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Erratum 

For Paper I, in the process from manuscript to published article, an error has occurred 

in the Introduction section: 

“The properties of radiation therapy (RT) also seem to affect the risk of CB because 

rates as high as 8.4% to 15% are observed in reirradiation with hypofractionated 

stereotactic body RT (SBRT)4-6 in contrast to >4% with more conventional 

fractionated photon regimens.2,7”  

 

The correct sentence is as follows: 

“The properties of radiation therapy (RT) also seem to affect the risk of CB because 

rates as high as 8.4% to 15% are observed in reirradiation with hypofractionated 

stereotactic body RT (SBRT)4-6 in contrast to <4% with more conventional 

fractionated photon regimens.2,7” 
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Scientific environment 

This project has been a collaborative work supervised by clinicians within the 

Department of Oncology and Medical Physics, Haukeland University Hospital, and 

leading clinicians within carbon ion radiotherapy at The National Center for 

Oncological Hadrontherapy (CNAO), Pavia, Italy, the National Institute of 

Radiological Sciences (NIRS), Chiba, Japan, and The Gunma University Heavy Ion 

Medical Center (GHMC), Gunma, Japan.  

The candidate has been affiliated with the Ph.D. educational program of the 

University of Bergen, Norway, within the Department of Clinical Science, Faculty of 

Medicine.  

About 15 months of the project period was spent at CNAO, for the purpose of 

acquiring an understanding of clinical particle therapy. At that time, more than 1000 

patients had been treated with particle therapy there, the vast majority with carbon 

ions. CNAO has an ongoing close companionship/collaboration with the National 

Institute of Radiological Sciences in Chiba, Japan, which is the world’s leading 

institution for carbon ion radiotherapy. CNAO has based most of their carbon ion 

radiotherapy protocols on the vast Japanese experience. Of particular importance to 

the PhD project, CNAO has a strong community of medical physicists and radiation 

oncologists with expertise on comparison of different RBE models for dose 

prescription in carbon ion radiotherapy and on treatment plan recalculations. The 

candidate has also had shorter visits at both NIRS and GHMC during the period.  
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Abbrevations 

CHO Chinese Hamster Ovary cell 

CIRT Carbon ion Radiotherapy 

CNAO  National Center for Oncological Hadrontherapy, Pavia, 

Italy 

CNS Central Nervous System 

CT Computed Tomography 

CTCAE  Common Terminology Criteria for Adverse Events 

CumDmaxEQD2 Cumulative maximum EQD2 

CumDmaxnom Cumulative nominal maximum dose  

DICOM Digital Imaging and Communications in Medicine 

DLEM I RBE weighted dose optimized with LEM I 

DNIRS RBE weighted dose optimized with the NIRS clinical dose 

model 

DVH Dose Volume Histogram 

EQD2 Equivalent dose if given in fractions of 2 Gy 

EUD Equivalent uniform dose 

FU Follow-up 

GHMC Gunma University Heavy Ion Medical Center, Gunma, 

Japan 

GSI Gesellschaft für Schwerionenforschung, Darmstadt, 

Germany 

HIT  Heidelberg Ion Beam Therapy Center, Heidelberg, 

Germany 

HSG Human Salivary Gland tumor cell 

ICRU International Commission on Radiation Units and 

Measurements  

IMPT Intensity Modulated Particle Therapy 

IMRT Intensity Modulated Radiotherapy 

LEM I Local Effect Model version I 



 8 

LEM IV Local Effect Model version IV 

LET Linear Energy Transfer 

LKB Lyman Kutcher Burman model 

LQ Linear Quadratic model 

MKM Microdosimetric Kinetic Model 

mMKM modified Microdosimetric Kinetic Model 

MRI Magnetic Resonance Imaging 

NIRS National Institute of Radiological Sciences, Chiba, Japan 

NTCP Normal Tissue Complication Probability 

OAR Organ at risk 

OER Oxygen Enhancement Ratio 

PBS Pencil beam scanning 

QUANTEC Quantitative Analysis of Normal Tissue Effects in the 

Clinic 

RBE Relative Biological Effectiveness 

re-RT Re-irradiation 

RT  Radiotherapy 

SBRT  Stereotactic Body Radiotherapy 

SOBP Spread out Bragg peak 

SPHIC Shanghai Proton and Heavy Ion Center, Shanghai, China 

SRS Stereotactic Radiosurgery 

TD5 Tolerance dose threshold for 5% probability of toxicity 

TD50 Tolerance dose threshold for 50% probability of toxicity 

TPS Treatment Planning System 

V79 Chinese Hamster V79 cell 

VMAT Volumetric Arc Radiotherapy 
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Abstract 

Carbon ion radiotherapy (CIRT) exhibits higher relative biological effectiveness 

(RBE), compared to photon and proton RT. However, there are substantial 

uncertainties regarding the clinical RBE of carbon ions. Therefore, prescription doses 

and organ at risk (OAR) dose constraints derived from experience with photon or 

proton RT may not be applicable to CIRT, and should preferably be derived and 

validated within the framework of this modality. 

Two major approaches have been used for the clinical implementation of CIRT. 

Japanese centres typically use hypofractionated treatments (e.g. 16 fractions of 3.6 – 

4.6 Gy [RBE]) in which prescription doses and OAR constraints initially were 

defined through carefully conducted dose-escalation trials at the National Institute of 

Radiological Sciences (NIRS, Japan). The NIRS clinical dose model, originally 

designed for a passively scattered carbon ion beam, is used to predict the RBE-

weighted dose (DNIRS). More than 22.000 patients have been treated at Japanese 

centres, resulting in several publications addressing tolerance doses or dose 

constraints for various OARs following DNIRS optimized CIRT.  

In contrast, CIRT at the Gesellschaft für Schwerionenforschung (GSI), Darmstadt, 

Germany, was initiated using moderately hypofractionated schedules (20-22 fractions 

of 3.0 - 3.5 Gy [RBE]) in which the Local effect model version I (LEM I) was used to 

predict the RBE. Trusting the LEM I to be sufficiently accurate, dose constraints 

derived from photon RT was applied. This strategy has been adopted by Heidelberg 

Ion Beam Therapy Center (HIT) and Marburg Ion Beam Center (MIT) in Germany.  

When the National Center of Oncological Hadrontherapy (CNAO, Italy) started 

treating patients with LEM I optimized CIRT in 2012, it was decided to adopt the 

successful treatment approach developed at NIRS. However, comparative studies 

show that the LEM I predicts a 5-15% higher RBE in the spread out Bragg peak 

(SOBP) of a carbon ion beam, relative to the NIRS clinical dose model. In the 

entrance region, the RBE predicted by LEM I can be 60% higher. Consequently, 
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dependent on the clinical indication, prescription doses at CNAO (reported in LEM I 

weighted dose, DLEM I) were increased by 5-15% relative to the prescription doses at 

NIRS (as reported in DNIRS). However, dose constraints to OARs were not adjusted 

accordingly. This was a cautious approach aimed at avoiding unexpected toxicity due 

to the lack of validated DLEM I constraints. However, it may lead to suboptimal target 

coverage. 

The aim of this thesis was to explore and update DLEM I constraints for important 

organs at risk in the head and neck region. Anonymized data gathered from medical 

records of consenting patients treated within prospective protocols at CNAO were 

used in this project. Paper I focused on the event of carotid blowout. This rare, but 

often fatal, complication occurs more frequently after re-irradiation (re-RT) than after 

primary treatment. High rates (8-15%) have been seen in hypofractionated re-RT 

using stereotactic body RT (SBRT). Detailed analysis of the relation between the 

cumulative dose to the carotid artery and carotid blowout has never been published. 

At CNAO the current practice has been to avoid cumulative equivalent dose in 2 Gy 

fractions (EQD2) > 120 Gy (RBE) in the re-RT setting. Thus, the medical records of 

96 patients re-irradiated with particles (protons: n=17, carbon ions: n=79) at CNAO 

were analyzed. We found one confirmed, and one possible case of carotid blowout, 

both amongst the patients receiving proton re-RT. There were no cases recorded 

among the patients receiving carbon ion re-RT. An actuarial rate of 2.7% for the 

event was acceptable compared to other studies. For 51% of the patients the 

cumulative dose to the carotid artery could be calculated. Cases occurred at 

cumulative EQD2 of 129 Gy (RBE) for the confirmed event, and 107 Gy (RBE) for 

the possible event. Unfortunately, these data were insufficient to conclude firmly on 

the relation of cumulative dose and the risk of carotid blowout.  

The focus of Paper II and III was to derive more optimal DLEM I constraints for the 

optic nerve and brainstem applicable for hypofractionated CIRT. For Paper II we 

analyzed the toxicity outcome and dose distributions of 65 optic nerves in 38 patients 

treated with CIRT. Visual decline developed in 3 cases, at DLEM I|1%>71 Gy (RBE) 

and DLEM I|20% >68 Gy (RBE), thus far higher than the dose constraints adopted from 
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NIRS, i.e. DNIRS|1%≤40 Gy (RBE) and DNIRS|20%≤28 Gy (RBE), respectively. The 

patient treatment plans were recalculated to DNIRS, and thus a dose translation model 

was obtained, showing that NIRS constraints of DNIRS│1%≤40 Gy (RBE) and 

DNIRS│20%≤28 Gy (RBE) corresponded to DLEM│1%≤50 Gy (RBE) and DLEM│20%≤40 

Gy (RBE), respectively. However, due to uncertainties in the method, and to cohere 

with constraints used at GSI/HIT, a more moderate constraint escalation to 

DLEM│1%≤45 Gy (RBE)/DLEM│20%≤37 Gy (RBE) has been implemented in CNAO 

clinical routine since October 2018.  

Paper III focused on the brainstem, in which CNAO has used the constraint 

DLEMI|1%<30 Gy (RBE), in accordance with the original constraint used at NIRS. Due 

to this conservative approach, CNAO has not even observed asymptomatic brainstem 

injury following CIRT. A recent dose response analysis from Gunma University 

Heavy Ion Medical Center (GHMC), Japan, revealed that asymptomatic brainstem 

lesions did not occur when DNIRS|0.1cm3 < 40 Gy (RBE) and DNIRS|0.7cm3 < 30 Gy 

(RBE). Making use of 30 of the treatment plans recalculated to DNIRS for Paper I, a 

dose translation model was derived also for these brainstem dose metrics, DNIRS 

constraints corresponded to DLEM I|0.7cm3<41 Gy (RBE) (95% CI: 38-44 Gy [RBE]) 

and DLEM I|0.1cm3<49 Gy (RBE) (95% CI: 46-52 Gy [RBE]). The value corresponding 

to the lower bound of the 95% CI’s were proposed as new constraints. 

Overall, this thesis has contributed to knowledge of the risk of carotid blowout after 

particle re-RT. Moreover, we demonstrated a method to reliably calculate the 

cumulative dose to this OAR, which hopefully can inspire to future dose-response 

studies for this important endpoint. A novel approach of creating of a dose translation 

model to support the proposal of updated DLEM I constraints for the optic nerve and 

brainstem, proved useful, as detailed dose-response data for these OARs following 

DLEM I optimized CIRT is lacking. The new constraints can have an immediate 

clinical impact in regard to achieving more optimal treatments at CIRT centres 

applying the LEM I. Finally, the dose translation method can be used to compare and 

unify carbon ion treatments worldwide.     
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 Introduction 

Radiotherapy (RT) is, together with surgery and chemotherapy, a cornerstone of 

modern treatment of malignant tumors. Evidence-based estimates suggest that 

approximately 50% of all cancer cases optimally should receive radiotherapy at least 

once after diagnosis (Barton et al. 2014). Of all radiotherapy courses administered in 

Norway in 2010, 50% were given as part of a curative treatment regimen (Asli et al. 

2014), either as the sole treatment modality or in combination with surgery and/or 

chemotherapy. The key goal of curative radiotherapy is to administer a dose that is 

high enough to eradicate the malignant cells in the target volume, while at the same 

time minimizing the doses to the healthy tissues surrounding the target volume, i.e. 

achieving high conformity of the dose to the target. During the last decades, 

radiotherapy using photons has evolved from simple treatment fields guided by either 

anatomical reference points on the patient’s surface or 2D X-ray imaging, through 3D 

conformal radiotherapy, to more sophisticated and highly conformal techniques, e.g. 

intensity- or volumetric modulated arc radiotherapy (IMRT or VMAT), see Figure 1. 

Stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) are other 

examples of highly conformal techniques, though their current indications are 

restricted by tumor site and/or extension (volume and shape). (Tejpal et al. 2010)

 

 

 

 

Figure 1:  Axial planning CT slice showing typical dose-wash of (a) conventional 

radiotherapy (2D-RT), (b) 3D conformal RT and (c) IMRT for a head and neck cancer 

patient. Note the progressive high-dose conformation to the target volume and sparing of 

surrounding normal structures. Figure from Tejpal, G., et al. (2010). Reused with 

permission. 
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It is evident that the more conformal techniques have a superior ability to decrease 

mid-high doses to organs surrounding the target volume, thus decreasing the risk 

and/or magnitude of organ dysfunction and as a result improving quality of life 

(Staffurth 2010). However, the drawback of these techniques is that the radiation is 

given by an increasing number of fields, so that larger volumes of the tissues in the 

treated region receive a low dose bath. Whether or not this may cause more subtle, 

but important, long term effects on patients’ morbidity and mortality has not been 

properly investigated, mainly due to the fact that detecting such small differences 

would require larger cohorts and longer follow-up than what is usually achievable. 

However, it has been estimated that IMRT, compared to 3D conformal RT, may 

almost double the incidence of secondary cancers for patients surviving 10 years 

(Hall and Wuu 2003).  

On this background, the rationale for RT using charged particles emerges (i.e. protons 

or heavier ions), with its capability of delivering equally conformal high dose to the 

target volume, while minimizing the low dose bath to the healthy tissues. 

Alternatively, charged particle RT can deliver higher doses to the tumor, thus 

increasing the chance of cure, without increasing the risk of side effects (Durante, 

Orecchia, and Loeffler 2017). 

In addition to the beneficial macroscopic dose profile, on the microscopic scale 

particles like protons and heavier ions deposit dose in a spatial and temporal pattern 

that leads to increased damage in biological systems relative to photon radiation, a 

phenomenon defined as increased relative biological effectiveness (RBE). However, 

the RBE of one type of radiation relative to another is highly variable, and is 

modified by changes in parameters such as absorbed dose, linear energy transfer 

(LET), cell-/tissue type and biological endpoint. For proton RT, the variability of the 

RBE is mostly so subtle that it is feasible to use a constant RBE of 1.1 (i.e. proton RT 

is 10% more effective than photon RT) for patient treatments, as recommended by the 

International Commission on Radiation Units and Measurements (ICRU) (ICRU 

2007). Consequently, prescription doses to tumors, and dose constraints for organs at 
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risk (OARs) could be directly derived from the knowledge collected through many 

decades of clinical experience with photon RT.  

Carbon ion RT (CIRT) has been successfully applied for cancers arising in the head 

and neck region, among other sites (Malouff et al. 2020). For a carbon ion beam, 

however, the RBE can be as high as 4, depending on the clinical situation or endpoint 

(Loeffler and Durante 2013). Moreover, the RBE varies significantly along the 

treatment beam, making it imperative to modulate the absorbed dose profile, in order 

to achieve a homogeneous biological effect.  The CIRT centres therefore rely on 

models that predict the RBE within the treatment field. Currently, two different RBE 

models are applied clinically, in which one is applied exclusively in Japanese centres, 

while another is mostly applied in European centres. As currently applied in clinical 

treatments, they usually do not account for the fact that different tissues have 

diverging radiosensitivities, which in turn will modulate the RBE compared to photon 

RT. Therefore, it is questionable whether tolerance doses to the various OARs can be 

safely adopted from previous experience with photon RT. Most definitely, tolerance 

doses should at least be validated within the framework of this new treatment 

modality. This thesis aims at improving dose constraints applied for CIRT for various 

OARs in the head and neck region, to be used at centres applying the European RBE 

model. 
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 Physics of radiotherapy 

2.1 Ionizing radiation 

The term ionizing radiation refers to radiation which has sufficient energy to remove 

electrons from atoms in the traversed material, producing ions and electrons, and thus 

ionizing the atom. Electrically charged particles (electrons, protons and heavier ions) 

interact mainly through  direct ionization, while uncharged carriers of radiation 

(photons, neutrons) are indirectly ionizing; this refers to processes in which  a 

primary interaction between the carrier and the traversed material produces a charged 

particle that, in turn, is capable of ionizing the material  (e.g. a secondary electron or 

proton).  

2.2 Interaction of photon RT with tissue 

When photons traverse tissue, the energy of the photon is absorbed through several 

different interaction mechanisms with the atoms in the tissue that is being traversed; 

the most dominant mechanisms are; the Compton effect, the photoelectric effect and 

pair production (Khan and Gibbons 2014). The Compton effect is the prevailing 

mechanism in the energy range applied clinically. With photon energies between 6-20 

MeV, the main product of the Compton process is the release of free electrons with 

adequate energy to form plural individual tracks of ionization in tissue. The range, of 

these tracks can be several centimeters long, and thus, the energy transferred from the 

initial photon is dispersed over a relatively large area, a significant part of the tracks 

ending some distance away from the location of the initial photon-tissue interaction. 

The direction of the electrons’ tracks, although scattered and tortuous, is generally in 

the same direction of the photon beam, following conservation of momentum in the 

interactions. Initially after the photon beam enters a tissue, more and more electrons 

are produced, resulting in an increase of deposited dose within the first few 

centimeters of the irradiated tissue. However, following an exponential law, the 

photons are gradually attenuated. Therefore, after equilibrium is reached, the dose 

deposited decreases exponentially, see Figure 2. (Schulz-Ertner and Tsujii 2007) 
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2.3 Interaction of charged particles with tissue 

Charged particles lose energy and thus speed through multiple consecutive 

interactions with the atoms of the tissue. As the particle slows down, there is a higher 

probability for interactions to occur per unit of length travelled, resulting in a marked 

increase in energy deposition as it reaches the end of its range, resulting in the so-

called Bragg peak (Bragg and Kleeman 1904). Ions heavier than protons additionally 

undergo fragmentation events, in which either the projectile ion or an atomic nucleus 

of the tissue break up and form secondary particles. These secondary particles have 

lower mass and thus longer residual range, resulting in a “tail” of low dose after the 

Bragg peak in the depth dose curve for heavier ions, see carbon ion depth dose curve 

in Figure 2. However, the heavier ions have other dosimetric advantages over 

protons, e.g. less range straggling (producing a more distinct Bragg peak), and there 

is also less lateral scattering for the heavier ions, thus inherently producing a sharper 

lateral beam penumbra (Chen, Castro, and Quivey 1981).  

For clinical applications, the millimeter wide Bragg peak needs to be widened in 

order to cover the whole extent of the tumor, typically several centimeters. This 

broadening of the high dose peak is done by creating a so called spread out Bragg 

peak (SOBP), which is composed of multiple pristine (monoenergetic) Bragg peaks 

of various energies. As a result, the dose in the plateau region proximally to the 

SOBP becomes higher as well, although it still remains lower than the dose in the 

Figure 2: Depth dose profiles 

of photons, protons and 

carbon ions. From Schulz-

Ertner and Tsujii (2007). 

Reused with permission. 
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build-up/entrance dose region for a generic photon beam, see Figure 3. (Filipak 

2012) 

          

A comparison of dose distributions in treatment plans for photon and proton RT, 

respectively, is shown in Figure 4. The different dose distribution is demonstrating 

the increased sparing of healthy tissues when applying charged particles in RT, while 

the high dose remains conformed to the planning target volume (PTV).  

 

 

 

Figure 3: Multiple proton 

beams of different energies 

and thus different 

range/penetration depths, are 

applied in order to produce a 

spread out Bragg peak 

(SOBP) that covers the extent 

of the tumor. The figure is 

adapted from Filipak (2012) 

with permission. 

Figure 4: Comparison of the dose distributions when applying a two field setup of either photon 

(left panel) or proton (right panel) radiotherapy. Red arrows indicate field direction. Red contour 

represents the planning target volume (PTV) needed to treat a tumor at the gastro-esophageal 

junction. Yellow contour represents the right kidney, and green contour represents the spinal canal 

harboring the spinal cord. 
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2.3.1 Track structure of charged particles 

On the microscopic scale, each ion species has a characteristic track structure, which 

describes the spatial and temporal pattern of the ion’s interactions with an absorber. 

The ion track consists of a track core and penumbra (Blakely 1983). The core is 

produced by direct interactions between tissue atoms and the primary ion along its 

trajectory, while the track penumbra is a result of secondary electrons (δ- electrons). 

These electrons have enough energy to produce their own ionization track, thus 

allocating ionizations at distances farther away from the track core. 

The rates of direct interactions in the track core, and the formation of secondary δ-

electrons producing the penumbra, both increase with increasing charge of the ion 

and with decreasing velocity of the ion. Furthermore, as the ion speed decreases, the 

δ-electrons produced will have lower energies, thus becoming unable to travel far 

from the track core. The net result is that as the ion slows down, there is an increasing 

clustering of ionizations immediately along the track core, and there is also an 

increase in secondary electrons, though with lower energies, resulting in a 

simultaneous narrowing of the track penumbra (Conte et al. 2012). Therefore, on the 

micro- and nanometer scale, the dose deposition is condensed around the ion tracks, 

the magnitude increasing as the ion decelerates, see Figure 5.(Benton and Tochilin 

1966) 

 

 

Figure 5: Visualization of a heavy 

ion track as it traverses a nuclear 

emulsion, going from left to right. 

The cross-sections demonstrate the 

narrowing of the penumbra as the 

ion decelerates. The dots represent 

ionization events. The dense inner 

region of ionizations is the core, 

and the more diffuse peripheral 

region in each cross-section is the 

penumbra. From Benton & 

Tochilin (1966), figure reused with 

permission. 
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2.4 Absorbed dose and specific energy 

The absorbed dose, often also referred to as the physical dose, is a physical quantity 

describing the energy imparted by ionizing radiation to matter (ICRU 2011). The SI 

unit of absorbed dose is Gray (Gy), in which 1 Gy equals 1 Joule of energy absorbed 

per kilogram of matter (1 Gy = 1 J/kg). Conventionally, absorbed dose is used to 

report doses delivered to patients within radiation therapy using photon or electrons. 

However, for other radiation modalities, with a different pattern of dose deposition on 

the microscopic scale, e.g. for charged particles, the absorbed dose alone is not 

always adequate for quantifying the biological effect of the imparted physical dose 

within a treatment plan or field, and some additional parameters need to be 

incorporated in order to take the biological effectiveness of the imparted physical 

dose into account. 

The term absorbed dose quantifies in RT the mean dose imparted to the tissue on a 

macroscopic scale. However, due to the stochastic nature of the interactions between 

traversing particles and tissue atoms, there will be large variations in the amount of 

deposited energy within small sub-volumes on the microscopic scale. Specific energy 

(z), is defined as the amount of energy (E) imparted by ionizing radiation in a volume 

of mass m (z=E/m’), and can be considered as the microdosimetric equivalent to the 

macroscopic quantity absorbed dose. Specific energy is therefore a more relevant 

quantity when dealing with biological effects that are dependent on amount of dose 

imparted into subcellular structures. 

2.5 Linear energy transfer and lineal energy 

As previously mentioned in chapter 2.3.1, each particle type has a unique track 

structure, defining the spatial pattern of energy deposition as it evolves throughout 

the tissue. Commonly, linear energy transfer (LET) is used to convert this three-

dimensional structure into a one-dimensional quantity (Lindborg et al. 2013). LET 

describes the magnitude of energy transfer along the ion trajectory and is defined as 

the amount of energy (E) lost per unit of track length (x), LET = ∆E/∆x. LET is 

usually expressed in units of kiloelectronvolts per micrometer (keV/µm). LET  is 
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proportional to the square of the ion’s charge divided by the square of its velocity 

(Joiner and van der Kogel 2009). Therefore, heavy ions have low LET at high speed, 

which changes to increasingly higher LET as the ion slows down. In contrast, photon 

RT, mediated through the highly tortuous tracks of the secondary electrons, is 

sparsely ionizing and has low-LET throughout the whole radiation field. 

The radiation field of a therapeutic ion beam consists of primary ions of multiple 

energies (to produce a spread out Bragg peak) and a variety of secondary particles 

due to fragmentation events. Therefore, at any point in the field, the dose deposited 

stems from a mixture of particles species with a wide range of LET values. 

Commonly, the radiation quality in a given position of a beam is therefore described 

by the dose-averaged LET. As it follows, the radiation quality of an ion beam 

changes with depth. As seen in Figure 6, dose-averaged LET increases with depth 

and is also dependent of the ion type. It can also be seen that heavier ions (carbon and 

oxygen) exhibit substantially higher values of dose-averaged LET within the 

target/SOBP, while for protons increased LET values appear at a position beyond the 

target, which is not ideal (Tommasino, Scifoni, and Durante 2016). 

 

 

 

Figure 6: Profiles of dose-

averaged LET of different ions 

for the irradiation of an 

extended target of 2.5 x 2.5 x 

2.5 cm3 centered at 8 cm 

depth in water (vertical lines), 

with a field optimized on a 

uniform absorbed dose of 2 

Gy. The yellow horizontal line 

indicates a LET level that can 

be associated to a significant 

reduction in the oxygen 

enhancement ratio. From 

Tommasino et al. (2016). 

Reused with permission. 
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As for the relationship between specific energy and absorbed dose, lineal energy (y) 

is the microdosimetric equivalent of LET. Lineal energy is defined as the amount of 

energy imparted by single interaction event (Es) to a volume with a mean chord 

length of 𝑙 (𝑦 = 𝐸𝑠/𝑙). 
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 Modelling radiobiological effects 

Since the dawning of radiotherapy at the end of the 19th century, in vitro cell 

experiments have been used to explore and quantify the effects of radiation on 

biological systems. Most commonly, clonogenic assays have been used, where the 

radiation effect in a cell line is given by the surviving fraction, defined as  the 

percentage of cells with ability to form colonies of at least 50 daughter cells, which in 

turn implies a capacity for unlimited proliferation (Puck and Marcus 1956). When the 

surviving fraction is plotted as a function of dose, the curve typically assumes a 

sigmoidal shape, or as a downward bending curve when survival is plotted on a 

logarithmic scale, as seen in Figure 7. 

 

 

 

3.1 The linear quadratic model 

Over the decades of radiotherapy, a plethora of different models with varying degree 

of complexity have been proposed in order mathematically describe and 

mechanistically explain the shape of the cell survival curve. One of them, the linear 

quadratic (LQ) model, is by far the most frequently applied model to analyze and 

Figure 7: Example of a typical cell survival curve, with survival plotted on a linear scale (left 

panel) and on a logarithmic scale (right panel). 
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predict responses to ionizing radiation both in both in the laboratory and in the clinic. 

Although the first formulation of a LQ-like model often is attributed to Lea and 

Catcheside (Lea and Catcheside 1942),  important contributions by Fowler (Douglas 

and Fowler 1976; Fowler 1989) and Barendsen (Barendsen 1982) paved the way for 

its pivotal role in radiotherapy. In its most common formulation, the LQ model 

describes the survival fraction (S) following a single dose of radiation (D) as: 

𝑆 (𝐷) = 𝑒−𝛼𝐷−𝛽𝐷2
     (Equation 1) 

where the α and β terms are derived by fitting to experimental data, and quantify the 

radiosensitivity of the investigated cell or tissue (McMahon 2018). The ratio of the 

parameters α and β (α/β ratio) determines the degree of the curvature, and 

corresponds to the dose at which the linear term (−𝛼𝐷) and the quadratic term 

(−𝛽𝐷2) equally contributes to cell inactivation, see Figure 8.  The α/β-ratio is 

representative of how sensitive the cell is to fractionated radiation. A high α/β-ratio is 

typical for early responding tissues (e.g. skin and mucosa) and most tumors and 

implies a relative insensitivity to fractionation. A low α/β-ratio (i.e. 2-5 Gy) indicates 

higher sensitivity to fractionated treatment, which means that when fraction number 

increases (and dose per fraction decreases) a higher total dose can be applied while 

maintaining the same degree of cell survival. A low α/β-ratio is typically observed in 

late responding tissue (e.g. nervous tissues, lung and kidney) (Joiner and van der 

Kogel 2009). In radiotherapy, this difference in α/β-ratio for a typical tumor and the 

surrounding late responding tissues is utilized to achieve high radiation dose while 

preferentially sparing the late responding tissue from damage. The most common 

mechanistic interpretation of the LQ model is that the α term represents cell 

inactivation following a “single hit” event and that the β term reflects a “two hit” cell 

inactivation resulting from the interaction of damage from two different radiation 

tracks, the latter being more dominant at higher doses, see Figure 8. However, it is 

unlikely that the complex biological response of tumors, tissues and even cells lines 

to radiation can be encompassed by such a simple mechanistic explanation. Either 

way, the LQ model remains a practical empirical tool in radiation biology and 

physics. 
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The LQ model is also used to compare the efficacy of different fractionation 

regimens.  Traditionally, radiotherapy has been given by dividing the total dose into 

fractions of 2 Gy. Hyperfractionation refers to applying smaller fraction doses, while 

hypofractionation is the use of larger fractional doses than the normally applied 2 Gy 

fraction doses. Therefore, differing dose-fractionation schedules can be compared, 

typically by converting them to equivalent dose in 2 Gy fractions (EQD2) by use of 

the LQ model. 

3.2 Models for Normal Tissue Complication Probability 

In clinical radiotherapy, avoiding potentially toxic doses to the body’s organs is a 

major factor limiting the amount of dose one can apply to the tumor. The estimated 

risk for a given side effect will increase with increasing dose to and increasing 

volume within an OAR that receives a certain dose (Langendijk et al. 2013). The first 

compilation providing estimates of normal tissue complication probability (NTCP) 

for various organs was published by Emami et al. in 1991 (Emami et al. 1991). 

Focusing on conventionally fractionated photon radiotherapy, tolerance doses (TD) 

Figure 8: Illustration of LQ curves. Left: Responses for cell lines with high and low α/β ratios. 

High α/β cell lines (10 Gy) have nearly-constant rates of cell killing with increasing dose, 

while low α/β lines (3 Gy) show a pronounced curvature, with greater killing per unit dose at 

higher doses. Right: Separation into one- and two-hit kinetics. At low doses, response is 

dominated by one-hit events, while at higher doses multi-hit killing is more important. These 

effects are equal when the dose matches the α/β ratio of the cell line (5 Gy). From McMahon 

(2018), reused with permission. 
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for uniform irradiation of 1/3rd, 2/3rd and the whole organ volume, associated with 5% 

and 50% probability for toxicity within five years from treatment (TD 5/5 and TD 

50/5, respectively) were proposed. It should be emphasized that due to the lack of 

strong evidence, many of the estimates provided in this paper, were based on the 

opinions and experience of the contributing authors. 

However, with increasing use of more conformal dose delivery techniques, e.g. 

IMRT, the organs are usually partially irradiated with a highly non-uniform dose, thus 

reducing the validity of the arbitrary tolerance doses provided in the Emami paper.  

A common approach to manage this issue, is applying the concept of equivalent 

uniform dose (EUD) (Luxton, Keall, and King 2008; Niemierko 1997) to the Lyman-

Kutcher-Burman (LKB) NTCP model (Lyman 1985; Kutcher and Burman 1989). In 

summary, three parameters are fitted to the experimental data: n, m and TD50. n, the 

volume-effect parameter, represents the organ architecture (serial when n  0, and 

parallel when n  1), m represents the biodiversity in radiosensitivity amongst 

patients (steep dose-response curve when m  0), and TD50 represents the dose 

(EUD) that would result in 50 % probability of toxicity if uniformly distributed over 

the organ’s total volume. The volume-effect parameter, n is inversely proportional to 

the resulting individual patient’s EUD; a small n will result in higher EUDs, closer to 

the maximum dose, and bigger n will result in lower EUDs overall. 

The LKB and similar models require the use of more or less complex mathematical 

equations, and are not easily applicable in routine clinical practice. Therefore most 

publications on NTCP have focused on identifying a limited set of dose-volume 

reference points relating to a specific endpoint of organ dysfunction. These studies 

were collectively reviewed through the efforts of the Quantitative Analysis of Normal 

Tissue Effects in the Clinic (QUANTEC) initiative in 2010 (Marks et al. 2010).  The 

most important dose-volume reference point(s) for an organ depends on the organ’s 

functional architecture, and therefore varies widely between different toxic endpoints. 

In order to make an NTCP model, the effect of a dose variable on the (often binary) 

outcome is fitted to a logistic regression function, resulting in a sigmoidal dose-
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response curve, see Figure 9. Often, the model can be improved by incorporating 

patient related factors (age, sex, comorbidities) or treatment related factors (e.g. 

concomitant chemotherapy) (Tommasino, Nahum, and Cella 2017). However, a rule 

of thumb for logistic regression models is that one should have 10-15 events per 

parameter introduced in the model (Kong et al. 2007).  As it follows, for more severe 

side-effects, optimally not occurring in more than 1% of patients treated, one would 

need at least 1000-1500 patients to derive a univariate NTCP model.  

 

 

 

 

 

 

Figure 9: Example of a Normal Tissue Complication Probability (NTCP) model describing 

the risk estimation on a given side effect (NTCP-value) as a function of the most relevant 

dose distribution parameter (in this case the mean parotid dose). From Langendijk et al. 

(2013), reused with permission. 
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 The biological advantage of charged particle therapy 

The cellular response to ionizing radiation is very complex and many mechanisms 

remain to be uncovered. However, it is clear that the most important structure for 

radiation response in a cell is the DNA. It is the largest molecule within the cell, exist 

only in two copies and is crucial for all cell functions (Joiner and van der Kogel 

2009). Due to its importance, the cells harbor highly sophisticated DNA repair 

systems which are activated when damage to the DNA occur. As previously 

described, compared to photons, the high LET radiation causes densely localized 

ionizations along its trajectory. Within the cell nucleus, this pattern of microscopic 

dose deposition increases the probability of causing so-called clustered damage to the 

DNA. This involves two or more closely associated DNA lesions involving both 

DNA strands, usually within one or two turns of the helically structured DNA 

molecule (Sutherland et al. 2001). Although one can expect the same absolute 

number of individual DNA lesions per unit of absorbed dose following low- and 

high-LET radiation, the proportion of complex DNA damage increases from 30-40% 

for low-LET to more than 90% for high-LET radiation (Semenenko and Stewart 

2006). These complex DNA lesions are harder for the cell to repair properly, 

increasing the probability of cell inactivation through death, senescence or loss of 

reproductive capability. 

4.1 Relative biological effectiveness 

To compare the effect of different types of radiation, the concept of relative 

biological effectiveness (RBE) is applied. RBE is defined as the ratio of absorbed 

dose of a reference radiation (usually photons) to that of a test radiation to produce 

the same biological effect, under otherwise identical conditions (Joiner and van der 

Kogel 2009): 

𝑅𝐵𝐸 =
𝐷𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐷𝑡𝑒𝑠𝑡
      (Equation 2) 
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Therefore, radiation beams with higher RBE values are more effective at producing 

biological effects at equivalent doses. RBE is however a highly elusive quantity and 

is dependent on physical properties of the radiation (LET, ion type, dose), as well as 

the properties of the biological system (cell/tissue type, physiological status of the 

cell) (Karger and Peschke 2017). Therefore, a precise quantification of the RBE is 

only achievable within strict experimental conditions, where all factors affecting the 

RBE are fixed. Typically, basic characterization and quantification of RBE of ion 

beams has been performed under so-called “track segment” conditions. In these 

experiments, a monolayer of cells is irradiated and because this layer is extremely 

thin, one can exclude any variation of energy or LET within the layer. Such 

experiments are useful to systematically asses the dependence of RBE on physical 

and biological factors. 

4.1.1 RBE dependence on LET and ion type 

There is a clear trend in the relationship between LET and RBE as can be seen in 

Figure 10. With increasing LET, the RBE increases steadily up until LET values at 

about 100-200 keV/µm suggesting that at these values, the microscopic dose 

distribution is optimal for cell killing (Tsujii et al. 2014; Ando and Kase 2009).    

 

 

At higher LET the RBE decreases, which is due to an overkill effect; at these levels, 

the density of ionizations around the track exceeds what is needed to kill the cell, and 

Figure 10: RBE as a 

function of LET from 

published experiments on 

various in vitro cell lines. 

RBE is calculated at 10% 

survival. Colours 

indicate different ion 

types. From Loeffler and 

Durante (2013), reused 

with permission. 
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thus some of the dose is “wasted”. Figure 10 also demonstrates the huge variability 

of in measured RBE-values according to the use of different cell types or due to 

different experimental or physiological conditions. Likewise, the figure shows a trend 

as the particle’s charge increases, the maximum RBE shifts towards higher LET 

values. This observation highlights the fact that LET is a one-dimensional 

representation of the ion’s three-dimensional track structure.  

One of the main reasons for choosing carbon ions over other ions for radiotherapy is 

their beneficial LET distribution along the treatment beam; in the plateau region 

before the SOBP, the particles have relatively low LET, and thus low RBE, while in 

the SOBP LET values and RBE increases. Carbon ions therefore have the highest 

ratio of biological effect between the SOBP and the plateau region, as shown in 

Figure 11 (Chu, Ludewigt, and Renner 1993). 

                        

 

 

 

4.1.2 RBE dependence on dose  

Cells exposed to CIRT show higher α/β-ratios, and thus a steeper and more linear 

dose-response curve, than what is found for photon radiation. This change is mainly 

due to an increase in the radiosensitivity parameter α when high-LET radiation is 

used (Weyrather et al. 1999; Ando and Goodhead 2016). The phenomenon could be 

Figure 11: The relative biological dose of SOBPs of helium-, carbon, and neon-ion beams as 

a function of penetrating depth in water are shown for comparison. These doses are 

normalized at the isosurvival region and the figure shows the different relative entrance, 

plateau and tail doses for these beams. From Chu et al. (1993), reused with permission 
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explained by the increased ability of the high-LET particles to inflict complex, 

irreparable damage to the DNA also at lower doses. As a direct consequence of the 

different shape of the survival curves, the RBE is dependent on dose level, see Figure 

12.  

                     

 

 

4.1.3 RBE dependence on cell or tissue type 

In general, the variation in radiosensitivity between different cell lines is reduced for 

high-LET radiation compared to low-LET radiation (Belli et al. 2008). Hence, the 

RBE of high-LET radiation is more dependent on the difference in radiosensitivity to 

photon radiotherapy. As an example, cells with deficient DNA repair systems are 

typically very sensitive to photon radiotherapy and will therefore exhibit rather low 

RBE when exposed to high-LET radiation (Weyrather et al. 1999). On the other hand, 

cells with high repair capacity are more resistant to photon radiation and show higher 

RBE values, see Figure 13. 

Figure 12: Cell survival curves in vitro fitted by the LQ model. Irradiations with photons 

and carbon ions are considered as isoeffective if the survival fractions are the same. The 

dose dependence of the RBE results from the different shapes of the photon and carbon ion 

curve and leads to different RBEs at different survival levels. The different survival levels 

are considered as different endpoints. From Karger and Peschke (2018), reused with 

permission. 
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4.1.4 The oxygen enhancement effect 

From experience with photon RT, it is well known that cells in hypoxic conditions 

are less radiosensitive (Gray et al. 1953). Tumors may outgrow their blood supply, or 

produce dysfunctional capillaries, causing a certain proportion of the tumor cells to 

be hypoxic. The effect of increased radiosensitivity observed when cells are 

reoxygenated is called the oxygen enhancement effect (OER). Typically, for photon 

RT, in vitro experiments have found the OER to be around 2.5 – 3.0, i.e. you would 

need a two- to threefold dose to get the same effect under hypoxic conditions relative 

to normoxic conditions (Hall and Giacci 2006). As with RBE, also the OER changes 

with LET, being equivalent with photons at low LET, decreasing to nearly 1.0 at LET 

Figure 13: RBE for carbon ion 

track-segment irradiation at a 

survival level of 50%, 10% and 1% 

for repair-efficient (V79 and CHO) 

and repair-deficient (xrs5) cells. 

From Weyrather et al. (1999), 

reused with permission. 
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values of 200-300 keV/µm (Blakely and Chang 2009). As can be seen in Figure 6 in 

chapter 2.5, LET values associated with a significantly reduced OER is only partially 

achievable within the SOBP of a carbon ion beam, which has caused an increasing 

interest in exploring the possibility of using even heavier ions (i.e. oxygen ions) 

instead of, or in conjunction with, other ions to treat hypoxic tumors (Tommasino, 

Scifoni, and Durante 2016; Inaniwa et al. 2017).  

4.2 RBE of carbon ions 

Due to its role as the only heavy ion currently applied in routine clinical treatments, 

the RBE of carbon ions has been extensively investigated. Examples of these 

experiments, uncovering different aspects of carbon ion RBE is presented in this 

section. 

4.2.1 In vitro experiments 

In a systematic analysis of cell survival experiments, Friedrich et al. demonstrated 

that carbon ions at optimal LET (100-200 keV/µm) can exhibit RBE as high as 14 

(Friedrich et al. 2012). This was however at the limit of full survival level, i.e. at very 

low dose. At 10% survival, an endpoint considered more relatable to clinical tumor 

eradication, the RBE was found to be in the range 2-4. However, particles with these 

optimal LET-values are not dominant within the SOBPs of a therapeutic carbon ion 

beam, where the dose-averaged LET rather is in the range 40-100 keV/µm (Kanai et 

al. 2006). In experiments on human cell lines using dose-averaged LET values within 

this range, RBE values of 2-3 have been found for the 10% survival level using single 

fractions (Belli et al. 2008) and up to 3.5 for fractionated experiments (Suzuki et al. 

2000). 

4.2.2 In vivo experiments 

While cell line experiments are useful to characterize fundamental properties of 

carbon ion beams, in vivo experiments are more helpful to examine clinical effects 

both on normal tissues and on tumors. As an example, Debus et al. (Debus et al. 

2003) and Karger et al. (Karger et al. 2006) performed a series of experiments where 

the spinal cords of rats were exposed to carbon ion beams with dose-averaged LET of 
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either 13 keV/µm or 125 keV/µm. The irradiation was given in either 1, 2, 6 or 18 

fractions. Radiation-induced myelopathy was used as endpoint. For the 13 keV/µm 

beam, representative of the LET in the plateau-region, the RBE remained constant at 

approximately 1.4, irrespective of the fraction number. In contrast, for the 125 

keV/µm beam, representative for the LET in the distal SOBP, the RBE increased 

significantly, from 1.77 in the single fraction group, up to 5.04 in the 18 fraction 

group. The experiment demonstrated that in the plateau-region (low-LET), the 

tolerance dose of the rat spinal cord is dependent on the fraction number, similar to 

what is observed for photon radiation. Hence the RBE of carbon ions relative to 

photon RT remains constant, irrespective of fraction number. In contrast, in the high-

LET SOBP of the carbon ion beam the spinal cord becomes insensitive to 

fractionation, i.e. the tolerance dose for CIRT remains constant irrespective of 

fraction number. The increase in RBE with fraction number in this region is therefore 

a result of the sparing effect exhibited by fractionated photon RT, see Figure 14. 

 

 

Figure 14: Dose response for 6 (a) 

and 18 (b) fractions measured for 

irradiation with photons and carbon 

ions of LET 13 keV/µm (plateau) and 

125 keV/µm (peak). Observe the 

indistinguishable the dose response 

curve of the high-LET carbon ion vs. 

the significant shift in dose response 

for the photon irradiation. From 

Karger et al. (2006), reused with 

permission. 
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Determination of carbon ion RBE has also been performed in a few animal tumor 

models. Such models better mimic the complex dependencies of therapeutic effect in 

clinical radiotherapy, related to the interplay of a vast number of factors including 

tumor cell heterogeneity, physiological status, tumor stroma and immune cells 

(Karger and Peschke 2017). In studies on tumor growth delay, the RBE is defined as 

the ratio of reference radiation- to carbon ion dose needed to induce a certain amount 

of growth. In single fraction experiments on different tumor cell lines, applying 

carbon ion beams with dose-averaged LET in the range 74-80 keV/µm, RBE values 

up to 2.8 were found for 15 (Koike et al. 2002) and 20 day tumor growth delays 

(Tenforde et al. 1981).  
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 Beam delivery techniques and treatment planning for 

particle therapy 

5.1 Beam delivery techniques 

From the particle accelerator a thin beam is extracted and guided towards the patient 

through the beam line. This thin beam needs to be broadened in both depth and width 

to cover the three-dimensional target volume. Two essentially different techniques  

are applied for this purpose (Chu, Ludewigt, and Renner 1993). Their main principals 

are presented here. 

5.1.1 The passive scattering technique 

As the name indicates, in this technique, the beam is broadened and shaped by a 

series of passive hardware components (Koehler, Schneider, and Sisterson 1977; 

Kanai et al. 1999). First the beam penetrates a scattering device causing the 

unidirectional particles to fan out. Thereafter the beam traverses a ridge filter (or 

similar device) which creates the SOBP.  The exact design of the ridge filter dictates 

both the shape and the width of the SOBP in the beam direction. By varying the 

thickness of the range shifter, the penetration depth into the tissue is controlled. 

Finally the irradiation field is shaped laterally by a collimator and distally by a 

compensator so that the field matches the shape of the target volume, see Figure 15 

(upper panel).  

5.1.2 The active scanning technique 

This technique is also known as pencil beam scanning (PBS) (Kanai et al. 1980; 

Pedroni et al. 1995). Here, the thin beam extracted from the accelerator is not 

broadened, but rather deflected by two sets of scanning magnets, controlling the 

degree of deflection in the x- and y-direction. The Bragg peak is then deposited, 

either in a continuous sweep or spot by spot, across the most distal layer of the target 

volume. Then the energy of beam is decreased, either within the accelerator itself, 

and/or by a range shifter system so that the beam ends in a more proximal layer in the 

target volume which subsequently is swept by the beam. This process is repeated 

until every layer of the tumor is covered; see Figure 15 (lower panel). 
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5.1.3 Comparison of the techniques 

The passive technique has many disadvantages compared to the active scanning 

technique. Due to the hardware involved in the broadening and shaping of the beam, 

a higher proportion of the initially extracted particles are lost before reaching the 

patient. Additionally, the beam quality is deranged, due to interactions with the 

hardware components, creating contamination of fragmented ions and neutrons.  The 

collimator and compensator have to be custom made for each field in each patient, 

adding to the cost and logistic complexity of the treatment (Tsujii et al. 2014). The 

active scanning technique is much more flexible, since the position and intensity of 

the beam can be modified for each spot position. High dose conformity can be 

achieved even for target volumes of complex geometric shape (Lomax et al. 2004), 

see Figure 16. 

Figure 15: Schematic illustration of the passive scattering (upper panel) and active 

scanning technique (lower panel). While the passive technique may conform the dose well to 

the distal edge of the target volume by use of a compensator, areas of high dose is given 

outside the proximal edge of the target volume (indicated by arrows). 
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A disadvantage of the active scanning technique is that the lateral penumbra may be 

less sharp than a collimated beam (Safai, Bortfeld, and Engelsman 2008), and that 

planned dose distribution is less robust in cases where the target volume is moving, 

i.e. due to respiratory motion. The latter may be mitigated by various techniques, 

such as rescanning, beam tracking, respiratory gating and 4D treatment planning 

(Bert and Durante 2011).  

5.2 Treatment planning and optimization 

The goal of radiotherapy is to deliver a dose that is high enough to eradicate the 

tumor cells, while delivering the lowest possible dose to the surrounding healthy 

tissues. More specifically, with the help of treatment planning systems (TPS) the dose 

distributions are optimized so that the prescribed dose covers as much as possible of 

the target volume, while the dose to the surrounding OARs is optimally kept below 

certain threshold values representing the accepted risk of organ toxicity for the 

specific treatment setting. These threshold values are referred to as dose constraints. 

For visualization of the dose distribution in both the target volume and the OARs, a 

dose volume histogram (DVH) is used, see Figure 17. Often there will be a trade-off 

between the risk of toxicity and the risk of tumor recurrence, especially in the case of 

tumors located close to important OARs. Therefore, it is utmost important to have 

accurate dose constraints and/or models to predict NTCP. 

Figure 16: A three field intensity-

modulated proton therapy plan for 

a skull base chordoma, where the 

target volume is located between 

various organs at risk, e.g. 

brainstem, eyeballs, optic nerve 

and optic chiasm. From Lomax et 

al. (2004), reused with permission. 
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For clinical treatment planning, there is a need for the TPS to be fast in order to 

secure a high through-put of treatment plans. Therefore, these often commercial 

TPS’s predict and optimize the dose distribution using calculation algorithms that, 

although considered sufficiently accurate for their use, only partially depict the 

complex interactions between the particles of the beam and the tissues of the patients 

(Schuemann et al. 2015). For proton beams, the modelling of the lateral scattering of 

the beam in the presence of tissue heterogeneities is a particular weakness (Molinelli, 

Russo, et al. 2019). For heavier ions, like carbon ions, this lateral scattering is less 

pronounced. However, especially at greater depths, nuclear fragmentation events 

become more important in regards to reducing the sharpness of the lateral penumbra 

(ICRU 2019). Simulations based on Monte Carlo codes are more accurate, and are 

Figure 17: Example of a dose volume histogram (DVH). Ideally, the DVH of the target volume 

(tumor) should be pushed towards the upper right corner, while the DVHs of the organs at risk 

(OARs) should be pushed towards the lower left corner. The red, broken line represents the optimal 

dose distribution for the target volume, e.g. nearly 100% of the target volume receives the 

prescribed dose of 64 Gy (RBE). However, to achieve this goal, the dose to an OAR (green, broken 

line) exceeds the recommended dose constraints (red triangles), putting the patient at risk of 

toxicity. The solid lines represent an alternative treatment plan, respecting the dose constraints of 

the OAR, while resulting in sub-optimal dose coverage of the target volume. 
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considered the gold standard for dose calculations for particle therapy (Paganetti 

2014; Mairani et al. 2010). However, the major drawback of Monte Carlo codes is 

that they demand high computational capacity and are time-consuming. 
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 Dose prescription in CIRT 

As covered in chapter 4, the RBE of the carbon ion beam is affected by factors such 

as dose per fraction, biological endpoint and by the penetration depth in the tissues 

(varying radiation quality). Due to these variations in RBE, the absorbed dose 

imparted in the tissue is not adequate to monitor the biological effect. In vitro and in 

vivo experiments can identify fairly precise RBE values for specific endpoints 

defined by the experimental set-up, and be of help to study the functional 

dependencies of the RBE. However, these “experimental RBE” values cannot truly 

reflect the complex variations in RBE encountered in patient treatments, where 

changes in irradiation conditions will modify the RBE of the multiple competing 

endpoints differently. The main purpose of RBE models in CIRT is to: 

1) Achieve a homogeneous biological effect in the target area, by modulating the 

absorbed dose distribution in accordance with the depth dependent RBE. 

2) Make the resulting RBE-weighted dose relatable to the biological effect 

observed for a reference radiation modality. 

The lack of a universal RBE for CIRT has of historical reasons led to the 

development of two different methods to define the RBE-weighted dose for clinical 

patient treatments. As of yet, the ICRU does not give any recommendation as to 

which RBE model should be used to report the doses given in CIRT treatments 

(ICRU 2019).  

6.1 The NIRS clinical dose 

6.1.1 The mixed beam model (original NIRS clinical dose) 

Kanai et al. developed the mixed beam model (also known as the NIRS clinical dose) 

for the passively scattered carbon ion beam of the HIMAC at NIRS (Kanai et al. 

1999). Due to the advantageous effect of fast neutrons, another high-LET radiation, 

on malignant salivary gland tumors, the model was based on human salivary gland 

tumor (HSG) cells (Shirasuna, Sato, and Miyazaki 1981), in the belief that their 

moderate radiosensitivity was representative of the response of the tumor types one 
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expected to treat with CIRT (Tsujii et al. 2014). The α and β values of the LQ-model 

as a function of LET was examined in numerous studies for the HSG cells and many 

other cell lines using monoenergetic beams of carbon and helium. These values were 

thereafter used for the initial design of ridge filters that correctly weighted the 

absorbed dose as function of depth, in order to produce a homogeneous (flat) 

biological response (e.g. 10% HSG cell survival) over the entire SOBP (Kanai et al. 

1997). Once SOBPs of various widths were designed – one had to connect the 

survival response of the HSG cells (biological effect in vitro) to the assumed clinical 

effect when treating patients. This was achieved by using NIRS’s prior clinical 

experience with neutrons. In an 18 fraction regimen, an absorbed dose of 0.9 Gy of 

the NIRS neutron beam had a clinical RBE of 3.0. Planning to use the same fraction 

schedule initially, NIRS sought to find the neutron-equivalent point in the carbon ion 

beam SOBP. Various experiments showed that the NIRS neutron beam and the 

carbon ion beam were equiefficient at the point in the SOBP where the dose-averaged 

LET of the carbon ions beam was 80 keV/µm. For a 6 cm SOBP of a 290 

MeV/nucleon beam, this neutron-equivalent point was located 8 mm upstream of the 

distal fall-off. Therefore, the clinical RBE at this point was defined to be 3.0 if an 

absorbed dose of 0.9 Gy was given by the carbon ion beam, thus resulting in an RBE-

weighted dose of 2.7 Gy (RBE)1 at this point in the SOBP, see Figure 18.  

 

                                              
1 Originally, the RBE-weighted dose was reported as Gy equivalents (GyE) 

Figure 18: Schematic 

method used to 

determine the RBE at 

the center of the 

SOBP for the clinical 

situation. From Kanai 

et al. (1999), reused 

with permission. 
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Since the absorbed dose profile of the SOBP yielded a flat biological response for 

HSG cell survival in vitro, one could assume a flat biological response in clinical 

patient treatments as well. Thus, the clinical dose of 2.7 Gy (RBE) was attributed for 

the entire SOBP, thus defining the depth dependent RBE of the rest of the SOBP. For 

the 6 cm SOBP, the RBE in the SOBP center was defined to be 2.38. The same 

procedure was undertaken for multiple SOPBs with different widths. Since the 

neutron-equivalent point (80 keV/µm) will be at a different positions within SOBPs 

of different widths, the mid-SOBP RBE will be higher for the smaller SOBPs (3 cm = 

RBE 2.8) relative to the wider SOBPs (12 cm = RBE 2.1).  

For every treatment in which 0.9 Gy was given to the neutron-equivalent point in 

these SOBPs, one could argue that the resulting RBE-weighted dose was 

approximately photon-equivalent, although derived through prior experience of the 

photon-related RBE of fast neutron therapy. However, from the initial modest doses 

given at clinical start-up in 1994, the NIRS gradually increased fraction doses within 

carefully monitored dose-escalation trials (Tsujii et al. 2004; Mohamad, Makishima, 

and Kamada 2018), keeping the RBE fixed dependent on the SOBP width, while 

disregarding that RBE will decrease with increasing fraction dose. Therefore, the 

NIRS clinical dose model is per design not reflecting true photon-equivalent doses. 

6.1.2 The updated NIRS clinical dose 

In conjunction with the implementation of an actively scanned carbon ion beam at 

NIRS in 2011, it was necessary to update the RBE model of the treatment planning 

system. This was also an opportunity to correct for oversimplifications embedded in 

the mixed beam model, particularly the lack of a dose-dependent RBE. At the same 

time, the new RBE model had to stay consistent with the old model, in order to 

ensure the continuity of the favorable clinical experience gathered over the prior 

decades (Inaniwa et al. 2015). 

As basis for RBE-prediction, the microdosimetric kinetic model (MKM) developed 

by Hawkins (Hawkins 1994) was chosen. This model predicts cell survival after 

radiation from the specific energy (z) deposited in a subcellular structure referred to 



 47 

as a domain. To account for the decrease in RBE due to the overkill effect in regions 

of very high specific energies, a saturation correction was included (Kase et al. 2006), 

hereby referred to as a modified MKM (mMKM). Thereafter, the radiosensitivity 

parameters required by the mMKM was fitted from experimental data, so that it 

correctly predicted the survival of the HSG cell within a carbon ion SOBP 

representative for patient treatments (Inaniwa et al. 2010). The radiation quality, 

defined as the dose-averaged saturation-corrected specific energy, found in the 

middle of this SOBP, was considered as the reference radiation quality for the 

updated dose system (Inaniwa et al. 2015). Lastly, a scaling factor of 2.41 was 

applied to unify the RBE-weighted dose with the former dose-fractionation regimens, 

see Figure 19. 

 

 

 

The NIRS clinical dose model, in either its original or updated form, is applied in 

almost all CIRT facilities in Asia and has been used for more than 20.000 patient 

treatments, see Table 1. In the following chapters, RBE-weighted doses predicted by 

the NIRS clinical model will be abbreviated as DNIRS. 

Figure 19: Schematic designs of (a) the original and (b) the updated clinical-dose systems for a 

SOBP C-ion beam with a width and energy of 60 mm and 350 MeV u-1, respectively. From 

Inaniwa et al. (2015), reused with permission. 
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Table 1: Number of patients treated at sites applying the NIRS clinical dose model as of 

December 2018. Data from the Particle Therapy Co-Operative Group (www.ptcog.ch). 

Country   City (Site)   First patient   Patients total 

Japan   Chiba (NIRS)   1994   12649 

Japan   Hyogo (HIBMC)   2002   2897 

Japan   Gunma (GHMC)   2010   2711 

Japan   Tosu (Saga-HIMAT)   2013   2583 

Japan   Kanagawa (i-Rock)   2015   600 

          SUM: 21440 

 

6.2 The local effect model 

The Local Effect Model version I (LEM I) was developed mainly by Scholz and Kraft 

at the Gesellschaft für Schwerionenforschung (GSI, Darmstadt, Germany) (Scholz et 

al. 1997; Scholz 1996). It is integrated in the treatment planning systems of every 

European CIRT facility, in addition to the Shanghai Proton and Heavy Ion Center 

(SPHIC, Shanghai, China), see Table 2. 

Table 2: Number of patients treated at sites applying the LEM I as of December 2018. 

Data from the Particle Therapy Co-Operative Group (www.ptcog.ch). 

Country   City (Site)   First (-last) patient   Patients total 

China    Shanghai (SPHIC)   2014   723 

Germany   Darmstadt (GSI)   1997-2009   440 

Germany   Heidelberg (HIT)   2009   3016 

Germany   Marburg (MIT)   2015   322 

Italy   Pavia (CNAO)   2012   1307 

          SUM: 5808 

 

The purpose of the LEM I is to predict the biological response of a cell/tissue to any 

type of particle irradiation, based on the same cell/tissue type’s response to photon 

irradiation, thus making use of the vast experience and data derived from photon RT. 
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The main assumptions of the LEM I are that 1) the inactivation of an irradiated cell is 

governed by the amount of energy deposited in target structures within the cell 

nucleus, and 2) that an equal amount of energy deposited in these structures will 

amount to the same degree of damage, irrespective of what kind of radiation that 

deposited the energy. The term “local” in local dose and local effect refers to 

infinitesimally small subvolumes of the cell nucleus. The LEM I uses the microscopic 

dose distribution along the ion track and the survival curves derived from photon RT 

to predict the RBE. 

Therefore, the difference in the biological effect an equal absorbed dose of photon vs. 

particle irradiation at the macroscopic scale is attributed to the difference in the 

spatial distribution of the dose (e.g. track structure) at the nanometer scale (Friedrich, 

Durante, and Scholz 2013), see Figure 20. 

 

            

 

 

 

Figure 20: Comparison of the microscopic local dose distributions of carbon ions and photons for 

the same macroscopic dose of 2 Gy. For a random distribution of particle traversals through a cell 

as depicted in (a) the corresponding local dose distribution is characterized by extremely high 

spikes close to the particle trajectory (b). In contrast, for photons the distributions is expected to 

be flat (c). Locally, i.e. in nm dimensions, the distributions of particles can also be approximated 

by a flat distribution (d), thus allowing the link to the photon distribution. From Friedrich et al. 

(2013), reused with permission. 



 50 

For clinical application, the LEM I has been used to predict the RBE of the carbon 

ion beam, relative to photon RT, using the photon dose-response curve of a late-

responding, fraction-sensitive cell (α/β=2 Gy) as reference. The rationale for this 

strategy is that the dose-limiting factor for patient treatments is the late toxic effects 

of the surrounding normal tissues, and therefore, the RBE-model must be focused on 

the correct prediction of these effects (Jakel, Schulz-Ertner, and Debus 2007). 

Representative for this strategy, it has been shown that the LEM I can predict RBE 

(relative to photon RT) of skull base chordoma tumor control (Schulz-Ertner, Karger, 

et al. 2007) and temporal lobe reactions (Schlampp et al. 2011) with sufficient 

accuracy for clinical treatments.  

However, in vivo and in vitro studies have indicated that LEM I overestimates the 

RBE for the low-LET carbon ions in the entrance-region of the beam (Karger et al. 

2006; Elsässer, Krämer, and Scholz 2008). Therefore, the LEM has been updated 

through the years, the most recent being the LEM version IV (LEM IV). However, 

only the LEM I has been applied in the clinic so far. In the following chapters, RBE-

weighted doses predicted by the LEM I will be abbreviated as DLEM. 

6.3 Comparison of the models from a clinical point of view 

In the clinical setting, there are several important differences between the NIRS 

clinical dose model and the LEM I, as illustrated by Figure 21. Here, the depth dose 

curve has been optimized to result in a flat RBE-weighted dose of 3.6 Gy (RBE) in 

the SOBP, according to the NIRS clinical dose model (solid, red line). It is clear that 

the LEM I predicts RBE to be higher, relative to the NIRS clinical dose model, 

especially in regions of predominantly low-LET particles, e.g. the plateau-region and 

fragmentation tail. Moreover, when the RBE-weighted dose is calculated by the LEM 

I, based on the absorbed dose distribution defined by the NIRS clinical dose model, it 

does not remain homogeneous (flat) along the SOBP-region, but slightly higher 

proximally, compared to the distal part (Magro et al. 2017).  
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6.3.1 Comparison of prescription doses for CIRT  

Comparisons of the models has been undertaken by several studies, both in silico 

(Steinstrater et al. 2012), by comparing dose distributions in a phantom set-up 

(Fossati et al. 2012) and by recalculation patient treatment plans using a in a 

sophisticated FLUKA Monte Carlo set-up reproducing the NIRS beamline (Molinelli 

et al. 2016). All these studies have focused on comparing the prescribed dose of the 

target volume. Although using different approaches, the conclusions are rather 

similar. Compared to the prescription doses used in the most common clinical 

protocols at NIRS, CIRT facilities applying the LEM I need to increase their 

respective RBE-weighted prescription doses by 5% - 15%, depending on the dose 

level, in order to expect equal tumor control rates, see Figure 22. Systematic analysis 

on the relationship of DNIRS and DLEM outside the target region, which is important in 

regards to comparing doses to OARs, has not been performed. 

Figure 21: Comparison the NIRS clinical dose and the LEM I. The absorbed dose (black line) has 

been optimized by using the NIRS clinical dose model to achieve a homogeneous RBE-weighted 

dose in the SOBP (red line). The red, dashed line is the resulting RBE-weighted dose if the LEM I 

is applied as RBE model for the same absorbed dose profile. The RBE predicted by the two models 

are presented as a continuous green line (for NIRS clinical dose) and a dashed green line (for the 

LEM I). Adapted from Magro et al. (2017), with permission. 
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6.4 Status of dose constraints for CIRT  

While proton RT can rely heavily in the prior decades of experience with photon RT, 

CIRT institutions need to proceed with caution in order to provide safe and effective 

treatments due to the radically different biological effect. The safety of the patients, 

primum non nocere, should always have first priority, and therefore, trustworthy dose 

constraints for OARs are of utmost importance. So far more than 27.000 patients with 

a variety of different diseases have been treated with CIRT worldwide. By comparing 

Table 1 and Table 2 one can see that the almost 80% of these patients have been 

treated at centres applying the DNIRS. Table 3 presents an overview of current 

publications addressing dose-volume response of various OARs treated with CIRT. 

As can be seen, validation of dose constraints for CIRT is still in its dawning, since 

there is a general lack of publications on the topic. Especially, at the time of initiation 

of this PhD project, there was only one publication addressing OAR toxicity 

following LEM I optimized CIRT, namely Schlamp et al.’s report on temporal lobe 

reactions (Schlampp et al. 2011). Therefore, this thesis focuses on toxicity after CIRT 

for three important OARs: 1) the carotid artery, 2) the optic nerve and 3) the 

brainstem. 

Figure 22: Prescription 

dose correction factor 

as estimated by Fossati 

et al. (2012) and RBE-

weighted target median 

dose variation between 

MC + LEM_I and NIRS 

calculations, as a 

function of NIRS 

prescription dose, for 

all cases analyzed. 

From Molinelli et al 

(2016), reused with 

permission. 
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(Sasahara et al. 2014; Musha et al. 2015; Hayashi et al. 2017; Yanagi et al. 2010; 

Takakusagi et al. 2017; Shinoto et al. 2016; Fukahori et al. 2016; Choi et al. 2019; 

Wang et al. 2019) 

6.4.1 Carotid blowout 

The carotid arteries are a pair of major blood vessels in the neck, responsible for most 

of the blood supply to the brain, neck and face. The common carotid arteries arise in 

the thorax and subsequently divide into the internal- and external carotid arteries. 

Carotid blowout refers to the rupture of the carotid artery or one of its main branches 

NIRS clin LEM I

NIRS (Koto et al. 2014) */39

GSI (Schlamp et al. 2011) 10/59

GHMC (Shirai et al. 2017) 3/85

NIRS (Hasegawa et al. 2006) 11/30

Maxillary 

bone

Osteoradio- 

necrosis

NIRS (Sasahara et al. 2014) 26/63
X

Oral mucosa Acute mucositis
GHMC (Musha et al. 2015)

*/39
X

Lung Pneumonitis NIRS (Hayashi et al. 2017) 9/65
X

Skin Late reaction NIRS (Yanagi et al. 2010) */35
X

Skin Acute reaction GHMC (Takakusagiet al. 2017) */22
X

Upper GI tract Ulceration SAGA HIMAT (Shinoto et al. 2016) 12/58
X

NIRS (Fukahori et al. 2016) 163
SPHIC (Wang et al. 2019) **/10

CNAO (Choi et al. 2019) **/63

*multiple endpoints analyzed. **No events, dose constraints derived from translation from NIRS constraints

Brainstem Asymptomatic 

necrosis X

Rectum Late reaction

X X

TABLE 3: Overview of publications focusing on OAR toxicity following carbon ion radiotherapy, grouped by 

institutional RBE model. The table presents which institution the patient cohort was derived, year of publication 

and the reference.

Optic nerve Optic 

neuropathy X

Events/ 

patients
Institution (reference)EndpointOrgan at risk

Institutional RBE-model

Brain Injury/reaction
X X
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and is a feared complication to treatment of neoplasms in the head and neck region 

(McDonald, Moore, and Johnstone 2012), as it can lead to life-threatening or 

disabling morbidity e.g. hypovolemic shock, threatened airways and/or cerebral 

stroke.  Approximately 2 of 3 events occur in the common carotid artery or the 

internal carotid artery (Powitzky et al. 2010; Liang et al. 2016). Grading according to 

the Common Terminology Criteria of Adverse Events (CTCAE) version 4.03 is found 

in Table 4. 

 

Carotid blowout is perceived to result from pathologic alterations in or loss of the soft 

tissues surrounding the artery and/or of alterations in the vessel wall itself (Powitzky 

et al. 2010). Therefore, ulceration or infection in soft tissues adjacent to the artery, 

radiation to lymph node regions, dose to neck > 70 Gy, re-RT, radical neck surgery, 

nutritional status (BMI<22,5kg/m2), osteonecrosis and to which degree the artery is 

involved by the tumor have been proposed as risk factors (Yamazaki et al. 2015; 

Chen, Wang, et al. 2015; Chen, Yen, et al. 2015; Cengiz et al. 2011). Although there 

are case reports of the event occurring after definitive chemoradiation in the primary 

treatment setting, it is more common following re-RT (Esteller et al. 2012). In this 

setting, relevant studies report median time to event to be around 6 months (range 0-

Table 4: Excerpt from CTCAE version 4.03

Adverse Event 1 2 3 4 5

Injury to carotid artery - - Severe symptoms; 

limiting self care 

ADL (e.g., transient 

cerebral ischemia); 

repair or revision 

indicated

Life-threatening 

consequences; 

urgent intervention 

indicated

Death

Definition: A finding of damage to the carotid artery.

Optic nerve disorder Asymptomatic; 

clinical or 

diagnostic 

observations 

only

Limiting vision of 

the affected eye 

(20/40 or better)

Limiting vision in 

the affected eye 

(worse than 20/40 

but better than 

20/200)

Blindness (20/200 or 

worse) in the 

affected eye

-

Definition: A disorder characterized by involvement of the optic nerve (second cranial nerve).

Central nervous system 

necrosis

Asymptomatic; 

clinical or 

diagnostic 

observations 

only; 

intervention 

not indicated

Moderate 

symptoms; 

corticosteroids 

indicated

Severe symptoms; 

medical 

intervention 

indicated

Life-threatening 

consequences; 

urgent intervention 

indicated

Death

Definition: A disorder characterized by a necrotic process occurring in the brain and/or spinal cord.

Grade
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69 months) (McDonald, Moore, and Johnstone 2012; Cengiz et al. 2011; Yamazaki et 

al. 2013).  

Correctly identifying the endpoint may be challenging, as f.ex. tumor regrowth may 

infiltrate the arteries and cause bleeding more or less unrelated to previous therapy. 

Furthermore, profuse bleeding from smaller arteries in the nasal cavity may mimic a 

carotid blowout event (Yang et al. 2018). Therefore, the diagnosis should preferably 

be based on angiographic and/or endoscopic findings. 

Concerning the general risk of carotid blowout in patients re-irradiated with photons, 

McDonald et al. performed a pooled analysis of studies from the years 1996-2009 

(McDonald, Moore, and Johnstone 2012). Within 1554 patients, the crude rate of 

carotid blowout was 2.6%. The outcome was fatal in as many as 76% of the events. 

Dionisi et al. recently published a review of the most recent literature (publications 

from 2002-2019) addressing general toxicity after re-RT to the head and neck with 

photon- or proton radiotherapy. Although treatment related death was not to frequent 

(<5%), most of the fatalities were caused by carotid blowout (Dionisi et al. 2019), 

emphasizing the importance of focusing on this endpoint. 

Furthermore it may seem that properties of the RT affects the risk of carotid blowout, 

as rates as high as 8.4 – 15% have been reported after re-RT with hypofractionated 

SBRT (Cengiz et al. 2011; Yamazaki et al. 2013; Kodani et al. 2011) in contrast to 

less than 4% in more conventionally fractionated photon regimens (Chen, Wang, et 

al. 2015; McDonald, Moore, and Johnstone 2012).  

CIRT is considered a promising radiation modality in the re-RT setting, since its high 

dose conformity minimizes excess dose to tissues that already are partially damaged 

by prior radiotherapy. In addition, the high-LET particles may overcome the 

resistance to low-LET radiotherapy that recurring tumors evidently may inhibit. Prior 

to this PhD project, there was only one publication mentioning the event of carotid 

blowout following re-RT using carbon ions: in a general outcome study of 52 patients 

with recurrent adenoid cystic carcinoma, Jensen et al. (Jensen et al. 2015) found 2 

cases of grade IV carotid hemorrhage, within a cohort of 52 patients retreated for 
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adenoid cystic carcinoma. The cumulative lifetime dose (i.e. the summation of 

prescribed doses to the patient throughout his/her life) expressed in EQD2, was high 

for these two patients, i.e. 149 and 182 Gy (RBE). 

An interesting common feature of the all publications mentioned in this section, is 

that none of them have investigated the event of carotid blowout in relation to the 

cumulative dose to the organ. Rather, the cumulative lifetime dose has been used as a 

surrogate, although this metric in many instances probably will overestimate the 

cumulative dose received by the same segment of the carotid artery. Subsequently, a 

tolerance dose threshold for this OAR has not been validated. However, in the re-RT 

protocols at CNAO the current practice has been to avoid cumulative EQD2 > 120 

Gy (RBE) to the carotid artery.   

6.4.2 Radiation induced optic neuropathy 

The optic nerve is another important organ at risk when treating tumors in the head 

and neck region with radiotherapy, since visual impairment from radiation-induced 

optic neuropathy is very disabling. It usually presents as a painless loss of vision 

occurring between 3 months and 9 years following radiotherapy, although peak 

incidence is between 1 and 1.5 years after treatment (Danesh-Meyer 2008). Applying 

the CTCAE grading system, radiation induced optic neuropathy would be graded 

according to the subheading Optic nerve disorder, as shown in Table 4. 

The precise diagnosis of radiation induced optic neuropathy may be challenging, 

since a plethora of other conditions may cause loss in visual acuity, e.g. dry eye, 

cataracts and retinopathy (Mayo et al. 2010). Furthermore, tumor recurrence may 

affect the nerve and cause optic neuropathy unrelated to prior radiotherapy. 

Therefore, the diagnosis of radiation induced optic neuropathy should be based on 

thorough ophthalmological evaluation and radiological investigations.  

In the review of radiation dose-volume effects published after the QUANTEC-effort 

(Mayo et al. 2010), the risk of damage to the optic nerve were rare for maximum 

doses < 55 Gy, but increased markedly (>7-20%) at doses > 60 Gy at ~1.8 

Gy/fraction when using photons or protons. Currently, the recommended dose 
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constraint applied for photon and proton treatments is therefore a maximum dose < 

54 Gy (Mayo et al. 2010; Lambrecht et al. 2018). 

For LEM I based facilities the only unambiguous case of radiation-induced optic 

neuropathy is reported by Schultz-Ertner et al. (Schulz-Ertner, Karger, et al. 2007), in 

which a patient developed bilateral blindness after receiving a maximum dose of 54 

Gy (RBE) in 20 fractions to the optic pathways. In 2014, Uhl et al. reported on long 

term outcome of 155 patients treated with CIRT for chordoma of the skull base (Uhl, 

Mattke, Welzel, Roeder, et al. 2014). They described 3 cases (2%) of “decreased 

visual field” in relation to a discussion concerning dose constraints to optic 

structures. Probably, the nature of the toxicity scoring during follow-up, which was 

“based on medical records and questionnaires” did not allow for a detailed 

description of the underlying pathology. Therefore it is unknown whether these cases 

are linked to radiation induced damage optic neuropathy; they may as well be a result 

of damage to the cornea, lens or retina, or even completely unrelated to the 

radiotherapy. Applying the same methodology in data collection, Uhl et al. (Uhl, 

Mattke, Welzel, Oelmann, et al. 2014) and Mattke et al. (Mattke et al. 2018) reported 

long term outcome of collectively 158 patients treated for skull base chondrosarcoma, 

without describing any cases of visual field dysfunction. All these publications 

originate from GSI or HIT, and when explicitly stated, the dose constraint applied for 

the optic pathway has been a maximum EQD2 of < 54 Gy (RBE) (Schulz-Ertner, 

Karger, et al. 2007; Uhl, Mattke, Welzel, Roeder, et al. 2014). 

For CIRT at Japanese centers applying DNIRS a maximum dose of 40 Gy (RBE) has 

been used as the dose constraint for the optic nerve (Koto et al. 2014). In 2006, 

Hasegawa et al. published outcomes of visual acuity after CIRT optimized with the 

NIRS clinical dose model (Hasegawa et al. 2006). The patients had at least 4 years of 

follow up, which consisted routine MRI, clinical examination of ophthalmologists 

and even an electrophysiological test (visual evoked potential), the latter being able to 

detect occult (asymptomatic) neuropathy. No toxicity was seen in patients were 

maximum dose to the optic nerve was < 57 Gy (RBE). In multivariate analysis, the 

dose received by 20% of the optic nerve volume (D20%) was the only significant 
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predictor of toxicity. NTCP modelling showed that visual acuity could be preserved 

with a probability of 95% when D20% did not exceed 28 Gy (RBE). Onset of decline 

of visual acuity was on average by 19.6 months, with a range of 5 - 39 months, with 

the progression to complete visual loss occurring at 26 months (range 10-41 months).  

Using the same dose/fractionation scheme as defined in the NIRS protocols, and in 

the lack of dose constraints validated for LEM I, CNAO adopted the dose constraints 

from NIRS at par value, i.e. maximum dose < 40 Gy (RBE) and D20% < 28 Gy 

(RBE).  

6.4.3 Radiation-induced brainstem damage 

The brainstem is an important organ acting as a relay between the cerebrum, 

cerebellum and the body. Furthermore, nine of the twelve cranial nerves arise within 

the brainstem. Damage to this organ, resulting in necrosis, may therefore result in 

symptoms ranging between cranial nerve deficiency, ataxia, cognitive disorders, 

coma and death (Guimas et al. 2016). Due to the potential severity of this injury, dose 

constraints for radiotherapy are seldom transgressed, and therefore the incidence of 

injury is generally low (Mayo, Yorke, and Merchant 2010). Radiation-induced 

brainstem damage is usually graded according to the CTCAE term Central nervous 

system necrosis, as shown in Table 4. 

For photon and proton treatments using conventional fractionation, it is commonly 

acknowledged that the dose to the brainstem in general should be < 54 Gy (RBE) 

although smaller volumes may be treated to <60 Gy (RBE) (Mayo, Yorke, and 

Merchant 2010; Lambrecht et al. 2018). 

Similar constraints (DLEM I|1%< 54 Gy (RBE) and DLEM I|max <60 Gy (RBE)) have been 

utilized for CIRT at GSI/HIT in Germany (Nikoghosyan et al. 2010). Various 

publications from this institution have explicitly reported an absence of brainstem 

toxicity (Schulz-Ertner, Karger, et al. 2007; Uhl, Mattke, Welzel, Oelmann, et al. 

2014). Consequently, these constraints are considered safe for CIRT under HIT’s 

current treatment paradigm, which consists of 20-22 fractions of 3.0-3.5 Gy (RBE) 

and 5-7 fractions per week. However, it is worth mentioning that a potential case of 
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brainstem toxicity is reported by Mattke el al. in their paper on 101 patients with skull 

base chondrosarcomas treated with either carbon ions (n=79) or protons (n=22) 

(Mattke et al. 2018). Here, under the subheading “Radiation necrosis”, in which 

tolerance doses to both brainstem and temporal lobes is mentioned, they describe that 

“1 patient developed radiation necrosis 1 year after irradiation with consecutive 

worsening of her walking abilities”. The exact location of the damage was not stated, 

although the described symptoms maybe would be more consistent with damage to 

the brainstem than to a temporal lobe (Lee et al. 1988; Guimas et al. 2016). 

Unfortunatley, whether or not this particular patient received proton or CIRT was not 

stated. 

In Japanese centers applying the DNIRS, a maximum dose to the brainstem of 30 Gy 

(RBE) has been used as constraint (Koto et al. 2014). This constraint was hence 

adopted at par value by CNAO for their 16 fraction treatment regimes. 

Recently, a dose-response analysis of brainstem toxicity following DNIRS optimized 

CIRT at Gunma University Heavy Ion Medical Center (GHMC) was published by 

Shirai et al. (Shirai et al. 2017). None of the 85 patients included in this analysis 

experienced symptomatic brainstem toxicity. However, four cases of focal brainstem 

contrast enhancement were detected on routine Magnetic Resonance Imaging (MRI) 

during follow up, which by the authors were defined as CNS necrosis grade 1. The 

lesions were stable or reversible although no therapeutic intervention was 

administered. These asymptomatic events did not occur before the maximum dose 

exceeded 48 Gy (RBE). Thus, the former constraint of <30 Gy (RBE) was probably 

conservative even when applied for DNIRS. In a multivariate analysis, the brainstem 

volume receiving more than 30 Gy (RBE) (V30 Gy(RBE)) and 40 Gy (RBE) (V40 Gy(RBE)) 

were independent risk factors for this endpoint. Brainstem toxicity of any grade did 

not occur before V30 Gy(RBE) exceeded 0.7 cm3 and V40 Gy(RBE) exceeded 0.1 cm3. Shirai 

et al. also fitted their data to the LKB NTCP model (Lyman 1985; Burman et al. 

1991; Niemierko 1997), resulting in the following model parameters: volume-effect 

parameter (n) = 0.08, biodiversity parameter (m) = 0.08 and the EUD corresponding 

to 50% probability of toxicity (TD50) = 32.4 Gy (RBE). 
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 Objectives and purpose 

A general challenge when applying radiotherapy for cancers is to limit the dose to 

various organs at risk, often located in immediate proximity to the tumor. Within the 

head and neck area, the optic pathways and brainstem are among the most important 

organs to preserve in order to avoid disabling or life-threatening toxicity. In the 

setting of re-RT, the risk of an acute hemorrhage from the carotid artery increases, an 

event which is most often fatal. In order to balance the competing aims of high tumor 

control probability and low risk of severe toxicity, it is imperative to obtain the most 

exact information on risk factors and dose-response for the development of toxicity in 

these organs. In general, tolerance doses and dose constraints for CIRT are not well 

established. The general aim of this work was to improve CIRT for institutions 

applying the LEM I for treatment planning, by improving dose constraints to various 

important organs at risk in the head and neck district. 

7.1 Paper I 

Carotid blowout is a feared complication after re-RT to the head and neck area. 

Experience from photon radiotherapy has suggested that rates of carotid blowout 

increase when re-RT is given by hypofractionated schedules compared to 

conventionally fractionated schedules. The aim of this study was to evaluate the rate 

of carotid blowout under the current practice for re-RT with particle therapy at 

CNAO, were fraction doses ranging from 2 Gy (RBE) to 5 Gy (RBE) are applied. 

Also, we aimed at exploring the potential relationship between this event and the 

cumulative dose to the carotid artery, a relationship which has not been thoroughly 

investigated for any type of radiation. 

Research questions Paper I: 

1. Does re-RT with particle therapy at CNAO result in an acceptable rate of 

carotid blowout?  
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2. Is there a correlation between the event of carotid blowout and the cumulative 

dose received by the carotid artery i.e. can a dose constraint be defined? 

7.2 Paper II and Paper III 

Dose constraints for the brainstem or optic pathways have never been validated for 

LEM I optimized CIRT. As a cautious approach, CNAO has therefore adopted 

constraints from NIRS at par value, although these constraints were defined in a 

completely different RBE system. Within the clinically most commonly applied dose 

range, the LEM I overestimates the RBE of CIRT, relative the NIRS clinical dose 

model. Therefore, in certain clinical situations this strategy would lead to excess 

sparing of the optic nerve and/or the brainstem, on the cost of adequate target dose 

coverage. The aim of these studies was therefore to confirm that the original dose 

constraints applied at CNAO are too conservative in regard to the constraints used at 

NIRS, and to propose new constraints that can be applied for 16 fraction CIRT 

treatments that are optimized with the LEM I.  

Research questions Paper II: 

1) At which dose threshold is radiation induced optic neuropathy observed at 

CNAO following CIRT? 

2) How does the current dose constraints applied for the optic nerve at CNAO 

relate to the practice at Japanese centres? 

3) Can the dose constraints be improved by translating Japanese dose constraints 

to the LEM I weighted dose? 

Research questions Paper III 

1) How does the current dose constraints applied for the brainstem at CNAO 

relate to the practice at Japanese centres? 

2) Can the dose constraints be improved by translating Japanese dose constraints 

to the LEM I weighted dose? 
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 Materials and methods 

8.1 Paper I 

8.1.1 Patients 

Paper I included all patients re-irradiated at CNAO in the period September 2012 to 

March 2016 within the protocols: 

 CNAO S05/2011/P: Treatment with protons for recurrent tumors in the head 

and neck district 

 CNAO S14/2012/C: Treatment with carbon ions for recurrent tumors in the 

head and neck district 

Patients were excluded from the analysis if they had not returned for any follow-up, if 

records of doses from their previous radiotherapy were missing and in the cases 

where the treatment fields of the prior irradiation(s) and the re-RT at CNAO did not 

overlap in any segment of the carotid arteries.  

8.1.2 Calculation of cumulative dose to the carotid arteries 

For as many patients as possible we calculated the cumulative dose received by their 

carotid arteries. For the patients were Digital Imaging and Communications in 

Medicine (DICOM) files from previous treatments were available, the Computed 

Tomography (CT) images, structure set files and dose files from all RT courses were 

imported to a workstation with the RayStation® version 5.0 TPS (RaySearch 

Laboratories AB, Stockholm, Sweden). For the treatment course at CNAO, also the 

Magnetic Resonance Images (MRI) in treatment position was imported and co-

registered with the planning CT and used as support in the contouring of the carotid 

arteries on the CNAO planning CT. For the purpose of this study the carotid artery 

OAR structure was defined as the common carotid artery and internal carotid artery, 

with distal limit at the origin of the medial cerebral artery. Thus we excluded smaller 

branches and the external carotid artery, because these arteries were impossible to 

contour in many of the patients, and because the current practice at CNAO has been 



 63 

to delineate only the common carotid and internal carotid artery. All contouring was 

done by the same radiation oncologist, and only the segment of the carotids which 

had received re-RT was contoured.  In order to obtain the cumulative dose statistics 

to the carotid artery, the dose from the patient’s previous RT course(s) was deformed 

to the planning CT of the final RT course (CNAO CT) in the following procedure: A 

rigid registration was made between the patients different planning CTs, with a focus 

on achieving the best possible match in the section were the carotid arteries had been 

re-irradiated. Secondly, with the goal of providing the best estimates of cumulative 

doses for the carotid artery, we applied the hybrid deformable registration function of 

the RayStation®. It combines image information, f. ex. Hounsfield intensities, with 

anatomical information provided by the structures (OARs) contoured on the images. 

Specifically, the carotid artery was defined as a “controlling organ” for the 

deformation process. This feature allows the software algorithm to prioritize the 

correct deformation of the carotid artery, while suppressing the obligation to correctly 

deform the other structures in the image. Furthermore, in order to allow the software 

to ignore irrelevant parts of the carotid artery (e.g. the subsections that were not 

irradiated), we defined only the subsection of the artery in which re-RT had occurred 

as the region of interest for the deformable registration. Figure 23 presents an 

example of a carotid artery segment deformed using the Raystation TPS. 

       

 

 

Figure 23: Left panel: 3D visualization of the path of the same segment of a carotid artery at 

1st (sky blue mesh structure) and 2nd course of radiotherapy (solid blue structure) aligned by 

rigid registration. Right panel: corrected alignment of the carotid artery by deformable 

registration.  
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After the deformable registration was performed, we confirmed that the dose 

distribution to the carotid artery from the prior radiotherapy course was correctly 

reproduced on the CNAO treatment planning CT by comparing the original DVH 

from the prior radiotherapy, with the DVH reproduced on the CNAO treatment 

planning CT, see Figure 24. 

       

A cumulative nominal dose distribution was then created with the RayStation TPS by 

summing the deformed dose(s) with the dose from the final RT on the CNAO CT. 

The cumulative nominal maximum dose to the carotid artery (CumDmaxnom) .Since 

many of the treatments were given with fraction doses well above 2 Gy/Gy (RBE), 

we also calculated a cumulative maximum EQD2 to the carotid artery 

(CumDmaxEQD2) by the following equation: 
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   (Equation 3) 

where D1st was the dose from the 1st RT course contributing to the cumulative 

nominal maximum dose and Fx1st was the fraction number of the same course. The 

Figure 24: DVH of left (blue) and right CA (purple). Dashed line DVH represents the original dose 

distribution from original treatment plan CT. Solid line represents the reproduced dose distribution 

on CNAO treatment plan using rigid registration. Dotted line represents reproduced dose 

distribution on CNAO treatment plan CT using deformable registration and dose deformation. Note 

the far better reproduction of the original dose distribution when deformed deformation is used. 
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second term of the equation was used for patients whom had more than one previous 

RT, and the third term represented the final re-RT at CNAO. Due to the lack of 

published data on the α/β-ratio of the carotid artery, an α/β-ratio of 3 Gy was chosen, 

in coherence with other publications concerning toxicity to arteries induced by 

radiation (Yazici et al. 2013; Evans et al. 2013). 

For some patients the dose distribution from the prior radiotherapy courses was only 

obtainable from printed CT-slices. In this situation the dose statistics had been 

collected by the following procedure: the segment of the carotid artery where the 

highest CumDmaxnom would be located was identified by visually comparing the dose 

plan from the particle therapy course at CNAO with the printed CT-slices from the 

previous RT courses. The doses (D1st, D2nd,...) contributing to the CumDmaxnom were 

then collected from the prints for the respective segment of the carotid artery. If for 

example the carotid artery in the 1st radiotherapy course was situated between the 50 

and 60 Gy isodose curves, an approximation of the D1st was set to 55 Gy. Thereafter, 

the dose given to the same segment in the particle therapy course at CNAO (D3rd) was 

derived directly from the Syngo TPS installed at CNAO.  In this way, an 

approximation of the CumDmaxnom had been collected. A CumDmaxEQD2 was 

calculated according to Equation 3.  

8.2 Paper II 

8.2.1 Patients 

Paper II included patients treated in the period January 2013 to December 2014 

within the protocols: 

 CNAO S09/2012/C: Treatment with carbon ions for adenoid cystic carcinoma 

of the salivary glands 

 CNAO S12/2012/C: Treatment with carbon ions for sarcomas (of bone or soft 

tissues) in the head and neck district 

 CNAO S15/2012/C: Treatment with carbon ions for mucosal melanomas of 

the head and neck district 
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Among these, the patient data was analyzed if they had:  

 at least 2 years of follow-up 

 maximum dose (DLEM|1%) > 20 Gy (RBE) to optic nerve 

 available records of visual acuity before and after CIRT 

and did not have: 

 radiotherapy before or after CIRT at CNAO 

 higher dose to the chiasm than to the optic nerve 

 preexisting visual impairment 

 development of visual impairment in the follow-up period due to other causes 

than radiation induced optic pathway neuropathy (e.g. recurrent  

 

8.2.2 Recalculation of CNAO treatment plans to DNIRS 

An essential method applied for Paper II was to relate the LEM I optimized treatment 

plans from CNAO to the alternate RBE model, the NIRS clinical dose model. 

Therefore, the patients’ CT image files, structure set files, dose files and plan files 

were exported from the syngo® TPS and imported to the matRad open source 

multimodality radiation TPS (Cisternas et al. 2015). It has been shown to produce 

absorbed- and RBE-weighted doses consistent with the treatment planning systems 

used clinically at these institutions (Syngo TPS) for head and neck cases (Wieser et 

al. 2017). Therefore, it was suitable to reproduce the absorbed doses of CNAO’s head 

and neck treatment plans, and subsequently recalculate the LEM I-weighted doses 

and the NIRS clinical doses. The input parameters used clinically for LEM I were 

applied, i.e. αγ = 0.1 Gy−1, βγ = 0.05 Gy−2, Dt = 30 Gy, smax  = 3.1 Gy−1, Rn = 5 μm 

(Kramer and Scholz 2000). The DVHs of targets and OARs were compared with the 

corresponding DVHs of the dose distribution from the syngo® TPS to ensure correct 

reproduction of both absorbed doses and DLEM I. Secondly, NIRS clinical dose model 

was implemented in the matRad TPS code using the input parameters used clinically 

(Rd = 0.32 µm, Rn = 3.9 µm, α0 = 0.172 Gy-1, β = 0.0615 Gy-2, αr = 0.764 Gy-1, FClin = 

2.39) (Inaniwa et al. 2015; Magro et al. 2017) and DNIRS was thus derived from the 
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exact same absorbed dose and LET spectra as the DLEM I. Figure 25 presents the 

process of obtaining the RBE-weighted doses according to the LEM I and the NIRS 

clinical dose model. 

             

 

8.2.3 Data analysis 

NTCP was calculated for both DLEM I and DNIRS for the DVH variables D1%, D10%, 

D20% through D50% and were used to derive the dose that would result in 5% (TD5) 

and 50% (TD50) probability of radiation induced optic neuropathy according to the 

equation: 

𝑁𝑇𝐶𝑃 (𝐷𝑥%) = 1 −  
1

1+𝑒𝑎+𝑏∗𝑑
                                (Equation 4) 

where d is the RBE-weighted dose to x% of the optic nerve volume and a and b are 

constants estimated to provide the best fit to the data set, using binary logistic 

regression. 

Figure 25: Process of recalculation. DICOM files from the Syngo TPS were imported to the 

matRad TPS, in which the absorbed dose was reproduced. Subsequently, the LEM  I-weighted 

(DLEM) and NIRS clinical (DNIRS) doses were calculated. Correct reproduction was ensured by 

comparing the dose distributions to the original dose distributions in Syngo.  
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Furthermore, for each optic nerve, the DNIRS received by  1% and 20% of the optic 

nerve volume (DNIRS|1% and DNIRS|20%) were plotted as a function of respective dose 

metrics in DLEM I.  A curve fitting procedure performed with the software IBM SPSS 

Statistics for Windows, Version 24.0 (IBM Corp., Armonk, NY, U.S.A.) in order to 

produce a dose translation model. The model could then be used to translate DNIRS 

constraints to DLEM I constraints. 

By assessing the results from NTCP modelling and the dose translation models 

possible new DLEM I constraints were be proposed. As a final step, five of the 

treatment plans were re-optimized applying this new set of DLEM I constraints. 

Subsequently, these re-optimized plans were recalculated to DNIRS to ensure that the 

new DLEM I constraints still were in compliance with the DNIRS constraints. These 

procedures, which were conducted exclusively to confirm the relationship of the RBE 

models, were performed with the RayStation® 6.99 TPS (RaySearch Laboratories 

AB, Stockholm, Sweden), where both the LEM I and the NIRS clinical dose were 

implemented with the respective model input parameters as mentioned earlier in 

chapter 8.2.2. The process of data analysis and verification of the dose translation 

model is summarized in Figure 26. 

 

 

 

Figure 26: Overview of 

process of data 

analysis and 

verification of dose 

translation model. 
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8.3 Paper III 

In this study we made use of 30 of the 38 patient treatment plans already recalculated 

to DNIRS for Paper II. In the remaining eight patient treatment plans the maximum 

DLEM I to the brainstem was less than 10 Gy (RBE), and thus the information from 

these plans would not contribute to achieve the goal of Paper III.  

The DNIRS recalculated treatment plans were used to estimate NTCP of asymptomatic 

brainstem injury for these 30 patients treated at CNAO, based on the NTCP-model 

published by Shirai et al. as presented in chapter 6.4.3. 

Dose translation models were produced, as described for Paper I, for the brainstem 

dose metrics D0.07cm3 and D0.01cm3, in order to translate the DNIRS constraints proposed 

by Shirai et al. into DLEM I.  

Finally, to verify that the dose translation models predicted correctly also at dose 

levels higher than our original data set, five of the treatment plans were re-optimized 

applying this new set of DLEM I constraints. Subsequently, these re-optimized plans 

were recalculated to DNIRS to ensure that the new DLEM I constraints still were in 

compliance with the DNIRS constraints, as described in Paper II. 

8.4 Statistical methods 

All statistical procedures were performed with the software IBM SPSS Statistics for 

Windows, Version 24.0 (IBM Corp., Armonk, NY, U.S.A.). Descriptive statistics 

were used to summarize the characteristics of the patient population and treatment. 

Differences in frequencies between cohorts were compared using the Chi-Square test 

or the Fischer’s exact test. The Shapiro-Wilk test with an alpha level of 0.05 was 

applied to evaluate whether or not a variable was normally distributed. Non-

parametrical distributions were compared with the Mann-Whitney U-test, while 

normally distributed data were compared with the independent samples T-test. 

Bivariate correlations between skewed data were analyzed with Spearman’s rho. The 

Kaplan-Meier method was used to estimate rates of toxic events or overall survival. 

Univariate binary logistic regression was used to fit the relation of a continuous 
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independent variable (dose) to a dichotomous dependent outcome variable (toxicity: 

“Yes” or “No”) to produce models for NTCP. All p-values were obtained from two-

sided tests. P-values <0.05 were considered significant. 

8.5 Ethics, approvals and grants. 

All patients included in this analysis of medical record data were treated at CNAO 

within the framework of prospective protocols. The treatment protocols were 

approved by the institutional ethics committee (Comitato Etico Fondazione CNAO, 

references for approval: CE EMEND. n.1 al 9_2012, CE 19.12.2012 S15_2012C, CE 

09.09.2011 S5/2011/P, CE 19.12.2012 S14/2012/C and CE 19.15.2012 

S_12/2012C).All patients gave written, informed consent before inclusion, which 

included that the clinical data could be used for research purposes. All patient data 

were anonymized before transmission to the Ph.D. candidate for analysis. The studies 

were supported by grants (grant no: BFS2015PAR02) from the Trond Mohn 

Foundation, Ytrebygdsvegen 215, Kokstad, Postboks 7150, 5020 BERGEN, Norway, 

Phone: +47 479 00 111, org.nr: 988 029 327. 
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 Results 

9.1 Paper I 

Patient and disease characteristics are presented in Table 5. The median follow-up 

was 13.4 months (range 0.8 – 49.2 months). The actuarial 1 year overall survival for 

the whole cohort (n=96) was 81.5%. We found one confirmed and one probable case 

of carotid blowout, i.e. in 2.1% of the investigated population. The 1 year actuarial 

rate of carotid blowout was 2.7% (95%CI: 0.01-11.0%), see Figure 27. 

           

 

 

 

 

 

Figure 27: Cumulative carotid blowout (CB) rate. The table displays the absolute number of 

patients who were at risk of CB, death due to CB, death due to other causes than CB, and loss 

to follow-up at the end of each 6 month interval. 
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Table 5: Patient and disease characteristics 
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Interestingly, these carotid blowout events were found within the subgroup 

reirradiated with protons (n=17). Therefore, for the proton subgroup exclusively, the 

1 year actuarial rate was 14.4% (95%CI: 0.11-19.0%), compared to 0% in the carbon 

ion group, a difference that was significant according to the log-rank test (p<0.003). 

Both cases were re-irradiated at the nasopharyngeal site due to recurrent squamous 

cell carcinoma within 20 months following primary photon RT. The cumulative 

maximum EQD2 received by their carotid arteries were 107 and 132 Gy (RBE). A 

significantly higher proportion had undergone surgery in the carbon ion group 

compared to the proton group (88.9% vs. 58.8%, p=0.007). Median cumulative 

nominal lifetime dose was 120 Gy (RBE) for the whole cohort, with no significant 

difference in the distribution between the carbon ion and proton group. However, due 

to significantly higher fraction doses used in the carbon ion group compared to the 

proton group, the cumulative prescribed lifetime doses were generally higher in the 

carbon ion group when evaluated in EQD2, median 132 (range 46-296) Gy (RBE) vs. 

122 (range 67-140) Gy (RBE), respectively (p<0.005). However, there was no 

significant difference between the groups in regard the cumulative maximum EQD2 

received by the carotid artery, which was median 109 (range 25-167) Gy (RBE) 

among the 49 patients in which these data were available. The correlation between 

the cumulative nominal lifetime dose and cumulative maximal dose to the carotid 

artery was poor, as demonstrated by a Spearman’s rho coefficient of 0.363 (p=0.010). 

Figure 28 presents the cumulative maximum EQD2 for the 74 carotid arteries. There 

was no obvious correlation between this dose metric and the event of carotid blowout.  
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9.2 Paper II 

A total of 141 patients had been treated in the relevant protocols within the years 

2013-2014. The majority of patients treated were excluded because the dose to the 

optic nerve was less than 20 Gy (RBE), see Figure 29. Further analysis was therefore 

based on 65 optic nerves from 38 patients. Patient and disease characteristics are 

presented in Table 6. 

Figure 28: Cumulative maximum EQD2 for all 74 carotid arteries, displaying the contribution 

from photon RT (blue), carbon RT (pink) and proton RT (purple). * Carotid arteries of the 2 

patients who developed oronasal haemorrhage. 
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All (n=38) RION=Y (n=3) RION=N (n=35)  P value

Sex, female:male 18:20 2:1 16:19 1.0

Median age (range), y 59 (16-81) 62 (54-68) 54 (16-81) 0.44

Comorbidity, n (%)

Hypertension 9 (23.7%) 1 (33.3%) 8 (22.9%) 1.0

Diabetes mellitus 8 (21.1%) 1 (33.3%) 7 (20.0%) 0.59

Cardiovascular disease 4 (10.5%) 1 (33.3%) 3 (8.6%) 0.29

Histology, n (%)

Adenoid cystic carcinoma 14 (36.8%) 2 (66.7%) 12 (34.3%) 0.48

Chordoma 14 (36.8%) 0 (0.0%) 14 (40.0%)

Chondrosarcoma 3 (7.9%) 0 (0.0%) 3 (8.6%)

Other sarcoma 5 (13.2%) 1 (33.3%) 4 (11.4%)

Acinar cell carcinoma 1 (2.6%) 0 (0.0%) 1 (2.9%)

Mucosal malignant melanoma 1 (2.6%) 0 (0.0%) 1 (2.9%)

Site, n (%)

Clivus 12 (31.6%) 1 (33.3%) 11 (31.4%) 0.67

Paranasal sinus 9 (23.7%) 2 (66.7%) 7 (20.0%)

Skull base 9 (23.7%) 0 (0.0%) 9 (25.7%)

Nasal cavity 4 (10.5%) 0 (0.0%) 4 (11.4%)

Nasopharynx 2 (5.2%) 0 (0.0%) 2 (5.7%)

Other 2 (5.2%) 0 (0.0%) 2 (5.7%)

Table 6: Patient and disease characteristics for all patients and grouped by patients that 

developed (RION=yes) or did not develop (RION=no) radiation induced optic neuropathy.

Figure 29: Overview of patient selection and reasons for exclusion from the analysis. 
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The median follow-up was 47 (range 26-67) months. We observed three events of 

unilateral radiation induced optic neuropathy (all CTCAE grade 4), occurring at LEM 

I-weighted doses of ≥71 Gy (RBE) and ≥68 Gy (RBE) to 1% (DLEM|1%) and 20% 

(DLEM|20%) the optic nerve volume, respectively. In addition, 10 other optic nerves 

received doses exceeding the former CNAO dose constraints of DLEM|1% ≤40 Gy 

(RBE) and DLEM|20% ≤28 Gy (RBE) without developing toxicity, see Figure 30. After 

recalculation of the dose distribution to the NIRS clinical dose (DNIRS), only 6 of 

these 10 optic nerves still exceeded these constraints, highlighting that equal 

constraints become more restrictive when applied at CNAO.  

 

For the dose metrics D1% and D20%, the DNIRS value was plotted as function of the 

corresponding value in DLEM I. A quadratic function fit well with the data pairs, 

showing high coefficients of determination (R2), as seen in Figure 31. From these 

plots, the NIRS dose constraint of DNIRS|20% ≤28 Gy (RBE) corresponded to DLEM I|20% 

≤40 Gy (RBE), and DNIRS|1% ≤40 Gy (RBE) corresponded to DLEM I|1% ≤50 Gy (RBE). 

These values were below, and thus not in conflict with the threshold for 5% risk of 

Figure 30: Cumulative DVH 

of all 65 optic nerves in DLEM 

(upper panel) and DNIRS 

(lower panel). Dashed DVH-

lines represents optic nerves 

that developed neuropathy. 

Red, filled squares indicate 

the current dose constraints of 

D1% ≤ 40 Gy(RBE) and D20% ≤ 

28 Gy(RBE). Red, open 

squares in upper panel 

represents possible new DLEM 

constraints for CNAO based 

on RBE-weighted dose 

translation. 



 77 

toxicity (TD5) suggested from the NTCP-modelling, which was found to be at 55 Gy 

(RBE) for DLEM I|20% and at 62 Gy (RBE) for DLEM I|1%. 

 

  

 

 

 

 

9.3 Paper III  

The disease and treatment characteristics of the 30 cases used in this analysis are 

presented in Table 7.  The recalculation of these DLEM I optimized treatment plans 

optimized in to DNIRS (in this paper referred to as DMKM) confirmed that the RBE-

weighted dose distributions to the brainstem are predicted to be lower when DNIRS is 

applied, see Figure 32a and 32c.  
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Figure 31: Relationship of DNIRS and DLEM for D1% (left panel) and D20% (right panel). Solid line 

represents the quadratic regression model fit with 95% confidence intervals (dotted lines). The 

corresponding coefficients of determination (R2) are also provided.  
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TABLE 7: Disease and treatment characteristics         

Case no. 

 

Histology 

 

Site 

 

Total DLEM 

Gy(RBE) 

 

Fraction 

DLEM 

Gy(RBE) 

1 

 

Chordoma 

 

Skull base 

 

70.4 

 

4.4 

2 

 

Mesenchymal tumor 

 

Frontal sinus 

 

76.8 

 

4.8 

3 

 

Chordoma 

 

Skull base 

 

70.4 

 

4.4 

4 

 

Chordoma 

 

Skull base 

 

70.4 

 

4.4 

5 

 

MPNST  

 

Clivus 

 

76.8 

 

4.6 

6 

 

Chordoma 

 

Skull base 

 

70.4 

 

4.4 

7 

 

ACC 

 

Meckel's cave 

 

68.8 

 

4.3 

8 

 

Chondrosarcoma 

 

Nasal cavity 

 

70.4 

 

4.4 

9 

 

Chordoma 

 

Clivus 

 

70.4 

 

4.4 

10 

 

Chordoma 

 

Clivus 

 

70.4 

 

4.4 

11 

 

Chordoma 

 

Clivus 

 

70.4 

 

4.4 

12 

 

ACC 

 

 Maxillary sinus  

 

68.8 

 

4.3 

13 

 

Chordoma 

 

Clivus 

 

70.4 

 

4.4 

14 

 

Chordoma 

 

Clivus 

 

70.4 

 

4.4 

15 

 

Chondrosarcoma 

 

Clivus 

 

70.4 

 

4.4 

16 

 

Chordoma 

 

Skull base 

 

70.4 

 

4.4 

17 

 

ACC 

 

Maxillary sinus  

 

68.8 

 

4.3 

18 

 

ACC 

 

Nasopharynx 

 

68,8 

 

4,3 

19 

 

Chordoma 

 

Clivus 

 

70.4 

 

4.4 

20 

 

Chondrosarcoma 

 

Skull base 

 

70.4 

 

4.4 

21 

 

Chordoma 

 

Clivus 

 

70.4 

 

4.4 

22 

 

ACC 

 

Maxillary sinus 

 

68.8 

 

4.3 

23 

 

ACC 

 

Skull base 

 

68.8 

 

4.3 

24 

 

Chordoma 

 

Clivus 

 

70.4 

 

4.4 

25 

 

Pleomorphic sarcoma 

 

Clivus 

 

76.8 

 

4.8 

26 

 

ACC 

 

Paranasal sinuses 

 

68.8 

 

4.3 

27 

 

Chordoma 

 

Clivus 

 

70.4 

 

4.4 

28 

 

Acinar cell carcinoma 

 

Ethmoid/nasal cavity 

 

68.8 

 

4.3 

29 

 

ACC 

 

Maxillary sinus 

 

68.8 

 

4.3 

30   Chordoma   Clivus   70.4   4.4 

MPNST: Malignant peripheral nerve sheath tumor; ACC: Adenoid cystic carcinoma. 
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Applying the NTCP model derived by Shirai et al. suggested the probability of 

developing an asymptomatic brainstem reaction to be close to 0% for 29 of the 

patients, and 2% for 1 patient.  

 

 

For the dose metrics D0.7cm3 and D0.1cm3, the DNIRS value was plotted as function of the 

corresponding value in DLEM I, represented as the black squares in Figure 33. 

Although a linear function would describe the relationship well, our experience from 

Paper II clearly suggested that a quadratic function would be a better fit to describe 

the relationship also at higher dose levels. Therefore, a quadratic function was fitted, 

showing high coefficients of determination (R2). This dose translation model revealed 

Figure 32: Brainstem DVHs in relative (A, C) and absolute volume (≤2 cm3) (B, D) of 30 patients 

treated at CNAO, presented in D
LEM I 

(A, B) and D
MKM

 (=DNIRS) (C, D). Crosses represents the 

former CNAO and NIRS dose constraint of D1%  ≤ 30 Gy(RBE). Triangles represent the new D
NIRS

 

constraints V
40 Gy(RBE)

 <0.1 cm3 
 

and V
30 Gy(RBE)

 <0.7 cm3 as defined by Shirai et al. (14). Squares in 

panel B represent the possible new DLEM I constraints (error bars = 95% CI) resulting from the 

dose translation model presented in this work, see Figure 33. 
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that the DNIRS constraints corresponded to DLEM I|0.7cm3 <41 Gy (RBE) (95% CI: 38-44 

Gy [RBE]) and DLEM I|0.1cm3 <49 Gy (RBE) (95% CI: 46-52 Gy [RBE]). However, 

these values were derived from extrapolation from the data (black squares), using a 

function that not necessarily would be correct at higher dose levels. Therefore, we 

reoptimized five of the treatment plans using new tentative brainstem constraints 

within the lower half of the 95%CI of the dose translation estimates, i.e. DLEMI|0.7cm3 = 

38-41 Gy (RBE) and DLEM I|0.1cm3 = 46-49 Gy (RBE). Subsequently, these plans were 

recalculated to DNIRS. The relationship of DNIRS /DLEM I for the dose metrics are 

plotted at open circles in Figure 33b, showing that the quadratic function correctly 

predicted the relationship at these dose levels. 

 

Figure 33: Squares represent 

the relationship of DLEM 
and 

DMKM (=DNIRS) for dose 

metrics D0.7 cm3 (A) and D0.1 

cm3 (B) for each individual 

brainstem. The solid line 

represents the best fit with 

95%CI (dashed lines). The 

open circles represent the 

data collected from the 

reoptimized plans, which 

were not used for the curve 

fitting procedure. 
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 Discussion 

10.1 Methodological considerations 

10.1.1 Paper I 

 

Patient selection 

The entire cohort retreated with particle therapy to the head and neck region at 

CNAO formed the basis of this study. Although not directly relevant for the overall 

topic of this thesis, also the minor subgroup retreated with protons were included in 

the analysis, since also the outcome of these patients is important. Under the 

assumption that the cumulative dose to the carotid artery is the major factor 

governing the risk of carotid blowout, we deliberately excluded patients in whom 

there was no overlap of dose in the carotid artery in the prior and last radiotherapy at 

CNAO. 27 of 128 potential cases where therefore excluded.  However, if the 

cumulative dose to the carotid artery is of lesser importance, we may have 

unintentionally excluded relevant patients in regards to detecting other possible risk 

factors from the analysis. As a comment, we can state that none of these excluded 

patients were registered with carotid blowout events in the CNAO database. 

However, for the sake of transparency also these cases should have been analyzed as 

an overall presentation of the retreatment cohort at CNAO.  

Follow-up time 

The follow-up time in this paper was median 13.4 months (range 0.8 – 49.2). 

Although median time to event is reported to be around 6 months, some cases of 

carotid blowout develop several years after treatment.  As can be seen in Figure 27, 

only 15 patients remain in follow-up at 24 months, while 19 patients were dead. As 

many as 62 patients (65%) were lost to follow-up at this time point. The high 

proportion of patients being lost to follow-up is most likely an effect of CNAO being 

a standalone particle therapy center, recruiting patients from all over Italy and even 

from foreign countries. Obviously, many patients, having side effects after being 
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heavily treated with radiotherapy, or even having a new relapse of the disease, may 

not prioritize to spend time and money on travelling far distances to meet for follow-

up. Certainly, some of the patients lost to follow-up may have developed carotid 

blowout events which have not been registered in the CNAO database. As it follows, 

this may imply a greater risk for carotid blowout following particle therapy at CNAO 

than our work suggests. 

 

10.1.2 Paper II 

 

Detection of endpoint event 

The follow-up program at CNAO did not include routine examination by an 

ophthalmologist. Rather, simpler clinical test were performed, e.g. finger counting 

test and visual field test ad modum Donders’, in addition to the recording of the 

patients’ subjective experience of visual decline. When potential visual defects were 

detected, patients were referred to an ophthalmologist for further investigations and 

diagnosis. Hence, one cannot expect that this routine will detect the less severe grades 

of optic neuropathy. However, the more severe forms (≥grade 3), which are most 

important in regards to quality of life, would most certainly be detected.  

Follow-up time 

In the study design we excluded patients with less than 2 years of follow-up, which 

we regarded as an adequate balance between obtaining a reasonably sized cohort 

against risking to include patients in which the endpoint still had yet to develop. 

However, this may even have been too short. In the paper by Hasegawa et al., on 

optic nerve toxicity following CIRT at NIRS, the onset of visual loss started later 

than 2 years following therapy in 4/11 damaged nerves (Hasegawa et al. 2006). 

Furthermore, in 6/11 optic nerves, the progression to complete blindness occurred 

from 25 – 41 months following the therapy.  
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However, among the 8 optic nerves receiving high dose in our cohort, i.e. DLEM I|1% 

>50 Gy (RBE) and/or DLEM I|20% >40 Gy (RBE), all but one had follow-up of more 

than 3 years, see Figure 34. Consequently, most patients at risk had been observed 

for an adequate time period. 

 

 

 

The dose translation model 

The major weakness in the dose translation model is that many factors may modulate 

the RBE at different centres (Vogin et al. 2019). Most importantly, transferring dose 

constraints defined by a center with passive scattering beam delivery (PS) to a center 

with pencil beam scanning (PBS) may be considered controversial. The beam 

delivery techniques will inevitably cause differences in the radiation quality of the 

beams, and the distribution and weighting of Bragg peaks may be very dissimilar. 

However, two studies have confirmed that the biological effect of the carbon ion 

beams of NIRS, HIT and CNAO is identical (Uzawa et al. 2009; Facoetti et al. 2015).  

Furthermore, the absorbed dose underlying the RBE-weighted dose is calculated by 

different beam models, dependent on which TPS the institution uses. Therefore, as 

soon as the beam penetrates into a patient’s body, each TPS will generate unique dose 

Figure 34: Scatterplot of follow-up time vs. DLEMI|1%  for the 65 optic nerves analyzed in Paper I. 
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calculation uncertainties. As an example, Molinelli et al. simulated patient treatments 

given at the passive scattering beamline at NIRS in the FLUKA Monte Carlo code 

(Molinelli et al. 2016). When comparing the absolute dose as originally calculated by 

the NIRS TPS to the dose calculated by the far more sophisticated beam model of the 

FLUKA Monte Carlo code, they found a mean absolute dose difference of 2.4% 

along the SOPB for head and neck cases. Differences related to beam modelling in 

the out-of-target areas have not been investigated. More profound differences in 

absorbed dose as they are calculated by different TPS’s may be expected within the 

lateral penumbra dose fall-off. This region is certainly sensitive to how the lateral 

spread of the beam is modelled, and the sharp lateral penumbra of the carbon ion 

beam is typically utilized to avoid high doses to the brainstem and optic nerve when 

these are located close to the tumor. These issues infer that the DNIRS distributions that 

we have calculated in this work, based on the absorbed dose distribution originating 

from LEM I optimized treatment plans at CNAO, definitely are not exact replicas of 

DNIRS treatment plans used for patient treatments in Japanese centers. 

A better way to translate the Japanese dose constraints to DLEM I, would therefore be 

to simulate NIRS patient treatments as described in the previous section (Molinelli et 

al. 2016). However, this method is not practically applicable for larger sets of patient 

data as the simulation-process requires tremendous resources, both in regard to 

computational capacity and man-power, including the effort of programming the 

exact geometries of every patient’s specific hardware (e.g. collimators and 

compensators) for each beam in each treatment plan.  

10.1.3 Paper III 

An underlying premise for Paper III was that even asymptomatic brainstem lesions 

were yet to be seen at CNAO following LEM I-optimized CIRT. Thus, an overall 

outcome analysis for this endpoint would be of doubtful scientific value. We 

therefore made use of patient treatment plans already recalculated to DNIRS for Paper 

II, as they this would provide an adequate sample of typical brainstem dose 

distributions at CNAO. As can be seen in Figure 33, the values for DLEM I were nicely 

dispersed and thus adequate to fulfil the aim of the study. Methodologically, Paper III 
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shares the limitations and uncertainties of the dose translation model, as discussed for 

Paper II, see section 10.1.2. Moreover, in the lack of relevant toxic events at CNAO, 

the results and conclusions of Paper III are therefore principally based on the 

translation of the Japanese dose constraints proposed by Shirai et al. and thus share 

the limitations of their study (Shirai et al. 2017). Most importantly the Shirai et al. 

study was also rather small, having 4 events within a total of 85 patients. However, 

since the endpoint relating to these constraints was asymptomatic (grade 1) brainstem 

damage, as detected on routine MRI, we are confident that there is a buffer towards 

the more meaningful clinical endpoint (brainstem necrosis grade ≥ 2), thus mitigating 

the both the limitations of the Shirai study and the uncertainties of the dose 

translation model of Paper III. Isolated contrast enhancement on MRI is regarded as 

evidence of increased permeability of the blood brain barrier (BBB), which results 

from radiation-induced alterations in endothelial and glial cell function (Yuan et al. 

2006). However, increased permeability does not necessarily lead to parenchymal 

damage as demonstrated for the spinal cord in a rat model (Siegal and Pfeffer 1995). 

The phenomenon of reversible or asymptomatic lesions has also been documented for 

radiation-induced injury of the brain following CIRT, and it is hypothesized that 

since smaller volumes of CNS tissue is irradiated by particle therapy in comparison to 

photon RT, the probability of recovery will be higher (Kishimoto et al. 2005). The 

observation that the lesions reported by Shirai et al. were reversible or stable in the 

absence of therapeutic intervention further supports the argument that no real necrosis 

had occurred.  

 

10.2 General discussion of results  

10.2.1 Paper I 

Paper I was the first paper to analyze the risk of carotid blowout following re-RT 

with particle therapy. In addition, it is the first paper, regardless of radiation modality, 

to reproduce the cumulative doses to the carotid artery in a detailed manner.  
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Early reports on photon SBRT suggested higher rates of carotid blowout (8-17%) 

(Cengiz et al. 2011; Yamazaki et al. 2013; Kodani et al. 2011) than with 

conventionally fractionated photon RT, which was one of the motivations for Paper I; 

exploring the risk of moderately hypofractionation with particle therapy at CNAO. 

However, a recent large multi-institutional study, comparing SBRT (n=197) vs. 

IMRT (n=217) showed both to be equally safe, with only 2 cases of carotid blowout 

in each group (Vargo et al. 2018). SBRT fractions were given on non-consecutive 

days, an approach also described by smaller SBRT series as safer in regards to carotid 

blowout (Gebhardt et al. 2018; Yazici et al. 2013). 

As presented in Paper I, we found one confirmed and one potential case of carotid 

blowout. Contrary to the expectations, both were in the subgroup of 17 patients re-

irradiated with protons. This seems as a high rate, when comparing to recent reports 

on re-RT with protons. Neither McDonald et al. (McDonald et al. 2016) or Phan et al. 

(Phan et al. 2016) found cases of carotid blowout in their retrospective studies 

comprising of 61 and 60 patients re-irradiated with protons. Romesser et al. described 

2 hemorrhagic events that could be attributed to carotid rupture among 69 patients 

with assessable follow-up data in a retrospective study based on a multi-institutional 

prospectively managed proton RT database (Romesser et al. 2016). An important 

distinction is that these were general outcome studies, and not specific for the carotid 

blowout event. In contrast, in our study we excluded 1/5th of the entire retreated 

cohort at CNAO because there was no overlap of dose to the carotid artery, thus 

potentially enriching it with patients with higher risk of carotid blowout. 

Additionally, the proton cohort in our paper was small, and therefore random 

coincidences may dramatically affect the observed carotid blowout rate as 

demonstrated by the 95% CI of the 1 year actuarial rate which ranged from 0.11% – 

19.0%. 

Looking at the carbon ion cohort, results were encouraging, since no carotid blowout 

events were found among the 79 patients in this group. One possible explanation, 

which we did not report in the paper, is that the choice of radiation quality can affect 

the time interval between primary radiotherapy and re-RT in a favorable way for the 
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carbon ion group: In general, risk of severe toxicities increase when there is shorter 

time interval between the primary and the reirradiation course (Lee et al. 2016). At 

CNAO, as Paper I shows, cancer types that typically recur early (i.e. squamous cell 

carcinomas) were more likely retreated with protons, while more slow-growing 

tumors, (i.e. adenoid cystic carcinomas and chordomas) were retreated with carbon 

ions. Consequently, the carbon ion group consisted of patients with longer time 

intervals from primary to re-RT, reducing the risk of carotid blowout in this group 

compared to the proton group as shown by this post hoc analysis: Median time 

interval was 1.8 (range 0.75-6.1) years for proton radiotherapy group and 3.6 (range 

0.3 – 49.9) years for the CIRT group, p<0.02 according to Mann-Whitney U-test.  

Regardless of this, our findings are favorable compared to other reports mentioning 

carotid blowout in the setting of re-RT with carbon ions. Jensen et al. found 2 cases 

of grade IV carotid hemorrhage, within a cohort of 52 patients retreated at HIT for 

recurrent adenoid cystic carcinoma (Jensen et al. 2015). In a more recent publication 

from HIT concerning carbon ion re-RT for recurrent head and neck cancer (Held et 

al. 2019), only one case of carotid hemorrhage among 229 patients was reported, 

although the defined time period of the study (2010-2017) would seem to overlap 

with the time period for the Jensen et al. report (4/2010 – 5/2013) in which to two 

cases were reported. Anyhow, in these reports the cumulative lifetime EQD2 received 

by the patients were high, i.e. 149 and 182 Gy (RBE), and > 160 Gy (RBE), 

respectively. As there were no dose constraints on the carotid arteries, they might 

have received a substantial proportion of this dose, while only 3 of the 49 patients in 

the CNAO cohort received cumulative EQD2 doses to the carotid artery of this 

magnitude. A clear distinction in treatment planning, is that CNAO has had a 

proactive approach to reduce the risk of carotid blowout by applying a dose constraint 

in the re-RT setting, restricting the cumulative EQD2 received by the carotid artery to 

< 120 Gy (RBE) for most patients. 

Hu et al. recently published initial results on 75 patients receiving re-RT with CIRT 

due to recurrent nasopharyngeal carcinoma (Hu et al. 2018). The patients were treated 

at the SPHIC in China, the only Asian center using the LEM I for optimization of 
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CIRT. Doses applied were comparable to the practice at GSI/HIT; 50-66 Gy (RBE) 

were given in daily fractions of 2 -3 Gy (RBE). The median follow-up time was 15.4 

months (range, 2.6-29.7 months). Seven patients developed nasopharyngeal necrosis 

≥ grade 3 in the tumor bed, in which one patient (1.3% of the cohort) died of a related 

massive hemorrhage 7 months after completion of the re-RT. Cumulative dose to the 

bleeding site was not reported. 

Finally, Hayashi et al. reported 1 case of carotid artery rupture within 48 patients re-

irradiated with carbon ions at NIRS. An important distinction in regard to the before 

mentioned studies, was that these patients also had been treated with CIRT in the 

primary setting. Doses were generally high, the most common being 57.6 Gy (RBE) 

in 16 fractions in the initial irradiation, and 52.8 Gy (RBE) in 12 fractions in the re-

RT course. 

In summary, these studies report on generally low crude rates of carotid blowout 

following re-RT with carbon ions, ranging from 0.8 – 2%, which is comparable to 

results following photon or proton radiotherapy. However, since CIRT is still 

confined to a limited number of centres worldwide, patients will have to travel farther 

for follow-up. Thus, potentially a larger proportion of patients may be lost to follow-

up, especially compared to patients which have been treated with photons (which is a 

widespread technology). This may result in that more carotid blowout events remain 

undetected in CIRT cohorts. 

Albeit our efforts to provide detailed and exact data on cumulative dose to the carotid 

artery for most patients, a definitive conclusion on a relation of carotid artery dose 

and carotid blowout could not be drawn, due to the small number of events. Of note, 

the only confirmed carotid blowout case in our study had a cumulative dose to the 

carotid artery of 129 Gy (RBE). The review of Dionisi et al. (Dionisi et al. 2019) was 

neither able to conclude on this matter. However, based on the individual cases of 

carotid blowout reported within the reviewed papers, it seems as though carotid 

blowout occurs more frequently when cumulative doses exceed 120 Gy. The current 

strategy of CNAO of defining the carotid artery as an OAR in the re-RT setting, and 
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preferential restricting cumulative EQD2 to <120 Gy (RBE) seems to be reasonable, 

especially when it does not compromise dose coverage of the tumor. 

Another interesting observation by Dionisi et al. was that 107 of the 156 bleeding 

events occurred after re-RT to the nasopharynx (Dionisi et al. 2019). This is in line 

with our discussion in Paper I, were we hypothesized that patients with 

nasopharyngeal site may be at higher risk. It may also be that carotid blowout is a 

secondary event following necrosis of the surrounding soft tissues, as described for 

the 2 cases in the Jensen et al. report. This development is indeed also described in 

the setting of normofractionated chemoradiation using photons in the primary 

radiotherapy setting (Esteller et al. 2012). Thus, an alternative hypothesis may be that 

the relevant “organ at risk” for the development of carotid blowout is not the carotid 

artery itself, but rather the adjacent supportive tissues. Following this thought, the 

maximum dose to the carotid artery may not be a sufficient surrogate to represent the 

dose-volume effects governing the development of necrosis in these tissues. 

Finally, other studies assessing the risk of carotid blowout have dominantly reported 

the cumulative lifetime dose, i.e. the summation of prescribed doses from a patients 

radiotherapy courses. In our study, we clearly show that there is poor correlation 

between the lifetime dose, and the cumulative dose received by the carotid artery as 

can be seen by Figure 35 and demonstrated by a Spearman’s rho correlation 

coefficient of 0.363. Recollecting that we in addition excluded 1/5th of the retreated 

population at CNAO, because there was no overlap of dose to the carotid artery, it is 

obvious that the cumulative lifetime dose does not reflect the cumulative dose 

received by the carotid artery or its adjacent tissues. Subsequently, one cannot expect 

to find a relation between the event of carotid blowout and the cumulative lifetime 

dose.  
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10.2.2 Paper II  

 

As shown in the chapter 6 there was almost a complete lack of published data 

concerning the risk of optic neuropathy following LEM I optimized CIRT at the time 

of publication of Paper II. With the exception of Paper II, this is still the case. 

However, during 2019 Akbaba and various co-authors from HIT published four 

papers which are worth mentioning: In a cohort of 227 patients treated with combined 

modality radiotherapy (IMRT + carbon ion boost) for sinonasal adenoid cystic 

carcinoma, they found only one case (0.8%) of late CTCAE grade 1 optic nerve 

affection (Akbaba, Ahmed, Mock, et al. 2019). Unfortunately, details regarding the 

dose received by this nerve were not mentioned. When dealing with sinonasal tumors, 

it is not unusual to transgress optic nerve dose constraints unilaterally to ensure 

adequate tumor dose coverage, so this may have been an expected toxicity. Within 

three additional papers they reported outcome of collectively 109 patients treated for 

other tumor sites (nasopharyngeal and lacrimal gland tumors)  in which the optic 

pathways is a relevant organ at risk, in which no relevant toxicity occurred (Akbaba, 

0

20

40

60

80

100

120

140

0 50 100 150 200 250

C
u

m
u

la
ti

ve
 D

m
ax

to
 C

ar
o

ti
d

 A
rt

er
y,

 G
y 

(R
B

E)

Cumulative lifetime dose, Gy (RBE)

Figure 35: Cumulative 

maximum dose to the 

carotid artery as a function 

of Cumulative prescribed 

lifetime dose. As can be 

seen, typically prescribed 

doses of 120 Gy (RBE) has 

been given, in which the 

dose to the carotid artery 

ranges from 32 to 126 Gy 

(RBE). 



 91 

Ahmed, Lang, et al. 2019; Akbaba, Held, et al. 2019; Akbaba, Lang, et al. 2019). 

SPHIC in Shanghai is the only Asian center applying LEM I for CIRT. Guan et al. 

recently reported preliminary results of 91 patients treated at SPHIC for chordoma or 

chondrosarcomas of the skull base or cervical spine. The majority of patients (n=69) 

were treated in the primary setting with either carbon ions alone (n=47) or protons + 

carbon ion boost (n=22). Interestingly, they applied DLEM I|20% < 30 Gy (RBE) as optic 

nerve dose constraint, nominally the same as the former CNAO constraint, although 

becoming more conservative since the carbon ion treatments were given within 20-23 

fraction. Not surprisingly, they did not experience optic nerve toxicity. Furthermore, 

considering the diversity in dose constraints applied for LEM I-based centres 

worldwide, there is obviously a need for an analysis as Paper II represents. These 

publications, together with the relevant papers already mentioned in the chapter 6 are 

summarized in Table 8.  

As a result Paper II is the first, and remains the only publication providing detailed 

information on dose-volume metrics in regard to optic nerve toxicity for CIRT 

optimized with the LEM I. The three cases of radiation induced optic neuropathy 

appeared at doses D20% > 62 Gy (RBE) and D1% > 70 Gy (RBE)/16 fractions, the 

latter being considerable higher than the former constraints at CNAO (<40 Gy 

(RBE)). Furthermore the events occurred at doses far from the currently applied 

constraint used at HIT (EQD2 <54 Gy (RBE)), which according to the LQ model 

converts into 45 Gy (RBE) for a 16 fraction treatment (assuming an α/β of 2 Gy). 

According to the QUANTEC review, the incidence of radiation induced optic 

neuropathy increased between 55 and 60 Gy (3–7%) and was substantial (>7–20%) 

for Dmax > 60 Gy, although was noted that in some studies even at these high doses no 

clinically significant neuropathy occurred. Assuming an α/β of 2 Gy for the optic 

nerve most patients (30/38 nerves) in our cohort DLEM I |1% < 43 Gy (RBE) (= EQD2 < 

50 Gy), which is considered harmless in regards to optic nerve toxicity for photon 

RT, see Figure 34. Furthermore, all 3 toxic events occurred within the 9 optic nerves 

(33%) receiving EQD2 > 60 Gy (i.e. > 48 Gy (RBE) nominally). Thus, our findings 

are not in conflict with data from photon radiotherapy.  
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When evaluating the optic nerve DVHs in the DNIRS, toxicity occurred at DNIRS|1%  

≥68 Gy (RBE) and  DNIRS|20% ≥ 62 Gy (RBE), which is comparable to the findings of 

Hasegawa et al. for patients treated at NIRS, see Figure 36. According to our dose 

translation model, the D1% and D20% constraints applied at NIRS was equal to 50 Gy 

(RBE) and 40 Gy (RBE) in DLEM I, respectively. Unfortunately, due to the 

conservative approach at CNAO, only seven optic nerves in total (including the three 

cases) exceeded these limits, leaving our clinical data set unable to substantially 

support the safety of these translated constraints. The same issue, i.e. low number of 

events and patients, and a scarcity of optic nerves receiving mid-high doses reduces 

the validity of the NTCP-models presented in Paper I. Therefore, the estimates for 

Publication Site and histology n
Median FU 

(range) months
Modality

Optic nerve 

toxicity

Brainstem 

toxicity

Schulz-Ertner et 

al. 2007

Skull base 

chordoma
96 Not specified Carbon ion 4 (4.2%)* 0 (0%)

Uhl et al. 2014
Skull base 

chondrosarcoma
79 91 (3-175) Carbon ion No mention No mention

Uhl et al. 2014
Skull base 

chordoma
155 72 (12-165) Carbon ion

3 (2%) potential 

cases**
0 (0%)

Mattke et al. 

2018

Skull base 

chondrosarcoma
101 40 (1-78)

Carbon ion (79)  

Proton (22)
No mention

1 potential case 

***

Akbaba et al. 

2019
Sinonasal ACC 227 50 (3-109)

IMRT + carbon ion 

boost
1 (0.8%) 0 (0%)

Akbaba et al. 

2019

Nasopharyneal 

ACC
59 32 (7-106)

IMRT + carbon ion 

boost
0 (0%) 0 (0%)

Akbaba et al. 

2019

Nasopharyngal 

carcinoma
26 40 (10-97)

IMRT + carbon ion 

boost
0 (0%) 0 (0%)

Akbaba et al. 

2019

Lacrimal gland 

tumors
24 30 (6-102)

IMRT + carbon ion 

boost
0 (0%) N/A

Guan et al. 2019
Chordoma or 

chondrosarcoma
69 28 (8-59)

  Proton + Carbon 

ion boost (22) 

Carbon ion (47)

0 (%) 0 (%)

*3 of 4 cases due to prior tumor involvement.

**exact patophysiology of visual impairment not stated

TABLE 8: overview of relevant clinical studies on LEM-optimized carbon ion radiotherapy for tumor sites in which the optic 

nerve and brainstem are relevant organs at risk

***walking disability due to radiation necrosis in uspecified location. Not specified if this patient received proton or carbon 

ion RT
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DLEM I constraints derived from translation of the Japanese dose constraints were a 

valuable asset in order to point to an approximate level for new DLEM I constraints. 

     

 

 

A dose constraint of D1% < 50 Gy (RBE) given in 16 fractions, would according to 

the LQ model convert to an EQD2 of approximately 64 Gy (RBE). This would be 

slightly above the dose received by the patient developing bilateral blindness (EQD2 

63 Gy (RBE)), as reported by Schulz-Ertner et al. (Schulz-Ertner, Nikoghosyan, et al. 

2007). Therefore, as a consequence of the inherent uncertainties of the dose 

translation method and event number in the CNAO cohort,  the clinical decision at 

CNAO was to implement slightly less relaxed constraints; DLEM I|20% < 37 Gy (RBE) 

and DLEM  I|1% < 45 Gy (RBE). Thus, the new constraints are in line with the current 

practice at HIT (assuming the correctness of the LQ model), and are still conservative 

when compared to the TD5 estimates of the NTCP modelling of own institutional 

toxicity data or when compared to the translation of Japanese dose constraints, as 

seen in Figure 37. However, they represent an improvement compared to the 

formerly used constraints of DLEM I|20%  < 28 Gy (RBE) and DLEM  I|1%  < 40 Gy (RBE). 

Figure 36: Reprint of Fig. 

4a from Hasegawa et al. 

(2006) showing the DVHs 

from the NIRS cohort, where 

black DVHs represent optic 

nerves that developed 

neuropathy, and gray DVHs 

represent optic nerves that 

did not develop neuropathy. 

Superimposed on the figure 

are the DNIRS DVHs (red) of 

the three optic nerves from 

the CNAO cohort that 

developed neuropathy. 
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A strength of Paper II is that we have used all available published clinical data for 

optic neuropathy following CIRT to propose new constraints to be used in a 16 

fraction regime:  

1) CNAO institutional toxicity data 

2) Toxicity data from Japanese centers (by dose translation) 

3) Traditions and experience from GSI/HIT  (through the LQ model) 

We believe that defining the new constraints at a level comparable to the most 

conservative of these estimates ensures the safety of patient treatments, while 

adequate dose to the target will become easier to achieve. However, patients should 

be included in closely monitored prospective protocols.  

 

10.2.3 Paper III 

An underlying premise for Paper III was that even asymptomatic brainstem lesions 

were yet to be seen at CNAO following LEM I-optimized CIRT. Furthermore, 

35 40 45 50 55 60 65

Dose in a 16 fx treatment (Gy (RBE))

Dose transl D1% TD5 D1% GSI tox

Figure 37: Presents the an overview of results of NTCP modelling (TD5, green diamond) and 

dose translation for the D1% constraint (red circle w/95%CI), in relation to the toxic event 

reported by Schulz-Ertner et al. (blue cross), the current HIT constraint (yellow cross), the 

latter 2 dose values have been converted to a 16 fraction treatment by the LQ model. The black 

triangle represents the new D1% constraint at CNAO. 
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regarding published data on tolerance doses for the brainstem following CIRT, there 

is even less information available than for the optic nerve. With the exception of the 

paper on lacrimal gland tumors (Akbaba, Lang, et al. 2019), the publications 

summarized in Table 8 consist of tumor sites in which the vicinity to the brainstem 

very often will limit target dose coverage. In the two publications on skull base 

chordomas, both Schulz-Ertner et al. and Uhl et al. explicitly describe an absence of 

brainstem toxicity (Schulz-Ertner, Karger, et al. 2007; Uhl, Mattke, Welzel, Roeder, 

et al. 2014). Furthermore, there are no cases reported within the three relevant papers 

published by Akbaba et al. consisting of 312 patients collectively (Akbaba, Ahmed, 

Mock, et al. 2019; Akbaba, Ahmed, Lang, et al. 2019; Akbaba, Held, et al. 2019). 

Ultimately, within relevant patient cohorts consisting of 336 patients treated with 

carbon ions and 312 patients treated with IMRT + carbon ion boost, there was only 

one case potentially linked to brainstem necrosis (Mattke et al. 2018). However, the 

report did not to specify dosimetric parameters or whether or not this patient received 

proton or CIRT. Finally, Guan et al. reported preliminary results for 47 patients with 

chordoma or chondrosarcoma of the skull base or cervical spine, treated with CIRT at 

SPHIC (Guan et al. 2019), in which they applied a brainstem dose constraint of < 45 

Gy (RBE) given in 20-23 fractions. This constraints was thus more conservative than 

GSI/HIT, though somewhat higher than the former constraint used at CNAO. 

However, there were no events of brainstem damage in this cohort either. 

Consequently, there is a more or less complete lack of data on tolerance doses for the 

brainstem following LEM I optimized CIRT. Thus, relying on the translation of 

Japanese dose constraints remains the only option to help guide the proposal of new 

DLEM I constraints.  

The result of Paper III clearly showed that there was a considerable potential to 

increase the dose to the brainstem, while still adhering to the constraints currently 

applied in centres using the NIRS clinical dose, see Figure 32d. Moreover, applying 

the LKB model parameters described by Shirai et al. to the DNIRS recalculated CNAO 

dose distributions suggested the probability of developing an asymptomatic brainstem 

reaction to be low, i.e. NTCP 0% for 29 of the patients and NTCP = 2% for 1 

patient. 
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Applying the dose translation model suggested that the DNIRS constraints 

corresponded to DLEM I|0.7cm3 <41 Gy (RBE) (95% CI: 38-44 Gy [RBE]) and DLEM 

I|0.1cm3 <49 Gy (RBE) (95% CI: 46-52 Gy [RBE]).  Interestingly, these values were 

more closely related to the constraints used at GSI/HIT, than the former CNAO 

constraint, see Figure 38. To mitigate the uncertainties discussed under 

Methodological considerations, the values according to the lower bound of the 95% 

CI, i.e. DLEM I|0.7 cm3 < 38 Gy (RBE) and DLEM I|0.1 cm3 < 46 Gy (RBE), were suggested 

as new brainstem dose constraints to be used in a 16 fraction CIRT treatment 

applying the LEM I as the RBE model.  

 

 

 

 

 

 

 

 

 

 

Figure 38: Absolute volume DVH showing old CNAO DLEM I|1% <30 Gy (RBE) constraint (cross) 

and the translated Shirai constraints DLEM I|0.7cm3 <41 Gy (RBE) and DLEM I|0.1cm3 <49 Gy (RBE) 

(squares, error bars=95%CI), converted into EQD2 (assuming α/β ratio = 2 Gy) in comparison 

to the EQD2 constraints applied at HIT: DLEM I|1% <54 Gy (RBE) and DLEM I|max <60 Gy (RBE) 

(circles). As an approximation to the absolute volume relating to the D1% constraints, the median 

brainstem volume in our data set (26 cm3) was used. The translated constraints are more closely 

related to the constraints used at HIT than the old CNAO constraint. 
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10.2.4  Implications of suboptimal dose constraints for the optic nerve and brainstem 

 

The results of Paper II and III clearly demonstrated that the dose constraints 

originally applied at CNAO for the brainstem and optic nerve imposed an obvious 

restriction in achieving optimal carbon ion treatment plans. An analysis of relapse 

patterns in patients with adenoid cystic carcinomas (ACC) treated at CNAO suggest 

the possible clinical impact of this approach: approximately 70% of the local relapses 

occurred at sites where the target volume was underdosed in order to adhere to 

brainstem or optic pathways dose constraints (Molinelli, Bonora, et al. 2019). 

Moreover, a recent publication on skull base chordomas treated at CNAO, Iannalfi et 

al. found that 92% of the local recurrences were attributable to suboptimal target dose 

in regions close to the brainstem or optic pathways (Iannalfi et al. 2020). The 

estimated 5-year local control (LC) rate was 71%. This is inferior to the results 

reported by Japanese centers, where 5-year LC rates within the range 76-92% have 

been reported (Takagi et al. 2018; Koto et al. 2020). Certainly, no firm conclusions 

should be drawn by direct comparison of the outcome of these studies. However, in 

the context of the findings presented in this thesis, it does not come as a surprise that 

the outcome at CNAO may seem inferior to that of the Japanese centers. These 

observations clearly emphasize the necessity and urgency of Papers II and III.  
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 Conclusion 

11.1 Paper I 

The current practice at of re-RT with particles at CNAO seems to result in acceptable 

rates of carotid blowout, although the total number of patients and events prevents 

any definitive conclusions. We found no indication that the use of moderately 

hypofractionated CIRT could be potentially more harmful than conventionally 

fractionated photon or proton RT. 

The low number of events made it impossible to conclude on a potential dose 

threshold for at which risk increases. The paper was the first to address the risk of 

carotid blowout following particle therapy, and the first within any radiation modality 

presenting detailed data on cumulative dose to the carotid artery as an OAR. 

11.2 Papers II and III 

The papers show that the direct adoption of NIRS dose constraints for the optic nerve 

and brainstem has had an overly restrictive effect in regard to achieving optimal 

treatment plans at CNAO. As a result, the current scarcity of toxic events at CNAO 

prevents the definition of new dose constraints based on own institutional data. 

Thus, the development of a pragmatic method to make use of dose 

constraints/toxicity data stemming from CIRT centres applying the NIRS clinical 

dose has been of crucial importance to guide the definition of updated, less restrictive 

dose constraints.  

Moreover, the recalculation of institutional dose-response data to the alternative 

model is a valuable process to better understand the relationship of the models, and 

thus makes it easier to exchange information and experience across the CIRT 

community. 
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These studies have led to that more optimal dose constraints for the optic nerve and 

brainstem for LEM I based CIRT have been introduced at both CNAO and 

MedAustron (Vienna, Austria). The constraints would also be applicable for other 

LEM I based centres such as HIT, MIT and SPHIC if they in the future should 

introduce 16 fraction treatment schedules. 
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 Future perspectives 

CIRT is still a relatively new treatment modality in regard to clinical experience. 

Although a powerful tool, the utilization of its full potential is still hampered by an 

incomplete understanding of the radiobiological effects of this radiation. More studies 

on dose constraints and NTCP models for OARs, especially for the LEM I are 

needed. Within German CIRT centres there would be a rich amount of outcome data 

which could and should be used for detailed analyses of the relation of dose and 

toxicity for important OARs, either to challenge or support the findings in this thesis. 

Following the implementation of updated dose constraints, close monitoring of 

adverse events must be upheld. Within some years, similar analysis of patient data 

from CNAO and other centres implementing new constraints should be performed to 

ensure the continued safety of the treatments, and to derive even more optimal dose 

constraints and NTCP models. Moreover, the clinical impact of more relaxed 

constraints in regard to probability of tumor control should be explored. 

Commercial TPSs with the ability to optimize carbon ion treatment plans applying 

both the LEM I and the NIRS clinical dose is currently used in patient treatments at 

MedAustron, and is under commissioning at other centres. This technological 

improvement makes the comparison of different RBE-weighted dose distributions 

readily available and substantially less cumbersome and time-consuming than was the 

case for this project. Hence, the approach of dose translation presented in this thesis 

can be extended and validated within larger patient cohorts for a variety of OARs, 

and also for target volumes.  

Furthermore, this approach can pave the way for future multicenter trials involving 

CIRT centres applying different RBE models, as it will be possible to harmonize 

patient treatments worldwide. 
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Abstract
Purpose: Carotid blowout (CB) is a serious complication in retreatment of neoplasms in the head
and neck (H&N) region. Rates seem to increase in hypofractionated or accelerated hyper-
fractionated regimens. In this study, we investigate the CB rate and the cumulative doses received
by the carotid artery (CA) in a cohort of patients who were reirradiated at CNAO with particle
therapy in the H&N region.
Methods and materials: The dosimetric information, medical records, and tumor characteristics of
96 patients were analyzed. For 49 of these patients, the quality of dosimetric information was
sufficient to calculate the cumulative doses to the CA. The corresponding biological equivalent
dose in 2 Gy fractions (EQD2) was calculated with an a/b-ratio of 3.
Results: In the final reirradiation at CNAO, 17 patients (18%) had been treated with protons and
79 (82%) with carbon ions. Two patients experienced profuse oronasal bleeding, of which one case
was confirmed to be caused by CB. If attributing both cases to CB, we found an actuarial CB rate
of 2.7%. Interestingly, there were no CB cases in the carbon ion group even though this was the
large majority of patients and they generally were treated more aggressively in terms of larger
fraction doses and higher cumulative EQD2.
Conclusions: The current practice of particle reirradiation at CNAO for recurrent neoplasms in the
H&N region results in acceptable rates of CB.
ª 2017 the Authors. Published by Elsevier Inc. on behalf of the American Society for Radiation
Oncology. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Carotid blowout (CB), defined as a sudden rupture of the
carotid artery (CA) or one of its main branches, is a feared
complication in the treatment of neoplasms in the head and
neck (H&N) region. CB results from pathologic alterations
in or loss of the soft tissues surrounding the CA and from
alterations in the vessel wall itself. Risk factors include
ulceration, radiation to lymph nodes, dose to the neck >70
Gy, reirradiation, radical neck surgery, nutritional status
(body mass index <22.5 kg/m2), osteonecrosis, and the
degree to which the CA is involved in the tumor.1-4

The properties of radiation therapy (RT) also seem to
affect the risk of CB because rates as high as 8.4% to 15%
are observed in reirradiation with hypofractionated ste-
reotactic body RT (SBRT)4-6 in contrast to >4% with
more conventional fractionated photon regimens.2,7

Particle therapy, because of its physical advantages in
dose distribution, is a suitable treatment modality for recur-
rent neoplasms in the H&N region. For carbon ion RT
(CIRT) in particular, there are even biological advantages
that could be harnessed through the use of hypofractionated
schedules.8,9 In a report on CIRT reirradiation of 52 patients
with recurrent adenoid cystic carcinoma, 2 patients (3.8%)
developed CB after nasopharyngeal necrosis.10 The patients
received reirradiation doses of 36 Gy (relative biological
effectiveness [RBE]) to 74 Gy (RBE) in a moderately
hypofractionated regimen of 3 Gy (RBE) per fraction.

At the National Center of Oncological Hadrontherapy
(CNAO) in Pavia, Italy, patients with recurrent neoplasms
in the H&N region are treated under protocols for reir-
radiation using protons or carbon ions with fraction doses
ranging from 2 Gy (RBE) to 5 Gy (RBE). This prompted
us to investigate the outcome of these patients with regard
to CB with a special focus on the cumulative doses
received by the CA.

Methods and materials

Reirradiation at CNAO

All patients were treated under prospective protocols
that were approved by the regional ethics committee. A
signed consent was required for participation. Proton RT
was used as a first option, with conventional fractionation
of 2 Gy (RBE) per fraction. A fixed RBE value of 1.1 was
employed. CIRT was used for histologies with a poor
response to low linear energy transfer (LET) radiation (eg,
sarcoma, melanoma, and salivary gland tumors), in cases
of early in-field recurrence after photon RT (assuming
selection of a radio-resistant clone), or in cases in which
the sharper lateral penumbra of CIRT resulted in signifi-
cantly better sparing of organs at risk (OARs). Dose per
fraction ranged from 2 Gy (RBE) to 5 Gy (RBE). RBE

was calculated with the local effect model version 111

using the syngo RT Planning (Siemens Healthcare,
Erlangen, Germany) treatment planning system (TPS).

To avoid long-term toxicity to OARs that were previ-
ously irradiated, an estimate of the cumulative biological
equivalent dose (EQD2) from the prior and planned reir-
radiation was performed using a conservative a/b-ratio of 2
Gy for all OARs.When using an active scanning technique,
it is feasible to selectively restrain the dose to the CA while
retaining a high dose to most of the target (Fig 1b). The
current practice at CNAO is to avoid cumulative EQD2 to
the CA that exceeds 120 Gy (RBE) by using this method.

Patient population

A total of 128 patients were reirradiated at CNAO with
either protons or carbon ions from September 2012 to
March 2016. Four patients were excluded from the study
because there were no records on the doses given in the
previous RT, and 27 patients were excluded because they
did not receive doses to their CA in the primary RT or the
reirradiation or because these doses did not overlap in
their CA. One patient, a foreign citizen, never appeared
for follow-up and was also excluded.

A total of 96 patients were available for analysis with
regard to the rate of CB (Fig 2; pink boxes). General
details on past and present RT, patient and disease char-
acteristics, and prior surgery were collected. In addition,
the following information was also gathered:

1) tumor involvement grade: (a) no involvement, (b) <1/
3 of CA circumference, (c) 1/3 to 2/3 of CA
circumference, or (d) >2/3 of CA circumference

2) segment of CA that received the highest dose:
(a) neck, (b) skull base, (c) sinus cavernosus, or
(d) intracranial

3) whether surgery had been performed in the immediate
vicinity of the high-dose segment of the CA, thus
potentially making the CA more vulnerable.

Because tumor involvement grade and surgery near the
CA have been suggested as factors that decrease the
integrity of the CA wall and thereby increase the risk of
CB,1,2,7 we defined 2 potential high-risk features to assess
their impact on CB rate in our material:

1) tumor involvement grade that is >2/3 of the CA
circumference

2) prior surgery in the immediate vicinity of the segment
of the CA that received the highest cumulative dose

Calculation of cumulative dose statistics to
carotid arteries

For 49 of the 96 patients, there was sufficient docu-
mentation on prior RT to calculate cumulative doses to
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the CA. In 25 patients, both CAs had been reirradiated,
giving a total of 74 CAs to be analyzed. For 32 of these
patients (49 CAs), Digital Imaging and Communications
in Medicine (DICOM) files of their previous RT was
available. For the remaining 17 patients (25 CAs), dose
data of previous RT could be extracted from printed
computed tomography (CT) images with isodose curves
(Fig 2; blue boxes).

For the group of patients with DICOM files, the CT
images, structure set files, and dose files from both the
primary and subsequent RT courses were imported to a
workstation with the RayStation version 5.0 TPS (Ray-
Search Laboratories AB, Stockholm, Sweden). For the
treatment course at CNAO, magnetic resonance imaging
(MRI) scans in the treatment position were also imported
and co-registered with the planning CT and used to

Figure 1 Dose distribution from (A) first photon treatment (70 Gy), (B) reirradiation at CNAO with carbon ions (54 Gy [RBE])
and (C) cumulative nominal dose. The carotid artery is outlined in black and demonstrates the selective sparing of the carotid
artery in (B).

Figure 2 Patient selection.
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support the contouring of the CAs on the CNAO planning
CT. For the purpose of this study, the CA was defined as
the common CA and internal CA, with a distal limit at the
origin of the medial cerebral artery. Thus, we excluded
smaller branches and the external CA because these ar-
teries would be impossible to contour in many of the
patients and because the current practice at CNAO is to
delineate only the common CA and internal CA. All
contouring was done by the same radiation oncologist,
and only the segment of the CAs that was reirradiated was
contoured.

To obtain the cumulative dose to the CA, the doses from
patients’ previous RT courses were deformed to the plan-
ning CT of the final RT course (CNAO CT) as follows: A
rigid registration was made between the patients’ different
planning CTs, with a focus on achieving the best possible
match in the area of the reirradiated CAs. We then per-
formed a deformable registration between the planningCTs
with the CNAO CT defined as the reference CT.

A cumulative nominal dose distribution was then
created with the RayStation TPS by summing the
deformed doses with the dose from the final RT on the
CNAO CT (Fig 1). Cumulative nominal maximum dose
(CumDmaxnom) to the CA and nominal dose to 1% of the
CA volume (CumD1nom) then were collected from the
TPS. To provide an indication of the concentration of the
highest dose, we calculated the volume of the CAs that
received �90% of the CumD1nom (V90%CumD1nom).

Because many of the treatments were given with
fraction doses well above 2 Gy/Gy (RBE), we also
calculated a cumulative maximal EQD2 to the CA
(CumDmaxEQD2) with the following equation:

where D1st was the dose from the first RT course
contributing to the CumDmaxnom and Fx1st was the frac-
tion number of the same course. The second term of the
equation was used for patients who had more than one
previous RT, and the third term represented the final
reirradiation at CNAO. Due to the lack of published data
on the a/b-ratio of the CA, an a/b-ratio of 3 Gy was
chosen, acknowledging that the a/b-ratio of 2 Gy, which
has been employed at CNAO, probably is too conserva-
tive compared with what would be used at most other
institutions. This is also in agreement with other publi-
cations on the toxicity to arteries induced by
radiation.12,13

For the 17 patients for whom the dose distribution was
obtainable from printed CT slices, the dose statistics were
collected as follows: We identified the segment of the CA

in which the highest CumDmaxnom would be located by
visually comparing the dose plan from the particle therapy
course at CNAO with the printed CT slices from the
previous RT courses. The doses (D1st, D2nd,.) that
contributed to the CumDmaxnom were then collected from
the prints for the respective segment of the CA. If, for
example, the CA in the first RT course was situated be-
tween the 50 Gy and 60 Gy isodose curves, an approxi-
mation of the D1st was set to 55 Gy. Thereafter, the dose
given to the same segment in the particle therapy course at
CNAO (D3rd) was derived directly from the syngo TPS
that is installed at CNAO. In this way, an approximation
of the CumDmaxnom was collected for these 17 patients. A
CumDmaxEQD2 was also calculated using the previously
mentioned equation.

Follow-up

Patients were followed at CNAO with a clinical ex-
amination and an MRI scan every 3 months after
completion of the reirradiation.

Statistics

The data were analyzed with the IBM SPSS Statistics
for Windows, Version 23.0 (IBM Corp., Armonk, NY).
Differences in frequencies between groups were
compared using the c2 or Fischer’s exact test. Non-
parametrical distributions were compared with the
Mann-Whitney U-test, and normally distributed data were
compared with the independent samples t test. Bivariate

correlations between skewed data were analyzed with
Spearman’s rho. All P-values were obtained from two-
sided tests. Survival estimates were generated with the
Kaplan-Meier method.

Results

The median follow-up was 13.4 months (range,
0.8-49.2 months), and the median time from the first RT
to the final reirradiation was 3.4 years (range, 0.3-50
years). Eleven patients (11.5%) had previously undergone
2 courses of RT. Two of these patients had been treated
with photons primarily, followed by a second and third
course of CIRT at CNAO due to 2 consecutive relapses.
One patient had been treated at CNAO with CIRT for all
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Table 1 Patient and disease characteristics

Quality of Final Re-RT P value

All (n Z 96) Proton RT (n Z 17) CIRT (n Z 79)

Median age (range), y 61 (24-88) 55 (24-75) 63 (24-88)
Sex, male:female 56:40 8:9 48:31 NS
Comorbidity, n (%)
Hypertension 26 (27.0) 2 (11.8) 24 (30.4) NS
Diabetes mellitus 6 (6.3) 2 (11.8) 4 (5.1) NS
Cardiovascular disease 5 (5.2) 3 (17.6) 2 (2.5) .037

Histology, n (%)
Adenoid cystic carcinoma 28 (29.2) 0 (0.0) 28 (35.4) .003
Squamous cell carcinoma 27 (28.1) 13 (76.5) 14 (17.7)
Sarcoma 11 (11.5) 0 (0.0) 11 (13.9)
Mucoepidermoid carcinoma 5 (5.2) 0 (0.0) 5 (6.3)
Undifferentiated carcinoma 5 (5.2) 1 (5.9) 4 (5.1)
Pleomorphic adenoma 5 (5.2) 0 (0.0) 5 (6.3)
Adenocarcinoma 3 (3.1) 0 (0.0) 3 (3.8)
Myoepithelial carcinoma 3 (3.1) 0 (0.0) 3 (3.8)
Meningioma 3 (3.1) 1 (5.9) 2 (2.5)
High grade glioma 2 (2.1) 2 (11.8) 0 (0.0)
Othera 4 (4.2) 0 (0.0) 6 (7.8)

Site of Primary Tumor, n (%)
Parotid gland 18 (18.8) 0 (0.0) 18 (22.8) .003
Paranasal sinuses 17 (17.7) 0 (0.0) 17 (21.5)
Rhinopharynx 15 (15.6) 6 (35.3) 9 (11.4)
Oropharynx 10 (10.4) 3 (17.6) 7 (8.9)
Oral cavity 7 (7.3) 2 (11.8) 5 (6.3)
Brain/meninges 5 (5.2) 3 (17.6) 2 (2,5)
Nasal cavity 5 (5.2) 1 (5.9) 4 (5.1)
Skull base 5 (5.2) 0 (0.0) 5 (6.3)
Skin of scalp or face 4 (4.2) 1 (5.9) 3 (3.8)
Submandibular gland 3 (3.1) 0 (0.0) 3 (3.8)
Larynx 2 (2.1) 1 (5.9) 1 (1.3)
Lacrimal gland 2 (2.1) 0 (0.0) 2 (2.5)
Otherb 3 (3.1) 0 (0.0) 3 (3.8)

Site of Highest Dose to CA, n (%)
Neck 50 (52.1) 9 (52.9) 41 (51.9) NS
Skull base 34 (35.4) 4 (23.5) 30 (38.0)
Sinus cavernosus 10 (10.4) 3 (17.6) 7 (8.9)
Intracranial 2 (2.1) 1 (5.9) 1 (1.3)

Tumor Involvement Grade, n (%)
No involvement 24 (25.0) 6 (35.3) 18 (22.8) NS
<1/3 of CA circumference 14 (14.6) 2 (11.8) 12 (15.2)
�1/3 < 2/3 of CA circumference 9 (9.4) 2 (11.8) 7 (8.9)
�2/3 of CA circumference 49 (51.1) 7 (41.2) 42 (53.2)

Surgery, n (%)
Any surgery 80 (83.3) 10 (58.8) 70 (88.6) .007
Neck dissection 26 (27.1) 6 (35.3) 20 (25.3) NS
In vicinity of highest dose to CA 46 (47.9) 5 (29.4) 41 (51.9) NS

High-Risk Featuresc, n (%)
0 risk factors 28 (29.2) 8 (47.1) 20 (25.3) NS
1 risk factor 41 (42.7) 6 (35.3) 35 (44.3)
2 risk factors 27 (28.1) 3 (17.6) 24 (30.4)

CA, carotid artery; CIRT, carbon ion radiation therapy; NS, not significant; RT, radiation therapy.
a Esthesioneuroblastoma, sinonasal carcinoma, carcinoma ex pleomorphic adenoma, oncocytoma.
b Mandible, hyoid bone, lymph node metastasis neck.
c Risk factors: Tumor involvement grade �2/3 and surgery in high-dose areas.
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Table 2 Radiation therapy and dose statistics

Quality of Final Re-RT P value

All (n Z 96) Proton (n Z 17) CIRT (n Z 79)

Previous RT Courses 107 courses 17 courses 90 courses
Nom. prescribed dose, median (range)
Gy/Gy (RBE) 60 (8-79.2) 66 (32-70) 60 (8-79.2) .036

Fraction dose, median (range)
Gy/Gy (RBE) 2 (1-6) 2 (1.8-4) 2 (1-6) NS

Fraction dose, n (%)
�2 Gy/Gy (RBE) 75 (70.1) 11 (64.7) 65 (72.2) NS
>2 to �3 Gy/Gy (RBE) 19 (17.8) 5 (29.4) 14 (15.6)
>3 Gy/Gy (RBE) 10 (9.3) 1 (5.9) 9 (1.0)
Unknown 3 (2.8) 2 (2.2)

Radiation quality, n (%)
Cobalt-60 4 (3.7) 4 (4.4) NS
Photon 96 (89.7) 17 (100) 79 (87.8)
PhotonþProton boost 1 (1.0) 1 (1.1)
PhotonþCarbon boost 1 (1.0) 1 (1.1)
Proton 1 (1.0) 1 (1.1)
Carbon 4 (3.7) 4 (4.4)

Radiation technique, n (%)
Conventional 83 (77.6) 17 (100) 66 (73.3) NS
SBRT/SRS 10 (9.3) 10 (11.1)
Conv.þparticle boost 2 (1.9) 2 (2.2)
Particle scanning technique 4 (3.7) 4 (4.4)
Particle passive technique 1 (1.0) 1 (1.1)
unknown 7 (6.5) 7 (7.8)

Chemotherapy, n (%)
Yes 31 (29.0) 10 (58.8) 21 (26.6) .007
No 76 (71.0) 7 (41.2) 69 (73.4)

Final Re-RT Course
Nom. prescribed dose, median (range)
Gy (RBE) 56 (12-76.8) 54 (30-70) 60 (12-76.8) NS

Fraction dose, median (range)
Gy (RBE) 3 (2-5) 2 (2-3) 3 (2-5) <.005

Fraction dose, n (%)
2 Gy (RBE) 17 (17.7) 15 (88.2) 2 (2.5)
�3 to <4 Gy (RBE) 59 (61.5) 2 (11.8) 57 (72.2)
�4 Gy (RBE) 20 (20.8) 20 (25.3)

Prescribed Cumulative Lifetime Doses
Nominal, median (range)
Gy (RBE) 120 (32-197) 120 (62-138) 119 (32-197) NS

EQD2, a/b Z 3 Gy, median (range)
Gy (RBE) 132 (46-296)a 122 (67-140)a 132 (46-296)a <.005

median (range)
CumDmax, median (range)
nominal, Gy (RBE) 103 (27-129)b 107 (40-129)b 101 (27-128)b NS
EQD2 (a/b Z 3), Gy (RBE) 109 (25-167)b 107 (33-131)b 109 (25-167)b NS

CumD1, median (range)
nominal, Gy (RBE) 107 (35-128)c 107 (40-128)c 107 (35-127)c NS

V90%CumD1, median (range)
cm3 0.18 (0.01-3.44)c 0.18 (0.01-3.44)c 0.18 (0.01-1.19)c NS

CA, carotid artery; CIRT, carbon ion radiation therapy; CumD1, dose to 1% of the CA volume; CumDmax, cumulative maximum dose; NS, not
significant; RBE, relative biological effectiveness; RT, radiation therapy; SBRT, stereotactic body radiation therapy; SRS, stereotactic radiosurgery;
V90%CumD1, volume of the CAs that received �90% of the CumD1.

a Based on 94 patients because data on fraction size were missing for 2 patients.
b Based on 74 CAs of the 49 patients with dose data available.
c Based on the 49 CAs of the 32 patients with Digital Imaging and Communications in Medicine files.
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3 courses, and another had undergone 2 Cobalt-60 treat-
ments 50 years before reirradiation at CNAO. The
remaining 7 patients had a first and second course of
photon RT before the final reirradiation at CNAO. In the
final reirradiation at CNAO, 17 patients (18%) were
treated with protons versus 79 (82%) with carbon ions.
Tables 1 and 2 present details on patient and disease
characteristics, prior surgery, and previous and final RT
courses for all patients and their distribution among the
patients who received either proton RT or CIRT in the
final reirradiation at CNAO.

A significantly larger proportion of patients had
received chemotherapy in the proton group compared
with the carbon group (55.6% vs 27.8%; P Z .026), and
the prescribed cumulative lifetime EQD2 was signifi-
cantly higher in the carbon ion group, which was a result
of higher fraction doses because the prescribed cumula-
tive nominal lifetime doses were similar. There was a
significant difference (P < .005) in the distribution of
histologic entities between the two groups, with a domi-
nans of salivary gland tumors and sarcomas in the CIRT
group (69.5% total) while the proton RT group was
dominated by squamous cell carcinomas (SCCs) (76.5%).

Dose statistics to carotid arteries

For the group of 49 patients with detailed dosimetric
data, a total of 74 CAs had been reirradiated. When only
analyzing the CA that received the highest cumulative
dose in each patient, the difference between the prescribed
cumulative nominal lifetime dose and the CumDmaxnom
ranged from �12 Gy (RBE) to 89 Gy (RBE) with a
median of 6 Gy (RBE). In addition, the correlation be-
tween these 2 parameters was poor, with a Spearman’s
rho correlation coefficient of 0.363 (P Z .010).

Median CumDmaxEQD2 for all 74 CAs was 109 Gy
(RBE) (range, 25-167 Gy [RBE]). The contributions from
each RT course to each individual CA are presented in
Figure 3. The median CumD1nom was 107 Gy (RBE)
(range, 35-128 Gy [RBE]). In most cases only small
volumes of the CA recieved the highest dose, demon-
strated by the median V90%CumD1nom of 0.18 cm3 (range,
0.01-3.44 cm3), which corresponds to the volume of a
cylinder 0.92 cm long with a diameter of 5 mm.

Cases of carotid blowout

Two of the 96 patients experienced an acute oronasal
hemorrhage. The first patient had been treated for an SCC
of the nasopharynx with chemotherapy and photon RT
(66 Gy/33 fractions) in the primary setting. Eighteen
months later, the patient was reirradiated with protons (60
Gy [RBE]/30 fractions) because of a recurrent tumor that
completely surrounded his CAs at the skull base. Both
CAs received a CumDmaxnom of 107 Gy (RBE), which
corresponds to a CumDmaxEQD2 of 100 Gy (RBE).
Before the acute hemorrhage, which occurred 6 months
after the reirradiation, the patient had a second relapse in
the reirradiated site of the nasopharynx. The hemorrhage
was fatal and an autopsy was refused, so whether the
bleeding was caused by the recurrent tumor or by a
rupture of one of the CAs is uncertain.

The second patient, also with an SCC of the naso-
pharynx, was initially treated with chemoradiation with
photons (70 Gy/35 fractions). Twenty months later, the
patient underwent total parotidectomy due to metastases.
Because of a recurrent tumor in the cranial part of the
surgical bed, which completely encased the CA, the pa-
tient received reirradiation with protons (56 Gy [RBE]/28
fractions) 72 months after the primary RT. This CA

Figure 3 CumDmaxEQD2 for all 74 carotid arteries, displaying the contribution from photon radiation therapy (RT) (blue), carbon RT
(pink), and proton RT (purple). * Carotid arteries of the 2 patients who developed oronasal hemorrhage.
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received a CumDmaxnom of 129 Gy (RBE), which cor-
responds to a CumDmaxEQD2 of 130 Gy (RBE). The
cumulative dose distribution is presented in Fig 4. Eight
months later, the patient was admitted to his local hospital
with profuse oronasal bleeding that required intubation. A
CT angiography revealed a pseudoaneurysm on the CA in
the high-dose area. No intervention was performed. The
next night, the patient experienced another profuse bleed
and died.

When attributing both cases to CB, we found a gross
CB rate of 2.1% (95% confidence interval, 0.01-7.3%) in
our series. The actuarial 1-year CB rate and overall sur-
vival probability were 2.7% and 81.5%, respectively.
Figure 5 presents the Kaplan-Meier plot for the CB rate.

Discussion

In this study, we examined the rate of CB in a cohort of
patients who underwent particle reirradiation for recurrent

neoplasms of the head and neck. The patient population
was diverse with regard to histology and site, in contrast
to most other publications on CB, due to the current in-
dications and referral practices for particle therapy.

Interestingly, both cases of probable CB were reirra-
diated with protons in 2 Gy (RBE) fractions, although we
initially were more concerned about the high-LET,
hypofractionated carbon ion reirradiation. This apparent
difference in CB rate likely is caused by chance or by
other confounding factors. For example, reirradiation for
mucosal carcinomas of the upper pharynx may be more
susceptible to CB than other combinations of histology
and site because these tumors will always receive high
doses to the tissues separating the CA from the pharynx
lumen. Indeed, the highest CB rates published were in
patient populations that were dominated by SCC and oro-/
nasopharyngeal locations reirradiated by SBRT.4,5 On the
other hand, if this were true, we should have encountered
CB in the CIRT group as well; the CIRT group had at
least as many patients in terms of absolute numbers who

Figure 4 Dose corresponding to �90% of CumD1nom (115-129 Gy [RBE]). V90%CumD1 for this patient was 0.28 cm3.
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had similar site and histology and in whom treatments
generally were more aggressive in dose and fractionation.

Another possible explanation for this apparent higher
risk of proton RT versus CIRT could be that hypo-
fractionation using high-LET radiation theoretically
widens the therapeutic window between normal tissue
complications and tumor control so that an equivalent
CIRT dose generally would lead to fewer
complications.8,9

In a report by Jensen et al10 on outcome and toxicity
after reirradiation with CIRT for recurrent adenoid cystic
carcinoma, CB occurred in 2 of 52 patients (3.8%). In our
study, there was no CB among the 77 patients who
received CIRT, even though the prescribed total dose and
fractionation at CNAO were more aggressive and the
cumulative biological equivalent lifetime doses were
comparable between the series. The apparent difference
may be explained by the small study populations, differ-
ences in histology and site, or the possible benefit of more
aggressive hypofractionation when using high-LET radi-
ation. Most likely, the difference can be explained by
CNAO’s current practice of selectively sparing the CAs,
thus resulting in the cumulative doses to the CAs prob-
ably being lower in our study. If this is the case, this
strategy would be reasonable to pursue in the future as
long as it does not affect tumor control probability. This
will be a topic for upcoming publications.

To the best of our knowledge, there are no other
studies on the CA as an OAR in which the cumulative
doses to CAs have been reproduced in this detailed
manner. Among the 74 CAs analyzed, our confirmed CB
case had received among the highest nominal cumulative
doses to the CA, and only a few patients had received

significantly higher CumDmaxEQD2 (Fig 3). These few
patients were all in the CIRT group, and it is questionable
whether the conversion of nominal dose to EQD2 is valid
for CIRT.

From the experience of our analysis, in which we
found a substantial difference and poor correlation be-
tween the prescribed cumulative lifetime dose and the
CumDmax to the CA, we conclude that a simple sum-
mation of a patient’s prescribed doses is an unsuitable
surrogate for this organ, especially with highly conformal
RT techniques. We propose considering the CA to be an
OAR, especially in the reirradiation setting, and use CA
sparing when using proton or carbon ion RT. Other au-
thors also suggest this in the setting of SBRT reirradia-
tion.14 More publications on cumulative doses to this
organ are needed. Only by pooling data from different
institutions can we hopefully shed more light on the
impact of dose, volume, and fractionation with regard to
the life threatening complication of CB.

Conclusions

The current practice of particle reirradiation at CNAO
for recurrent neoplasms in the H&N region results in
acceptable rates of CB that are better than the published
results of photon SBRT and comparable to rates achieved
with non-hypofractionated photon reirradiation. Applying
specific dose constraints to the CA in re-RT with CIRT
using the carotid sparing technique may explain the
apparent favorable rate of CB compared with those from
other institutions.
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a b s t r a c t

Background and purpose: Until now, carbon ion RT (CIRT) dose constraints for the optic nerve (ON) have
only been validated and reported in the NIRS RBE-weighted dose (DNIRS). The aim of this work is to
improve CNAO’s RBE-weighted dose (DLEM) constraints by analyzing institutional toxicity data and by
relating it to DNIRS.
Material and methods: A total of 65 ONs from 38 patients treated with CIRT to the head and neck region in
the period 2013–14 were analyzed. The absorbed dose (DAbs) of the treatment plans was reproduced and
subsequently both DLEM and DNIRS were applied, thus relating CNAO clinical toxicity to DNIRS.
Results: Median FU was 47 (26–67) months. Visual acuity was preserved for the 56 ONs in which the old
constraints were respected. Three ONs developed visual decline at DLEM|1% �71 Gy(RBE)/DLEM|20% �68 Gy
(RBE), corresponding to DNIRS|1% �68 Gy(RBE)/DNIRS|20% �62 Gy(RBE). Dose recalculation revealed that
NIRS constraints of DNIRS|1% �40 Gy(RBE)/DNIRS|20% �28 Gy(RBE) corresponded to DLEM|1% �50 Gy(RBE)/
DLEM|20% �40 Gy(RBE). Reoptimization of treatment plans with these new DLEM constraints showed that
the dose distribution still complied with NIRS constraints when evaluated in DNIRS. However, due to
uncertainties in the method, and to comply with the EQD2-based constraints used at GSI/HIT, a more
moderate constraint relaxation to DLEM|1% �45 Gy(RBE)/DLEM|20% �37 Gy(RBE) has been implemented in
CNAO clinical routine since October 2018.
Conclusion: New DLEM constraints for the ON were derived by analyzing CNAO toxicity data and by link-
ing our results to the experience of NIRS and GSI/HIT. This work demonstrates the value of recalculating
and reporting results in both DLEM and DNIRS.

� 2019 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 140 (2019) 175–181

In order to optimize carbon ion radiotherapy (CIRT) there is a
need to validate dose constraints for important organs at risk
(OARs). For the optic nerve (ON), constraints have been validated
by the National Institute of Radiobiological Sciences (NIRS, Japan)
[1], in which the relative biological effectiveness (RBE) for CIRT has
been predicted by the mixed beam model (RBENIRS) [2,3], and have
been reported as the NIRS RBE-weighted dose (DNIRS). The NIRS con-
straints are not immediately useful for European centers where the
Local effect model I (RBELEM)[4,5] is used, because comparative
studies show that RBELEM can predict a 60% higher RBE in the

entrance region of the beam [6], and 5–15% higher RBE in the
spread-out Bragg peak [7–9], relative to RBENIRS. At the National
Center of Oncological Hadrontherapy (CNAO, Italy) [10,11], dose con-
straints for ONs complied nominally with the NIRS constraints: D1%

�40 Gy(RBE) and D20% �28 Gy(RBE), although RBELEM is used in
treatment plan optimization. This was a conservative approach,
adopted at the beginning of clinical activity to minimize the risk
of unexpected visual impairment due to lack of clinically validated
RBELEM-weighted dose (DLEM) constraints. The aim of this work was
to improve CNAO’s ON dose constraints by analyzing institutional
toxicity and by relating the results to the constraints validated by
NIRS.

https://doi.org/10.1016/j.radonc.2019.06.028
0167-8140/� 2019 Elsevier B.V. All rights reserved.
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Material and methods

Patient selection

We identified a total of 38 patients (65 ONs) who had been trea-
ted at CNAO in the period 2013–14 with CIRT to the head and neck
region and who had:

� at least 2 years of follow-up.
� maximum dose (DLEM|1%) >20 Gy(RBE) to optic nerve.
� available records of visual acuity before and after CIRT.

and did not have:

� radiotherapy before or after CIRT at CNAO.
� higher dose to the chiasm than to the optic nerve.
� preexisting visual impairment.
� development of visual impairment in the follow-up period due
to other causes than radiation induced optic pathway neuropa-
thy (e.g. recurrent tumor, etc.).

Carbon ion radiotherapy at CNAO

All patients were treated to a prescribed DLEM of 68.8 or 70.4 Gy
(RBE) in 16 fractions (4 fractions/week) using the syngo� RT Plan-
ning (Siemens Healthcare, Erlangen, Germany) treatment planning
system (TPS). The patients were included in prospective protocols
(CNAO S9/2012/C, CNAO S12/2012/C and CNAO S15/2012/C)
approved by the regional ethics committee, and signed consent
was required for participation. Dose constraints for the ONs and
chiasm were DLEM|1% �40 Gy(RBE) and DLEM|20% �28 Gy(RBE). A
2 mm margin was applied to the planning organ at risk volume
(PRV) in which the dose constraints, for plan optimization pur-
poses, were DLEM|1% �60 Gy(RBE) and DLEM|20% �40 Gy(RBE). Fol-
lowing the patient’s consent, the constraints could be exceeded if
they prevented adequate dose coverage to the target volume, pro-
vided that the function of the contralateral ON was adequate and
would be preserved.

Follow-up

Patients were followed at CNAO every 3rd month with a clinical
examination and magnetic resonance imaging (MRI). If symptoms
of visual defects were reported by the patient or detected on clin-
ical examination, the patient was referred to an ophthalmologist
for further investigations and diagnosis. Radiation induced optic
neuropathy (RION) was scored according to the Optic Nerve Disorder
term of the Common Terminology Criteria for Adverse Events version
4.03 (CTCAE) [12].

Recalculation to RBENIRS-weighted dose distributions

The patients’ computer tomography (CT) image files, structure
set files, dose files and plan files (DICOM files) were exported from
syngo� TPS and imported to thematRad open source multimodality
radiation TPS (https://e0404.github.io/matRad/) in which the
absorbed dose (DAbs) and DLEM were reproduced. Dose–volume his-
tograms (DVHs) of targets and OARs were compared with the cor-
responding DVHs of the dose distribution from the syngo� TPS to
ensure correct reproduction of both DAbs and DLEM (results not
reported). Secondly, the RBENIRS was implemented in the matRad
TPS code and DNIRS was derived from the exact same absorbed
dose. This enabled a direct comparison of each patient’s DLEM and
DNIRS based exclusively on the differences in the RBE modeling.

Statistics and normal tissue complication probability (NTCP) modeling

Differences in frequencies between cohorts were compared
using Chi-Square test or Fischer’s exact test. Non-parametrical dis-
tributions were compared with the Mann–Whitney U-test, while
normally distributed data were compared with the independent
samples T-test. NTCP was calculated for cumulative DVH variables
D1%, D10%, D20% through D50% and were used to derive the dose that
would result in 5% (TD5) and 50% (TD50) probability of RION
according to the equation:

NTCP Dx%ð Þ ¼ 1� 1

1þ eaþb�d

where d is the RBE-weighted dose to x% of the ON volume and a and
b are constants estimated to provide the best fit to the data set,
using binary logistic regression. All statistical procedures were per-
formed with the software IBM SPSS Statistics for Windows, Version
24.0 (IBM Corp., Armonk, NY, U.S.A.). All p-values were obtained
from two-sided tests. P-values <0.05 were considered significant.

Reoptimization of treatment plans with new set of constraints

Finally, a subset of patients, in which the original constraints
had caused inadequate dose coverage to the clinical target volume
(CTV) in their original DLEM plan, was reoptimized with the RaySta-
tion� 7.0 TPS (RaySearch Laboratories AB, Stockholm, Sweden)
(currently under commissioning at CNAO) applying RBELEM as
RBE model and optimizing the plan with a new set of DLEM con-
straints, as proposed by this work (see Results). Subsequently, also
these plans were recalculated to DNIRS, to validate that the reopti-
mized ON DVHs still complied with the original NIRS constraints.

A flow chart of the steps involved in our method is presented in
Appendix A, Fig. A1.

Results

Patient and disease characteristics are presented in Table 1.
Median follow-up time was 47 (range 26–67) months. Among
the 38 patients and 65 ONs analyzed, toxicity did not occur in
the 52 ONs in which the current constraints were respected. Three
patients developed unilateral RION (all CTCAE grade 4) at doses
DLEM|1% �71 Gy(RBE)/DNIRS|1% �68 Gy(RBE) and DLEM|20% �68 Gy
(RBE)/DNIRS|20% �62 Gy (RBE). In all these cases, the ON constraints
were intentionally violated in order to achieve adequate dose cov-
erage to the nearby tumor. RION was detected at 11, 29 and
42 months after completed CIRT. In addition to the 3 ONs that
developed toxicity, the applied constraints were breached for 10
ONs with a median follow-up of 45 (range 26–50) months. When
evaluating the DVHs with DNIRS, only 6 of these ONs still exceeded
NIRS constraints. All individual ONs in both DLEM and DNIRS are pre-
sented in Fig. 1, demonstrating that RBENIRS generally predicts
lower RBE than RBELEM, resulting in the DVHs being shifted toward
lower doses. Key dosimetric data are presented in Table 2.

The relationship of DNIRS and DLEM for D1% and D20% is presented
in Fig. 2, showing that a DNIRS|1% of �40 Gy(RBE) and a DNIRS|20% of
�28 Gy(RBE) could approximately be translated into new CNAO
constraints of DLEM|1% �50 Gy(RBE) and DLEM|20% �40 Gy(RBE).
These new constraints for DLEM are plotted as open red squares
in Fig. 1. As can be observed, the ONs that comply with the original
NIRS constraints when their DVHs are evaluated in DNIRS, remain
compliant with the new CNAO constraints when their DVHs are
evaluated in DLEM. Likewise, the ONs that exceed the NIRS con-
straints when evaluated in DNIRS still exceed the new CNAO con-
straints when evaluated in DLEM.

The estimates of TD5 and TD50 for parameters D1%–D50%, and
their relation to the same parameters from the dose constraint val-
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idation at NIRS [1] are presented in Table 3, showing a remarkable
agreement of TD50 between NIRS and CNAO data in DNIRS, while
estimates of TD5 are substantially higher when based on the CNAO
data.

The NIRS validation cohort consisted of 30 patients (54 ONs), in
which visual impairment occurred in 9 patients (11 ONs). All ON
DVHs from this cohort are displayed in Fig. 3 (black DVHs). The
DVHs of the ONs developing toxicity in the CNAO cohort (in DNIRS)
are superimposed in red, showing good agreement to the NIRS
cohort in respect to the dose levels at which toxicity seems to
develop. The figure also displays the TD50 and TD5 estimates from
Table 3, demonstrating the coherency of TD50 values and the dis-
crepancy in TD5 values between the cohorts.

A subset of patients in which the current constraints hindered
adequate dose coverage to the clinical target volume (CTV) was
reoptimized applying the proposed new set of DLEM constraints,
i.e. DLEM|1% �50 Gy(RBE) and DLEM|20% �40 Gy(RBE). After recalcula-
tion of the new plan to DNIRS, the ON DVHs consistently remained
compliant to the original NIRS constraints. The dose distributions
of a representative patient, in which the right ON needed to be
spared in order to avoid bilateral blindness, are shown in Fig. 4.
The conservative constraints applied in the original plan inevitably
resulted in inadequate dose coverage to the part of the CTV adja-
cent to the right ON (Fig. 4A). Post hoc recalculation of the plan
to DNIRS (Fig. 4B) suggests that the right ON was excessively spared
relative to the NIRS validated constraints. Reoptimizing the plan
with the new DLEM constraints significantly improves CTV coverage
(Fig. 4C-D vs. A-B) while maintaining compliance with the NIRS
validated constraints in respect to DNIRS (Fig. 4D). In this patient,
the reoptimized plan achieved a dose coverage in which 99% of
the prescribed dose covered 92% of the CTV and 95% of the pre-
scribed dose covered 97.7% of the CTV. The respective dose cover-
age to the CTV of the original plan was only 82% and 93.2%.

Discussion

Due to the many uncertainties involved in the prediction of the
RBE of CIRT, there will inevitably be substantial uncertainties
related to the extrapolation of OAR constraints from the experience
of photon RT. Therefore, the strategy of CNAO has been to define
OAR constraints for CIRT based on CIRT clinical data. To date, there
is a general lack of validated constraints for most OARs. The few
publications addressing this topic have all reported the dose statis-
tics and NTCPs solely in the respective institutional RBE-weighted
dose [1,13–18], thus making them incomprehensible to institu-
tions applying a different RBE model.

Table 1
Patient and disease characteristics for all patients and grouped by patients that developed (RION = yes) or did not develop (RION = no) radiation induced optic neuropathy.

All (n = 38) RION = yes (n = 3) RION = no (n = 35)

Sex, female:male 18:20 2:1 16:19
Median age (range), y 59 (16–81) 62 (54–68) 54 (16–81)

Comorbidity, n (%)
Hypertension 9 (23.7%) 1 (33.3%) 8 (22.9%)
Diabetes mellitus 8 (21.1%) 1 (33.3%) 7 (20.0%)
Cardiovascular disease 4 (10.5%) 1 (33.3%) 3 (8.6%)

Histology, n (%)
Adenoid cystic carcinoma 14 (36.8%) 2 (66.7%) 12 (34.3%)
Chordoma 14 (36.8%) 0 (0.0%) 14 (40.0%)
Chondrosarcoma 3 (7.9%) 0 (0.0%) 3 (8.6%)
Other sarcoma 5 (13.2%) 1 (33.3%) 4 (11.4%)
Acinar cell carcinoma 1 (2.6%) 0 (0.0%) 1 (2.9%)
Mucosal malignant melanoma 1 (2.6%) 0 (0.0%) 1 (2.9%)

Site, n (%)
Clivus 12 (31.6%) 1 (33.3%) 11 (31.4%)
Paranasal sinus 9 (23.7%) 2 (66.7%) 7 (20.0%)
Skull base 9 (23.7%) 0 (0.0%) 9 (25.7%)
Nasal cavity 4 (10.5%) 0 (0.0%) 4 (11.4%)
Nasopharynx 2 (5.2%) 0 (0.0%) 2 (5.7%)
Other 2 (5.2%) 0 (0.0%) 2 (5.7%)
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Fig. 1. Cumulative DVH of all 65 ONs in DLEM (upper panel) and DNIRS (lower panel).
Dashed DVH-lines represent optic nerves that developed RION. Red, filled squares
indicate the current dose constraints of D1% �40 Gy(RBE) and D20% �28 Gy(RBE).
Red, open squares in upper panel represent possible new DLEM constraints for CNAO
based on RBE-weighted dose translation.
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The aim of this work was first and foremost to establish less
conservative constraints for the ON which could be used at CNAO
for a 16 fraction CIRT treatment in which RBELEM is applied. Our
data show that the original constraints have been conservative,
resulting in no unanticipated toxic events and with a seemingly
large buffer zone separating these constraints and the dose levels
where toxicity was observed. In NTCP modeling, we found TD50
to agree well with the published TD50 estimates at NIRS, while
there was a discrepancy in TD5 estimates. This discrepancy is prob-
ably a result of a scarcity of observations in the CNAO cohort in the
middle to high doses, relative to the NIRS cohort, which is evident
when comparing the neatly scattered DVHs of Fig. 3 (NIRS DVHs)
to the DVHs of Fig. 1 (CNAO DVHs) which are clustered at lower
doses. As a consequence the TD5 estimates of the CNAO data
may be unreliable. However, by recalculating our data to DNIRS, it
was possible to translate the constraints validated at NIRS into
DLEM and thereby propose new CNAO constraints to be evaluated
for feasibility. As shown in Results, new CNAO constraints of
DLEM|1% �50 Gy(RBE) and DLEM|20% �40 Gy(RBE) seem to correspond
well with the NIRS validated constraints.

Table 2
Dose statistics for all ONs and/or grouped by ONs that developed (RION = yes) or did not develop (RION = no) radiation induced optic neuropathy. P values represent the
significance level for the observed difference in variable distribution between RION = yes and RION = no groups.

All (n = 65) RION = yes (n = 3) RION = no (n = 62) P value

Median ON volume (range), cm3 0.92 (0.45–1.52) 0.74 (0.46–1.34) 0.94 (0.45–1.52) 0.485

D1%, median (range)
DLEM, Gy (RBE) 71.6 (70.7–78.6) 28.4 (12.2–73.6) <0.001
DNIRS, Gy (RBE) 67.2 (66.3–79.3) 18.1 (6.1–76.2) <0.001

D10%, median (range)
DLEM, Gy (RBE) 70.8 (69.1–72.5) 22.9 (6.5–71.8) <0.001
DNIRS, Gy (RBE) 65.2 (63.8–70.0) 12.8 (3.0–71.8) <0.001

D20%, median (range)
DLEM, Gy (RBE)) 68.5 (68.1–70.5) 19.5 (0.7–71.4) <0.001
DNIRS, Gy (RBE) 63.0 (61.8–64.7) 10.2 (0.2–68.2) <0.001

D30%, median (range)
DLEM, Gy (RBE) 68.1 (62.6–70.1) 17.1 (0.2–71.1) <0.001
DNIRS, Gy (RBE) 62.2 (54.6–64.2) 8.4 (0.0–66.7) <0.001

D50%, median (range)
DLEM, Gy (RBE) 67.4 (56.1–69.3) 12.6 (0.1–70.7) <0.001
DNIRS, Gy (RBE) 60.4 (47.3–62.6) 5.6 (0.0–65.4) <0.001

Fig. 2. Relationship of DNIRS and DLEM for D1% (blue circles) and D20% (red circles)
with corresponding trend lines. Dashed lines represent translation from DNIRS to
DLEM for constraint D1% (blue) and D20% (red).

Table 3
TD5 and TD50 values for optic nerve DVH parameters as derived from the present
study (CNAO), presented in DLEM and DNIRS, compared to corresponding values
reported by Hasegawa et al. [1] (NIRS).

CNAO NIRS CNAO/NIRS-1 (DNIRS)

DLEM DNIRS DNIRS
a

TD5, Gy(RBE) D1% 62 49 n.s.
D10% 61 45 30* 50.0%
D20% 55 42 28* 50.0%
D30% 47 37 24* 54.2%
D50% 41 30 12* 150.0%

TD50, Gy(RBE) D1% 71 68 n.s.
D10% 69 63 63 0.0%
D20% 66 60 60* 0.0%
D30% 64 57 59 �3.4%
D50% 61 53 51 3.9%

n.s. = not specified.
a Doses as reported in Hasegawa et al. [1].
* Approximated from Fig. 7 in Hasegawa et al. [1].

Fig. 3. Reprint of Fig. 4a from Hasegawa et al. [1] showing the DVHs from the NIRS
validation cohort, where black DVHs represent ONs that developed RION, and gray
DVHs represent ONs that did not develop RION. Superimposed on the figure are the
DNIRS DVHs (red) of the three ONs from the CNAO cohort that developed RION, TD5
(orange) and TD50 (yellow) of NIRS cohort (triangles) and CNAO cohort (circles).
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It should be noted that this approach assumes a perfect agree-
ment between the DNIRS recalculated for our cohort, and the DNIRS

reported for the validation cohort at NIRS. This may not be correct,
since the CIRT at NIRS is delivered by a passive scattering system
and with a different beam model calculating the underlying
absorbed dose. It has been shown that the absorbed dose of a given
RBE-weighted dose could on average vary about 2.5% in the target
region of head and neck treatments, depending on the beam model
[8]. Differences in out-of-target areas have not been described in
detail, but one might expect to find similar or even more profound
deviations in absorbed dose especially within the lateral penumbra
dose fall-off. This region is indeed very sensitive to how the lateral
spread of the beam is modeled. This is of importance, since the
sharp lateral penumbra of the carbon ion beam typically is utilized
to avoid high doses to optic nerves located close to the tumor.

Therefore, it is also valuable to relate our proposed new con-
straints to the traditions of GSI Helmholtzzentrum für Schwerionen-
forschung (GSI), Darmstadt, Germany, later adapted at the
Heidelberg Ion-Beam Therapy center (HIT), Heidelberg, Germany
[19], which together are Europe’s most experienced heavy ion

therapy center. Their ON constraint has been a maximum dose
(DLEM|max) of �54 Gy(RBE), expressed as the biologically equivalent
dose in 2 Gy(RBE) fractions (EQD2), applying a/b = 2 Gy [20].
Although GSI/HIT, as CNAO, applies both active scanning beam
delivery and the RBELEM as their RBE model, direct comparison to
CNAO is hampered by a difference in fractionation scheme. Typi-
cally, HIT uses 20 fractions of 3 Gy(RBE) delivered within 3–
3.5 weeks [20,21], while CNAO uses 16 fractions of 4.3–4.4 Gy
(RBE) delivered within 4 weeks. Unfortunately, a validation of the
GSI/HIT constraint has not yet been published. However, of interest
is their published observation of a patient developing bilateral
blindness after receiving a nominal DLEM|max of 54 Gy(RBE) to the
optic pathways, corresponding to an EQD2 of 63 Gy(RBE) [20]. This
raises concern that our proposed new CNAO constraint of DLEM|1%

�50 Gy(RBE) might be too high, since it converts into an EQD2 of
as much as 64 Gy(RBE). Although the application of EQD2 and
the use of a/b = 2 Gy for optic pathways are supported by the Euro-
pean Particle Therapy Network (EPTN) also for proton RT [22], this
method may not be sufficiently precise for CIRT, due to the greater
uncertainties involved in RBE prediction. However, to our knowl-

Fig. 4. Original and reoptimized plan in DLEM and DNIRS, demonstrating improved CTV (blue contour) dose coverage when applying the new DLEM constraints (Fig. 4c) to the
right ON (orange contour) and maintained compliance to original NIRS constraints after recalculation to DNIRS (Fig. 4d). Legend for dose distribution in Gy(RBE): dark blue = 30–
35; light blue = 35–40; light green = 40–50; dark green = 50–55; yellow = 55–58; light orange = 58–61; dark orange = 61–65; red = 65–72.
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edge this approach has been implemented without unanticipated
toxicity at GSI/HIT, thus supporting the feasibility of using EQD2
conversion within an institution applying RBELEM. Accordingly,
within the 16 fraction regimen at CNAO, an EQD2 constraint of
�54 Gy(RBE) corresponds to a nominal DLEM|1% to the ON of
�45 Gy(RBE), and implies a 9% reduction relative to the initial pro-
posal of DLEM|1% �50 Gy(RBE). A proportionately equal reduction in
the proposed DLEM|20% constraint results in DLEM|20% �37 Gy(RBE).

Regardless of the validity of EQD2 for CIRT, a reduction in the
initially proposed new CNAO constraints mitigates the uncertain-
ties involved in our DLEM to DNIRS translation, and is therefore a rea-
sonable first step for dose constraint relaxation at CNAO. As a
consequence of the results and deliberations presented in this
paper, new ON constraints of DLEM|1% �45 Gy(RBE) and DLEM|20%

�37 Gy(RBE) have been implemented at CNAO since October 2018.
This paper demonstrates the value of assessing and reporting

data on CIRT clinical toxicity in both the institution’s native RBE
model and the alternative model which is widely used clinically.
To date, dose recalculation has been a cumbersome affair, but we
anticipate that the introduction of such functionality in commer-
cial TPS’ within the next years will facilitate this process. We there-
fore hope that future publications will report OAR dose statistics

and NTCPs in both DNIRS and DLEM, and thus accelerate the much
needed validation of OAR constraints for both RBE models.

We have derived new and safe dose constraints for the ON to be
used at CNAO by analyzing the available institutional data and by
mitigating the uncertainties caused by a rather small sample size
linking our results to the experience and traditions of NIRS and
GSI/HIT. This work also demonstrates how valuable and much
needed dose–response data can be saved from being lost in transla-
tionbetween Japanese andEuropeanCIRT institutionsby recalculat-
ing and reporting results in both clinically applied RBE models.
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Appendix A

Fig. A1. Process of recalculation of RBE-weighted dose and proposal of new CNAO constraints. DICOM files from the original treatment plans were imported to the matRad
TPS. The absorbed dose (DAbs) and RBE-weighted dose distributions (DLEM and DNIRS) were recalculated. Correct reproduction of DAbs and DLEM compared to the original plans
was confirmed. The recalculated DLEM and DNIRS were used for data analysis, in which new DLEM constraints were proposed. Treatment plans were reoptimized with DLEM in
the RayStation TPS applying the new DLEM constraints. Subsequently, these new plans were recalculated to DNIRS to confirm that the plans still complied with the original NIRS
constraints.
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Brainstem NTCP and Dose
Constraints for Carbon Ion
RT—Application and Translation
From Japanese to European
RBE-Weighted Dose
Jon Espen Dale1,2, Silvia Molinelli 3, Barbara Vischioni3*, Viviana Vitolo3, Maria Bonora3,
Giuseppe Magro3, Andrea Mairani3,4, Azusa Hasegawa3,5, Tatsuya Ohno6, Olav Dahl1,
Francesca Valvo3 and Piero Fossati3,7

1 Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway, 2 Department of Oncology and
Medical Physics, Haukeland University Hospital, Bergen, Norway, 3 National Center of Oncological Hadrontherapy, Pavia,
Italy, 4 Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany, 5 Osaka Heavy Ion Therapy Center, Osaka, Japan,
6 Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan, 7 MedAustron Ion
Therapy Center, Wiener Neustadt, Austria

Background and Purpose: The Italian National Center of Oncological Hadrontherapy
(CNAO) has applied dose constraints for carbon ion RT (CIRT) as defined by Japan’s
National Institute of Radiological Sciences (NIRS). However, these institutions use different
models to predict the relative biological effectiveness (RBE). CNAO applies the Local Effect
Model I (LEM I), which in most clinical situations predicts higher RBE than NIRS’s
Microdosimetric Kinetic Model (MKM). Equal constraints therefore become more
restrictive at CNAO. Tolerance doses for the brainstem have not been validated for
LEM I-weighted dose (DLEM I). However, brainstem constraints and a Normal Tissue
Complication Probability (NTCP) model were recently reported for MKM-weighted dose
(DMKM), showing that a constraint relaxation toDMKM|0.7 cm3 <30 Gy (RBE) andDMKM|0.1 cm3

<40 Gy (RBE) was feasible. The aim of this work was to evaluate the brainstem NTCP
associated with CNAO’s current clinical practice and to propose new brainstem
constraints for LEM I-optimized CIRT at CNAO.

Material and Methods: We reproduced the absorbed dose of 30 representative patient
treatment plans from CNAO. Subsequently, we calculated both DLEM I and DMKM, and the
relationship between DMKM and DLEM I for various brainstem dose metrics was analyzed.
Furthermore, the NTCP model developed for DMKM was applied to estimate the NTCPs of
the delivered plans.

Results: The translation of CNAO treatment plans to DMKM confirmed that the former
CNAO constraints were conservative compared with DMKM constraints. Estimated NTCPs
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were 0% for all but one case, in which the NTCP was 2%. The relationship DMKM/DLEM I

could be described by a quadratic regression model which revealed that the validated
DMKM constraints corresponded to DLEM I|0.7 cm3 <41 Gy (RBE) (95% CI, 38–44 Gy (RBE))
and DLEM I|0.1 cm3 <49 Gy (RBE) (95% CI, 46–52 Gy (RBE)).

Conclusion: Our study demonstrates that RBE-weighted dose translation is of crucial
importance in order to exchange experience and thus harmonize CIRT treatments
globally. To mitigate uncertainties involved, we propose to use the lower bound of the
95% CI of the translation estimates, i.e., DLEM I|0.7 cm3 <38 Gy (RBE) and DLEM I|0.1 cm3

<46 Gy (RBE) as brainstem dose constraints for 16 fraction CIRT treatments optimized
with LEM I.

Keywords: carbon ion radiotherapy, normal tissue complication probability, dose constraints, local effect model,
microdosimetric kinetic model, relative biological effectiveness (RBE), brainstem tolerance

INTRODUCTION

There is an increasing interest in using carbon ion radiotherapy
(CIRT) for the treatment of advanced, radioresistant tumors. The
physical properties of CIRT allow for delivering a high dose to
the tumor, while the finite distal depth dose and sharp lateral
penumbra can be utilized to spare nearby organs at risk (OARs)
from excessive dose. Furthermore, carbon ions exhibit high
linear energy transfer (LET) properties, which lead to more
efficient cell killing (higher relative biological effectiveness
(RBE)), compared with photon and proton RT. However, there
are substantial uncertainties regarding the clinical RBE of carbon
ions. Therefore, prescription doses, tolerance doses to OARs, and
normal tissue complication probability (NTCP) models based on
experience with photon or proton RT may not be applicable to
CIRT and should preferably be derived from CIRT data.

Two major approaches have been used for the clinical
implementation of CIRT. Spearheaded by the National Institute
of Radiological Sciences (NIRS), Chiba, Japan, the Japanese centers
are using hypofractionated treatment schedules (16 fractions of 3.6–
4.6 Gy (RBE)) in which prescription doses andOAR tolerance doses
initially were defined through carefully conducted dose-escalation
trials. Originally, the mixed beam model (1) was developed to
predict the RBE of the passively scattered carbon ion beams with
tumor response as the relevant endpoint. Later, with the
implementation of scanned beam delivery, the modified
microdosimetric kinetic model (MKM) (2–5) was introduced.
Since these two models have been validated for consistency, they
are hereby collectively abbreviated as MKM.

In contrast, CIRT at the Gesellschaft für Schwerionenforschung
(GSI), Darmstadt, Germany, was initiated with moderately
hypofractionated schedules (20–22 fractions of 3.0–3.5 Gy (RBE))
in which the Local Effect Model Version I (LEM I) (6, 7) was used to
predict the RBE of CIRT for late responding normal tissues (i.e.,
central nervous system tissue). Trusting the LEM I to be sufficiently
accurate, dose constraints derived from photon RT could be applied
for CIRT treatments. An additional assumption for this approach
was that the linear quadratic (LQ) formalism was applicable also
for CIRT.

When the National Center of Oncological Hadrontherapy
(CNAO, Italy) (8) started treating patients with LEM I-
optimized CIRT in 2012, the successful treatment approach
developed at NIRS was adopted. However, comparative studies
show that the LEM I predicts a 5–15% higher RBE in the spread
out Bragg peak (SOBP) of a carbon ion beam, relative to
the MKM (9, 10). In the entrance region, the RBE predicted by
LEM I can be 60% higher (11). Consequently, dependent on the
clinical indication, prescription doses at CNAO (reported in
LEM I-weighted dose, DLEM I) were increased 5–15% relative to
the prescription doses at NIRS (reported in MKM-weighted dose
(DMKM)) (9, 10). In contrast, dose constraints to OARs were not
adjusted. This was a cautious approach mitigating various
uncertainties related to the adaptation of NIRS prescription
doses (i.e., differences in RBE model, beam delivery method,
dose optimization process, etc.).

For the brainstem, the dose constraint at CNAOwas therefore
set to be <30 Gy (RBE) to no more than 1% of the organ’s volume
(DLEM I│1%), following the tradition of NIRS (12). Since this
constraint becomes more restrictive in LEM I-optimized CIRT,
CNAO has so far treated more than 1,000 patients with advanced
tumors in the head and neck region (for example, skull base,
nasopharynx, and sinonasal sites) without experiencing any
grade of radiation-induced brainstem injury. Thus, the
constraint needs to be updated to provide optimal treatments
in cases where the target volume is located close to the brainstem.
However, it is challenging to propose new and reasonable
constraints since no toxic events have been reported from any
institution applying LEM I-weighted doses for CIRT.

Recently, a dose-response analysis of brainstem toxicity
following DMKM-optimized CIRT at Gunma University Heavy
Ion Medical Center (GHMC) (13) was published by Shirai et al.
(14). None of the 85 patients included in this analysis
experienced symptomatic brainstem toxicity. However, four
cases of focal brainstem contrast enhancement were detected
on routine magnetic resonance imaging (MRI) during follow-up.
This was defined as central nervous system (CNS) necrosis grade
1 events according to the Common Terminology Criteria for
Adverse Events version 4.0 (CTCAE). Even these asymptomatic
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events did not occur before the maximum dose (DMKM|max)
exceeded 48 Gy (RBE), showing that current constraint may be
conservative even when applied for DMKM. The brainstem
volume receiving more than 30 Gy (RBE) (V30 Gy (RBE)) and
40 Gy (RBE) (V40 Gy (RBE)) were independent risk factors for this
endpoint. Brainstem toxicity of any grade did not occur before
V30 Gy (RBE) exceeded 0.7 cm3 and V40 Gy (RBE) exceeded 0.1 cm3.
Since these values relate to radiologically detectable, but
asymptomatic alterations in the brainstem, they may serve as
constraints to avoid symptomatic injury. Shirai et al. also fitted
their data to the Lyman-Kutcher-Burman (LKB) NTCP model
(15–17), resulting in the following model parameters: volume-
effect parameter (n) = 0.08, biodiversity parameter (m) = 0.08,
and the equivalent uniform dose (EUD) corresponding to 50%
probability of toxicity (TD50) = 32.4 Gy (RBE).

The goal of this work is therefore to:

1. evaluate the brainstem NTCP associated with CNAOs
current clinical practice by applying the NTCP model
published by Shirai et al.

2. convert the DMKM validated constraints into DLEM I,
providing guidance for the proposal of new dose
constraints to be used at CNAO and other centers applying
LEM I.

MATERIAL AND METHODS

Treatment Plan Selection and CIRT
at CNAO
The dose distributions of 30 CIRT treatments with target
volumes close to the brainstem were included in this study.
Details on disease site, histology, and prescription dose are
presented in Table 1. The treatments were given at CNAO in
the period 2013–2014 as part of prospective protocols (CNAO
S9/2012/C, CNAO S12/2012/C, and CNAO S15/2012/C)
approved by the Regional Ethics Committee. Signed consent
was required for participation. The plans were optimized for a
prescribed DLEM I of 68.8–76.8 Gy (RBE) in 16 fractions (4
fractions/week) using the syngo® RT Planning (Siemens
Healthcare, Erlangen, Germany) treatment planning system
(TPS). Dose constraint for the brainstem was DLEM I│1%

≤30 Gy (RBE). Additionally, a constraint of DLEM I│1% ≤35 Gy
(RBE) was applied to a 3-mm planning OAR volume (PRV) for
plan optimization purposes.

In general, the strategy to obtain a robust treatment plan is
similar at CNAO and GHMC: Multiple beam angles (3 to 4),
dominantly originating from the horizontally fixed beam line, are
achieved by couch rotation and/or by multiple immobilization
positions where the patient’s head is positioned either straight or

TABLE 1 | Disease and treatment characteristics.

Case nr. Histology Site Total DLEM I (Gy (RBE)) Fraction DLEM I (Gy (RBE))

1 Chordoma Skull base 70.4 4.4
2 Mesenchymal tumor Frontal sinus 76.8 4.8
3 Chordoma Skull base 70.4 4.4
4 Chordoma Skull base 70.4 4.4
5 MPNST Clivus 76.8 4.8
6 Chordoma Skull base 70.4 4.4
7 ACC Meckel’s cave 68.8 4.3
8 Chondrosarcoma Nasal cavity 70.4 4.4
9 Chordoma Clivus 70.4 4.4
10 Chordoma Clivus 70.4 4.4
11 Chordoma Clivus 70.4 4.4
12 ACC Maxillary sinus 68.8 4.3
13 Chordoma Clivus 70.4 4.4
14 Chordoma Clivus 70.4 4.4
15 Chondrosarcoma Clivus 70.4 4.4
16 Chordoma Skull base 70.4 4.4
17 ACC Maxillary sinus 68.8 4.3
18 ACC Nasopharynx 68,8 4,3
19 Chordoma Clivus 70.4 4.4
20 Chondrosarcoma Skull base 70.4 4.4
21 Cordoma Clivus 70.4 4.4
22 ACC Maxillary sinus 68.8 4.3
23 ACC Skull base 68.8 4.3
24 Chordoma Clivus 70.4 4.4
25 Pleomorphic sarcoma Clivus 76.8 4.8
26 ACC Paranasal sinuses 68.8 4.3
27 Chordoma Clivus 70.4 4.4
28 Acinar cell carcinoma Ethmoid/nasal cavity 68.8 4.3
29 ACC Maxillary sinus 68.8 4.3
30 Chordoma Clivus 70.4 4.4

MPNST, Malignant peripheral nerve sheath tumor; ACC, Adenoid cystic carcinoma.
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rotated. Due to particle range uncertainty, beam angles are
chosen so that most of the dose to the brainstem originates
from the beam’s sharp lateral penumbra, rather than the distal
dose fall-off. Beams traversing through the brainstem are
never used.

Recalculation of RBE-Weighted Dose
Distributions
The patients’ computed tomography (CT) image files, structure
set files, dose files, and plan files were exported from the syngo®

TPS and imported to the matRad open source multimodality
radiation TPS (https://e0404.github.io/matRad/) (18) in which
the absorbed dose (DAbs) and DLEM I were reproduced. The input
parameters used clinically for LEM I were applied, i.e.,
ag = 0.1 Gy−1, bg = 0.05 Gy−2, Dt = 30 Gy, smax = 3.1 Gy−1,
Rn = 5 mm (7). The DVHs of targets and OARs were compared
with the corresponding DVHs of the dose distribution from the
syngo® TPS to ensure correct reproduction of both DAbs and
DLEM I (results not reported). Secondly, MKM was implemented
in the matRad TPS code using the input parameters used
clinically (Rd = 0.32 µm, Rn = 3.9 µm, a0 = 0.172 Gy−1,
b = 0.0615 Gy−2, ar = 0.764 Gy−1, FClin = 2.39) (2, 11) and
DMKM was derived from the exact same absorbed dose and
LET spectra. This enabled a direct comparison of each patient’s
DLEM I and DMKM based exclusively on the differences in the
RBE modeling.

Estimation of Brainstem NTCP
Using the DMKM distributions, the brainstem NTCP for each
treatment plan was calculated by the LKB method, using the
model parameters suggested by Shirai et al. (14): n = 0.08,
m = 0.08, and TD50 = 32.4 Gy (RBE).

RBE-Weighted Dose Translation
For each brainstem, the DMKM|0.7 cm3 and DMKM|0.1 cm3 were
plotted as a function of DLEM I|0.7 cm3 and DLEM I|0.1 cm3,
respectively. A curve fitting procedure was performed with the
software IBM SPSS Statistics for Windows, version 24.0 (IBM
Corp., Armonk, NY, U.S.A.) in order to produce a dose
translation model.

Verification of Dose Translation Model
As a last step, we wanted to verify that the dose translation model
correctly predicted the DLEM I/DMKM relationship also for higher
brainstem doses than our original data. Therefore, five treatment
plans, in which the original DLEM I constraint caused suboptimal
dose coverage to the clinical target volume (CTV D95% <95% of
prescription dose), were reoptimized applying a new set of DLEM I

constraints as proposed by this work (see “RESULTS”).
Subsequently, these new plans were recalculated to DMKM. These
procedures, which were conducted exclusively to confirm the
relationship of the RBE models, were performed with the
RayStation® 6.99 TPS (RaySearch Laboratories AB, Stockholm,
Sweden), where both the LEM I and MKM were implemented
with the respective model input parameters as mentioned earlier.

RESULTS

Brainstem DVHs in relative and absolute volumes are presented
in both DLEM I and DMKM in Figure 1, showing the substantial
decrease in RBE-weighted doses when the MKM is applied as
RBE model.

The median brainstem DLEM I|1% was 23.7 Gy (range, 11.2–31.3
(RBE)), which corresponded to only 12.4 Gy (range, 5.5–21.8
(RBE)) in DMKM, highlighting the restraining effect of the original
CNAO constraint in achieving optimal CIRT treatments.

Only four of the brainstems received DMKM >30 Gy (RBE),
each of them to a volume smaller than 0.05 cm3. As seen in
Figures 1B, D, the highest DLEM I to the brainstem volumes 0.7
and 0.1 cm3 were 29 Gy (RBE) and 35 Gy (RBE), respectively,
corresponding to 17 Gy (RBE) and 25 Gy (RBE) in DMKM. These
modest doses resulted in a very low probability of asymptomatic
(grade 1) brainstem injury according to the NTCP model
published by Shirai et al. (14): One patient had an NTCP of
2%, while the NTCPs of the remaining 29 patients were close to
0%, see Figure 2.

For each patient, the brainstem dose metrics DLEM I|0.7 cm3 and
DLEM I|0.1 cm3 were plotted against the corresponding dose metric in
DMKM (Figure 3). With the assumption that the intercept should be
at origin (DLEM = 0 Gy (RBE) whenDMKM = 0 Gy (RBE)), we found
that the quadratic regression model

DMKM = (b1� DLEM I) + (b2� ½DLEM I �2)
adequately fit both sets of data (coefficients of determination,

R2 ≥ 0.918). Extrapolation of the models to the relevant dose levels
revealed that a DMKM|0.7 cm3 of 30 Gy (RBE) and a DMKM|0.1 cm3

of 40 Gy (RBE) translates into a DLEM I|0.7 cm3 of 41 Gy (RBE)
(95% CI, 38–44 Gy (RBE)) and a DLEM I|0.1 cm3 of 49 Gy (RBE)
(95% CI, 46–52 Gy (RBE)), respectively.

Subsequently, we reoptimized five of the treatment plans in
which the old brainstem constraint (DLEM I|1% <30 Gy (RBE))
caused suboptimal CTV dose coverage. For the reoptimization, new
brainstem constraints within the lower half of the 95% CI of the
dose translation estimates were applied, i.e., DLEM I|0.7 cm3 <38–
41 Gy (RBE) and DLEM I| cm3 <46–49 Gy (RBE). The relationship of
DLEM I to DMKM for the dose metrics D0.7 cm3 and D0.1 cm3 from the
reoptimized plans are plotted as open circles in the scatterplots of
Figure 3. As can be seen, the values of these data pairs agree with the
prediction of the dose translation model. To demonstrate the
potential clinical impact of relaxing the constraints, a comparison
of the original and reoptimized plans, displayed in both DLEM I and
DMKM, is presented in Figure 4. For this patient, the proportion of
the CTV receiving >95% of the prescription dose increased from 74
to 95%.

DISCUSSION

For the implementation of CIRT at CNAO, the goal has been to
replicate the successful results achieved at Japanese CIRT
centers, by translating NIRS prescription doses into
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equiefficient doses within the LEM I dose prescription system (9,
10). However, initially the OAR dose constraints were not
adjusted correspondingly. This study clearly shows that the
original brainstem dose constraint applied at CNAO is too
conservative compared with the clinical practice in Japanese
centers. In a recent publication on skull base chordomas treated
at CNAO, Iannalfi et al. found that 92% of the local recurrences

were attributable to suboptimal target dose in regions close to the
brainstem or optic pathways (19). The estimated 5-year local
control (LC) rate was 71%. This is inferior to the results reported
by Japanese centers, where 5-year LC rates within the range 76–
92% have been reported (20, 21).

Consequently, updated constraints for LEM I-optimized CIRT
are urgently needed. In our opinion, due to the lack of publications

FIGURE 2 | Brainstem NTCP for the 30 patients treated at CNAO as function of EUDMKM according to the NTCP model published by Shirai et al. (14).

A B

DC

FIGURE 1 | Brainstem DVHs in relative (A, C) and absolute volume (≤2 cm3) (B, D) of 30 patients treated at CNAO, presented in DLEM I (A, B) and DMKM (C, D).
Crosses represent the former CNAO and NIRS dose constraint of D1% ≤30 Gy (RBE). Triangles represent the new DMKM constraints V40 Gy (RBE) <0.1 cm3 and
V30 Gy (RBE) <0.7 cm3 as defined by Shirai et al. (14). Squares in (B) represent the possible new DLEM I constraints (error bars, 95% CI) resulting from the dose
translation model presented in this work, see Figure 3.
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addressing brainstem NTCP for LEM I-optimized CIRT, this aim
was only achievable by making use of DMKM-validated dose
constraints. Relating the CNAO DVHs to the new DMKM

constraints defined by Shirai et al. (Figure 1D) suggests that
doses to the brainstem volumes 0.7 and 0.1 cm3 potentially could
be increased by 13 Gy (RBE) and 15 Gy (RBE) in DMKM,
respectively, compared with the former practice at CNAO.
According to our dose constraint translation, the corresponding
increase in DLEM I would be approximately 12 Gy (RBE) (95% CI,
9–15 Gy (RBE)) and 14 Gy (RBE) (95% CI, 11–17 Gy (RBE)). This

unveils an opportunity for improved target dose coverage, and thus
improved treatment outcome, as demonstrated in Figure 4.

Recently, the European Particle Therapy Network (EPTN)
released a consensus paper for dose constraints to various OARs
(22), suggesting a general constraint of D0.03 cm3 ≤54 Gy (RBE) to
the brainstem, with an option to allow for D0.03 cm3 ≤60 Gy (RBE)
to the brainstem surface. Both constraints were expressed in
equivalent dose in 2 Gy fractions (EQD2), with an assumed a/b
ratio of 2 Gy. These guidelines are based on photon and proton
RT toxicity data and are not necessarily applicable for CIRT due

A

B

FIGURE 3 | Black squares represent the relationship of DLEM I to DMKM for the dose metrics D0.7 cm3 (A) and D0.1 cm3 (B) for each individual brainstem. The solid line
represents the quadratic function providing the best fit to the data points (black squares), assuming that the intercept should be in the origin. The dashed lines
represent the 95% CI. The open circles represent the data collected from the reoptimized plans; these data points were not used for the curve fitting procedure.
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to the larger uncertainties involved in the prediction of the RBE.
However, similar constraints are used for CIRT at the Heidelberg
Ion Beam Therapy Center (HIT) in Germany (23), building on
previous clinical experience of the GSI. Various publications
from this institution explicitly report an absence of brainstem
toxicity (24, 25). Consequently, these constraints are considered
safe for CIRT under HIT’s current treatment paradigm, which
consists of 20–22 fractions of 3.0–3.5 Gy (RBE) and 5–7 fractions
per week. Although HIT also applies LEM I, these constraints
may not be safely transferred to the 16 fraction/4 fractions per
week treatment schedule of CNAO, as EQD2 conversion may
not be sufficiently precise when fraction doses increase, due to
uncertainties in the prediction of RBE.

That being said, it is interesting to observe that our translated
constraints, when converted into EQD2, relate closely to the
EQD2 constraints used in clinical practice at HIT (23), see
Figure 5.

In 2010, as part of the Quantitative Analysis of Normal Tissue
Effects in the Clinic (QUANTEC) effort, brainstem constraints

and tolerance doses following photon and proton RT were
summarized in Figure 1 in the organ-specific paper by Mayo
et al. (26). Making use of the LQ model, tolerance doses from
either normofractionated treatments or single fractionation
stereotactic treatments were extrapolated to provide an
approximation for the tolerance dose for hypofractionated
treatments. The figure is reused in Figure 6 of this paper, in
which the DLEM I|0.1 cm3 constraint we derived from this work has
been superimposed as a red circle. Clearly, our constraint
complies with the projections of the LQ model, supporting the
capacity of the LEM I to predict the RBE of CIRT for this
endpoint with sufficient accuracy.

An advantage of our dose translation approach is that the
fractionation regimen at GHMC is similar to that of CNAO, and
therefore the uncertainty related to EQD2 conversion can be
avoided. Furthermore, both GHMC and CNAO have adopted the
traditions of NIRS, in regard to the choice of beam number, angles,
and strategies to achieve a robust treatment plan. Lastly,
both centers are restricted to the use of fixed beam lines,

FIGURE 4 | Transversal sections of DLEM I-optimized treatment plans applying brainstem (green contour) constraints of DLEM I|1% <30 Gy (RBE) in plan (A) or DLEM I|0.7 cm3

<38 Gy (RBE) and DLEM|0.1 cm3 <46 Gy (RBE) in plan B). The dose constraint levels are illustrated by dark blue, light blue, and light green isodose, respectively. Plans were
subsequently recalculated to DMKM (A′, B′). Red isodose in plan (A, B) represents 95% of the target dose (70.4 Gy (RBE) in DLEM I). Note the improved dose coverage to
the CTV (red contour) and to the part of the CTV in which the tumor recurred (yellow contour) in plan B compared with plan A. Dose to the brainstem remains compliant
with the constraints defined by Shirai et al. when evaluated in DMKM (B′).
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whichinevitably restricts the freedom of beam angles and
consequently favors harmonization of the treatments at the two
centers additionally.

However, our method is affected by unavoidable uncertainties.
Firstly, transferring dose constraints from a center with passive
scattering beam delivery (PS) to a center with pencil beam scanning
(PBS) may be controversial. The beam delivery techniques will
inevitably cause differences in the radiation quality (mixture of
primary and secondary particles and their corresponding LET
values) of the beams, and the distribution and weighting of Bragg
peaks may be very dissimilar. However, two studies have confirmed

that the biological effect of the carbon ion beams of NIRS, HIT, and
CNAO are identical (27, 28).

Secondly, the DAbs underlying the RBE-weighted dose is
calculated by different beam models at the two institutions. It
has been shown that theDAbs of a given RBE-weighted dose could
on average vary about 2.5% in the target region of head and neck
treatments, depending on the beammodel (9). Differences related
to beam modeling in the out-of-target areas have not been
investigated, but one would expect to find more profound
deviations in DAbs especially within the lateral penumbra dose
fall-off. This region is certainly sensitive to how the lateral spread

FIGURE 6 | Figure 1 from Mayo et al. (23) reprinted with permission, comparing selected data on brainstem tolerance and dose constraints from stereotactic RT or
normofractionated photon or proton RT, compared with the linear quadratic (LQ) model extrapolations. Data points are marked with the corresponding author and
dose parameter considered in parenthesis. The DLEM I|0.1 cm3 <46 Gy (RBE) constraint for a 16-fraction LEM I-optimized CIRT, estimated by dose translation of the
corresponding DMKM constraint is superimposed as a red circle on the original figure.

FIGURE 5 | Absolute volume DVH showing old CNAO DLEM I|1% <30 Gy (RBE) constraint (cross) and the translated Shirai constraints DLEM I|0.7 cm3 <41 Gy (RBE)
and DLEM I|0.1 cm3 <49 Gy (RBE) (squares, error bars = 95% CI), converted into EQD2 (assuming a/b ratio = 2 Gy) in comparison with the EQD2 constraints applied
at HIT as reported by Nikoghosyan et al. (21): DLEM I|1% <54 Gy (RBE) and DLEM I|max <60 Gy (RBE) (circles). As an approximation to the absolute volume relating to
the D1% constraints, the median brainstem volume in our data set (26 cm3) was used. The translated constraints are more closely related to the constraints used at
HIT than the old CNAO constraint.
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of the beam is modeled. This is of importance, since the sharp
lateral penumbra of the carbon ion beam typically is utilized to
avoid high doses to the brainstem when it is located close to
the tumor.

To conclude, these latter issues infer that the DMKM that we
reproduce in this work, based on the DAbs of CNAO DLEM I-
optimized treatment plans, are not an exact replica of GHMC
treatment plans. Nevertheless, our dose translation approach
definitely provides guidance as to how much the DLEM I

constraints at CNAO may be relaxed in order to match the
Japanese constraints. As a measure of caution, we propose the
lower bound of the 95% CI of the dose translation estimates, i.e.,
DLEM I|0.7 cm3 <38 Gy (RBE) and DLEM I|0.1 cm3 <46 Gy (RBE), as
possible brainstem constraints for LEM I-optimized CIRT in a 16-
fraction schedule. These proposed constraint values implyDLEM I/
DMKM conversion factors of 1.27 and 1.15 forDMKM fraction doses
of 1.88 Gy (RBE) and 2.5 Gy (RBE) respectively, which is quite
modest comparedwith the target dose conversion factors found by
Steinsträter et al. (29), where conversion factors for the respective
fraction doses were found to be >1.44 and >1.21.

Finally, as our conclusions rely on the results of Shirai et al.,
the limitations described in their study also apply to our work
(small number of events, single institution study, etc.). Another
essential assumption for the application of these constraints is
that asymptomatic MRI contrast enhancement does not
necessarily evolve into necrosis and therefore constraints that
safeguard against this event most certainly will prevent the more
meaningful clinical endpoint. Mere contrast enhancement is
regarded as evidence of increased permeability of the blood-
brain barrier (BBB), which results from radiation-induced
alterations in endothelial and glial cell function (30). However,
increased permeability does not necessarily lead to parenchymal
damage as demonstrated for the spinal cord in a rat model (31).
This phenomenon has also been documented for radiation-
induced injury of the brain following CIRT, and it is
hypothesized that since smaller volumes of CNS tissue is
irradiated by particle therapy in comparison with photon RT,
the probability of recovery will be higher (32). The observation
that the lesions reported by Shirai et al. were reversible or stable
in the absence of therapeutic intervention further supports the
argument that no real necrosis had occurred.

In this setting, applying the CTCAE term CNS necrosis grade
1 when only contrast enhancement is evident, as done by Shirai
et al., may be confusing and potentially discourage physicians
from referring patients to CIRT. However, the CTCAE lacks a
proper predefined term to discriminate increased permeability in
the BBB from a necrotic process. Moreover, neither the SOMA-
LENT scale (subterm MRI in the Analytic scale) (33) nor the
RTOG/EORTC Late Morbidity Scoring Schema (subterm Brain)
(34) exhibit sufficient granularity to encompass this distinction.
We therefore suggest to apply the CTCAE term Nervous system
disorders—Other, and specifying it as Brainstem reaction as an
analogy to the Temporal lobe reaction term coined by Gilman
et al. (35), in which contrast enhancement would be a grade 1
“reaction,” thus avoiding the use of the misleading and more
distressing term “necrosis.”

CONCLUSIONS

Based on this work, these new constraints, DLEM I|0.7 cm3 <38 Gy
(RBE) and DLEM I|0.1 cm3 <46 Gy (RBE), have been implemented
in the prospective treatment protocols of CNAO since October
2018. They can serve as constraints also for other centers
applying LEM I within CIRT schedules of 16 fractions. Indeed,
these constraints have also been selected as the most optimal
constraints available and have therefore recently been
implemented in clinical practice at the MedAustron Ion
Therapy Center (Wiener-Neustadt, Austria) for 16 fractions of
CIRT treatment of skull base tumors optimized with LEM I.

This paper highlights a challenge that is unique for CIRT
compared with other external beam RT modalities: the
exchange of experience between Japanese and European CIRT
facilities is severely hampered by the use of disparate RBE
models. Fortunately, we anticipate that the recalculation of
treatment plans to the alternative RBE model will become
substantially less time consuming due to the introduction of
such functionality in commercial TPSs. We therefore hope to
see future CIRT publications reporting OAR toxicity, NTCP,
and related dose metrics in both DMKM and DLEM I, as our
group recently has done for the optic nerve (36). This would
accelerate the much needed validation of OAR constraints for
both RBE models.
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