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G R A P H I C A L A B S T R A C T

Pd-Au-Pd segemental nanorods are prepared in a controlled manner and used for in situ minotoring organic reaction.
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A B S T R A C T

Multimetallic nanomaterials have many applications. The controlled synthesis of multimetallic nanomaterials is
highly desired. We report a study on using penta-fold twinned (PFT) Au nanorods (NRs) as seeds to synthesize
PFT Pd-Au-Pd segmental NRs. The results show that the different crystal structures of seeds, I− and cetyl-
trimethylammonium bromide (CTAB) significantly affect the deposition of Pd on seeds surface. The PFT Pd-Au-
Pd segmental NRs showed excellent surface-enhanced Raman scattering (SERS) performance and improved
catalytic activity. Our research is of great significance for the synthesis of similar nanostructures, and we also
shown that PFT Pd-Au-Pd segmental NRs might have potential applications in studying the process of organic
reaction.

1. Introduction

Noble nanostructures have attracted much interest during the past
several decades because of their vitally promising applications in
plasmonic, catalysis, sensing, bioimaging, photothermal therapy, sur-
face-enhanced Raman scattering, and etc. [1–8]. However, properties of
noble nanostructures are highly dependent on the particle size, its
morphology, composition, and structure [9–16]. Therefore, synthetic
methods for nanoparticles with precise control of their morphology and
structure are in demand. Seeded growth is one of the commonly used
methods and very effective [17–20]. In the seeded growth, the decisive

factors to achieve a designed morphology contain growth kinetics,
thermodynamics, capping agents, lattice mismatch, seed structure, and
etc [21–36]. Growth kinetics has a great influence on the growth of the
product, so its adjustment can greatly change the shape of the product
[21,22]. Thermodynamics mainly affects the surface free energy of the
product. In general, the growth often happens on three low index facets,
(111), (100), (110) [22,37]. The blocking agent generally adheres to
some certain facets to promote preferential growth along a given di-
rection [25,27]. According to a related report, a lattice mismatch be-
tween the two metals can be used to effectively induce the formation of
twin facets in the seeds, allowing them to grow into anisotropically
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shaped metal nanostructures at a remarkable high yield [28]. During
the growth of the seed. The generally accepted theory at present is that
a small lattice mismatch can promote homogeneous growth in which
the whole seed surface acts as a nucleation site and a large lattice
mismatch can promote heterogeneous growth in which growth occurs
only on part of the seed surface [38–45]. Among these factors, the role
of seeds is always crucial, and nanostructures generated by the method
are often with the same crystalline structure as the seed itself [2,12].
The formation of Au core-Pd shell nanoparticles (NPs) under kinetically
and thermodynamically controlled reaction conditions has been studied
previously. By controlling the reaction temperatures, the growth of
Au@Pd core-shell NPs can switches from kinetically to thermo-
dynamically controlled growth [46]. In practice, The process of seeded
growth is affected by above all of the factors, and the dominant factor is
not clear under different conditions. Therefore, the coupling among the
correlative factors should be synthetically considered.

Multimetallic nanostructures often have better performances com-
paring to monometallic counterparts due to the synergistic effect of
various components and the formation of heterogeneous interface.
[2–5,8,47,48], For example, the Ag-Pt nanostructures enhanced the
catalytic performance of Pt and reduced the usage of Pt by the sy-
nergistic effect of Ag and Pt greatly [49,50]. The Ag/Au alloy nano-
spheres combine the excellent plasmonic performance of Ag and the
excellent stability of Au, which provides the possibility in the applica-
tion of many high-performance, long-life plasma materials, especially
for those concerning corrosive materials [51,52]. The Au-Pd bimetallic
nanostructures have the catalytic properties of both Au and Pd in ad-
dition to the property of surface plasma for Au, which enhances its
general catalytic performance [48,53]. Among different multimetallic
systems, Au-Pd bimetallic nanostructures have received enormous at-
tention as they can be widely used as a highly efficient catalyst [54–59].

Many applications of Au-Pd nanocrystals also showed the correla-
tion between morphology and its properties [54–63]. For example, Au
nanocubes were used as structure-directing cores to prepare Au–Pd
core-shell nanocrystals with tetrahexahedral, concave octahedral, and
octahedral shapes. Au–Pd tetrahexahedral nanocrystals exhibit the best
electrocatalytic activity [54]. Therefore, the controlled synthesis of Au-
Pd nanostructures has been a very interesting subject. Zheng and co-
workers reported a synthetic study on Au–Pd bimetallic nanodendrites
with homogeneous alloy structure and well-defined morphology. In the
presence of triblock copolymer P123, ascorbic acid reduces the metal
precursors, Au and Pd. Ascorbic acid plays a vital role in inducing the
adhesion of primary particles to dendritic morphology [60]. By seed-
mediated synthetic method with co-reduction, Skrabalak and co-
workers synthesized Au-Pd octopods and concave Au@Pd nanocrystals
using ascorbic acid as the reducing agent and CTAB as the stabilizing
agent. Furthermore, they provided an insight into the mechanism for
the architectural formation of the nanostructures [62,63]. Given the
complementary synergy of binary Au-Pd nanocrystals in catalytic per-
formance and difficulty in synthesis, there remains a challenge in in-
accurate control of morphology.

PFT nanostructure has an important position in nanomaterials
[3,38,40,61,64–78]. Noble metallic nanocatalysts with PFT structures
exhibit outstanding SERS performance and high selectivity in some
chemical reactions [2,79]. Usually, observed PFT nanostructures are
NR, nanobipyramid (NBP), nanowires, decahedron and icosahe-
dron.38,40,61,64–70] As high-profile stars, PFT NRs, bipyramid and
decahedra have received widespread attention [68–76]. PFT NBP and
NR are structurally similar to decahedrons. By seeded growth, many
scientists used decahedrons as seeds to prepare PFT NRs and NBPs
[68–75]. For instance, PFT Au NR could be synthesized by Au dec-
ahedrons as seeds in the presence of silver ions by a systematic over-
growth.38] Kitaev et al. reported the synthesis of monodisperse size-
controlled PFT Ag NRs by thermal regrowth of Ag decahedrons in
aqueous solution at 95 °C, using citrate as a reducing agent [64,80].
Seeded growth as a wide applied method can be used to synthesize both

single-component PFT nanostructures and bimetallic segmental PFT
NRs.61,65,656667686970] [81,82], Teranishi and co-workers used Au
decahedra and synthesized high-quality Au@Ag heterogeneous NRs
with PFT structure [81]. Using Au decahedra as seeds, our group also
synthesized Ag–Au–Ag and PFT Pd-Au-Pd segmental NRs via kinetics-
controlled growth [5,61]. Wang et al. demonstrated the preparation of
high-aspect-ratio Ag NRs based on Au NBP-directed Ag overgrowth [3].
Our group synthesized PFT Au@Pd nanobipyramids (NBs) with stepped
(100) facets through growing Pd on Au decahedral NPs in the polyol.
Furthermore, we proved that Br- is a key factor in the growth of Au @
Pd NBs.82]

As mentioned above, the preparation of Au-Pd bimetallic nanos-
tructures with regular morphology is still a difficult task. Studying the
growth of Pd on different Au seeds is very important for synthesizing
various metal heterostructures and revealing the growth rules of such
structures. Herein, we used Au NRs with a PFT structure as seeds and
CTAB as a capping agent to synthesize PFT Pd-Au-Pd segmental NRs.
Meanwhile, the directional growth of Pd on the surface of Au crystals
was systematically studied using single crystal Au NRs as seeds.

2. Experimental section

Silver nitrate (AgNO3), potassium iodide (KI), chloroauric acid
(HAuCl4), diethylene glycol (DEG), and PDDA (MW =
400,000–500000, 20 wt % in H2O) were purchased from Sigma-
Aldrich. CTAB, ascorbic acid (AA), formic acid, and palladium chloride
(PdCl2) were purchased from Aladdin reagent. All chemicals were used
as received. Deionized water (18.2 MΩ cm) was generated by the Milli-
Q Academic water purification system (Millipore Corp, Billerica, MA,
USA) and used in all experiments.

2.1. Preparations of PFT Au NRs

In a typical preparation, 75 μL PDDA was added to 10 mL DEG
under magnetic stirring (500 rpm), and then 13 μL HAuCl4 (0.48 M)
aqueous solution was introduced, Keeping stirring until the yellow
homogeneous solution had formed. Firstly, 4 mg AgNO3 was dissolved
in 1 mL DEG and sonicated for 2 min until AgNO3 was completely
dissolved. Then, 75 μL of this solution was added to the yellow
homogeneous solution, the mixture was stirred for another 3 min. The
resulting solution was placed into an oil bath to promote the reduction
of Au (III) to Au. After 30 min, a purple-red colloid formed, and then the
reaction liquid was removed from the oil bath and slowly cooled down
to room temperature. The size of Au nanocrystals can be adjusted by
adjusting the reaction temperature and reaction time.

To purify products for characterization, excess DEG, PDDA, and
other impurities needed to be removed. 9 mL of water was added to 1
ml of the above sample and then the mixture was centrifuged (12 000
rpm). The precipitates were dispersed in 9 mL of water and precipitated
again by centrifuge. The purifying procedure was repeated three times,
the precipitate was collected and dissolved in 0.5 mL water for future
use.

2.2. Synthesis of PFT Pd-Au-Pd segmental NRs using PFT Au NRs as seeds

A slightly modified method was used to synthesize of PFT Pd-Au-Pd
segmental NRs [61]. 1 mL of purified PFT Au NRs was mixed with 2.5
mL of CTAB aqueous solution (0.1 M). 0.12 mL of H2PdCl4 (0.01 M),
0.06 mL of KI (0.04 M), and 0.17 mL of AA (0.02 M) were added to the
above solution individually. The solution volume was kept to 5 mL in
each preparation. Then all mixtures were stirred variously for 5 min
and then put into a 90 °C water bath. After about 30 min, and the
solutions were cooled down to room temperature. The purification of
PFT Pd-Au-Pd segmental NRs was similar to that of PFT Au NRs, except
for the centrifuging speed (2000 rpm).
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2.3. In situ monitoring organic reaction with SERS

To monitor the catalytic reaction by SERS, first, a self-assembled
monolayer (SAM) of p-nitrothiophenol (p-NTP) was adsorbed on the
surface of metal nanoparticles. In a typical reaction, 0.5 mL of an
aqueous dispersion of metal nanoparticles was mixed into 100 μL of
ethanolic solution of 10 mM p-NTP overnight to form a saturated SAM
on the surface of the nanoparticles. The products were collected with a
centrifuge and then 0.01 ml of nice-cold NaBH4 solution(60 mM).
Subsequently, the mixture containing NaBH4, p-NTP, and NRs (catalyst)
was transferred to a special quartz cell for SERS investigation.

2.4. Characterization

For transmission electron microscopy (TEM), high-resolution
transmission electron microscopy (HRTEM), energy-dispersive spec-
troscopy (EDS), high-angle annular dark-field (HAADF), and scanning
transmission electron microscopy EDS (STEM-EDS) characterizations,
the purified colloid was deposited on copper grids coated by a carbon
membrane and dried at 80 °C. TEM was performed with a 200 kV JEOL
2100 F with an attached EDS and STEM detector. The high-resolution
SEM images were obtained with FEI Helios nanolab 600i. The UV–vis
spectra of colloid nanostructures were recorded with a Shimadzu 2450
UV–vis spectrophotometer at room temperature. Raman measurement
was taken by RENISHAW microRaman system at room temperature
(633 nm Ar + laser line excitation, 5 mW).

3. Results and discussion

In previous studies, we have demonstrated the selective growth of
Au or Ag on Au seeds to respectively obtain Au NBPs and Ag-Au-Ag NRs
with PFT nanostructures by adjusting the growth kinetics [5,67]. Due to
the difficulty of growing Pd on the Au surface, it remains a challenge to
prepare Pd-Au-Pd segmental NRs with PFT nanostructures under the
same conditions. Many previous reports have demonstrated that halide
ions preferentially bind to the {100} facets of various metals, which
inhibits the growth of the {100} facets [82–84]. Zheng and co-workers
prepared Pd Nanowires and NRs with PFT structure in the presence of
poly (vinylpyrrolidone) and I− [40]. Therefore, we speculated that I−

could be used to assist in the synthesis of PFT Pd-Au-Pd segmental NRs.
Using Au decahedra as seed and I- as growth modifiers, our group have
successfully prepared high-quality PFT Pd-Au-Pd segmental NRs, and it
was proven that the competitive binding (or adsorption) of CTAB and
I− in the surface of Au NRs seeds is important in the whole growth
process [61]. After a comprehensive study on optimizing the experi-
mental conditions, we used Au NRs with a PFT structure as seeds (Fig.
S1) to synthesize PFT Pd-Au-Pd segmental NRs. It was found that the
selective growth of Pd atoms along the< 110>direction of Au NRs
could be realized and segmental Pd-Au-Pd NRs were successfully pre-
pared (Fig. 1A–D).

TEM and STEM-EDS were used to further investigate the structure of
the samples. The TEM and HRTEM images of PFT Pd-Au-Pd segmental
NRs are shown in Fig. 2A–D. In comparison to HAADF images, the
contrast of ordinary TEM images follows the inverse law of atomic
number because more transmitted electrons are scattered for metals
with a higher atomic number. Therefore, the part of Au NR is darker
than the Pd segment in the TEM image. The TEM image also shows that
the lateral length of Pd–Au–Pd NRs is almost equal to that of Au NRs,
indicating that the growth only occurred preferentially only
along< 110> (Fig. 2 A–C). The transverse and longitudinal length
distributions of PFT Au NRs and PFT Pd-Au-Pd segmental NRs are
shown in Figs. S2 and S3, respectively. Pd-Au-Pd NRs have typical PFT
features and the fast Fourier transform (FFT) pattern also demonstrates
this (Fig. 2C), which further confirms that Pd atoms grow along<
110> of the Au NRs. The lattice spacing of adjacent planes is 0.0238
nm and can be attributed to Pd(111) (Fig. 2D).

STEM-EDS technology was used to analyze the elemental distribu-
tion of Pd–Au–Pd NRs and obtain further evidence of the segmental
structure (Fig. 3 A–D). In Figs. 3B and C, the elemental distribution of
Pd and Au demonstrates the products are segmental Pd-Au-Pd NRs,
which is consistent with above TEM, HRTEM, and HAADF observations
(Figs. 1 and 2). The lineal profile of composition also gives the same
conclusion (Fig. 3D).

Segmented multi-metal NRs have attracted wide attention due to
the applications [2,3,8]. However, the synthesis of segmented metal
NRs with precisely controlled composition and morphology is still very
challenging. The AAO template can be used to selectively synthesize
segmented NRs by selective electrodeposition, but the yield is very low
[85–87]. Through the seeded growth, we have prepared PFT Pd-Au-Pd
segmental NRs (Fig. 4A, B). The SEM images demonstrate that the
synthesis has a high yield.

To investigate how PFT Au NRs affects the deposition of Pd atoms
on Au NRs, single-crystalline Au NRs were also used as seeds in a
controlled experiment. The result shows that Au@Pd nanocuboids were
formed and no Pd-Au-Pd segmental NRs were observed (Figure S4, S5).
Distinctively, the crystalline feature of Au NRs is extremely important
for the growth of PFT Pd-Au-Pd segmental NRs. In another set of ex-
periments, we also performed the synthesis without seeds. When no
seeds were introduced and other conditions remained unchanged,
monodispersed Pd nanocubes were obtained (Figure S6). This further
demonstrates the importance of PFT Au NRs seeds in the growth of PFT
Pd-Au-Pd segmental NRs.

We also studied the structure change with CTAB. When 0.01 M
CTAB was introduced, most of the products were single crystal Pd na-
nocubes, and only a small part of PFT Pd-Au-Pd segmental NRs were
produced (Fig. 5A). This indicates that the self-nucleation of Pd is
dominant at low concentrations of CTAB, and the selective deposition
of Pd atoms on Au NRs is weak. Using the CTAB concentration of 0.02
M, the amount of PFT Pd-Au-Pd segmental NRs increased slightly.
When the concentration of CTAB was increased to 0.05 M, the product
mainly contains the PFT Pd-Au-Pd segmental NRs. However, there is
still a small amount of single-crystal Pd nanocubes. When increasing the
CTAB concentration to 0.1 M, the PFT Pd-Au-Pd segmental NRs yield
the desired structure. Further increasing the concentration of CTAB had
no significant effect on the crystal structure of the product. Therefore,
the high concentration of CTAB promoted the preferential growth of Pd
atoms on Au NRs.

Growth kinetics can affect morphology and structure of products
[21–23]. In the experiment, the concentration of precursors could be
used to control the growth kinetics [21]. Based on our previous study,
the concentration of Pd precursor has little effect on the product PFT
segmental structure [61]. By reducing the concentration of Pd pre-
cursors, we found that the Pd NRs was significantly shortened, and the
segmental structure of Pd-Au-Pd NRs was still formed (Fig. 6A-D).

3.1. Possible mechanism

In our system, three factors are crucial, which are the seeds, I− and
CTAB. The seeds have a typical PFT structure, which tends to induce the
growth of products with the same structure. The single-crystal Au NRs
induced to form the core-shell Au@Pd structures (Figure S4), indicating
that seeds are critical in the synthesis. Here we propose a possible
mechanism for the seed growth as illustrated in Fig. 7.

Many reports have shown that I− can absorb on the Pd(100) crystal
facets, and thereby reduce the surface energy of (100) [40,76]. The
same results was observed in our experiments. Without the seeds,
(100)-bounded Pd nanocubes were obtained (Figure S6), confirming
that I− indeed absorb on (100). The seeded growth is closely related to
the surface energy of crystal facets, and the growth tends to cover high-
energy facets first. The PFT Pd-Au-Pd segmental NRs have two crystal
facets, (111) and (100), and the surface energy of (100) crystal facets is
higher than that of (111). In theory, growth should occur on (100)
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Fig. 1. (A, B, C) HAADF images of PFT Pd-Au-Pd segmental NRs prepared in a standard procedure. (D) Schematic illustration of growing PFT Pd-Au-Pd segmental
NRs.

Fig. 2. (A–D) TEM and HRTEM images of PFT Pd-Au-Pd segmental NRs.
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crystal facets. However, the selective adsorption of I− leads to a re-
duction in the surface energy of the (100) crystal facets, which pro-
motes the growth on the (111) crystal facets along the< 110>
direction.

CTAB has two effects in the reaction system. One is as capping agent
to stabilize particles from gathering. The other is to compete with I− on
the adsorption to (111) facet [61]. I- has a stronger affinity with metal
atoms than Br− [76,82]. The adsorption of I− can greatly reduce the
surface energy. The introduction of CTAB can reduce the absorption of
I− due to the competitive effect and increase surface activity. There-
fore, the deposition and growth of Pd atoms on the (111) are facilitated.
If the CTAB concentration is extremely low, a large amount of I− is
absorbed on both (111) crystal facets and the (100) crystal facets, re-
sulting in the low surface activity of seed. As a result, the deposition of
Pd atoms on the seed surface is not preferred and self-nucleation occurs
(Fig. 5A, B), which causes the formation of pure Pd nanoparticles. As
the concentration of CTAB increases, more CTAB molecules were ad-
sorbed on the (111) facet of the Au seeds, replacing part of the adsorbed
I− on the surface of the Au seed. The surface activity of the seeds in-
creases, promoting the nucleation of Pd atoms on the seed surface.

3.2. In situ monitoring organic reaction with SERS

Pd-based NPs are often excellent high-performance catalysts.31,72
When Pd NPs deposited on the Au NRs, they could be multifunctional
and thus useful for catalytic reactions. To gain insight into the catalytic
activity of PFT Pd-Au-Pd segmental NRs, we selected the conversion
reaction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) as
the model reaction, which has been widely used to evaluate the cata-
lytic activity of noble nanomaterials [88,89]. 4-NTP was adsorbed on
the surface of PFT Pd-Au -Pd segmental NRs through thiol groups to
form a self-assembled molecular layer. Then the Raman signal of the
adsorbed molecules on the surface of the nanoparticles was collected
and analyzed to study the reaction kinetics of the reactant (4-NTP) or
the product (4-ATP). 4-NTP accumulated on the catalyst surface,
avoiding the adsorption and desorption of reactants and products on
the catalyst surface, which is beneficial to our research. The char-
acteristic vibrational bands of 4-NTP in the Raman spectrum are 1330
cm−1 and 1570 cm−1, which are ON=eO symmetric stretching and
phenyl ring stretching modes, respectively (Fig. 8B). When NaBH4 was
added, the peaks at 1330 cm-1 and 1570 cm−1 gradually weakened.
However, a new peak appeared at about 1593 cm−1, which was

Fig. 3. (A–C) HAADF image and elemental mapping patterns of a complete PFT Pd-Au-Pd segmental NRs. (D) Cross-sectional compositional line profiles of one P PFT
Pd-Au-Pd segmental NRs.

Fig. 4. (A, B) SEM images of the PFT Pd-Au-Pd segmental NRs samples.
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assigned to the phenyl ring of 4-ATP. To verify that our PFT Pd-Au-Pd
segmental NRs have the good catalytic ability, we used the same molar
amount of PFT Au NRs as a control experiment. When we used PFT Pd-
Au-Pd segmental NRs as a catalyst, the Raman characteristic peak of the
4-ATP benzene ring is detected at 15 min, and when the reaction
reached 35 min, the peaks at 1330 cm−1 and 1570 cm−1 have

completely disappeared, and the characteristic peak of 4-ATP was ob-
vious. At 50 min, there is still no change, which means that 4-NTP has
been completely converted to 4-ATP in 35 min. Using the same amount
of PFT Au NRs as a catalyst, the characteristic peak of 4-NTP is still
obvious when the reaction continues to 60 min, and the characteristic
peak of 4-ATP does not show a trend (Fig. 8A). It means that there is

Fig. 5. TEM images of products prepared using different concentrations of CTAB：(A) 0.01 M; (B) 0.02 M; (C) 0.05 M; (D) 0.1 M.

Fig. 6. (A, B) TEM images of PFT Pd-Au-Pd segmental NRs with half amount of Pd. (C, D) HAADF images of PFT Pd-Au-Pd segmental NRs prepared with half amount
of Pd.
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still no 4-ATP formation after 1 h of reaction. By using the same amount
of PFT Pd-Au-Pd segmental NRs and Au NRs to catalyze the conversion
of 4-NTP to 4-ATP and performing SERS detection analysis of in-situ
Raman, it was proved that PFT Pd-Au-Pd segmental NRs with Pd sur-
face properties have excellent catalytic performance.

4. Conclusion

We have demonstrated that PFT Pd-Au-Pd segmental NRs can be
synthesized through growing Pd on PFT Au NRs. Our results show that
CTAB, I− and seed are three crucial factors in the growth of PFT Pd-Au-
Pd NRs. PFT Au NRs seeds act as templates inducing the formation of
nanocrystal with the same structure as the seeds. The selective ad-
sorption of I- reduces the surface energy of the (100) crystal facets, and
thereby promotes the growth of Pd atoms along the< 110>direction.
CTAB can reduce the adsorption of I- on the (111) facets and increase
the activity, which facilitates the deposition of Pd atoms. In situ mon-
itoring organic reaction with SERS, the prepared PFT Pd-Au-Pd seg-
mental NRs showed better catalytic performance than PFT Au NRs due
to the catalytic activity of Pd. Our research is of great significance for
the precise control of the composition and structure of multimetallic
nanostructures. Moreover, the prepared PFT Pd-Au-Pd Segmental NRs
also have potential applications in studying the process of organic re-
action.
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