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Abstract 

Background 

Puberty marks the transition from childhood to adulthood and is characterized by 

physiological and psychological changes leading to sexual maturity and reproductive 

function. Assessment of pubertal development in boys is challenging, due to the 

intimate and subjective nature of the examinations. Over the last decades, several 

studies have suggested a trend towards earlier puberty in boys, but data from Norway 

have been lacking. Up-to-date descriptive data allow to investigate secular trends and 

are required to define early or late puberty, both of which may impact on later health 

outcomes. The underlying mechanisms that influence the timing and progression of 

puberty are, particularly in boys, not fully elucidated. Overweight and obesity, as well 

as exposure to endocrine-disrupting chemicals, have been proposed as possible 

drivers for the trend towards earlier puberty. 

Aims 

The main aims of this study were to explore ultrasound as a reliable method for 

assessment of testicular volume and to establish references for the timing of pubertal 

development in Norwegian boys based on ultrasound-measured testicular volumes 

and the development of pubic hair. In addition, the study also aimed to establish 

references for serum levels of testosterone and other reproductive hormones in 

relation to ultrasound-derived testicular volumes and to examine the association 

between pubertal status and anthropometric measures in boys. 

Materials and methods 

This study is based on data from Bergen Growth Study 2 collected in 2016–2017. A 

total of 514 healthy boys aged 6–16 years were examined with ultrasound to measure 

the testicular volume, as well as clinically to assess for development of pubic hair 

according to the Tanner scale. In addition, anthropometric measurements, including 

height, weight, waist circumference, and subscapular skinfolds, as well as body 

composition, including body fat percentage, were recorded, and blood samples were 

collected for most of the participants. 
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Results 

Results showed that ultrasound can be used to quantitate testicular volume in boys, 

without interference from surrounding scrotal tissue. The intra- and interobserver 

error was acceptable for clinical use. Prader orchidometry, compared to ultrasound, 

tended to overestimate smaller testicular volumes. Norwegian boys reached pubertal 

testicular volume at a mean (SD) age of 11.7 (1.1) years, and the onset of pubic hair 

development occurred, on average, at 11.8 (1.2) years. The study also found that 

testicular volume accounted for more variance in serum testosterone levels than 

chronological age, and that male pubertal hormone reference intervals benefited from 

stratification by testicular volume. Further, low body mass index (BMI) and small 

waist circumference for age, rather than high BMI and large waist circumference for 

age, influenced the timing of pubertal development. Boys with low BMI for age 

entered puberty approximately 8 months later than normal-weight or overweight 

boys. 

Conclusion 

This study demonstrates the usefulness and potential advantages of ultrasound as a 

method for evaluation of testicular volume in boys. Implementation of an ultrasound 

protocol has the added advantage of enabling more objective measurements on a 

continuous scale. In this study, the first references for clinical assessment of puberty 

in Norwegian boys were developed, which showed that Norwegian boys exhibited 

pubertal timing that is comparable with current Northern European references, and no 

apparent secular trend towards earlier puberty was observed over the last decades. 

Stratification of pubertal hormone references based on objective ultrasound 

assessments of testicular volume was shown to narrow the reference ranges and thus 

has the potential to increase the diagnostic value of traditional references based on 

chronological age. Finally, the study showed that low, but not high, BMI for age was 

associated with pubertal status, indicating that all weight classes should be taken into 

consideration when assessing sexual maturation in children and adolescents. 

 



 7 

Table of Contents 

Scientific environment ................................................................................................................................... 2 

Acknowledgements........................................................................................................................................ 3 

Abstract ......................................................................................................................................................... 5 

Table of Contents ........................................................................................................................................... 7 

List of publications ....................................................................................................................................... 10 

Abbreviations .............................................................................................................................................. 12 

1. Introduction ....................................................................................................................................... 14 

1.1 Normal pubertal development in boys .............................................................................................. 14 

 The hypothalamic–pituitary–gonadal axis ................................................................................ 14 

 Physical changes during puberty .............................................................................................. 16 

1.2 Assessment of puberty in boys ........................................................................................................... 20 

 Tanner stages for genital and pubic hair development ............................................................ 20 

 Measurement of testicular volume .......................................................................................... 21 

 Other pubertal markers ............................................................................................................ 23 

 Paediatric endocrine references ............................................................................................... 25 

1.3 Timing of puberty in boys ................................................................................................................... 26 

 Secular trends ........................................................................................................................... 26 

 Disorders of pubertal timing ..................................................................................................... 28 

1.4 Factors influencing the timing of puberty .......................................................................................... 29 

 Genetics .................................................................................................................................... 29 

 Body composition ..................................................................................................................... 31 

 Endocrine-disrupting chemicals ................................................................................................ 34 

 Stress and socio-economic factors ............................................................................................ 34 

1.5 Consequences of altered puberty timing ........................................................................................... 35 

2. Aims and hypotheses ......................................................................................................................... 36 

3. Materials and methods ...................................................................................................................... 38 

3.1 Study design ........................................................................................................................................ 38 

3.2 Childhood populations ........................................................................................................................ 38 



 8 

3.3 Ultrasound measurements ................................................................................................................. 40 

3.4 Pubertal assessments ......................................................................................................................... 41 

3.5 Blood samples ..................................................................................................................................... 41 

3.6 Anthropometric measurements and bioelectrical impedance analysis ............................................ 42 

3.7 Questionnaire ...................................................................................................................................... 43 

3.8 Quality control .................................................................................................................................... 43 

3.9 Statistical analysis .............................................................................................................................. 43 

 Observer agreement ................................................................................................................. 44 

 Pubertal references ................................................................................................................... 46 

 Endocrine references ................................................................................................................ 47 

 Association analyses .................................................................................................................. 48 

 Power calculations .................................................................................................................... 50 

3.10 Ethics .............................................................................................................................................. 50 

4. Summary of results ............................................................................................................................ 52 

4.1 Paper I ................................................................................................................................................. 52 

4.2 Paper II ................................................................................................................................................ 54 

4.3 Paper III ............................................................................................................................................... 55 

4.4 Paper IV ............................................................................................................................................... 56 

5. Discussion .......................................................................................................................................... 57 

5.1 Methodological considerations .......................................................................................................... 57 

 Childhood populations .............................................................................................................. 57 

 Pubertal assessment ................................................................................................................. 61 

 Blood sampling and analyses .................................................................................................... 64 

 Anthropometric measurements ................................................................................................ 66 

 Statistical considerations .......................................................................................................... 67 

 Ethical considerations ............................................................................................................... 68 

5.2 Discussion of results ............................................................................................................................ 68 

 Observer agreement ................................................................................................................. 68 

 Method comparison .................................................................................................................. 69 

 Pubertal timing .......................................................................................................................... 70 

 Stratification of endocrine references ...................................................................................... 72 

 Association between pubertal maturation and anthropometric measures ............................. 74 



 9 

6. Conclusions ........................................................................................................................................ 78 

7. Future perspectives ............................................................................................................................ 80 

References ................................................................................................................................................... 83 

Errata ......................................................................................................................................................... 105 

Appendix.................................................................................................................................................... 107 

 

 

 

 



 10 

List of publications 

 

Paper I 

Oehme NHB, Roelants M, Bruserud IS, Eide G.E, Bjerknes R, Rosendahl K, 

Juliusson P.B. Ultrasound-based measurements of testicular volume in 6- to 16-year-

old boys—intra- and interobserver agreement and comparison with Prader 

orchidometry. Pediatr Radiol. 2018;48:1771–8. 

 

Paper II 

Oehme NHB, Roelants M, Bruserud IS, Madsen A, Eide G.E, Bjerknes R, Rosendahl 

K, Juliusson P.B. Reference data for testicular volume measured with ultrasound and 

pubic hair in Norwegian boys are comparable with Northern European populations. 

Acta Paediatr. 2020;109:1612–19. 

 

Paper III 

Madsen A, Oehme NB, Roelants M, Bruserud I.S, Eide G.E, Viste K, Bjerknes R, 

Almås B, Rosendahl K, Sagen J.V, Mellgren G, Juliusson P.B. Testicular ultrasound 

to stratify hormone references in a cross-sectional Norwegian study of male puberty. 

J Clin Endocrinol Metab. 2020;105:dgz094. 

 

Paper IV 

Oehme NHB, Roelants M, Bruserud IS, Madsen A, Bjerknes R, Rosendahl K, 

Juliusson P.B. Low BMI, but not high BMI, influences the timing of puberty in boys. 

Submitted, manuscript under review. 

 

 

 

Articles are reprinted with permission from their respective publishers (Springer, 

Oxford University Press, and John Wiley & Sons). All rights reserved. 

 



 11 

Related papers 

 

1. Oehme NHB, Bruserud IS, Madsen A, Juliusson PB. Is Puberty starting earlier 

than before? Tidsskr Nor Legeforen. 2020;140doi: 10.4045/tidsskr.20.0043 

2. Madsen A, Bruserud IS, Bertelsen BE, Roelants, M., Oehme, NHB, et al. 

Hormone references for ultrasound breast staging and endocrine profiling to detect 

female onset of puberty. J Clin Endocrinol Metab. 2020;105:dgaa679. 

3. Bruserud IS, Roelants M, Oehme NHB, et al. References for ultrasound 

staging of breast maturation, Tanner breast staging, pubic hair and menarche in 

Norwegian girls. J Clin Endocrinol Metab. 2020;105:dgaa107. 

4. Bruserud IS, Roelants M, Oehme NHB, et al. Ultrasound assessment of 

pubertal breast development in girls; intra- and interobserver agreement. Pediatr 

Radiol. 2018;48:1576–83. 

 

 



 12 

Abbreviations 

%BF   body fat percentage 

AOR   age-adjusted odds ratio 

BGS1   Bergen Growth Study 1 

BGS2   Bergen Growth Study 2 

BIA   bioelectrical impedance analysis 

BMI   body mass index 

CALIPER  Canadian Laboratory Initiative for Pediatric Reference Intervals 

CDC   Centers for Disease Control and Prevention 

CDGP   constitutional delay of growth and puberty 

CHH   congenital hypogonadotropic hypogonadism 

CI   confidence interval 

CLSI   Clinical Laboratory Standards Institute 

CNS   central nervous system 

CV   coefficient of variation 

DEXA  dual-energy X-ray absorptiometry 

DHEAS  dehydroepiandrosterone 

EDC   endocrine-disrupting chemical 

edf   equivalent degrees of freedom 

EDTA   ethylenediaminetetraacetic acid 

EWAS  epigenome-wide association studies 

FSH   follicle-stimulating hormone 

GAM   generalized additive model 

GLM   generalized linear model 

GnIH   gonadotropin-inhibiting hormone 

GnRH   gonadotropin-releasing hormone 

GOOD  Gothenburg Osteoporosis and Obesity Determinants (study) 

GWAS  genome-wide association studies 

HPA   hypothalamic–pituitary–adrenal 

HPG   hypothalamic–pituitary–gonadal 

IGF-1   insulin-like growth factor 1 



 13 

IOTF   International Obesity Task Force 

LC-MS/MS  liquid chromatography with tandem mass spectrometry 

LH   luteinizing hormone 

LL   lower limit 

LOA   limits of agreement 

MoBa   Norwegian Mother and Child Cohort Study 

NHANES III  Third National Health and Nutrition Examination Survey 

OM   orchidometer 

OR   odds ratio 

PH   pubic hair (Tanner staging) 

PHV   peak height velocity 

PROS   Pediatric Research in Office Settings (study) 

ROC   receiver operating characteristic 

SD   standard deviation 

SE   standard error 

SHBG   sex hormone-binding globulin 

SPSS   Statistical Package for the Social Sciences 

SSF   subscapular skinfolds 

TEM   technical error of measurement 

TV   testicular volume 

UL   upper limit 

US   ultrasound 

USTV   ultrasound-determined testicular volume 

USTVz  testicular volume-for-age z-score 

WC   waist circumference 



 14 

1. Introduction 

The Bergen Growth Study 1 (BGS1) conducted in 2003–2006, provided valuable 

information about contemporary growth in Norwegian children. However, it did not 

include information about puberty. The Bergen Growth Study 2 (BGS2) filled this 

gap by collecting data on pubertal development in Norwegian children. This thesis 

presents findings on boys who were examined as part of BGS2. 

Prior to the BGS2, only limited data on pubertal development in Norwegian 

boys were available, and the pubertal age references used on current Norwegian 

growth charts are based on Danish data collected between 1991 and 1993 (1). 

Contemporary pubertal references have both epidemiological and clinical relevance. 

From an epidemiological point of view, data on pubertal onset are needed to assess 

the timing of puberty initiation and possible secular trends in puberty development in 

a population over time. In the clinical setting, a pubertal reference allows to define 

early and late puberty, both of which are related to health risks for an individual 

child. In addition, pubertal studies are important for a better understanding of the 

underlying mechanisms that influence puberty, including its timing and progression, 

which, particularly in boys, are not fully elucidated. 

 

1.1 Normal pubertal development in boys 

Puberty marks the transition from childhood to adulthood and is characterized by the 

appearance of secondary sex characteristics, growth spurt, sexual maturation and 

subsequent fertility, and profound psychological changes. The psychological 

development during puberty is outside the scope of this study which here mainly 

focuses on the physical changes in puberty and the achievement of pubertal 

milestones. 

 

 The hypothalamic–pituitary–gonadal axis 

The hypothalamic–pituitary–gonadal (HPG) axis comprises the hypothalamus, the 

pituitary gland, and the gonads (testes in boys and ovaries in girls) and is the control 

centre of the central pubertal development (Figure 1). Gonadotropin-releasing 
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hormone (GnRH) is secreted from the hypothalamus in a pulsatile fashion and 

stimulates the synthesis and release of the gonadotropins luteinizing hormone (LH) 

and follicle-stimulating hormone (FSH) from the anterior pituitary gland. LH and 

FSH act on the testes, with LH inducing the production of testosterone from Leydig 

cells and FSH promoting the secretion of inhibin B from Sertoli cells (2,3). 

Testosterone stimulates spermatogenesis (the development of sperm cells) and is also 

important for muscle development, voice deepening, and enlargement of the penis. 

Inhibin B nurtures and supports spermatogenesis (4). 

 

 

Figure 1 The HPG axis with positive and negative feedback signals. Illustration by 

Matthew Holt. 

 

The HPG axis is tightly controlled and maintained by several feedback loops 

whereby the gonadotropins and sex steroids inhibit further GnRH and gonadotropin 

release. Kisspeptin and gonadotropin-inhibiting hormone (GnIH) are two 

hypothalamic neuropeptides that seem to play a critical role in the regulation of the 

reproductive axis. Kisspeptins act as stimulators of the reproductive axis (5) and are 

thought to have an essential role in the control of puberty (6), while GnIH is the 

inhibitory counterpart (7). Other hormones, e.g., the gastrointestinal regulatory 
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hormone leptin and insulin from the pancreas, also have stimulatory effects on the 

reproductive axis, whereas ghrelin, another gastrointestinal hormone, exerts an 

inhibitory effect on GnRH secretion (8), thus suggesting a tight correlation between 

reproductive axis and nutritional status. The HPG axis undergoes two activation 

phases throughout the lifespan. The first activation occurs as a transient surge in the 

first months of life, so-called mini-puberty (9), followed by a quiescent period during 

childhood, before the second activation (i.e. reactivation) upon puberty initiation (10). 

The mechanisms underlying the suppression and triggering of HPG axis reactivation 

are not fully known. In essence, increased pulsatile GnRH secretion at puberty 

represents the cumulative effects of highly complex hypothalamic interactions that 

are influenced by both genetic factors and environmental signals (11). 

Independently of the onset of sex steroid secretion from the gonads 

(gonadarche), the adrenal glands are activated through the hypothalamic–pituitary–

adrenal (HPA) axis, marked by elevated levels of androgens, e.g. 

dehydroepiandrosterone (DHEAS) (12). This process is called adrenarche and can 

begin years before gonadarche, at a mean age of 7–9 years in boys (13). Adrenarche, 

together with testosterone, is responsible for the growth of pubic and axillary hair 

(pubarche) and the development of adult body odour and acne and may cause a 

transient acceleration of linear growth and bone maturation. 

 

 Physical changes during puberty 

Pubertal physical changes occur following gonadarche. Boys undergo progressive 

masculinization, which includes scrotal maturation, increasing penile length and 

width, voice deepening, development of male hair pattern, accelerated growth, and 

changes to the musculoskeletal system. These changes are known as pubertal 

milestones and result from an increase in sex hormone synthesis by the gonads under 

the control of the HPG axis. Puberty progression usually occurs in an ordered 

sequence, with testicular enlargement as the first pubertal milestone, followed by 

pubic hair growth and penile growth. Longitudinal studies have shown that it takes 

approximately 4–5 years for boys to reach full development of adult male genitalia 

from the first signs of genital growth (14). 
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1.1.2.1 Testicular and scrotal development 

The testes are two small oval-shaped organs that are contained within the scrotum 

and are responsible for secreting testosterone and producing sperm (Figure 2). 

Testosterone is necessary for normal masculinization and spermatogenesis. Prenatal 

and postnatal activation of the HPG axis is associated with testicular growth and 

testicular descent into the scrotum. Testicular size increases from early childhood to 

prepuberty from around 1 mL to 3 mL, as measured with the Prader orchidometer 

(15), with peak testicular growth achieved during puberty (16-18), before a testicular 

size of 15 mL is reached in adulthood. There is a large interindividual variation in 

the timing of testicular growth, as well as in adult testicular volume (TV) (19). 

Starting in the first trimester of fetal life, the testis contains two compartments that 

gradually differentiate through to adulthood to comprise the seminiferous tubules 

containing Sertoli and germ cells, and the interstitial tissue containing Leydig cells 

(20). Pubertal testicular size increase to a final volume of 15–25 mL and is largely 

dependent on the action of FSH inducing germ cell proliferation and growth of the 

seminiferous tubules, whereas LH and testosterone are essential players in 

completion of spermatogenesis (21). FSH, LH, and testosterone work in synergy, 

with all three hormones needed for normal spermatogenesis. In a recent study, adult 

TV has been shown to correlate with sperm output and concentration (22). 

 

 

Figure 2 Anatomy of the male reproductive system. Illustration by Matthew Holt. 
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The testes are closely associated with several structures within the scrotum, 

namely the tunica vaginalis, the epididymis, and the vas deferens. The tunica 

vaginalis is a membrane that covers the testes. The epididymis is a long tube which 

moves sperm from the testicle, to the vas deferens where the sperm is stored before it 

is carried out of the scrotal sac. The vas deferens connects the epididymis and the 

urethra. Structures outside the scrotum that are also part of the male reproductive 

system include the seminal vesicles and the prostate. The seminal vesicles lie behind 

the bladder and produce and release seminal fluid rich in fructose and proteins. 

Seminal fluid is a constituent of semen, contributing about 50–80% of the ejaculatory 

volume (23,24). The prostate gland surrounds the neck of the bladder and urethra and 

secretes an alkaline fluid, also a constituent of semen. 

 

1.1.2.2 Penile growth 

The growth curve of the penis differs from that of the rest of the body (25). The penis 

starts to grow from birth for 3–4 years and thereafter changes little until pubertal 

onset. Penile growth is growth hormone (GH)- and testosterone-dependent; it occurs 

first in length and then in diameter, and it is a relatively early pubertal sign, beginning 

gradually from about age 10 years (26). In the average male, adult penile length is 

reached by age 16 or 17 years, although with considerable variation. 

 

1.1.2.3 Pubarche/adrenarche 

Pubarche refers to the first appearance of pubic hair and is considered a manifestation 

of adrenarche. Pubic hair is dark, long, and eventually curly. In a longitudinal study 

from Denmark, 90 healthy boys were examined every 6 months for 5 years. They 

found that only 25% experienced pubic hair development before they reached a 

pubertal TV of >3 mL (pubarche pathway) and that 60% achieved pubertal TV before 

the development of pubic hair (testicular pathway) (27). Pubarche does not 

necessarily represent evidence of gonadotropin-dependent puberty (through the HPG 

axis). However, the role of adrenal androgens in central initiation of normal puberty 

in boys remains unknown. In addition to pubic hair growth, boys will also undergo 

the development of axillary and facial hair and adult body odour, with some also 
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experiencing the development of acne, all of which are clinical consequences of 

adrenarche. 

 

1.1.2.4 Voice break 

Voice break is a result of lengthening of the vocal cords that follows the growth spurt 

of the larynx, thus causing an abrupt decrease in the fundamental voice frequency 

(28). Voice changes in boys occurs about 2 years after pubertal onset (defined by TV 

4 mL) and become obvious when the TV is around 12 mL (29). Voice break can be 

used as a marker for late puberty, as over 30% of boys complete voice break by age 

14 years (30). 

 

1.1.2.5 Gynaecomastia 

Gynaecomastia is enlargement or swelling of the breast tissue in males. It can be 

unilateral or bilateral and occurs to some degree during puberty in 39–75% of boys 

(31,32). It is thought to be due to a relative imbalance between free oestrogen and 

free androgen actions in the breast tissue, and lower serum free testosterone levels 

have been observed (32). Physiological gynaecomastia usually resolves as puberty 

progresses and testosterone levels increase. 

 

1.1.2.6 Skeletal growth and body composition 

GH and insulin-like growth factor 1 (IGF-1) are markedly increased during puberty. 

Along with sex steroids (especially oestradiol, which is aromatized from testosterone 

in the growth plate), both GH and IGF-1 contribute to pubertal growth spurt. This 

spurt is the most rapid growth phase since the neonatal period, following a reduced 

growth rate in late childhood. Up to 20% of adult height is achieved during puberty, 

and the total height gained from the take-off point to cessation of growth averages 28 

cm in boys (33,34), with an incremental rate of 9.5 cm/year (35). Early-maturing 

boys often have a large pubertal growth spurt, but a shorter period of childhood 

growth, while late-maturing boys experience a less pronounced pubertal growth spurt, 

but a longer period of childhood growth. Therefore, the timing of pubertal onset does 

not greatly influence adult height (30). 
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As boys go through puberty, total body bone mass and fat-free mass continue to 

increase, resulting in an increased body mass index (BMI) in puberty. The increase in 

lean body mass starts at around age 10 years in boys and is the earliest change in 

body composition in puberty (36). Puberty in males is characterized by greater gain in 

fat-free mass, compared to fat mass (37), as well as greater gain in central fat relative 

to total body fat (38). 

 

1.2 Assessment of puberty in boys 

It can be challenging to determine when the first signs of puberty appear or even to 

know what signals pubertal onset. Unlike in girls in whom menarche is a clear marker 

of puberty, there is no similar convenient marker of puberty in boys that can be 

assessed for over an interview consultation. Studies on boys must therefore rely on 

physical examination, preferably with accurate staging of TV, pubic hair, and genital 

development (39). Such studies are difficult to implement on a large scale, which 

could explain why there are only few studies on pubertal development in boys. Data 

on pubertal development gathered from a physical examination are often unavailable 

from epidemiological studies, and are commonly based either on surrogate markers, 

such as peak height velocity, voice break, and timing of the first conscious 

ejaculation (40-42), or on self-assessment of pubertal status (43,44). The validity of 

such data has been debated (45). 

 

 Tanner stages for genital and pubic hair development 

The commonest way to assess puberty in clinical practice is based on a classification 

system of secondary sex characteristics developed in the late 1960s by the British 

paediatricians William Marshall and James Tanner (46). Based on longitudinal 

photographic observations of genital development in a rather small sample of 228 

boys living in a children’s home, Marshall and Tanner developed a five-grade scale 

for the development of external genitalia (Tanner G) and pubic hair development 

(Tanner PH). Tanner stages for genital and pubic hair development are determined by 

visual inspection of individual boys, with comparison to pictures or sketches (Figure 

3). Tanner stages G1 and PH1 are considered prepubertal, while Tanner stage G2 
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(enlargement of the scrotum and testes, i.e. TV 4 mL; scrotum skin reddening; and 

changes in texture) marks the onset of puberty. Visual inspection of scrotal and penile 

changes may be inconsistent and is considered a subjective assessment, as subtle 

changes in penile size and scrotal skin texture at the onset of puberty can be difficult 

to detect (47). Therefore, Tanner stage G2 alone is considered a poor index of 

pubertal onset (48). Tanner stage PH2 (sparse growth of long, slightly pigmented hair 

at the base of the penis) is considered pubertal and is often the easiest physical 

change to observe. However, the appearance of pubic hair alone may not indicate the 

onset of gonadal activity but instead reflect adrenal androgen secretion. Tanner and 

Marshall reported a mean age of 11.64 years for Tanner stage G2 and 13.44 years for 

Tanner stage PH2 (as assessed from photographs in cases where the first appearance 

of pubic hair is difficult to see) (46). Tanner stages G5 and PH5 mark the adult 

phenotype. 

 

 

Figure 3 In boys, genital development is rated from Tanner stage 1 (prepubertal) to 

Tanner stage 5 (adult); stage 2 marks the onset of pubertal development and is 

characterized by scrotal and testicular enlargement, as well as by a change in the 

texture and reddening of the scrotal skin. Pubic hair development is rated from 

Tanner stage 1 (prepubertal, no pubic hair) to Tanner stage 5 (adult); stage 2 marks 

the onset of pubic hair development. Reproduced with permission from Carel and 

Léger, N Engl J Med 2008, Copyright Massachusetts Medical Society. 

 

 Measurement of testicular volume 

Measurements of the TV are considered more objective and quantifiable, compared to 

Tanner staging of genital development, with less interobserver variation (47). 

Reliable and accurate measurements of the TV are of great importance for examining 

pubertal development, and for diagnosing and monitoring treatment for 

cryptorchidism, hypogonadotropic hypogonadism, and varicocele, as well as 
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testicular damage from cytotoxic agents, and for estimating potential male infertility 

(21). A simple visual inspection is not sufficient, and both palpation and actual 

measurements are required for an accurate determination of the TV. The TV is 

usually measured with a Prader orchidometer, simple calliper, or ruler, or with 

ultrasound. 

 

1.2.2.1 Prader orchidometer 

The Prader orchidometer, introduced by Andrea Prader in 1966 (49), is the most 

widely used clinical tool to assess the TV. It consists of a chain of 12 solid ellipsoid 

beads of different sizes (1–6, 8, 10, 12, 15, 20, and 25 mL) (Figure 4). TV 

measurement using the Prader orchidometer is performed by holding the 

orchidometer in one hand, tightening the scrotal skin around a testicle with the other 

hand, and identifying the best size-matched bead on comparing with the testicle. The 

Prader orchidometer tends to overestimate small TVs, when compared to the methods 

of water displacement and ultrasound, due to potential interference from surrounding 

structures such as the scrotal skin, epididymis, and tunica vaginalis (50). Studies have 

shown that the accuracy of measurements of testicular size is also highly dependent 

on the operator’s experience (51). Moreover, highly significant interobserver 

variation has been found among users of the Prader orchidometer (52). 

 

 

Figure 4 Prader orchidometer. Bead size 1–3 mL = prepubertal; 4–6 mL = early 

puberty; 8–10 mL = mid puberty; 12–15 mL= advanced puberty; >15 mL = adult. 

With permission from Wikimedia.org. 

 

The first reliable marker for central pubertal onset in boys is a TV of >3 mL, 

often expressed as 4 mL when measured with an orchidometer (46). This is usually 

consistent with Tanner stage G2. In addition to the Prader orchidometer, punched-out 
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orchidometers, callipers, and ordinary rulers also have been used to estimate the TV 

(53,54) but have not gained the same clinical standing as the Prader orchidometer. 

 

1.2.2.2 Ultrasound 

Ultrasound uses high-frequency sound waves to produce images of tissues and 

organs. It can differentiate between tissue types, thus allowing direct observation of 

the testicle and their size measurements, while excluding the scrotal skin and 

epididymis, as well as of structural features of potentially pathologic conditions such 

as hydrocele or varicocele. Several authors have suggested that ultrasound is the gold 

standard for TV measurements and that it should be the method of choice when 

accuracy of TV measurements is of particular importance (55,56). The length (L), 

width (W), and depth (D) of the testicle are measured from the mid-sagittal and mid-

transverse planes and the TV is calculated using these three dimensions. The formula 

for a prolate ellipsoid (L  W2  0.52) has been widely used, but several studies have 

shown that the Lambert formula (L  D  W  0.71) (57) is more accurate and its 

calculated TV corresponds better to the true TV (58,59). While ultrasound has been 

used for decades to detect scrotal pathology, its use to assess the pubertal stage or to 

establish reference ranges has been a more recent development. Thus, a Dutch study 

in 2011 (60) was the first to present reference values for the TV in healthy children 

and adolescents using ultrasound. Ultrasound imaging is regarded as safe, with no 

associated ionizing radiation exposure or undesirable side effects (61), and can thus 

be widely implemented for evaluation of pubertal development. 

 

 Other pubertal markers 

1.2.3.1 Peak height velocity 

Age at peak height velocity (PHV) is the age at which a child experiences the greatest 

increase in stature during the adolescent growth spurt. It requires the collection of 

longitudinal measurements until near cessation (e.g. <2 cm/year) of linear growth to 

estimate the velocity and acceleration of height and the age at PHV (62). PHV is one 

of the most commonly used indicators of puberty in population studies of pubertal 

development and adolescent maturation (41,63), as it is non-invasive and objective, 
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particularly compared to Tanner staging or TV assessment. Onset of pubertal growth 

spurt (‘take-off’) usually occurs when the TV measured with a Prader orchidometer is 

about 8 mL, while PHV coincides with a TV of about 12 mL, at a mean age of 13.5 

years (33). Take-off and PHV are therefore relatively late signs of puberty. A recent 

study from Denmark reported the age at PHV to be 13.7 years (29). Because there is 

substantial variability in the timing of PHV across Tanner stages, PHV might not be a 

good marker for the degree of pubertal development, but rather for the tempo of 

growth and rate of maturation (48,64). 

 

1.2.3.2 Voice break 

The age at voice break has also been used to determine timing of puberty in 

population studies (30,42,65). Assessment of age at voice break can be conducted by 

direct observation of an examiner as a ‘yes’ or ‘no’ outcome, or by using Cooksey 

classification of voice analysis (66), or by self-reporting of either unintentional 

falsetto notes or voice deepening by individual boys themselves. As with PHV, voice 

break is also a late pubertal milestone, with mean age of 13.6 [95% confidence 

interval (CI) 13.5–13.8] years (29). 

 

1.2.3.3 Spermarche and ejacularche 

Spermarche in boys, the counterpart of menarche in girls, is the onset of release of 

spermatozoa (sperm cells). Spermarche is usually identified by detecting the presence 

of spermatozoa in the urine. Spermarche is seen as an early pubertal event (67) that 

occurs between the ages of 11 and 15 years. In a longitudinal study of 40 healthy 

Scottish boys over a period of 7 years, sperm was detected in early-morning urine 

samples at a median age of 13.4 (range 11.7–15.3) years (67). The first conscious 

ejaculation (which is discharge of semen from the male reproductive tract as a result 

of an orgasm), called ejacularche, was self-reported to occur at a mean age  standard 

deviation (SD) of 13.3  1.1 years in a total of 1582 Bulgarian boys (40). While adult 

sperm morphology, motility, and concentration are only observed when the bone age 

advances to around 17 years (68), it is possible for boys with an immature physical 

appearance to be fertile. 
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 Paediatric endocrine references 

Measurement of serum testosterone levels has proven to be an accurate predictor of 

pubertal development in boys (69). The availability of appropriate population-based 

endocrine reference intervals (i.e. normative values) is crucial for clinicians to aid in 

disease diagnosis and treatment, as well as patient follow-up, and measurements of 

hormones involved in puberty are part of the general assessment in the clinical 

setting. Endocrine references can help in identifying endocrinopathies, with either 

excessive or impaired production of different hormones. 

Establishing reference intervals is particularly challenging in the field of 

paediatrics, due to continuous physiological changes that occur throughout childhood 

and adolescence (70), in addition to 24-hour variation in hormone levels (71). 

Reference intervals must therefore be stratified or partitioned in terms of both sex and 

age, and preferably also in terms of the stage of pubertal development. Robust sample 

sizes and appropriate age ranges are needed to develop reliable estimates for the 

normal range and 90% CIs (72). In a series of publications on the challenges of, and 

proposed solutions for, establishing paediatric reference intervals, the Canadian 

Laboratory Initiative for Pediatric Reference Intervals (CALIPER) consortium 

provided a comprehensive set of guidelines and mathematical framework to address 

these challenges (73). In addition, the CALIPER consortium provided a 

comprehensive database of age- and sex-specific reference intervals for >100 

biomarkers of paediatric diseases. Reference intervals stratified according to 

ultrasound-measured TVs have until now not been available. 

To summarize, the TV is regarded as the most reliable marker in assessing 

pubertal onset in boys, supplemented with measurement of serum testosterone levels. 

Other pubertal markers, such as age at PHV and age at voice break are, however,

often used in epidemiological studies. 
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1.3 Timing of puberty in boys 

  Secular trends 

The timing of pubertal onset has a near-normal distribution in the general population, 

with too early or delayed puberty being statistically defined, using 2–3 SDs below 

and above the population mean age of onset of puberty, respectively. Puberty is 

usually said to be physiological when it begins between the ages of 9 and 14 years in 

boys (74). Evidence of secular trends (the changing distribution of a population 

parameter over time) in male pubertal development is limited by the small number of 

studies and the use of different pubertal markers making comparisons difficult. 

Studies from Europe before the twenty-first century did not show the same trend 

towards earlier puberty in boys (1,75) as that seen in girls (76,77). However, as 

reported in the Third National Health and Nutrition Examination Survey (NHANES 

III), age at onset of Tanner stage G2 seemed to occur much earlier in the United 

States, compared with Europe at around the same time period, with a mean age at 

Tanner stage G2 onset of 10.1 years in white American boys (78), compared to 11.8 

years in Danish boys (1). In addition, it was also reported that age at achievement of 

Tanner stage G2 in the United States declined from around 11.6 to 10.1 years among 

non-Hispanic white boys from 1966–70 to 1988–94 (45). Studies from the last few 

decades, on the other hand, have suggested a possible trend towards earlier puberty 

also in European boys. The Copenhagen Puberty Study reported a decline in age at 

onset of puberty of 3 months between 1991 and 2006 (79), while a Greek study found 

no evidence of a secular trend between 1996 and 2009 (80). The only previous 

published data on pubertal development in Norwegian boys came from a small study 

including 109 boys aged 1.9–16.9 years from the 1970s, which demonstrated a mean 

age at pubertal onset of just below 12 years, defined by a TV of 4 mL measured using 

the Prader orchidometer (81). Table 1 summarizes selected literature on pubertal 

timing in boys (1,27,29,60,75,79,80,82-88). 
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 Disorders of pubertal timing 

Pubertal development usually follows a predictable pattern of onset, sequence, and 

tempo. Lack of, or premature, development of pubertal milestones outside the defined 

limits warrants further investigations. 

 

1.3.2.1 Early puberty 

Early puberty, or pubertas praecox, is defined as testicular enlargement with a TV of 

4 mL or more before the age of 9 years in boys. Early puberty can be either central 

(involving activation of the HPG axis) or peripheral (most often caused by a gonadal 

or adrenal gland disorder). A population-based study from the Danish National 

Registry with data collected between 1993 and 2001 showed an incidence rate of 

precocious puberty of 1–2 in 10 000 boys (89). Idiopathic central pubertas praecox is 

very uncommon in boys (ten times less frequent, compared to girls) (90) and is more 

likely to have an underlying pathology in the central nervous system (CNS) (91) such 

as tumours, congenital malformations, or infections (10). 

 

1.3.2.2 Delayed puberty 

Delayed puberty, or pubertas tarda, is defined as absence of testicular enlargement 

beyond the age of 14 years. It is commoner in boys than in girls, with constitutional 

delay of growth and puberty (CDGP) as the commonest cause (in up to 83% of boys 

with pubertal delay) (92), and typically has a familial component. CDGP is 

characterized by sex hormones and gonadotropins levels correlating with bone age, 

rather than with chronological age. It is, however, seen as a normal variant if puberty 

later initiates spontaneously, after the upper age limit. Delayed puberty can also be 

caused by psychosocial stress, malnutrition, endocrine or gastrointestinal disorders, or 

renal failure (92-94). 

 

1.3.2.3 Puberty failure 

It may be difficult to distinguish CDGP from puberty failure, where in the latter 

puberty will not spontaneously begin. Congenital hypogonadotropic hypogonadism 
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(CHH) is a rare disorder with a prevalence estimated at 1 in 4000 to 1 in 10 000 

males (95) and is characterized by inability to produce LH and FSH in the pituitary 

gland. When CHH is associated with hyposmia or anosmia (~60% of cases), it is 

known as Kallman syndrome (96). Hypogonadotropic hypogonadism can also be 

acquired, as it can be caused by intracranial tumours, nutritional deficiencies 

(anorexia nervosa), and autoimmune diseases such as sarcoidosis (97). 

Further, pubertal failure can be a result of primary gonadal failure with 

decreased testosterone production, leading to a lack of negative feedback to the 

hypothalamus, in turn causing hypergonadotropic hypogonadism with high LH and 

FSH and low testosterone levels (10). This is seen in Klinefelter’s syndrome 

(47,XXY), gonadal dysgenesis, cryptorchidism, and post-radiation therapy or 

chemotherapy (93). Puberty failure is usually treated with lifelong testosterone 

supplementation. 

 

1.3.2.4 Premature adrenarche 

Premature adrenarche in boys is when androgenic signs appear before the age of 9 

years, together with circulating DHEAS concentrations above the low prepubertal 

level. The incidence rate in boys was found to be 1.8% in a Finnish study (98). The 

most revealing sign of premature adrenarche is the appearance of pubic or axillary 

hair, but the development of adult body odour, acne, and accelerated growth also 

might be observed (99). 

 

1.4 Factors influencing the timing of puberty 

The precise genetic pathways which regulate the age at onset of puberty are largely 

unknown, but in addition to genetic influence, it is likely that environmental factors, 

such as BMI, nutritional status, psychosocial factors, and endocrine-disrupting 

chemicals (EDCs), also impact pubertal development. 

 

 Genetics 

The timing of pubertal onset is highly heritable and polygenic. Studies have shown 

that around 50-80% of the variation in pubertal onset might be genetically determined 
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(74,100,101). Support to these findings has come from twin studies (102), showing a 

higher correlation for age at onset of puberty and age at PHV in monozygotic than in 

dizygotic twin boys (r = 0.9 vs 0.4, respectively) (63). Further, studies on delayed or 

absent puberty have revealed the involvement of ~20 genes (95), and only a few 

genes implicated in precocious puberty (103,104), thus furthering our understanding 

of the genetic regulation of puberty timing in males. In recent years, genome-wide 

association studies (GWAS) have uncovered the potential involvement of an 

increasing number of genes in the normal variation in pubertal timing, although all 

seem to have small effect sizes (105). The largest GWAS on male puberty timing to 

date, including >200 000 men, identified 76 independent signals for puberty timing 

(106). This study also showed a genetic association between male puberty timing and 

adverse health outcomes and, by contrast, a longer lifespan in boys with later puberty 

corresponding to 9 months longer life per year of later puberty. An overlap of genes 

involved in puberty timing and adiposity has also been found (107,108), and 

epidemiological studies have proposed the existence of a pathway for early infancy 

growth and earlier puberty (30). However, in contrast to girls, in whom alleles 

associated with increased BMI correlated with earlier breast development, there was 

an association in boys between some BMI-increasing alleles and earlier sexual 

development and other alleles with delayed sexual development (109). These findings 

are in line with epidemiological studies showing conflicting correlations between 

prepubertal BMI and timing of puberty in boys. One of the most frequently reported 

associations of a genetic locus with puberty timing is LIN28B on chromosome 6q21. 

LIN28B has been reported to show an association with voice break status at age 15 

years, more advanced pubic hair stage at ages 13 and 15 years, and faster height 

growth at age 10 years (110). 

The secular trend towards earlier puberty is unlikely to be caused by rapid 

genetic alterations, but rather by changes in non-genetic factors (74), and some 

effects are thought to be epigenetically modulated (105). 
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 Body composition 

Energy homeostasis represents an important factor in the central neuroendocrine 

system influencing puberty timing. It is well known that chronic malnutrition and 

chronic illness delay the onset of puberty and slow its progression (111,112) and that 

adequate nutrition is a key factor for normal puberty timing and tempo. However, it 

remains unclear to what extent overnutrition, leading to overweight and obesity, 

influences puberty timing in boys. The secular increase in overweight and obesity in 

children and adolescents over the last decades has received special attention as a 

potential aetiological factor for the concurrent secular trend towards earlier puberty 

onset, especially seen in girls (76,113-117). The effect of obesity on early puberty in 

boys, however, is more ambiguous, with studies reporting conflicting results 

(44,79,118-123). 

The timing of weight gain and increased BMI seems to influence puberty 

timing in different ways. Fast weight gain from 0 to 6 months and during childhood 

was found to be associated with advanced puberty in boys and girls in a Jamaican 

study, although there was no similar association with large birth size alone (124). The 

same study also found that elevated fat mass at 8 years of age was associated with 

advanced puberty; by contrast, at age 11, it was elevated lean mass, and not fat mass, 

that showed this association. Dunger et al. concluded in their review that infancy 

probably is the most important age period during which weight gain influences the 

tempo of growth and timing of puberty onset (125). It seems to be the change in BMI, 

rather than the absolute BMI, in an individual child that most influences puberty 

timing. 

There has been little focus on the effects of low body weight on later onset of 

puberty in boys. However, a few studies have found evidence of delayed puberty in 

leaner boys, compared to normal-weight and overweight children (126,127). 

The satiety hormone leptin has been suggested to be one of the links between 

weight status and puberty timing (128). Leptin is produced by adipocytes and its 

levels rise gradually with age and are increased in subjects with high body fat (129). 

Leptin is thought to have a permissive role, rather than being a trigger for the onset of 

puberty. It acts on the hypothalamus by modulating the Kiss1/Kiss1R system (130). 
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In boys, leptin levels seem to rise transiently and then decrease after Tanner stage 2 to 

prepubertal levels, corresponding to the reduction in body fat seen in boys during 

puberty (37). The importance of leptin in normal functioning of the HPG axis is 

shown in patients with either leptin or leptin receptor deficiency presenting with 

hypogonadotropic hypogonadism (131,132). 

Insulin resistance, which is commonly observed in overweight and obese boys, 

has been proposed in some studies as a causative factor explaining why these boys 

enter puberty earlier (133-135). In the presence of insulin resistance, compensatory 

hyperinsulinaemia usually results in reduced levels of sex hormone-binding globulin 

(SHBG), consequently increasing the bioavailability of sex steroids, which, in turn, 

can change the onset and tempo of puberty (133-135). 

 

1.4.2.1 Assessment of body composition 

Defining overweight, obesity, or excess body fat in children is more difficult than in 

the case of adults, as normal body fat not only differs between the sexes, but also 

varies with age and the maturity of the child. BMI, calculated as kg/m2, is the most 

used measure of weight status in population studies, as well as in clinical settings. It 

is easy to measure, with relatively low interobserver variation, and facilitates 

comparison across studies. The International Obesity Task Force (IOTF) established 

an international definition of paediatric overweight and obesity, based on the widely 

used cut-offs for overweight and obesity at age 18 years, i.e. BMI of 25 kg/m2 and 30 

kg/m2, respectively, creating centiles for children aged between 2 and 18 years (136). 

However, national references are still used. Thus, in the United States and the United 

Kingdom, the 85th and 95th BMI-percentiles from the Centers for Disease Control 

and Prevention (CDC) (137) and the UK, 1990 (138) growth charts are often used to 

define overweight and obesity, respectively. In Norway, the national BMI references 

include the IOTF cut-offs (139). 

Because BMI includes both fat and lean body mass, it is therefore not the most 

sensitive marker for detecting excess body fat. However, BMI has shown strong 

correlations with other measures of body fat mass, e.g. skinfold measurements and 

body fat assessment by dual-energy X-ray absorptiometry (DEXA) (140). 
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Waist circumference (WC) is regarded as a measure of abdominal fat, which is 

associated with increased metabolic risk in adulthood such as dyslipidaemia, 

hypertension, and hyperglycaemia (141). Correlation between WC and truncal fat in 

children has been confirmed with DEXA (142,143), and Brannsether et al. 

demonstrated that WC was the one measure that most strongly correlated with BMI at 

all ages (144). Norwegian references for WC have been established (145). 

Skinfold thickness is considered as a direct measure of subcutaneous fat and is 

most commonly assessed on triceps skinfolds and subscapular skinfolds (SSF) in 

children. In contrast to BMI, skinfold thickness measurement is more prone to 

interobserver variability and is therefore not suitable in routine clinical practice (146). 

However, skinfold thickness has been shown to correlate with body fat percentage 

(%BF), with a higher sensitivity, compared to BMI and WC, in determining excess 

body fat (140,147). Norwegian references for triceps skinfolds and SSF have been 

established (148). 

DEXA and underwater weighing both give information about body 

composition, including the proportion of fat tissue, and DEXA has been proposed as 

the gold standard for evaluation of body composition (149). However, due to limited 

accessibility of DEXA in many settings, its relative high running costs, and 

associated exposure to low-dose radiation, bioelectrical impedance analysis (BIA) 

may be an easier alternative to determine %BF in epidemiological studies (150). BIA 

has been proposed as a more precise tool than skinfold thickness measurement to 

determine fat mass in epidemiological studies (151). BIA provides data on %BF and 

body fat mass by sending an electric current that passes quickly through water 

normally stored in muscle tissue but meets with resistance when it hits fat tissue. This 

resistance, known as impedance, is measured, and used to calculate body 

composition. BIA is a cost-effective, rapid, and non-invasive method to estimate 

body composition in children and adolescents.  

To summarize, there are conflicting data on the association between weight 

status and pubertal onset. Leptin and insulin are, among others, two hormones 

suggested to be the link between weight status and pubertal timing. There is a range 

of different weight-related anthropometric measures, with BMI as the most 
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commonly used in epidemiological studies. However, anthropometric measures that 

describe adiposity, such as WC and triceps skinfolds and SSF, in addition to %BF 

estimated by BIA, might add valuable information on the association between weight 

status and timing of pubertal development. 

 

 Endocrine-disrupting chemicals 

EDCs are either naturally occurring or synthetic substances that can interfere with 

normal endocrine function (152). For example, some EDCs have anti-androgenic and 

anti-oestrogenic effect, whereas others are aromatase inhibitors (153). The effects of 

EDCs on puberty timing has been an ongoing concern (154); EDCs are thought to 

play a causative role in the recent decline in sperm counts and impaired fertility 

worldwide, in addition to the increase in reproductive cancers in some geographical 

areas (155). One study found that genital and pubic hair development in boys was 

inversely associated with the serum concentrations of some EDCs, namely 

polychlorinated biphenyls (156). The effects of EDCs can manifest right before 

puberty, as well as much earlier in life, including during neonatal, and even fetal life 

through pregnant women’s exposure to EDCs (157). Consequently, different 

exposure timings, together with different types and levels of EDCs exposed to, make 

it difficult and complex to precisely investigate the effects of EDCs on puberty 

timing. Studies have shown that prenatal and early postnatal exposure, compared to 

prepubertal exposure, can result in different effects of EDCs on puberty timing in 

boys, i.e. either early or late pubertal onset and progression, depending on the specific 

‘culprit’ EDCs (158). 

 

 Stress and socio-economic factors 

Several studies reported that psychosocial stress during prepuberty or puberty in girls 

may cause pubertal delay or arrest (159), whereas advanced puberty has been 

described in girls who experience such stress in early postnatal life or infancy (160). 

Only a few studies have examined these same effects in boys, mostly due to the 

difficulties of assessing puberty timing in epidemiological studies. However, a 

Danish study found an increased risk of developing precocious puberty in foreign-
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adopted boys, compared to boys with Danish background, with an incidence rate ratio 

of 13.4 (95% CI 5.8–31.1; p <0.001) (161). Further, foreign-adopted boys also had an 

increased risk of developing precocious puberty, compared to foreign boys who 

immigrated with their families, thus indicating the potential effect of stress on 

puberty timing. 

 

1.5 Consequences of altered puberty timing 

As for other aspects of puberty timing in boys, only few studies have been conducted 

on adult health outcomes of altered puberty timing. However, data from a few 

epidemiological studies showed that early pubertal onset in men is a risk indicator for 

adult disease, e.g. angina pectoris, type 2 diabetes, and hypertension (162,163). One 

study also reported an increased risk of testicular cancer in boys with early onset of 

puberty (164), whereas a meta-analysis including 12 studies found a protective effect 

of later puberty against testicular cancer (165). An association between puberty 

timing and other male reproductive cancers, such as prostate cancer, is more 

uncertain. However, one study found markers of delayed puberty, e.g. delayed growth 

spurt, to be associated with a decreased risk of prostate cancer (166), while other 

studies showed that early age at first sexual intercourse, which may reflect early 

pubertal development, was associated with an increased risk of prostate cancer (167). 

Late pubertal onset in males have also been associated with reduced semen quality 

(168). 

Studies on mental health issues and the effect of altered pubertal timing have 

shown alarming results. A Norwegian study reported that boys with off-time puberty 

timing (both early and late) had an increased suicidal risk (169). Young boys with 

earlier maturation were more likely to have functional or depressive symptoms, as 

well as more frequent sexual encounters and substance use (170). Further, delayed 

puberty has been linked to being bullied, poor self-esteem, and psychosocial distress 

(171). 
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2. Aims and hypotheses 

The overall aim of the work presented in this thesis was to provide the first 

comprehensive data on pubertal development in Norwegian boys. The research 

focused on estimating the degree of male pubertal development by measuring the TV 

with ultrasound and assessing pubic hair development. Further, the study aimed to 

establish hormone references in relation to TVs. Finally, the study also aimed to 

identify associations between anthropometric measurements and pubertal status. 

The specific study aims and hypotheses, as described in the four research 

papers presented in this thesis, are as follows: 

 

Paper I: To assess the intra- and interobserver agreement of ultrasound 

measurements of TV in prepubertal and pubertal boys and to compare this method 

of measurement with the use of the Prader orchidometer. 

Hypothesis: Ultrasound is a reliable method for assessment of TV, with 

acceptable intra- and interobserver agreement, making it useful for 

constructing pubertal references. 

 

Paper II: To estimate the first pubertal references of TV and Tanner stages of 

pubic hair development in Norwegian boys and to compare the pubertal 

development with data from similar populations. 

Hypothesis: Pubertal timing in Norwegian boys does not differ from that in 

boys from comparable populations, which implies an absence of a secular 

trend. 

 

Paper III: To establish references for serum testosterone and key hormones of the 

male pituitary–gonadal signalling pathway, stratified by the pubertal stage based 

on the TV. 

Hypothesis: Pubertal stage and TV are more strongly associated with 

testosterone levels than with chronological age, and endocrine references 

stratified by TV represent a feasible alternative. 
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Paper IV: To investigate the associations between anthropometric measurements 

and pubertal development. 

Hypothesis: Overweight and obese boys enter puberty at a younger age and 

have a larger TV adjusted for age than their normal-weight peers and 

compared to BMI, adiposity, measured using WC, skinfolds, or %BF, show a 

stronger association with pubertal status. 
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3. Materials and methods 

3.1 Study design 

The work presented in this thesis is based on data from BGS2, a cross-sectional study 

on pubertal development in Norwegian children. Data reported in Papers II, III, and 

IV (main study) were collected from January to May 2016 in a mix of six randomly 

selected combined primary and secondary public schools, which were mostly urban 

and stratified by town area in the municipality in Bergen, Norway. Data presented in 

Paper I, which is a test–retest study, were collected from boys recruited from an 

additional seventh school in Bergen in February 2017 and from boys recruited from a 

local sports club in June 2017. Participants in BGS2 included both girls and boys, but 

the work presented here is based on boys only. All children in the selected schools 

were invited to participate, with signed informed consent from either the child’s 

parent or their legal guardian, as well as assent from the child themselves, as a 

prerequisite for participation. 

Participation rates for boys in the main study varied across schools, ranging 

from 27% to 46%, and across grades, ranging from 27% among third graders to 51% 

among second graders. 

All boys recruited from the schools (both main study and test–retest study) 

were examined during school hours in their respective school. Boys recruited from 

the sports club were examined at Haukeland University Hospital. 

 

3.2 Childhood populations 

For Paper I, a random sample of 130 boys aged 6–16 years were invited to 

participate. Of these, 58 agreed to take part (34 from the selected seventh school and 

24 from the sports club). The mean age was 12.0 (range, 6.5–16.4) years. One boy 

with a history of cryptorchidism was excluded from the study, with the remaining 57 

boys eligible for examination. 

In the main study (Papers II, III, and IV), all 1329 boys aged 6 years from the 

six selected schools were invited to participate. Parental informed consent was 

obtained for 493 (37%) boys. On the day of examination, two boys refused to give 
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their assent, six did not attend, and eight were excluded as their medical history 

included a clinical condition that could affect their growth and development (coeliac 

disease, cancer, benign glioma, Down’s syndrome, di George syndrome, ulcerative 

colitis, rheumatoid arthritis, and epilepsy with ongoing antiepileptic drug therapy). In 

addition, 20 boys were also excluded due to past or newly discovered scrotal 

pathology: 4 bilateral cryptorchidism; 11 unilateral cryptorchidism; 2 retractile testes 

(inguinal canal); 1 hydrocele; 1 operated retractile testis; and 1 microlithiasis. 

Therefore, taking into account the exclusions listed above, the main study population 

from the six selected schools comprised 457 boys. For the reference paper (Paper II), 

the 57 boys from the test–retest study were also added to the main study population 

(n = 514). For Paper III, only 414 (90.6%) of the 457 boys from the main study were 

included, due to lack of blood samples from the other 43 boys. For the association 

paper (Paper IV), only boys ≥9 years were included (n = 324). 

Of a total of 328 (71.8%) boys with a known country of origin for both 

parents, 254 (77.4%) had both parents from Norway, 33 (10.1%) had one or both 

parents from another European country, and 41 (12.5%) had either one or two non-

European parents, mostly from Asia (n = 18), Africa (n = 8), or South America 

(n = 10). Analyses described in all four papers included data on all boys, from now 

on referred to ‘Norwegian boys’, regardless of their parents’ country of origin, as 

logistic regression analysis of reaching pubertal TV showed no statistically 

significant differences between boys of Norwegian origin and other boys of European 

(p = 0.17) or non-European origin (p = 0.11). 

Of the 336 boys with information about parental education, the highest 

educational level achieved by either parent was classified as: no secondary education 

(2.7%); secondary education (high school: 15.8%); and higher education (college or 

university degree: 81.6%—28% <4 years and 53.6% 4 years). 

According to the IOTF BMI cut-off points (172), 7.7% of participating boys 

were classified as underweight (IOTF-BMI 18.5 kg/m2), 80.5% as normal weight 

(IOTF-BMI >18.5 to 24.9 kg/m2), 11.8% as overweight (IOTF-BMI 25 kg/m2), and 

1.9% as obese (IOTF-BMI 30 kg/m2). 
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3.3 Ultrasound measurements 

All ultrasound examinations were performed by a male radiographer with more than 

8 years’ experience. Before study start, an introductory ultrasound course was given 

by an experienced paediatric radiologist (Professor Karen Rosendahl (K.R.), also 

acting as second observer) with over 25 years’ experience in paediatric ultrasound. 

Further, the first 30 ultrasound examinations were performed under supervision by 

K.R. A SonoSite Edge Ultrasound machine (Fujifilm SonoSite, USA) was used for 

examinations performed in the schools, and a SonoSite M-Turbo® HFL50 machine 

(Fujifilm SonoSite, USA) for examinations carried out at the local sports club; both 

devices were equipped with the same 15-6 MHz linear probe. 

With the boy supine, the length (L), width (W), and depth (D) of the right 

testicle were measured according to a standardized protocol prepared beforehand. 

The left testicle was also measured if deemed larger on visual inspection (n = 3), and 

the volume of the largest testicle was recorded. First, the ultrasound probe was placed 

in the mid-sagittal testicular plane, perpendicular to the skin surface. Second, the 

examiner gently moved the ultrasound probe slightly back and forth until the largest 

diameter was obtained, namely the length. Third, the probe was rotated 90° and the 

width and depth measured in the mid-transverse plane (Figure 5). The TV was then 

calculated at a later time using the empirical Lambert formula (TV = L × W × D × 

0.71) (57). 

 

(a)        (b)  

Figure 5 Ultrasound scan of the testis in a 12-year-old boy using a 15-6 MHz linear 

probe. (a) Length measured (dotted line A), mid-sagittal view. (b) Width and depth 

(dotted line B), mid-transverse view. Reprinted with permission. Oehme NHB, Roelants M, 

Bruserud IS, et al. Ultrasound-based measurements of testicular volume in 6- to 16-year-old boys—intra- and 

interobserver agreement and comparison with Prader orchidometry. Pediatr Radiol. 2018;48:1771–8’ 
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In the test–retest study (Paper I), the TV was measured twice by the main 

observer, with a time interval of at least 20 minutes between the two measurements 

during which examination of at least three other participants was performed. This was 

done to minimize the risk of recall of the first measurement. The participating boys 

were examined once by the second observer who was blinded to the results obtained 

by the first observer. 

 

3.4 Pubertal assessments 

Tanner staging of pubic hair (PH) development was determined by the main observer. 

Tanner PH stages were visually assessed with respect to the quantity, characteristics, 

and distribution of pubic hair. The boys were examined in the supine position, using 

pictures from the original work of Marshall and Tanner as reference (46). This 

assessment was done only as part of the main study, and data were recorded for 452 

of the 457 boys. 

For the test–retest study, TV measurements of the right testicle was performed 

using a Prader orchidometer by a paediatric endocrinologist (Professor Pétur 

Júlíusson) who has more than 18 years’ experience. The boys were examined in a 

warm room in a standing position. The best matching volume was recorded by 

comparative palpation. If the testicular size was perceived to be in between two 

consecutive beads, the mean volume of these beads was recorded. 

 

3.5 Blood samples 

Venepuncture was carried out from an antecubital vein by an experienced biomedical 

laboratory scientist during school hours. About half of all blood samples were 

collected between 09:00 and 11:00, and 90% before 13:00. For each subject, non-

fasting blood samples were collected as follows: 2  6.6-mL serum gel tubes; 1  6.6-

mL ethylenediaminetetraacetic acid (EDTA) plasma tube; and 1  7-mL EDTA blood 

tube. All blood samples were transported on dry ice to Haukeland University Hospital 

in Bergen and stored at −80C in a biobank freezer for subsequent analyses. Blood 
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analyses from 414 (90.6%) boys (excluding those with a chronic disease or scrotal 

pathology) were included in Paper III. 

Androgen levels were analysed using state-of-the-art liquid chromatography 

with tandem mass spectrometry (LC-MS/MS), as described previously (173), and 

peptide hormone levels (LH, FSH, SHBG) were quantified using the Siemens 

IMMULITE® 2000 XPi radioimmunoassay platform (Siemens Healthcare,.). The 

Hormone Laboratory at Haukeland University Hospital is accredited according to 

ISO 15189 standards. The hormones analysed and described in this thesis include 

testosterone, LH, FSH, and SHBG. Assay performance in terms of coefficients of 

variation (interassay CV%) and limits of quantification are as described in the 

Method section in Paper III. 

 

3.6 Anthropometric measurements and bioelectrical 

impedance analysis 

All anthropometric measurements were taken by the same observer. Height was 

measured using a Harpenden Portable Stadiometer (Holtain Ltd, Crosswell, UK). The 

boys were asked to stand straight, and their height recorded to the nearest 0.1 cm. 

Weight was measured using Tanita MC-780MA electronic scale (Tanita Corporation 

of America Inc., Arlington Heights, IL, USA), with subjects in their underwear only. 

BMI was calculated as weight in kilograms divided by height in metres squared. 

SSF was measured on the left side using a Holtain Tanner/Whitehouse Skinfold 

Caliper® (Holtain Ltd). The skinfold was picked up with two fingers inferomedially, 

just below the inferior angle of the left scapula. The caliper was placed about 1 cm 

below the edge of the fingers, and the measurement recorded to the nearest 0.1 mm 

after 2–3 seconds of full pressure from the caliper. 

WC was measured at the narrowest level between the 10th rib and the iliac crest 

using a non-elastic metal measuring tape. If no ‘narrowest level’ could be identified, 

the level halfway between the 10th rib and the iliac crest was used as reference. 

Measurements were recorded to the nearest 0.1 cm at the end of normal expiration. 

WC measurements were performed according to the same protocol used in BGS1 

(174). 
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For BIA, the Tanita MC-780MA body composition analyser (Tanita 

Corporation of America Inc.) was used. The boys were instructed to stand with bare 

feet on the device platform and to hold the handgrips/electrodes, one in each hand, 

until the %BF is displayed. 

 

3.7 Questionnaire 

A parental questionnaire was distributed to all participating boys enrolled in the main 

study. Of the 457 boys included in the main study population, 340 (74.4%) completed 

and returned the questionnaire. The questionnaire included items such as parents’ 

country of origin and history of chronic disease and previous genital pathology. It 

also included information about parental educational level, which was categorized 

into ‘no secondary education’ (only primary school), ‘secondary education’ (e.g. 

senior high school), or ‘higher education’ (college or university). 

 

3.8 Quality control 

All measuring equipment were checked and calibrated every morning over the data 

sampling period. The exact same equipment and methodology were used in BGS2 as 

in BGS1 for data sampling. BGS1 reported the technical error of measurement 

(TEM) to be 0.28 cm for height, 0.80 cm for WC, and 0.64 mm for SSF (175). 

 

3.9 Statistical analysis 

Statistical analyses used on data presented in all four papers were carried out using 

IBM Statistical Package for the Social Sciences (SPSS) versions 24 and 25 (IBM 

Corp., Armonk, NY, USA), R version 3.5 (R Foundation for Statistical Computing, 

Vienna, Austria), and GraphPad Prism v7 (GraphPad Software, San Diego, CA, 

USA). 

This section gives a detailed overview of the main statistical methods used. 

Descriptive statistics are reported as means with 95% CIs and SDs for continuous 

data, and as frequencies and percentages for categorical data. Further details on the 

statistical methods used are described in the respective papers. 
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The z-scores for anthropometric measures (height, weight, BMI, WC, and SSF) 

were calculated according to the Norwegian growth references, which are based on 

data collected in BGS1 in 2003–2006 (139,145,148). The z-scores for %BF were 

calculated using the reference described by McCarthy et al. (176). 

 

 Observer agreement 

3.9.1.1 Bland–Altman plots 

Bland–Altman plots were used to assess agreement between two continuous 

measurements of the same quantity. This can be repeated measurements by the same 

observer (repeatability) or by different observers (reproducibility), or measurements 

using different equipment or methods (177,178). The plot shows the difference 

between two measurements on the y-axis and the mean of both measurements on the 

x-axis, and thus allows to visually assess if the measurement variance is 

homogeneous (equal distribution) and unbiased (no trend). In the absence of a trend, 

a one-sample t-test can be used to assess if the mean difference of the measurements

is significantly different from zero, which would be indicative of systematic bias. 

Likewise, linear regression can be used to detect a bias that depends on the 

measurement. The measurement variation is quantified by the 95% limits of 

agreement (LOA), which is the mean difference  1.96 times the SD of the 

differences. These are usually marked as horizontal lines on the plot. The LOA 

indicate between which extremes 95% of the differences are located (178), and thus 

show by how much a repeated measurement by the same observer or by another 

observer or with a different method can differ. If the 95% LOA are sufficiently 

narrow, one can conclude that the observers or methods agree sufficiently to be used 

interchangeably (179). For TV, a clear dependency of the measurement variation on 

the mean volume was observed, and the differences (d) between measurements, either 

by the same or different observers or methods, were therefore expressed as 

percentages of the mean TV: %d = 100  (TV1 – TV2)/[(TV1 + TV2)/2]. The mean of 

%d was used as a measure of systematic bias, and the SD of %d, denoted as s%d, as a 

measure of variability expressed as a percentage. Twice the s%d indicates how far a 

measurement can be from the true value and is an index of reliability and is 
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considered acceptable in our study if <15%. In addition to the s%d, the TEM was also 

calculated. While the s%d shows the variability between two measurements or 

methods, both of which are prone to measurement error, the TEM shows the 

variability of a single observation due to measurement error. Since both s%d and TEM 

are calculated relative to the measurement, they can be interpreted as a CV. 

 

3.9.1.2 Derivation of a formula to convert ultrasound measured 

testicular volume to Prader orchidometer volume and vice versa 

The Bland–Altman plots of TVs measured by Prader orchidometry and ultrasound 

showed a tendency of Prader orchidometry to overestimate the volume of small 

prepubertal testicles. This overestimation decreased with increasing TV and levelled 

off at around a TV of 10 mL. This relationship was further explored, and a 

logarithmic transformation of both variables showed a clear linear trend with constant 

variance (Figure 6). 

 

 

Figure 6 Linear regression of the logarithm of testicular volumes measured by Prader 

orchidometry versus the logarithm of testicular volumes measured by ultrasound (L  

W  D  0.71). The variance is homogeneous across the entire range of fitted values. 

US, ultrasound.  

With permission, from Paper I, supplementary data. Oehme NHB, Roelants M, Bruserud IS, et al. Ultrasound-

based measurements of testicular volume in 6- to 16-year-old boys—intra- and interobserver agreement and 

comparison with Prader orchidometry. Pediatr Radiol. 2018;48:1771–8’ 
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A back-transformation of the log–log regression model coefficients generated 

the equation to predict the equivalent orchidometer volume based on ultrasound 

measurements on the measurement scale. The formula is log(Prader orchidometer 

volume) = 0.68 + 0.71 × log(US volume); residual SD = 0.18 on the log scale, which 

translated to (orchidometer volume = 1.96 × US volume0.71) on the measurement 

scale. 

 

 Pubertal references 

3.9.2.1 The LMS method 

A growth reference is a statistical summary of anthropometry or another continuous 

variable in a reference sample of children, usually presented as a contiguous 

frequency distribution at consecutive ages (180). The reference sample is usually 

representative of a specific geographical region at a particular time. Data collection is 

usually cross-sectional. The distribution is usually summarized by the mean and SD, 

or alternatively by the median and selected percentiles, by age and sex. The LMS 

method is currently one of the most used methods for growth curve estimation (180-

182). It was specifically designed for data that are not normally distributed, as in the 

case of the TV. The TV distribution was summarized by three smoothed curves: the 

L-curve representing the Box-Cox power transformation needed to convert the data to 

a normal (Gaussian) distribution at each age; the M-curve, or median curve, by age; 

and the S-curve which is the approximate CV (SD/mean). The information contained 

in these three curves allows to calculate the distribution of a measurement at a given 

age (i.e. the ‘growth curve’) and to convert a measurement into a z-score or 

percentile. The amount of smoothing of the LMS curves is expressed in terms of 

equivalent degrees of freedom (edf). For TV measurements described in Paper II, 8 

edf were used for the M-curve and 4 for the S-curve. The optimal Box-Cox power L 

was determined to be constant at 0.5. 

 

3.9.2.2 Probit regression 

Age references like those for pubertal development (e.g. reaching TVs corresponding 

to selected discrete Prader orchidometer volumes and for each of the Tanner PH 
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stages) require a different approach because although it is known that the event has 

occurred, the event itself cannot be observed. For these references, cumulative 

incidence curves were estimated using probit regression within generalized linear 

models (GLMs) which assume a normal distribution of ages, and with generalized 

additive models (GAMs) which are non-parametric. Since using both models gave 

identical results, data were reported from the GLM probit models, allowing to 

summarize the age distribution by the mean and SD. 

 

 Endocrine references 

The Clinical Laboratory Standards Institute (CLSI) has provided a protocol for 

establishing reference intervals that meet the minimum requirements for reliability 

and usefulness (183). Reference intervals should ideally include 120 or more 

observations in each partition, but a minimum of 40 observations are tolerated when 

robust statistical methods are used. To assist in deciding where and whether to 

partition reference intervals (e.g. between two adjacent age intervals), Harris and 

Boyd suggested calculating the statistical significance of the difference between 

subgroup means using a pairwise standard normal deviate test (184). This test was 

applied in the work presented in Paper III to justify partitioning of reference intervals. 

A minimum of 40 observations were included, and as many as 120 when possible. 

The Harris and Boyd approach considers sample size, mean analyte value, and 

variance in consecutive partitions, and the difference in distribution between two 

partitions is expressed as a z-score which is compared to a critical value. Adjacent 

partitions were considered justifiably separated if the Harris–Boyd z-score exceeded 

the corresponding ‘critical’ z* which penalizes the result for low n observations by 

the formula z* = 3(n1 + n2/120)1/2 (185). For these analyses, log-transformed data 

were used to achieve an approximate Gaussian distribution. When the sample size 

was 120, the non-parametric method was used to calculate the central 95% reference 

intervals and corresponding 90% CIs of the lower limits (LL, i.e. 2.5th percentile) 

and upper limits (UL, i.e. 97.5th percentile). The robust method was used when the 

sample size was between 40 and 120. Non-parametric estimations were based on the 
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binominal distribution of observation ranks, whereas the robust method was based on 

500 bootstrapped samples. 

 

 Association analyses 

In the work presented in Paper IV, we classified the boys based on their testicular 

volume-for-age z-score (USTVz) as early, average, or late maturing. Those boys in 

the upper tertile (>67th percentile) were considered early maturing, those in between 

percentiles 33 and 67 as average, and those with the smallest TV for age (<33rd 

percentile) as late maturing. Further, we stratified the boys into three groups, 

according to their BMI-, WC-, SSF-, and %BF-for-age z-scores to assess the effect of 

adiposity and body composition on the timing of puberty and degree of maturation. A 

z-score below −1 was considered as low, and a z-score above 1 as high. 

 

3.9.4.1 Logistic regression 

Logistic regression is a suitable method to analyse the association between a 

dichotomous outcome variable and one or more categorical of continuous predictor 

variables. The results are expressed as an odds ratio (OR), usually reported with 95% 

CI. An OR above 1 indicates a higher probability of occurrence, whereas an OR 

below 1 indicates a lower probability. We estimated the age-adjusted odds ratio 

(AOR) for having reached a pubertal level of either TV, serum testosterone, or pubic 

hair, using a high (>1) or low (<−1) z-score of the different anthropometric 

measurements (BMI, WC, SSF, and %BF) as a predictor. A z-score in the normal 

range (between −1 and 1) was used as the reference category, to which boys with a 

high (>1) or low (<−1) z-score were compared. If the CI excludes the value 1, the 

difference between groups is considered as statistically significant. 

 

3.9.4.2 Proportional odds regression 

The proportional odds regression model is an extension of logistic regression for 

ordinal dependent variables. The advantage is that a single OR is estimated, 

independent of which value of the ordinal variable is used as cut-off, but the validity 

depends on the assumption of a comparable OR for each cut-off (proportional odds 
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assumption). It was possible to use this model since the OR for late-maturing boys 

(ultrasound-determined testicular volume (USTV) <33rd percentile) versus average- 

or early-maturing boys (USTV >33rd percentile) was comparable to the OR for late- 

or average-maturing boys (USTV <67th percentile) versus early-maturing boys 

(USTV >67th percentile). Using this regression model, the association between the 

level of maturity (early, average, or late, based on the USTVz) and the grouped 

anthropometric measurements was studied, comparing boys with a ‘low’ (<−1 SD) or 

‘high’ (>1 SD) value to those with an average value for each measure separately. 

 

3.9.4.3 Cumulative incidence curves 

To show the mean ages for reaching pubertal onset (USTV 2.7 mL, serum 

testosterone 0.5 nmol/L, and Tanner stage PH2) according to weight class (BMIz 

<−1, −1< BMIz <1, and BMIz >1), cumulative incidence curves were plotted. The 

curves were estimated using a GAM with a binary outcome and probit link function 

(see Section 3.9.2.2). The degree of smoothing was determined with generalized 

cross-validation using the ‘mgcv’ package in R. The mean age at reaching maturity 

(USTV 2.7 mL) was obtained by inverse prediction. 

 

3.9.4.4 ROC curves 

To determine the serum level of testosterone that marks the onset of puberty 

(presented in Paper IV), receiver operating characteristic (ROC) curve analysis was 

performed. The ROC curve plots the true positive rate (sensitivity) against the false 

positive rate (1 − specificity) of different cut-off values. Values in the upper left 

corner of the curve have both a high sensitivity and a high specificity, which is 

usually the desired result. The optimal choice to discriminate between prepubertal 

and pubertal boys was determined using the Youden index as 0.5 nmol/L (Figure 7). 
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Figure 7 The pROC package in R was used to construct ROC curves, using total 

serum testosterone levels as a biomarker of pubertal onset. Boys were dichotomized 

as prepubertal (TV <2.7 mL) or pubertal (TV 2.7 mL), and the pROC algorithm was 

used to retrieve the optimal confusion matrix and corresponding level of testosterone 

to distinguish between the two groups. FPR, false positive rate; TPR, true positive 

rate. 

 

 Power calculations 

The planned sample size of BGS2 was 1000 boys (about 100 per year of age) in order 

to estimate the mean (median) age at transition from one pubertal stage to the next 

(e.g. from PH1 to PH2, or reaching pubertal TV), with a standard error (SE) of ~1 

month and the normal limits with an SE between 2 and 3 months, assuming an SD of 

about 1 year. Due to a response below expectation, logistic challenges, and time 

constraints, only half of the boys were measured by the end of the study period. This 

increased the SE of the mean to 1.5 months for the mean age, and 3 months for the 

normal limits, which was still considered as acceptable. 

 

3.10 Ethics 

This study was approved by the Norwegian Regional Committee for Medical and 

Health Research Ethics West (REC-WEST 2015/128). The study also was conducted 

in accordance with the Declaration of Helsinki (186). Written informed consent was 

obtained from a parent or the legal guardian of each study participant, as well as 

assent from the participants themselves. All children received age-appropriate 
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information in writing, as well as verbally, from the main observer prior to their 

participation. A cinema voucher was given as an incentive. 
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4. Summary of results 

4.1 Paper I 

Ultrasound-based measurements of testicular volume in 6- to 
16-year-old boys—intra- and interobserver agreement and 

comparison with Prader orchidometry 

Paper I describes the methodological study aimed at estimating the intra- and 

interobserver agreement of ultrasound measurements of TV and comparing use of 

ultrasound with Prader orchidometry in TV measurement. The mean age of the 57 

participating boys was 12.0 (range, 6.5–16.4) years. As the degree of measurement 

variation increased with mean TV, the differences between measurements, observers, 

and methods were reported as relative differences. Intra-observer agreement, which is 

the measure of repeatability, showed a mean difference (bias) of −2.2% (p = 0.08), 

which indicated no systematic bias. The corresponding 95% LOA ranged from 

−20.3% to 15.9%, with a variability of 9.2% and a TEM of 6.5%. The differences 

were <15% in 89% of measurement pairs. 

Interobserver agreement, which is the measure of reproducibility, showed a 

small bias of 4.8% (p = 0.052). The 95% LOA were wider, compared to the intra-

observer agreement, and ranged from −35.7% to 45.3%, with a variability of 20.7% 

and a TEM of 14.6%. The index of variability (2* s%d) thus exceeded the 15% limit 

that was set as acceptable a priori. 

Comparison of TV measurements using ultrasound versus Prader orchidometry 

revealed that the overall mean and SD of TVs measured with a Prader orchidometer 

were highly comparable to the corresponding ultrasound measurements. However, 

when plotted against the mean volume, there was a clear tendency towards larger 

volumes with the Prader orchidometer in prepubertal boys, although less so in larger 

testicles (Figure 8a). The relationship between ultrasound-measured TV and TVs 

measured by Prader orchidometry was further explored on the log scale. A 

corresponding equation to predict Prader orchidometer volume from ultrasound 

volume on the measurement scale was derived as: VolOM = 1.96  VolUS
0.71. 

Consequently, a TV of 2.7 mL measured by ultrasound corresponded to a Prader 
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orchidometer volume of 4 mL which marks pubertal onset. The Bland–Altman plot of 

TVs measured with the Prader orchidometer and the corresponding TVs predicted 

from the ultrasound measurements is shown in Figure 8b. 

(a)  

(b)  

Figure 8 Bland–Altman mean difference plots of testicular volume in 56 Norwegian 

boys aged 6.5–16.4 years, as measured with (a) ultrasound (US) (L  W  D  0.71) 

and with the Prader orchidometer (OM) and (b) measured with the OM and the 

corresponding volume predicted from the US measurements using the equation 

VolOM = 1.96  VolUS
0.71. Differences between methods are expressed as percentage 

of the mean [100 × (US − OM)/mean volume] or [100 × (observed − predicted)/mean 

volume], since the variance increases with volume. Plot (a) shows a clear upward 

trend and very wide limits of agreement, whereas plot (b) shows no bias and narrower 

limits of agreement and an overall SD of differences of 18% that decreases slightly 

with volume. Horizontal lines indicate the mean difference and 95% limits of 

agreement (mean  1.96  SD). With permission, from Paper I, Oehme NHB, Roelants M, Bruserud 

IS, et al. Ultrasound-based measurements of testicular volume in 6- to 16-year-old boys—intra- and 

interobserver agreement and comparison with Prader orchidometry. Pediatr Radiol. 2018;48:1771–8’ 
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4.2 Paper II  

Reference data for testicular volume measured with ultrasound 
and pubic hair in Norwegian boys are comparable with 

Northern European populations 

Paper II presents pubertal references for boys living in Norway. The continuous 

reference curve of TV for age was estimated using the LMS method. This curve and 

the corresponding age references were based on 514 boys with a mean age of 11.0 

(range, 6.1–16.4) years. Pubertal onset was defined as the achievement of a USTV of 

2.7 mL in at least one testicle, which corresponds to a TV of 4 mL when measured 

with the Prader orchidometer. Tabulated values of L, M, and S for age (see Section 

3.9.2.1 for detailed description) are presented, giving all information needed to 

calculate any percentile or to convert the measurements into z-scores. The mean age 

(SD) for attainment of a USTV of 2.7 mL was 11.7 (1.1) years, and the 3rd and 97th 

percentiles were 9.7 and 13.7 years, respectively. In addition, cumulative incidence 

curves for reaching selected discrete Prader orchidometer volumes are also presented 

(Figure 9). 

 

 

Figure 9 Cumulative incidence of reaching selected equivalent Prader 

orchidometer volumes estimated with probit regression in 514 healthy Norwegian 

boys aged 6–16 years. Connected markers on dotted lines show the empirical data, 

and bold lines the corresponding probit models. With permission, from Paper II, Oehme NHB, 

Roelants M, Bruserud IS, et al. Reference data for testicular volume measured with ultrasound and pubic hair 

in Norwegian boys are comparable with Northern European populations. Acta Paediatr. 2020;109:1612–19’ 
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The pubertal reference for pubic hair development was based on 452 boys with 

a mean age of 10.9 (range, 6.1–16.3) years. The mean age (SD) of pubarche (Tanner 

stage PH2) was 11.8 (1.2) years, with the 3rd and 97th percentiles of 9.5 and 14.1 

years, respectively. Further, more boys achieved pubertal TV (2.7 mL) before they 

developed pubic hair (Tanner stage PH2), compared to boys who developed pubic 

hair as the first sign of puberty (14.0 versus 8.1%, respectively). 

Further, there was no indication that Norwegian boys entered puberty earlier 

than boys from comparable European countries. 

 

4.3 Paper III 

Testicular ultrasound to stratify hormone references in a cross-
sectional Norwegian study of male puberty 

In Paper III, references for circulating serum levels of total testosterone, LH, FSH, 

and SHBG are presented in relation to ultrasound-measured TV, Tanner PH stages, 

and chronological age. Serum levels of total testosterone were assayed by LC-

MS/MS, while the levels of LH, FSH, and SHBG were determined using 

immunoassays. These endocrine endpoints were available for 414 of the 457 boys 

from the main study. 

In pubertal boys (USTV 2.7 mL), the TV accounted for more variance in 

serum testosterone levels than age (Spearman r = 0.75, p <0.001 versus r = 0.69, p 

<0.01). The Harris–Boyd test recommended stratification of reference intervals by 

pubertal status based on the TV in the age window of puberty transition (10–13 years) 

despite overlapping ages. This generated two separate and statistically acceptable 

reference intervals. 

The LH:testosterone ratio was included as a marker of Leydig cell function, and 

the transition from prepubertal (USTV <2.7 mL) to pubertal TV (USTV 2.7 mL) 

was found to be characterized by a unidirectional ratio shift. The mean age of 

pubertal onset estimated to be 11.7 (SD 1.1) years in Paper II agreed very well with 

the age at which serum testosterone levels started to increase. 
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4.4 Paper IV  

Low BMI, but not high BMI, influences the timing of puberty in 
boys 

Paper IV presents findings on the association between pubertal onset (defined as 

pubertal TV (USTV 2.7 mL), or serum testosterone levels of 0.5 nmol/L, or Tanner 

stage PH2) and anthropometric measures (BMI, WC, SSF) and %BF in 324 boys 

aged 9 years (including 180 pubertal boys). The boys were also stratified according 

to the degree of pubertal development based on USTVz. Boys with a low BMI (<−1 

SD) were found to have a lower probability of having pubertal TV (USTV 2.7 mL), 

compared to boys with average BMI (AOR 0.3; 95% CI 0.1, 0.9; p = 0.038). Boys 

with a high BMI (>1 SD), on the other hand, did not have a significantly higher 

probability of having pubertal TV (AOR 1.3; 95% CI 0.4, 3.9; p = 0.691). Similar 

associations were also found for low and high WCs, with an AOR of 0.2 (95% 

CI 0.0, 0.6; p = 0.008) and 0.9 (95% CI 0.3, 2.9; p = 0.918), respectively. A similar 

trend was observed for low SSF and low %BF, with a lower probability of having 

reached any of the markers for pubertal onset, although none of these associations 

were statistically significant. Cumulative incidence curves for pubertal TV showed 

that boys with a low BMI entered puberty (USTV 2.7 mL) at a mean age of 12.34 

years versus a mean age of 11.66 years in normal-weight boys, i.e. a puberty delay of 

about 8 months. Further, no significant associations were found between Tanner stage 

PH2 and BMI, WC, SSF, or %BF z-scores.  

 Ordinal logistic regression also showed that boys with low BMI or low WC for 

age had a significant lower probability of being in a higher category of testicular 

volume-for-age (USTVz >33rd percentile, average, or early maturing) compared with 

those with average BMIz (OR 0.3; 95% CI 0.2, 0.5; p < 0.001) or WCz (OR 0.2; 95% 

CI 0.1,0.4; p < 0.001). However, boys with high BMI or high WC for age did not 

have an increased probability of being in a higher category of testicular volume for 

age, as a sign of being more mature. 
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5. Discussion 

Results presented in this thesis show that ultrasound is a reliable method for TV 

measurement, allowing for the construction of reference intervals by age. Novel 

pubertal references for boys in Norway were estimated, with age references for TV 

and pubic hair development. Puberty timing in Norwegian boys did not differ from 

that in boys from other Northern European countries. In addition, USTV and age 

were used to stratify serum testosterone levels and other key hormones of the male 

pituitary–gonadal pathway, yielding novel reference intervals for pubertal hormones 

in relation to TV. Finally, the studies showed that low BMI and WC for age were 

associated with a delay in pubertal onset, whereas no significant change in puberty 

timing was observed in boys with higher BMI or WC for age. 

 

5.1 Methodological considerations 

Bias is any systematic deviation from the truth, whether in data collection, analysis, 

interpretation, or publication. Bias in research can occur either intentionally or 

unintentionally. When estimating references, the study sample should be 

representative of the target population. A population-based sample is preferred where 

no subgroup is more or less likely to participate. However, this may be challenging, 

especially when investigating children and particularly when studying pubertal 

development. 

 

 Childhood populations 

5.1.1.1 Participation rates 

The overall participation rate in the main study was 37.1%. A somewhat higher 

participation rate was observed among primary school boys aged 6–12 years (39.6%) 

than among boys attending middle school (30.8%). A total participation rate of about 

37% might seem rather low, but this is comparable to, and even somewhat higher 

than, other studies on pubertal assessments, with a 35% participation rate in the 

1991–1993 Copenhagen Puberty Study cohort and 24.7% in the 2006 cohort (79). 

The participation rate in BGS2 was lower, compared to BGS1 (70% among primary 
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school children and 55% in middle school), but this may be attributable to the 

different examinations involved in these two studies. While BGS1 focused on normal 

growth, BGS2 focused on pubertal development, including assessment of the external 

genitals, which, obviously, could be an embarrassing experience to potential 

participants. Further, it might be that boys maturing early or late, compared to their 

peers, were less inclined to participate. 

The prevalence of boys with overweight and obesity in BGS2 was 11.8% and 

1.9%, respectively, as defined by the IOTF. This matches the 12.5% and 2.1% 

prevalence rates, respectively, reported for Norwegian boys in the same age range in 

BGS1 from 2003 to 2006 (174). In addition, a Norwegian population-based study of 

8- to 9-year-old boys found a similar prevalence of overweight and obesity of 13% 

(including a rate of 2% for obesity) in 2015 (187). Based on these prevalence rates, 

the study sample described in this thesis is considered to be representative of the 

Norwegian population of boys. 

 

5.1.1.2 Age range 

The age range of the study participants was 6–16.4 years. In other words, the study 

participants included boys attending either primary or middle school. Inclusion of 

boys aged from 6 years onwards ensured proper coverage of the prepubertal period. 

Unfortunately, not including older boys meant the final growth period was missed out 

and not all boys in the oldest age group had yet reached the final pubertal stages. A 

study from Belgium showed a median height of 175.8 cm at 16 years, while the 

median height at 21 years was 181.0 cm (86), demonstrating continued growth and 

development beyond age 16 years. Without doubt, more precise estimates, and a 

better fit of the curve near the upper age range would have been obtained if more 

older boys were included in the study presented here. Likewise, it would have been 

preferable to increase the accuracy of age estimates for larger TVs and Tanner stages 

PH4 and 5. However, including older boys required data sampling in high schools; 

due to limited financial resources, priority was focused on covering the ages around 

pubertal onset, as it was felt this was more important than examining the final adult 

stages. 
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5.1.1.3 Socio-economic status 

A survey on living conditions in 2016 found that living conditions in the municipality 

of Bergen was overall very similar to the rest of the Norwegian population in terms of 

its socio-economic structure (188). The seven schools from which the participants 

were recruited were randomly selected after stratification based on town area, and 

covered various socio-economic environments, although they were all located in 

mostly urban areas of the municipality of Bergen. Parental educational level was used 

as a measure of socio-economic status, as this has been shown to be a valid variable 

for this purpose (189). In our study, among boys who provided information about 

parental education level (336 of the 340 who completed the study questionnaire), as 

many as 81.5% reported to have at least one parent with higher education (college or 

university degree). This is an overrepresentation, compared to the general population 

in Bergen with a prevalence of higher education of ~40% in 2019 (190). Such 

overrepresentation in health-related surveys is well documented (191,192). However, 

logistic regression analysis of pubertal onset (yes/no) according to age and parental 

education level (college/university, yes/no) did not show any statistically significant 

differences (p = 0.159). 

Further, there were no significant difference in the prevalence of overweight or 

obesity based on parental education level (9.3% with overweight/obesity among boys 

whose parents did not have higher education versus 8.4% in the group whose parents 

did have higher education). However, among those children with no information 

provided on parental education level, 20.7% were classified as overweight or obese, 

based on IOTF classification. Further, there were no statistically significant 

differences in BMI z-scores between native Norwegian boys and their non-

Norwegian counterparts (p = 0.53). 

 

5.1.1.4 Country of origin 

Information about country of origin was also gathered in the questionnaire survey. 

Among those boys with a known country of origin, 77.4% had both parents from 

Norway, 10% had one or both parents from another European country, and 12.5% 
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had one or both parents from a non-European country. This is a fair reflection of the 

demographic composition of the general Norwegian population in 2016 (6% 

European and 10% non-European) (193). Previous studies have shown that adult TV 

differ between ethnicities with larger testes in Caucasian, compared to Asian, 

populations (194,195). However, testicular size in young boys aged 0–6 years has not 

been shown to differ between ethnic groups (56). Further, studies from the USA have 

demonstrated earlier achievement of pubertal TV (4 mL) in white boys, compared to 

African American boys (11.46 versus 11.75 years, respectively), whereas 

achievement of pubarche and Tanner stage PH2 seems to occur earlier in African 

American boys (83,87). The population sample in the study presented here was 

recruited with the designated aim to assess pubertal development in healthy boys 

living in Norway and to construct pubertal references for clinical use for all boys. 

Logistic regression did not indicate any significant differences when comparing age 

at attainment of pubertal TV or pubarche in native Norwegian versus non-European 

immigrant boys (p = 0.11 and p = 0.59, respectively), and all boys regardless of 

country of origin were therefore included. 

 

5.1.1.5 Chronic illness, scrotal pathology, and prematurity 

Information about chronic illness and previous scrotal pathology were collected 

through the questionnaire survey. Thus, a total of eight boys (1.6%) with an illness or 

condition that could affect growth and development were excluded from the study.  

However, it is possible that boys with a chronic illness were included in the study if 

they did not answer the questionnaire. 

A total of 20 boys were excluded due to past or current history of scrotal 

pathology. On examination, four boys were found to have bilateral, and 11 with 

unilateral, cryptorchidism. In addition, the testicle was found in the inguinal canal in 

two boys. In a cross-sectional study with >1500 school-aged boys (aged 7–12 years), 

the prevalence of cryptorchidism and retractile testis was 0.73% and 3.9%, 

respectively (196). In the study presented here, taking together these two conditions 

resulted in a prevalence of 3.6%. It is likely that many of the study participants 

recorded as having either bilateral or unilateral cryptorchidism probably had retractile 
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testes, but due to time constraints and the limited clinical experience of our main 

observer, these testes were not located. 

From the questionnaire survey, 22 of the boys in the main cohort were born 

before gestational week 37 or had a birthweight of <2500 g. A recent review of the 

association between preterm birth and puberty timing concluded that premature birth 

did not lead to a significant acceleration in the onset of puberty (197). Logistic 

regression analysis did not indicate any significant differences in age at attaining 

pubertal TV when comparing boys born preterm with those born full term 

(p = 0.391). Boys with known premature birth were therefore included in the study. 

To summarize, participating boys in this study are considered to be 

representative of the current population of children and adolescents in Norway, with 

respect to weight status and origin. Overrepresentation of boys with parents with 

higher educational level did not seem to influence the study results. Taken together, 

these are strong indications that findings from this study may be generalizable to the 

rest of the Norwegian male population. 

 

 Pubertal assessment 

5.1.2.1 Ultrasound examination 

For the test–retest study presented in Paper I, all boys were examined with ultrasound 

twice by the main observer and once by a second observer. While an experienced 

examiner should acquire a high degree of precision and accuracy over time, less 

experienced examiners will probably produce greater variability in their ultrasound 

measurements. Since there were only two observers in the study presented here, it is 

possible that the expected discrepancy in volume estimates between any pair of 

observers is considerably higher or lower than described here. Analysis based on 

replicated measurements from more than two observers, each with different 

experience and training, would, of course, provide a better estimate of both intra- and 

interobserver agreement (198). However, such a study with several observers would 

be costly and time-consuming, and not least be an additional burden for the 

participating boys. 
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As described in Paper I, the time interval of at least 20 minutes between the 

first and second ultrasound examination performed by the main observer included 

examination of at least three boys, but in some cases as many as five or six other 

boys. It may be argued that this was not sufficient to mitigate the risk of recall bias 

for the intra-observer agreement. However, the TV was calculated at a later stage, and 

recall after a time interval of >20 minutes would have involved recalling three 

separate dimensions, rather than a single volume (i.e. the TV). Therefore, the risk of 

recall bias was considered to be small. 

Standardization of methods is always necessary, so that a method is 

independent of a single observer. Interobserver variations may be, in part, due to 

different techniques used, e.g. the amount of pressure applied onto the testis with the 

ultrasound probe. In this study, the main observer, on average, measured greater 

widths and depths and shorter lengths, compared to the second observer, indicating 

that the main observer did not compress the testicle as much as the second observer. 

This could be overcome by better method standardization. In addition, use of a gel-

pad or application of generous amounts of coupling gel might help eliminate some 

errors arising from individual differences in pressure applied during examinations. 

In the work presented in Paper II, measurements were taken only for the right 

testicle, except in three cases where both testicles were measured since the left 

testicle appeared visually larger. On measurement, the left testicle was found to be 

larger in only one of the three cases. In the literature, the consensus is that there is no 

significant difference between the left and right TVs in healthy males (199,200). 

However, one study found that one out of five healthy boys aged 11–16 years with no 

scrotal pathology had smaller left TVs (201). Therefore, the choice of examining only 

the right testicle seems justifiable. Further, although interesting, measuring both the 

left and right TVs in >500 boys would add considerably to the workload for the 

observer and represent an additional burden for the boys without necessarily 

providing any reasonable advantage for data analysis. 

The decision to use the Lambert formula (57) for TV calculations was based 

on several studies showing that this formula is more accurate than other commonly 
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used formulae, when calculated TVs are compared to true TVs measured by water 

displacement (50,59). 

 

5.1.2.2 Tanner staging 

The assessment of pubic hair development described in Papers II, III, and IV was 

based on Tanner staging (46). The fact that the original photographs by Marshall and 

Tanner, together with the description of the different stages, were always made 

available to the observer likely enhanced the validity of the assessments. Assigning a 

Tanner stage for genital (G) development has been reported by others to be difficult 

and more subjective (47,202), with significant interobserver variation (52). In the 

study presented here, assigning the participating boys with a Tanner G stage, albeit 

very interesting and desirable, would have added to the burden of exposure for the 

boys during examination, which would have likely led to recruitment difficulties. In 

addition, the main observer only had minimal experience in Tanner genital staging. 

An alternative to clinical assessment could be collecting self-reported pubertal data. 

However, there is strong evidence that direct assessments by health professionals 

provide the most accurate accounts from subjects (202,203). 

As described in Paper I, TV measurements with the Prader orchidometer were 

performed by a highly experienced paediatric endocrinologist. This process thus 

ensured blinding to the ultrasound measurements carried out by the main observer. 

Using orchidometry to assess male pubertal development may be prone to inaccuracy 

due to subjectivity of this method of assigning the assessor’s impression based on 

visual inspection and palpation to a set of numbered beads, each representing 

different testicular sizes. Studies have shown that the Prader orchidometer 

systematically overestimates small TVs, probably due to the inability of the 

instrument to differentiate the central testicle from surrounding tissues, e.g. the 

epididymis, scrotal skin, and the tunica vaginalis (55,58,204,205). However, studies 

have reported a high correlation (r = 0.85) between TVs obtained by orchidometry 

and ultrasound volumes (205). Nevertheless, the measurement variation was found to 

increase with testicular size (16), thereby showing poor agreement between the two 

methods of TV measurement. 
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In this study, a mean age of pubertal onset (defined as a Prader orchidometer 

volume 4 mL, using the conversion formula presented in Paper I, VolOM = 1.96  

VolUS
0.71) of 11.7 years was obtained, which was comparable to Joustra et al.’s result 

of 11.6 years in Dutch boys (15). The authors assessed the TV both with ultrasound 

and by Prader orchidometry and found a mean USTV of 1.4 mL (calculated using the 

formula for an ellipsoid L × W × D × 0.52) at 11.6 years when the boys reached an 

orchidometer volume of 4 mL. In the study presented here, the results were compared 

with these Dutch references (60) by multiplying their TVs by a factor of 0.71/0.52, 

which showed highly comparable mean TVs for each age group between both studies 

(not shown). Therefore, this supports the study findings here that ultrasound is a 

useful method for construction of growth references of TV. 

 

 Blood sampling and analyses 

Blood sampling was carried out at participants’ individual schools during school 

hours, as shown in Table 2. The children were not requested to fast in advance. It is 

known that diurnal variation in testosterone secretion is more pronounced in early and 

mid-puberty (206). However, we believe that the diurnal variation’s influence on the 

results and conclusions is minimal because intra-individual diurnal fluctuations from 

early morning to afternoon are negligible, compared to interindividual variations (71). 

Another similar study also collected blood samples between 08:00 and 13:00 and 

provided references for FSH, LH, and testosterone from their data (207). Further, the 

reference intervals published from the highly regarded CALIPER study did not take 

diurnal fluctuations of gonadotropins or testosterone into consideration and fasting 

was not required (73). Therefore, for both clinical and academic purposes, the study 

presented here strongly support that intraindividual fluctuations can be disregarded 

when data are collected in a sufficiently large cohort for the purpose of constructing 

references. 
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Table 2 Blood draw times for indicated amounts of samples 

Sample time 

(hour:min) 
Number of 

prepubertal 

samples 

(USTV <2.7 mL) 

Number of 

pubertal samples 

(USTV 2.7 mL) 

Total number of 

combined 

samples 

(prepubertal and 

pubertal) 

(%) 

08:20 to 09:00 30 9 39 (9.5%) 

09:01 to 10:00 71 29 100 (24.5%) 

10:01 to 11:00 57 38 95 (23.3%) 

11:01 to 12:00 35 19 54 (13.2%) 

12:01 to 13:00 41 38 79 (19.4%) 

13:01 to 14:00 16 22 38 (9.3%) 

14:01 to 15:00 0 3 3 (0.7%) 

Average time of 

blood draw 

(hour:min) 

10:41 11:19 10:57 

 

An important consideration from the CLSI guidelines is the formalized 

requirement of n 120 observations to construct each valid reference interval for 

clinical use. However, although partitions should ideally be defined by 120 

observations, a minimum sample of 40 is sufficient to estimate a reference interval 

with robust resampling (185). In Paper III, continuous centiles were calculated from 

no fewer than 40 observations in the data set tail end and the 90% CIs associated with 

the 2.5th and 97.5th percentiles were calculated by resampling using 

referenceIntervals package in R. 

In this study, LC-MS/MS was used, which quantifies the molecular analyte 

directly from its fragmented mass/charge ratio signature and offers greater analytical 

sensitivity and specificity required to assess gonadal function and therapeutic drug 

monitoring in children and adolescents (173,208-210). The traditional immunoassay 

techniques, however, quantify the hormones indirectly, with particular challenges in 

terms of analytical specificity and sensitivity, especially in the lowest range, such as 

in prepubertal children. In this study, the detection limit for testosterone using LC-

MS/MS was 0.01 nmol/L. For comparison, the Copenhagen Puberty Study reported a 

detection limit of 0.23 nmol/L measured by radioimmunoassay (29). 
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 Anthropometric measurements 

All anthropometric measurements in BGS2 were carried out by the main observer, 

which limits variability due to interobserver variability. In addition, height, WC, and 

SSF were measured using identical equipment and methods as in BGS1, from which 

anthropometric z-scores were estimated. 

Good correlation has been shown between the BMI and body fat, but the 

accuracy of the BMI in predicting overweight and obesity varies with the degree of 

fatness, with higher accuracy in obese children and lower accuracy in leaner children 

(137). This may potentially overlook the so-called ‘normal-weight obese’ children 

(136). Furthermore, the correlation between the BMI and body fat is much lower in 

boys than in girls (211). This may be because during male puberty, increasing muscle 

mass associated with the anabolic effect of rising testosterone levels causes an 

increase in weight and BMI, independent of any increase in body fat. In this study, 

WC measurements were also included as a measure of abdominal fat, and SSF as a 

direct measure of truncal fat. Importantly, as with the BMI, the WC is also regarded 

only as a proxy for increased adiposity. The WC does not distinguish between central 

adiposity and muscle mass, meaning that boys with higher muscle mass may have 

increased WC measurement, partially due to muscular core development, as seen 

with increasing maturity (212). 

As described in Paper IV, BIA was used for evaluation of %BF. BIA is 

generally considered to be more accurate than anthropometric-based indices such as 

BMI (213). However, BIA may overestimate %BF in leaner subjects and 

underestimate %BF in fatter subjects (214). For the calculation of %BF z-scores, 

references previously published by others were used (176). When calculating z-scores 

based on measurements in this study, the %BF z-scores for boys aged 9 years (not 

shown) matched very well with the z-scores obtained by McCarthy et al. (176). 

Based on the study presented here, measuring not only BMI, but also WC, SSF, 

and %BF, would enable the study of variables of both body shape (BMI and WC) and 

body composition (SSF and %BF), thus adding a new dimension to this association 

study. 
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 Statistical considerations 

5.1.5.1 Bland–Altman plots 

Agreement within and between observers and methods was assessed using Bland–

Altman plots, as described in Paper I. Previous studies have mainly examined the 

correlation between the two methods of TV measurements, namely orchidometry and 

ultrasound (205,215-217). However, using Pearson and intra-class correlation only 

measures the strength of an association but gives no information about agreement. 

Correlation does not take into account, for instance, systematic bias between two 

observers or methods, and consequently, even a high correlation between two 

methods does not guarantee a clinically acceptable agreement (178,218). Therefore, 

for the purpose of this study, the Bland–Altmann plot was considered as the 

appropriate statistical method. Moreover, it provides statistics (e.g. LOA) that are 

useful in the interpretation of measurement variability in a clinical or research 

context. 

 

5.1.5.2 GAMs and GLMs 

In this study, probit regression was used with a GLM when estimating the cumulative 

incidence curves for reaching selected TVs and PH stages. To compare the timing of 

puberty, some studies express their results in terms of the mean  SD under the 

assumption that the data are normally distributed. Others report in medians and 

percentiles. This issue is important, because the mean and median are only 

comparable when the distribution of data is symmetric. In this study, the GLM probit 

models were compared to the corresponding non-parametric GAMs as an informal 

test of normality, which confirmed the assumption of a normal age distribution at 

different pubertal milestones. 

Since this is a cross-sectional study, the individual progression between 

different pubertal stages will be faster than the intervals between the median ages 

shown on the probit curves. Likewise, the testicular growth curve of an individual 

boy will be steeper than the reference curves in this study. Progression of pubertal 

development is therefore outside the scope of the current work. 
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 Ethical considerations 

When including children and adolescents in research, ethical concerns inevitably 

arise. The Declaration of Helsinki emphasizes the importance of voluntary 

participation in research (186). The intimate nature of this study demanded particular 

consideration of the ethical aspect of the research. In light of this, all boys were 

informed that they could withdraw from the study at any time, without any 

consequences. In addition, when conducting research on such a vulnerable subject 

group, making sure to include only the necessary number of children (as determined 

by power calculations) will limit the number of participating children undergoing 

examination, thereby minimizing the risk of causing unnecessary harm. 

 

5.2 Discussion of results 

 Observer agreement 

To estimate the reference values for USTV, it was important to report on observer 

error. This was done by evaluating the intra- and interobserver agreement for USTV 

in 57 boys, as described in Paper I. As mentioned previously, reporting agreement 

using Bland–Altman plots enables detection of any systematic bias, which is not 

possible with correlation analysis (218). It is well known that accuracy of TV 

measurement using the Prader orchidometer is dependent on observer experience 

(49,52). The same issue applies to ultrasound examinations (51). In this study, results 

showed that intra-observer agreement (reliability) was unbiased, with a variability of 

9.2% (SD of the relative differences). This was highly comparable to earlier studies 

reporting an intra-observer variability ranging between 7.0% and 9% (16,51,56). The 

intra-observer 95% LOA were −20.3% to 15.9%, or  18.4%, which were close to the 

previously set value of 15% considered to be acceptable for clinical use. This cut-off 

value was a clinical decision, rather than based on statistics. Analysis of interobserver 

agreement (reproducibility) showed that the measurement of TV volume with 

ultrasound was slightly biased, with a mean difference of 4.8%. In contrast to the 

acceptable intra-observer agreement, the agreement between the two observers in this 

study showed a variability of 20.7%, which was higher than the CVs of 11.7% and 

15% reported in earlier studies (16,56). This may be explained partly by the fact that 
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Kuijper et al. tested the observer variation in boys aged 0–6 years (56), which limited 

the variation in testicular size, and that Sadov et al. used the formula of an ellipsoid 

(L  W2  0.52), which does not include depth measurement, thus disregarding the 

potential measurement error of this variable (16). Results from both the study 

presented in this thesis and Sadov et al.’s study found that the between-measurement 

variation clearly increased with testicular size (16). The TV in the 57 boys described 

in Paper I ranged from 0.5 mL to 30.8 mL. This high variability resulted in wider 

LOA ( 41.4%). This poorer interobserver agreement, compared to the intra-observer 

agreement, may be, in part, due to the different clinical experience between the two 

observers (the radiographer with eight years’ experience versus the radiologist with 

over 25 years’ experience) and minor differences in examination techniques. The 

better intra-observer agreement, however, shows the potential of improving and 

standardizing the method, which, in turn, will lead to improved interobserver 

agreement for better longitudinal follow-up of the individual boys. Since statistically 

significant bias was not found, the data suggest that ultrasound is a reliable method 

for construction of growth references of TV. 

 

 Method comparison 

To determine the between-methods agreement, TVs were measured once with 

ultrasound and once with the Prader orchidometer. A comparable mean and SD of the 

TVs measured with the two methods was found. However, there was a clear tendency 

towards overestimating the smaller TVs with the Prader orchidometer, with a mean 

difference of 59.1% (SD 27.5%) for prepubertal TVs, but only 5.2% (SD 24.4%) for 

pubertal TVs. It is well known that ultrasound agrees better with the true TV 

measured by water displacement or by direct weighing (51,55,58,219) and that the 

Prader orchidometer tends to overestimate the volumes, compared to USTVs and true 

TVs (204,217,219). To overcome this non-linear and volume-dependent relation, 

regression analysis of logarithmic-transformed volumes was performed, resulting in 

the conversion formula VolOM = 1.96  VolUS
0.71. The variation between the predicted 

and observed volumes was of the same magnitude as the estimated interobserver 
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agreement for ultrasound measurements and did not exceed the reported variation for 

orchidometer measurements, with a CV of 20.4% (55). 

 TV measurement is an important tool in diagnosing a variety of medical and 

surgical conditions. The Prader orchidometer is regarded as having too low sensitivity 

for detection of minor volume differences, and ultrasound is therefore recommended 

for routine use when investigating testicular growth impairment (55,205,220). For 

example, a difference in volume of 20–25% between the right and left testicles has 

been used as an indicator for surgical correction in boys with varicocele (221). 

Precise determination of the TV is therefore of utmost importance in such cases and 

only ultrasound can detect such small differences. In addition to detecting volume 

variations, use of ultrasound also has the advantage of detecting testicular pathology, 

such as microlithiasis, varicocele, and hydrocele, and can locate a retractile testis

during examination. 

 

 Pubertal timing 

Up-to-date references defining pubertal onset is important for detection of any secular 

trend of earlier development within a population (1) and for defining altered pubertal 

timing, since this might have public health implications for the individual boy (171). 

The definition of normal physiological range for pubertal development is usually set 

as 2.5 SD below and above the mean (74). In this study, the range limits were 9.0 and 

14.3 years, in line with the current definition of normal pubertal onset between 9 and 

14 years. 

The onset of puberty is defined as reaching a USTV of 2.7 mL. Only one 

earlier study has defined pubertal timing using USTV (15). In this study, pubertal 

onset occurred at a mean age of 11.7 (1.1) years, as reported in Paper II. This is very 

similar to the mean ages in comparable countries like Denmark (11.7 years) (79) and 

The Netherlands (11.6 years) (15,60) where data were collected almost a decade 

before this study. Several population-based studies have also been conducted in the 

USA. The most recent Pediatric Research in Office Settings (PROS) study with data 

collected from 2005 to 2010 showed a mean age of pubertal onset of 11.5 years in 

non-Hispanic white boys (87), which is also comparable to the results of the already 
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mentioned European countries. Based on these findings, there was no evidence of a 

secular trend over the past decade. However, comparing results from this present 

study to a very small study conducted by Waaler et al. in the 1970s that included 109 

Norwegian boys aged 1.9–16.9 years (81) showed that contemporary boys reached 

pubertal TV ~2–3 months earlier than four decades ago. However, this study included 

only 72 boys at pubertal age (>9 years). The mean age at Tanner stage PH2 in the 

present study cohort was 11.8 (1.2) years, which also corresponded well to the 

reported mean ages from Denmark (27,88), Italy (84), Belgium (86), and The 

Netherlands (222), varying between 11.5 and 11.9 years. Deviating from this trend 

are two studies from Denmark, both part of the Copenhagen Puberty Study, reporting 

a mean age at Tanner stage PH2 of 12.4 and 12.2 years, meaning a delay of 5 months 

in the 2006 cohort, compared to the 1991 cohort (29,79). However, the authors found 

that the age at entry into Tanner stages PH4 and PH5 was reached significantly earlier 

in 2006, indicating a shorter interval between the stages. When comparing mean ages 

at more mature pubertal stages in the present study with the 2006 Copenhagen 

Puberty Study cohort, results showed that the mean ages ( 2 SD) at reaching Tanner 

stages PH4 and PH5 were 13.46 (11.7–15.2) years and 14.42 (12.6–16.2) years in 

BGS2, compared to 13.67 (11.56–15.78) years and 14.45 (12.51–16.39) years in the 

Copenhagen Puberty Study (79). Moreover, when comparing the mean ages for larger 

TVs from this study with data from Belgium, it was found that age at the 50th 

percentile (3rd to 97th percentiles) for a TV of 10 mL (measured with a Prader 

orchidometer) was 14.1 (11.8–16.3) years in this study, whereas the Belgian study 

reported younger ages of 13.2 (11.2–15.6) years (86). The same trend was seen for 

TVs of 12 and 15 mL. 

To summarize, results from this present study showed that the mean ages at 

pubertal onset in Norwegian boys, defined as reaching pubertal TV (USTV 2.7 mL) 

and Tanner stage PH2, were similar to comparable data from other countries in 

Northern Europe obtained over the last few decades, with no indication of an ongoing 

secular trend. However, based on a small study from Norway in the 1970s, pubertal 

onset is now observed about 2–3 months earlier than four to five decades ago. 
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5.2.3.1 Comparison of studies 

It must be noted that several authors and expert panels have previously concluded 

that the lack of specifying methods for pubertal assessment in boys presents 

significant challenges to the interpretability and replicability of many studies (223), 

thus complicating the evaluation of any secular trends in male pubertal development 

(224). Due to the lack of an easily measured and reliable marker in boys, like the 

menarche in girls, several different proxy markers of pubertal onset and progression 

have been used. The commonest, besides Tanner staging and Prader orchidometry, 

being PHV (41) and age at voice break (30,42). Indisputably, the best and most 

objective clinical marker for male puberty is TV measurement (225). This is seldom 

evaluated in population-based studies because of the intimate nature of the 

examination, which means that visual grading of genital development (Tanner G) has 

been used instead (83). The results from the NHANES III study in the USA (1988–

1994) (78), which assessed pubertal development by visual inspection only, have 

been debated due to the quite large discrepancies in mean ages at pubertal onset 

compared to the majority of studies that were published at around the same time (79), 

as well as when comparing mean ages at Tanner stage G2 and Tanner stage PH2 

(10.1 versus 12.0 years, respectively). These discrepancies are thought to be because 

pubertal development was classified solely by visual grading and use of Tanner G 

staging by multiple examiners, without TV assessment, possibly leading to an 

overclassification of prepubertal boys as being at Tanner stage G2. Due to the 

intimate nature of assessing the male genitals either visually or by palpation, other 

studies used self-reported data (85,226). However, self-assessment of pubertal 

development has only shown fair to moderate agreement with clinical examination 

(227-229). 

 

 Stratification of endocrine references 

Paper III is the first study to present CALIPER and CLSI-compliant reference 

intervals in relation to the more objective measure of TV using ultrasound. Results 

showed that the studied hormones varied both with age and with puberty progression, 

as assessed with gonadal development. The finding that TV accounted for more 
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variation in testosterone levels than age in pubertal boys illustrates the biological 

relevance of TV during puberty and prompted the establishment of an additional set 

of references for hormone levels in relation to TV. 

Reference intervals stratified by sex and age are essential when interpreting 

results from paediatric blood tests. For sex hormones especially, levels vary not only 

with age, but also according to gender and the degree of pubertal maturation. Current 

paediatric endocrine references are often based on a small sample size and inpatient 

tests and are usually not representative of a healthy paediatric population. They are 

mostly presented in relation to chronological age (230). However, studies have shown 

complex changes in fertility hormones both during the first year of life and especially 

throughout adolescence, highlighting the importance of stratifying reference intervals 

by pubertal stages (70). The CALIPER reference intervals for the HPG axis were 

partitioned based on self-reported Tanner stages (73). 

According to the CLSI guidelines outlined in the document EP28-A3c, the 

CALIPER studies set a new standard for presenting sex- and age-specific reference 

intervals, with their white paper article covering over 100 biomarkers for paediatric 

diseases (73). The CALIPER initiative further quantified the effects of pre-analytical 

factors such as interindividual variation (72) and within-day biological variation 

(231). 

The partitioning of data in the present study was chosen to best support clinical 

decision-making. The age range of 10–13 years is crucial for testicular maturation, 

since most boys attain pubertal TV during these years. In the study data set, there 

were only two boys who reached pubertal TV prior to the age of 10 years and only 

one boy with a prepubertal TV after the age of 13 years. In light of this, it made 

clinical sense to dichotomize the participants in this age interval as 

prepubertal/pubertal according to their TV and to partition the sample accordingly. 

When stratifying the boys aged between 10 and 13 years by attainment of pubertal 

TV, all tested hormones were satisfactorily separated using the Harris–Boyd and z* 

criteria. This approach was not possible in other age partitions. In an attempt to keep 

the analysis simple and clinically reasonable, the introduction of many combinations 

of age and TV was minimized in this study. 
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 Association between pubertal maturation and 

anthropometric measures 

The work presented in paper IV examined the associations between the timing of 

pubertal maturation and either a high or a low weight status, using the measurements 

of BMI, WC, SSF, and %BF for age. Results showed that low BMIz and low WCz 

were associated with a delay in pubertal onset and smaller TVs for age. However, no 

significant association was found between higher weight status and the level of 

pubertal development. 

The association between overweight and early pubertal maturation in boys 

remains debated, with fewer available data in boys compared to girls, presumably as 

data on pubertal development in boys are more difficult to determine on a large scale. 

In addition, comparison between studies might also be hampered by the lack of a 

uniform definition of overweight and obesity (232). This may contribute to the 

conflicting results of association studies. Some studies report an association between 

increased BMI and earlier age at pubertal maturation (29,79,114,118,127,233), 

whereas others found a reverse association, i.e. higher BMI with later puberty 

(44,121-123,234). Further, in line with the study results here, some studies found no 

association between obesity and early pubertal onset (113,235,236). Lastly, some 

groups have even reported diverging results between overweight and obese boys, 

with overweight boys maturing earlier and obese boys maturing later, both compared 

to normal-weight boys (133,237). These studies all underline the uncertainty of an 

association between weight status and pubertal development in boys. Conflicting 

results have also been observed regarding the association with pubic hair 

development. In this present study, no significant association was found between 

pubic hair development and any of the anthropometric measurements (BMI, WC, and 

SSF) or %BF. Busch et al. did not observe a significant difference in the timing of 

pubarche between a control group and the obese study cohort (118). However, 

Sørensen et al. observed earlier pubarche (79), and Kleber et al. later pubarche, with 

increasing BMI (44). 
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Most studies on pubertal timing and the influence of adiposity are based on 

cross-sectional data, which makes it difficult to identify the direction of the 

association between pubertal timing and weight status. This association might be 

bidirectional, in that obesity might influence puberty, or vice versa. However, 

contradictory results have been reported in the few published longitudinal studies. 

Ong et al. showed that boys with more advanced voice break at age 14 (as a sign of 

earlier pubertal development) had a higher mean BMI at ages 2 and 14, compared 

with other boys (30). He and Karlberg found that an increase in BMI between ages 2 

and 8 years, called adiposity rebound, was associated with earlier growth spurt in 

boys (41), which was confirmed in the Swedish Gothenburg Osteoporosis and 

Obesity Determinants (GOOD) study a few decades later (238). Aksglaede et al. also 

found that the heavier boys were at age 7, the earlier the age at onset of growth spurt 

and PHV (119). Additional studies have also confirmed this trend (239-241). In 

contrast, Buyken et al. did not find any independent associations between BMI z-

scores 1 or 2 years before age of onset of pubertal growth in a cohort of 108 German 

boys (242). One must bear in mind that age at PHV and voice break, which are the 

pubertal markers assessed in most of these studies, do not describe the pubertal onset, 

but pubertal milestones occurring years later, complicating the cause/effect analysis. 

The early occurrence of PHV and voice break might represent a more rapid 

progression of puberty, rather than an earlier initiation of puberty, or simply might 

represent accelerated growth, independent of puberty, as obese children have 

demonstrated accelerated growth throughout childhood, independent of the timing of 

puberty (243). 

The secular trend towards earlier puberty, especially in girls over the last 

decades, has been associated with the increasing number of obese children (244). 

Therefore, there has been a special focus on the association between overweight and 

pubertal timing. However, fewer studies have focused on the effect of underweight 

and low fat on pubertal timing. Results in Paper IV demonstrated an association 

between low BMI (<−1 SD) and low WC for age and pubertal timing, with a delay in 

achieving pubertal TV of about 8 months, compared to normal weight boys. At the 

same time, no significant association was found between high BMI (> 1 SD) or WC, 
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in contrast with the study hypothesis. In line with the study findings, a study 

including cohorts from both Germany and Switzerland found that PHV occurred 

significantly later in lean, compared to normal-weight, children, with no significant 

difference between obese and normal-weight children (126). Tomova et al. also 

found in a study including >4000 boys that underweight boys (BMI <12th percentile) 

reached every stage of puberty (TV, Tanner PH, and penis length and circumference) 

at older ages, when compared to normal-weight boys (127), and at the same time 

reported that overweight and obese boys reached every pubertal stage at younger 

ages, compared to normal-weight peers. In the study presented here, the fact that no 

significant association was found between anthropometric measures and pubertal 

onset for boys with high BMI and WC for age does not exclude that such associations 

do exist, but that no such associations could be demonstrated here. This may be 

linked to the limited number of participating boys, as well as the cross-sectional study 

design. 

It is well known that body composition itself changes during puberty and that 

BMI increases with maturation, even without changes in adiposity (35). Thus, early 

puberty from any cause can produce a physiological increase in parameters used to 

define obesity, such as BMI for age, which could potentially lead to overestimation of 

adiposity in early-maturing boys (245). This lack of specificity of BMI as a marker 

for adiposity contributes to the difficulties of proving a direct and causal relationship 

between excessive adiposity and early puberty (133). Body fat distribution, rather 

than body weight, might play an important role in the timing of onset of puberty. It 

was interesting therefore to investigate in this study the association of more direct 

measures of adiposity with pubertal timing. However, no such associations were 

found, whether with high or low SSF or %BF or with high WC for age. 

Recent large-scale genetic studies have identified genetic correlations between 

puberty timing and BMI, in addition to later adverse health outcomes like diabetes, 

cardiovascular disease, and a shorter lifespan (106,162). Findings from these genetic 

studies, together with results from epidemiological studies, including the study by 

Ong et al. (30), support the theory of an overlapping of genes involved in pubertal 

timing and adiposity, and the existence of a pathway of early infancy weight gain and 
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a faster tempo of growth throughout infancy and childhood, leading to earlier 

pubertal development. Higher childhood body weight and BMI are thought to 

stimulate earlier pubertal onset and progression through the actions of leptin, insulin 

resistance, or other hormonal mechanisms such as effects of EDCs (125,134,158). To 

further complicate these theories, studies have also described later puberty in obese 

boys. This association is thought to be mediated through increased aromatization of 

androgens to oestrogens in adipose tissue (246). Towards whichever direction the 

association is trending, nutritional factors, epigenetics, and EDCs are all potential 

mediators linking the onset of puberty to weight status (133). 

In summary, research to date has shown conflicting results regarding how 

weight status affects puberty timing in boys. This may be due to varying definitions 

of puberty and even due to different definitions of obesity, together with differences 

between populations. These inconsistencies emphasize the need for future 

longitudinal research in this area. 
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6. Conclusions 

Based on the study aims and hypotheses, the conclusions of the study can be 

summarized as follows: 

 Ultrasound is a reliable method for assessing TV, with acceptable intra-

observer agreement and no significant bias, and is suitable for construction of 

references. However, wider interobserver agreement warrants better 

standardization of the measurements and better calibration of the observers. 

 There was a tendency for Prader orchidometry to overestimate the smaller 

TVs, compared to use of ultrasound. A nonlinear conversion formula 

(VolOM = 1.96  VolUS
0.71) was used to calculate the predicted orchidometer 

volumes from their corresponding ultrasound measurements, to overcome the 

volume-dependent relationship. 

 The mean age for achieving pubertal TV was 11.7 (1.1) years, and 11.8 (1.2) 

years for reaching Tanner stage PH2. The age distribution for reaching 

pubertal milestones was comparable with data from other Northern European 

countries. Results showed no indication of a secular trend towards earlier 

puberty over the past few decades. 

 Ultrasound assessment of TV was useful for stratification of hormone 

references, to aid in differentiating between prepubertal and pubertal boys. TV 

accounted for more variance in serum testosterone levels than chronological 

age in pubertal boys, whereas the opposite was found in prepubertal boys. 

 Low BMI for age (<−1 SD) was associated with delayed onset of puberty, with 

boys with low BMI for age reaching pubertal TV about 8 months later than 

normal-weight boys. No association between high BMI and pubertal onset was 

found. 

 Boys with low WC for age (<−1 SD) had a lower probability of being 

pubertal, compared to boys with normal BMI. The other direct measurements 

of body fat (SSF and %BF) did not show significant associations with the 

timing of pubertal onset or the level of maturity. 
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 Boys with low BMI and low WC for age were delayed over the whole pubertal 

age range as demonstrated by smaller testicular volume by age. Boys with 

high BMI and high WC for age did not demonstrate larger testicular volume 

for age. 

 Associations with pubertal onset found for BMI and WC, but not for SSF and 

%BF, suggest that BMI and WC could be more suitable markers for maturity, 

rather than adiposity. 
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7. Future perspectives 

This is the first pubertal reference study conducted in Norway, with the aim to assess 

pubertal development and construct pubertal references for Norwegian boys. The 

knowledge and definition of normal puberty timing for today’s boys are crucial, with 

important clinical implications for the individual child. Up-to-date references will 

lead to better guidance for when to investigate boys with early, or delayed, or absent 

pubertal development. Alterations in the timing of growth and sexual maturation at a 

population level are also important, particularly in relation to potential later adverse 

health outcomes, such as diabetes and cardiovascular disease, with implications in 

terms of public health and behavioural interventions. 

This study has demonstrated that ultrasound is a suitable method for evaluating 

testicular size. Ultrasound may be perceived as technically more challenging than 

assessment with the Prader orchidometer. However, since ultrasound is becoming 

increasingly available, has the advantage of detecting testicular pathology, and now 

also has allowed for references to be established on a continuous scale, it is likely that 

more clinicians will make use of this method. 

The relationship and cause and effect between body fat and timing of puberty 

onset are still unclear. Further longitudinal studies are required to better understand 

the physiological link between body fat during infancy, childhood, and peripuberty 

and the timing of pubertal onset. For this purpose, as a continuation of the present 

study, further work is already under way. Written consent has been obtained from 

most of the participating boys in this study for retrieval of their early growth data, 

from birth till age 6 years, from well-baby clinics. This work will potentially help to 

better understand the potential link between childhood growth and puberty. In 

addition, further genetic analyses may aid in finding the etiology of altered puberty 

timing and thereby lead to better genetic counselling. Many of the participating boys 

in this study also took part in the Norwegian Mother and Child Cohort Study (MoBa) 

where maternal, paternal, as well as cord, blood samples have been collected. 

Together with the data on pubertal development, there are plans to perform a trio-

analysis based on the genetic material collected in BGS2 and MoBa. This will be 
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conducted by means of GWAS, epigenome-wide association studies (EWAS), and 

methylation analyses. 

Finally, identification of modifiable influencing factors on puberty timing is 

important. The effects of EDCs on puberty timing have remained an ongoing 

concern. With that in mind, additional blood samples from each study participant 

were collected, with the aim to analyse several EDCs known to potentially influence 

pubertal development. This work is expected to commence soon. 
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Errata 

Page 38 Wrong data: “The mean age was 11.0 (range, 6.1-16.4) years” – corrected to 

“The mean age was 12.0 (range 6.5-16.4) years”. 

Paper I, Table 1 Wrong unit of measurement: “mm” corrected to “cm”. 

Paper IV, Figure 1 Y2 label: “Orchidometer volume, ml” corrected to “Equivalent 

orchidometer volume, ml”. 
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Abstract
Aim: To estimate references for testicular volume measured with ultrasound and 
Tanner stages of pubic hair in Norwegian boys, and to compare the timing of puberty 
with data from similar populations.
Methods: Testicular volume was derived from ultrasound measurements of testicular 
volume in a cross-sectional study of 514 healthy boys. A continuous testicular volume 
for age reference curve was estimated with the LMS method. Tanner stages for pubic 
hair were clinically assessed in 452 boys. Age references for pubertal milestones 
were estimated with probit regression.
Results: Puberty onset, defined by an ultrasound testicular volume of 2.7 mL, equiva-
lent to an orchidometer volume of 4 mL, occurred at a mean (SD) age of 11.7 (1.1) 
years. The reference range was 9.7 (3rd) to 13.7 years (97th percentile). Pubic hair 
(Tanner stage 2) appeared on average at 11.8 (1.2) years with a corresponding refer-
ence range of 9.5-14.1 years.
Conclusion: The references for testicular volume measured with ultrasound are con-
tinuous in age and allow for the quantification of pubertal development. The age 
distribution of reaching pubertal milestones was comparable with data from other 
Northern European countries.

K E Y W O R D S
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1  | INTRODUC TION

During the past two decades, several authors have demonstrated 
renewed trends towards earlier puberty in girls, after a relatively 
stable period of almost 60 years.1,2 Although results in boys are 
more equivocal,3,4 some studies have suggested similar trends.5,6 

Overweight and obesity have been proposed as possible drivers for 
this renewed trend,6-8 as well as exposure to endocrine-disrupting 
chemicals.9

Population-based studies of puberty are more challenging in 
boys than in girls, due to the lack of an easily measured, yet reli-
able pubertal marker like menarche.4 Testicular examination with a 
Prader orchidometer is useful and widely used in clinical practice, 
but it is regarded as impractical for population studies.10 In boys, at-
tainment of a testicular volume (TV) of ≥4 mL when measured with a 
Prader orchidometer is considered the best indicator for the onset of 
male puberty.11 It is therefore desirable that population studies also 
include assessments of TV. However, measuring TV with a Prader or-
chidometer may be perceived as intrusive outside of clinical context. 
In such situations, the use of ultrasound (US) to measure TV could be 
more acceptable because of the more technical nature of the exam-
ination. US is also the preferred method when the accuracy of TV is 
important.12 In addition, this method has the advantage of detecting 
testicular pathology, which may explain developmental differences 
of testicular growth. We have previously shown that the measure-
ment of TV with US is methodologically feasible and appropriate for 
the generation of pubertal references for TV.13

The aim of the current study was to estimate references for TV 
based on US measurements of the testicle and Tanner pubic hair 
(PH) staging in a representative cohort of healthy Norwegian boys.

2  | MATERIAL S AND METHODS

2.1 | Childhood population

This study is a part of the Bergen Growth Study 2 on pubertal growth 
and development in Norway. All boys attending one of six randomly 
selected schools that provide primary and secondary education in 
the city of Bergen, Norway, were invited to participate in the study 
from January through June 2016. Parental consent was obtained for 
493 (37%) out of 1329 eligible boys, but two boys did not assent 
and six were absent on the day of examination. In addition, we in-
cluded US measurements from 58 boys who participated in a reli-
ability study in 2017.13 The age at examination was calculated from 
date of birth and date of examination. Eight boys with a disease or 
condition that could affect growth and 21 boys with a history of or 
present scrotal pathology (including cryptorchidism, hydrocele and 
microlithiasis) were excluded, and the Tanner PH stage was not reg-
istered in 62 boys. A parental questionnaire was obtained for 340 of 
the 514 (66.1%) boys included in the analysis. The questionnaire con-
tained items on origin, chronic disease and previous genital pathol-
ogy. Origin was grouped as both parents from Norway, one or both 

parents from the European region, and one or both parents from 
outside the European region. Height and weight were measured in 
457 of the boys included in the analysis. Based on the International 
Obesity Task Force (IOTF) body mass index (BMI) reference values,14 

11.8% of boys were classified as overweight (IOTF-BMI ≥25 kg/m2) 
and 1.9% as obese (IOTF-BMI ≥30 kg/m2). This closely matches the 
12.8% and 2.1% reported for Norwegian boys in this age range.15

2.2 | Ultrasound

All US examinations of the testis were performed by a single tech-
nician using a Sonosite Edge US machine with a 15-6 MHz linear 
probe. The length (L), width (W) and depth (D) of the right testicle 
were measured with the boy in a supine position according to a 
standardised protocol.13 If the left testicle appeared larger by visual 
inspection, this was also measured, and the volume of the largest 
testicle was registered. The TV was calculated from the length, 
width and depth using the Lambert equation as TV = L×W×D×0.71. 
The observer variability of this method is 9.2% with a technical error 
of measurement (TEM) of 6.5%.13 An empirical equation to predict 
Prader orchidometer volume from US volume was previously de-
rived as VolOM = 1.96 × VolUS

0.71. The Prader orchidometer volume of 
≥4 mL that defines puberty onset is thus equivalent to an US meas-
ured volume ≥2.7 mL.13 A preliminary logistic regression analysis of 
pubertal onset (yes/no) according to age and origin showed no sta-
tistically significant differences between boys of Norwegian origin 
and European (P = .17) or non-European boys (P = .11). All boys were 
therefore included in the analysis of TV during puberty.

2.3 | Tanner staging

Tanner PH stages were visually assessed in the supine position by 
the same observer performing the US examinations. Illustrated de-
scriptions based on the work of Marshall and Tanner served as a 
reference.16 A preliminary analysis showed no statistical significant 

Key notes

• The testicular volume is usually determined with a 
Prader orchidometer; however, ultrasound examina-
tions are possibly a better alternative.

• We estimated up-to-date references for testicular 
volume, measured with ultrasound, and pubic hair in 
healthy Norwegian boys.

• Implementation of ultrasound for assessing testicular 
volume implies a transition towards an objective meas-
urement on a continuous scale, which allows to detect 
smaller changes in the testicular volume and to quantify 
pubertal development.
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difference in the timing of pubarche (Tanner PH stage 2) between 
boys of Norwegian origin and European (P = .82) or non-European 
boys (P = .59). All boys were therefore included in the analysis of 
pubic hair stages.

2.4 | Statistical analyses

A reference curve of the continuous US testicular volume for age 
was estimated with the LMS method.17 The LMS method normal-
ises the distribution of a variable by applying a Box-Cox power 
transformation to remove skewness from the data. The reference 
is summarised by three curves, representing the Box-Cox power 
to remove skewness (L), the mean (M) and the approximate coef-
ficient of variation (S) along the independent covariate age. The 
amount of smoothing is expressed in terms of smoothing param-
eters or equivalent degrees of freedom (edf). For the TV, the op-
timal Box-Cox power L was determined to be constant at 0.5 (ie 
a square root transformation), the M-curve was fitted with 8 edf, 
and the S-curve with 4 edf. The tabulated values of L, M and S 
by age contain all the information that is needed to calculate any 
percentile, or to convert measurements into z-scores. Because L is 
a constant of 0.5, centiles can be derived using the simplified for-
mula C

�
=M (1+Sz

�
∕2)2, and z-scores as Z=2× (

√

X∕M−1)∕S, where 
z

α
 is the normal equivalent deviate that corresponds to the desired 

percentile.

In addition to the LMS reference curves for the continuous TV, we 
used probit regression within a generalised linear model (GLM) to es-
timate cumulative incidence curves for reaching TVs that correspond 
to selected discrete Prader orchidometer volumes, and for each of the 
Tanner PH stages. Non-parametric generalised additive models (GAM) 
provided identical results, which confirmed our assumption of a normal 
age distribution at the different pubertal milestones (data not shown).

All statistical analyses were performed using R version 3.4 (R 
foundation for Statistical Computing) or IBM SPSS statistics version 
24 (IBM Corp).

2.5 | Ethical considerations

Written informed consent was obtained from a parent or legal guard-
ian of each participant in the study, as well as assent from the par-
ticipants themselves. A cinema voucher was given as an incentive. 
The study was approved by the Regional Committee for Medical and 
Health Research Ethics West (REC-WEST 2015/128).

3  | RESULTS

3.1 | Childhood population

The number of boys varied from 28 to 66 per age year between 
six and 16 years, and 12 boys were 16 years of age. Based on 

information from the questionnaire, 77.4% had two Norwegian 
parents, 10% had one or two parents from another European 
country, and 12.5% had one or two parents from outside the 
European region. US examination of the scrotum revealed micro-
lithiasis in one boy and testis located in the inguinal canal in two 
boys. In addition, we observed twelve cases of unilateral and six 
cases of bilateral cryptorchidism.

3.2 | Testicular volume

A total of 514 boys with a mean age of 11.0 years (range: 6.1-16.4 years) 
were included for the references. Figure 1 shows the US testicular vol-
umes by age and the fitted median and ±2 SD lines. The corresponding 
L, M and S values are listed in Table 1, and selected percentiles are 
provided in Table S1. Figure 2 shows the cumulative incidence curves 
of selected discrete Prader orchidometer volumes by age, which were 
derived from the US volumes using the formula given in the methods 
section. The corresponding age quantiles are listed in Table 2 as SD 
scores and in the Table S2 as age percentiles. The mean age (SD) for 
attainment of a US measured TV of 2.7 mL (equivalent to a Prader or-
chidometer volume of 4 mL) was 11.7 (1.1) years, and the 3rd and 97th 
percentiles were respectively 9.7 and 13.7 years.

3.3 | Pubic hair

Tanner PH stage was determined in 452 (88.0%) boys with a mean 
age of 10.9 years (range 6.1-16.3 years). Figure 3 shows the cumula-
tive incidence curves when boys reach Tanner PH stages 2-5. The 

F I G U R E  1   LMS-smoothed reference chart of ultrasound (US) 
measured testicular volume in 514 healthy Norwegian boys, aged 
6-16 y. Corresponding equivalent Prader orchidometer volumes are 
shown on the right axis
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mean age (SD) of pubarche (Tanner PH stage 2) was 11.8 (1.2) years, 
and the corresponding reference range defined by the 3rd and 97th 
percentiles was 9.5-14.1 years. The mean ages and reference quan-
tiles of other PH stages are listed in Table 3 as SD scores and in Table 
S3 as age percentiles.

The distribution of the continuous US TVs in boys who were 
classified as Tanner PH stages 1-5 is shown in Figure 4. There is 

both a substantial spread within, and overlap between, groups in 
terms of TV. When boys were classified as pre-pubertal (1-3 mL), 
pubertal (4-14 mL) or adult (≥15 mL) based on the equivalent Prader 
orchidometer volumes, 14.0% of boys with a pubertal testicular 
volume were characterised as Tanner PH1 (ie no pubarche), while 
amongst boys with a pre-pubertal testicular volume, 8.1% were 
characterised as ≥Tanner PH2 (pubarche). All boys with Tanner PH 

Age L M S −2 SD −1 SD Mean +1 SD +2 SD

6 0.5 0.78 0.24622 0.4 0.6 0.8 1.0 1.2

7 0.5 0.83 0.30388 0.4 0.6 0.8 1.1 1.4

8 0.5 0.91 0.36146 0.4 0.6 0.9 1.3 1.7

9 0.5 1.00 0.41844 0.3 0.6 1.0 1.5 2.0

10 0.5 1.23 0.47844 0.3 0.7 1.2 1.9 2.7

11 0.5 2.02 0.52162 0.5 1.1 2.0 3.2 4.7

12 0.5 3.77 0.54007 0.8 2.0 3.8 6.1 8.9

13 0.5 6.30 0.51981 1.5 3.5 6.3 10.0 14.6

14 0.5 9.39 0.46762 2.7 5.5 9.4 14.3 20.2

15 0.5 12.58 0.39673 4.6 8.1 12.6 18.1 24.5

16 0.5 15.64 0.32065 7.2 11.0 15.6 21.1 27.0

Abbreviations: L, skewness parameter; M, mean; S, coefficient of variation; SD, standard deviation.
aThe LMS model was fitted on the original age scale with squared root transformed volumes 
(L = 0.5) and 8 and 4 equivalent degrees of freedom for the M and S curves. 

TA B L E  1   Age-specific references 
for ultrasound testicular volume (mL) 
estimated from 514 healthy Norwegian 
boys aged 6-16 y in 2016-2017 using the 
LMS methoda

F I G U R E  2   Cumulative incidence of 
reaching selected equivalent Prader 
orchidometer volumes estimated 
with probit regression in 514 healthy 
Norwegian boys aged 6-16 y. Connected 
markers show the empirical data and bold 
lines the corresponding probit models

Prader USV M SE SD −2 SD −1 SD +1 SD +2 SD

2 1.0 8.95 0.16 2.01 4.9 6.9 11.0 13.0

3 1.8 11.05 0.11 1.25 8.6 9.8 12.3 13.6

4 2.7 11.67 0.11 1.07 9.5 10.6 12.7 13.8

5 3.7 12.25 0.11 1.01 10.2 11.2 13.3 14.3

6 4.8 12.66 0.11 0.97 10.7 11.7 13.6 14.6

8 7.2 13.49 0.12 1.10 11.3 12.4 14.6 15.7

10 9.9 14.08 0.13 1.20 11.7 12.9 15.3 16.5

12 12.8 15.10 0.15 1.32 12.5 13.8 16.4 17.7

15 17.6 16.27 0.32 1.54 13.2 14.7 17.8 19.4

Abbreviations: M, mean; Prader, equivalent Prader orchidometer volumes; SD, standard deviation; 
SE, standard error; USV, Ultrasound volume.

TA B L E  2   Age distribution (y) for 
testicular volumes corresponding to 
equivalent Prader orchidometer volumes 
(mL) in 514 healthy Norwegian boys aged 
6-16 y in 2016-2017
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stages 4 or 5 had attained either a pubertal or an adult volume of 
the testicles.

4  | DISCUSSION

In the current study, we present contemporary references for 
TV, obtained with US, and Tanner PH stages in 6- to 16-year-
old Norwegian boys. By using LMS centile curves to summarise 
TV by age, the assessment of pubertal growth can now be quan-
tified on a continuous scale since measurements can easily be 
converted to age-adjusted SD scores. In addition, we present age 
percentiles from probit analyses that document the cumulative 
incidence of reaching milestones of the development of TV and 
pubic hair.

In this paper, we report the very first references for puber-
tal development in Norwegian boys. Although it has been shown 
that, the timing of puberty in Northern European populations is 
very similar,18 national reference data collected at regular intervals 
can help to detect secular trends earlier.3 Up-to-date references 
are also important because early or late puberty may have con-
sequences for the health of individual boys. Studies have found a 
protective effect of later puberty on testicular cancer,19 but de-
layed puberty has also been linked to bullying, poor self-esteem 
and psychosocial distress.20

A testicular volume of 4 mL measured with a Prader orchidometer 
is commonly considered as a robust marker of the start of puberty.11 

However, we13 and others 21 have previously shown that the orchi-
dometer overestimates the true volume near this range and that the 
actual volume at the start of puberty is about 2.7 mL when measured 

with ultrasound.13 This also corresponded nicely with increased sex 
hormone levels.22 While our references of TV are primarily based on 
US measurements, we previously devised a conversion formula that 
allows a seamless conversion from one method to the other.13 Apart 
from being closer to the true TV, the US method has the additional ad-
vantage that the volume is measured on a continuous scale, contrary to 
the Prader orchidometer method which is limited to reaching a discrete 
set of volumes making it difficult to estimate volumes in between two 
consecutive beads or beyond all available beads.

F I G U R E  3   Cumulative incidence of 
Tanner stages for pubic hair in 452 healthy 
Norwegian boys aged 6-16 y. Connected 
markers show the empirical observations 
and bold lines the corresponding probit 
models

PH Mean SE SD -2 SD -1 SD +1 SD +2 SD

2 11.78 0.12 1.22 9.3 10.6 13.0 14.2

3 12.68 0.12 1.12 10.4 11.6 13.8 14.9

4 13.46 0.11 0.86 11.7 12.6 14.3 15.2

5 14.42 0.12 0.90 12.6 13.5 15.3 16.2

Abbreviations: PH, Tanner pubic hair stage; SD, standard deviation; SE, standard error.

TA B L E  3   Age distribution (y) by Tanner 
pubic hair stage (PH) in 452 healthy 
Norwegian boys aged 6-16 y in 2016-2017

F I G U R E  4   Box and whiskers plots of testicular volumes at 
different Tanner pubic hair stages in 452 Norwegian boys aged 
6.1-16.4 y in 2016-2017. The boundaries of the box are the 1st and 
3rd quartile. The median is identified by a line inside the box. The 
length of the box is the interquartile range (IQR)
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The onset of puberty, defined by an US TV of 2.7 mL (4 mL 
with the Prader orchidometer), was reached at a mean age of 
11.7 years. This is highly comparable with the 11.6 years observed 
in Dutch boys by Goede et al23 and later remodelled by Joustra 
et al,24 which is the only US reference for TV for adolescent boys 
published to date. In order to compare our data with these refer-
ences, we multiplied the Dutch estimates with a factor 0.71/0.52 
because these studies used the ellipsoid formula (L×W×D×0.52) to 
calculate volumes from testicular dimensions, while we used the 
Lambert formula (L×W×D×0.71) because it was found to give a 
better approximation.25

Our data are also in agreement with the age of attainment of an 
equivalent Prader orchidometer volume of 4 mL in other European 
countries, for example 11.4 years in Belgium,26 11.5 years in the 
Netherlands27 and 11.7 years in Denmark.6 While the Copenhagen 
Puberty Study reported a decline in age at onset of puberty of 
3 months between 1991 and 2006, this trend was no longer sig-
nificant after adjustment for BMI.6 In the United States, the PROS 
study from 2005 to 2010 reported a mean age of 11.5 years in 
the non-Hispanic white population and 11.8 years in the African 
American population.28 A comparison of our data with these ref-
erences does not suggest a secular trend towards earlier puberty 
in boys over the last decade. However, compared with data from 
109 Norwegian boys aged 1.9-16.9 years collected by Waaler in 
the 1970s,29 contemporary boys reach a pubertal testicular vol-
ume approximately 2-3 months earlier, that is a rate of <1 month 
per decade.

Studies in European populations like Denmark,30,31 Belgium,26 

Italy 32 and the Netherlands27 reported relatively narrow range of 
mean age at pubarche (Tanner PH2) of 11.5-11.9 years. Our finding 
of 11.8 years corresponds with this range. One study from Denmark 
reported a mean age of 12.4 years, but this was a surprising finding 
because it implied a slow down with approximately five months be-
tween 1991 and 2006,6 while other studies during the same period 
in Denmark reported stable average ages at pubarche of 11.631 and 

11.9 years.30 The PROS and NICHD studies from the United States 
both reported a mean age at Tanner PH2 in the non-Hispanic white 
population of 11.5 years,28,33 which is about 3 months earlier com-
pared with Norwegian boys.

Longitudinal studies have shown that around 46%-90% of 
boys enter puberty by the ‘testicular’ pathway, that is gonadal 
enlargement before the appearance of pubic hair (pubarche 
pathway).11,31,33 The mean ages of attainment of a pubertal TV 
(11.7 years) and Tanner PH2 (11.8 years) in our study are consis-
tent with this. Because our data are cross-sectional, we cannot 
estimate the duration of each stage nor the pace of progression 
throughout the various pubertal stages. However, a direct com-
parison of different pubertal markers showed that 14.0% of the 
boys reached a pubertal TV before pubic hair appeared, whereas 
only 8.1% showed pubic hair (Tanner PH2) prior to reaching a pu-
bertal TV. Importantly, careful assessment of TV is the most reli-
able method to detect the earliest signs of puberty, whereas PH 

staging alone may lead to misclassification of some boys in the 
earliest segment of pubertal maturation.11

Previous population studies have defined the normal physio-
logical range for pubertal development in boys as 2.5 or 3 time the 
standard deviation below and above the mean.18 In our study, the 
reference age range (mean ± 2.5 SD) of reaching a pubertal TV (US 
measured TV of 2.7 mL) is bounded by the ages of 9.0 and 14.3 years. 
We therefore recommend adhering to the current definition of nor-
mal pubertal onset in boys between 9 and 14 years.

A major strength of our study is the use of US for the mea-
surement of TV in a population-based study. US provides the op-
portunity to obtain more accurate estimates of TV in comparison 
with a Prader orchidometer, without interference of surrounding 
tissues, such as the scrotal skin, the epididymis or the tunica vag-
inalis. Furthermore, US provides a continuous measure of volume, 
in contrast to the discrete ordinal Prader orchidometer beads, 
which allows for semiparametric data modelling and calculation 
of z-scores. US has the additional benefit of detecting testicular 
pathology, which may explain alterations in the timing of testicular 
growth, as in our cohort, we found one patient with testicular mi-
crolithiasis and two boys with testis located in the inguinal canal. 
Further, the majority (58%) of the participating boys from the test/
retest study reported to prefer the examination of TV with US to 
direct palpation of the testicle. This may be explained by the less 
intrusive positioning of the examiner, facing the US machine rather 
than the scrotum directly, and that there is no direct contact be-
tween examiner's hand and the scrotum. Since US equipment and 
protocols are becoming more user-friendly and accessible, and 
because they are known to be safe and without a risk of ionising 
radiation, they might more readily be adopted for routine use by 
paediatricians and other clinicians.

Some limitations to the study needs to be addressed. Only 37% 
of the invited boys agreed to participate. This makes a selection bias 
possible, for instance, if boys maturing early or very late were less 
inclined to participate. In addition, only boys up to 16.4 years were 
included, potentially omitting the stabilisation of testicular growth 
at the adult range in our reference curve. Due to difficulties of re-
cruitment and a potential reluctance regarding palpation of the tes-
ticles, examination with a Prader orchidometer was only performed 
in the reliability study. Based on these examinations, we were able 
to estimate a conversion equation to calculate Prader orchidometer 
volume from US volume. Another limitation was that only the right 
testicle was measured, except when the left testicle appeared larger 
by visual inspection. However, no statistical significant differences 
between left and right TV have been found in previous studies.34

5  | CONCLUSION

We have presented references for testicular growth based on US 
measurements of testicular dimensions, and for the clinical as-
sessment of Tanner PH stages. Prader orchidometer has long been 



     |  7OEHME Et al.

considered a subjective clinical tool that is limited to an ordinal 
scale. Our implementation of an US protocol implies a transition 
towards an objective measurement on a continuous scale that al-
lows to detect smaller changes in the TV and allows to quantify 
pubertal development. Further, US was the preferred examination 
method amongst the majority of the boys. The high degree of simi-
larity of our data with previously published estimates of puberty 
onset in boys does not suggest an ongoing secular trend during 
the past decade.
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Supplementary tables  

Table S1 Percentiles of the ultrasound testicular volume (ml) reference by age, based on 

514 healthy Norwegian boys aged 6-16 years 

Age* (years) P3 P10 P25 P50 P75 P90 P97 

  6 0.5 0.6 0.7 0.8 0.9 1.1 1.2 
  7 0.4 0.5 0.7 0.8 1.0 1.2 1.4 
  8 0.4 0.5 0.7 0.9 1.1 1.4 1.6 
  9 0.4 0.5 0.7 1.0 1.3 1.6 1.9 
10 0.4 0.6 0.9 1.2 1.7 2.1 2.6 
11 0.5 0.9 1.4 2.0 2.8 3.6 4.5 
12 0.9 1.6 2.5 3.8 5.3 6.8 8.6 
13 1.6 2.8 4.3 6.3 8.7 11.2 14.0 
14 2.9 4.6 6.7 9.4 12.6 15.9 19.5 
15 4.9 7.0 9.4 12.6 16.2 19.8 23.7 
16 7.6 9.9 12.4 15.6 19.2 22.7 26.5 

* Exact age; values derived from a continuous reference curve. 

 

Table S2 Age percentiles (P) for attaining equivalent Prader orchidometer volumes based on 

a sample of 514 healthy Norwegian boys aged 6-16 years 

Prader  USV P3 P10 P25 P50 P75 P90 P97 

  2 1.0 5.2 6.4 7.6 8.9 10.3 11.5 12.7 
  3 1.8 8.7 9.4 10.2 11.1 11.9 12.7 13.4 
  4 2.7 9.7 10.3 10.9 11.7 12.4 13.0 13.7 
  5 3.7 10.4 11.0 11.6 12.2 12.9 13.5 14.1 
  6 4.8 10.8 11.4 12.0 12.7 13.3 13.9 14.5 
  8 7.2 11.4 12.1 12.7 13.5 14.2 14.9 15.6 
10 9.9 11.8 12.5 13.3 14.1 14.9 15.6 16.3 
12 12.8 12.6 13.4 14.2 15.1 16.0 16.8 17.6 
15 17.6 13.4 14.3 15.2 16.3 17.3 18.2 19.2 

Abbreviations and symbols: Prader = testicular volume measured with Prader orchidometer; 

USV = Ultrasound volume 

 

Table S3 Age percentiles (P) for Tanner pubic hair stages (PH) 2 – 5 based on a sample of 

452 healthy Norwegian boys aged 6-16 years 

PH P3 P10 P25 P50 P75 P90 P97 

2 9.5 10.2 11.0 11.8 12.6 13.3 14.1 
3 10.6 11.2 11.9 12.7 13.4 14.1 14.8 
4 11.8 12.4 12.9 13.5 14.0 14.6 15.1 
5 12.7 13.3 13.8 14.4 15.0 15.6 16.1 

 



 



III





IV





Low BMI, but not high BMI, influences the timing of puberty in boys 

Short title: Boys with a lower BMI enter puberty later 

 

 *Ninnie Helen Bakken Oehme1,2, MD, Mathieu Roelants3, PhD, Ingvild Særvold Bruserud1,2, MSN, 

PhD, Andre Madsen4, PhD, Robert Bjerknes1,2, MD, PhD, Karen Rosendahl5,6, MD, PhD, Petur B. 

Juliusson1,2,7, MD, PhD 

 

1 Department of Clinical Science, University of Bergen, Bergen, Norway 

2 Department of Pediatrics, Haukeland University Hospital, Bergen, Norway 

3 Environment and Health, Department of Public Health and Primary Care, KU Leuven – University of 

Leuven, Belgium 

4 Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland 

University Hospital, Bergen, Norway 

5 Department of Radiology, University Hospital of North Norway, Tromsø, Norway 

6 Department of Clinical Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, 

Norway  

7 Department of Health Registry Research and Development, Norwegian Institute of Public Health 

 

*Corresponding author:  

Ninnie Oehme 

Department of Clinical Science, University of Bergen 

N-5020 Bergen, Norway 

Telephone (mobile): +47 90540556 

Email: ninnie.oehme@uib.no 

Keywords: Associations, BMI, Puberty, Testicular volume, weight class 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

Background: Previous studies investigating the association between weight status and onset of 

puberty in boys have been equivocal. It is currently unclear to what extent weight class influences 

puberty onset and progression. 

Objectives: To explore the relationship between degree of sexual maturation and anthropometric 

measures in Norwegian boys. 

Methods: The following endpoints were collected in a Norwegian cross-sectional study of 324 

healthy boys aged 9-16 years: ultrasound-determined testicular volume (USTV), total serum 

testosterone, Tanner pubic hair stage, height, weight, waist circumference (WC), subscapular skin 

folds (SSF) and body fat percentage (%BF). Testicular volume-for-age z-scores for all boys were used 

to classify ea ly , average , or late  maturing boys. Ordinal logistic regression analyses with a 

proportional odds model were applied to analyze the association between anthropometric variables 

and age-adjusted degree of pubertal development, with results expressed as age-adjusted odds 

atio s AO‘ . Cumulative incidence curves for reaching pubertal milestones were stratified by BMI. 

Results: Boys with a low BMI-for-age (BMIz < -1) were less likely to have reached a pubertal testicular 

volume U“TV  2.7 mL) or a pubertal serum level of testoste o e  0.5 nmol/L) compared to normal 

weight boys (AOR 0.3, p=0.038, AOR 0.3, p=0.026, respectively), and entered puberty on average 

with a delay of approximately eight months. Boys with high BMI-for-age (BMIz > 1) exhibited a 

comparable timing as normal weight boys. The same was found for WC. Pubertal markers were not 

associated with the SSF or %BF. 

Conclusion: We found that a low BMI or a low WC for age were associated with a delayed timing of 

pubertal development in boys, whereas no significant association was observed for a high BMI or 

WC. Moreover, no significant effects of SSF or %BF were observed.  

 

 

 

 

 

 

 



Introduction 

Several studies have shown secular trends towards earlier puberty onset in girls during the past 

decades 1, 2. Some studies suggest similar trends in boys 3, 4, but results are more equivocal 5. The 

mechanism behind the onset of puberty and factors influencing this process are still not fully 

unraveled. Identification of modifiable causes of early puberty is however of great interest as early 

puberty is a known risk indicator for disease in adult men, such as type 2 diabetes, cardiovascular 

disease, and reproductive cancers 6, 7. 

It has long been known that an adequate nutritional status is a requirement for a timely initiation of 

central pubertal development 8, and the secular increase in overweight and obesity has also received 

special attention as a potential driving factor for the concurrent secular trend towards earlier age at 

pubertal onset 9, 10. Several studies have demonstrated earlier puberty in girls with a high BMI or 

obesity 11, 12, 13, 14, but findings in boys are more ambiguous. While some studies show that the BMI is 

negatively correlated with pubertal timing in overweight and obese boys 4, 15 others demonstrate 

later pubertal development in obese boys 16. One study showed earlier puberty in overweight boys 

but delayed in obese 17.  

The lack of consistent evidence regarding the effect of weight status on pubertal timing in boys might 

be due to difficulties obtaining reliable measures of pubertal timing or because these measures 

represent different benchmarks of puberty. A few studies report the testicular volume measured 

using a Prader orchidometer or a genital assessment using Tanner stages (Tanner G) 18 , while others 

use proxy markers of pubertal onset and progression, such as peak height velocity 19 or age at voice 

breaking 20. Attainment of a testicular volume  4 mL using the Prader orchidometer is the most 

widely used clinical marker for onset of puberty in boys, but the use of a Prader orchidometer is 

regarded as impractical for larger population studies 21. At the same time, testicular ultrasound is 

considered to be a more precise method for volume assessment 22-25 and the implementation of an 

ultrasound protocol has the advantage of being a more objective measurement on a continuous 

scale 26, but may suffer from the same impracticality as the Prader assessment.  

The aim of the current study was to investigate the relationship between anthropometric measures 

and age-adjusted degree of sexual maturation in Norwegian boys. In line with the literature, we 

hypothesized that boys with overweight or obesity would present with a more advanced pubertal 

development compared to boys with an average weight. Because of previous findings in the 

literature, boys with a low weight status were considered as a separate group in the analysis. 

 



Materials and Methods 

Childhood population: Participants were recruited as part of the Bergen Growth Study 2, a cross-

sectional study of pubertal development and growth in Norwegian children. A total of 1329 boys 

between 6 and 16 years of age from six randomly selected public schools in Bergen, Norway, were 

invited to participate. Parental consent was obtained for the 493 (37%) boys included. The present 

analyses included 342 boys aged  9 yea s, to eliminate the strictly prepubertal population. One boy 

did not assent on the day of examination, and four boys were absent. In addition, four boys were 

excluded due to a condition or a disease likely to affect growth and development, and nine boys 

were excluded due to past or ad hoc evidence of scrotal pathology including cryptorchidism, 

hydrocele or microlithiasis, leaving 324 eligible boys for analysis. Evidence of scrotal pathology was 

coupled with personal referrals to our affiliated regional hospital for follow-up. The mean (range) age 

of the final sample was 12.3 (9.0-16.3) years. A parental questionnaire was obtained for 228 (70.4%) 

of the boys included in the analysis. The questionnaire contained items on country of origin, chronic 

disease, and previous genital pathology. Of the 217 (67%) with known country of origin of both 

parents, 165 (76.0%) had both parents from Norway, 22 (10.1%) had one or two European parents, 

and 30 (13.8%) had one or two non-European parents, mostly from Asia (n=11), Africa (n=8) or South 

America (n=7). The analyses include data from all boys, regardless of their country of origin. 

Pubertal development and testicular volume: A trained pediatric radiographer performed all 

ultrasound examinations and anthropometric measurements. Length, depth, and width of the right 

testicle were measured with the boy in the supine position using a Sonosite Edge ultrasound machine 

with a 15-6 MHz linear probe according to a standardized protocol 27. The testicular volume (TV) was 

calculated using the Lambert equation TV=length×width×depth×0.71 28. The intra-observer variability 

was 9.2% and the technical error of measurement 6.5% 27. An empirical equation to predict the 

equivalent Prader orchidometer volume from ultrasound volume was previously derived as VolOM = 

1.96×VolUS
0.71,  a d the P ade  o hido ete  olu e of   mL that defines puberty onset is thus 

e ui ale t to a  ult asou d easu ed testi ula  olu e  .7 L (USTV)27. The boys with a testicular 

volume below this cut-off (USTV < 2.7 mL, corresponding to Prader orchidometer volume of < 4 mL) 

were considered as prepubertal. Further, the boys were classified as early, average, or late maturing 

based on their testicular volume-for-age z-score (USTVz). The boys in the upper tertile (> 67th 

percentile) were considered as early maturing, those between percentiles 33-67 as average, and boys 

with the smallest testicular volume for age (< 33rd percentile, lower tertile) as late maturing (Fig. 1). 



Tanner stages of pubic hair (PH) development were visually assessed in the supine position using  

descriptions based on the work of Marshall and Tanner as a reference 29 (n=321 boys). Tanner stage 

PH2 defined pubarche.  

 

Figure 1 Grouping of boys as early (z-score > p67), average (p33  z-score  p67) or late (z-score < 

p33) maturing based on testicular volume (TV) measured with ultrasound (US)26. The equivalent 

orchidometer volumes on the Y2 axis are calculated from the ultrasound measurements as VolOM = 

1.96×VolUS
0.71 (see text for details)27  

 

Anthropometry: Height was measured in the standing position with a Harpenden Portable 

Stadiometer (Holtain Ltd Crosswell, UK) and recorded to the nearest 0.1 cm. Weight was measured in 

light clothing with an electronic scale (Tanita MC-780MA, Tanita Corp. of America, Inc. Illinois, USA) 

with a precision of 0.1 kg. Body mass index (BMI) was calculated as weight (kg) divided by the square 

of height (m2). The waist circumference (WC) and subscapular skinfold (SSF) were measured 

according to the protocol used in the Bergen Growth Study 1 30. Further, the percentage of body fat 

(%BF) was assessed with bioelectrical impedance analysis (BIA), using a Tanita MC-780MA (Tanita 

corp. of America, Inc. Illinois, USA). The anthropometric measurements (BMI, WC and SSF) were 

converted to z-scores using the Norwegian growth reference charts from 2003-200631-33 while %BF z-

scores were calculated using the references by McCarthy et al. 34. Boys with a BMI z-score < -1 were 

lassified as ha i g a low  BMIz, with a BMI z-score between -1 and 1 as a e age , and those with a 

BMI z-score >  as ha i g a high  BMIz. The same cut-offs (z-scores -1 and 1) were also used for WC, 

SSF and %BF (WCz, SSFz and %BFz).  



Blood test: Blood samples from 299 (92.3%) boys were collected between 0800 and 1400h and 

processed according to a protocol for blood sampling and analysis that was previously described 35. 

Total testosterone was assayed by LC-MS/MS as described previously 36. The analytical inter-assay 

coefficient of variation (CV%) was 4% in the range 1.5-37 nmol/L and limit of detection (LOD) was 

0.01 nmol/L. A concentration of 0.5 nmol/L or more was used as an alternative marker for the start 

of puberty. This cutoff was determined with a ROC analysis of total testosterone to predict the onset 

of puberty defined as USTV  2.7 mL in 240 prepubertal and 180 pubertal boys in the BGS2. The area 

under the curve (AUC) was 0.9778 (95% CI; 0.96 to 0.99) and the positive and negative predictive 

values were 91.3% and 97.6%, respectively. 

Statistical analysis: Continuous variables were compared between groups with a t-test and 

categorical variables with a chi-squared test. Multiple logistic regression with age as a covariate was 

used to estimate the odds ratio (OR) for having reached a pubertal level of either testicular volume 

U“TV  2.7 mL , pu i  hai  Ta e  PH , o  se u  testoste o e  0.5 nmol/L) in boys with a high (> 

1) or low (< -1) versus average (between -1 and 1) z-score for the different anthropometric 

measurements separately. Proportional odds logistic regression was used to study the association 

between the level of maturity (early, average or late based on the USTV z-scores) and the grouped 

anthropometric measurements, comparing boys with a lo  or high  value to those with an 

average value for each measure separately. An OR larger than 1 means that boys in the tested group 

had a higher probability to be more advanced with respect to USTV for age. A non-significant score 

test indicated that the assumption of proportional odds was valid. Further we present the cumulative 

incidence curves for the three different pubertal markers in the three different weight groups BMIz < 

-1, - 1  BMIz  1 and BMIz > 1. The curves were estimated with a generalized additive model with a 

binary outcome and probit link function. The degree of smoothing was determined with generalized 

cross validation using the mgcv package in R. The mean age at reaching maturity (USTV 2.7 mL) was 

obtained by inverse prediction. All statistical analyses were performed using IBM SPSS statistics 

version 25 (IBM Corp) and R version 3.4 (R foundation for Statistical Computing).  

Ethical considerations: This study was approved by the Norwegian Regional Committee for Medical 

and Health Research Ethics West (REC-WEST 2015/128). Written informed consent was obtained 

from a parent or legal guardian of each participant in the study, as well as assent from the 

participants themselves. A cinema voucher was given as an incentive.  

 

 

 



Results 

Of the 324 boys included in the analysis, 180 boys exhibited pubertal testicular volume U“TV  .7 

mL (equivalent to  4 mL by orchidometer) and 144 had a volume USTV < 2.7 mL and were thus 

considered prepubertal. The youngest pubertal boy was 9.8 years, and the oldest prepubertal boy 

13.1 years. Twenty-one boys presented with a prepubertal testicular volume, while pubic hair had 

already advanced to Tanner stage PH2. Only two of these had a pu e tal se u  testoste o e le el  

0.5 nmol/L). The mean and SD of the z-scores for height, weight, BMI, WC and SSF for the whole 

group were not significantly different from the reference population in the Bergen growth study 1. 

Further, the z-scores for all anthropometric measures showed no significant difference between the 

prepubertal and pubertal boys. Based on the IOTF-criteria, 37 boys were defined as being 

overweight, and six as being obese. Further, 20 boys were defined as being underweight grade 1, and 

four as underweight grade 2. While BMI z-scores were not significantly different between the groups 

(p=0.310), the proportion of boys with a high BMI for age was larger in pubertal boys (16.7% vs 

11.8%) but this difference was not statistically significant (p=0.267). Further, pubertal boys exhibited 

statistically significant lower %BF compared to the prepubertal boys (p=0.010). 

Multiple logistic regression analysis with age as a covariate, showed that boys with a low BMIz had a 

lower probability of being pubertal (USTV  2.7 mL; AOR 0.3; 95% CI 0.1, 0.9; p=0.038) compared to 

boys with average BMIz (Table 1). Boys with a high BMIz did not have a significant higher probability 

of being pubertal (AOR 1.3; 95% CI 0.4,3.9; p=0.691). The same was observed for WC which showed a 

strong association with a low WCz, but not with high WCz. When these analyses were repeated for 

the other pubertal markers (serum testosterone  0.5 nmol/L and Tanner PH2), we could confirm the 

trend of an association with a low value for the BMIz and WCz but no clear association with a high 

BMIz or WCz, but it was only statistically significant for serum testosterone  .  nmol/L and not for 

Tanner PH2. No significant associations were found between SSF or %BF and any of the pubertal 

markers (Table 1).  

Ordinal logistic regression showed that boys with low BMI or low WC for age had a significant lower 

probability of being in a higher category of testicular volume-for-age compared to those with average 

BMIz (OR 0.3; 95% CI 0.2,0.5; p<0.001) or WCz (OR 0.2; 95% CI 0.1,0.4; p<0.001) (Table 2). However, 

boys with high BMI or high WC for age did not have an increased probability of being in a higher 

category of testicular volume for age, as a sign of being more mature for age. We did not find any 

significant associations for SSF and %BF with the degree of maturation (Table 2).  

 

 



Table 1 Age adjusted logistic regression analysis of having reached pubertal status according to 

different anthropometric measurements and markers of puberty 

 USTV ≥ 2.7 L 

(N=324) 

Serum testosterone  

≥ 0.5 ol/L 

(N=299) 

Tanner PH2 

(N=321) 

N A- 

OR 

95%CI p-

value 

N A- 

OR 

95%CI p-

value 

N A-

OR 

95%CI p-

value 

BMI  

z-score 

Low  54 0.3 0.1,0.9 0.038 54 0.3 0.1,0.8 0.026 54 0.4 0.1,1.1 0.070 

High  43 1.3 0.4,3.9 0.691 40 1.0 0.3,3.4 0.997 42 1.1 0.4,3.3 0.889 

Waist 

z-score 

Low  36 0.2 0.0,0.6 0.008 35 0.2 0.1,0.9 0.039 36 0.3 0.1,1.1 0.079 

High  45 0.9 0.3,2.9 0.918 42 1.1 0.3,3.7 0.850 44 1.2 0.4,3.5 0.761 

SSF 

z-score 

Low  50 0.6 0.2,1.9 0.412 49 0.8 0.2,2.7 0.731 50 0.6 0.2,1.6 0.284 

High  61 1.4 0.6,3.7 0.462 57 1.6 0.6,4.4 0.377 60 1.3 0.5,3.3 0.588 

%BF  

z-score 

Low  32 0.5 0.1,2.1 0.363 28 0.8 0.2,3.6 0.724 32 1.5 0.4,5.8 0.555 

High  51 1.6 0.6,4.7 0.387 47 1.6 0.5,5.0 0.456 51 1.1 0.4,3.2 0.811 

 

AOR: Age adjusted odds ratio; USTV  2.7 mL: Pubertal testicular volume of 2.7 mL or more 

(ultrasound) or T4 mL (orchidometer); Tanner PH2: Pubarche; Low z-score: < -1; High z-score: > 1; 

BMI, body mass index; Waist, waist circumference; SSF, subscapular skinfold, %BF, body fat 

percentage. BMI, WC and SSF were converted to z-scores using the Norwegian growth reference 

from 2003-200631-33 while %BF z-scores were calculated using the references by McCarthy et al. 34 

 

The cumulative proportion of boys having attained a pubertal testicular volume in each of the three 

BMIz-groups separately is shown in Figure 2a. A comparison of the weight specific curves at the 

levels of the 50% attainment confirms that boys with low BMI for age (BMIz < -1) entered puberty 

with a delay of approximately eight months compared to normal weight boys, while the timing in 

boys with a high BMI for age (BMIz > 1) was comparable. The mean age of reaching a pubertal 

testicular volume was 12.34, 11.66, and 11.54 years in boys with a low, average, and high BMI for age 

respectively (Fig. 2a). Similar trends were observed for the attainment of a serum testosterone level 

above the threshold associated with puberty onset (serum testoste o e  .  nmol/L; Figure 2b) and 

for the appearance of pubic hair (Tanner PH2; Figure 2c). For both pubertal markers, there is a clear 

delay in boys with a low BMIz, and a slight advancement in boys with a high BMIz. Also, the variability 

was smaller in these groups which resulted in steeper curves (Fig. 2b-c). 

 

 

 

 

 

 



Table 2 Logistic regression and proportional odds logistic regression analysis of having a high (early 

maturing) or low (late maturing) testicular volume for age according to anthropometric measures 

 N USTV>p33 USTV>p67 Higher USTV tertile 

(proportional odds) 

OR 95%CI p-value OR 95%CI p-value OR 95%CI p-value 

BMI z-

score 

Low  54 0.3 0.2,0.5 <0.001 0.2 0.1,0.5 0.002 0.3 0.2,0.5 <0.001 

High  43 1.0 0.5,2.1 0.981 1.2 0.6,2.3 0.627 1.1 0.6,2.1 0.731 

Waist 

z-score 

Low  36 0.2 0.1,0.4 <0.001 0.2 0.1,0.6 0.008 0.2 0.1,0.4 <0.001 

High  45 1.1 0.5,2.3 0.838 1.3 0.7,2.5 0.476 1.2 0.7,2.2 0.538 

SSF z-

score 

Low  50 0.8 0.4,1.5 0.510 0.7 0.3,1.3 0.250 0.8 0.4,1.3 0.310 

High  61 1.0 0.6,1.9 0.913 1.1 0.6,2.0 0.720 1.1 0.6,1.8 0.774 

%BF z-

score 

Low  32 0.7 0.3,1.5 0.308 1.0 0.4,2.1 0.903 0.8 0.4,1.6 0.478 

High  51 1.0 0.5,1.9 0.955 0.9 0.5,1.7 0.771 1.0 0.6,1.7 0.863 

 

OR: Odds ratio; USTV>33p: this corresponds to the odds for being average or early vs. late maturing 

based on ultrasound measured testicular volume for age; USTV >67p: this corresponds to the odds 

for being early vs. average or late maturing; for the proportional odds model this corresponds to the 

odds for being in a higher category; Low z-score: < -1; High z-score: > 1; BMI, body mass index; Waist, 

waist circumference; SSF, subscapular skinfold, %BF, body fat percentage. BMI, WC and SSF were 

converted to z-scores using the Norwegian growth reference from 2003-200631-33 while %BF z-scores 

were calculated using the references by McCarthy et al. 34 

 

a)                                                                                      b) 

  

                                                       c) 

 



Figure 2 a-c: Proportion of boys having attained a) a pubertal testicular volume (USTV  2.7 mL, 

n=324), b) a pubertal testosterone level (  0.5 nmol/L, n=299) and c) Tanner stage 2 for pubic hair 

(PH2, n=321) in each of the three BMI z-groups in boys aged 9-16 years. A generalized additive model 

with probit link was used to estimate the cumulative distribution curve in each BMI group. The mean 

ages of reaching a pubertal marker in boys with a low, average, and high BMI for age was 12.34, 

11.66 and 11.54 years for testicular volume (USTV  2.7 mL), 12.22, 11.48 and 11.46 years for serum 

testosterone level (  0.5 nmol/L) and 12.28, 11.74 and 11.63 years for Tanner PH2. BMI z-scores 

were calculated using references from the Bergen Growth Study 131, USTV z-scores were calculated 

using references from the Bergen Growth Study 2 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Discussion 

In the current study, we examined the association between the timing of sexual maturation and a 

low or high weight status in a cross-sectional cohort of healthy boys. We found that boys with a low 

BMIz and a low WCz reached puberty almost eight months later than those with an average BMIz or 

WCz and were delayed over the whole pubertal age range as demonstrated by the smaller testicular 

volume by age. On the other hand, neither a high BMI nor high WC for age were associated with 

earlier maturity as originally anticipated. These results were confirmed for puberty onset according 

to the level of serum testosterone. 

Our endpoints for male puberty status included measurements of testicular volume with ultrasound, 

a pubertal level of serum testosterone, and the development of pubic hair as described by Marshall 

and Tanner 29. Indisputably, the best and most objective clinical marker of male puberty is the 

assessment of testicular volume 37. The size of the testicle is traditionally assessed by Prader 

orchidometry, but measurements of testicular dimensions with ultrasound have been shown to be 

the preferred method when accuracy of testicular volume is important 38. In addition, the ultrasound 

volume is a continuous variable which facilitated the development of testicular volume-for-age 

reference charts 26, 39. Age adjusted testicular volume z-scores calculated with the Norwegian 

references 26 allowed us to stratify boys into tertiles of pubertal progress, with the 33rd and 67th 

percentiles as cutoffs for late, average, and early maturation. Sørensen and Juul previously used a 

similar approach based on the discrete testicular volume measured with a Prader orchidometer 40, 

while Ribeiro et al. divided the boys into quartiles based on age and Tanner G stage 41.  

To assess the association of adiposity and body composition on the timing of puberty and degree of 

maturation we stratified boys into three groups according to their BMI, WC, SSF and %BF for age z-

score. Boys with a z-score below -1 were considered as low, and those with a z-score above 1 as high. 

The effe t of ha i g a lo  eight status  was analyzed separately since previous studies revealed 

effects of low vs. average values for anthropometric variables that were independent from the high 

values 14, 42. For instance, Tomova et al. studied more than 4 000 boys between 7 and 19 years of 

age42. They observed that boys with a low BMI (< 12th percentile) were delayed at every stage of 

pubertal development, while boys with a high BMI (> 85th percentile) started puberty at an earlier 

age and reached the final stage of puberty ahead of their normal weight peers42. But most previous 

studies have compared pubertal development in overweight versus non-overweight subjects without 

considering low weight class as a separate group 15, 43.  

It is well known that energy homeostasis is an important factor for the timing of puberty and that 

adequate nutrition is key for normal puberty 44. The satiety hormone leptin produced in fat cells has 



been suggested as a possible link between weight status and pubertal timing 45. Our finding that boys 

with a low BMI and WC for age were delayed is therefore not surprising and is supported by others 42, 

46. The finding that boys with a high BMIz did not significantly differ from normal weight boys and 

thus not achieve pubertal milestones at an earlier age was more surprising given the numerous 

studies reporting an association between adiposity and earlier puberty onset 4, 15, 19, 20, 41, 47-49. 

However, even though we did not find an association for a high BMIz, we cannot exclude that this is 

due to the limited number of boys with overweight, and even lower number with obesity.  

Busch et al. recently demonstrated that boys with obesity (defined as BMIz > 2) experienced earlier 

timing of testicular enlargement (mean age 11.3 years), as compared to control group with a BMIz < 

2 (mean age 11.7 years) 15. However, all boys with a BMI z-score of 0 to 1, 1 to 2, and 2 to 3 entered 

puberty at the same mean age of 11.4 years, while boys with a BMIz 0 to -1 entered puberty at a 

mean age of 11.9 years and those with a BMIz below -1 at 12.4 years. Their conclusion of an 

advancement in boys with obesity could thus also be interpreted as a delay in boys with a low BMIz 

in line with our current findings. Another Danish study using self-reported pubertal data also 

concluded that overweight boys reached Tanner G2 almost three months earlier than normal weight 

boys 43, but a normal weight was defined as any BMI below the 85th percentile. Further scrutiny of 

the tabulated results confirmed that boys with low BMI (< 16 kg/m2) appeared to reach Tanner G2 at 

an older age than those with a higher weight.  

In the current study, WC, a proxy for abdominal fat that has shown a stronger association with 

cardiovascular risk than BMI 50, followed that for BMI, in that boys with lower WC for age had lower 

probability of being more mature than their peers, while having a larger WCz was not associated with 

earlier maturation. This contrasts with a recent study from Brazil showing that boys with early 

pubertal development presented higher prevalence of central adiposity, which was defined as 

increased WC 51.  

No significant differences were found between SSFz and %BFz and early or late maturing boys in the 

present study. SSF is a direct measure of subcutaneous (trunk) fat, and the %BF measured with BIA, is 

generally considered to be more sensitive and specific for grading adiposity than anthropometric 

indices such as the BMI 52. Vizmanos and colleagues measured skinfolds and %BF in a longitudinal 

study of 282 boys 53. They found that the BMI increased with age at onset of puberty in boys, but 

since the amount of body fat mass was constant, it was concluded that puberty onset initiates with a 

characteristic accumulation of subcutaneous body fat mass that is independent of the age of puberty 

onset. In contrast to this, Biro et al. found that boys with more advanced maturation at age 12 had 



lower sum of skin folds, and that boys who arrived at any given maturation stage at a younger age 

had lower BMI and lower adiposity 54.  

We did not find an association between high BMI and pubertal timing as anticipated. Because of the 

cross-sectional design, we can only describe the associations, but not causality between weight class 

and pubertal timing. Conclusions drawn from cross-sectional studies are vulnerable to potential 

confounding by reverse causality, i.e. that children could be assigned to wrong weight classes due to 

early or late puberty onset, or due to differential tempo of growth 55. Sørensen and Juul found that 

early pubertal timing was not associated with a degree of higher adiposity, measured with BIA, and 

that BMIz tended to overestimate adiposity and more readily classified children as overweight in 

early versus late maturing children 40. Considering the associations found for BMI and WC, but not for 

SSF and %BF, may imply that BMI is a marker of maturity more than adiposity. 

The conflicting results in association studies between weight class and pubertal timing are striking, 

however, it is plausible that differences in methods to assess pubertal development and different 

definitions of obesity have contributed to a diverging range of conclusions. Moreover, the lack of 

longitudinal studies limits the possibility of defining the causal relationship between obesity and 

pubertal maturation. These inconsistencies warrant further investigations using a longitudinal design 

and consensus endpoints to determine puberty onset to solve the effect of adiposity on pubertal 

timing.  

In addition to the cross-sectional design, another limitation of the current study is the potential of 

selection bias. Only 37% of the invited boys agreed to participate, potentially making very early or 

late maturing boys, less inclined to participate. In addition, non-significant findings should be 

interpreted cautiously since the relatively small number of boys with a high (> 1) or low (< -1) z-score 

for anthropometric measurements (the expected prevalence is 16%) may have impacted the 

statistical power of our analysis. 

A major strength of our study is the use of ultrasound, which facilitated measurements of the 

testicular volume on a continuous scale, without the interference of the surrounding scrotal tissue. 

This, in turn enabled the calculation of age-adjusted z-scores for each study participant in accordance 

with our previously published reference chart 26. We have previously shown that the USTV of 2.7 mL 

immediately precedes a drastic surge in testosterone levels 35 and our current findings for the 

associations between testicular volume and anthropometric measurements were corroborated by 

equivalent findings with regard to serum testosterone. This highlights the co-occurrence of testicular 

enlargement and testosterone production. Another strength is that we not only included BMI, but 

also WC, SSF and %BF in addition to blood tests in a quite large cohort of healthy boys.  



Conclusion 

A good understanding of the relationship between sexual maturation and weight status has many 

important clinical and public health implications. We have demonstrated an association between a 

low BMI for age and pubertal timing, but no association for high BMI for age was found. Boys with a 

low BMIz entered puberty with a delay of eight months. We found that variables related to shape 

(BMI and WC) were significant in relation to pubertal timing, whereas variables related to 

composition (SSF and %BF) were not. Weight status should therefore always be taken into 

consideration when assessing pubertal status in children and adolescents. 
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