antibodies toward
native CDR2, we investigated this further by transfecting
HepG2 cells with CDR2 and CDR2L linked to green fluo-
rescent protein. Our results showed that Yo antibodies did
bind recombinant CDR2, meaning that the protein can
still be used for clinical diagnostic purposes. However, line
blot and cell-based assays using CDR2L may be more sensi-
tive for detecting Yo antibodies.

Whereas Yo antibodies are able to bind recombinant
CDR2, they appear unable to access this epitope on endoge-
nous CDR2, likely because it is hidden by post-translational
modifications or by partnering molecules (Fig 4). A recent
study did not find any common linear epitopes detected by
Yo antibodies for CDR2 and CDR2L.16 This suggests that
any common epitope is likely conformational, a feature that
can be elucidated once the 3-dimensional structures of these
proteins are established.

Our present results strengthen the hypothesis that
CDR2L is the major target of Yo antibodies. This is in line
with the recent findings that CDR2L expression was detected
in all samples of ovarian cancers from PCD patients, whereas
CDR2 was only weakly expressed in 40% of the tumors.12

Furthermore, CDR2L deposits were found in germinal cen-
ters of all Yo-mediated PCD tumors with tertiary lymphoid
structures, suggesting a humoral immune response against
CDR2L.12 Thus, Yo antibodies targeting CDR2L in tumor
cells, with binding of CDR2L in Purkinje cells as an unfortu-
nate side effect, likely contributes to the development of
PCD. CDR2L should therefore be included in future research
into the pathogenesis of Yo-mediated PCD.
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Abstract

Objective: Identify the subcellular location and potential binding partners of

two cerebellar degeneration-related proteins, CDR2L and CDR2, associated with

anti-Yo-mediated paraneoplastic cerebellar degeneration. Methods: Cancer cells,

rat Purkinje neuron cultures, and human cerebellar sections were exposed to

cerebrospinal fluid and serum from patients with paraneoplastic cerebellar

degeneration with Yo antibodies and with several antibodies against CDR2L and

CDR2. We used mass spectrometry-based proteomics, super-resolution micro-

scopy, proximity ligation assay, and co-immunoprecipitation to verify the anti-

bodies and to identify potential binding partners. Results: We confirmed the

CDR2L specificity of Yo antibodies by mass spectrometry-based proteomics and

found that CDR2L localized to the cytoplasm and CDR2 to the nucleus. CDR2L

co-localized with the 40S ribosomal protein S6, while CDR2 co-localized with

the nuclear speckle proteins SON, eukaryotic initiation factor 4A-III, and serine/

arginine-rich splicing factor 2. Interpretation: We showed that Yo antibodies

specifically bind to CDR2L in Purkinje neurons of PCD patients where they

potentially interfere with the function of the ribosomal machinery resulting in

disrupted mRNA translation and/or protein synthesis. Our findings demonstrat-

ing that CDR2L interacts with ribosomal proteins and CDR2 with nuclear

speckle proteins is an important step toward understanding PCD pathogenesis.

Introduction

Paraneoplastic neurological syndromes are rare autoim-

mune-mediated diseases1,2 characterized by the production

of antibodies that target antigens expressed both by the

tumor and endogenously in the central nervous system.3,4

One of the most common forms of paraneoplastic neuro-

logical syndromes is paraneoplastic cerebellar degeneration

(PCD).5 In patients with PCD and breast or ovarian cancer,

the dominant onconeural antibody, anti-Yo, is detected in

both serum and cerebrospinal fluid (CSF).6 Anti-Yo anti-

bodies are directed against two proteins, cerebellar degener-

ation-related protein 2 (CDR2) and CDR2-like (CDR2L),

which are endogenously expressed in Purkinje neurons of

the cerebellum.7 The interaction between anti-Yo and CDR

proteins is thought to mediate Purkinje neuron dysfunction

and death.5 A two-step process has been proposed, with the

internalization of Yo antibodies as the primary event,
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followed by the subsequent activation of cytotoxic T cells.8,9

However, it has also been demonstrated that Yo antibodies

can induce Purkinje neuron death in the absence of T lym-

phocytes.8,10

Previously we showed that CDR2L is the major Yo

antibody target in PCD.7 However, we cannot exclude a

functional role for CDR2 in anti-Yo-mediated PCD

pathogenesis. These proteins display a high degree of

homology with approximately 45% sequence identity,11,12

and both are widely expressed in normal as well as malig-

nant tissues.3,13 Ovarian malignancy is the most frequent

cancer type found in Yo-mediated PCD, and both CDR2L

and CDR2 are highly expressed in this type of cancer.3,14

Earlier studies have suggested that CDR2L and CDR2 are

cytoplasmic proteins.3,13 However, detailed subcellular

localization using antigen-specific antibodies has not been

performed. Current knowledge concerning the biologic

function of CDR2L is limited. CDR2 has leucine zipper and

zinc-finger DNA binding domains, characteristic of tran-

scriptional regulatory proteins11,15,16 and occurrence of

these domains in the predicted open reading frame suggests

that CDR2 has a role in regulating gene expression.11,17

CDR2 interacts with the serine/threonine protein kinase

PKN and cell cycle-related proteins MRG15 and MRGX; all

involved in signal transduction or gene transcription.15,18,19

In this study, we examined the subcellular locations of

CDR2L and CDR2 and their protein-protein interactions.

Our findings suggest that CDR2L and CDR2 have differ-

ent roles: CDR2L interacts with cytosolic ribosomes and

appears to function in protein synthesis, while CDR2

associates with nuclear speckle proteins and appears to be

involved in mRNA maturation.

Materials and Methods

Patient samples

Five sex- and age-matched CSF samples from patients

with Yo antibodies (PCD patients) and five without Yo

antibodies and no neurological disease or underlying can-

cer (negative controls) were obtained from the Neurologi-

cal Research Laboratory, Haukeland University Hospital

(Regional Committees for Medical and Health Research

Ethics, 2013/1480).

Cell culture

OvCar3 (American Type Culture Collection (ATCC),

#HTB-161) and HepG2 (ATCC, #HB-8065) cancer cell

lines were maintained and subcultivated on poly-D-lysine-

coated coverslips (Neuvitro, #GG-18-1.5-pdl) according to

the manufacturer’s protocol. Cells were washed twice with

0.1 M phosphate-buffered saline (PBS), fixed (15 min, 4%

paraformaldehyde in PBS, Thermo Fisher Scientific,

#28908), and quenched (5 min, 50 mmol/L NH4Cl, Sigma-

Aldrich, #254134) prior to immunostaining.

Cerebellar tissue preparation

Cerebellar sections were cut from fresh frozen normal

human tissue (REK, #2013/1503). Heat-induced epitope

retrieval was performed prior to immunostaining.

Rat Purkinje neuron cultures

All procedures were performed according to the National

Institutes of Health Guidelines for the Care and Use of

Laboratory Animals Norway (FOTS 20135149/20157494/

20170001). Embryonic day 18 Wistar Hannover GLAST

rat pups were used for neuronal culture preparation. The

protocol has recently been described.20

Immunochemistry

Fixed OvCar3 cells and cerebellar sections were permeabi-

lized in 0.5% Triton X-100-PBS (Sigma-Aldrich,

#11332481001) for 5 min, washed in 0.5% gelatin-PBS

(Sigma-Aldrich, #G7041) three times with 15 min each

wash, blocked in 10% SEABLOCK (Thermo Fisher Scien-

tific, #37527) in PBS for 30 min, and incubated with pri-

mary antibodies overnight at 4 °C. Following incubations,

cells and sections were washed in gelatin-PBS, incubated

with secondary antibodies for 2 h at room temperature,

and mounted using ProLong Diamond with DAPI

(Thermo Fisher Scientific, #P36962). The following anti-

bodies were used: rabbit anti-CDR2 (Sigma-Aldrich,

#HPA018151), rabbit anti-CDR2L (Protein Technology,

#14563-1-AP), mouse anti-rpS6 (Cell Signaling, #2317/

Santa Cruz #sc-74459), mouse anti-SON (Santa Cruz,

#sc398508), mouse anti-eIF4A3 (Santa Cruz, #sc-365549),

mouse anti-SRSF2 (Abcam, #ab11826), Alexa Fluor 488/

594-labeled goat anti-human (Thermo Fisher Scientific,

#A-11013/#A11014), Alexa Fluor 488/594-labeled goat

anti-rabbit (Thermo Fisher Scientific, #R37116/#R37117),

rabbit anti-STAR635P (Sigma-Aldrich, #53399-500UG),

and Alexa Fluor 488/594-labeled goat anti-mouse (Thermo

Fisher Scientific, #R37120/#R37121).

Super-resolution microscopy

A Leica TCS SP8 Stimulated Emission Depletion (STED) 3X

confocal microscope equipped with a 100x oil objective with

a numerical aperture of 1.4 was used for imaging. The output

of the excitation laser (up to 1.5 mW per line; pulsed) was

kept between 1% and 20% and the STED laser (775 nm; up

to 1.5 W) between 20% and 30%. Gating (between 1 and
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6 ns) was applied for all channels as well as a minimum of

three intensity averages. The lateral resolution was consis-

tently measured to be between 40 and 50 nm.

Immunoprecipitation

OvCar3 and HepG2 cells were lysed in RIPA lysis buffer

(Bioscience #786-490) containing protease inhibitor cock-

tail (Sigma-Aldrich #11873580001), 1 mmol/L phenyl-

methylsulfonyl fluoride (PMSF, Sigma-Aldrich #P7626),

1 mmol/L sodium fluoride (NaF, Sigma-Aldrich #S6776),

and 1 mmol/L sodium orthovanadate (Na3VO4, Sigma-

Aldrich #450243). The lysate was centrifuged (22,000g,

4°C, 15 min) and the supernatant was collected.

Following the Bio-Rad SureBeads immunoprecipitation

protocol, the proteins were immunoprecipitated from

OvCar3 and HepG2 cell lysates using Protein G Magnetic

Beads (Dynabeads, Thermo Fischer Scientific, #1004D).

Immunoprecipitated proteins were separated on a 10%

TGX gel (Bio-Rad, #456-1035) and transferred to a

polyvinylidene difluoride (PVDF) membrane using the

Trans-Blot Turbo Transfer kit (Bio-Rad, #170-4274).

Western blot analysis was performed to detect proteins of

interest using the following primary antibodies: rabbit

anti-CDR2L (Proteintech, #14563-1-AP), mouse anti-rpS6

(Santa Cruz #sc-74459), rabbit anti-CDR2 (Sigma-

Aldrich, #018151), mouse anti-CDR2 (Santa Cruz,

#sc100320) mouse anti-SON, mouse and rabbit anti-

eIF4A3 (Abcam, #ab32485). The secondary antibodies

used were TidyBlot (Bio-Rad, #STAR209PA) and horse-

radish peroxidase anti-mouse IgG and anti-rabbit IgG

(Dako, #P0260 and #P0217). A negative control consist-

ing of beads and cancer cell lysate was also included.

Proximity ligation assay

The proximity ligation assay was performed using the

commercially available Duolink kit from Sigma-Aldrich

(#DUO92101). Fixed OvCar3 cells were permeabilized for

5 min using 0.5% Triton X-100 diluted in PBS and

blocked with 10% SEABLOCK in PBS. Primary antibodies

against Hsp60 (EnCor Biotechnology, #CPCA-HSP60),

CDR2 (Sigma-Aldrich, #018151), CDR2L (Proteintech,

#14563-1-AP), SON, and SRSF2 were applied for 1 h

(1:100 in blocking solution), followed by 3x 5-minute

washes with Wash Buffer A supplied with the kit. Probes

(+ and �) were diluted in blocking solution (1:5) and

added to the cells for 1 h (37 °C). The cells were washed

3x for 5 min each with Wash Buffer A and incubated

with ligation buffer (1:5) and ligase enzyme (1:40) for

30 min (37°C). After 2x 5-minute washes with Wash Buf-

fer A amplification buffer (1:5) and the polymerase

enzyme (1:80) were diluted in distilled water and applied

to the cells for 100 min (37 °C, in the dark), followed by

three 10-minute washes with Wash Buffer B (supplied

with the kit). Prolong Diamond with DAPI was used to

mount the coverslips (overnight, 4 °C). Mounted cells

were stored at �20 °C.

Mass spectrometry-based proteomics
analysis

Proteins of interest were immunoprecipitated from

HepG2 or OvCar3 cell lysates using the antibodies listed

in Table 1. A negative control consisting of beads and

cancer cell lysate was also included. The samples were

loaded on a 10% TGX gel and run approximately 1 cm

into the resolving gel. Each lane was cut into cubes of

approximately 1 mm2 and hydrated in Milli-Q water

(20 min, room temperature). Detergents (i.e. sodium

dodecyl sulfate) and salts were removed by washing the

gel in 25 mmol/L ammonium bicarbonate (Sigma-

Aldrich, #09830-500G) and 50% acetonitrile (VWR,

#34967-2.5L). Cysteine reduction and alkylation were

accomplished with a 45-minute incubation in 10 mmol/L

dithiothreitol (Amersham Biosciences, #171318-02) at 56

Table 1. Antibody specificities determined by mass spectrometry analysis of CDR2L and CDR2 proteins immunoprecipitated from OvCar3 and

HepG2 cell lysates.

Target Source/Supplier Cat. no. AA seq. Cell line #Peptides Interaction

Yo Yo positive CSF OvCar3 54 CDR2L

Yo Yo positive CSF HepG2 - -

CDR2L Sigma- Aldrich HPA022015 395-464 OvCar3 56 CDR2L

CDR2L Proteintech 14563-1-AP 116-465 OvCar3 68 CDR2L

CDR2L Proteintech 66791-1-Ig 116-465 OvCar3 69 CDR2L

CDR2 Sigma-Aldrich HPA018151 270-392 HepG2 49 CDR2

CDR2 Sigma-Aldrich HPA023870 112-234 HepG2 41 CDR2

CDR2 Santa Cruz Sc-100320 296-405 HepG2 57 CDR2

CDR2 LS Bio C181958 Full length HepG2 51 CDR2

AA seq., amino acid sequence.
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°C followed by a 30-minute incubation in 55 mmol/L

iodoacetamide (VWR, #M216-30G) at room temperature

in the dark. After washing in 25 mmol/L ammonium

bicarbonate and 50% acetonitrile, dried gel pieces were

hydrated on ice for 20 min with a minimum volume of

6 ng/µL trypsin (sequencing-grade modified, Promega,

#V511A) in digestion buffer (20 mmol/L ammonium

bicarbonate, 1 mmol/L calcium chloride (Sigma-Aldrich,

#C7902)), then covered with digestion buffer and incu-

bated for 16 h at 37°C. Trypsin activity was quenched by

acidification with trifluoracetic acid (VWR,

#1.08218.0050), and samples were desalted using StageTip

C18 columns (Empore disk-C18, Agilent Life Sciences,

#12145004) and the eluted peptides were dried and dis-

solved in 2% acetonitrile, 1% formic acid (VWR,

#84865.260).21

About 0.5 µg tryptic peptides were loaded onto an

Ultimate 3000 RSLC system (Thermo Fisher Scientific)

connected online to a Q-Exactive HF mass spectrometer

(Thermo Fisher Scientific) equipped with EASY-spray

nano-electrospray ion source (Thermo Fisher Scientific).

All samples were loaded and desalted on a pre-column

(Acclaim PepMap 100, 2 cm x 75 µm ID nanoViper col-

umn, packed with 3 µm C18 beads) at a flow rate of 5

µL/min with 0.1% trifluoracetic acid. Peptides were sepa-

rated during a biphasic acetonitrile gradient (flow rate of

200 nL/minute) on a 50-cm analytical column (PepMap

RSLC, 50 cm x 75 µm ID EASY-spray column, packed

with 2 µm C18 beads). Solvent A and B were 0.1% for-

mic acid in water and 100% acetonitrile, respectively. The

gradient composition was 5% B during trapping (5 min)

followed by 5–7% B over 0.5 min, 7–22% B for the next

59.5 min, 22–35% B over 22 min, and 35–80% B over

5 min. Elution of very hydrophobic peptides and condi-

tioning of the column was performed during a 10-minute

isocratic elution with 80% B and 15 min of isocratic con-

ditioning with 5% B, respectively.

Charged peptides were analyzed by the Q-Exactive HF,

operating in the data-dependent acquisition mode to

automatically switch between full-scan MS and MS/MS

acquisition. Mass spectra were acquired in the scan range

375–1500 m/z with a resolution of 60,000 at m/z 200

after an accumulation of 3,000,000 charges (maximum

trap time set at 50 ms in the C-trap). The 12 peptides

with the most intense signals above an intensity thresh-

old of 50,000 counts and with charge states of 2 to 6

were sequentially isolated and accumulated to 100,000

charges (maximum trap time set at 110 ms) to a target

value of 1 9 105 or a maximum trap time of 110 ms in

the C-trap with isolation width maintained at 1.6 m/z

(offset of 0.3 m/z) before fragmentation in the higher

energy collision dissociation cell. Fragmentation was per-

formed with a normalized collision energy of 32%, and

fragments were detected in the Q-Exactive at a resolution

of 60,000 at m/z 200 with first mass fixed at m/z 110.

One MS/MS spectrum of a precursor mass was allowed

before dynamic exclusion for 30 seconds with “exclude

isotopes” on. Accurate mass measurements in MS mode

were accomplished by enabling the lock-mass internal

calibration of the polydimethylcyclosiloxane ions gener-

ated in the electrospray process from ambient air (m/z

445.12003).22

Database searching and criteria for protein
identification

Tandem mass spectra data were extracted with Proteome

Discoverer (version 2.3.0.523, Thermo Fisher Scientific)

and were searched against human, reviewed protein

sequences (SwissprotKB database, release 08-2018) with

Sequest HT and MS Amanda search engines. The follow-

ing search criteria were used: carbamidomethylation of

cysteine (fixed modification), oxidation of methionine

and acetyl of the protein N-terminus (variable modifica-

tions), a maximum of two missed trypsin cleavages, 0.02-

Da fragment ion mass tolerance, and 10-ppm precursor

ion tolerance. Search results from PD were loaded into

Scaffold 4 (version 4.9.0, Proteome Software Inc.), and all

spectra were searched with the X! Tandem search engine

against identified proteins to identify nonspecific trypsin

cleavages.

Peptide and protein identifications were filtered to

achieve a false discovery rate < 1.0% (based on searching

the reversed human database). Grouping of proteins shar-

ing identical peptides was enabled. In order to evaluate

the likelihood of the predicted interactions, the following

criteria were established: (1) nonspecific bindings were

removed based on the negative control (without primary

antibodies); (2) the number of recognized peptides was

set to at least two; (3) proteins that were identified by

more than one of the antibodies to CDR2L or CDR2 were

considered as more likely partners; (4) the likelihood of

Figure 1. Protein-protein interaction networks visualized by STRING. (A) CDR2L was predicted to interact with ribosomal proteins (rpS6, red box).

The nodes indicate proteins, and the edges represent protein-protein associations. (B) Protein-protein interaction network of nuclear speckles

proteins, SON, eIF4A3, and SRSF2, predicted to interact with CDR2. eIF4A3 (red) directly interacts with SON (light green) and SRSF2 (blue). (C)

eIF4A3 (yellow) interacts with rpS6 (blue), indicated by colored edges. Predicted binding partners, CDR2L (green) and CDR2 (red), are manually

gated (black, dotted lines). Color-coded edges; light blue: curated databases, dark blue: gene co-occurrence, pink: experimentally determined,

green: text mining. Interactions with a medium score of 0.400 or more are shown.
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interaction was evaluated based on the predicted cellular

location of each protein of interest. Protein-protein inter-

actions were analyzed using the STRING database.

STRING implements all publicly available sources of

known and predicted protein-protein associations,

together with computational analysis to evaluate potential

connectivity networks.23,24

Results

Antibody specificity

To evaluate antibody specificity, we immunoprecipitated

CDR2L and CDR2 from cancer cell lysates and analyzed

the precipitates using mass spectrometry-based

Figure 2. CDR2L co-localizes with ribosomes and CDR2 with nuclear speckles in OvCar3 cells as shown using proximity ligation assay. (A) Upper

row: Co-localization of anti-CDR2L (green) and ribosomes (rpS6; red) in the cytoplasm (yellow; merged image). Lower row: Co-localization of

anti-CDR2 (green) and nuclear speckles (SRSF2; red) in the nucleus (yellow; merged image). (B) Upper row: Positive Duolink (green) between

CDR2L and ribosomes (rpS6) in the cytoplasm (hsp60 in magenta was used to show the extent of the cell cytoplasm; merged image). Lower row:

Positive Duolink (green) between CDR2 and nuclear speckle marker (SRSF2) in the nuclei; no co-localization was observed with cytoplasmic

marker hsp60 (magenta; merged image). DAPI was used as a marker for the nuclei (blue). Scare bars = 10 µm.
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proteomics with the antibodies listed in Table 1. We

found that the commercial antibodies raised against

CDR2L and CDR2 were specific and recognized the

expected antigens. Also, we confirmed our previous data

showing that CDR2L is the major Yo antibody target.

Analysis of lysates of OvCar3 cells, which expresses both

CDR2L and CDR2, immunoprecipitated with Yo antibod-

ies bound to magnetic beads showed that CDR2L, but

not CDR2, was recognized by Yo antibodies. In similar

experiments performed with a cell line that only expresses

CDR2, HepG2 cells, Yo antibody did not precipitate

CDR2.

CDR2L and CDR2 interaction partners
identified by mass spectrometry analysis

Potential protein interaction partners were identified

using mass spectrometry analysis of proteins immuno-

precipitated with anti-CDR2L and anti-CDR2 antibodies

from cancer cell lysates. Initially, several hundred hits

were detected, and four criteria were established to

determine the likelihood of the predicted interactions.

Thereafter, we used the STRING database to evaluate

the connectivity of the proteins that met our criteria.

CDR2L was predicted to interact with 50 ribosomal

proteins that were tightly connected (Fig. 1A). Of these

50 ribosomal proteins, 20 belong to the 40S subunit,

and 30 belong to the 60S subunit. Proteins known to

associate with nuclear speckles, eukaryotic initiation fac-

tor eIF4A3, SON, and the serine/arginine-rich splicing

factor SRSF2, were identified as potential interaction

partners of CDR2. According to the STRING analysis

eIF4A3 interacts with SON and SRSF2 (Fig. 1B), as well

as with the 40S ribosomal subunit factor rpS6

(Fig. 1C).

CDR2L Co-localizes with ribosomal proteins
and CDR2 with nuclear speckle proteins in
ovarian cancer cells

We used immunolabeling and proximity ligation assay to

investigate the subcellular localization of CDR2L and CDR2.

In OvCar3 cells, which express both CDR2L and CDR2, we

found that CDR2L co-localizes with rpS6, whereas CDR2

co-localizes with nuclear speckle proteins SON, eIF4A3, and

SRSF2 (Fig. 2A). These results were confirmed by proximity

ligation assay in OvCar3 cells (Fig. 2B).

Co-Immunoprecipitation of CDR2L and CDR2
from OvCar3 cells confirms protein-protein
interactions with ribosomal and nuclear
speckle proteins

To analyze whether CDR2L directly interacts with rpS6,

we performed co-immunoprecipitation assays from

OvCar3 cell lysates. CDR2L specifically co-immunoprecip-

itated with rpS6, indicating that endogenous CDR2L

forms a complex with rpS6 in cancer cells (Fig. 3A). Fur-

thermore, we found that SON and eIF4A3 co-immuno-

precipitated with CDR2 from HepG2 cells, thus

indicating a strong and stable interaction between these

proteins and CDR2 (Fig. 3B).

Co-localizations of CDR2L with ribosomal
proteins and of CDR2 with nuclear speckle
proteins occurs in Purkinje neurons in
Human cerebellum sections and in Purkinje
neuron cultures

In human cerebellum sections, CDR2L and Yo antibodies

stained the cytoplasm in regions that overlapped with

Figure 3. CDR2L co-immunoprecipitates with ribosomal protein rpS6, whereas CDR2 co-immunoprecipitates with nuclear speckle proteins SON

and eIF4A3 in cancer cell lysates. (A) Immunoblot demonstrating the co-immunoprecipitation of CDR2L and rpS6 from OvCar3 cell lysates. (B)

Immunoblot demonstrating the co-immunoprecipitation of CDR2, SON, and eIF4A3 from HepG2 cell lysates. Input = cancer cell lysates (OvCar3

or HepG2). Beads + lysate = samples that were not treated with primary antibody, and served as negative controls.
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regions stained for the ribosomal marker rpS6, whereas

CDR2 showed nuclear staining that overlapped with

nuclear speckle markers (eIF4A3, SON, and SRSF2;

Fig. 4A). These results were replicated in cultured rat

Purkinje neurons (Fig. 4B).

Discussion

The pathogenesis of Yo-mediated PCD remains incom-

pletely understood, but it has been postulated that the

Purkinje neuron loss is due to auto-reactive T cells and a

direct damaging effect of Yo antibodies.3,4,6,25 We demon-

strated previously that CDR2L, not CDR2, is the major

target of the Yo antibody7: Yo antibodies bind both

endogenous and recombinant CDR2L, but only recombi-

nant CDR2, not the native form. In this study, we con-

firmed the CDR2L specificity of Yo antibodies by mass

spectrometry-based proteomics and showed that while

CDR2L and CDR2 have differing localizations, it is possi-

ble to link their putative roles to ribosomal function.

The biological functions and precise subcellular local-

ization of both CDR2L and CDR2 have been unresolved

questions. Analysis of PCD patient sera has shown that

Yo antibodies localize to the cytoplasm and associate with

both membrane-bound and free ribosomes.26,27 In these

studies, the Yo antigen is referred to as “CDR2.” How-

ever, based on our recent findings, we are confident that

the main Yo antigen is indeed CDR2L. Here, we used

available antibodies against CDR2L and CDR2, as well as

anti-Yo, to characterize the cellular localization of these

proteins and their potential binding partners.

Immunolabeling cells with commercially available anti-

CDR2 antibodies result in various expression patterns,

localizing CDR2 to both the cytoplasm and the

nucleus.7,13 Therefore, we first evaluated the specificity of

the available CDR2L and CDR2 antibodies produced to

recognize the full-length protein or shorter sequences.

Immunoprecipitation followed by mass spectrometry

analysis confirmed antibody specificity. The previously

reported inconsistent results for CDR2 may either stem

from the antibody recognition of one of the four CDR2

isoforms (www.uniprot.org) or from the translocation of

CDR2 between the cytoplasm and nucleus. Furthermore,

previous studies also identified PKN, MRG15, and MRGX

as CDR2 binding partners. Since these proteins function

both in the cytoplasm and nucleus, this raises the possi-

bility that CDR2 might facilitate the transport of these

proteins or translocate itself.15,18,19,28 In addition, no

CDR2L-CDR2 cross-talk was observed, which supports

our finding that there is no cross-talk between CDR2L

and CDR2 in their native forms. Furthermore, our

immunoprecipitation-mass spectrometry results showed

that Yo antibodies only precipitated CDR2L and not

CDR2 from cancer cells. This is in line with recent work,

which shows that Yo antibodies bind to the CDR2L

regions of least homology with CDR2.29

In addition to confirming antibody specificity, the mass

spectrometry analysis revealed potential interacting part-

ners for CDR2L and CDR2. A number of ribosomal pro-

teins, including rpS6, were identified as potential CDR2L

binding partners. The most prominent CDR2 binding

partners were three nuclear speckle proteins: SON,

eIF4A3, and SRSF2. Next, we used super-resolution

microscopy and proximity ligation assay to evaluate co-

localization within a 40-nm range in cancer cells and

Purkinje neurons. CDR2L was found to co-localize with

rpS6, whereas CDR2 co-localized with nuclear speckle

proteins eIF4A3, SON, and SRSF2. Co-immunoprecipita-

tion analyses established that CDR2L directly interacts

with rpS6 and that CDR2 directly interacts with eIF4A3

and SON.

Nuclear speckles are self-assembled organelles consist-

ing of around 200 proteins involved in pre-mRNA pro-

cessing including splicing, surveillance, and RNA

export.30 The speckles can vary in size and morphology

within a single cell, but have been shown to be non-ran-

dom organizations of proteins and RNAs stabilized by

favorable intermolecular interactions.30 SRSF2 and SON

localize to the core region of the speckle; both proteins

have domains enriched with arginine and serine repeats

that are crucial for speckle core formation.30,31 Both pro-

teins are also involved in mRNA splicing32,33 and interact

with the ATP-dependent RNA helicase eIF4A3.34 It has

been suggested that eIF4A3 may provide a link between

Figure 4. CDR2L and Yo co-localize with ribosomal proteins and CDR2 co-localizes with nuclear speckle proteins in cerebellar Purkinje neurons as

shown by super-resolution microscopy. (A) Upper row: Human cerebellar section stained with Yo-CSF (green) and anti-rpS6 (red); the proteins co-

localize in the cytoplasm (yellow; merged image). Middle row: Human cerebellar section stained with anti-CDR2L (green) and ribosomal marker

anti-rpS6 (red); the proteins co-localize in the cytoplasm (yellow; merged image). Lower row: Human cerebellar section stained with anti-CDR2

(green) and nuclear speckle marker anti-SRSF2 (red); the proteins co-localize in the nucleus. No co-localization was found with anti-Yo (magenta;

merged image). (B) Upper row: Rat Purkinje neuron cultures stained with anti-Yo (CSF; green) and rpS6 (ribosomes; red); co-localization was

observed in the cytoplasm (yellow; merged image). Middle row: Rat Purkinje neuron cultures stained with anti-CDR2L (green) and anti-rpS6 (red);

co-localization was observed in the cytoplasm (yellow; merge image). Lower row: Rat Purkinje neurons stained with anti-CDR2 (green), nuclear

speckle protein (red), and anti-Yo (magenta). CDR2 and the nuclear speckle protein co-localize in the cell nucleus (yellow; merged image),

whereas Yo does not. Scale bars = 10 µm.
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splicing and translation in the cytoplasm through its con-

nection to rpS634,35, which co-localizes with CDR2L.

Translation in eukaryotes relies on the assembly of the

small (40S) and the large (60S) ribosomal subunit into

the 80S ribosomes.36 Each subunit is composed of riboso-

mal proteins and RNAs that work together to catalyze

protein synthesis using mRNA as a template.37,38 Riboso-

mal proteins often undergo post-translational modifica-

tions and rps6, the identified CDR2L binding partner, is

regulated by phosphorylation.39,40 Five phosphorylation

sites have been identified and these phosphorylation

events could participate in regulating the translation of

specific subclasses of mRNA, synaptic plasticity and

behavior.41 Thus, rpS6 phosphorylation is often used to

track neuronal activity.40,41

Our findings linking CDR2 to nuclear speckles and

CDR2L to ribosomes allow us to speculate that these two

proteins may participate in a common pathway (Fig. 5).

First, we show that CDR2 interacts with eIF4A3 in the

nucleus. Second, eIF4A3, along with other initiation fac-

tors, facilitates mRNA binding to ribosomes.42 Further-

more, eIF4A3 and rpS6 have been shown to interact

based on affinity-capture mass spectrometry analysis.35

Third, we show that CDR2L interacts with the ribosomes

through rpS6. These findings place CDR2 and CDR2L in

the process of protein translation, one involved in mRNA

maturation and the other directly with the synthesis of

proteins.

Ensuring proper protein homeostasis is crucial to the

cell.36,38 We show that Yo antibodies specifically bind to

Figure 5. Hypothesis of CDR2L and CDR2 involvement in protein synthesis in Purkinje neurons. CDR2 localizes to the nucleus and directly

interacts with nuclear speckle protein eIF4A3. eIF4A3, in conjugation with other cytoplasmic initiation factors, facilitates mRNA binding to the 40S

ribosomal subunit. This event is important for mRNA maturation and translation, ultimately resulting in the synthesis of new proteins. CDR2L

interacts with ribosomal subunit protein rpS6; therefore, we propose that CDR2L and CDR2 are both involved in the process of protein synthesis.

Furthermore, Yo antibody (green) binding to CDR2L in Purkinje neurons of PCD patients may, therefore, interfere with the function of the

ribosomal machinery, resulting in disrupted mRNA translation and/or protein synthesis.
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CDR2L in Purkinje neurons of PCD patients where they

potentially interfere with the function of the ribosomal

machinery resulting in disrupted mRNA translation and/

or protein synthesis. Taken together, our findings that

CDR2L interacts with ribosomal proteins and CDR2 with

nuclear speckle proteins is an important step toward

understanding PCD pathogenesis. Future studies are

needed to track the subcellular events in real-time with

the aim of addressing the dynamic interaction between

the CDR2L and CDR2 molecules. This will be vital to

understand whether there is a functional relationship

between CDR2L and CDR2 in the Purkinje neuron deteri-

oration that occurs in PCD.
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Abstract  1 

Improved understanding of the mechanisms involved in neurodegenerative disease has been 2 

hampered by the lack of robust cellular models that faithfully replicate in vivo features. Here, 3 

we present a refined protocol for generating age-dependent, well-developed and synaptically 4 

active rat Purkinje neurons, responsive to paracrine factors and supporting a 3D cell network. 5 

Our model provides high experimental flexibility, high-throughput screening capabilities and 6 

reliability to elucidate Purkinje neuron function, communication and neurodegenerative 7 

mechanisms.  8 

 9 

Article 10 

Unravelling the mechanisms of neurodegeneration depends on the availability of robust 11 

models that provide insight both at the single cell level and network levels, and that offer high 12 

experimental flexibility. Dissociated neuronal cultures can be useful, but their quality and 13 

survival dependents on several factors including animal species, age of tissue that is dispersed 14 

to give single cells, the surface onto which the single cells are seeded and cultured, and co-15 

factors that drive neuronal growth and development. To date, the majority of successful 16 

Purkinje neuron cultures (PNC) models have used embryonic mouse cerebellum, few have 17 

successfully used rat embryonic or postnatal cerebellum. Although the success rate of 18 

transgenic alterations and in vivo modelling is lower in rats 1, the rat is physiologically, 19 

genetically and morphologically closer to humans than the mouse 2, and outbred or transgenic 20 

rat models mimic human neurodegenerative disease mechanisms and progressions more 21 

closely 3–5 than mouse models do 6,7. 22 

Since neurodegeneration generally occurs in the adult or aged human brain, a 23 

dissociated culture system derived from mature rather than embryonic tissue is desirable.  24 

However, previous attempts to culture functional dissociated neurons from late postnatal and 25 

adult tissue have been largely unsuccessful.  Therefore, our goal was to develop a culture 26 
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protocol that provided well-developed, mature, functional and synaptically active rat Purkinje 1 

neurons (PNs), interdependent of the derived tissue age, that gaves maximal experimental 2 

flexibility and the potential for high-throughput screening. We discovered three factors that 3 

were essential for success: having a three-dimensional (3D) growth structure, pH stability and 4 

co-factor supplementation.  5 

The first attempt growing PNs directly on glass cover-slips coated with poly-D-lysine 6 

(PDL) and the extracellular matrix protein laminin failed: the yield of PNs per cover-slip 7 

declined to zero from E18 to P10 at 21 days in vitro (DIV) (Figure 1a, non 3D-SCL). We 8 

reasoned that the extracellular matrix used lacked important features including other cell types 9 

that provide the in vivo 3D cell network structure and thereby cell-cell communicate including 10 

paracrine factor secretion.  Therefore, in the second attempt we developed a three-11 

dimensional support cell layer (3D-SCL) approach by plating two cerebellar cell layers 12 

derived of either E18, P0 or P10 tissue onto PDL coated cover-slips. We introduced a time-13 

delay by plating the second cell layer 7 to 48 days later than the first. We found that the tissue 14 

age of cells used to grow the 3D-SCL (E18 to P10) had no impact on the PN yield of the 15 

second layer, however, there was a strong correlation between the in vivo age of the support 16 

cell layer and the tissue age used to grow the second cell layer, the enriched PN layer. The 17 

highest survival rate of E18 derived-PNs was observed when plated onto the 3D-SCL at 18 

DIV14, for P0 derived-PNs at DIV21 and for P10 derived-PNs at DIV28 (Figure 1a). These 19 

findings indicate that the older the starting tissue, the more mature the 3D-SCL has to be to 20 

achieve a high survival rate of PNs for a minimum of 21 to 28 DIV.  21 

However, the use of a “double” cell layer was associated with higher metabolic 22 

demand than single layer cultures and led to non-physiological pH fluctuations resulted in cell 23 

death when half of the culture media was replaced ones a week. Replacing the culture media 24 

more frequently, either every 3.5-days (6 well) or every 2-days (12 and 24 well) prevented 25 

pathological pH fluctuations and gave a healthy well-developed neuronal network. Despite 26 
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this, immunofluorescent staining showed that the PNs had a poorly developed dendritic 1 

morphology compared to those in vivo, with fewer and shorter branches in E18 and P0 2 

derived-PNs (Figure 1b-c, 1b upper panel).  3 

Neuronal dendrites are generated during development by a series of processes 4 

involving a first step of extension and retraction of dendritic branches, and subsequently 5 

stabilisation of existing dendrites through building of synaptic connections and neuronal 6 

calcium homeostasis 8. Calcium-dependent protein kinase C (PKC) subtypes, activated by 7 

synaptic inputs from the parallel fibres (granule cells) through metabotropic glutamate 8 

receptors (mGluR1/4), trigger functional changes as well as long-term anatomical maturation 9 

of the PN dendritic tree during cerebellar development 9. Altering the activity of calcium-10 

dependent PKC subtypes using PKC antagonist K252a improved dendritic branching for E18 11 

and P0 derived-PNs similar to in vivo, but had no effect on the branching characteristics of 12 

P10 derived-PNs (Figure 1b-c, 1b lower panel). Interestingly, K252a-induced PKC inhibition 13 

significantly improved the low survival rate observed for P0 and particularly for P10 derived-14 

PNs in a concentration dependent manner (Figure 1d).  The survival rate in P0 derived-PNs 15 

was improved by a factor of 6 by blocking 20 % of PKC activity (10 nM K252a), whereas in 16 

P10 derived-PNs, blocking PKC activity to 50 % (25 nM K252a) increased the survival rate 17 

by a factor of 28.  Inhibiting PKC activity had no effect on the survival rate of E18 derived-18 

PNs (Figure 1d).  19 

PN survival and dendritic tree development are also highly dependent on paracrine 20 

factors such as progesterone, insulin and insulin-like growth factor 1 (IGF1) secreted by other 21 

cells or self-produced by PNs in an age-dependent manner 10–12. We supplemented our culture 22 

with 40 µM progesterone and found this led to increased branched dendritic trees in E18 23 

derived-PNs, but it had no impact on the branch structure of P0 and P10 derived-PNs (Figure 24 

1e). Even though PN dendritic development was insufficient when either K252a inhibition or 25 

progesterone were not supplied, supplementation with insulin and IGF1 were sufficient to 26 
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maintain the long-term growth of the other cerebellar cell types: granule, Golgi, Lugaro, 1 

unipolar brush, stellate and basket cells (Figure 1f). 2 

To demonstrate that our PNs expressed functional synapses, we used 3 

immunocytochemistry to identify pre- and postsynaptic biomarkers of functional synapses 4 

including voltage-gated calcium channels (VGCC), metabotropic glutamate receptor 1 5 

(mGluR1), post-synaptic density protein 95 (PSD95), glutamate-decarboxylase 65 (GAD65), 6 

glycine transporter 2 (GlyT2), α-synuclein and bassoon. All these markers were present 7 

indicating a level of maturity of both the PNs and the surrounding network (Figure 1g).  8 

Next, we tested the functional activity of these PNs. In vivo, PNs fire spontaneous 9 

action potentials at frequencies of about 40-50 Hz with a complex trimodal pattern of tonic 10 

firing, bursting, and silent modes that depend on anatomically and functionally maturity 13,14. 11 

E18 derived-PNs cultured in a 24 well multielectrode array first revealed spontaneous 12 

bioelectrical activity on in vitro day 11. The spike rate increased constantly from 0.15 ± 0.03 13 

Hz (DIV11) to 2.56 ± 0.59 Hz (DIV21). After DIV28, the spike activity become erratic with 14 

long periods of silence, but overall, a frequency of 2.79 ± 0.55 Hz was maintained until 15 

DIV63 (Figure 1h). We observed uniform, highly non-uniform spike intervals and trains with 16 

silent periods between bursts and spike frequencies of up-to 140 Hz within the burst. 17 

Exchanging the PNC media at DIV28 to one previously used in organotypic brain slice culture 18 

15, prevented the erratic spike activity and stabilized the spike frequency at 6.35 ± 1.85 Hz for 19 

up-to 63 DIV. 20 

In addition to immunocytochemical and high-throughput electrophysiological studies, 21 

this 3D PN model system will provides the potential for cell-type-specific genetic 22 

engineering. For example, by using lentiviral particles to express PN-specific green 23 

fluorescence protein (GFP) via implementation of the L7 promoter 16,17. To test this, we 24 

applied L7-GFP inducing viral particles to dissociated PNs on the day of seeding. Within 3 25 

days, we found PNs expressing GFP and hardly any off-targets (<0.02%). At DIV14, 61.5 % 26 
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of the PN population were GFP positiveand these cells did not differ in dendritic structure and 1 

stably expressed GFP for up-to 169 DIV (Figure 1i). Using our culture system, we also found 2 

a sufficiently high transfection rate of PNs when lentiviral particles were added to the culture 3 

at DIV14 and DIV28, however the rate of transfection and speed of expression fell 4 

progressively the later the genetic manipulation was implemented. The GFP positive PNs in 5 

the culture revealed a very similar development to in vivo, as we were able to observed the 6 

fusion phase (E17-P5), the phase of stellate cells with disoriented dendrites (P5-P7), as well 7 

as the phase of orientation and flattering of the dendritic tree (P7-P21) 18,19 (Figure 1i).  8 

We present a 3D, rat PNC model for growing Purkinje neurons that is independent of 9 

derived tissue age, and which provides a complex and robust system that allows maximal 10 

experimental flexibility. The combined use of 3D network structures (3D-SCL) with 11 

optimized concentrations and time-dependent addition of hormones, paracrine factors and 12 

activity regulators (progesterone, insulin, IGF-1, K252a), created ideal conditions to grow a 13 

balanced cerebellar network in miniature (Figure 2).  As a proof-of-principle, we 14 

demonstrated the usefulness of this culture model as a high-throughput screening tool to 15 

investigate disease mechanisms including drug/compound testing. The long-term stability and 16 

neuronal complexity of our culture will facilitate the study of cell- and network-dependent 17 

cerebellar degeneration related to paraneoplastic cerebellar degeneration and ataxia.  18 

 19 

Material and Methods 20 

 21 

Neuronal culture preparation. 22 

All procedures were performed according to the National Institutes of Health Guidelines for 23 

the Care and Use of Laboratory Animals Norway (FOTS 20135149/20157494/20170001). 24 

Wistar Hannover GLAST rat pups (n = 328), embryonic day 18 (E18) to postnatal day 10 25 

(P10), were used for neuronal culture preparation. 26 
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Briefly, following anaesthesia and decapitation, the brains were rapidly transferred into 1 

preparation solution: ice-cold EBSS solution (Gibco, #24010043) containing 0.5% glucose 2 

(Sigma, #G8769) and 10 mM HEPES (Gibco, #15630056).  Under a dissection microscope, 3 

carefully remove the meninges, cut off the medulla oblongata and separate the cerebellum 4 

from the pons and the midbrain. Depending on the culture, Purkinje neuron or structural layer, 5 

transfer either only the cerebellum or the cerebellum including pones to a 15 mL tube 6 

containing 20 U/mL papain (Worthington, #LK003178) solved in preparation solution and 7 

warmed up to 36 ◦C. Place the tube into the incubator for 15 minutes at 36◦C with 8 

occasionally swirling to digest the tissue. Remove the papain solution carefully with a fire 9 

polished Pasteur pipette and stop the digestion by adding pre-warmed stop media (36◦C): 10 

advanced DMEM/F12 solution (Gibco, #12634010) containing 0.5% glucose (Sigma, 11 

#G8769) and 10% foetal bovine serum (FBS, Gibco, #10500064).  After 5 minutes of 12 

deactivation, remove the stop media and add 250 µL growth media containing 10% FBS per 13 

cerebellum and pipette the tissue/media suspension with a fire polished Pasteur pipette 100X 14 

until cells are separated.   15 

 16 

3D Support Cell Layer (3D-SCL). 17 

375000 cells/mL from cerebellum including pones were seeded on pre-coated coverslides 18 

from Neuvitro (#GG-12-1.5-PDL, 24 well, 500 µL/well; #GG-18-1.5-PDL, 12 well, 1 19 

mL/well; #GG-25-1.5-laminin, 6 well, 2 mL/well). Culture were maintained in 6-,12- or 24-20 

well plates in growth media consisting of 45% advanced DMEM/F12 solution (Gibco, # 21 

126340010), 45% NBM solution (Miltenyibiotec, #130-093-570), 1.5% B-27 serum-free 22 

supplement (Gibco, #17504044), 1.5% NB-21 serum-free supplement (Miltenyibiotec, #130-23 

093-566), 1% NaPyruvate (Invitrogen, #11360088), 1% heat-inactivated FBS (Invitrogen, 24 

#10500064), 2% GLUTAMAX (Gibco, #35050038), 5 mg/mL D-glucose and 10 mM HEPES 25 

(Invitrogen, #15630056) at 36°C. Half of the culture medium was replaced every 7 days. 26 
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 1 

Purkinje neuron layer. 2 

E18 and P0 derived Purkinje neuron culture: 500000 cells/mL from cerebellum without pones 3 

were seeded on the 3D support cell layer of different in vitro ages. P10 derived Purkinje 4 

neuron culture: 750000 cells/mL from the vermis of the cerebellum were seeded on the 3D 5 

support layer of different in vitro ages. The growth media was supplemented with insulin 6 

(Invitrogen, #12585014; 1:250, stock 4 mg/mL), progesterone (Sigma, #P8783, 1:2000, stock 7 

80 mM), insulin-like growth factor 1 (IGF1; Promokine, #E-60840, 1:40000, stock 1 µg/µL) 8 

and Protein kinase C inhibitor K252a (Alomone, # K-150; IC50 25 nM). In long-term cultures 9 

that were maintained for more than 28 days in vitro the IGF1 and progesterone concentration 10 

were reduced to 10 ng/mL and 20 µM, respectively. K252a was supplemented for 21 days 11 

before the washout process started, its optimal concentration was experimental evaluated for 12 

each tested culture type. Half of the culture medium was replaced every 3.5 (6 well) and 2 13 

(12/24 well) days, respectively. All experiments testing the Purkinje neuron yield dependent 14 

on derived tissue age,  in vitro age of the 3D-SCL and K252a concentration were performed 15 

randomly, containing 3 to 6 probes per experimental setting and 5 independently repeats for 16 

each group and condition.  17 

 18 

Lentiviral gene editing. 19 

L7 promoter (full length 1005 bp) were custom cloned by SBI System Bioscience into 20 

construct pCDH-L7-MCS-copGFP (#CS970S-1) and viral particle with a yield of 2.24 x 109 21 

ifus/mL were produced. Freshly prepared Purkinje neurons of E18 or P0 cerebellum 22 

suspended in growth media containing no serum were incubated for 10 minutes at 37 °C with 23 

1.22 x 106 viral particle/mL before seeded onto the supplement structure layer containing 24 

cover-slip or live cell imaging µ-dish (#80136, 35 mm, Ibidi). Media was changed after 3 25 

days and transfection efficiency evaluated by live cell imaging microscopy 24h post 26 
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transfection, daily up to 21 days and weekly up to 169 days in culture, respectively. 1 

Additional, lentiviral transfection of Purkinje neurons in culture were performed 1 day after 2 

feeding at DIV15 and DIV29 by applying 2.5 x 106 viral particle/mL to evaluate the 3 

efficiency and effects of age-dependent genetic manipulations. The neuronal development of 4 

the GFP expressing Purkinje neurons was followed by obtaining 10 independent 3x3 tile scan 5 

using the Zyla camera configuration (2048x2048) with the CFI Plan Apochromat Lambda dry 6 

objective 10x0.45 (pixel size 603 nm) or 20x0.75 (pixel size 301 nm) at the Andor Dragonfly 7 

microscope system (Oxford Instruments company). The experiments of DIV0, DIV15 and 8 

DIV29 were repeated three times. 9 

 10 

Immunohistochemical cell type characterisation. 11 

To evaluate Purkinje neuron yield and the distribution ratio of other cell types of the 12 

cerebellum, including their synaptic interactions, the culture was washed with pre-warmed 0.1 13 

M PBS (1xPBS; Gibco, #70013016) and fixed with 1.5-4% paraformaldehyde (PFA, pH 6-14 

7.2; ThermoScientific, #28908) containing 0.5% sucrose for 15 minutes at 36°C. Tris-based 15 

or citric acid-based heat induced antigen retrieval (pH 9 and pH 6; 45 min, 85 °C) 20 were 16 

perform when necessary (see Table 1). Culture were quenched with 1xPBS containing 50 mM 17 

NH4Cl (PBSN), permeabilised with 0.2% Triton X-100 (Sigma, #T9284) in PBSN (5 min, 18 

36°C), rinsed with PBSN  containing 0.5% cold water fish gelatine (Sigma, #G7041)(PBSNG, 19 

3x15 min), and incubated with  primary antibody over-night at 4°C in PBSNG containing 10% 20 

Sea Block (SB; ThermoScientific, #37527), 0.05% Triton X-100  and 100 μM glycine 21 

(Sigma, #G7126) to visualise the different cerebellar cell types, including Purkinje neurons 22 

and their synaptic interactions (Table 1). The cover-slips were rinsed with PBSNG (3x20 min) 23 

and incubated with highly cross-absorbed donkey secondary antibodies conjugated to 24 

CFTM488/594/647-Dye (1:400; Biotium, #20014, #20115, #20046, #20015, #20152, #20047, 25 

#20074, #20075, #20169, #20170) for 2 hours at 22°C in PBSNG containing 2.5% SB. To 26 
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remove unbound secondary antibody cover-slips were rinsed with PBSN (3x20 min), and 1 

briefly tipped into MilliQ water before mounted in hardening ProlongTM Glass Antifade 2 

Reagent (Invitrogen, #P36981) onto cover-slides. After 2 days of hardening at 18-21°C in the 3 

dark, cover-slides were stored at 4°C until imaging. 4 

 5 

Purkinje neuron count and imaging. 6 

Purkinje neurons were counted manually and blind by screening the cover-slips using a Leitz 7 

Diaplan Fluorescence microscope equipped with CoolLED pE-300white. For dendritic tree 8 

branch analysis and determination of maturity and synaptic interaction,  10 Purkinje neuron 9 

Z-stack images per cover-slide were collected in 5 independent and randomized experiments 10 

at 0.5-1 μm intervals with the Zyla camera configuration (2048x2048) at the Andor Dragonfly 11 

microscope system using either a CFI Plan Apochromat Lambda S LWD 40x1.14 water 12 

objective (pixel size 151 nm), 60x1.20 oil objective (pixel size 103 nm) or CFI SR HP Apo TIRF 13 

100x1.49 oil objective (pixel size 60 nm) to detect DAPI and CFTM488/594/647 dye emission 14 

and superimposed with Fusion software (Oxford Instruments). 3D surface visualization of 15 

synapses was performed using Oxford Instruments analysis software IMARIS 9.3.1 and the 16 

filament tracer tool 21.  17 

 18 

Dendritic tree branch analysis. 19 

 The Purkinje neuron dendritic tree development was evaluated by analysing group 20 

dependent 10 Purkinje neurons per experiment in 10 independent experiments towards the 21 

order and length of the dendritic arbours by using an open-source ImageJ and Fiji plugin 22 

Simple_Neurit_Tracer (Neuroanatomy) 22. 23 

 24 

Micro-electrode array (MEA) recordings. 25 
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Primary cultures of E18 derived-PNs at a concentration of 500000 cells/mL were 1 

plated onto PDL precoated 24 well format plate of the Multiwell-MEA-system (Multi 2 

Channel System-MCS, Reutlingen, Germany). Each well contains 12 PEDOT coated gold 3 

micro-electrodes (30 µm diameter, 300 µm space, 3 x 4 geometrical layout) on glass base to 4 

facilitate visual checking (#890850, 24W300/30G-288). The amplifier (data resolution: 24 bit; 5 

bandwidth: 0.1 Hz to 10 kHz, modifiable via software; default 1 Hz to 3.5 kHz; sampling 6 

frequency per channel: 50 kHz or lower, software controlled; input voltage range: ± 2500 7 

mV), stimulator (current stimulation: max. ± 1 mA; voltage stimulation: max. ± 10 V; 8 

stimulation pattern: pulse or burst stimulation sites freely selectable) and heating element 9 

(regulation: ± 0.1 °C) is integrated in the Multiwell-MEA-headstage which is driven by the 10 

MCS-Interface Board 3.0 Multiboot. The Multiwell recording platform is covered by a mini 11 

incubator to provide 5% CO2 and balanced air. Electrophysiological signals were acquired at a 12 

sampling rate of 20kHz through the commercial software Multiwell-Screen. Plates were 13 

tested every second day for spontaneous activity from day 5 in vitro. Raw voltage traces were 14 

recorded for 120 seconds, saved and analysed using offline MCS-Multiwell-Analyzer to 15 

calculate spike rate and burst activity, including network properties. Two experimental 16 

settings were tested: number 1 recording of spontaneous spike activity in Purkinje neuron 17 

culture media (45% advanced DMEM/F12 solution, 45% NBM solution, 1.5% B-27 serum-18 

free supplement, 1.5% NB-21 serum-free supplement, 1% NaPyruvate, 1% heat-inactivated 19 

FBS, 2% GLUTAMAX, 5 mg/mL D-glucose, 10 mM HEPES, 16 µg/mL insulin, 25 ng/mL 20 

IGF1, 40 µM progesterone, 5 nM K252a) for 63 days and number 2 recording spontaneous 21 

spike activity for the first 28 days in Purkinje neuron culture media but then exchanged to 22 

organotypic brain slice culture media 15 (30% advanced DMEM/F12 solution, 20% MEM 23 

solution (#41090028; Gibco), 25% EBSS solution (#24010043; Gibco), 25% heat-inactivated 24 

horse serum (#H1138; Sigma), 2% GLUTAMAX, 5 mg/ml D-glucose and 2% B-27 serum-25 

free supplement) for the remaining 45 days. 26 
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 1 

Notes to provide stable high yield Purkinje neuron culture. 2 

(1) All media should be prepared fresh on the day of use. 3 

(2) Prevent repeated thaw-freeze cycles of the supplements 4 

(3) 3D-SCL should be fed 24 hours prior plating of the second cell layer, PN layer, to 5 

provide stable pH at 6.8 to 7.0 on the day of seeding. 6 

 7 
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FIGURE LEGEND 1 

Figure 1 | Evaluation of age-dependent rat Purkinje neuron culture. (a) Interdependent 2 

relationship of Purkinje neuron yield and in vitro age of the 3D support cell lager (3D-SCL: 3 

DIV 7 to 48) for E18, P0 and P10 derived-Purkinje neurons. (b) Representative Purkinje 4 

neuron skeletons dependent on derived neuron age, 3D-SCL and protein kinase C (PKC) 5 

antagonist K252a. Scale bar, 20 µm; (c) Analysis of dendritic branch structure towards length 6 

and branch orders for Purkinje neurons derived from E18, P0 and P10 tissue without and with 7 

25 µM K252a to modulate PKC activity. (d) Interdependent relationship of Purkinje neuron 8 

yield and concentration-dependent PKC activity modulation for E18, P0 and P10 derived-9 

Purkinje neurons. (e) Representative skeleton of an E18 derived-Purkinje neurons visualizing 10 

the effect of 40 µM progesterone on dendritic branching. Scale bar, 20 µm; (f) 11 

Immunohistochemical representation of the major cell types (white) forming the 3D-SCL: 12 

unipolar brush cells (CAL- calretinin), granule cells (GABAARα6), Golgi cells (NG-13 

neurogranin, GlyT2), Lugaro cells (GlyT2), stellate and basket cells (PAV-parvalbumin), 14 

fibres such as mossy and climbing (VGluT2, PP-peripherin), oligodendrocytes (CNP1) as 15 

well as microglia (IBA1). Nuclei staining DAPI (blue). Scale bar, 50 µm; (g) 16 

Immunohistochemical representation of mature Purkinje neurons (green; CB-calbindin, PCP2 17 

- Purkinje cell specific protein 2) positive for post- and presynaptic biomarkers (magenta). 18 

Postsynaptic: VGCC, mGluR1, and PSD95 including 3D IMARIS cartoon reconstruction of 19 

the protein positive synapses on one chosen Purkinje neuron dendrite; Pre-synaptic: α-20 

synuclein (α-syn) – marker of glutamatergic synaptic terminals from granule cells (parallel 21 

fibres) and unipolar brush cells (type I/II); GAD65- marker of axon terminals from stellate 22 

and basket cells; bassoon – marker of the active zone of mossy fibre terminals and parallel 23 

fibre terminals between Golgi cells and granule cells, and between basket cells and Purkinje 24 

neurons; and synapsin I – synaptic vesicle phosphoprotein of mature CNS synapses; Nuclei 25 

staining DAPI (blue). Scale bar, 20 µm; (h) MEA recorded spike patterns (10s) with a cut-out 26 
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(1s) at day 21 in vitro following Purkinje neuron maturity. (i) Live-cell imaging of E18 1 

derived-Purkinje neuron expressing lentiviral-induced GFP from day of seeding (DIV0) up to 2 

2 months (DIV53). The Purkinje neuron development to maturity was very similar to in vivo, 3 

as the fusion phase (E17 - P5 ≈ DIV0 – DIV7), the phase of stellate cells with disoriented 4 

dendrites (P5 - P7 ≈ DIV7 – DIV9), as well as the phase of orientation and flattering of the 5 

dendritic tree (P7 - P21 ≈ DIV9 – DIV23) were observed. Scale bar, 50 µm 6 

 7 

Figure 2 | Optimized 3D rat Purkinje neuron culture protocol. Each tested culture desired 8 

different conditions of support and activity interdependent of the starting tissue age. Whereas 9 

the supplementation of insulin-like growth factor 1 (IGF1) and progesterone (PROG) induced 10 

a stable environment to obtain high survival rates of Purkinje neurons, PKC activity 11 

modulation mainly shaped the dendritic tree development, with the exception of P10 tissue 12 

derived neurons where the survival was highly dependent on the inhibition of PKC but not 13 

their dendritic tree development. The optimized protocol for all tested tissues relies on the 14 

time point of placing the second cell layer, the Purkinje neuron enriched layer, and media that 15 

is supplemented with IGF1, progesterone and K252a, where K252a starting concentration is 16 

altered dependent on the used tissue to start the culture as follow; DIV1-10: E18 - 5 nM, P0 - 17 

10 nM, P10 - 25 nM; DIV10-22: the K252a concentration is raised to 25 nM for E18 and P0 18 

until the dendritic tree is well-developed and mature; DIV22-28: washout phase, K252a 19 

supplementation is stopped (DIV22-24: 12.5 nM, DIV24-26: 6.75 nM, DIV26-28: 3.35 nM). 20 

At DIV 28 the IGF1 and progesterone concentration is reduced by factor, 2.5 and 2, 21 

respectively, to proceed to long-term culture conditions. The developed protocol allows to 22 

grow a stable Purkinje neuron 3D culture for up to 6 months (DIV163) in a 6 to 24 well 23 

format. 24 
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