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Aquaculture is the fastest growing food producing sector worldwide. The decline in capture 

fisheries has led to a decrease in fish oil and fish meal production. Due to this decline, there is a 

need for alternative lipid and protein sources in fish feed. Lipid and protein sources of plant origin 

has been increasingly replacing fish ingredients. Today fish feed typically contains about 70 % 

plant ingredients. Replacement of plant ingredients has reduced hazardous environmental 

contaminants such as dioxins and polychlorinated biphenyls (PCBs) in fish feed. However, is has 

also been introduced new undesirable substances, such as chlorpyrifos (CPF) which is an 

organophosphate pesticide.  

 

In this study the effects of CPF were investigated on intestinal permeability of Atlantic salmon. 

Apparent permeability was measured on the mid intestinal section of fish injected with 500 µM 

CPF for 3 hours, using the gut sac model. Furthermore, an intestinal cell line (RTgutGC) derived 

from rainbow trout was also used as an in vitro model for Atlantic salmon. The transepithelial 

electrical resistance (TEER) was measured in cells exposed to 0.5 – 500 µM CPF for 24 hours. The 

transcriptional levels of several genes involved in detoxification and lipid metabolism was also 

quantified with the same dose range of CPF exposed to 24 hours, with real-time PCR. Cytotoxicity 

was determined by the xCELLigence system in cells exposed to 0.05 – 500 µM CPF for 24 hours.  

 

Results from the gut sac model showed that CPF had no effect on the intestinal permeability and 

histological evaluation showed no inflammation in the epithelium. High TEER values indicated 

increased permeability of cells exposed to high concentrations of CPF. Most of the studied genes 

did not respond to CPF, but a downregulation of genes was seen when cells were exposed to high 

concentrations of CPF.  xCELLigence system showed that cells exposed to CPF concentrations of 

50 µM and upwards induce cytotoxicity.   

 

 

1. Abstract 



In conclusion the gut sac model showed no effects of CPF at 500 µM on the intestinal sac of fish 

while the RTgutGC cell line model showed the CPF at 500 µM was highly toxic to CPF inducing 

100 % cell death. The difference in the CPF toxicity at 500 µM may be explained by duration of 

the exposure period, differences between the model systems and species differentiation. Further 

research is required to investigate whether the RTgutGC cell model is good in vitro model for 

salmon when studying the effects of CPF. 
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2.1 Aquaculture 

Aquaculture, defined by FAO, 1988 is the farming of aquatic organisms including fish, mollusks, 

crustaceans and aquatic plants. It is now the fastest growing food-producing sector worldwide. 

The global fish production is estimated to have reached about 179 million tonnes in 2018 and 

aquaculture fish production accounted for 46 percent of this total fish production (FAO,2020). 

Since 1999 the growth of the global aquaculture production has been increasing, while the 

growth of global capture fisheries has been relatively stable (FAO, 2020). Aquaculture production 

has been dominated by Asia with an 89% share in the last two decades (FAO,2020). China being 

the major aquaculture producing country, a significant share of this production also comes from 

India, Indonesia, Vietnam, Bangladesh, Egypt, Norway and Chile (FAO,2020). 

 

 

Figure 2.1 Global capture fisheries and aquaculture production, excluding aquatic mammals, 

crocodiles, alligators and caimans, seaweeds and other aquatic plants (FAO,2020). 

 

 

 

2. Introduction                          
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Aquaculture plays an important role in food production, economic development, and food 

security. The growth of aquaculture will have to continue to meet the increasing demand for fish. 

Growth without proper planning and management would not be sustainable and therefore need 

to be improved significantly (Lin, 2004). The aquaculture sector is being heavily criticized for 

alteration or destruction of natural habitats, introduction and transmission of aquatic animal 

diseases and degrading the aquatic environment through the release of uneaten food, waste 

products and pharmaceuticals (Bashir et al., 2020). Proper local, national and international 

planning and management will improve the production, efficiency and environmental 

sustainability of the sector allowing it to develop (Lin, 2004). 

 

2.1.1 Fish feed and fish nutrition 

Fish feed is the most important and the first major step in modern aquaculture production chain 

(Cho, 1990; Craig, 2009; Maage et al., 2008). In cultured fish where natural food is absent or 

where they make a small contribution to the nutrition of the fish, the feed should be nutritionally 

complete. Fish feeds, in the form of granules or pellets provides the sufficient nutrition needed 

by the fish (Cho, 1990). A good nutritious feed will strengthen the fishes immune defense, health, 

welfare, and development, producing a healthy high-quality product (Bhosale et al., 2010). 

The production of fish feed is mainly targeted at carnivorous species such as salmonids, cod, bass 

and bream (Maage et al., 2008). These species require a protein rich diet, of which fish meal and 

fish oil traditionally have been the most important and the main components (Bhosale et al., 

2010; Pettersson, 2010). Due to the decline in capture fisheries, fish oil and meal production has 

been stagnating. For this reason, there is a need for alternative lipid/protein sources to guarantee 

the future growth of the industry (Yıldız et al., 2018). 

 

Lipid and protein sources of plant origin are increasingly being used in aquaculture feed 

production. Due to its increased production, low cost and sustainability, plant products  make a 

good candidate for replacing fish ingredients (Ayisi et al., 2019; Sales & Glencross, 2011; Sørensen 

et al., 2011). Today fish feed typically contains about 70 % plant ingredients (Ytrestøyl et al., 2015). 

Soybean meal, sunflower meal, pea protein concentrate, wheat and corn gluten are currently 
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been used as plant protein in Norwegian aquaculture (Sørensen et al., 2011). Rapeseed oil is the 

main plant oil that is used at present. However palm  and soybean oil may also be used (Sørensen 

et al., 2011).  

 

Vegetable oils contains n-6 and n-9 polyunsaturated fatty acids (PUFA) in abundance (Ayisi et al., 

2019; Craig, 2009). In contrast  to fish oils, vegetable oils lack n−3 highly unsaturated fatty acids 

which are known to have a variety of health benefits for humans (Craig, 2009). Replacement of 

fish oils with vegetable oils has therefore led to the reduction of n-3 fatty acids which reduces the 

nutritional quality of the fish, which may have a negative impact on human nutrition (Ayisi et al., 

2019; Pettersson, 2010; Yıldız et al., 2018). 

 

Plant ingredients in fish feed  have not shown negative effects on growth, performance, survival 

and feed utilization (Menoyo et al., 2005; Ye et al., 2019). Replacement of marine fish oil with 

plant oil has reduced the levels of hazardous environmental contaminants such as dioxins and 

PCBs in fish feed (Berntssen et al., 2010). However, this substitution has also introduced new 

undesirable substances in the feed (Søfteland et al., 2014). 

 

2.2 Pesticides  

Pesticides are chemical and biological compounds used mainly on agricultural lands to prevent, 

destroy, and control unwanted organisms also known as pests (Biscaldi et al., 1986).  Pesticides 

can be categorized into several groups depending on their target organisms. These include 

insecticides, fungicides, nematocides, molluscicides, rodenticides, plant growth regulators and 

others (Pang, 2018). Pesticides play an important role is agriculture. Although they prevent large 

crop losses , enhance economic potential by increasing the production of food and eradicate 

vector borne diseases, they also disrupt the natural aquatic ecosystem (Aktar et al., 2009). 

Pesticides enter the aquatic environment unintentionally. They are washed off from land through 

rain fall, spray drifts, irrigation and drainage into rivers, streams and eventually the ocean (Stanley 

et al., 2016). Pesticides are designed to be highly specific for undesirable targets. However not all 

pesticides are highly selective and may be toxic to non-target organisms, including humans 
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(Casarett et al.,1996). The wide spread use of pesticides have resulted in low levels of pesticide 

residues in food and drinking water causing increasing concern for the possible treats to human 

health (Adedeji & Okocha, 2012). 

 

2.2.1 Pesticide exposure and toxicity in fish 

 Aquatic toxicology is referred to as the study of effects of environmental contaminants on aquatic 

organisms (Helfrich et al., 2009; Srivastava et al., 2016).  In all parts of the world pesticides have 

been found in the aquatic ecosystem and have become a global problem (Adedeji & Okocha, 

2012; Sabra et al., 2015). Unlike  other non-target organisms fish and aquatic organisms are being 

constantly exposed to pesticides, since they live and breathe under water (Stanley et al., 2016). 

Due to this reason pesticides have been found to be highly toxic to aquatic lifeforms. It is unlikely 

that pesticides levels in the ocean will exceed those in freshwater, as the dilution in the ocean 

would likely result in concentrations less than those in rivers and streams (Ernst, 1980; Giesy et 

al., 1999). 

 

Fish are mainly exposed to pesticides in three primary ways, 1) dermally, direct absorption 

through skin, 2) inhalation, direct uptake of pesticides through gills or 3) orally, drinking/ingestion 

of contaminated water/food(Helfrich et al., 2009; Sabra et al., 2015). Some chemicals may be 

highly toxic by one route but not others. The degree of a toxic response of a substance can vary 

substantially depending on factors like exposure route, duration, dosage, physiological properties 

of the compound, species, and individual sensitivity (Helfrich et al., 2009; Sabra et al., 2015). A 

dose is referred to as the amount of a toxic compound entering an organism, expressed as mg/kg 

(Helfrich et al., 2009). 

The dose causing 50% lethality in a test animal population is called LD50 (lethal dose 50%). The 

smaller the value of LD50 the more potent (more toxic) is the chemical (Casarett et al., 1996). 

LC50 stands for lethal concentration 50% is used for the concentration of a chemical in air or in 

aqueous solution (Casarett et al., 1996). When a chemical causes a defined form of toxicity there 

exists a dose below which no observable effect occurs, called the threshold. The highest dose at 
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which no toxic effect is seen is called no observable effect level (NOEL) and the lowest dose at 

which there was an observed toxic or adverse effect is called lowest observed adverse effect level 

(LOAEL) (Casarett et al., 1996). These important toxicological concepts are used to derive 

quantitative estimates of toxicity of chemical substances in dose response curves. 

Pesticide toxicity to fish has been investigated in several studies. Pesticides effect on fish may be 

anything from acute morality to sublethal effects. Chronic (continuous, long term) exposure to 

low concentrations of pesticides may cause diverse effects such oxidative damage, inhibition of 

acetylcholine esterase (AChE) activity, histopathological changes, developmental changes, 

reproduction, mutagenesis and carcinogenicity (Adedeji & Okocha, 2012; Sunanda et al., 2016). 

 

Pesticide exposure to fish and other aquatic organisms depends on its bioavailability, 

bioconcentration, biomagnification and persistence in the environment (Helfrich et al., 2009; 

Sabra et al., 2015; Stanley et al., 2016).  Bioaccumulation is defined as the uptake, storage and 

accumulation of contaminants in organisms from their environment (Segner, 1998), and it occurs 

when an organism absorbs a substance at a rate faster than that at which the substance is lost. 

Many pesticides are lipid- soluble and accumulate in fatty tissue of living organisms and 

biomagnified up the food web (Stanley et al., 2016). Exposure to many pesticides may lead to 

chemical interactions between them that increase their toxicity (Stanley et al., 2016). 
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 2.2.2 Chlorpyrifos  

Chlorpyrifos (O,O-diethyl-O-3,5,6-trichlor-2-

pyridyl phosphorothioate, CPF) is an 

organophosphate insecticide which is used  

to control a wide range of pests on  

agricultural and animal farms. CPF was 

developed by Dow chemicals in 1962 and 

was first registered for the use in 1965 (Dow 

& Company, 2011). CPF was banned in     the 

European union since January 2020 due it’s 

harmful effects on the brains of fetus and 

young children (EFSA, 2019; Hites, 2021) but  

 

 

 

 

 

 Figure 2.2.2 Chemical structure of         

                                Chlorpyrifos  

 

 

it’s still widely used in other parts of the 

world (Dow & Company, 2011). 

 

 

Several studies have shown that waterborne CPF bioaccumulates and is toxic to fish (Schimmel et 

al., 1983; Yen et al., 2011). The mode of action of CPF is similar for both target and non - target 

organisms. CPF affects the normal function of the nervous system by inhibiting the breakdown of 

AChE in nerve cells (Giesy et al., 1999). This leads to an increasing level and duration of action of 

the ACh action in the central nervous system. The resulting accumulation of ACh causes 

overstimulation of the neuronal cells, which leads to neurotoxicity and eventually 

death. Secondary toxic effects of CPF  can induce morphological, neurobehavioral, oxidative, 

biochemical, histopathological, haematological, endocrine disruption, immunotoxicity and 

developmental alterations (Deb & Das, 2013; Sunanda et al., 2016; Xing et al., 2015; Yen et al., 

2011).  

 

Although CPF is readily absorbed by most organisms, they are subjected to rapid metabolism and 

are easily excreted.  Therefore, CPF has a low bioaccumulation and biomagnification potential 

compared to many persistent organic pollutants (Racke et al., 2002; Varó et al., 2002). 
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2.2.3 Saponin   

The use of plant ingredients in fish feed has introduced a wide variety of antinutritional 

substances. Antinutrients are naturally occurring compounds that interfere with nutrition 

absorption in the body (Francis et al., 2001). 

 

Saponins are amphiphilic molecules that consist if a sugar moiety linked to steroid or triterpenoid 

aglycone (Knudsen et al., 2008). They have the ability to form stable soap like foams in aqueous 

solutions, hence the name (Francis et al., 2002). They can be found in wild plants and in cultivated 

crops such as soyabean, pea and lupin (Min Gu et al., 2014; Krogdahl et al., 2010). Saponins are 

considered to be involved in plants defense system against microbial and insect attack (Knudsen 

et al., 2008; Sparg et al., 2004). Previous studies have showed saponins from soybean meal are 

responsible for inducing   enteritis in the distal intestine of Atlantic salmon (Knudsen et al., 2007, 

2008). 

 

2.3 The intestinal barrier  

The intestinal tract forms the largest and the most important barrier that separates the external 

environment from the internal (Groschwitz & Hogan, 2009; Martin et al., 2016). 

 

 

Figure 2.3.1 The intestinal epithelium barrier, that separates the external environment (luminal 

contents) from the internal. (Created in Biorender) 
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The mucosal barrier can be roughly divided into three components: mucus layer, intestinal 

epithelium and the immunological barrier(Camilleri et al., 2019; Jutfelt, 2011). The mucus layer 

is composed of glycoproteins called mucins secreted by goblet cells (Jutfelt, 2011). Mucus aids 

the transport of small molecules and prevents the entry of microbiota and large molecules into 

the epithelium (Farré et al., 2020). It also protects the epithelium from digestive enzymes and 

serves as a lubricant (Farré et al., 2020). 

 

The intestinal epithelium lies beneath the mucus layer which forms a continuous and polarized 

barrier. It is composed of different types of specialized cells such as such as enterocytes, goblet 

cells, immune and endocrine cells (Jutfelt, 2011). Enterocytes are the most abundant cell type in 

the epithelium, where they maintain the epithelial barrier integrity and plays a major role in 

nutrient uptake (Jutfelt, 2011).   

 

The intestinal epithelium allows the permeability of essential dietary nutrients, electrolytes, and 

water (Martin et al., 2016; Peterson & Artis, 2014). Apart from nutrients, the mucosa also faces 

exterior antigens such as, pathogen and toxins. Uncontrolled passage of these harmful substances 

across the epithelium can cause inflammatory responses (Ašmonaite et al., 2018; Groschwitz & 

Hogan, 2009; Knudsen et al., 2008; Sundh & Sundell, 2015).  Thus, the intestinal epithelium 

also maintains an effective defense against these  by limiting the permeation (Martin et al., 

2016). 

 

 



9 | P a g e  

 

 

 

Figure 2.3.2 Paracellular and transcellular transport in the intestinal epithelium. The enterocytes 

form a polarized single cell layer. The apical side, characterized with villi, is in contact with the 

intestinal lumen. The epithelial cells are tied together by the TJ, AJ (not shown) and desmosomes. 

Transcellular transport is mediated by solute transport across the membrane and paracellular 

pathway is mediated by transport of compounds through the intercellular epithelial cell spaces. 

(Created in Biorender) 

 

Permeation of luminal products across the epithelial barrier has several pathways depending on 

the size, hydrophobicity, and other chemical characteristics (Martin et al., 2016). Transcellular 

pathway is associated with the transport of small hydrophilic and lipophilic compounds across 

the plasma membrane of the enterocyte (Chelakkot et al., 2018). The paracellular pathway is 

associated with the transport of compounds through the intercellular epithelial cell spaces, 

regulated by apical junctional complex made up of adherens junctions (AJ) and tight junctions (TJ) 

(Stewart et al., 2017). AJs and desmosomes provide strong connective bonds between the 

epithelial cells (De Santis et al., 2015; Groschwitz & Hogan, 2009). TJs provide mechanical links 
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between cells whose function is to prevent free passage of ions and small solutes through the 

space between the cells (Groschwitz & Hogan, 2009). 

 

2.3.1 Gut permeability  

Increased gut permeability  results in the translocation of luminal contents to the inner layers of 

the intestinal wall (Bischoff et al., 2014). Increased permeability can occur through increased tight 

junction permeability, or through disruption of the epithelial monolayer (Jutfelt, 2006; Knudsen 

et al., 2008).  

 

Tight junctions consist of transmembrane proteins including occludens, claudins and junctional 

adhesion molecules. They link adjacent cells to actin cytoskeleton through scaffolding proteins 

like zonula occludens (ZO) (Groschwitz & Hogan, 2009; Stewart et al., 2017). Structural 

abnormalities or disruption to these  proteins may cause severe leakage (Bischoff et al., 2014; 

Stewart et al., 2017). 

 

Numerous factors can alter intestinal permeability such as gut microbiota modifications, mucus 

layer alterations and epithelial damage (Bischoff et al., 2014). Other evidences indicates that 

various chemicals, including food contaminants and additives may disrupt the epithelial barrier 

and increase permeability (Gillois et al., 2018). 

 

2.3.2 Intestinal response to xenobiotics  

Xenobiotics are chemical compounds (such as drugs, pesticides) that are foreign to a living 

organism (Grace et al., 2012). In order to be absorbed and transferred to the whole body 

xenobiotics must first pass through the epithelium (Grace et al., 2012). Xenobiotics are not 

absorbed through any special transport process but share the same transport process as nutrition 

absorption (Grace et al., 2012). Xenobiotics cross the luminal membrane through various 

mechanisms that involve passive diffusion or active transport (Gelberg, 2018; Grace et al., 2012). 
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Transport facilitated by passive diffusion is the major route of xenobiotic absorption (Gelberg, 

2018; Grace et al., 2012). The rate of passive diffusion is determined by the concentration 

gradient across the cell membrane, lipid solubility, molecular size and the electrical charge 

associated with the molecule (Brock & Hobson, 2007; Gelberg, 2018). Xenobiotics with high lipid 

solubility are readily absorbed and non-ionized molecules diffuse more readily across the cell 

membrane than highly ionized substances(Brock & Hobson, 2007; Gelberg, 2018).  

 

Active transport is the movement of substance through the membrane against the concentration 

gradient. This process requires cellular energy from ATP.  Active transport mainly exists for 

transfer of natural substances such as amino acids, sugars, bile acids etc (Grace et al., 2012). 

Xenobiotics that are structurally similar to these natural substances compete for a transporter 

protein, to be transported across the cell membrane. For example 5-fluorouracil and 5-

bromouracil are actively transported across the rat intestinal epithelium by the process through 

which natural pyrimidines, uracil and thymine are absorbed (Brock & Hobson, 2007). 

 

Large molecules that cannot enter the cell via passive or active transport may still enter by a 

process known as endocytosis (phagocytosis and pinocytosis)(Brock & Hobson, 2007; Gelberg, 

2018; NIH & NLM, 2016). In this process the cell surrounds the molecule by invagination to form 

a vesicle which then will be moved to the interior of the cell.   

 

2.3.3 Metabolism of xenobiotics  

Xenobiotic metabolism is the process of converting lipophilic compounds into excretable 

hydrophilic compounds. Detoxification enzyme activities are highest in the liver and are higher in 

terrestrial than in aquatic organisms (Nikinmaa, 2014). The reason for this is because free 

diffusion of molecules out of the organism is possible for aquatic but not for the terrestrial 

organisms. (Nikinmaa, 2014). Biotransformation of xenobiotics are classified in to two essential 

phases known as phase I and phase II (Beiras, 2018). Phase I reactions transform lipophilic 

xenobiotics to more polar products via oxidation, reduction, and hydrolysis reactions (Brock & 

Hobson, 2007). Small polar groups are either exposed (“unmasked”) or added to the xenobiotic, 
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during phase I biotransformation (Gerba, 2019). Xenobiotics that have undergone phase I 

biotransformation will either be transported out of the cell (phase III) and excreted from the body 

or undergo further biotransformation by phase II reactions (Beiras, 2018; Gerba, 2019). 

 

Cytochrome P450s (CYP) are the most important group of enzymes in the liver that catalyze the 

oxidative metabolism of a wide range of foreign compounds (Meucci & Arukwe, 2006; Topic 

Popovic et al., 2012). Specially CYP1A,  which is a subfamily of CYP has attracted particular 

attention because of its role in biotransformation (Meucci & Arukwe, 2006). The transcriptional 

activation of cyp1a is mediated through the aryl hydrocarbon receptor (AhR). AhR is a ligand-

activated transcription factor that resides in the cytosol along with its associated proteins. When 

a xenobiotic bind to AhR it dissociates its proteins and translocate into the nucleus, where it forms 

a dimer with aryl hydrocarbon receptor nuclear translocator (ARNT). This Ahr/ARNT dimer binds 

to the xenobiotic-response element (XRE) in the promoter region of the DNA where it induces 

the transcription of cyp1a. The cyp1a mRNA travels to the cytoplasm and induces translation of 

CYP1A (Beiras, 2018; Nikinmaa, 2014). 

However, it has been established that CYP3A is the major phase I enzyme in the intestine of most 

mammals and other species, including fish (Husoy et al., 1994; Schlenk et al., 2008). In contrast 

to cyp1a, cyp3a induction by xenobiotics is largely dependent on the pregnane X receptor PXR, 

which regulates the cyp3a expression by binding as a heterodimer with retinoid X receptor (RXR) 

to several promoter regions of DNA (Istrate et al., 2010; Willson & Kliewer, 2002). 

 

Occasionally, detoxification of xenobiotics through the phase I pathway does not occur. One 

possible reason might be that the toxic compound has a high molecular weight (> 800) (Nikinmaa, 

2014). In some cases, biotransformation produced metabolites are more toxic than the parent 

compound, a process called bioactivation (Gerba, 2019). Another possibility is that reactive 

oxygen species (ROS) are produced in phase I biotransformation reactions, that may react with 

cellular macromolecules like DNA (Nikinmaa, 2014; Sabra et al., 2015). This can lead to serious 

health effects such as cancer or birth defects. 
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Xenobiotics that have undergone phase I reactions produce new intermediate metabolites that 

contain a reactive chemical group such as hydroxyl, —OH; amino, —NH2; or carboxyl, —COOH 

(Gerba, 2019; NIH & NLM, 2016). These metabolites do not possess sufficient hydrophilic 

properties to permit elimination from the body and therefore undergoes  Phase II 

biotransformation (Gerba, 2019).  

 

Phase II reactions are referred to as conjugation reactions that add polar functional groups to 

phase I metabolites (Beiras, 2018). The resulting conjugate metabolite is more water soluble than 

the original toxicant or phase I metabolite, thus facilitating excretion. In some cases, 

the xenobiotic already has a functional group that can be conjugated, and it can be bio 

transformed by a Phase II reaction without going through a Phase I reaction (NIH & NLM, 2016). 

There are three major conjugation pathways and the conjugating enzymes that are involved in 

these pathways are UDP-glucuronosyltransferases (UGT) , sulfotransferases  (SULT), and 

glutathione- S-transferases (GST) (Gerba, 2019). These enzymes are normally located in close 

proximity to phase I enzymes, which speeds up the whole biotransformation (Nikinmaa, 2014). 

 

2.3.4 Pesticides and lipid metabolism  

One major nutrient group that gets absorbed by enterocytes, are lipids. Dietary fat comprises a 

variety of lipids such as non-polar lipids, triacylglycerols (TAGs) and cholesterol esters, and 

phospholipids(PL) (Ko et al., 2020). Triacylglycerol is a major lipid class in the diet of marine fish 

and is generally the predominant lipid class in the diet of freshwater fish (Tocher, 2003).  In many 

fish species TAG is hydrolyzed by bile salt activated lipase (BAL), to free fatty acids and 

monoacylglycerols (Sæle et al., 2018).  These digested lipids are taken up by enterocytes, mostly 

by passive diffusion but also by transporters (Beilstein et al., 2016). For example long chained 

fatty acids are transported via the active transport and short fatty acid chains are absorbed by 

diffusion (Sæle et al., 2018). 

 

Inside the enterocyte, the digested lipids are resynthesized to TAGs and phospholipids at the 

endoplasmic reticulum (ER) (Beilstein et al., 2016). In mammals the resynthesized lipids in the ER 
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membrane have two fates. They can either be stored as lipid droplets in the cytosol or be 

packaged into chylomicrons (Beilstein et al., 2016; Ko et al., 2020; Mahmood, 2014). However the 

fate of this process is still unknown in fish (Sæle et al., 2018). 

 

Chylomicrons are large spherical triglyceride-rich lipoprotein formed in the lumen of ER 

(Mahmood, 2014). The surface of the chylomicrons is formed by a phospholipid monolayer which 

is surrounded by apolipoprotein B (apoB) and the core is rich in triacylglycerols and cholesteryl 

esters (Sæle et al., 2018). Chylomicrons are secreted through the basolateral membrane out of 

the cell into the blood circulation in fish. In the circulation, chylomicrons are metabolized by 

lipoprotein lipase, which provides fatty acids to cells (Beilstein et al., 2016). 

 

Cytosolic lipid droplets are large spherical particles, consisting of a core of neutral lipids 

surrounded by a phospholipid monolayer (Ko et al., 2020; Mahmood, 2014; Olzmann & Carvalho, 

2019; Welte & Gould, 2017). The phospholipid monolayer is mainly composed 

of phosphatidylcholine (PC). PC is subjected to remodeling, where it loses an acyl chain to 

generate lyso-phosphatidylcholine (LPC). LPC is resynthesized to PC by the enzyme  LPC 

acyltransferases (lpcat), where it gains an acyl chain from acyl-CoA (reacylation) (Cotte et al., 

2018) .  

 

The formation of lipid droplets involves the budding of newly synthesized TAGs between the two 

leaflets of the ER membrane (Ko et al., 2020; Mahmood, 2014; Olzmann & Carvalho, 2019;Wang, 

2016). The LD budding is facilitated by perilipins (PLIN), that regulate lipid droplet stability and 

turnover (Ko et al., 2020). Lipid droplets are now being recognized as highly dynamic organelles 

with various functions (Ko et al., 2020; Mahmood, 2014; Olzmann & Carvalho, 2019; Welte & 

Gould, 2017). The primary function of LDs is storage of lipids. During the fasting state of the 

enterocytes or during cell growth, which requires membrane expansion and high phospholipid 

biosynthesis, neutral lipids stored in LD are broken down to fatty acids which are used for energy 

production and membrane biosynthesis (Beilstein et al., 2016; Olzmann & Carvalho, 2019; Welte 

& Gould, 2017). 
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Peroxisome proliferator-activated receptor- alpha (PPARα) is a transcription factor belonging to 

the nuclear receptor superfamily that is stimulated by small lipophilic ligands such as eicosanoids 

and fatty acids. For transcriptional regulation, PPARα forms heterodimers with the retinoid-X-

receptor (RXR). When the PPARα /RXR heterodimer is activated  by an agonist, it binds to specific 

DNA sequences called PPAR response element (PPRE), which stimulates the transcription of 

target genes (Decara et al., 2020; Ibabe et al., 2002). PPARα is highly expressed in the liver, heart, 

kidney, and small intestine; however, its function has been exclusively studied in liver (Ibabe et 

al., 2002). In liver PPARα plays a crucial role in peroxisomal fatty acid oxidation, mitochondrial 

beta oxidation, fatty acid transport and apolipoprotein synthesis (Pawlak et al., 2015). 

 

 

2.4 Aims    

As discussed earlier, plant ingredients have been increasingly replacing fish ingredients in fish 

feed. Plant based feeds not only change the dietary balance of essential nutrients in fish, but it 

also has introduced harmful agricultural pesticides. Previous studies have documented the 

presence of CPF residues in fish feed (Sun & Chen, 2008). 

 

CPF residue levels have been reported in products from plants such as soy or maize, that are 

commonly used as ingredients in salmon feed (Søfteland et al., 2014). Norwegian fish feed 

manufacturers are currently the largest importers of soya, for example from Brazil into Norway 

(Lundeberg & Leifsdatter Grønlund, 2017). Since Brazil has the highest rate of pesticide use in the 

entire world (Lundeberg & Leifsdatter Grønlund, 2017), farmed salmon in Norway are exposed to 

CPF through the feed ingredients imported from Brazil. Documentation of CPF residue levels in 

salmon feeds has raised concern about their potential toxicity in salmonids species. 

 

The main aim of this study was to investigate the oral effects of CPF on the intestinal epithelium 

of Atlantic Salmon. We hypothesized that CPF disrupts the gut barrier by increasing its 

permeability. It was also hypothesized that CPF affects the lipid metabolism and detoxification 

genes in enterocytes by downregulating these at high concentrations of CPF. 
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The study was divided into two experiments. In the first part, the intestinal permeability of the 

gut, exposed to CPF and saponin, was measured using the gut sac model. Gut tissue samples were 

also collected for histological evaluation to detect the effects of CPF on intestinal segments.  For 

the second experiment, an intestinal cell line, RTgutGC, derived from rainbow trout was used as 

an in vitro model for salmon. The transepithelial electrical resistance (TEER) was measured to 

assess the barrier function of the epithelial cells. Cells were exposed to different concentrations 

of CPF, and the TEER was measured again after 24 hours. Gene expression analysis on selected 

genes involved in detoxification and lipid metabolism were conducted to examine the expression 

of these genes exposed to different concentrations of CPF. Lastly, the xCELLigence system was 

applied for cytotoxicity assessment. 
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3.1 Chemicals 
 

Table 3.1 List of chemicals utilized in this thesis 
 

Name Supplier   

Calcium chloride Sigmaaldrich 

Chlorpyrifos Sigmaaldrich 

Dimethyl sulfoxide (DMSO) Sigmaaldrich 

Entellan® (mounting medium) Merck Millipore 

Ethanol  Antibac  

Fetal bovine serum (FBS) Sigmaaldrich 

Fluorescein isothiocyanate–dextran  Sigmaaldrich 

Hanks’ Balanced Salt Solution Sigmaaldrich 

Leibovitz’ L-15 medium (LB-15) Sigmaaldrich 

Magnesium chloride Sigmaaldrich 

Magnesium chloride  Sigmaaldrich 

Phosphate-buffered saline (PBS) Sigmaaldrich 

Potassium chloride Sigmaaldrich 

Sodium chloride  Sigmaaldrich 

Sodium bicarbonate Sigmaaldrich 

Monosodium phosphate Sigmaaldrich 

Technovit® 3040 Kulzer 

Technovit® 7100 Kulzer 

Technovit® 7100 liquid and powder  Kulzer 

Toluidine blue Sigma 

Trypsin Sigmaaldrich 

Triton X- 100 Cayman 

Buffer RLT Plus Qiagen  

3. Materials 

https://en.wikipedia.org/wiki/Phosphate-buffered_saline
https://en.wikipedia.org/wiki/Phosphate-buffered_saline
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Buffer RW1 Qiagen 

Buffer RPE Qiagen 

SYBR Green I Master Roche 

Magnesium Chloride Applied Biosystems  

Multiscribe Reverse Transcriptase (RT) Applied Biosystems  

Oligo d(T)16 primer Applied Biosystems  

RNA Nano dye concentrate Agilent  

RNA Nano gel matrix Agilent  

RNA Nano marker Agilent  

RNA ladder  Agilent  

TE buffer PanReac AppliChem ITW Reagents 

TaqMan Reverse Transcription Reagents Thermo Fisher  

SYBR GREEN Master Roche-Norge 

TAE buffer Bio-rad 

Gelred  Biotium 

One Step RT-PCR buffer Qiagen  

Q solution Qiagen  

dNTP mix  Qiagen  

RNase inhibitor Qiagen  

One Step RT-PCR Enzyme Mix Qiagen  

 

3.2 Kits  
 

Table 3.2 List of Kits utilized in this thesis 
 

Kits  Supplier  

OneStep RT-PCR Kit Qiagen 

RNA 6000 Nano Kit Agilent 

TaqMan Reverse Transcriptase reagents Applied Biosystems 
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Technovit 7100 Kulzer 

Technovit 3040 Kulzer 

 

 

3.3 Equipment 
 

Table 3.3 List of equipment utilized in this thesis 
 

Instrument Application Provider 

Bürker haemocytometer   Cell counting Kova international 

Chip priming station Load gel matrix to nano chip Agilent  

E-plate 96-well Cell plate for xCelligence  Agilent  

Histobloc    Block for mold Kulzer 

Histoform Mold   Kulzer 

RNA nano chip Separate nuclear acid fragments   Agilent  

Transparent PET membrane 0.4 µm Cell culture insert Falcon® 

 

3.4 Instruments  
 

Table 3.4 List of instruments utilized in this thesis 
 

Instrument Application Provider 

2100 Bioanalyzer Quality control of RNA Agilent  

Biomek 4000  Pipetting robot Beckman coulter  

BX51 microscope Microscope Olympus 

Centrifuge 5804R   Centrifuge    Eppendorf™ 

Chemidoc xrs+ Gel Doc Bio-Rad 

EVOM2 Measurement of TEER World precision instrument                                                    

GeneAmp PCR 9700 cDNA synthesis Termo fisher  

IKA MS 3 S36 Basic Chip Vortex Shaker Sigma 

Leica RM2165    Rotary Microtome Leica Biosystems 

Light cycler 480 Instrument  qPCR analysis Roche 

https://www.biocompare.com/100013-Agilent-Technologies/
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MICRO STAR 17R Microcentrifuge VMR 

Nanodrop Spectrophotometer Termo fisher  

Nikon DS Fi1 camera Photography  Nikon instruments  

VICTOR X5 2030 Multilabel reader              Plate reader   PerkinElmer 

xCELLigence® RTCA MP Monitor cells Agilent  

 

3.5 Software  
 

Table 3.5 List of software utilized in this thesis 
 

Software  Provider 

Agilent 2100 Bioanalyzer Agilent Technologies 

Bio render  Bio render  

Bio-Rad CFX Maestro  Bio-Rad 

Excel Microsoft  

GraphPad Prism 8 GraphPad Software Inc 

Image lab 6.0.1 Pictures of gel 

Nanodrop Isogen Life Science 

NIS elements  Nikon 

PerkinElmer 2030 Software version 4.00  PerkinElmer  

Pycharm community edition 2020  JetBrains 

Rstudio 1.3.1056 Rstudio  

RTCA Software  Agilent  

 

3.6 Solutions 
 

3.6.1 Ringer’s solution   
 

Table 3.6.1 Components for Ringer’s solution 
 

Component Concentration (mM) 

Magnesium chloride 0.47 

https://www.biocompare.com/100013-Agilent-Technologies/
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Potassium chloride 2.5 

Sodium bicarbonate 20.2 

Monosodium phosphate  0.42 

Calcium chloride   1.5 

Sodium chloride   129 

 

3.6.2 Toluidine Blue Staining 
 

Table 3.6.2 Components for Toluidine Blue staining for histologi 
 

Component Amount/ Volume  

Toluidine Blue O 1 g 

Sodium Borate (Borax)   1 g 

Distilled water 100 ml 

 

3.6.3 Cell growth media   
 

Table 3.6.3 Components for growth media for RTgutGC cells  
 

Component Volume (Concentration) 

Leibovitz's L-15  445 ml  

Fetal bovine serum 10 % 50 ml (10 %) 

Antibiotics  5 ml (1%) 

 

3.6.4 cDNA reaction mix  
 
Table 3.6.4 cDNA reaction mix for 30 ul cDNA reaction (20 µl mix + 10 µl RNA) 

 
 Reagents 30 µl Final concentration  

 H2O free from RNase 1.3  

Non 10X TaqMan RT buffer 3.0 1X 

enzymatic  25 mM MgCl2 6.6 5.5 mM 
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reagents 10mM deoxyNTPs Mixture (2.5 mM of each 

dNTP) 

6.0 500 µM per dNTP 

 50 µM oligo d(T)16/random hexamers/ 1.5 2.5 µM 

Enzymes  RNase Inhibitor (20U/µl) 0.6 0.4 U/µl 

 Multiscribe Reverse Transcriptase (50U/ µl) 1.0 1.67 U/µl 

 

3.6.5 SYBRGreen reaction mix  
 

Table 3.6.5 SYBRGreen reaction mix for Light Cycler 480 
 

Reagent  Volume per sample (µl) Final concentration  

ddH2O  2.8      

Primer I (50µM)  0.1  500 nM  

Primer II (50µM)  0.1  500 nM  

SYBR GREEN PCR Master Mix (2X)  5  1X  

 

3.6.6 One step qPCR 
 

Table 3.6.6 Components for one step qPCR 
 

Components  25 µl rxn Final concentration  

5x QIAGEN One Step RT-PCR buffer 5 1x 

Q solution 5 5x 

dNTP mix (10 mM of each dNTP) 1 400µM of each 

Primer forward 0.3 0.6 µM 

Primer revers 0.3 0.6 µM 

RNase inhibitor 0.25  

QIAGEN One Step RT-PCR Enzyme Mix 1  

RNase fee H2O X Up to 25 µl incl. template RNA 

Template RNA Y 1,0 µg RNA 
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3.7 Primers  
 

Table 3.7 Primers used for the qPCR analysis 

 

Gene Accession nr. Forward  Reverse  

cyp3a27 U96077.1 ACAACCAGGGTCTGCTGATG GGTAGGGTGCTCCTGCATTT  

cyp1a AF015660.1  CATCATCCCACACTGCACGAT GCACTCAGGAAACGGTCAGG 

gstr NM_001160559.2 GGGACCCCAGTTGATTCCTG CGGGGACACGGTAGTTGTAG 

ugt2a2 XR_002468865 CCACCTGCGAACAGAGTCTT TGGGTTTACGCTTCCTGCAT 

lpcat2 XM_021586592.1 ATGCTATGCTCCGTGAGTCTG GAGCAGTGGTGGGGTGAAAC 

plin2-1 CB494091.p.om. 
Tinant et al., 2020 

GATGGCAATGAGGCAGAGAACA AGGCAGAGTGGCTAAGGGACAG 

pparαb NM_001197211.1 CTACCGGCCGCCGTC CTGGGACAGGTACTCAGGGA 

actb NM_001124235 
Wang et al.,2019 

CAAAGCCAACAGGGAGAAGATGA ACCGGAGTCCATGACGATAC 

rps20 NM_001124235 
Wang et al.,2019 

AGCCGCAACGTCAAGTCT GTCTTGGTGGGCATACGG 

eEF2 - TGCCCCTGGACACAGAGATT CCCACACCACCAGCAACAA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=2353166
https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=1212619457
https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=1211325455
https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=308387345
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4.1 Species and maintenance    

This study was a feeding trial conducted for 69 days at Nofima research station at Sunndalsøra, 

Norway. Mixed gender groups of Atlantic salmon (Salmo salar) were distributed into six 1.5 

m2 tanks, with 24 – 27 fish per tank, containing 500 L seawater flowing at 20 L min-1. 

The average ambient water temperature during the feeding trial was 11.2 C.̊ Oxygen content of 

the water was monitored and maintained at above 80% saturation. 

 

During the feeding trial salmon in three of the tanks were fed a fish meal-based control diet, 

whereas the others were fed a high protein soya bean meal (SBM). Formulations of the diets are 

presented in Table 10.1 in appendix and both diets are supplied with essential nutrients. A total 

of 24 fishes were used for this experiment, where 12 of them were randomly selected fish from 

the SBM fed tanks and 12 randomly selected from the control tanks.  

 

4.2 Exposure design 

For this experiment four different experimental groups were created, where intestinal sacs from 

six fish from each diet group were injected with either 500 µM or a control without CPF (Table 

4.1.2). 

 

Table 4.2.1:  Exposure design for each diet groups  

Diet  Treatment group 1 Treatment group 2  

SBM 500 µM CPF 0 µM CPF 

Control  500 µM CPF 0 µM CPF 

 

 

Stock solutions of CPF were prepared by dissolving 17.53 g of CPF in 400 µl of DMSO. The stock 

solution for fluorescence, was prepared by dissolving 26.6 mg and 25 mg of FITC-D in 50 ml of 

4. Method 
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Ringer’s solution for day 1 and day 2, respectively. For the bolus with the pesticide and the 

fluorescence, 80 µl of CPF solution was dissolved in 14.92 ml of fluorescence solution. For the 

control diet, without CPF, 80 µl of DMSO was dissolved in 14.92 ml of fluorescence solution. Lastly 

the standard curve for FITC-D molecule ranging from 10-1 to 10-8 was constructed by diluting the 

stock solution for fluorescence in ringer solution as shown in figure 4.2. 

 

 

Figure 4.2: Serial standard dilution of FITC-D sample. 

 

4.3 The gut sac model 

Gut sacs were prepared according to Mateer et al., 2016 with slight modifications. Fish were killed 

by blow to the head. A horizontal incision was made in the middle of the abdomen exposing the 

gut and the gastrointestinal tract was then removed. An intestinal section, the mid gut after 

pyloric caeca, of approximately 5 - 8 cm, was dissected out and immersed in Ringer’s solution 

(Table 3.6.1). Before preparing the intestinal sacs the luminal content of the intestinal segment 

was flushed out. 
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One opening of the intestinal segment was tied and securely closed with a suture loop. A pre-tied 

suture loop was gently placed around the second opening of the segment. The intestinal sections 

were then filled with either medium containing both CPF and FITC-D, or just FITC-D(control), 

before closing the ends. The filled gut sacs were rapidly mounted in individual glass tubes. Twelve 

glass tubes were placed in a cold-water bath set to 12 °C. Each of these tubes were filled with 45 

ml Ringer’s solution and aerated with 95% O2 and 5% CO2 by an air tube (figure 4.3). 

 

 

Figure 4.3:  In vitro experimental setup. The prepared intestinal sacs were placed in glass tubes 

containing Ringer’s solution and immersed in a cold-water bath. In intestinal sacs were filled with 

ringer solution containing both FITC-D and CPF or just FITC-D (control). Oxygen was supplied to 

each solution with an individually mounted air tube.  
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At 20-minute time intervals for 3 hours, triplicates of 100 µl of sample were taken from the glass 

tubes and transferred to a 96 well black plate. The volume was replaced with 300 µl (3x 100 µl) 

fresh Ringer’s solution at each time. Triplicates of 100 µl from each standard curve were also 

transferred to a 96 well black plate. 

 

At the end of the experimental period the intestinal sacs were cut open exposing the mucosal 

surface. The length and the width of each intestinal segment was measured. Intestinal tissue 

samples of approximately 1 cm dimension, from all the fish were also collected for histological 

evaluation. Each tissue was placed in 1.5 ml of 4 % phosphate buffered (PBS) formaldehyde 

 solution for 24 hours. The tissues were later stored in 70 % ethanol until further processing.  

 

The fluorescence of the samples and the standards for FITC-D were measured at excitation 

wavelength 493 nm and emission wavelength of 518 nm by PerkinElmer’s Multilable plate reader. 

The samples were centrifuged for one minute at 1000 rpm before the measuring the FITC-D 

counts. 

 

4.3.1 Apparent permeability   

The average FITC-D counts for the standard were calculated and the concentration was found for 

each sample absorbance on the standard curve.  The sample FITC-D concentration was 

determined by plotting the FITC-D counts of the standard versus the concentration of the FITC-

D standards. For each time point the sample FITC-D concentration was converted to  

cumulative concentration (Qt) from the equation below.  

 

 

𝐐𝐭 = 𝐂𝐭 × 𝐕𝐫 + ∑𝐐𝐭 × 𝐕𝐬 

 

Where:-   

Qt = Cumulative concentration at time t  

Ct = Concentration of the sample FITC-D at time t  
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Vr = Volume at the receiver side (external medium)  

Qt sum = Sum of all previous Qts  

Vs = Volume sampled   

 

The slope of the, dQ/dt, was calculated by plotting the cumulative concentration Qt versus the 

time(s). At last, the apparent permeability was calculated for each intestinal sac from the 

following equation.  

𝐏𝐚𝐩𝐩 =
𝛅𝐐

𝛅𝐭
 ×  

𝟏

𝐀 × 𝐂𝟎
 

 

Where : 

Papp = Apparent permeability   

A = Area of the tissue   

C0 = Initial concentration of FITC-D inserted in sacs  

  

4.4 Histology  

The intestinal tissue samples were stored in 70 % ethanol. The ethanol was later replaced with 

80 % and then 96 %. Tissues were incubated in each solvent for an hour. They were carefully 

embedded in histoform molds afterwards.  

 

4.4.1 Pre infiltration   

Equal parts of ethanol 96% and base liquid Technovit 7100 were mixed.  Approximately 1.5 ml of 

this solution was added to each mold containing the tissue samples. Samples remained in the 

solution for an hour. 

 

4.4.2 Infiltration   

1 g of hardener (bag) was dissolved in 100 ml of base liquid Technovit 7100. The pre  
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infiltration solution was replaced by approximately 1.5 ml of infiltration solution and the      

samples remained in the solution overnight. 

 

4.4.3 Polymerization and embedding   

1 ml of hardener (bottle) was added to 15 ml of the prepared infiltration solution. The infiltration 

solution was replaced by ca. 1.5 ml of the prepared solution. The samples were covered in 

transparent plastic sheet to avoid oxygen contamination and left for 24 hours to harden. 

 

4.4.4 Mounting   

Two parts of Technovit 3040 powder was mixed with 1-part Technovit 3040 liquid to obtain a 

viscous liquid. The liquid and the histoblocs were placed into the mold one after the other.  After 

10 – 15 min the histoblocs together with the fixed specimen were removed from the histoform.   

 

4.4.5 Microtome sections 

The resin blocks were inserted to a microtome and trimmed (10 – 12 µm thickness) to expose the 

tissue surface. Once the tissues were exposed, sections at a thickness of 1 µm were trimmed. The 

ribbons of sections were placed delicately on the surface water in a water bath to flatten out. 

These sections were then transferred on to microscopic slides and the slides were then placed on 

a hot plate at 50 °C allowing the sections to dry. 

 

4.4.6 Staining 

After the sections were completely dried, they were stained with borax-buffered toluidine blue 

solution for about 3-5 minutes until color developed. Slides were gently rinsed with distilled water 

2-3 times to remove excess stain and then air dried. A couple of drops of mounting medium was 

added on the slide and a coverslip was gently placed over the slide preventing air bubbles. Once 

again, the slides were air dried overnight. The sections were then photographed using an 

Olympus microscope with a Nikon camera. 
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4.5 Cell line 

RTgutGC is a cell line established  from a primary culture derived from the distal portion of the 

gut  of a female rainbow trout Oncorhynchus mykiss (Minghetti et al., 2017). These cells are 

heteroploid and possess an epithelial like morphology. It has also been reported that  RTgutGC 

cells express alkaline phosphatase activity which is an indication of enterocyte differentiation 

(Minghetti et al., 2017). In previous studies, RTgutGC cells have been grown as monolayers on 

permeable supports, leading to a two-compartment intestinal barrier model consisting of a 

polarized epithelium (J. Wang et al., 2019). The idea behind this is to mimic the in vivo intestinal 

lumen. RTgutGC is a physiologically adequate fish intestinal barrier model equivalent to the Caco-

2 human intestinal epithelial cell line, which is used to study fish intestinal immune and barrier 

functions (Wang et al., 2019).  

 

4.6 Cell culture  

The RTgutGC cell line were aseptically cultured in L-15 medium containing 10% FBS and 

incubated at 19 °C. The cells were grown in 75 cm² cell culture flasks for 5-7 days, until they were 

harvested for experimental purposes. Cells were harvested by discarding the culture medium 

from the flask followed by rinsing the cell layer twice with 8-10 ml PBS. The cells were 

enzymatically detached from the flask by adding 1-2 ml of trypsin for 2 minutes in room 

temperature. The trypsination reaction was stopped by adding 10 ml of fresh culture medium 

and the detached cells were aspirated gently by pipetting.  The resulting cell suspension was 

centrifuged at 1000 rpm, 19 °C for 3 minutes. Cells were resuspended in 1-2 ml growth medium, 

after discarding the supernatant. The density of the cells was determined by loading 10 μl of cell 

suspension on to a haemocytometer and the number of cells were counted manually. The cells 

were diluted to required volume in culture media and seeded in wells prior to experiments. Cells 

were split in 1:2 ratio for maintenance, after reaching confluency. 
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4.7 Measurement of transepithelial electrical resistance  

To evaluate the epithelial integrity of the RTgutGC barrier, transepithelial electrical resistance 

(TEER) was measured. Cells were seeded in transwell membrane inserts with 0.4 μm pore size at 

a density of 150,000 cells/ml per insert. Membrane inserts were plated in a 12-well plate filled 

with 1 ml of L-15 in each basolateral compartment, figure 4.7.1. Cells were incubated at 19 °C, 

with a change of medium, allowing the cells to form a barrier. For the control (blank) empty (cell-

free) membranes were filled with 1 ml of media in both apical and basolateral chamber. TEER 

levels were measured over time by using an EVOM voltmeter meter with STX2 chopstick 

electrodes according the EVOM instruction manual. The unit area resistance (Ω cm2) was 

calculated by subtracting the values obtained from membranes containing cells from the blank 

and by multiplying by the growth area of the insert. 

 

4.7.1 Exposure  

Cell were grown for at least 10 days at 19 °C before pesticide exposure experiments. Cells were 

exposed to CPF concentrations of 0.5, 5, 50, 100, 500 μM and DMSO 0.2% (control). The TEER 

was then measured 24 hours after exposure. 
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Figure 4.7.1: Outline of in vitro intestinal barrier model based on intestinal epithelial cell line, 

RTgutGC. Cells are seeded in transwell membrane inserts with pore size 0.4 µm separating the 

apical media compartment from the basolateral media compartment. The TEER levels were 

measured using an EVOM voltmeter with STX2 chopstick electrodes. 

 

4.8 Real - time quantitative PCR  

4.8.1 Pesticide exposure  

Cells were seeded in six-well plates in 3 ml complete L-15 medium at a density of 600,000 

cells/well and incubated at 19 °C for 3-4 days prior to exposure with a change of medium. The 

cells were then exposed to 0.5, 5, 50, 100, 500 μM CPF and 0.2% DMSO (control) in triplicates for 

24 hours. After 24 hours of pesticide exposure, cells were washed twice with PBS. For lysing of 

cells 600 μl of RLT Plus buffer was added to each well and mixed well by pipetting up and down a 

few times. The lysate was transferred to individual 1.5 ml tubes and stored at - 80 °C until further 

processing. 

 

 4.8.2 RNA extraction  

The RNA lysate was thawed on ice before proceeding with the RNA extraction. The homogenized 

lysate was transferred to gDNA eliminator spin columns placed in 2 ml collection tube and 

centrifuged for 30 s at 9000 g. The column was discarded and the flow-through was saved. One 

volume (460 – 480 µl) of 70 % ethanol was added to each flow-through and was mixed well by 

pipetting. Samples were transferred to RNeasy spin column placed in 2 ml collection tubes and 

centrifuged for 30 s at 9000 g and the flow-through was discarded. 700 μl of RW1 was added to 

the spin columns and centrifuged for 30 s at 9000 g and the flow-through was discarded. 500 µl 

of RPF was added to the RNeasy spin column and centrifuged for 30 s at 9000 and the flow 

through was discarded. Another 500 µl of RPF was added to the spin columns and centrifuged for 

2 min at 9000 and the flow-through was discarded. Spin columns were placed in new 2 ml 

collection tubes and centrifuged for 1.6 x g for 1 minutes. RNeasy spin columns were placed in 

new 1.5 ml collection tubes and 20 μl of ddH2O was directly added to the spin column membrane 
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and centrifuged for 1 min at 9000 x g to elute the RNA. RNA concentrations of the samples were 

later determined by the Nanodrop. 

 

4.8.3 Quality of RNA 

For the quality control of RNA, 12 random samples were selected for integrity analysis. From each 

sample, 2 μl was transferred to microcentrifuge tubes and placed on a heating block at 70 °C for 

2 minutes for denaturation.  All the reagents were equilibrated to room temperature for 30 

minutes before use. For the gel dye mix, 0.5 μl of RNA 6000 Nano dye concentrate was added to 

a 32.5 μl of filtered gel (RNA 6000 Nano gel matrix). The gel dye mix was vortexed and spinned 

for 10 minutes at 13000 g and stored at 4 °C in the dark. 

 

RNA chip was placed on the priming station and 9 μl of gel-dye mix were pipetted in the well-

marked  . The plunger was positioned at 1 ml before closing the chip priming station. The 

plunger was pressed until it was held by the clip and it was released after 30 s. The plunger was 

slowly pulled back to its 1 ml position after 5 s. After opening the chip priming station, 9 μl of gel-

dye mix was pipetted to the wells marked . In all the sample wells and the well marked “ladder” 

, 5 μl of RNA marker was loaded.  1 μl of prepared ladder was then loaded in the well marked 

“ladder”  and 1 μl of samples (previously denatured by heat) were added in each of the  sample 

wells. The chip was vortexed for 1 min at 2400 rpm in the IKA vortexer before running it in the 

Agilent 2100 Bioanalyzer.  

 

The Bioanalyser provides an objective measurement of RNA quality with RNA integrity number, 

RIN. RIN number is based on a numbering system from 1 – 10, where 1 being the most degraded 

and 10 being the most intact RNA. 

 

4.8.4 cDNA synthesis  

RNA samples were thawed on ice. The samples were diluted individually with ddH2O to a final 

resulting concentration of 50 ng/µl in a total volume of 30 µl. RNA concentrations were measured 
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using the Nanodrop. The RNA volume was adjusted either by adding RNA or adding ddH2O for 

samples not within the range of 50 ± 5 % ng/ µl. 

 

For the RNA pool 2 µl from each undiluted RNA samples were pooled together in a RNA mix to 

create a standard curve. The concentration of the RNA mix was adjusted to 100 ± 5 % ng/µl with 

ddH2O. From this tube, total of six serial dilutions was made by mixing 40 µl sample and 40 µl 

ddH2O, giving a series of the following concentrations: 100 ng/µl, 50 ng/µl, 25 ng/µl, 12.5 ng/µl, 

6.25 ng/µl and 3.125 ng/µl. 

 

 The Reverse Transcriptase reaction mix was prepared for 63 wells (3x number of samples +3x 

number of concentrations in std + 2 negative controls), Table 3.6.4. The two negative control 

utilized: “ntc” (non-template control) and “nac” (non-amplification control). All regents were 

added to make the RT reaction mix except for the multiscribe enzymes. The “nac” control was 

prepared by removing 20 µl from the RT reaction mix and transferring it to a 96-well plate. The 

multiscribe enzyme was then added to the mix and 20 µl of this mix was distributed to rest of the 

wells. 10 µl of diluted standards and RNA samples were then added to their respective wells and 

mixed carefully by pipetting up and down a couple of times. To the “nac” control, 10 µl of excess 

RNA from 50 ng/µl was added and 10 µl of ddH2O was added to the “ntc” control. 

The plate was then covered by a 96-well plate cover and centrifuged at 50 g for 1 minute. The 

PCR was then performed by GeneAmp PCR 9700 (Applied biosystem). The steps in the PCR were 

10 min incubation (25 °C), 60 min elongation (48 °C) and 5 min reverse transcriptase inactivation 

(95 °C). The plate was left in the instrument until the next day at 4 ℃. The cDNA plate was later 

sealed with a tape pad and stored at -20°C until further processed for real-time quantitative PCR. 

 

4.8.5 Primer test - One step qPCR 

The quality control of the primers of all the target genes were done by a one-step PCR using the  

QIAGEN OneStep RT-PCR Kit. Primers were diluted in 1 x TE buffer to a final concentration of 50 

µM and incubated in room temperature for 2 minutes and vortexed for 15 seconds. RNA samples 

and reagents were thawed on ice and the enzyme mix was placed on a -20 °C block prior to one 
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step qPCR. Based on the sample RNA concentrations, the volume needed for 1 µg RNA was 

calculated, and the volume of ddH2O was adjusted according to a total reaction volume of 25 µl. 

All the reagents were mixed in a master mix, table 3.6.6, except for the primers, RNA and ddH2O, 

which were added after distributing the master mix into separate 1.5 ml tubes. Each solution was 

mixed properly by pipetting up and down for several times. The PCR was run in the GeneAmp PCR 

system 9700 (Applied Biosystems).  

 

4.8.6 Agarose gel electrophoresis  

Agarose gel electrophoresis was performed to check the expression levels of the products from 

One Step RT-PCR.  According the size of the fragments (150 – 200 bp), a 2 % agarose gel was 

chosen. A gram of agarose was added to 100 ml 1x TAE buffer. The solution was heated in a 

microwave oven for about 1 minute until everything was dissolved.  The solution was then cooled 

before adding 10 µl of Gel red Nucleic Acid Stain. The melted agarose was poured into a tray and 

a comb was placed in and the gel was left to solidify for 30 minutes. The gel was then placed in a 

electrophoresis tray filled with running buffer (1xTAE). The comb was then removed carefully. The 

PCR products were mixed with 6x loading dye in the ratio 1:6 (1 µl 6x loading dye and 5 µl sample). 

The samples were then added to the wells. The lid was placed on the unit and the gel was run at 

86V until the bands had moved into the gel, and then at 50V for 45 min.  For photographing of 

the gel, the gel was placed on the glass plate on the bottom drawer of Gel Doc.  The program, 

Image lab was utilized to take a picture of the gel. 

 

4.8.7 Real time quantitative PCR 

The cDNA plate was thawed on ice and centrifuged at 1200 x g for 1 minute and spinned at 1500 

rpm for 5 minutes. The samples were then diluted 1:2 by adding 30 µl ddH2O to each well using 

a pipetting robot. The cDNA plate is only diluted once before the first qPCR run.  It was then 

centrifuged at 1200 x g for 1 minute and vortexed at 1500 rpm for 5 minutes and placed on ice. 

Regents for the SYBR Green PCR Master Mix and the primers were thawed on ice prior to making 

the solution. The reaction mix was made for each gene according to the number of reactions, 

(Table 3.6.5). 112µl of from this mix were added to wells of an 8 - well stripe. Using a pipetting 



36 | P a g e  

 

robot 8 µl of the reaction mix and 2 µl of cDNA from each well were transferred to a 384-well 

plate. The plate was then covered with an optical adhesive cover and centrifuged at 1500 g for 2 

minutes. The plate was placed into the light cycler 480 Real Time PCR System for the analysis of 

the real time PCR quantification. Genes used for the qPCR analysis is listed in Table 3.7. 

4.8.8 Primer design 

Totally of 6 relevant genes were selected for primer design. Primers were designed for the mRNA 

sequence of four genes associated with detoxification, cyp1a, cyp3a, ugt and gst and two genes 

associated with lipid metabolim, lpcat2 and pparα. Plin2, (lipid metabolism gene)  was selected 

according to Tinant et al., 2020. Actb and rps20, according to (Wang et al., 2019), and eEF2 were 

selected as reference genes. Primers were designed using NCBI data base and its primer design 

tool.  

 

4.9 Xcelligence  

xCELLigence Real Time Cell Analysis (RTCA) instruments use biosensors to continuously monitor 

cell behavior in a label-free manner (Kho et al., 2015). The xCELLigence system uses an E-plate 

96-well plate that is coated with gold microelectrode sensor arrays at the bottom surface which 

measures the electron flow transmitted between the electrodes in the presence of an electrically 

conductive solution such as culture media. This electrical impedance across the electrodes allows 

to monitor and detect physiological changes of the cells (Hamidi et al., 2017). 

 

The E96 xCELLigence plate was prepared by adding 50 µl of culture media to each well and by 

incubating in xCELLigence for 30 minutes. After 30 minutes the background impedance was 

measured to ensure that all wells and connections were working within acceptable limits. After 

the background check, all the media was removed from the wells and cells were seeded at a 

density of 20,000 cells/well in 100 µl culture media. The plate was placed back in the xCELLigence 

and the adhesion, growth and proliferation of the cells were monitored every 15 min for 24 hours. 

24 hours after seeding, the cells were exposed to a dose range of 0.05 - 500 µM CPF. Controls 
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received medium with 0.2% DMSO and some wells were treated with 10% triton as a positive 

control. After exposure, the experiment was run for approximately 40 hours.  

  

4.10 Statistics  

All statistical analyses were performed in R (v.3.6.1) with RStudio (v. 1.2.5019) and Pycharm 

2020.2.  GraphPad Prism 8.0, RStudio and Pycharm were utilized to create all statistical figures.  

One-way analysis of variance (ANOVA) was performed to examine the effects of the saponin 

exposure on weight loss of the fishes. Two-way ANOVA was performed to examine the effect of 

diet and treatment on apparent permeability of each intestinal sac. Data of TEER values, qPCR 

and cytotoxicity were analyzed using a one-way ANOVA followed by a Tukey’s multiple 

comparison test. The NOAEL and LOAEL values were determined by ANOVA followed by a Tukey’s 

test on the xCelligence system data. The LC50 was determined by linear interpolation.  The data 

from xCelligence system was also fitted to a three-parameter sigmoid curve and the sigmoid curve 

equation was used to calculate the LC50 and BMC5 values. All the data were tested for 

homogeneity of variances and data normality using Levene’s test and Shapiro Wilk’s test 

respectively. 
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5.1 General health 

No mortality related to dietary treatment was observed. Fish used for the experiment displayed 

no external changes and looked healthy. Two fishes out of 26 fishes were discarded from the 

experiment, where one was used as a trial and therefore discarded from the results. The second 

fish was starved and therefore was not used for the experiment. None of the fish were sexually 

matured.  

 

5.2 Soya saponin exposure  

 Before the feeding trial the initial body weight of the control and the SBM fed fish were 178.5 ± 

1.0 g and 177 ± 2.1 g respectively. After 67 – 69 days of the feeding trial the final average weight 

for the control group was 571 ± 21g and 555 ± 17g for the SBM group. Replacement of fish meal 

(control) with soya bean meal resulted in slight decrease in fish growth, figure 4.2, but not 

statistically significant (p=0.6). 

   

5. Results 
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Figure 5.2.1: - Final weight (g) of Atlantic salmon fed fish meal (control) and soya bean meal 

(SBM). Whiskers represent the minimum and maximum values.  The Lower box limit represents 

Q1 (lower quartile), middle – median and upper limit - Q3 (upper quartile). White circle - mean, 

black dots – outliers. 

 

5.3 Apparent permeability  

None of the intestinal sacs seemed damaged and the ends were properly closed. The cumulative 

concentration of FITC-D of all the intestinal sacs were low at 0 t indicating that none of the sacs 

were leaking. The cumulative concentration of each point for every intestinal sac generally increased 

as the time increased, and all the trend lines had a positive slope (appendix figures 10.1 – 10.24). 
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Figure 5.3.1: Apparent permeability of Atlantic salmon intestinal sacs of each experimental group 

and the effect of CPF treatment. Control 0 µM and Control 500 µM represents fish fed with fish 

meal later injected 0 and 500 µM CPF in the intestinal sac, respectively. SBM 0 µM and SBM 500 

µM represents fish fed with soybean meal later injected with 0 and 500 µM CPF in the intestinal 

sac, respectively. The Lower box limit represents Q1 (lower quartile), middle – median and upper 

limit - Q3 (upper quartile). White circle - mean, black dots – outliers. 

 

 

The apparent permeability values for each intestinal segment for different experimental groups 

are plotted in figure 5.3.1. The average apparent permeability of the mucosa for fish fed with SBM 

diet injected with 500 µM CPF and 0 µM CPF are 1.01 x 10-5 cms-1 and 1.31 x 10-5 cms-1 

respectively. The average permeability for the FM fed group (control) injected with 500 µM CPF 

and 0 µM CPF are 1.50 x 10-5 cms-1 and 1.60 x10-5 cms-1 respectively. 

 

The highest intestinal permeability value was observed in the control group with zero CPF 

exposure. There were no statistical differences between the permeabilities in each experimental 

group. Although there appeared to be a trend of decreasing permeability in CPF exposed 

intestinal segments in both groups.  

 

Output from ANOVA showed that the effect of the diet (p=0.07) and treatment (p= 0.4) alone 

were not statistically significant. The interaction of the diet and treatment (p =0.71) was also not 

statistically significant. This concludes that the diet and treatment together and alone did not 

affect the intestinal apparent permeability. 
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5.4 Histology   
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

Figure 5.4.1: Histological appearance of intestinal tissue of fish fed with fish meal(control). A – 
Submucosa, B - Muscularis externa, C- Muscularis Mucosae, D – Crypts, E - Villi, F – Enterocytes, 
G- Nuclei, H – Blood vessel, I – Goblet cells, J – Mucus, K- Lamina propria. Scale bar A) = 100 µm, 
B) & C) = 50 µm 
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Figure 5.4.2: Histological appearance of intestinal tissue of fish fed with SBM. A - Muscularis 
externa, B – Submucosa, C- Muscularis Mucosae, D – Villi, E - Nuclei, F – Enterocytes, G- Lamina 
propria, H – Horizontal plane of segment, I – Goblet cells, J – Brush border. Scale bar A) = 100 µm, 
B) & C) = 50 µm 
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Figure 5.4.3: Histological appearance of intestinal tissue of fish fed with fish meal (control) and 

later injected with 500 µM CPF. A - Muscularis externa, B – Submucosa, C- Muscularis Mucosae, 

D – Crypts, E - Blood vessel, F - Villi, G- Secretion of mucus from goblet cells, H – brush border. 

Scale bar A) = 100 µm, B) & C) = 50 µm 
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Figure 5.4.4: Histological appearance of intestinal tissue of fish fed with SBM and later injected 

with 500 µM CPF. A - Muscularis externa, B - Submucosa, C- Muscularis Mucosae, D – Crypts, E -

Villi, F – Lamina propria, G- Enterocytes, H – Nuclei, I – Goblet cells, J – Brush border. Scale bar A) 

= 100 µm, B) & C) = 50 µm 
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Results from the histological evaluation of the intestinal segments of fish fed with different diets 

are shown in figures 5.4.1 – 5.4.4.  Intestinal segments of fish fed with SBM and FM exposed to 0 

µM and 500 µM displayed normal morphology with no inflammatory response and no histological 

alteration. Intestinal segments showed normal structures of the intestine, which consists of 

muscularis externa, submucosa, muscularis mucosae, lamina propria, enterocytes etc. 

 

Histological observations of intestinal segments from the gut sac experiment showed no 

infiltration of lamina propria and submucosa, no shortened of mucosal fold, no fusion of villi 

and/or flattened villi and no loss of supranuclear vacuoles were seen in the enterocytes, in any of 

the exposure groups. Numerous goblet cells scatted among the absorptive cells (enterocytes) are 

seen in all the exposed intestinal segments, including the control. These cells are specialized for 

secretion of mucus which lubricates the intestine. Figure 5.4.3 B) shows the secretion of mucus 

into the lumen by a goblet cell.  Some regions of the intestinal segments displayed few goblet 

cells comparing to other regions of the intestine of some fishes, figure 5.4.4 B) and C). 

 

5.5 Cytotoxicity assay 

The cytotoxicity test was performed after the qPCR and TEER analysis. Due the down regulation 

of cyp1a mRNA expression at 5 µM CPF compared with the 0.5 µM CPF (see figure 5.7.1) a dose 

range from 0.05 – 500 µM CPF was chosen for this experiment.  

 

The strength of cell adhesion is represented as the Cell Index (CI) which is a unit-less 

measurement. The cell index of cells beginning from 20,000 cells/well increased as the cell 

number increased.  The CI made a sharp increase up to 10-12 hours and remained stable 

thereafter (appendix figure 10.27).  The CI was normalized at the time point before CPF addition 

by dividing through by the value at this time point. 
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Figure 5.5.1:  Response curve of the cell index of RTgutGC cells upon CPF exposure. Cells were 

seeded at a density of 20,000 cells/well in a 96-well E-plate allowing the cells to adhere and 

proliferate for 24 hours. Cells were then exposed to CPF in the dose range of 0.05 – 500 μM for 

24 h using an xCELLigence system. xCELLigence data shows cell adhesion as mean cell index ± SD 

of three replicates. Significant difference observed between the control and the exposed group 

by one-way ANOVA is indicated by  (p > 0.05). NOAEL = No observed adverse effect level, LOAEL 

= Lowest observed adverse effect level, Green lines = ± SD interval of the Control, Red lines = ± 

SD interval of the Triton 20%, Grey line = LC50% (Lethal concentration 50%). 

 

 

The response to CPF exposure (0.05 - 500 μM) of RTgutGC cells after 24 hours is shown in figure 

5.5.1 (linear fit), and 5.5.2 (logistic regression). Controls (DMSO 0.2%) reached a mean cell index 

(CI) value of 2 ± 0.02. RTgutGC cells exposed to CPF up to 5 μM showed no significant difference 

compared with the controls. Cells exposed to 10, 20, 50, 100 and 500 μM was significantly 

different compared with the controls, based on ANOVA. All the cells exposed to 500 μM CPF had 

undergone cell death, giving a mean CI value around 0. CI of all positive controls (n=3) treated 
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with 20% triton dropped down to negative values and a similar observation was made in one well 

of cells exposed to 500 μM CPF. Based on ANOVA analysis, cells exposed to 5 µM CPF is the highest 

concentration not significantly different from the control, indicating the NOAEL value; and cells 

exposed to 10 µM CPF, being the lowest concentration significantly different from the control, 

indicating the LOAEL value. The LC50 of CPF in RTgutGC cells, as determined by linear 

interpolation, was 84 µM (figure 5.5.1).  

 

 

Figure 5.5.2 Sigmoid curve fit of the exposure response curve for CPF and Cell Index of RTgutGC 

cells. Cells were exposed to CPF in the dose range of 0.05 – 500 μM for 24 h using a xCELLigence 

system. Control and 20% Triton is not included in this analysis. Blue line = sigmoid curve, Blue 

dots = raw data, Yellow dot = Benchmark response 5% (BMR5), Red dot = Lethal concentration 

50% (LC50), Grey line = 95% confidence interval. 
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According to the logistic regression plot there is little or no effect in the adhesion of cells at low 

concentrations of CPF. Beyond the concentration of 5 μM CPF the regression line starts to decline 

indicating a high adhesion of cells. From concentrations beyond 10 μM there is a clear decline in 

the adhesion of cells both in the data in the regression and the slope of the regression is steep. 

At the highest concentration tested the adhesion of cell is a fraction of the adhesion at low 

concentrations. The measured BMR5 and LC50 for CPF in RTgutGC cell in this analysis are 13.5 ± 

0.06 and 89 ± 0.12 μM at 95% confidence, respectively.  

 

5.6 Transepithelial electrical resistance  

A cell density of 150,000 cells/ml and a culture period of 10 days with symmetrical culture 

conditions, consistently yield a dense, single epithelial monolayer on the permeable membranes. 

The cells were seeded and left in culture allowing it to attach overnight prior to the TEER 

experiment, Figure 5.6.1. On the first day cells developed an average TEER of 33 ± 10 Ω*cm2.  Over 

time TEER levels increased and reached an average of 65 ± 5.2 Ω*cm2 after 10 days of culture with 

significant difference observed over time (p = 3.983e-09). TEER values reached a stable plateau 

at around 6-10 days. Cells seemed to have stopped proliferating but remained viable. Formation 

of a double cell layer, especially in the center of the membrane, was observed in the RTgutGC cell 

layer after 8-10 days of culture.  
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Figure 5.6.1:  Transepithelial electrical resistance (TEER) of RTgutGC cells. Cells were seeded at a 

density of 150,000 cells/ml on transwell membrane inserts (0.4 μm pore size) and grown for up 

to 10 days. Cells were cultured continuously under symmetrical conditions in L-15/FBS in both 

apical and basolateral compartment. Data represent the mean ± standard deviation (SD) from 

three independent replicates. Significant difference was observed over time (One-way ANOVA p > 

0.05)  

 

5.6.1 Effects of chlorpyrifos on the transepithelial electrical resistance  

The effect of CPF on membrane integrity and permeability of the RTgutGC cell monolayer after 

24 hours is shown in figure 5.6.2. As described in the method section cultures were treated with 

CPF in the dose range of 0.5 – 500 μM. The TEER values are shown in percent, where the TEER 

values measured 24 hours after the addition of CPF divided by the TEER values measured before 

the addition of CPF multiplied by 100. The average baseline TEER values of the monolayers (on 

day 10) varied from 59 -76 Ω·cm2. Cell cultures in L-15 me dia containing 0.2% DMSO (control) did 

not significantly alter the initial TEER values after 24 hours.  CPF caused a dose dependent 

decrease in TEER values. TEER levels of cells exposed to low concentrations of CPF were not 
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affected, however TEER levels exposed to higher concentrations of CPF (50 – 500 μM) were 

significantly lower than those of control cells. Cell death was induced in all wells exposed to 500 

μM CPF, decreasing the TEER values close to background levels. 

 

 

 

Figure 5.6.2: Transepithelial electrical resistance (TEER) values in RTgutGC cells after treatment 

with different concentrations of chlorpyrifos (CPF) for 24 h compared with the initial value. 

Results are expressed as the mean ± SD of three independent experiments. Different letters 

(a,b,c) indicate significant differences in TEER (One - way ANOVA, p < 0.05).  
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5.7 Gene expression  

5.7.1 Transcription of genes involved in detoxification  

 

 

 

 

 

 

 

Figure 5.7.1: Expression of genes involved in detoxification, A) cyp1a, B) cyp3a, C) gstr, D) ugt2a2 

in rainbow trout gut cells (RTgutGC) exposed to chlorpyrifos (CPF) and DMSO control (0.2%) for 

24 hours. mRNA expressions are represented as mean normalized expression and the values 

represent mean±SD of six replicates (n=6). Different letters indicate statistical differences in mean 

values between treatments (One-way ANOVA, p<0.05) 
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Cell death was induced in all cell cultures exposed to 500 µM CPF and this exposure was therefore 

excluded from the gene expression experiment. Figure 5.7.1 shows the induction of the cyp1a, 

cyp3a, gstr and ugt2a2 mRNA in RTgutGC cells 24 hours after exposed to 0.5 – 100 µM CPF.  All 

four genes, cyp1a (p = 2.07e-12), cyp3a (p = 8.23e-07), gstr (p = 0.000113) and ugt2a2 (p = 2.16e-

09) were significantly affected by the exposure. cyp1a was significantly up regulated at 0.5 and 5 

µM CPF with a fold change of 8.8 and 6.9, respectively. cyp1a seemed to downregulate with the 

increasing CPF concentration. cyp3a expression was significantly upregulated at 50 µM CFP with 

a fold change of 1.86. Both gstr and ugt2a2 mRNA expression was significantly downregulated at 

100 µM CPF, but was not significantly altered in cells exposed to CPF lower concentrations of CPF. 

 

5.7.2 Transcription of genes involved in lipid metabolism 

The expression of genes involved in the lipid metabolism in RTgutGC cells 24 hours after exposed 

to 0.5 – 100 µM CPF are shown in figure 5.7.2. All three genes, lpcat2 (p = 0.00545), pparαb (p = 

0.000662) and plin2 (p = 3.1e-13) were significantly affected by CPF exposure. The mRNA 

expression levels of lpcat2 significantly decreased at 100 µM CPF. lpcat2 expression slightly 

increased at 50 µM but was not significantly different compared to the control. Similar to lpcat2, 

the expression of pparαb was significantly downregulated at 100 µM CPF and the pparαb 

expression of cells treated with 0.5 – 50 µM CPF was not significantly different compared with 

the controls. The mRNA expression of plin2 was low in the controls compared with the controls 

of lpcat2 and pparαb. Expression levels were also low in cells exposed to low concentrations of 

CPF (0.5 and 5 µM). However, the expression levels significantly peaked at 50 and 100 µM CPF 

compared with the controls. plin2 mRNA levels of the cells exposed to 50 and 100 µM CPF had a 

fold change of 9.8 and 4.8 respectively. 
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Figure 5.7.2: Expression of genes involved in lipid metabolism, A) lpcat2, B) plin2-1, C) pparαb in 

rainbow trout gut cells (RTgutGC) exposed to chlorpyrifos (CPF) and DMSO control (0.2%) for 24 

hours. mRNA expressions are represented as mean normalized expression and the values 

represent mean±SD of six replicates (n=6). Different letters indicate statistical differences in mean 

values between treatments (One-way ANOVA, p<0.05) 
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This study aimed to assess how oral exposure to, chlorpyrifos (CPF), an organophosphate 

pesticide, affects the intestinal health in Atlantic salmon. A two-month feeding trial was 

conducted where the fish were fed with a fish meal diet (control) and a soybean meal diet. At the 

end of the feeding trial, the intestinal sac of fish from the different feeding groups were excised. 

The effect of CPF on intestinal permeability of these intestinal sacs was measured using a gut sac 

model. Histological assessment on the intestinal tissue samples were performed to examine the 

effects of the CPF and saponin (a natural toxin from soybean). Results from the gut sac model 

indicated that permeability of intestinal sacs was not affected by saponin and CPF exposure. 

Histological evaluation observed no inflammation on intestinal segments exposed to both CPF 

and saponin. Furthermore, an intestinal cell line, RTgutGC, derived from rainbow trout was used 

as an in vitro model for salmon. TEER, qPCR analysis and xCELLigence cytotoxicity analysis were 

performed on cell cultures exposed to different concentrations of CPF. Results showed that as the 

CPF concentration increased the cell viability/ integrity of the cell monolayer decreased. 

 

 

6.1 Saponin showed no effects on fish intestine 

Atlantic salmon exposed to soya saponin over a period of two months had little effect on its body 

weight (Figure 5.2.1). Studies have shown that saponins inhibit the activities of digestive enzymes, 

reduce overall growth rate, and reduce intestinal absorption of nutrient through binding of 

saponins to the epithelium (Francis et al., 2001; Kregiel et al., 2017; Samtiya et al., 2020).  

 

According to Knudsen et al., 2008  and Sahlmann et al., 2015, Atlantic salmon that received a SBM 

diet did not significantly differ in growth compared to fish that received a FM diet, which agrees 

with our results. A possible reason for this could be that the effects of the soy saponin could have 

been less severe with the prolonged experimental period through a compensatory growth after 

the fish adapted to these unfavorable toxins (Chen et al., 2011). Complex formations between 

saponin together with other soybean components could also lead to inactivation of the toxic 

6. Discussion 
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effects of the saponins (Francis et al., 2001; Makkar et al., 1995).  Olli et al., 1995 and Sørensen 

et al., 2011  showed that dietary SBM often had a negative impact on growth rate in Atlantic 

salmon. However, M. Gu et al., 2015 showed that Atlantic salmon fed with SBM showed a 

significantly higher body weight  than those fed FM. The varying effects of saponin observed in 

different studies maybe due the varying doses of saponins in the diets, differences in sensitivity 

in different/induvial species  and the exposure period (Gu et al., 2015) .  

 

According to Chikwati et al., 2013; Knudsen et al., 2008; Sørensen et al., 2011 and Krogdahl et al., 

2015 Atlantic Salmon fed SBM displayed severe enteritis in the distal intestine. SBM containing 

diet is known to cause inflammation in the distal intestine but not in other parts of the intestinal 

region (Chikwati et al., 2013; van den Ingh et al., 1991). Histological analysis from our results 

showed no entities in the mid intestine of fish fed with SBM; However, an increased amount of 

goblet cells was observed. 

 

The mucus layer is normally impermeable to microbes, toxins and other environmental irritants 

thus protecting the underlying epithelium (Johansson & Hansson, 2014). Evidence from both 

clinical and animal studies have indicated that inflammation can be caused by impaired goblet 

cell function which in turn affects the mucin quality and quantity (Grondin et al., 2020). The 

increased  goblet cell density may have been the result of hypertrophic mucus production when 

subjected to irritation by saponins (Francis et al., 2001). This might be also true for intestinal 

segments exposed to CPF, since an increased amount of goblet cells were also seen in intestinal 

segments exposed to CPF. Increased goblet cells in the controls could be due to stressed fish 

before the experiment.  

 

The gut sac model from our study showed no effect of soya saponins on gut permeability in the 

mid intestine. (Knudsen et al., 2008) showed that dietary soya saponins increased gut 

permeability in the distal intestine in Atlantic salmon. Inflammatory reactions in the gut are 

secondary effects of increased intestinal permeability (Knudsen et al., 2007). Increased intestinal 
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permeability could expose the underlying mucosa to gut microflora that can promote 

inflammatory responses (Knudsen et al., 2007).  

 

The posterior part of the intestine (proximal and mid) is considered to be the main site of nutrition 

absorption, and therefore contains less microbes than the distal intestine (Jutfelt, 2011). This 

might be the explanation to why we see inflammation in the distal intestine, and not in the mid 

intestine. The binding and the lower dissociation constant of soya saponin to the intestinal brush 

border membranes might also be higher in the distal intestine than the mid intestine, which may 

also lead to increased intestinal permeability and therefore inflammation (van den Ingh et al., 

1991). 

 

 

6.2 Increased permeability is not seen in guts exposed to chlorpyrifos  

The gut sac technique has proven to be an excellent ex vivo model for studying the intestinal 

transport process (Mateer et al., 2016; Whittamore et al., 2016).  The gut sac model was used to 

study the apparent permeability (Papp) of the FITC-D molecule across the intestinal barrier in our 

experimental setup. Our results showed that the permeability of intestinal segments exposed to 

500 µM CPF was no different than the control.  

 

To our knowledge no studies have been done on intestinal permeability of CPF in teleost fish. 

However, numerous studies have been done on this subject in rodents (Condette et al., 2014; 

Liang et al., 2019; Zhao et al., 2016). Zhao et al., 2016  showed that mice fed with CPF diet over 

30 days caused broken integrity of the gut barrier which resulted in intestinal inflammation and 

a high intestinal permeability. Condette et al., 2014 also observed increased intestinal 

permeability of rats exposed to daily ingestion of CPF. In our study the intestinal segments were 

exposed to CPF for a total of 3 hours, collecting samples at 20-minute time intervals. Possible 

reasons for the lack of effect of CPF on gut permeability could mainly be the duration of the  

exposure period, dosage, and the size of the fish. Intestinal permeability may also vary greatly in 

different regions of the intestine. However an unpublished study by  Le Bideau et al,2019, figure 
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6.2.1 showed that intesinal segments exposed to 500 µM CPF increased gut permeablity in 

Atlantic salmon, but there was a significant difference in fish size compared with our study . 

 

 

Figure 6.2.1 Intestinal permeability in the mid intestinal sacs of Atlantic salmon exposed to CPF. 

CLP1, CLP2, CLP3: 250 µM, 500 µM, 1000 µM chlorpyrifos, respectively. From Le Bideau (2019). 

 

 

Cook & Shenoy, 2003 investigated the intestinal transport of CPF, using the single-pass intestinal 

perfusion (SPIP) technique on rats and the results showed that the duodenum and ileum exhibit 

a decrease in permeability at the highest CPF concentration, which is in line with our results. The 

low permeability of the FITC-D molecules on the intestinal segments exposed to CPF in our 

experiment could suggest that CPF is transported primarily via a passive, transcellular mechanism 

across the intestinal epithelium with a saturable process, potentially via a membrane transport 

protein (Cook & Shenoy, 2003). 
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It is important that each intestinal sac is cut in equal length and the sac is filled with the correct 

volume to avoid unequal distension of the mucosa. Under-distension of the intestinal segment 

may reduce the exposure of luminal contents to the mucosal surface and increase the thickness 

of the tissue through which the marker (FITC-D) must travel (Mateer et al., 2016). Over-distension 

of the segment may damage or activate stress-responses in the tissue, potentially confounding 

results (Mateer et al., 2016). Permeability also largely  depends on size, hydrophobicity and 

quality of the probe (Mateer et al., 2016; Trapani et al., 2004). 

 

The lack of effects observed in the gut sac model can be confirmed from the histological analysis. 

The exposed and the non-exposed intestinal segments (control) to CPF, induced no inflammation. 

Khatun et al., 2016 and Stalin et al., 2019 carried experiments on H.fossilis and Channa punctatus 

respectively, and were exposed to CPF for 30 days. The histopathological alteration of both 

species had shown continuous damage to the intestine. The histological alterations were found 

to be dose and time dependent as the cellular alterations were more pronounced with the higher 

concentration and exposure duration period of CPF. 

 

6.3 Cytotoxicity of chlorpyrifos  

As mentioned before, the xCELLigence RTCA system measures the net adhesion of cells. In the 

absence of cells, the impedance is mainly determined by the electron flow between the 

electrodes in the presence of a bulk solution.  Adhering cells disrupt the interaction between the 

electrodes and the bulk solution, leading to an increase in impedance.  Impedance is mainly 

dependent on cell number, cell morphology and cell size and on the strength of cell attachment 

to the substrate coating the plate (Hamidi et al., 2017). 

 

Normally cell plates are coated with extra cellular matrix (ECM) proteins where cells bind using 

transmembrane proteins called integrins, thus increasing the efficiency of cell adhesion (Hamidi 

et al., 2017). Higher concentrations of CPF induce cell detachment by disrupting these proteins 

resulting in low impedance values.  
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According to the international standard for in vitro cytotoxicity testing (ISO, 2009), the reduction 

of cell viability to contaminants by more than 30% is considered a cytotoxic effect. Based on the 

ANOVA analysis the xCelligence system showed 38%, 55% and 100% cell viability reduction, from 

the controls, in cells exposed to 50, 100, 500 µM CPF, respectively.  The regression model showed 

34%, 52% and 100% cell viability reduction from the baseline. Therefore, we can confirm that 

RTgutGC cells exposed to CPF concentrations of 50 µM and upwards induce cytotoxicity.   

 

Babín & Tarazona, 2005 found CPF  to be the most potent compound of  out of six pesticides 

tested in rainbow trout liver (RTL-W1) and rainbow trout gonadal (RTG 2) cell lines in a Neural red 

and FRAME KB protein assay and the inhibition of EROD activity was observed at the lowest tested 

concentration 0.02 mg/L for CPF. Søfteland et al., 2014 and  Olsvik & Søfteland, 2020 observed 

that Atlantic salmon hepatocytes exposed up to 1000 μM CPF and chlorpyrifos-methyl (CPM) 

were not cytotoxic, which is not in line with our results. These studies have used primary 

hepatocyte cell cultures and the reason for the differences in sensitivity between salmonid 

primary hepatocytes and cell lines to CPF is unknown (Søfteland et al., 2014). 

 

6.3.1 ANOVA vs Regression model  

The NOAEL and the LOAEL values for CPF in RTgutGC cells from the exposure response curve 

determined by the ANOVA model were 5 and 10 µM respectively. The LC50 value was 84 µM 

determined by linear interpolation. The LC50 and BMC5 values of CPF for the cells, determined 

by the sigmoid curve equation were 89 ± 0.12 and 13.5 ± 0.06 µM, respectively.  

 

The regression from the sigmoid curve is based upon the fit to the entire dataset and the line is 

generated by an assumed modeled relationship between all these points. NOAEL and LOAEL 

values are not applicable in this context as the regression yields a continuous function. However, 

a benchmark concentration (BMC) method is more applicable to use in a regression model. The 

BMC method was proposed as an alternative by Crump, 1984 to address many limitations of the 

NOAEL/LOAEL method. The BMC is more reliable than NOAEL/LOAEL since it is less dependent on 

dose selection, dose spacing and sample size (Crump, 1984; EPA, 2012). It also takes into account 
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the shape of the dose–response curve and other related information (EPA, 2012). BMC is a the 

concentration level associated with a specified change in the response called, benchmark 

response (BMR) (EFSA, 2016). BMR5 used in this study is the 5% decrease in cell adhesion 

compared with the base line cell adhesion.  

   

 Traditionally, NOAEL and LOAEL have been used to determine the point of departure (POD), 

which is a point on a dose/exposure response curve corresponding to estimated low effect or no 

effect level (EFSA, 2016).  Since this approach has limitations, the BMD approach provides a 

promising method for calculating the POD (Crump, 1984; EFSA, 2016). NOAELs and LOAELs are 

based upon a hypothesis testing approach and provides a less detailed visualization and 

quantitative description of a toxic response than a regression model (Landis et al,2017). 

Therefore, the BMC5 and LC50 determined from the regression model in this study would yield 

more accurate values.  

 

6.4 TEER over time  

TEER is a rapid, non- invasive method for measuring the electrical resistance across a cellular 

monolayer and is very sensitive and reliable method to confirm the integrity and permeability of 

the monolayer (Hickman, 2016; Shuler & Hickman, 2016). TEER indicates the integrity of the tight 

junction where it reflects the ionic conductance of the paracellular pathway in the epithelial 

monolayer (Hickman, 2016). 

 

The RTgutGC cell line established a single monolayer on permeable insert membranes which led 

to a formation of functional epithelium that accommodated TEER levels up to 65 ± 5.2 Ω*cm2. 

According to Loretz, 1995, Claude & Goodenough, 1973 and Sundell et al., 2003  our low TEER 

values can be characterized as a leaky epithelia. The increasing TEER value overtime is probably 

due to the growth and proliferation of the RTgutGC which can be attributed to the increase in 

tightening of cell – cell contacts (Schug et al., 2018).  TEER values reach a plateau when the cells 

form a confluent monolayer. 
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The TEER values obtained from the RTgutGC cell line appears to be closely related to the TEER 

values obtained from the distal intestinal segements of Atlantic salmon adapted to fresh water 

(Sundell et al., 2003). Thus the RTgutGC cell line appears to closely reflect the in vivo 

transepithelial resistance in salmonids (Minghetti et al., 2017). Higher TEER  values were observed 

in Atlantic salmon and Rainbow trout in the distal compared to the proximal intestine (Sundell et 

al., 2003;Sundell & Sundh, 2012). This is due to the need for a tighter barrier increases as the 

bacterial levels peaks in the distal intestine (Jutfelt, 2011; K. S. Sundell & Sundh, 2012).  

 

Although TEER measurements are very powerful they can also be subjected to variability. In 

addition to the cell monolayer, the medium, the permeable membrane  and the 

electrode/medium interface all contribute to the final TEER values  and subtracting these values 

from a blank removes much of the variability (Hickman, 2016). Temperature is known to affect 

the TEER measurement (Hickman, 2016; Shuler & Hickman, 2016). For the RTgutGC cell line, the 

TEER measurements should be conducted in 19 °C room temperature to obtain consistent values. 

The position of the chopstick electrodes can also introduce variability between measurements 

and therefore it is important to maintain the same vertical holding position to obtains consistent 

read outs (Shuler & Hickman, 2016). Other factors such as cell passage number, cell culture 

medium composition and shear stress could also influence the TEER values(Shuler & Hickman, 

2016).  

 

6.5 TEER after chlorpyrifos exposure  

Exposure of CPF to RTgutGC cells for 24 hours led to a concentration dependent decrease in the 

TEER values. Reasons for the reduction of TEER values could be the increase in paracellular 

permeability to ions due to the disruption to the tight junctions, changes in transcellular ion flux 

through altered plasma membrane channels or pumps or uncontrolled cell death within the 

monolayer (Gao et al., 2018). From this angle the decreased TEER of cells exposed to low 

concentrations of CPF (0.5 and 5 µM) could be due to the increase in paracellular permeability 

and low TEER of cells exposed to high concentrations of CPF is due to cell membrane disruption 

and cell death. 
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Numerous studies have been conducted on the intestinal integrity of Caco2 cells (Gao et al., 2018; 

Okada et al., 2000). Tirelli et al., 2007 investigated the effects of CPF on the intestine and the 

integrity of the epithelial barrier using Caco-2/TC7 cells. Results showed that the TEER values of 

the cells exposed to the highest concentration of CPF (250 µM) decreased, indicating a leaky gut, 

which agrees with our results. Similar results have been seen in caco-2 monolayers exposed to 

other contaminants (Gao et al., 2018). Considering the fact that Caco-2 cells are known to develop 

a much tighter epithelium, indicated by higher TEER values (150 - 400 Ω cm2) (Shuler & Hickman, 

2016), the RTgutGC cell line seem to have a similar physiological response to CPF. 

 

6.6 Effects of chlorpyrifos on the genes involved in detoxification 

6.6.1 cyp1a expression 

Our study investigated four key genes related to xenobiotic biotransformation. The mRNA 

expression of cyp1a increased in cells treated with 0.5 CPF and then decreased in a concentration 

dependent manner. Normally cyp1a expression is low in cells that has not been exposed to 

contaminants (Goksøyr et al., 1991). Our results from the xCelligence analysis showed that CPF 

concentrations over 50 µM were cytotoxic to the RTgutGC cells. This could explain the low 

expression levels of cyp1a in cells exposed to 50 and 100 µM CPF. As the CPF concentration 

increased, the expression capacity of  cyp1a was possibly overwhelmed and inhibited, which 

counteracted the effects of induction (Liguori et al., 2012). The decreased cyp1a expression at 5 

µM CPF was not due to cytotoxicity, which can be confirmed from the xCelligence cytotoxicity 

test. The mechanism behind the low expression at non cytotoxic concentrations is unclear.  

 

The AhR receptor, which regulates transcription of the cyp1a gene, can be activated by ligands to 

induce transcription of its target genes. It is possible that some ligands may regulate the effects 

of AhR differently between tissue / cell types (Liguori et al., 2012). CPF can undergo bioactivation 

by  CYP1A to a more toxic metabolite called CPF-oxon, which is more active and less stable than 

the parent compound (Sams et al., 2004). The sulfur ion released in CPF activation is highly 

reactive and is believed to bind immediately to the heme iron of the CYP protein inhibiting its 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/inorganic-ions
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activity (Tang et al., 2002; Neal, 1980). It is also possible that CPF-oxon may inhibit the AhR 

receptor or other enzymes that involve in the AhR pathway or increase the AhR repressor 

proteins, resulting in decreasing cyp1a expression levels. 

 

Several studies have shown the upregulation of cyp1a mRNA expression after CPF exposure in 

different fish species (Jeon et al., 2016; Søfteland et al., 2014; Xing et al., 2014), which agrees 

with our results. This indicates that chlorpyrifos induces cyp1a expression, but that the expression 

may be inhibited at higher concentrations. 

 

6.6.2 cyp3a expression  

CYP3A are major phase I enzymes that are mainly expressed in the intestine (Lee & Buhler, 2003). 

Our results showed that cells exposed to low concentrations of CPF had no effect on the cyp3a 

expression levels. However, the mRNA expression of cyp3a was significantly upregulated in 

RTgutGC cells exposed to high concentration of CPF indicating that it is a weak cyp3a inducer 

(Søfteland et al., 2014). This might possibly be due to a low affinity of CPF to the salmonid PXR 

receptor, the main transcription factor involved in CYP3A regulation, although studies with human 

PXR has shown a moderately strong affinity (Lemaire et al., 2004). In humans, several different 

CYP isoforms have been shown to be involved in CPF metabolism, including CYP3A (Tang et al., 

2001). 

 

 Atlantic salmon hepatocytes exposed to CPF showed no significant effects on cyp3a expression 

(Olsvik et al., 2019). Jeon et al., 2016 showed up regulation and Ma et al., 2013 showed 

downregulation of cyp3a in zebrafish and gold fish exposed to CPF, respectively. These conflicting 

results demonstrate that alteration of cyp3a genes after CPF exposure is dependent on the 

species analyzed. 

 

 

https://www.sciencedirect.com/science/article/pii/S1382668916300606#bbib0105
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6.6.3 gst and ugt expression  

Glutathione S-transferase (gst) and UDP-glucuronosyl-transferase (ugt) are genes coding for 

enzymes involved in the phase II of xenobiotic detoxification. In the present study gst and ugt did 

not responded to the treatment of CPF, except in the cells exposed to 100 µM CPF, which was 

significantly downregulated compared to the control.  

 

I propose several possible explanations for the gst observation. Transcription of certain gst 

isomers are tissue specific and expressed differently in different organs and  the abundance of 

different isoforms of GST within the organ is also variable (Coles et al., 2002; Hao et al., 2008; 

Xing et al., 2012). CPF or CPF - oxon might also influence the transcription-regulating factors that 

bind to the promoter region of the gst gene and inhibit the transcription of gst (Xing et al., 2012).  

These explanations might also be true for ugt since few studies have been conducted on the 

effects of pesticides on ugt gene expression in fish. 

 

According to Bonifacio et al., 2017  the activity of GST was not detected in any of the studied 

organs in C. interruptus  exposed to CPF. The hepatic GST activity was also not affected by  CPF in 

juveile spiny damsel fish (Botté et al., 2012). However, Olsvik et al., 2019 showed that four 

transcripts encoding GST proteins were significantly different compared with the control in 

Atlantic cod expsosed to medium (4.2 mg CPM/kg) and high (23.2 mg CPM/kg) doses of CPM, 

supporting GST-mediated conjugation of CPM and CPF-oxon, in fish.  

 

Although no significant difference was observed in the gst and ugt expression in our study, these 

enzymes may still play an important role in the detoxification of CPF. However, the response of 

gst and ugt to toxicants is most likely dependent on the type of xenobiotics, concentration and 

time of exposure and the species involved (Botté et al., 2012). 
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6.7 Effects of chlorpyrifos on the genes involved in lipid metabolism 

CPF exposure had no effect on the pparα and lpcat2 gene expressions, except for the highest 

concentration of CPF (100 µM). Normally pparα expression is high in hepatocytes where it has 

important roles in fatty acid oxidation, triglyceride clearance, cholesterol homeostasis, and 

lipoprotein production (Decara et al., 2020; Kersten, 2008). Various chemicals are known to alter 

the pparα gene expression (Intrasuksri et al., 1998; Taxvig et al., 2012)  

 

Takeuchi et al., 2006 characterized mouse pparα and pparγ agonistic activities in an in vitro 

reporter gene assay screening study with 200 pesticides, including CPF. This study showed that 

only three (diclofop-methyl, pyrethrins, and imazalil) could activate pparα and none of them 

could activate pparγ. Taxvig et al., 2012 also showed that CPF had no effect on mRNA pparα 

activation in nih-3t3 cells. These studies are in line with our results suggesting that CPF might not 

interact with PPARs. Less information is available about the effects of pesticides on lpcat2 gene 

expression. It is clear from our results that CPF does not affect the lpcat2 expression. 

 

We observed an increase in mRNA levels of plin2 in cells exposed to cytotoxic concentrations of 

CPF. Plin2 is involved in the formation of lipid droplets and regulates lipid storage and hydrolysis. 

The increased plin2 expression might be due to increased lipid droplet accumulation and TAG 

storage (Jin et al., 2018). Lipid droplets accumulate in cells exposed to oxidative stress in order to 

protect membranes from peroxidation reactions, maintain membrane saturation and organelle 

homeostasis, protect cells against reactive oxygen species (ROS) and enable a long-term supply 

of lipids for energy production and cell survival (Jarc & Petan, 2019; Olzmann & Carvalho, 2019). 

Thus, high expression of plin2 in cells exposed to cytotoxic concentrations of CPF enhance the 

lipid droplet formation that are essential for the cellular response to metabolic stress. Our results 

are in close agreement with those previously reported in trout treated with colchicine (Seiliez et 

al., 2016) and bafilomycin A1 (Seite et al., 2019) that led to a similar increasing effect on plin2 

expression. 
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In conclusion, this study showed that CPF exposure using the gut sac model did not increase the 

intestinal permeability in Atlantic salmon. Fish fed with SBM exposed to saponin also showed no 

effect on the intestinal permeability. Furthermore, no inflammation was seen in the mid-gut 

exposed to both CPF and saponin. From the gut sac experiment we can conclude that CPF at 500 

µM were not able to induce any effects on the intestinal epithelium of Atlantic salmon. 

  

Higher concentrations of CPF led to a decrease in the TEER in the RTgutGC cell line. This indicated 

that CPF may interfere with the TJ proteins altering the barrier integrity increasing gut 

permeability. Results from the expression of genes involved in detoxification revealed that cyp3a, 

gst and ugt were not affected by the CPF exposure, except for the higher doses with cyp3a. CPF 

did not seem to influence the lipid metabolism genes, pparα and lpcat2, expression. However, 

CPF clearly upregulated plin2 expression at high concentrations. Furthermore, this study showed 

that CPF is cytotoxic at 50 µM in the RTgutGC cell line.  

 

 

The work presented in this thesis showed that CPF and saponin had no effect on the mid intestinal 

epithelium of Atlantic salmon in the gut sac model. Further experiments should be done with the 

same experimental setup by increasing the exposure time period for CPF. For future experiments, 

a feeding trial with a daily dose of CPF together with SBM and FM (control) should be conducted 

to see how this would affect the results. Furthermore, samples from both distal and mid gut 

should also be collected for histological evaluation. 

 

No relevant intestinal cell lines from fish have been available until recently. We have used the 

intestinal cell line RTgutGC derived from rainbow trout as a substitute for Atlantic salmon. More 

7. Conclusion  

8. Further perspectives 
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research is required in the future for establishing a gut cell line derived from salmon, for more 

accurate results for this species.  

 

To understand the role between CPF and intestinal permeability, the gene expression of TJ 

proteins (claudins and occludins) should be studied. A direct measurement of the protein activity 

of TJ proteins would also provide a more detailed impression on how these are affected by CPF. 

Furthermore, it would be also interesting to study the paracellular flux of fluorescent tracers 

across the cell layer in the presence of different concentrations of CPF.  

 

Farmed fish are constantly being exposed to, not just CPF, but a cocktail of pesticides through fish 

feed. Pesticide mixtures can be more harmful than individual chemicals (Relyea, 2009). It is 

therefore important to do further research to determine the types of pesticide residues that can 

be found in fish feed, and how these alone or together affect the gut health of Atlantic salmon.  
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Table 10.1: Composition of diets 
   
Ingredient Control %  SBM % 

Fish meal NA 40  5 

Corn gluten    

Hi Pro Soy bean meal   30 

pea meal NTC17267    

Wheat gluten 20  21 

Faba bean dehulled 5  5 

SPC 12.2  12.5 

Fish oil NA 8.533  9.634 

Rapeseed oil 8  9.032 

Wheat 6.064  6.35 
 

 
 

 

Astaxanthin 10% 0.01  0.01 

VitC 0.01  0.01 

Vitamin premix 0.1  0.1 

MinMix 0.1  0.1 

Other micro 
ingredients 

0.736 
 

3.077 
  

 
 

Estimated content Control %  SBM % 

Dry matter 93  93 

Moisture 7  7 

Crude Protein 52.6  44.1 

Crude fat 22.9  22 

Ash 7.1  5.2 
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Figure 10.1 Cumulative concentration of FITC-D in the intestinal sac of fish 3 fed with SBM. 
 
 
 
 

 
Figure 10.2 Cumulative concentration of FITC-D in the intestinal sac of fish 3 fed with FM and later 
filled with 500 µM CPF. 
 

y = 1E-04x + 0.0047

0 20 40 60 80 100 120 140 160 180 200

0

0.005

0.01

0.015

0.02

0.025

Time(s)

C
u

m
u

la
ti

ve
 c

o
n

ce
n

tr
at

io
n

y = 6E-05x + 0.0046

0 20 40 60 80 100 120 140 160 180 200

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Time(s)

C
u

lm
u

la
ti

ve
 c

o
n

ce
n

tr
at

io
n



82 | P a g e  

 

 
Figure 10.3 Cumulative concentration of FITC-D in the intestinal sac of fish 4 fed with FM. 
 

 

 

Figure 10.4 Cumulative concentration of FITC-D in the intestinal sac of fish 5 fed with SBM and 
later filled with 500 µM CPF. 
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Figure 10.5 Cumulative concentration of FITC-D in the intestinal sac of fish 6 fed with FM and later 
filled with 500 µM CPF. 
 

 

 

 
Figure 10.6 Cumulative concentration of FITC-D in the intestinal sac of fish 7 fed with FM and later 
filled with 500 µM CPF. 
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Figure 10.7 Cumulative concentration of FITC-D in the intestinal sac of fish 8 fed with SBM. 
 
 
 

 
Figure 10.8 Cumulative concentration of FITC-D in the intestinal sac of fish 9 fed with SBM and 
later filled with 500 µM CPF. 
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Figure 10.9 Cumulative concentration of FITC-D in the intestinal sac of fish 10 fed with FM. 
 

 

 

 
 

Figure 10.10 Cumulative concentration of FITC-D in the intestinal sac of fish 11 fed with SBM. 
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Figure 10.11 Cumulative concentration of FITC-D in the intestinal sac of fish 12 fed with FM. 
 
 
 

 
Figure 10.12 Cumulative concentration of FITC-D in the intestinal sac of fish 13 fed with SBM and 
later filled with 500 µM CPF. 
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Figure 10.13 Cumulative concentration of FITC-D in the intestinal sac of fish 14 fed with FM. 
 
 
 

 
Figure 10.14 Cumulative concentration of FITC-D in the intestinal sac of fish 15 fed with FM 
and later filled with 500 µM CPF. 
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Figure 10.15 Cumulative concentration of FITC-D in the intestinal sac of fish 16 fed with SBM. 
 
 
 

 
Figure 10.16 Cumulative concentration of FITC-D in the intestinal sac of fish 17 fed with SBM and 
later filled with 500 µM CPF. 
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Figure 10.17 Cumulative concentration of FITC-D in the intestinal sac of fish 18 fed with FM and 
later filled with 500 µM CPF. 
 
 
 

 
 

Figure 10.18 Cumulative concentration of FITC-D in the intestinal sac of fish 19 fed with SBM and 
later filled with 500 µM CPF. 
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Figure 10.19 Cumulative concentration of FITC-D in the intestinal sac of fish 20 fed with SBM.  
 
 
 
 

 
Figure 10.20 Cumulative concentration of FITC-D in the intestinal sac of fish 21 fed with FM. 
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Figure 10.21 Cumulative concentration of FITC-D in the intestinal sac of fish 22 fed with FM and 
later filled with 500 µM CPF. 
 
 
 

 
Figure 10.22 Cumulative concentration of FITC-D in the intestinal sac of fish 23 fed with SBM and 
later filled with 500 µM CPF. 
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Figure 10.23 Cumulative concentration of FITC-D in the intestinal sac of fish 24 fed with FM. 
 

 

 

 

Figure 10.24 Cumulative concentration of FITC-D in the intestinal sac of fish 25 fed with SBM.  
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Figure 10.25: Transepithelial electrical resistance (TEER) values in RTgutGC cells after treatment 

with different concentrations of chlorpyrifos (CPF) for 48 hours compared with the initial value. 

Results are expressed as the mean ± SD of three independent experiments. Different letters 

(a,b,c) indicate significant differences in TEER (One - way ANOVA, p < 0.05).  
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Figure 10.26 Transepithelial electrical resistance (TEER) values in RTgutGC cells after treatment 

with different concentrations of chlorpyrifos (CPF) for six days compared with the initial value. 

Results are expressed as the mean ± SD of three independent experiments. Different letters 

(a,b,c) indicate significant differences in TEER (One - way ANOVA, p < 0.05).  
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Figure 10.27 Analysis of xCELLigence cell adhesion. xCELLigence data shows cell adhesion as mean 

cell index against time. Here, time point 0 denotes the point at which the E-plate 96 was first 

scanned after cell addition. CPF was added 24 hours after seeding cells and the cell index was 

normalized prior to CPF addition. 
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Figure 10.28 Response curve of the cell index of RTgutGC cells upon CPF exposure. Cells were 

seeded at a density of 20,000 cells/well in a 96-well E-plate allowing the cells to adhere and 

proliferate for 24 hours. Cells were then exposed to CPF in the dose range of 0.05 – 500 μM for 3 

h using an xCELLigence system. xCELLigence data shows cell adhesion as mean cell index ± SD of 

three replicates., Green lines = ± SD interval of the Control, Red lines = ± SD interval of the Triton 

20%,  
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Figure 10.29 Response curve of the cell index of RTgutGC cells upon CPF exposure. Cells were 

seeded at a density of 20,000 cells/well in a 96-well E-plate allowing the cells to adhere and 

proliferate for 24 hours. Cells were then exposed to CPF in the dose range of 0.05 – 500 μM for 

41 h using an xCELLigence system. xCELLigence data shows cell adhesion as mean cell index ± SD 

of three replicates., Green lines = ± SD interval of the Control, Red lines = ± SD interval of the 

Triton 20%,  


