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Abstract

The two most popular unsupervised learning problems are k-Clustering and Low-
Rank Approximation. Consider a set of n datapoints, in the k-Clustering problem,
the objective is to partition these points into k clusters and select k centers such
that each cluster is represented well by its center. In the Low-Rank Approximation
problem, the task is to find an r-dimensional subspace that minimizes the sum of
deviations from each point to the subspace. Both problems are of utmost importance
for the modern data-driven applications, and both can be thought of as structured
representation problems.

In this thesis, we provide a thorough study of the multivariate complexity of k-
Clustering and Low-Rank Approximation. We focus on extensions of these problems,
such as robust and constrained versions, that reach beyond the well-studied standard
setting. The main body of the thesis is divided into three parts. In the first part, we
study parameterized complexity of exact algorithms, where the parameter is the total
cost of the clustering. Problems that constitute the main focus of this part are k-
Clustering in Lp-norm for p ∈ [0,∞], and Categorical Clustering with Row/Column
Outliers. We provide a number of fixed-parameter tractable algorithms based on
hypergraph enumeration, and a number of hardness results. The second part can
be summarized as employing sampling methods to provide (1 + ε)-approximation in
FPT time. We show a space-efficient coreset for the Fair Clustering problem, and an
FPT approximation scheme for the problem of clustering points with missing entries,
where the number of missing entries in each point is bounded. Finally, in the third
part we deal with the Low-Rank Approximation problem, and its robust variant, Low-
Rank Approximation with Outliers. For the latter, we employ algebraic geometry
methods to provide an nO(rd) exact algorithm that is nearly tight even for arbitrary-
factor approximation, and its dimensionality reduction-based improvements. We
also present a PTAS for Low-Rank Approximation of binary matrices in column-sum
norm.
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1

Introduction

The modern world is dominated by data. The sheer spread of powerful computa-
tional devices allows for collection of megabytes of information from each particular
individual. In turn, this data is used to determine a multitude of things in our life,
ranging from our social network feed and streaming service suggestions, to credit
card approval and our credibility in the eyes of law enforcement. All these automatic
decisions are achieved by machine learning solutions. By now, there exists a vast
multitude of machine learning primitives and approaches that skillful engineers pick,
calibrate and combine with each other into convoluted pipelines to maximize the
utility of decisions with respect to underlying data. As the power and the outreach
of such systems grows, together with their internal complexity, so does the concern
about explainability and transparency of these systems. One side is assessing the
credibility of a particular solution on the market as a whole, which is a very gen-
eral affair, requiring deep domain knowledge extending to legal and ethic aspects.
However, this work is in the line of the opposite approach, where the main objec-
tive is to shed more light on the basic building blocks of data analysis, which can
be rigorously studied as mathematical objects. Specifically, the main goal of this
thesis is to study computational complexity and performance guarantees of the key
unsupervised learning primitives.

To be more concrete, let us consider a particular problem. Suppose we have a set
of n data points in Rd, that we want to partition into k clusters while minimizing
the dissimilarity of points in the same cluster. Denote the resulting clusters by C1,
. . . , Ck and let the objective in this context be

k∑
i=1

min
ci∈Rd

∑
x∈Ci

||x− ci||22,

that is, minimize the sum of the squared Euclidean distances from the points of the
cluster to its optimal center, summed over all clusters. This problem is the renowned

1



2 1 | Introduction

k-Means, and it is arguably the most prevalent unsupervised learning primitive. The
k-Means problem also showcases perfectly the discrepancy between the practical
usage and the theoretical analysis. In practice, the common thing is to apply a
heuristic algorithm to obtain some locally optimal clustering. Consider for instance
the most classical Lloyd’s heuristic [147], that often produces good clusterings on real
datasets, yet in general the cost of the clustering can be arbitrarily bad compared
to the optimal value. There also exists a multitude of other heuristic algorithms for
clustering, that further improve the performance in a number of ways. However,
from the classical complexity viewpoint, the situation is quite baffling: k-Means is
NP-hard even for k = 2 [9], and even for d = 2 [151]. Moreover, it is also known to
be NP-hard to approximate the k-Means objective better than a certain constant
factor [14].

Seeing such a gap between the theoretical complexity and the practical perfor-
mance, it is natural to go for “beyond the worst-case” kind of analysis. Therefore,
in this work we adopt the idea of multivariate analysis for the problems in question.
The philosophy in this case, derived from the field of parameterized complexity, is
to consider a secondary measure of the input apart from the input size, and express
the running time of algorithms in terms of both measures. In particular, a central
concept is a fixed-parameter tractable algorithm, that has the running time of f(k)nc

for some function f of k and some constant c, where n is the size of the input, and k
is the selected parameter. While f can be exponential or in fact any function, for any
fixed value of k the running time is the same polynomial of n. Thus, the general-case
NP-hardness might be circumvented for structured instances where the value of the
parameter is small, without any loss in the quality of the solution. In particular, as
a part of this thesis, we conduct an extensive study of the complexity of clustering
problems depending on the parameter D, the cost of the optimal clustering1.

However, the classical parameterized complexity approach is still very limiting,
as finding exact solutions often turns out to be hard even in the multivariate setting.
This is highlighted by the results on the parameter D mentioned above, that are
often negative even for such a humble parameterization. On the other hand, for the
continuous kind of problems like clustering it is even less principal to have an exact
solution, as opposed to a very good approximate one. Note that some discretization
and approximation necessary occurs even by representing real-valued data on a fixed
word-size machine. Thus for the next part of the thesis we move to FPT approxima-
tion schemes, that is, (1 + ε)-approximation algorithms with running time f(k, ε)nc

for some function f of the parameter k and ε, and some constant c. FPT approx-
imation schemes combine the power of approximation and parameterization, and a
vast body of results of this form has been already formed for clustering and low-rank
approximation problems. Techniques such as dimensionality reduction and sampling
in order to obtain good approximate centers or coresets, are closely tied to this area

1Provided that the coordinates of the points are integral, otherwise the magnitude of D plays no
role because of scaling.
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of research, as they allow to reduce the search space to something that depends only
on the number of centers k and ε. Moreover, both dimensionality reduction and core-
sets are also of independent interest, as they lead to more efficient data processing
in a variety of settings, be it streaming or parallel computations, and for variety of
purposes, from theoretical algorithms with provable guarantees to practical routines
that reduce storage or simplify datasets. We extend the outreach of this approaches
by showing small-sized coresets for a variety of clustering problems, where clusters
have to satisfy certain size constraints with respect to a predetermined coloring of
the points. In particular, this holds for (α, β)-Fair Clustering, where the goal
is to compute optimal clustering of the given points subject to a fairness condition,
i.e. each of the given protected groups must not be underrepresented in any of the
resulting clusters. Studying the (α, β)-Fair Clustering problem is also very much
in line with the general goal of increasing accountability of machine learning primi-
tives, as it has been consistently shown that bluntly optimizing the performance of
a decision-making system can make it biased or discriminatory towards traditionally
underrepresented groups [13, 73, 98].

Going back to designing FPT approximation schemes, one of the most renowned
examples is the algorithm of Kumar, Sabharwal, and Sen [137] for the already men-

tioned k-Means. This algorithm provides (1+ε) approximation in time 2(k/ε)O(1)

nO(1),
and is crucially based on a sampling lemma ensuring that a uniform sample of size
O(1/ε) from a cluster approximates its optimal center well, with good probability.
This lemma is very powerful tool for tackling k-Means, yet also very specific for
this objective. Take, however, a similar problem where the objects to cluster are not
points in Rd, but axis-parallel subspaces of small dimension. Or, equivalently, points
in Rd with few missing entries, that could be completed arbitrarily. This corresponds
to a very natural problem of clustering a dataset where some entries are not known:
imagine a movie rating database where not every user has a rating for every movie.
The approach of [137] is not directly applicable in this case, as neither the sampling
lemma holds, nor even the triangle inequality for distances between such objects,
making the problem geometrically very different from k-Means. In fact, for years a
comparable algorithm for this problem eluded researchers. We take a step forward
and present an FPT approximation scheme for clustering of points with few missing
entries, parameterized by both the number of clusters k and the maximum number
∆ of missing entries per point.

For the final example, consider the problem of low-rank approximation, where the
task is to construct a matrix of given rank that approximates the given matrix best.
Reducing in this fashion the rank of the dataset, also known as principal component
analysis (PCA), is a ubiquitous routine for compressing and simplifying data given
in matrix form. Computationally, it is not as challenging as the previous examples,
since there exists a polynomial-time algorithm for computing the optimal low-rank
approximation, that proceeds via singular value decomposition (SVD). However, one
weakness of PCA is that it is highly susceptible to outliers: even one corrupted row
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can arbitrarily change the approximation subspace. Motivated by this, we introduce
the PCA with Outliers problem, where the task it to remove a given number of
outliers in such a way that allows for the best possible low-rank approximation for
the remaining matrix. In contrast to the usual approaches that deal with outliers by,
for instance, placing strong assumptions on the distribution of outliers, an algorithm
for PCA with Outliers always finds the best possible set of outliers in terms of
the cost. This makes our formulation very flexible with respect to arbitrary models
of what is considered to be an outlier, and in particular resistant to any adversarially
placed outliers. However, the price for such flexibility is the increased computational
complexity of the problem, as we show that there cannot exist an no(d)-time algorithm
solving PCA with Outliers, where n is the number of rows and d the number
of columns in the matrix, under a suitable complexity assumption. In fact, even
designing an algorithm matching this lower bound is not trivial, and we employ
involved results from computational algebraic geometry in order to design an nO(rd)

algorithm for PCA with Outliers, where r is the target rank. Together with
some additional results on dimensionality reduction, and an approximation scheme
for binary low-rank approximation, this comprises the final technical part of this
thesis. It is worthy to note that these results follow the general approach of studying
robustness of data-driven algorithms, that is, how robust is the algorithm in question
when run on ill-generated or adversarial data. The study of robustness can be seen
as yet another step towards algorithmic accountability, as the highly desired outcome
is that an algorithm in charge of making decisions could not be failed by accident or
fooled by purpose with a small portion of unexpected data.

All in all, we believe that the main contribution of this thesis is providing novel
algorithms with provable guarantees for clustering and low-rank approximation prob-
lems parameterized by one or several structural characteristics of the input, and the
corresponding conditional lower bounds. Moreover, we emphasize on conjunction
with other means of achieving accountability of algorithms, such as fairness and
robustness. Next, we outline the structure of the thesis.

Outline of the Thesis. In Part I, we start with introducing fundamental con-
cepts and previous work relevant for our technical results. In Chapter 2 we define
common preliminaries and notation for the following parts, and introduce some stan-
dard background in algorithmic complexity. Then in Chapter 3 we introduce formally
our main problems of interest, and in Chapter 4 we give basics on the key tools from
the literature that we rely on. In both Chapter 3 and Chapter 4 we give also a brief
survey of the relevant previous works. The rest of the thesis is divided into three
main parts.

In Part II, we consider exact parameterized complexity of clustering problems
parameterized by the cost. Intuitively, this is a “structural editing” point of view on
the problem, where we assume that the instance is already close to be clustered, and
thus the cost of clustering is reasonably small. In Chapter 5, we consider a gener-
alization of k-Means to Lp-distances, and draw a wide complexity landscape with
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respect to the cost parameterization for various values of p. This chapter is based on
the work [FGS21]. We move to robust clustering of categorical data in Chapter 6,
that is, datapoints with entries from a fixed-size set equipped with the Hamming
distance. We show an interesting dichotomy between the following two robust ver-
sions: removing column outliers, corresponding to corrupted datapoints, and row
outliers, corresponding to corrupted features, or dimensions. The algorithm for the
latter extends to robust variants of various other problems, such as binary low-rank
approximation, and these results are featured in [BFGS21].

We focus on FPT approximation schemes in Part III. In Chapter 7, based on the
work [BFS20], we present an efficient coreset construction for clustering problems
with color-sized constraints, and a variety of novel algorithms based on that coreset,
in particular for (α, β)-Fair Clustering. In Chapter 8, we show the approxima-
tion scheme for clustering of points with missing entries, this result is published
as [EFG+21].

In Part IV, we deal with low-rank approximation problems. The main focus is
PCA with Outliers and the algebraic geometry approach, that we first introduce
in Chapter 9, together with the nO(rd)-time algorithm and the no(d) lower bound.
Then we proceed to improve this approach by designing specific dimensionality re-
duction methods in Chapter 10 that allow to reduce the running time for sublinear
number of outliers, and we also provide a general polynomial-time approximation
scheme when the target rank is fixed. These two chapters are based on the arti-
cles [SFGP19, DFPS21]. In Chapter 11, we make one further step in the study of
the low-rank approximation problem, and show the first polynomial-time approxi-
mation scheme for binary matrices equipped with GF(2)-rank and column-sum norm.
This setting is radically different from the usual Euclidean space and rank, and thus
requires developing a very special pipeline. This result is published in [FGPS20].

Finally, we conclude with future research directions in Part V. Next we give the
list of publications to which the author of this thesis has contributed. Out of these,
the publications [FGS21, FGPS20, EFG+21, SFGP19] and the manuscripts [BFGS21,
BFS20, DFPS21] serve as the basis for the main body of this work.
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45th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2020), volume 170 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 35:1–35:14, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

[SFGP19] Kirill Simonov, Fedor Fomin, Petr Golovach, and Fahad Panolan. Refined
complexity of PCA with outliers. volume 97 of Proceedings of Machine
Learning Research, pages 5818–5826, Long Beach, California, USA, 09–15
Jun 2019. PMLR.



Part I

Basic Concepts

9





2

Preliminaries

In this chapter we fix some basic notation and terminology, concerning numbers and
sets, linear algebra, graphs, and probability. We also recall the fundamental concepts
of several aspects of algorithmic complexity.

2.1 Notation

Numbers and sets. For a set S, we denote the size of S by |S|, and the set of
all subsets of S by 2S (called also the power set of S). For an integer k ≤ |S|, we
denote by

(
S
k

)
the set of all k-sized subsets of S. For two sets A and B we use A \B

and A − B interchangeably to denote the set difference of A and B, e.g. the set of
elements of A that are not present in B.

For any integer n > 0, we denote be [n] the set of integers between 1 and n, that
is, {1, . . . , n}. We denote the set of real numbers by R, the set of integers by Z, and
the set of natural numbers by N. By R≥0, we denote the set of nonnegative real
numbers, and by R>0 the set of positive real numbers. Respectively, Z≥0 denotes the
set of nonnegative integers, that is, Z≥0 = N∪ {0}. For non-negative real numbers a
and b, we use the notation a = (1± ε)b if a ∈ [(1− ε)b, (1 + ε)b].

Linear algebra. Throughout the thesis, we use extensively matrix notations. We
use bold lowercase, e.g. x = (x[i]), to denote a vector and bold uppercase, e.g.
A = (Aij), to denote a matrix. For an element x of d-dimensional space Σd, we
denote its coordinates by x = (x[1], . . . ,x[d]), where Σ is the underlying field or
alphabet. For a matrix A, we conventionally denote its i-th row by ai, and the
element at the intersection of the i-th row and the j-th column by Aij . By A>, we
denote the transpose of a matrix A. We denote the identity matrix of size n× n by
In, and the zero vector by 0. For a matrix A ∈ Σn×d1 and a matrix B ∈ Σn×d2 ,
[A|B] ∈ Σn×(d1+d2) denotes the column-wise matrix concatenation of A and B. For

11
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a matrix A ∈ Σn×d and a set of row indices I ⊂ [n], let A[I :] denote the matrix
composed by selecting the rows of A corresponding to the indices in I.

For a vector x ∈ Rd, ‖x‖2 denotes the Euclidean norm of x, that is,

‖x‖2 =

√√√√ d∑
i=1

x[i].

Respectively, for two vectors x,y ∈ Rd, ‖x− y‖2 denotes the Euclidean distance
between x and y. For a matrix A ∈ Rn×d, its Frobenius norm is given by

‖A‖F =

√√√√ n∑
i=1

d∑
j=1

(Aij)2.

For two vectors x,y ∈ Rd, we denote their dot product by

x · y =

d∑
i=1

x[i] · y[i].

For a vector x ∈ Rd and an r-dimensional linear subspace U of Rd, where the basis of
U is given by the rows of U ∈ Rr×d, we denote by projU x the orthogonal projection
of x on U , that is, the vector

projU x =
r∑
i=1

(x · ui)ui,

where u1, . . . , ur are the rows of U, assuming that the rows of U are pairwise
orthogonal and of length one. For a matrix A ∈ Rn×d and an r-dimensional linear
subspace U of Rd, given by U ∈ Rr×d, let dist2(A,U) (and dist2(A,U)) represent
the sum of squares of the Euclidean distances of the rows of A from U , which is equal
to minX∈Rn×r ‖A−XU‖2F . For A ∈ Rn×d, the column and row spaces of a matrix
are denoted by col(A) and row(A) respectively.

Graphs. In this work, we use standard graph notations. For a graph G, V (G)

denotes its vertex set, and E(G) ⊂
(
V (G)

2

)
denotes its edge set. We often associate

V (G) with the set of numbers [V (G)], and use the name of a vertex interchangeably
with its number. Unless stated otherwise, a graph is finite, undirected and simple.
For a vertex set X ⊂ V (G), G[X] is the subgraph of G induced by X. For a vertex
v ∈ V (G), we denote its degree by degG(v), its open neighborhood by NG(v), and
its closed neighborhood by NG[v].
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Probability. For an event A, we denote its probability by Pr[A]. We denote ran-
dom variables by uppercase letters, e.g. X. For a random variable X, we denote its
expectation by E[X]. Throughout the thesis, we use versions of Chernoff bound for
probability estimates. Unless stated otherwise, by “Chernoff bound” we mean the
following statement.

Proposition 2.1 ([12]). Let X1, X2, . . . , Xn be independent 0-1 random variables.
Denote X =

∑n
i=1Xi and µ = E[X]. Then for 0 < β ≤ 1,

P [X ≤ (1− β)µ] ≤ exp(−β2µ/2),

P [X ≥ (1 + β)µ] ≤ exp(−β2µ/3).

Real computations. Since we deal with the problem concerning real-valued ma-
trices, we express the running time of algorithms in terms of number of operations
over the reals. However, the results for exact algorithms over integers or categorical
data, and approximation algorithms, hold in the bit complexity model as well.

2.2 Complexity

In this section, we recall the necessary complexity background, discussing parame-
terized complexity and hardness assumptions commonly used to show lower bounds,
such as Exponential Time Hypothesis, as well as some basic definitions regarding
approximation algorithms.

2.2.1 Parameterized Complexity

Consider an NP-hard combinatorial problem, such as Vertex Cover, where the
input is a graph G and an integer k, and the task is to decide whether there is a subset
C of vertices such that each edge in G has at least one endpoint in C. Unless P = NP,
there is generally no polynomial-time algorithm for Vertex Cover; however, when
k is bounded by a constant, a trivial algorithm that in time O(|V (G)|k|E(G)|) tries
all possible k-sized subsets C of V (G) and checks whether each subset is a vertex
cover, runs in polynomial time. There is another, smarter, algorithm that starts with
an empty C, and recursively picks an arbitrary edge e that is yet uncovered by C.
Then the algorithm tries to put each of its endpoints into C, branching into two new
subproblems and processing each of them recursively. When the size of C is already k,
the algorithm checks whether there is any other uncovered edge, and if not, returns C
as the vertex cover. Clearly, the algorithm follows a recursive binary tree of depth k,
thus its running time is bounded by O(2k|E(G)|). Now compare the two algorithms,
from the classical complexity point of view, they have the same properties: both are
not polynomial-time in the general case, and when k is constant, the running time of
both becomes polynomial. However, the running times of these two algorithms grow
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very differently as k and |V (G)| increase: while the first one would be completely
unfeasible on a moderately large graph even for very small values of k, the second
could easily find a vertex cover of size a couple of dozens in a graph with thousand
vertices. Moreover, in the running time of the second algorithm, k and |V (G)| are
in a sense separated: as k grows, the dependence on the size of the graph is always
the same polynomial. In short, the primary objective of parameterized complexity
is to distinguish problems that allow these two kinds of algorithms, allowing for a
more fine-grained study of the complexity of an NP-complete problem in the regime
where a certain parameter of the input is small. Now we give basics of the field
formally, while for the detailed introduction to parameterized complexity, we refer to
the books [70, 78].

A parameterized problem is a language Q ⊆ Σ∗×N where Σ∗ is the set of strings
over a finite alphabet Σ. Respectively, an input of Q is a pair (I, k) where I ⊆ Σ∗

and k ∈ N; k is the parameter of the problem. A parameterized problem Q is
fixed-parameter tractable (FPT) if it can be decided whether (I, k) ∈ Q in time
f(k) · |I|O(1) for some function f that depends of the parameter k only. Respectively,
the parameterized complexity class FPT is composed of fixed-parameter tractable
problems. On the other hand, the class XP contains problems solvable in time |I|g(k),
for some function g of k. Going back to the Vertex Cover example, the trivial
enumeration algorithm with running time O(|V (G)|k|E(G)|) is thus called an XP
algorithm, while the recursive O(2k|E(G)|)-time algorithm is an FPT algorithm. One
of the main goals of the field of parameterized complexity is to identify parameterized
problems that allow FPT algorithms.

Naturally, the theory of parameterized complexity admits also a way to conclude
the parameterized hardness of a problem. Similarly to the polynomial hierarchy,
a collection of parameterized complexity classes is defined, called the W-hierarchy.
We omit the formal definitions here, as they are rather technical, and refer to the
book [70] instead. The following relation is known amongst the classes in the W-
hierarchy: FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[P ]. It is widely believed that
FPT 6= W[1], playing a role as the working hypothesis of parameterized complexity,
similarly to P 6= NP. Hence if a problem is hard for the class W[i] (for any i ≥ 1)
then it is considered to be fixed-parameter intractable, i.e. it is unlikely that the
problem admits an FPT algorithm. For the purpose of this work, it suffices to know
that Clique is W[1]-hard. Here Clique is the problem of finding a k-clique in the
graph: given a graph G, and an integer k, the task is to determine whether G has
a clique of size k as a subgraph. The hardness of other problems may be concluded
via a parameterized reduction from a problem known to be W[i]-hard. Parameterized
reductions provide an analogue of polynomial-time reductions which also do not blow
up the parameter by too much.

Definition 2.2 (Parameterized Reduction [70]). A parameterized reduction from a
parameterized problem Q to a parameterized problem P is an algorithm that trans-
forms each instance (I, k) of Q into an instance (I ′, k′) of P such that
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(i) (I, k) is a yes-instance of Q if and only if (I ′, k′) is a yes-instance of P ,

(ii) k′ ≤ g(k) for some computable function g of k, and

(iii) the running time of the algorihtm is f(k) · |I|O(1) for some computable function
f of k.

We observe that the definition of a parameterized reduction above works indeed
as intended. First, if there is a parameterized reduction from Q to P , and P admits
an FPT algorithm, then Q also admits an FPT algorithm. To see this, given an
instance (I, k) of Q, run the reduction algorithm to compute an equivalent instance
(I ′, k′) of P , then run the FPT algorithm of P on (I ′, k′) and return its output. The
property (i) of a parameterized reduction ensures that the algorithm above correctly
identifies yes- and no-instances of Q. The property (iii) ensures that the reduction
runs in FPT time, and the property (ii) ensures that the new parameter k′ is bounded
by a function of k, thus the FPT algorithm for P runs in FPT time in terms of k as
well.

On the other hand, if there is a parameterized reduction from Q to P , and Q
is W[i]-hard, then P is also W[i]-hard; in fact, the classes of the W-hierarchy are
defined as closed under parameterized reductions. All in all, this allows us to transfer
hardness from a problem known to be W[i]-hard, like Clique. This is the primary
method of deriving parameterized hardness, and we employ it in this work extensively
as well.

Finally we note that all definitions above may be easily extended to the case of
several parameters, by introducing a single parameter that is the sum of the param-
eters of interest. Thus, we say that a problem is FPT/XP/W[i]-hard parameterized
by x and y if it is FPT/XP/W[i]-hard parameterized by x+ y.

2.2.2 Approximation Algorithms

Another way to deal with NP-hardness of a problem lies in designing approximation
algorithms. Intuitively, while a classical exact algorithm has to correctly determine
whether an input is a yes- or no-instance of a decision problem, an approximation
algorithm is allowed some slack in the objective function. In this section we introduce
the standard terminology for approximation algorithms that we use extensively in
the text. For the in-depth introduction to the area of approximation algorithms,
we refer to the classical book by Vazirani [184], and the more recent textbook by
Williamson and Shmoys [187].

Formally, for a minimization problem Q and a value α, an α-approximation algo-
rithm outputs a solution that has an objective value of at most α ·OPT, where OPT
is the objective value of the optimal solution. Symmetrically, for a maximization
problem an α-approximation algorithm outputs a solution with the objective value
at least α ·OPT. One important direction of research is identifying polynomial-time
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constant-factor approximation for various NP-hard problems. The complexity class
that contains problems admitting such algorithms is called APX.

For some problems in APX, it is possible to design polynomial-time algorithms
with approximation factor arbitrarily close to one. Formally, for a minimization prob-
lem Q, a polynomial-time approximation scheme (PTAS) is a family of polynomial-
time algorithms {Aε} such that for each ε > 0 there is an algorithm Aε that is a
(1 + ε)-approximation algorithm for Q. We measure the running time of a PTAS as
a function of n and ε, and for each ε > 0 we put the running time of the respec-
tive algorithm Aε. Note that the running time of a PTAS may have an arbitrary
dependence on ε, i.e a PTAS in general has a running time of |I|g(ε) where g is some
function of ε, similarly to XP algorithms in parameterized complexity. Just as in
the case of the FPT–XP dichotomy, one can define an efficient version of PTAS. An
efficient polynomial-time approximation scheme (EPTAS) is a PTAS that has the
running time of f(ε)|I|O(1) for some function f of ε. In other words, in the running
time of an EPTAS, ε influences only the constant factor, but not the degree of the
polynomial.

An equivalent of NP-hardness or W[1]-hardness for approximation problems is
APX-hardness. An optimization problem is APX-hard if there is a PTAS reduction
from every problem in APX to that problem. Here, a PTAS reduction is, intuitively,
a natural object preserving the approximation factor. A PTAS reduction from Q to
P consists of three maps f , g, and α, such that f transforms an instance I of A to
an instance of B, and g lifts the solution from B back to A, i.e. if a solution S to
f(I) is (1 + α(ε))-approximate, then g(I, S, ε) is an (1 + ε)-approximate solution to
I. Under the P 6= NP assumption, any APX-hard problem does not admit a PTAS.

The ideas of parameterized complexity and approximation algorithms can be
applied simultaneously: we can measure the running time of a (1 + ε)-approximate
algorithm both in terms of the error parameter ε and a structural parameter k,
defined for the particular instance. For the purpose of this work, we denote by an FPT
approximation scheme (FPT-AS) a PTAS that has the running time of f(k, ε)nO(1).
Recently, this kind of results for clustering problems became very common. To name
a few, Kumar, Sabharwal, and Sen [137] gave an (1 + ε)-approximation algorithm

for Euclidean k-median and k-means that runs in time 2(k/ε)O(1)

nd. Fomin et al. [88]
designed an FPT approximation scheme for a variety of low-rank approximation and
clustering problems on binary matrices. Another notable approach is to employ
FPT time to design approximation algorithms with improved approximation factors,
compared to the best known polynomial-time approximation. For instance, Cohen-
Addad et al. [64] showed a (1+2/e+ε)-factor approximation algorithm for k-median
clustering in general metric spaces that runs in time f(k, ε)nO(1) for some function f .
We give a more detailed overview of the relevant literature in Chapter 3. Part III of
this work is dedicated to FPT-time approximation for variants of clustering problems.
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2.2.3 Exponential Time Hypothesis

One source of “coarseness” in the theory of parameterized complexity is the fact that
technically the dependence on the parameter k can be any computable function,
be it a slow-growing quasipolynomial or a very fast-growing tower of exponents like

222k

. A way to obtain more precise lower bounds is to replace the working hypothesis
FPT 6= W[1] by a stronger one, and in this section we discuss the widely-believed
Exponential Time Hypothesis (ETH), along with its stronger variants.

First, recall that in the classical CNF-SAT problem, given a Boolean formula
in conjunctive normal form (CNF), the task is to determine whether the formula
has any satisfying assignment. For a positive integer q, the q-SAT problem is the
restriction of CNF-SAT to CNF-formulas where clauses contain at most q literals.
By the famous Cook–Levin theorem [67] from 1971, CNF-SAT, and even the special
case 3-SAT, is NP-hard. In 2001, Impagliazzo, Paturi, and Zane [117] introduced two
new conjectures about the complexity of q-SAT, formalizing a barrier to devising
better algorithms for q-SAT that researchers were unable to bypass for so many
years since the dawn of the complexity theory. We state these conjectures next; for
an in-depth introduction to the topic we refer to Chapter 14 of [70].

Conjecture 2.3 (Exponential Time Hypothesis (ETH) [117]). There is a positive
real number ε such that 3-SAT with n variables and m clauses cannot be solved in
time 2εn(n+m)O(1).

Conjecture 2.4 (Strongly Exponential Time Hypothesis (SETH) [117]). For every
positive real number ε, there is an integer q = O(1) such that q-SAT with n variables
and m clauses cannot be solved in time (2− ε)n(n+m)O(1).

We note that SETH is strictly stronger than ETH, for the proof we refer to [70].
Out of the two, ETH bears the crucial importance for this work and parameterized
complexity in general. The main usage for us is through the following theorem due
to Chen et al. [51].

Theorem 2.5. Assuming ETH, there is no f(k)no(k)-time algorithm for Clique
for any computable function f of k.

By Theorem 2.5, any parameterized reduction from Clique to another parame-
terized problem not only shows that the latter is W[1]-hard. Such a reduction also
provides a more precise algorithmic lower bound assuming ETH, that there is no
f(k)no(g

−1(k))-time algorithm for the target problem, where g is the function from
the property (ii) in Definition 2.2. In particular, if the reduction transforms the pa-
rameter k into O(k), then the bound of Theorem 2.5 holds for the target problem
as well, i.e. there is no f(k)no(k)-time algorithm. In this way, we state most of the
algorithmic lower bounds in this work as ETH-lower bounds.

For the design of lower bounds for approximation algorithms, the following strength-
ening of ETH is often used, due to [76]. Intuitively, this variant conjectures that it
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is not only hard to solve 3-SAT in subexponential time, but hard even to determine
whether nearly all clauses can be satisfied simultaneously.

Conjecture 2.6 (Gap-ETH [76]). There are positive real numbers ε and D such
that any algorithm that, given a 3-SAT formula Φ with n variables and at most
Dn clauses, can distinguish between the events “there is an assignment satisfying all
clauses of Φ” and “no assignment can satisfy a 9/10 fraction of the clauses of Φ”,
must run in time at least time 2εn.

Such an extension of ETH creates a gap that can be transferred to the target
problem by a reduction, showing that it is hard to approximate the objective function
in subexponential time.



3

Problem Models

Here we define our main problems of interest, clustering and low-rank approximation,
together with their variants that we consider in this work, and give an overview of
the current state of research concerning these problems.

3.1 Clustering

In this section, we discuss basic definitions and results concerning clustering prob-
lems. In its most general version, the unrestricted k-Clustering problem is defined
as follows. We are given a set of points P in a space X equipped with a distance
measure dist : X × X → R≥0, where dist is not necessarily a metric. Additionally,
we are given a description of a set F ⊂ X of possible cluster centers, and an integer
k. The goal is to partition the set P into k clusters C1, . . . , Ck and select k centers
c1, . . . , ck from F such that

k∑
i=1

∑
p∈Ci

dist(p, ci)

is minimized. Observe that it suffices to pick only the set of centers C = {c1, . . . , ck},
since to minimize the quantity above, it is always better to assign a point to the
closest center. Then the objective becomes to minimize∑

p∈P
dist(p, C),

where we use the notation dist(p, C) for minc∈C dist(p, c).
A multitude of settings for k-Clustering is studied in the literature. In this

work, our primary interest lies in the following cases.

· In the discrete metric k-Median, (X , dist) is a finite metric space and both
sets P and F are given in the input. We assume that dist is given as an oracle
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that in constant time returns dist(x, y) for any x, y ∈ X . Recall that a function
dist : X × X → R≥0 is a metric when it satisfies the following three properties
hold for any x, y ∈ X :

(i) dist(x, y) = 0 if and only if x = y,

(ii) dist(x, y) = dist(y, x),

(iii) triangle inequality, that is, for any point z ∈ X

dist(x, y) ≤ dist(x, z) + dist(z, y).

The discrete metric k-Means is defined analogously, except that the objective
to minimize is ∑

p∈P
dist2(p, C),

that is, the sum of squared distances from each point to the closest center.

· In the Euclidean k-Median problem, X is the d-dimensional Euclidean space
Rd, dist is the Euclidean distance, also denoted by ‖x− y‖2, and F is the whole
space Rd. Recall that

‖x− y‖2 =

√√√√ d∑
i=1

(x[i]− y[i])2.

The Euclidean k-Means problem is defined analogously, only the objective to
minimize is ∑

p∈P
min
c∈C
‖p− c‖22 ,

In other words, in the case of k-Means, dist(x,y) = ‖x− y‖22.

· We consider also a generalization of the Euclidean k-Means to Lp distances
that we call Lp-k-Clustering. Here, the space X is still Rd, but dist is defined
by the p-th power of the Minkowski Lp-norm, that is

dist(x,y) = distp(x,y) = ||x− y||pp =

d∑
i=1

|x[i]− y[i]|p.

Clearly, for p = 2 we get k-Means, and for p = 1 we get k-Median with the
rectilinear (Manhattan) distance. The definition above holds for p ∈ (0,∞),
we also use the natural definitions in the extreme cases,

dist0(x,y) = dH(x,y) = |{i ∈ {1, . . . , d} | x[i] 6= y[i]}|
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Figure 3.1: Optimal clusterings of the same set of vectors with different distances: dist1
in the left subfigure, dist1/4 in the right subfigure. Shapes denote clusters, crosses denote
cluster centers.

for p = 0, also called the Hamming distance, and

dist∞(x,y) = max
i∈{1,...,d}

|x[i]− y[i]|

for p =∞. We define the L0-k-Clustering and L∞-k-Clustering problems
as k-Clustering on Rd with dist0 and dist∞, respectively. In Figure 3.1, we
present an example of optimal clusterings with respect to different values of p.
Note that increasing p penalizes less the number of coordinates where points
differ, and more the absolute value of the difference. Smaller values of p, on
the other hand, are less susceptible to distortion from outlier points, especially
when the “noisy” part is restricted to few columns, leading to a more robust
clustering. Thus, the choice of p allows to pick the right trade-off of this form,
motivating the study of Lp-k-Clustering.

· We consider also a variation of L0-k-Clustering that we call Categorical
k-Clustering, where the metric space is the set of strings of length d over
alphabet Σ, equipped with the Hamming distance. The problem is trivially
equivalent to L0-k-Clustering when Σ is of size at least n, as the Hamming
distance cares only about whether values are equal or distinct for each coordi-
nate. Viewing points as strings is however very natural with respect to dH , and
specially interesting is the case where Σ is small, for example binary. We refer
to the binary version of Categorical k-Clustering by the name Binary
k-Clustering.

The name Categorical k-Clustering stems from statistics, where a cate-
gorical variable is a variable that can admit a fixed number of possible values,
as well as the motivation to study this problem. A categorical variable could be
gender, blood type, political orientation, etc. A prominent example of categor-
ical data is binary data where the points are vectors each of whose coordinates
can take value either 0 or 1. Binary data arise in several important applica-
tions. For example, in electronic commerce, each transaction can be modeled as
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a binary vector (known as market basket data), where each of the coordinates
denotes whether a particular item is purchased or not [193, 146].

· Another generalization of k-Means is the following problem of clustering points
with missing entries. Instead of Rd consider the space Hd, the set of d-dimensional
vectors that in each coordinate take either an arbitrary real value or the special
value “?”. The only difference to the normal k-Means with Euclidean distance
is that values “?” do not contribute to the distance, i.e. for any x,y ∈ Hd,

dist(x,y) =
∑
i∈[d]

x[i] 6=?,y[i] 6=?

(x[i]− y[i])2.

This problem models the situation of a dataset with incomplete or corrupted
entries, commonly occurring in practice. Imagine a movie rating database,
where each datapoint corresponds to a user and each coordinate to a movie;
clearly it is infeasible that the rating for each user-movie pair is known, however
the known ratings might still contain a lot of useful information. A number of
methods in various domains have been proposed to deal with missing data. We
refer to the books [8], [185], and the Wikipedia entry1 for an introduction to
the topic.

The k-Clustering problem defined above covers most of the variants of k-
median and k-means studied in the literature. Another problem that is traditionally
receiving a lot of attention is the k-center problem, where the minimization objective
is

max
p∈P

dist(p, C),

over all possible sets of k centers C. However, the results presented in this thesis are
falling under the k-Clustering formulation above, so we mention k-center problems
primarily as a point of reference when discussing relevant work.

3.1.1 Cluster Notations

Here we fix some common notations related to clustering problems. Throughout
the text, we use n to denote the size of the given point set P , while in the discrete
metric case we denote n = |P ∪ F |. By a cluster we always mean a subset of the
input points P . Note that in vector spaces such as Rd, the input set might contain
repeated vectors, i.e. P might be a multiset in Rd. The cost of a given cluster C
with respect to a center c ∈ F is the total distance from all vectors in the cluster to
c,

cost(C, c) =
∑
x∈C

dist(x, c).

1https://en.wikipedia.org/wiki/Missing data
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An optimal cluster center for a given cluster C is any c ∈ F minimizing
∑
x∈C dist(x, c),

we also use cost(C) to denote the cost of the cluster C with respect to an optimal
cluster center for C, i.e.

cost(C) = min
c∈F

∑
x∈C

dist(x, c).

For a clustering C = (C1, . . . , Ck) of X, we say that the cost of the clustering is the
sum of the costs of each cluster,

cost(C) =

k∑
i=1

cost(Ci).

For a number of spaces that we consider, the optimal cluster center has a natural
characterization. Notably, for Euclidean k-Means, the optimal cluster center is the
coordinate-wise mean of the cluster points, called also the center of mass. Moreover,
the following well-known observation holds.

Proposition 3.1 (Claim 3.2, [137]). For the Euclidean k-Means problem, given a
cluster C ⊂ P and a vector c ∈ Rd it holds that

cost(C, c) = cost(C, µ(C)) + |C| · ‖c− µ(C)‖22 ,

where µ(C) is the point
∑

p∈C p

|C| .

For Categorical k-Clustering/L0-k-Clustering, it can be trivially noted
that the optimal center can be computed as the coordinate-wise majority of the
cluster points, and for L1-k-Clustering it is the coordinate-wise median. We
prove these facts, and a number of other statements about optimal centers for Lp-k-
Clustering in Chapter 5.

Matrix notations. Observe also that in the spaces where the elements are rep-
resented by a vector of coordinates, k-Clustering can be naturally seen as a
matrix approximation problem. For example, consider an instance of k-Means
in the d-dimensional Euclidean space Rd. We associate the input set of points
P = {p1, . . . , pn} with the matrix A ∈ Rn×d such that its rows are the coordi-
nate vectors of the respective points. Specifically, the rows of A are a1, . . . , an, and
for each i ∈ [n], j ∈ [d], ai[j] is a real number representing the j-th coordinate of the
point pi in the standard basis of the space Rd. Thus, k-Means can be phrased as
the following optimization problem.
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Input: A matrix A ∈ Rn×d, and a positive integer k.
Task: Find the matrix B ∈ Rn×d with at most k distinct rows that

minimizes
‖A−B‖2F .

Euclidean k-Means

Recall that the Frobenius norm of a matrix A ∈ Rn×d is the sum of its squared
entries, that is,

‖A‖2F =

n∑
i=1

d∑
j=1

Ai,j ,

where Ai,j is the entry of A at the intersection of the i-th row and the j-th column.
The equivalence to the Euclidean k-Means problem defined above holds because of
the following. Any set of centers C = {c1, . . . , ck} and a clustering C1, . . . , Ck of
the given points P correspond naturally to a matrix B that has the rows from C
and gives the same value of ‖A−B‖2F as the cost of the clustering. For each i ∈ [n],
suppose that the point pi ∈ P gets assigned into the cluster Ct, for some t ∈ [k], then
the i-th row of B is the vector ct. Then the cost of the clustering can be expressed
as

k∑
t=1

∑
i∈[n] s.t.
pi∈Ct

‖ai − ct‖22 =
k∑
t=1

∑
pi∈Ct

d∑
j=1

(ai[j]−ct[j])
2 =

n∑
i=1

d∑
j=1

(Aij−Bij)
2 = ‖A−B‖2F .

Going backwards, we also obtain naturally the clustering that corresponds to a given
matrix B with at most k distinct rows, having the same cost as ‖A−B‖2F .

3.1.2 Previous Work

Having listed the various spaces that k-Clustering can be defined on, we move to
discussing the current state of research of these problems. Clustering problems, and
especially Euclidean k-Means, are among the most prevalent problems occurring in
virtually every subarea of data science. We refer to the survey of Jain [121] for an
extensive overview. While in practice the most common approaches to clustering are
based on different variations of Lloyd’s heuristic [147], the problem is interesting from
the theoretical perspective as well. In particular, there is a vast amount of literature
on approximation algorithms for k-Clustering whose behavior can be analyzed rig-
orously. One long line of results concerns designing polynomial-time constant-factor
approximation algorithms for various clustering problems. As polynomial-time ap-
proximation is not the main focus of this work, we only mention briefly the key
results. For a Euclidean space of arbitrary dimension, a 6.357-approximation and
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a 2.633-approximation is the current state-of-the-art for k-Means and k-Median
respectively [4]. On the other hand, starting from APX-hardness [14], the best cur-
rently known lower bound is that k-Means and k-Median are hard to approximate
within a factor of 1.17 and 1.06 under Unique Games Conjecture, respectively [65].
In general metric spaces, the best known algorithms have approximation factors of
9 for k-Means and 2.67 for k-Median [40, 4], while the corresponding NP-hardness
results hold for approximation up to a factor of 3.94 and 1.73, respectively [106].

In the recent years, there have also appeared a number of results providing FPT-
time (1 + ε)-approximation when parameterized by the number of clusters k. From
this line of work, we first mention the seminal paper of Kumar, Sabharwal, and
Sen [137]. In that work, Kumar et al. gave an (1 + ε)-approximation algorithm for

Euclidean k-Median and k-Means that runs in time 2(k/ε)O(1)

nd. In Chapter 8, we
provide a natural extension of this result to clustering points with missing entries,
when the number of missing entries per point is bounded by a parameter. For another
problem of our interest, Binary k-Clustering, Ostrovsky and Rabani [165] gave
a randomized (nd)f(k,ε)-time algorithm for a certain function f of k and ε. This
result is recently improved to running time of the form g(k, ε)nd in [88, 17], for
some function g of k and ε. Approximation schemes for non-binary Categorical
k-Clustering are given by Ban et al. in [17]. For k-Median and k-Means in
general metric spaces, analogous results are not possible, however FPT time still
allows for a better approximation factor. Recently, Cohen-Addad et al. [64] showed
a (1 + 2/e+ ε)-factor approximation (respectively, (1 + 8/e+ ε)-factor) in FPT time
when parameterized by k. Note that this matches NP-hardness lower bounds of [106],
and this hardness was further strengthened in [64] to the following. There exists a
function f of ε such that any (1+2/e−ε)-approximation algorithm for k-Median in
general metric spaces (respectively, (1 + 8/e− ε)-approximation for k-Means) must

run in time at least nk
f(ε)

, assuming Gap-ETH.

For approximation algorithms that perform well when the number of clusters k is
small, tools that received immense attention and usage recently, are dimensionality
reduction and coresets. In short, they allow to replace the original dataset by a
smaller one, while preserving approximately the clustering objective. Respectively,
the number of dimensions is reduced to a certain function of k and ε, or the number
of distinct points. We discuss more about this concepts and the body of work behind
them later in the respective sections.

When it comes to exact solutions, we observe the following phenomena. While
heuristic algorithms for k-Clustering work surprisingly well in practice, and there
exist powerful approximation algorithms, from the perspective of exact parameter-
ized complexity, k-Clustering is practically intractable for all previously studied
parameterizations. The k-Clustering problem is naturally “multivariate”: in ad-
dition to the number of points n, there are also parameters like space dimension d,
number of clusters k or the cost of clustering D. Even the special cases, Euclidean k-
Means and Binary k-Clustering, are known to be NP-complete for k = 2 [9, 82]
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and for d = 2 [157, 151]. By the classical work of Inaba et al. [118], in the case
when both d and k are constants, Euclidean k-Means is solvable in polynomial time
O(ndk+1). It is a long-standing open problem whether k-Means is FPT parameter-
ized by d + k. Under ETH, the lower bound of nΩ(k), even when d = 4, was shown
by Cohen-Addad et al. in [63] for the settings where the set of potential candidate
centers is explicitly given as input. However the lower bound of Cohen-Addad et al.
does not generalize to the general continuous setting, where any point in Euclidean
space can serve as a center. In the case of Categorical k-Clustering on binary
vectors, the problem is solvable in time 2O(D logD)(nd)O(1) [90], where D is the opti-
mal cost of the clustering. In fact, the work [90] is the departure point for our study
of the parameterized complexity of Lp-k-Clustering, presented in Chapter 5. For
some Lp-norms we show an analogue of the FPT algorithm of [90], while for others
we show negative results.

3.1.3 Robustness

One extension of k-Clustering that we study in this work is motivated by the
following. A major drawback of k-Median and k-Means is that beyond capturing
the most basic scenarios, none of them is suitable for modeling complex applications.
For example, all of the algorithms for these problems fail to retrieve the natural
clustering in the presence of noise or outliers. To address the issue of finding a
generic model of clustering, researchers have taken the approach of studying the basic
clustering problems with additional constraints. For example, to deal with the issue of
noisy data, the most common model used is robust clustering [52, 94, 87, 49, 136]. In
robust clustering, the clustering objective remains the same, however in addition it is
allowed to discard a subset of data points from the input. The idea is that ignoring
the discarded points (also called outliers) would allow the clustering algorithm to
focus on correctly partitioning the remaining uncorrupted data.

Another considerable challenge to k-means (or k-median) clustering approaches is
the high dimensionality of modern datasets. When the data contains many irrelevant
features (or attributes), an application of cluster analysis with a complete set of
features could significantly decrease the solution’s quality. The typical approach
to overcome this challenge in practice is feature selection. The method is based on
selecting a small subset of relevant features from the data and applying the clustering
algorithm only on the selected features. The survey of Alelyani et al. [7] provides a
comprehensive overview on methods for feature selection in clustering. Due to the
significance of feature selection, there is a multitude of heuristic methods addressing
the problem. However, very few provably correct methods are known [34, 35, 60].

Kim et al. [130] introduced a model of feature selection in the context of k-means
clustering. We use their motivating example here. Decision-making based on market
surveys is a pragmatic marketing strategy used by manufacturers to increase cus-
tomer satisfaction. The respondents of a survey are segmented into similar-interest
groups so that each group of customers can be treated in a similar way. Consider
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such a market survey data that typically contains responses of customers to a set
of questions regarding their demographic and psychographic information, shopping
experience, attitude towards new products and expectations from the business. The
standard practice used by market managers to segment customers is to apply clus-
tering techniques w.r.t. the whole set of features. However, depending on the ap-
plication, responses corresponding to some of the features might not be relevant to
find the target set of market segments. Also, some of the responses might contain
incomplete or spurious information. To address this issue, Kim et al. [130] consid-
ered several quality criteria to return pareto optimal (or non-dominated) solutions
that optimize one or more criteria. One such solution removes a suitable subset of
features and cluster the data w.r.t. the remaining features.

In Chapter 6, we study a theoretical model of feature selection and cluster analysis
with respect to Categorical k-Clustering. In particular, we define the best
subset of features (of a given size) as the subset that minimizes the corresponding cost
of clustering. The goal is again to compute such a subset and the respective clusters.
We provide the first parameterized algorithmic and complexity results for cluster
analyses of categorical data in two situations: (i) a subset of data points (outliers)
is to be removed, and (ii) a subset of features is to be removed. To compare with
the first case of clustering involving traditional (row) outliers, in the first case, we
refer to the irrelevant features as column outliers. Thus we arrive to the definitions
of the following two problems. First, we define the extension of Categorical k-
Clustering with row outliers, where it is allowed to remove a certain number of
points from the dataset to minimize the cost of the clustering. We state the problem
in the matrix form and as a decision problem, as we will use this definition extensively
in Chapter 6.

Input: An alphabet Σ, an n×d matrix A with rows a1,a2, . . . ,an such
that ai ∈ Σd for all 1 ≤ i ≤ n, a positive integer k, non-negative
integers D and `.

Task: Decide whether there is a subset O ⊂ {1, 2, . . . , n} of size at
most `, a partition of {1, 2, . . . , n}\O into k sets {I1, I2, . . . , Ik}
called clusters, and vectors c1, c2, . . . , ck ∈ Σm such that the
cost of clustering is at most D, that is,

k∑
t=1

∑
i∈Ii

dH(ai, ct) ≤ D.

Categorical k-Clustering with Row Outliers

Now we define the feature selection variant, and for that we need the following
notation. For a set of indices S ⊂ {1, 2, . . . , d} and an n × d matrix A, let A−S be
the matrix obtained from A by removing the columns with indices in S. We denote



28 3 | Problem Models

the rows of A−S by a−Si for 1 ≤ i ≤ n.

Input: An alphabet Σ, an n × d matrix A with rows a1,a2, . . . ,an
such that aj ∈ Σd for all 1 ≤ i ≤ n, a positive integer k,
non-negative integers D and `.

Task: Decide whether there is a subset O ⊂ {1, 2, . . . , d} of size at
most `, a partition {I1, I2, . . . , Ik} of {1, 2, . . . , n}, and vectors
c1, c2, . . . , ck ∈ Σd−|O| such that

k∑
t=1

∑
i∈Ii

dH(a−Oi , ct) ≤ D.

Categorical k-Clustering with Column Outliers

In other words, we want to identify m − ` features that are suited best for the
clustering objective. Even though the cost function in our problem is basically the
k-median cost function, we call our problem by a different name. This is because
categorical data is in general unordered and hence the median of a set of points
is not defined in our case. While Categorical k-Clustering with Column
Outliers looks very similar to the one with row outliers, it appears that the former
is computationally much more challenging.

3.1.4 Constrained Clustering

Another weakness of the basic model of k-Clustering is that it allows no control
over the composition of the clusters, apart from the global cost minimization. This
spurred researchers to consider various variants of constrained clustering, where in
addition to the clustering objective there is also a constraint on which clusterings
are allowed. More formally, for any fixed version of the k-Clustering problem, its
C-constrained version is defined as follows, given a family C of the allowed partitions
of the points. The objective is again to pick k centers c1, . . . , ck and partition the
input points P into k clusters C1, . . . , Ck in order to minimize

k∑
i=1

∑
p∈Ci

dist(p, ci),

but only the partitions belonging to C are allowed, i.e. the tuple (C1, . . . , Ck) must
belong to the family C. One of the most studied problems of this form is capacitated
clustering that we use here as an example. In the simplest variant of capacitated clus-
tering, in addition to the clustering input, a uniform upper bound U on the cluster
size is given, and the task is to find the clustering that has at most U points in each
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cluster, and has the lowest cost among those. Observe that even such a simple con-
strained version of k-Clustering is already very different from the unconstrained
version, and the existing algorithms for k-Clustering cannot be applied immedi-
ately. For instance, the property of k-Clustering that each point p ∈ P is assigned
to the closest center does not hold, as such an assignment could violate the constraint
arbitrarily. This alone is a crucial requirement for a number of unconstrained clus-
tering algorithms. For the capacitated version of k-Median and k-Means in general
metric spaces, no polynomial-time O(1)-approximation is known, in contrast to the
unconstrained variants. However, bicriteria constant-approximations are known that
violate either the capacity constraints or the constraint on the number of clusters, by
an O(1) factor [41, 39, 48, 58, 74, 145]. Recently, Cohen-Addad and Li [66] designed
(3+ε)- and (9+ε)-approximation in FPT time parameterized by k for the capacitated
version of k-Median and k-Means, respectively.

For Euclidean k-Means and FPT-time (1 + ε)-approximation, the situation is
more fortunate. Ding and Xu [75] gave a unified framework with running time

2poly(k/ε)(log n)k+1nd that generates a collection of 2Õ(k/ε) candidate sets of centers2,
such that for any partition of points at least one of these sets provides (1+ ε) approx-
imation to the cost of the respective partition. Thus, this algorithm allows to solve
Euclidean k-Means with any given constraint C, provided that a good assignment
to a given set of centers can be found reasonably fast. Subsequently, Bhattacharya et

al. [27] improved this result to the running time of 2Õ(k/ε)nd, where Õ hides factors
logarithmic in k and ε−1, and Feng et al. [86] later improved the constant under
Õ. All in all, this makes the case of Euclidean k-Means with constraints similar
to the unconstrained version where the FPT approximation scheme of Kumar et al.
works [137]. Note that the latter algorithm does not extend to the constrained case
automatically as it relies heavily on the fact that a point is assigned to the closest
center, and thus the framework discussed above is a highly non-trivial generalization
of [137].

Fair Clustering

Apart from capacitated clustering, many other clustering constraints have been stud-
ied in the literature, e.g. lower bounds [179], matroid [50], fault tolerance [129], chro-
matic clustering [75] and diversity [143]. We introduce some of these problems later,
for now, let us focus on clustering problems with fairness constraints, which received
a lot of attention recently, and is central to Chapter 7 of this work. Clustering with
fairness constraints or fair clustering was introduced by Chierichetti et al. [56] in a
seminal work. The notion became widely popular within a short period triggering
a large body of new work [173, 23, 24, 115, 15, 30, 54, 3, 134]. The idea of fair
clustering is to enforce additional (fairness) constraints to remove the inherent bias
or discrimination from vanilla (unconstrained) clustering. For example, suppose we

2Õ hides factors polylogarithmic in k and ε−1.
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have a sensitive feature (e.g, race or gender). We want to find a clustering where
the fraction of points from a traditionally underrepresented group in every cluster is
more or less equal to the fraction of points from this group in the dataset. Indeed,
the work of Chierichetti et al. [56] shows that clustering computed by classical vanilla
algorithms can lead to widely varied ratios for a particular group, especially when
the number of clusters is large enough.

There are many settings where machine learning algorithms, trained on datasets
of past instances, play a crucial role in decision-making [77, 128, 154, 169]. These
algorithms are sophisticated and time-efficient and produce accurate results most
of the time. However, there has been a growing concern that these algorithms are
biased or discriminatory towards traditionally underrepresented groups [13, 73, 98].
One example that stands out and has generated substantial controversy in recent
years is concerning the COMPAS risk tool, which is a widely used statistical method
for assigning risk scores in the criminal justice system. Angwin et al. argued that
this tool was biased against African-American defendants [13, 140]. Most of the au-
tomated decision-making systems are highly influenced by human players, especially
during the training procedure. Importantly, clustering also plays a crucial role in
this training part. For example, a widely used technique called feature engineering
[124, 101] labels samples with their cluster id to enhance the expressive power of
learning methods. Hence, the study of biases and discriminatory practices in the
context of clustering is well-motivated.

Over the past few years, researchers have put a lot of effort into understanding
and resolving the issues of biases in machine learning. This research has led towards
different notions of fairness [42, 69, 79]. Kleinberg et al. [132] formalized three fair-
ness conditions and showed that it is not possible to satisfy them simultaneously,
except in very special cases (see also [57] for a similar treatment). The notion of
fairness studied by Chierichetti et al. [56] is based on the concept of disparate im-
pact (DI) [85]. Roughly, the DI doctrine articulates that the protected attributes
should not be explicitly used in decision-making, and the decisions taken should not
be disproportionately different for members in different protected groups.

Following the DI doctrine, Chierichetti et al. [56] considered the model where
there is a single sensitive or protected attribute called color that can take only two
values: red and blue. The coordinates of the points are unprotected; that is, they
do not take part in the fairness constraints. For any integer t ≥ 1, Chierichetti et
al. defined the (t, k)-fair clustering problem where in each cluster the ratio of the
number of red points to the number of blue points must be at most t and at least
1/t. Thus in their case, the notion of fairness is captured by the balance parameter
t.

Rösner and Schmidt [171] studied a multicolored version of the above problem,
where a clustering is fair if the ratios between points of different colors are the same
in every cluster. Subsequently, Bercea et al. [24] and Bera et al. [23] independently
formulated a model generalizing the problems studied in [56] and [171]. In this model,
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we are given ` groups P1, . . . , P` of points in a metric space and balance parameters
αi, βi ∈ [0, 1] for each group 1 ≤ i ≤ `. A clustering is fair if the fraction of points
from group i in every cluster is at least βi and at most αi. Additionally, in [23], the
groups are allowed to overlap, i.e, a point can belong to multiple protected classes.
Note that this assumption is needed to model many applications, e.g, consider clus-
tering of individuals where a subset of the individuals are African-American women.
In fact, the experiments in [23] show that imposing fairness concerning one sensitive
attribute (say gender) might lead to unfairness to another (say race) if not protected.
We refer to the fair clustering problem with overlapping groups as (α, β)-fair clus-
tering. We note that this is the most general version of fair clustering considered in
the literature, and this is the notion of fairness we adopt in Chapter 7. Both [24]
and [23] obtain polynomial time O(1)-approximation for this problem that violates
the fairness constraints by at most small additive factors that depend on Γ. Here Γ
is the number of distinct collections of groups to which a point may belong. If all
the groups are disjoint, then Γ = `. Note that if a point can belong to at most Λ
groups, then Γ is at most `Λ. As noted in [23] and [115], while Λ can very well be
more than 1, it is usually a constant in most of the applications. Thus, in this case,
Γ = `O(1), which is expected to be much smaller compared to n, the total number of
points in the union of the groups. Apart from the above, a number of works related
to fair clustering were devoted to scalability and coresets, as well as our main result
of Chapter 7, we discuss this more later in this chapter. As well as the number of
clusters k and the error parameter ε, the sizes of the coresets typically depend on Γ.

Other Color-constrained Problems

In fact, our results hold in a more general setting, for any kind of constraints that can
be stated in terms of how many points from each group are assigned to each cluster,
which we call color constraints. Note that any kind of constraint can be expressed
in this way if every point belongs to its own group, however we are interested in the
case where the number of colors/groups is small compared to the input size. Both
capacitated clustering, which is a special case where all points belong to a single
group, and (α, β)-fair clustering belong to this category, as well as several other
well-studied problems that we introduce next.

· In the lower-bounded clustering problem, we are given a lower bound parameter
L and the size of each cluster must be at least L. This constraint is essentially
a counterpart of the capacitated clustering, and falls also into the class of
color constraints, where all points belong to a single group. Polynomial time
constant-approximations for lower-bounded k-Median in general metric spaces
follow from [179, 5]. Also, an FPT O(1)-approximation with parameter k is
known for this problem [23].

· In the clustering with diversity problem, P = ∪`i=1Pi is a set of n colored points
such that all points in Pi have the same color, and each cluster must have no
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more than a fraction 1/t (for some given constant t > 1) of its points sharing
the same color. Thus, for each cluster C and i ∈ [`], |C ∩Pi| ≤ |C|/`. We note
that each point can have only one color. We note that the t-diversity clustering
is a special case of (α, β)-fair clustering without the lower bound constraints
involving parameter β, and α = 1/t.

· In chromatic clustering, again P = ∪`i=1Pi is a set of n colored points such that
all points in Pi have the same color. The constraint is that each cluster must
contain at most one point from each Pi. Naturally, this problem a;so falls into
the category of color-constrained clustering problems.

For more discussion about various constraint problems and the formal definitions of
fairness constraints and general color constraints, we refer to Chapter 7.

3.2 Low-Rank Approximation

Classical principal component analysis (PCA) is one of the most popular and success-
ful techniques used for dimension reduction in data analysis and machine learning
[167, 114, 80]. In PCA one seeks the best low-rank approximation of data matrix A
by solving

minimize ‖A− L‖2F (3.1)

subject to rank(L) ≤ r. (3.2)

By the Eckart-Young-Mirsky theorem [80, 160], PCA is efficiently solvable via Sin-
gular Value Decomposition (SVD). Recall that the singular value decomposition of
a matrix A ∈ Rn×d is given by A = UΣV>, where U ∈ Rn×n and V ∈ Rd×d

are real orthogonal matrices, and Σ ∈ Rn×d is a rectangular diagonal matrix with
non-negative real numbers on the diagonal, known as the singular values of A. The
Eckart-Young-Mirsky theorem states that truncating the SVD of A to its first r sin-
gular values yields the best possible r-rank approximation of A. That is, the solution
to (3.2) is the matrix Ar = UrΣrV

>
r , where Ur ∈ Rn×r are the first r columns of

U, Vr ∈ Rd×r are the first r columns of V, and Σr ∈ Rr×r is the diagonal matrix
containing the first r singular values. Since SVD of A can be found in polynomial
time, the same holds for the matrix Ar. PCA is used as a preprocessing step in a
great variety of modern applications including face recognition, data classification,
and analysis of social networks.

As mentioned above, contrary to k-Clustering, the basic version of the low-
rank approximation problem is long known to be efficiently solvable. However, just
as in the case of clustering, various extensions of the problem arise wherever there
is a need to go beyond the most basic scenarios, and the algorithmic complexity
of these extensions is not as simple anymore. In what follows, we first consider
robust extensions of PCA, specifically the version with outliers. Second, we discuss
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extending PCA from the Frobenius norm to operator norms, and from real-valued
data to categorical data.

3.2.1 Outliers

The key interest of Part IV of this work is a variant of PCA with outliers, proposed
in [190, 191, 55, 176]. Suppose that we have n points (observations) in d-dimensional
space. We know that a part of the points are arbitrarily located (say, produced by
corrupted observations) while the remaining points are close to an r-dimensional true
subspace. We do not have any information about the true subspace and about the
corrupted observations. Our task is to learn the true subspace and to identify the
outliers. As a common practice, we collect the points into n× d matrix A, thus each
of the rows of A is a point and the columns of A are the coordinates. However, it
is very likely that PCA of A will not reveal any reasonable information about non-
corrupted observations — a well-documented drawback of PCA is its vulnerability
to even a very small number of outliers, an example is shown in Figure 3.2.

Figure 3.2: An illustration on how outliers impact PCA. The optimal approximation line
(in dashed) of the given set of points without the evident outlier shows the linear structure
of the dataset. However, when the outlier is present, the principal component (in solid)
changes drastically.

Matrix formulation suggests the following interpretation: we seek a low-rank
matrix L that, with an exception in few rows, approximates A best.



34 3 | Problem Models

Input: Data matrix A ∈ Rn×d, integer parameters r and k.
Task:

minimize ‖A− L−N‖2F
subject to L,N ∈ Rn×d,

rank(L) ≤ r, and

N has at most k non-zero rows.

PCA with Outliers

PCA with Outliers has a natural geometric interpretation. Given n points
in Rd, represented by the rows of A, we seek for a set of k outliers, represented by
the non-zero rows of N, whose removal leaves the remaining n− k inliers as close as
possible to an r-dimensional subspace. The matrix L contains then the orthogonal
projections of the inliers to this subspace.

An important special case of PCA with Outliers is the Robust Subspace
Recovery problem, where the task is to decide whether for an instance of PCA
with Outliers the value of the optimal solution is 0 or not. Equivalently, the input
to Robust Subspace Recovery is an instance (A, r, k) of PCA with Outliers,
and the task is to decide whether there exist matrices L and N such that A = L+N,
the rank of L is at most r, and N has at most k non-zero rows.

PCA with Outliers belongs to the large class of extensively studied robust
PCA problems, see e.g. [183, 191, 36]. In the robust PCA setting we observe a noisy
version A of data matrix L whose principal components we have to discover. In the
case when A is a “slightly” disturbed version of L, PCA performed on M provides a
reasonable approximation for L. However, when A is very “noisy” version of L, like
being corrupted by a few outliers, even one corrupted outlier can arbitrarily alter the
quality of the approximation.

One of the approaches to robust PCA, which is relevant to our work, is to model
outliers as an additive sparse matrix. Thus we have a data d × n matrix A, which
is the superposition of a low-rank component L and a sparse component N. That
is, A = L + N. This approach became popular after the works of Candès et al. [43],
Wright et al. [190], and Chandrasekaran et al. [47]. The study of the following
natural, and seemingly more difficult extension of (3.2) to the PCA with outliers,
was initiated by Xu et al. [191].

minimize rank(L) + λ‖N‖0 (3.3)

subject to A = L + N.

Here ‖N‖0 denotes the number of non-zero columns in matrix N and λ is a regu-
larizing parameter. Xu et al. [191] approached this problem by building its convex
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surrogate and applying efficient convex optimization-based algorithm for the surro-
gate. Chen et al. [55] studied the variant of the problem with the partially observed
data.

The problem strongly related to (3.2) was studied in computational complexity
under the name Matrix Rigidity [105, 182]. Here, for a given matrix A, and
integers r and k, the task is to decide whether at most k entries of A can be changed
so that the rank of the resulting matrix is at most r. Equivalently, this is the
problem to decide whether a given matrix A = L + N, where rank(L) ≤ r and
‖N‖0,0 ≤ k. Fomin et al. [91] gave an algorithm solving Matrix Rigidity in time
2O(r·k·log(r·k)) ·(nd)O(1). On the other hand, they show that the problem is W[1]-hard
parameterized by k. In particular, this implies that an algorithm of running time
f(k) · (rnd)O(1) for this problem is highly unlikely for any function f of k only.

A natural extension of the robust PCA approach (3.3) is to consider the noisy
version of robust PCA: Given A = L + N + ∆, where L, N, and ∆ are unknown,
but L is known to be low rank, N is known to have a few non-zero rows, and the
noise matrix ∆ is of small Frobenius norm, recover L. Wright et al. [190] studied
the following model of noisy robust PCA:

minimize rank(L) + λ‖N‖0 (3.4)

subject to ‖A− L−N‖2F ≤ ε.

Thus (3.4) models the situations when we want to learn the principal components
of n points in d-dimensional space under the assumption that a small number of
coordinates is corrupted.

Much less is known about algorithms with guaranteed performance for PCA
with Outliers and Robust Subspace Recovery. Hardt and Moitra [111] used
the Small Set Expansion conjecture (SSE) to show that for Robust Subspace Re-
covery, even if one allows to select (1+δ)k outliers, for some δ > 0, it is still unlikely
that a polynomial time algorithm can find a c · r-dimensional subspace containing all
remaining n− (1 + δ)k points for any c > 0. [26] used the smallest edge r-subgraph
conjecture to show that, there is exists a constant c > 0, such that no polynomial
time algorithm can find a rnc-dimensional subspace that results in a multiplicative
approximation to the objective cost. By using the hardness of the rank reduction
problem for matroids [89, Proposition 8.1], it is possible to show that Robust Sub-
space Recovery is W[1]-hard parameterized by k.

For PCA with Outliers, [26] provides two (1 + ε)-approximation bicriteria
algorithms. While the cost of their solution is preserved within (1 + ε) factor, the
number of outliers k and the dimension of the subspace r in the solution are also
approximated.



36 3 | Problem Models

3.2.2 Beyond the Frobenius Norm

In fact, Eckart-Young-Mirsky theorem guarantees that PCA is not only efficiently
solvable for the Frobenius norm, but also in the spectral norm, given by ‖A‖2 =

supx 6=0
‖Ax‖2
‖x‖2 . The spectral norm is an “extremal” norm — it measures the worst-case

stretch of the matrix. On the other hand, the Frobenius norm is “averaging” in this
sense. Spectral norm is usually applied in situations when one is interested in actual
columns for the subspaces they define and is of greater interest in scientific computing
and numerical linear algebra. The Frobenius norm is widely used in statistics and
machine learning, see the survey of Mahoney [152] for further discussions.

Recently there has been considerable interest in developing algorithms for low-
rank matrix approximation problems for binary (categorical) data. Such variants
of dimension reduction for high-dimensional data sets with binary attributes arise
naturally in applications involving binary data sets, like latent semantic analysis
[25], pattern discovery for gene expression [174], or web search models [133], see [72,
123, 107, 135, 166, 192] for other applications. In many such applications it is much
more desirable to approximate a binary matrix A with a binary matrix L of small
(GF(2) or Boolean) rank because it could provide a deeper insight into the semantics
associated with the original matrix. There is a big body of work done on binary and
Boolean low-rank matrix approximation, see [18, 21, 72, 149, 158, 159, 161, 181, 180]
for further discussions.

Unfortunately, SVD is not applicable for the binary case which makes such prob-
lems computationally much more challenging. For a binary matrix, its squared Frobe-
nius norm is equal to the number of its 1-entries, that is ‖A‖2F =

∑n
i=1

∑d
j=1 Aij .

Thus, the value ‖A−L‖2F measures the total Hamming distance from points (columns)
of A to the subspace spanned by the columns of L. For this variant of the low-rank bi-
nary matrix approximation, a number of approximation algorithms were developed,
resulting in efficient polynomial time approximation schemes obtained in [17, 88].
However, the algorithmic complexity of the problem for any vector-induced norm,
including the spectral norm, remained open.

For binary matrices, the natural “extremal” norm to consider is the ‖ · ‖1 norm,
also known as column-sum norm, operator 1-norm, or Hölder matrix 1-norm. That
is, for a matrix A,

‖A‖1 = sup
‖x‖1 6=0

‖Ax‖1
‖x‖1

= max
1≤j≤d

n∑
i=1

|Aij |.

In other words, the column-sum norm is the maximum number of 1-entries in a
column in A, whereas the Frobenius norm is the total number of 1-entries in A. The
column-sum norm is analogous to the spectral norm, only it is induced by the `1
vector norm, not the `2 vector norm.

We consider the problem, where for an n×d binary data matrix A and a positive
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integer constant r, one seeks a binary matrix L optimizing

minimize ‖A− L‖1
subject to rank(L) ≤ r.

Here, by the rank of the binary matrix L we mean its GF(2)-rank. We refer to the
problem defined above by the name L1-Rank-r Approximation over GF(2). The
value ‖A − L‖1 is the maximum Hamming distance from each of the columns of A
to the subspace spanned by columns of L and thus, compared to approximation with
the Frobenius norm, it could provide a more accurate dimension reduction.

It is easy to see by the reduction from the Closest String problem, that already
for r = 1, L1-Rank-r Approximation over GF(2) is NP-hard. In Chapter 11
we show that L1-Rank-r Approximation over GF(2) admits a polynomial time
approximation scheme (PTAS). Next we discuss other related work.

The variant of low-rank approximation with both matrices A and L binary, and
the objective being the Frobenius norm, is known as Low GF(2)-Rank Approxi-
mation. Due to numerous applications, various heuristic algorithms for Low GF(2)-
Rank Approximation can be found in the literature [122, 123, 95, 135, 174].

When it concerns rigorous algorithmic analysis of Low GF(2)-Rank Approxi-
mation, Gillis and Vavasis [100] and Dan et al. [72] have shown that Low GF(2)-
Rank Approximation is NP-complete for every r ≥ 1. Fomin et al. studied
parameterized algorithms for Low GF(2)-Rank Approximation in [90]. The first
approximation algorithm for Low GF(2)-Rank Approximation is due to Shen et
al. [174], who gave a 2-approximation algorithm for the special case of r = 1. For
rank r > 1, Dan et al. [72] have shown that a (r/2+1+ r

2(2r−1) )-approximate solution

can be formed from r columns of the input matrix A. Recently, these algorithms
were significantly improved in [17, 88], where efficient polynomial time approximation
schemes were obtained.

Also note that for general (non-binary) matrices a significant amount of work
is devoted to L1-PCA, where one seeks a low-rank matrix L approximating given
matrix A in entrywise `1 norm, see e.g. [178].

While the main motivation to study L1-Rank-r Approximation over GF(2)
stems from low-rank matrix approximation problems, this problem also generalizes
Closest String, very well-studied problem about strings. Given a set of binary
strings S = {s1, s2, . . . , sn}, each of length m, the Closest String problem is to
find the smallest d and a string s of length m which is within Hamming distance d
to each si ∈ S. Let us note that Closest String can be seen as a special case of
L1-Rank-r Approximation over GF(2) for r = 1. Indeed, Closest String is
exactly the variant of L1-Rank-r Approximation over GF(2), where columns of A
are strings of S and the approximation matrix L is required to have all columns equal.
Note that in a binary matrix L of rank 1 all non-zero columns are equal. However, it
is easy to construct an equivalent instance of Closest String by attaching to each
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string of S a string 1m+1, such that the solution to L1-Rank-r Approximation
over GF(2) for r = 1 does not have zero columns.

A long history of algorithmic improvements for Closest String was concluded
by the PTAS of running time nO(ε−5) by Li, Ma, and Wang [144], and this run-

ning time was later improved to nO(ε−2) [150]. Cygan et al. [71] proved that the
existence of an EPTAS for Closest String, that is (1 + ε)-approximation in time
nO(1) · f(ε), for any computable function f , is unlikely, as it would imply that FPT
=W[1], a highly unexpected collapse in the hierarchy of parameterized complexity
classes. They also showed that the existence of a PTAS for Closest String with
running time f(ε)no(1/ε), for any computable function f , would contradict the Ex-
ponential Time Hypothesis. The result of Cygan et al. implies that L1-Rank-r
Approximation over GF(2) also does not admit EPTAS (unless FPT =W[1]) al-
ready for r = 1.

A generalization of Closest String, k-closest strings is also known to admit
a PTAS [125, 99]. This problem corresponds to the variant of L1-Rank-r Approx-
imation over GF(2), where approximating matrix L is required to have at most k
different columns. However, it is not clear how solution to this special case can be
adopted to solve L1-Rank-r Approximation over GF(2).



4

Toolbox

In this chapter we give a brief survey of the fundamental techniques that the main
body of this thesis relies on. These include dimensionality reduction, coresets and
computational algebraic geometry methods.

4.1 Dimensionality Reduction

Dimensionality reduction is a ubiquitous tool for preprocessing matrix data. The
motivation behind it is that the input data lies often in a high-dimensional space,
however for the purpose of computing approximately, say, a k-means clustering or a k-
low rank approximation, working with the original vectors is not necessary. In fact,
it is possible to project the original high-dimensional matrix into a much smaller
space by multiplying it with a simple randomized sketch matrix, while preserving
the objective value up to a factor of (1 + ε). The current state-of-the-art results
allow for just O(k/ε) dimensions [60] for preserving approximately the cost of any
orthogonal k-rank projection of the given matrix A ∈ Rn×d, which in particular
preserves the best k-low rank approximation, and just O(log(k/ε)/ε2) dimensions
for preserving the cost of every k-means clustering [153]. Designing dimensionality
reduction routines is a long line of work, where many variants of sketch matrices were
studied, allowing for different trade-offs between the approximation guarantee, the
target dimension, and the cost of computing the sketch. Moreover, dimensionality
reduction was studied for various objectives and norms. The sheer volume of the field
does not allow us to give an extensive overview in this work; we refer the reader to the
surveys of Woodruff [188] and Mahoney [152] for an overview of this area. Next we
give a few definitions and results that we use in our work. Specifically, we explore the
applicability of dimensionality reduction methods in Chapter 7 for color-constrained
k-Means, where the size of the coreset depends on dimension, and in Chapter 10
for PCA with Outliers, where the dimension enters the exponential part of the

39
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running time.

Definition 4.1 (ε-embedding). Given a subset W ⊂ Rd and ε ∈ (0, 1), an ε-
embedding is a matrix S ∈ Rd×s for some s ≥ 0 such that for all x ∈ W, we
have ∥∥x>S

∥∥2

2
= (1± ε) ‖x‖22 .

When W is a linear subspace we call S an ε-subspace embedding.

Essentially, an ε-embedding S is a linear transform, with small s << d, provid-
ing an approximate isometry over the embedded space W ⊂ Rd. Observe that in
this language, the classical Johnson–Lindenstrauss Lemma states that for any set W
of cardinality n, a random rank-k projection achieves an ε-embedding of dimension
s = Θ(log n/ε2). However, in this work we will require embeddings for linear sub-
spaces, preserving approximately the distances between arbitrary points in the same
low-dimensional subspace, where the embedding dimension depends only on the di-
mension of the preserved subspace (and the error parameter ε). To the best of our
knowledge, the notion of subspace embedding in numerical linear algebra appeared
for the first time due to Sarlos [172], and since then it has emerged as a powerful
tool for accelerating various statistical learning procedure like `p-regression, low-rank
approximation, and PCA. The theorem of Indyk and Motwani [120] below provides
the bound on embedding dimension s of a Normal Transform for it to be a subspace
embedding

Theorem 4.2 (Normal Transform [120]). Let 0 < ε, δ < 1 and S = 1√
s
G ∈ Rd×s

where the entries of matrix G are independent standard normal random variables.
Then if s = Θ((r + log(1/δ))ε−2), then for any fixed r-dimensional linear subspace
U ⊂ Rd, with probability at least 1− δ, S is an ε-subspace embedding.

The following theorem, observed in [172], says that the solution to an embedded
`2-regression problem provides a good approximate solution to the original regression
problem. The proof is an immediate application of `2-subspace embedding to the `2-
regression problem; for completeness, we give the proof here.

Theorem 4.3 ([172]). Given a matrix V ∈ Rr×d and a ∈ Rd, we have

(1− ε) dist2(a>,V) ≤ dist2(a>S,VS) ≤ (1 + ε) dist2(a>,V).

where S ∈ Rd×s is an ε-subspace embedding for subspace spanned by row(V) and a.

Here dist2(a>,V) denotes minx

∥∥a> − x>V
∥∥2

2
, which is why we refer to this as

an `2-regression problem. Observe that when V is an orthonormal basis of an r
dimensional subspace of Rd, dist2(a>,V) gives precisely the squared Euclidean dis-
tance for the point a to this subspace. This is why Theorem 4.3 is of key importance
for the low-rank approximation problem, as we can for example guarantee that the
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distance from a point to the optimal subspace is preserved under the embedding.
Additionally, if the embedding is, like a normal transform matrix, oblivious, i.e. does
not depend on the particular matrix V, then for this kind of argument we do not
need to know the actual optimal subspace.

Proof. Let (a) x̃i = arg minx

∥∥a>S− x>VS
∥∥2

2
and (b) x̂i = arg minx

∥∥a> − x>V
∥∥2

2
.

Since S is a ε-embedding for col([VT|a]), we have

(1− ε) dist2(a>,V) = (1− ε)
∥∥∥a> − x̂

>
i V
∥∥∥2

2

≤ (1− ε)
∥∥∥a> − x̃

>
i V
∥∥∥2

2
(By (b))

≤
∥∥∥a>S− x̃

>
i VS

∥∥∥2

2

= dist2(a>S,VS).

Similarly, we have

dist2(a>S,VS) =
∥∥∥a>S− x̃

>
i VS

∥∥∥2

2

≤
∥∥∥a>S− x̂

>
i VS

∥∥∥2

2
(By (a))

≤ (1 + ε)
∥∥∥a> − x̂

>
i V
∥∥∥2

2

= (1 + ε) dist2(a>,V).

which gives us

(1− ε) dist2(a>,V) ≤ dist2(a>S,VS)

≤ (1 + ε) dist2(a>,V).

In fact, one can go further and achieve the same guarantee for all vectors x ∈ Rr,
i.e. all potential solutions to the regression problem. Next we introduce the concept
of Affine Embeddings from [59] that defines this idea formally, and also extends it to
multiple regression problems simultaneously.

Definition 4.4 (Affine embedding). Let U ∈ Rr×d and A ∈ Rn×d, then S ∈ Rd×s is
an ε-affine embedding for (U,A) if for every X ∈ Rn×r, we have

‖(A−XU)S‖22 = (1± ε) ‖A−XU‖22 .
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Surprisingly, even for such a strong kind of a guarantee, it is possible to achieve
the embedding dimension of Θ(r log(1/δ)ε−2). We defer the technical discussion of
this construction to Chapter 10, where this notion will be used. The precise result
on ε-affine embeddings is stated in Theorem 10.14.

In Chapter 7, we show how to apply dimensionality reduction tools to effectively
replace the dimension d by O(k/ε) for color-constrained k-Means in order to achieve
a reduction to an instance of size independent of d. For that we require slightly
different properties than above, we do not need that the embedding is oblivious,
therefore we can use an SVD-based dimensionality reduction instead of a normal
transform embedding. To deal with clustering, it is helpful to employ the notion of
a projection-cost preserving sketch, defined next. In what follows, we use the results
and notation of Cohen et al. [60].

Definition 4.5 (Definition 2 in [60]). For a matrix A ∈ Rn×d, S ∈ Rn×s is a rank
k projection-cost preserving sketch with one-sided error 0 ≤ ε < 1 if for all rank k
orthogonal projection matrices P ∈ Rn×n

||A−PA||2F ≤ ||(A−PA)S||2F + c ≤ (1 + ε)||A−PA||2F ,

for some fixed non-negative constant c that may depend on A and S but is independent
of P.

Before we move on to discussing constructions of projection-cost preserving sketches,
let us clarify why this object is of great use for clustering problems. It is well-known
that, for a data matrix A, any k-means clustering of the rows of A may be rep-
resented by a particular orthogonal projection matrix P, such that the cost of the
clustering is equal to ||A − PA||2F , see e.g. Section 2.3 in [60]. Specifically, for any
clustering C = {C1, . . . , Ck} of the rows of A ∈ Rn×d that has rows a1, . . . , an,
consider the cluster indicator matrix XC ∈ Rn×k where

XCij =

{
1/
√
|Cj |, if the row ai is assigned to the cluster Cj ,

0, otherwise,

for i ∈ [n], j ∈ [k]. Now consider the projection matrix PC = XC(XC)>, by definition
of XC , PCA = XC(XC)>A has its i-th row equal to the mean of all the rows belonging
to the cluster that the i-th row of A belongs to. Thus,

||A−PCA||2F =

n∑
i=1

||ai − cj ||22,

where cj is the mean of the cluster Cj such that ai ∈ Cj , which is exactly the cost of
the clustering C provided that the centers are selected optimally as the means of the
respective clusters. To see that PC is a rank k orthogonal projection matrix, observe
that the matrix XC consists of k columns that have disjoint support and norm one.
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From the discussion above we get that, if S is a projection-cost preserving sketch
for A with one-sided error ε, then for any clustering C1, . . . , Ck of the rows of A,
and the corresponding clustering C̃1, . . . , C̃k of the rows of AS, it holds that

cost(C1, . . . , Ck) ≤ cost(C̃1, . . . , C̃k) + c ≤ (1 + ε) cost(C1, . . . , Ck).

In particular, this holds for any clustering that is subject to a given clustering
constraint, for example fair clustering or capacitated clustering. Thus, in fact,
projection-cost preserving sketches allow readily to reduce dimension for any con-
strained variant of Euclidean k-Means, which we will use in Chapter 7.

A variety of constructions provide a projection-cost preserving sketch, with dif-
ferent values of embedding dimension. In particular, it suffices to take a random
projection matrix with the embedding dimension s = Θ(k/ε2) (Theorem 12 in [60]).
For a better dependence on ε, we will employ a dimensionality reduction scheme
based on approximate singular value decomposition, the key result is stated next.

Proposition 4.6 (Theorem 8 in [60]). Let s = dk/εe. For any A ∈ Rn×d and any
orthonormal matrix S ∈ Rd×s satisfying

||A−ASS>||2F ≤ (1 + ε′)||A−As||2F ,

the sketching matrix S satisfies the conditions of Definition 4.5 with error (ε + ε′).
Here As is the matrix A projected onto its top s singular vectors.

There is a long line of work providing algorithms to compute this sort of relative
approximation to the SVD, we use the algorithm of Boutsidis et al. [33], stating the
version appearing in [35].

Proposition 4.7 (Lemma 4 in [35]). Given A ∈ Rn×d of rank ρ, a target rank
2 ≤ s < ρ, and 0 < ε < 1, there exists a randomized algorithm that computes an
orthonormal matrix S ∈ Rd×s such that

E||A−ASS>||2F ≤ (1 + ε)||A−As||2F .

The proposed algorithm runs in time O(nds/ε).

Together, Proposition 4.6 and Proposition 4.7 provide the following theorem,
that we will use for dimensionality reduction in our study of constrained clustering
problems.

Theorem 4.8. There is a polynomial-time algorithm that, given a matrix A ∈ Rn×d,
an integer k and an error parameter 0 < ε < 1, computes a matrix S ∈ Rd×s that is a
rank k projection-cost preserving sketch of A with one-sided error ε, where s = dk/εe.
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4.2 Coresets

Similarly to dimensionality reduction, constructing a coreset from the input data
allows to reduce the size of the input while preserving approximately the desired
objective. With respect to a clustering problem, informally, given a set of points, its
coreset is a small weighted set of points in the same space that for any set of k centers
has approximately the same cost of clustering as the original points. This idea can
also be extended to low-rank approximation and other matrix problems, by requiring
to replace the input matrix by a matrix with few weighted rows, that approximates
the original matrix well. However, at least for the standard low-rank approximation
problem in Frobenius norm, reducing the number of rows (i.e. constructing a coreset)
is equivalent to reducing the number of columns (i.e. performing dimensionality
reduction), as the objective is indifferent to transposing the input matrix. While
for a clustering problem rows and columns are not interchangeable, thus a task
of constructing a small-sized coreset cannot be directly reduced to dimensionality
reduction, although we note that dimensionality reduction is in fact used in a number
of coreset constructions as an intermediate step. For this section, we focus on coresets
for clustering problems.

Now we proceed to the formal definition of a coreset. We are interested in coresets
for both Euclidean space and general metric spaces, thus we use the notations of the
general k-Clustering problem. Recall that we denote the space by (X , dist), where
the set of the input points P ⊂ X is given, and the set of potential centers is denoted
as F ⊂ X . Additionally, consider a weight function w : P → R≥0, then the weighted
set of points W ⊂ P × R≥0 given by the weight function w is the set

{(p, w(p)) | p ∈ P and w(p) > 0}.

Now, for a set of centers C ⊂ F , recall that

cost(P,C) =
∑
p∈P

dist(p, C),

and we use similar notation for weighted points,

wcost(W,C) =
∑

(p,w)∈W

w · dist(p, C).

Now we are ready to define a coreset.

Definition 4.9 (Coreset for k-Clustering). A coreset for a given instance of k-
Clustering is a set of weighted points W ⊆ P × R≥0 such that for every set of
centers C ⊂ F of size k,

(1− ε) · cost(P,C) ≤ wcost(W,C) ≤ (1 + ε) · cost(P,C).

We say that the size of a coreset is the cardinality of the set W .
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Observe that if w(p) = 1 for all p ∈ P , then for the weighted set W given by
w, wcost(W,C) = cost(P,C) for all sets of centers C, in this way the original set of
points is a trivial coreset for itself. Also note that a coreset for a general discrete
metric space does not immediately give a coreset for the Euclidean variant of k-
Clustering, as in the former the set of potential centers is finite and given in the
input, while in the latter the set of potential centers is the whole space Rd.

Apart from the advantage that any clustering algorithm can be applied to the
coreset to efficiently retrieve a nearly optimal clustering, coresets are also vital in the
streaming setting for the following reasons. First, they take less space compared to
the original data, and most coreset constructions are simple and require only a few
passes over the data. Second, an important property of the coresets is that they are
composable: If the input P is partitioned into subsets P1, . . . , Pt, and for each subset
Pi a coreset Wi is computed, then the union of the coresets

⋃t
i=1Wi is a coreset for

the whole input P . From Definition 4.9, this can be trivially seen to be true; although
in the literature there are other definitions of coresets that not necessarily have this
property. Composability allows to split a large body of data that cannot be handled
at one place to several machines, such that each machine computes the coreset of its
portion independently, and then just collecting the outputs from each machine gives
an accurate summary of the whole input. Additionally, a coreset that is composable
can be computed in the merge-and-reduce fashion, allowing for one-pass computation
of the coreset in streaming. This concept goes back to [22], and to the best of our
knowledge was first used for the design of geometrical algorithms in the streaming
model in [2]. First, the coreset for a small portion of the input that fits into the small
memory is computed. Then the coreset for the second small portion is computed.
Then these two coresets are merged and reduced by computing a smaller coreset
from their union. In this way, the algorithm proceeds along the corresponding tree,
such that at each node only a small-sized coreset, resulting from the direct applica-
tion of the coreset construction algorithm, is stored. The MapReduce programming
model used for processing big data is strongly related to the above input partitioning
methods, as well as its popular implementations, e.g. [186].

Over the years, researchers have paid increasing attention to the design of coreset
construction algorithms to optimize the coreset size. Many different schemes have
been proposed for coreset construction. In the earlier works considering the Euclidean
space, exponential grids and similar structures have been used that led to coresets
with size depending exponentially on the dimension d [110, 109, 92]. To give the
intuition to [110], the work that coined the term “coreset”, consider an instance of
Euclidean k-Means and a set of centers C that achieves a constant approximation
of the k-Means objective. Around each center c from C, construct the exponential
grid: it partitions the space around the center C into cubes of side length that grows
exponentially as the cubes become further from c, in such a way that the side length
is approximately ε times the distance to c. Then, because of the triangle inequality,
all points of P inside the particular cube can be condensed into a single point, and
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the error resulting from that can be attributed to the error that each point pays in
the approximate solution, i.e. its distance to c, times ε. By carefully cutting the grid
at the close and far ranges of c, one can get an order of log n levels of the grid. In
the end, this results in O(ε−d log n) cells around each center, and the total coreset
size is O(kε−d log n).

We note that the majority of known coreset constructions partitions in a way
the space around the centers of an approximate solution, however more advanced
coreset constructions use sampling inside the resulting regions to avoid exponential
dependence on d. The first construction of this form was given by Chen [53], who
showed a coreset of size polynomial in k, d, ε, log n in the Euclidean space, and also
a coreset of size polynomial in k, ε and log n in general discrete metric spaces. Our
coreset result in Chapter 7 stems, in fact, from this construction, and more details
about it are given in that chapter. Subsequently, the size of the coreset has been
further improved [139, 83]. Finally, the dependence on d was removed for both k-
Means and k-Median in Rd in [84] and [177], respectively, resulting in coresets of
size (k/ε)O(1). See also [20, 37, 116] for recent improvements. For general discrete
metric spaces, the best-known upper bound on coreset size is O((k log n)/ε2) [83] and
the lower bound is known to be Ω((k log n)/ε) [16]. Thus, in this case the dependence
on log n is unavoidable.

4.2.1 Coresets for Constrained Clustering

The above covers the situation with coresets for unconstrained clustering problems,
however, when we move to constrained clustering, the story is different. First of all,
none of the results for the unconstrained problem are immediately applicable as, per
Definition 4.9, a coreset preserves the cost with respect to every possible set of centers,
where cost is computed as the sum of distances from every point to its closest center.
Since a constrained version of the clustering problem allows only certain partitions
of the points into clusters, the cost in this version might be very different than in
the unconstrained assignment to the closest centers. Second, even if we try to tweak
Definition 4.9 to represent the cost only of the allowed clusterings, some issues arise
with the definition itself. Specifically, given a family C of the allowed partitions of the
points, it would be natural to replace cost(P,C) in Definition 4.9 with its constrained
variant, costC(P,C) that only allows assignments from P to C that are allowed by
C. However, doing the same thing with the definition of weighted cost wcost(W,C)
would not be sound, as replacing points of P by a few weighted points of W might
lose the information required to check that an assignment satisfies C. Moreover,
even if for a particular C, a weighted subset W has enough information to check
whether C is satisfied, an important property that the coresets are composable will
not necessarily hold. Take for an example a special case of (α, β)-Fair Clustering,
where the input points are colored in two colors, red and blue, and each cluster must
have exactly the same number of red and blue points. Then it might be the case
that even if the whole input has a very low cost of clustering with a given set C,
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partitioning it into two parts might not yield any feasible clustering at all, if the
parts do not contain the same number of red and blue points. Even if we demand
that the parts must be balanced too, failing to keep the whole cluster in the same
part might lead to the optimal cost of clustering in one part being very high for the
need to balance the resulting cluster by merging parts of two different clusters in the
optimal solution. And if the cost of clustering with respect to C is high in a part,
the ε-factor error will also be too high compared to the cost of the optimal clustering
as a whole. For the details of the last example, see [173].

Thus we arrive to a stronger definition of a coreset for constrained clustering
problems, introduced in [173]. First, we make formal the intuition of a coloring
constraint, introduced in Subsection 3.1.4. For a clustering problem with k centers
and ` groups P1, . . . , P`, identified among the whole set of points P , a coloring
constraint is a k × ` matrix M having non-negative integer entries. We say that a
clustering C1, . . . , Ck of P satisfies the coloring constraint M if for each i ∈ [k], j ∈ [`],
|Ci ∩ Pj | = Mij , that is, exactly Mij points from the group Pj are assigned into the
cluster Ci. Next, we have the following observation, which was noted in [173, 115].

Proposition 4.10. For an instance of (α, β)-Fair Clustering and a fixed set C
of k centers, there exists a collection of coloring constraints M with the following
property. A clustering C1, . . . , Ck of P is (α, β)-fair if and only if there exists a
coloring constraint M ∈M such that the clustering C1, . . . , Ck satisfies M.

The proof is by simply observing that knowing how many points from each group
ends up in each cluster, which is exactly represented by a coloring constraint, allows
us to verify that the clustering is fair. Thus listing all corresponding k × ` matrices
M represents exactly the fairness conditions, in the sense of Proposition 4.10. In
fact, capacitated clustering can also be reduced to a collection of coloring constraints
in the same fashion. Given an upper bound U on cluster size, we simply set ` = 1,
P1 = P , and the collection of those matrices M ∈ Zk×1

≥0 where each entry is at
most U . Similarly, all constraints listed under Subsection 3.1.4 can be expressed by
coloring constraints.

Now, in the stronger definition, a coreset is required to preserve the optimal
clustering cost w.r.t. all coloring constraints. Hence, it also preserves the optimal fair
clustering cost, the optimal capacitated clustering cost, or any other color constraint.
Next, we formally define the cost of a clustering w.r.t. a set of centers and a coloring
constraint. Suppose we are given a weight function w : P → R≥0. Let W ⊆ P × R
be the set of pairs {(p, w(p)) | p ∈ P and w(p) > 0}. For a set of centers C =
{c1, . . . , ck} and a coloring constraint M, wcost(W,M, C) is the minimum value∑
p∈P,ci∈C ψ(p, ci) · dist(p, ci) over all assignments ψ : P × C → R≥0 such that

(i) For each p ∈ P ,
∑
ci∈C ψ(p, ci) = w(p).

(ii) For each ci ∈ C and group 1 ≤ j ≤ `,
∑
p∈Pj ψ(p, ci) = Mij .
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For k-means, wcost(W,M, C) is defined in the same way except it is the minimum
value

∑
p∈P,ci∈C ψ(p, ci)·dist(p, ci)

2. If there is no such assignment ψ, wcost(W,M, C) =
∞. When w(p) = 1 for all p ∈ P , we simply denote W by P and wcost(W,M, C)
by cost(P,M, C). From the above definitions of cost and wcost, we derive a general-
ization of Definition 4.9. We call this object a universal coreset, as it is required to
preserve optimal clustering cost w.r.t. all coloring constraints.

Definition 4.11 (Universal coreset). A universal coreset for a clustering objective
is a set of weighted points W ⊆ P × R such that for every set of centers C of size k
and any coloring constraint M,

(1− ε) · cost(P,M, C) ≤ wcost(W,M, C) ≤ (1 + ε) · cost(P,M, C).

Schmidt et al. [173] and subsequently Huang et al. [115] designed deterministic al-
gorithms in Rd that construct universal coresets whose sizes exponentially depend on
d, employing the exponential grid construction by [110]. To remove this exponential
dependency on d, Schmidt et al. [173] proposed an interesting open question whether
it is possible to use random sampling for construction of fair coresets. Huang et
al. [115] also suggested the same open question. Besides, Huang et al. asked whether
it is possible to achieve a similar size bound as in the vanilla setting. In Chapter 7
we resolve this question affirmatively, and provide a novel analysis of the construc-
tion by Chen [53] that achieves a coreset for any color constrained clustering of size
poly(`, k, log n, ε), where ` is the number of groups/colors (in the case the groups are
disjoint), in general discrete metric spaces. For Euclidean k-Median and k-Means,
the size of the coreset also depends polynomially on the dimension d, although for
k-Means we show how to employ dimensionality reduction to get rid of the depen-
dence on d. Specifically for capacitated clustering, Cohen-Addad and Li [66] gave
earlier similar results, our analysis for the general color constrained clustering prob-
lem follows their approach.

4.3 Algebraic Geometry

In Chapters 9 and 10, we study the PCA with Outliers problem using heavily the
tools of computational algebraic geometry, and we outline the basics of the approach
in this section. On the highest level, the idea is to bound the inherent geometric
complexity of the problem, which is much smaller in small-dimensional spaces than
the space-oblivious combinatorial complexity. To the best of our knowledge, the
first similar usage of these tools for the design of geometrical algorithms is due to
Inaba et al. [118], who presented a nO(dk)-time algorithm for k-Means in Rd. The
intuition of this approach is as follows, on the example of the k-Means algorithm
of [118]. We parameterize the unknown object by real-valued variables, in this case,
we take a variable for each coordinate of each unknown cluster center, dk variables
in total. Then, we introduce a family of polynomial conditions such that their signs
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characterize completely the desired object: for each input point p and each pair of
the unknown centers ci and cj , we write the condition that ||p−ci||22 < ||p−cj ||22, i.e.
that p is closer to ci than to cj . Knowing the signs of these conditions for all pairs of
centers gives uniquely the index of the closest center to p, and when we know this for
all points, we know the actual clustering. Thus, for any given values of signs of these
polynomials, we can construct the corresponding clustering and compute its cost.
Finally, a generic algebraic geometry theorem bounds the number of different values
of signs of the polynomial family, based on the number of variables and the number
of polynomial conditions. This provides the bound of nO(dk) possible clusterings
to consider. In what follows, we give technical definitions and the statement of
the above-mentioned theorem, that allow to formalize the intuition above. We use
notations and results from the seminal book of Basu et al. [19].

We denote the ring of polynomials in variables X1, . . . , Xd with coefficients in R
by R[X1, . . . , Xd]. By saying that an algebraic set V in Rd is defined by a polynomial
Q ∈ R[X1, . . . , Xd], we mean that V = {x ∈ Rd | Q(x[1], . . . ,x[d]) = 0}. For a set
of s polynomials P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xd], a sign condition is specified by
a sign vector σ ∈ {−1, 0,+1}s, and the sign condition is non-empty over V with
respect to P if there is a point x ∈ V such that

σ = (sign(P1(x)), . . . , sign(Ps(x))),

where sign(z) is the sign function on real numbers defined as

sign(z) =


1, if z > 0,

0, if z = 0,

−1, if z < 0

for z ∈ R.
The realization space of σ ∈ {−1, 0,+1}s over V is the set

R(σ) = {x | x ∈ V, σ = (sign(P1(x)), . . . , sign(Ps(x)))}.

If R(σ) is not empty then each of its non-empty semi-algebraically connected (which
is equivalent to just connected on semi-algebraic sets as proven in [19], Theorem 5.22)
components is a cell of P over V .

For an algebraic set V its real dimension is the maximal integer d′ such that there
is a homeomorphism of [0, 1]d

′
in V . Naturally, if V ⊂ Rd, then d′ ≤ d.

The following theorem from [19] gives an algorithm to compute a point in each
cell of P over V .

Theorem 4.12 ([19], Theorem 13.22). Let V be an algebraic set in Rd of real di-
mension d′ defined by Q(X1, . . . , Xd) = 0, where Q is a polynomial in R[X1, . . . , Xd]
of degree at most b, and let P ⊂ R[X1, . . . , Xd] be a finite set of s polynomials with
each P ∈ P also of degree at most b. Let D be a ring generated by the coefficients
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of Q and the polynomials in P. There is an algorithm which takes as input Q, d′

and P and computes a set of points meeting every non-empty cell of V over P. The
algorithm uses at most sd

′
bO(d) arithmetic operations in D.

Going back to the k-Means algorithm, the algebraic set V is simply Rk×d, so Q is
a zero polynomial. Consider variables X1, . . . , Xdk, where the first d variables denote
the coordinates of the center c1, the next d variables are the coordinates of c2, and so
on. Then the set of polynomials P ⊂ Rdk consists of polynomials P i,jp (X1, . . . , Xdk)
for each input point p and each pair 1 ≤ i < j ≤ k, where

P i,jp (X1, . . . , Xdk) =
d∑
t=1

(p[t]−X(i−1)d+t)
2 −

d∑
t=1

(p[t]−X(j−1)d+t)
2,

corresponding to the value ‖p− ci‖22 − ‖p− cj‖22. The size of P is n
(
k
2

)
, and each

polynomial has degree two. Thus, by Theorem 4.12, there is an algorithm running
in time (n

(
k
2

)
)dk2O(d) = nO(dk) that outputs a point from each non-empty cell of

V over P. Thus, evaluating P on each of these points provides all non-empty sign
conditions of P, from which we can construct all possible clusterings where each
point goes to the closest center, resulting in an nO(dk)-time algorithm for k-Means.
Our parameterization for PCA with Outliers presented in Chapter 9 follows a
similar approach, although the polynomial system and the underlying algebraic set is
somewhat more complicated, as we parameterize all possible r-dimensional subspaces.

On the practical side, we note that a number of routines from [19] is implemented
in the SARAG library [44].
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Parameterized Lp-k-Clustering

In this chapter we investigate how the complexity of Lp-k-Clustering depends on
the cost of clustering D. First we recall the problem’s definition.

Input: A multiset X of n vectors in Zd, a positive integer k, and a
nonnegative number D.

Task: Decide whether there is a partition of X into k clusters {Ci}ki=1

and k vectors {ci}ki=1 in Rd such that

k∑
i=1

∑
x∈Ci

distp(x, ci) ≤ D.

Lp-k-Clustering

Note that the vector set X (like the row set of a matrix) can contain many equal
vectors. Here for 0 < p <∞, distp is the p-th power of the Minkowsky Lp-norm, i.e.

distp(x,y) = ‖x− y‖pp =
d∑
i=1

|x[i]− y[i]|p.

We also consider the natural extension of the above to the cases p = 0 and p =∞,

dist0(x,y) = |{i ∈ {1, . . . , d} | x[i] 6= y[i]}|,
dist∞(x,y) = max

i∈{1,...,d}
|x[i]− y[i]|.

Let us remark that we consider the situation where the given vectors X have inte-
gral coordinates, while cluster centers are not necessarily from X. Moreover, coordi-
nates of the centers can be any real values. Thus, in the case p = 2, Lp-k-Clustering

53
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is exactly the well-known k-Means problem, restricted to integer-valued instances.
We believe restricting the input to integral values is the most natural model for study-
ing complexity of Lp-k-Clustering with respect to the parameter D. Considering
D as a parameter only makes sense if the input values are suitably discretized. Imag-
ine input vectors could have arbitrary real-valued (or rational-valued) entries, then
for a given instance it is always possible to scale the values down by the same factor
such that the cost of an optimal clustering is arbitrarily small, but the structure of
the instance is completely preserved. Thus the restriction to integer values in our
study is a natural discretization of the problem. It allows the parameter D to bear
deep structural significance, as our results demonstrate.

It might be noted that the regime where the cost of clustering D is small compared
to the number of points n, is quite special. Indeed, if the cost of clustering is at most
D, then there are but a few points that are not equal to the respective cluster centers.
Thus, the problem we study has the spirit of an editing problem: check whether
a given instance is close to a “structured” one, where in our case a “structured”
instance has at most k distinct points, and closeness is measured via the sum of Lp-
distances. Editing problems are extensively studied in the parameterized algorithms
literature, ranging from the vast area of graph modification (see e.g. a recent survey
by [68]) to studies very close to ours, like the Consensus Patterns algorithm by
Marx [156], and the study of Binary r-Means by Fomin et al. [90] that is essentially
a special case of our L0-k-Clustering problem, where the input is binary. And still,
even in this highly structured regime, our results show a very intricate picture: for
instance, for Lp-k-Clustering parameterized just by D, we provide a non-trivial
FPT algorithm in the case 0 < p ≤ 1. While on the other hand, conditionally, the
same scheme could not lead to an analogous algorithm in the case p = 2, and there
could not be any FPT algorithm at all in the cases p = 0 and p = ∞, under the
widely believed assumption FPT 6= W[1]. Finally we believe that studying Lp-k-
Clustering with respect to the parameter D is an essential question provided the
notorious hardness of the problem. Recall that for the combination of the two other
natural parameters, the dimension d and the number of clusters k, only a O(ndk+1)
algorithm of Inaba et al. is known [118], and the hardness result by Cohen-Addad
et al. in [63] serves as a strong indication that a better algorithm might not exist.

The main algorithmic result of this chapter is the following theorem.

Theorem 5.1. Lp-k-Clustering is solvable in time 2O(D logD)(nd)O(1) for every
p ∈ (0, 1].

Thus Lp-k-Clustering when parameterized by D is fixed-parameter tractable
(FPT) for Minkowski distance distp of order 0 < p ≤ 1. In the first step of our
algorithm we use color coding to reduce solution of the problem to the Lp-Cluster
Selection problem, which we find interesting on its own. In Lp-Cluster Selec-
tion we have t groups of weighted vectors and the task is to select exactly one vector
from each group such that the weighted cost of the composite cluster is at most D.
More formally, the problem is defined as follows.
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Input: A set of m vectors X ⊂ Zd given together with a partition
X = X1 ∪ · · · ∪ Xt into t disjoint sets, a weight function w :
X → Z>0, and a nonnegative number D.

Task: Decide whether it is possible to select exactly one vector xi
from each set Xi such that the total cost of the composite
cluster formed by x1, . . . , xt is at most D:

min
c∈Rd

t∑
i=1

w(xi) · distp(xi, c) ≤ D.

Lp-Cluster Selection

The Lp-Cluster Selection problem is closely related to variants of the well-
known Consensus Pattern problem. Namely, for the Hamming distance, the def-
inition of L0-Cluster Selection nearly coincides with the Colored Consensus
Strings with Outliers problem studied in [31], only in the latter the alphabet is
assumed to be of constant size.

Informally (see Theorem 5.10 for the precise statement), our reduction shows
that if the distance norm satisfies some specific properties (which distp satisfies for
all p) and if Lp-Cluster Selection is FPT parameterized by D, then so is Lp-k-
Clustering. Therefore, in order to prove Theorem 5.1, all we need is to show that
Lp-Cluster Selection is FPT parameterized by D when p ∈ (0, 1]. This is the
most difficult part of the proof. Here we invoke the theorem of Marx [156] on the
number of subhypergraphs in hypergraphs of bounded fractional edge cover.

Superficially, the general idea of the proof of Theorem 5.1 is similar to the idea
behind the algorithm for Binary r-Means by [90]. In both cases, the classical color
coding technique of Alon et al. [10] is used as a preprocessing step. However, the
further steps in [90] strongly exploit the fact that the data is binary. As we will see
in Theorem 5.2, the existence of an FPT algorithm for L0-k-Clustering is highly
unlikely. Thus the reductions from [90] cannot be applied in our case, and we need
a new approach.

More precisely, for clustering in L0 we prove the following theorem.

Theorem 5.2. L0-k-Clustering parameterized by d + D and L0-Cluster Se-
lection parameterized by d+ t+D are W[1]-hard.

In particular, this means that up to a widely-believed assumption in complexity
that FPT 6= W[1], Theorem 5.2 rules out algorithms solving L0-k-Clustering in
time f(d,D)·nO(1) and algorithms solving L0-Cluster Selection in time g(t, d,D)·
nO(1) for any functions f(d,D) and g(t, d,D). A similar hardness result holds for the
dist∞ version.
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distp Lp-k-Clustering Lp-Cluster Selection

p = 0
W[1]-hard param. d+D [Thm 5.2]

NP-c for k = 2 [82]
W[1]-hard param. d+ t+D [Thm 5.2]

0 < p ≤ 1 2O(D logD)(nd)O(1) [Thm 5.1] 2O(D logD)(nd)O(1) [Thm 5.14]

p = 1
NP-c for k = 2 [82]
NP-c for d = 2 [157]

W[1]-hard param. t+ d [Thm 5.19]

1 < p < +∞ W[1]-hard param. t+D [Thm 5.5]

p = 2
FPT param. d+D [Thm 5.4]

NP-c for k = 2 [9]
NP-c for d = 2 [151]

FPT param. d+D [Thm 5.4]

p =∞ W[1]-hard param. D [Thm 5.3]
NP-c for k = 2 [Thm 5.29]

W[1]-hard param. t+D [Thm 5.3]

Table 5.1: Complexity of Lp-k-Clustering and Lp-Cluster Selection.

Theorem 5.3. L∞-k-Clustering parameterized by D and L∞-Cluster Selec-
tion parameterized by t+D are W[1]-hard.

This naturally brings us to the question: What happens with Lp-k-Clustering
for p ∈ (1,∞), especially for the Euclidean distance, that is, the case p = 2. Un-
fortunately, we are not able to answer this question when the parameter is D only.
However, we can prove the following.

Theorem 5.4. L2-k-Clustering and L2-Cluster Selection are FPT when pa-
rameterized by d+D.

Thus in particular, Theorem 5.4 implies that L2-k-Clustering is FPT parame-
terized by d+D. On the other hand, we prove that

Theorem 5.5. Lp-Cluster Selection is W[1]-hard for every p ∈ (1,∞) when
parameterized by t+D.

In particular, Theorem 5.5 yields that the approach we used to establish the
tractability (with parameter D) of Lp-k-Clustering for p = 1 will not work for
p > 1.

We summarize our and previously known algorithmic and hardness results for Lp-
k-Clustering and Lp-Cluster Selection with different values of p in Table 5.1.
Observe that Theorem 5.10 works also in the setting where possible cluster centers
are restricted to be from a set given in the input, and so do our algorithmic The-
orems 5.1 and 5.4 since Lp-Cluster Selection is trivially solvable in polynomial
time in this setting.

The remaining part of this chapter is organized as follows. In Section 5.1 we prove
Theorem 5.10 which provides us with FPT Turing reduction from Lp-k-Clustering
to Lp-Cluster Selection. Theorem 5.10 appears to be a handy tool to establish
tractability of Lp-k-Clustering. In Section 5.2 we collect the results on clustering
with the distance distp for p ∈ (0, 1]. In particular, in Subsection 5.2.1, we prove
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Theorem 5.1, the main algorithmic result of this work, stating that when p ∈ (0, 1],
Lp-k-Clustering and Lp-Cluster Selection admit FPT algorithms with param-
eter D. In Subsection 5.2.2 we complement the algorithmic upper bounds with lower
bounds by proving that L1-Cluster Selection is W[1]-hard when parameterized
by t + d (Theorem 5.19). In Section 5.3, we consider the case p = 0 and prove
Theorem 5.2 establishing W[1]-hardness of L0-k-Clustering and L0-Cluster Se-
lection. Section 5.4 is devoted to the case p =∞. Here we establish two hardness
results about L∞-k-Clustering: W[1]-hardness when parameterized by D and NP-
hardness in the case k = 2. In Section 5.5, we look at the case p ∈ (1,∞), with the
particular emphasis on the most classical case p = 2. We show that when d + D is
the parameter, then L2-Cluster Selection and L2-k-Clustering are FPT. We
also show that Lp-Cluster Selection is W[1]-hard when parameterized by t+D
for all p ∈ (1,∞). We conclude with open problems in Section 5.6.

5.1 From Lp-k-Clustering to Cluster Selection

In this section we present a general scheme for obtaining an FPT algorithm param-
eterized by D, which is later applied to various Lp-distances. Note that the results
of this section hold in fact for any spaces and distances. However, we state them
primarily for vectors in Zd under distp, as we aim to use the results specifically for
this case in the following sections.

First, we formalize the following intuition: there is no reason to assign equal
vectors to different clusters.

Definition 5.6 (Initial cluster and regular partition). For a multiset of vectors X,
an inclusion-wise maximal multiset I ⊂ X such that all vectors in I are equal is
called an initial cluster.

We say that a clustering {C1, . . . , Ck} of X is regular if for every initial cluster
I there is a i ∈ {1, . . . , k} such that I ⊂ Ci.

Now we prove that it suffices to look only for regular solutions.

Proposition 5.7. Let (X, k,D) be a yes-instance to Lp-k-Clustering. Then there
exists a solution for (X, k,D) which is a regular clustering.

Proof. Let us assume that the instance (X, k,D) has a solution. There are k clusters

{Ci}ki=1 and k vectors {ci}ki=1 in Rd such that
∑k
i=1

∑
x∈Ci dist(x, ci) ≤ D. Note

that for every x ∈ Cj , dist(x, cj) ≥ min1≤i≤k dist(x, ci). So if we consider a new
clustering {C ′1, . . . , C ′k} with the same centers, where C ′j are all vectors from X for
which cj is the closest center, the total distance does not increase. If we also break
ties in favor of the lower index, then for any initial cluster I the same center ci will
be the closest, and all vectors from I will end up in C ′i, so {C ′1, . . . , C ′k} is a regular
clustering.
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From now on, we consider only regular solutions.

Definition 5.8 (Simple and composite clusters). We say that a cluster C is simple
if it is an initial cluster. Otherwise, the cluster is composite.

Next we state a property of k-Clustering with a particular distance, which is
required for the algorithm. Intuitively, each unique vector adds at least some constant
to the cluster cost.

Definition 5.9 (α-property). We say that a distance has the α-property for some
α > 0 if for any s the cost of any composite cluster which consists of s initial clusters
is at least α(s− 1).

In the subsequent sections we show that the α-property holds for all the distance
measures for which we present algorithmic results. Namely, distp has the α-property
with a certain constant α for each p ∈ [0, 1]∪{2,∞}. Analogously to the case p = 2,
one can show that it holds for all other values of p between 1 and∞ as well, although
we will not require this fact for the results of this chapter.

The Lp-Cluster Selection problem defined in the introduction is a key sub-
routine in our algorithm. In some cases the problem is solvable trivially, but it
presents the main challenge for our main algorithmic result in the L1 distance. The
intuition to the weight function in the definition of Lp-Cluster Selection is that
it represents sizes of initial clusters, that is, how many equal vectors are there in each
if the initial clusters.

We also need a procedure to enumerate all values of the possible cluster costs that
are at most D, with respect to an optimally selected cluster center. It may not be
straightforward since not all distances in our consideration are integral. So for the
purpose of stating Theorem 5.10 in the general case, we assume that the set of all
possible optimal cluster costs which are less than D is also given in the input. For
the Lp-distances we consider, in the respective algorithmic theorems we show how to
provide this set without raising any additional assumptions or increasing the running
time. Now we are ready to state the result formally.

Theorem 5.10. Assume that the α-property holds, Lp-Cluster Selection is solv-
able in time Φ(m, d, t,D), where Φ is a non-decreasing function of its arguments, and
we are given the set D of all possible optimal cluster costs which are at most D. Then
Lp-k-Clustering is solvable in time

2O(D logD)(nd)O(1)|D|Φ(n, d, 2D/α,D).

Proof. By the α-property, in any solution there are at most D/α composite clusters,
since each contains at least two initial clusters. Moreover, there are at most 2D/α
initial clusters in all composite clusters.
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Thus by Proposition 5.7, solving Lp-k-Clustering is equivalent to selecting
at most T := d2D/αe initial clusters and grouping them into composite clusters
such that the total cost of these clusters is at most D. We design an algorithm
which, taking as a subroutine an algorithm for Lp-Cluster Selection, solves Lp-
k-Clustering. The algorithm is sketched in Figure 5.2, and an example is shown
in Figure 5.1.

A random coloring

Lp-Cluster Selection on and

Lp-Cluster Selection on , and

The resulting clustering

Figure 5.1: An illustration to the algorithm in Theorem 5.10. We start with a particular
random coloring and a particular partition of colors P = {P1, P2}, where P1 = { , } and
P2 = { , , }. We make two calls to Lp-Cluster Selection with respect to P1 and P2

and construct the resulting clustering. In the example, all input vectors are distinct.

To perform the selection and grouping, our algorithm uses the color coding tech-
nique of Alon, Yuster, and Zwick from [10]. Consider the input as a family of initial
clusters I. We color initial clusters from I independently and uniformly at random
by T colors 1, 2, . . . , T . Consider any solution, and the particular set of at most
T initial clusters which are included into composite clusters in this solution. These
initial clusters are colored by distinct colors with probability at least T !

TT
≥ e−T . Now

we construct an algorithm for finding a colorful solution.

We consider all possible ways to split colors between clusters (some colors may
be unused). Hence we consider all possible families P = {P1, . . . , Ph} of pairwise
disjoint non-empty subsets of {c ∈ {1, . . . , T} : there exists J ∈ I colored by c}.
Each family P corresponds to a partition of the set of colors {1, . . . , T} if we add one
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Lp-k-Clustering (X, k, D, α, D)

Input : A multiset X ⊂ Zd, a positive integer k, real nonnegative values D
and α, a set D, an algorithm A for Lp-Cluster Selection

Output: Yes or No

1 T ← d2D/αe
2 I ← initial clusters of X

3 for deT e iterations do
4 Fix a random coloring c of I with colors {1, . . . , T}
5 for valid partitions P of {1, . . . , T} do
6 for i = 1 to |P| do
7 Pi = {i1, . . . , it}
8 for j = 1 to t do
9 Xj ← ∅

10 for J ∈ I : c(J) = ij do
11 x← a point from J
12 Xj ← Xj ∪ {x}
13 w(x)← |J |
14 di ← D + 1
15 foreach d ∈ D do
16 if A(X1, . . . , Xt, w, d) then
17 di ← d
18 BREAK

19 if
∑t
i=1 di ≤ D then

20 Yes, STOP

21 No, STOP

Figure 5.2: Lp-k-Clustering algorithm from Theorem 5.10

fictitious subset for colors which are not used in the composite clusters. The total
number of partitions does not exceed TT = 2O(D logD).

When partition P is fixed, we form clusters by solving instances of Lp-Cluster
Selection: For each i ∈ {1, . . . , h}, we take initial clusters colored by elements of
Pi, bundle together those with the same color, and pass the resulting family to the
Lp-Cluster Selection algorithm. First note that there cannot be P ∈ P of size at
most one, since then Lp-Cluster Selection has to make a simple cluster while we
assume that all clusters obtained from P are composite. Second, the total number
of clusters has to be k, the number of clusters is |I| −

∑
P∈P |P | + |P|. For each P

we check that both conditions hold, and if not, we discard the choice of P and move
to the next one, before calling the Lp-Cluster Selection subroutine.

Next, we formalize how we call the Lp-Cluster Selection algorithm. We fix
the set of colors Pi = {c1, . . . , ct}, then take the sets Ij = {J ∈ I : J is colored by cj}
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for j ∈ {1, . . . , t}. We turn each set of initial clusters Ij into a set of weighted vectors
Xj naturally: For each J ∈ Ij , we put one vector x ∈ J into Xj , and w(x) := |J |.
The family of sets of vectors X1, . . . , Xt and the weight function w are the input
for Lp-Cluster Selection. Then we search for the minimum cluster cost bound
di ≤ D from D, for which the instance (X1, . . . , Xt, di) of Lp-Cluster Selection
is a yes-instance, running each time the algorithm for Lp-Cluster Selection.

If for some i setting di to D leads to a no-instance, or if
∑h
i=1 di > D, then we

discard the choice of the partition P and move to the next one. Otherwise, we report
that Lp-k-Clustering has a solution and stop. Next, we prove that in this case the
solution indeed exists.

We reconstruct the solution to Lp-k-Clustering as follows: For each i ∈ {1, . . . , h}
the corresponding to Pi = {c1, . . . , ct} instance of Lp-Cluster Selection has a so-
lution {x1, . . . ,xt}. For each j ∈ {1, . . . , t}, consider the corresponding initial cluster
Jj consisting of w(xj) vectors equal to xj . For each i ∈ {1, . . . , h} we obtain a com-

posite cluster ∪tj=1Jj , all other clusters are simple. So the total cost is
∑h
i=1 di, which

is at most D. Thus, if the algorithm finds a solution, then (X, d,D) is a yes-instance.

In the opposite direction. If there is a solution to Lp-k-Clustering, then there
is a regular solution, and with probability at least e−T initial clusters which are parts
of composite clusters in this solution are colored by distinct colors. Then, there is
a partition P = {P1, . . . , Ph} which corresponds to this solution. This partition is
obtained as follows: put into P1 colors from the first composite cluster, into P2 from
the second and so on. At some point our algorithm checks the partition P, and as
it finds the optimal cost value for each cluster, then it is at most the cost of the
corresponding cluster of the solution from which we started.

To analyze the running time, we consider 2O(D logD) partitions P, for each P we
|P| = O(D) times search for optimal di. And for each of |D| possible values 1 of
di we make one call to the Lp-Cluster Selection algorithm, which takes time at
most Φ(n, d, T,D).

To amplify the error probability to be at most 1/e, we do N = deT e iterations
of the algorithm, each time with a new random coloring. As each iteration succeeds
with probability at least e−T , the probability of not finding a colorful solution after N

iterations is at most (1− e−T )e
T ≤ e−1 < 1. So the total running time is 2O(D logD) ·

(nd)O(1)|D|Φ(n, d, 2D/α,D).

The algorithm could be derandomized by the standard derandomization technique
using perfect hash families [10, 162]. So Lp-k-Clustering is solvable in the same
deterministic time.

1We could also binary search for the optimal di ∈ D instead, thus replacing |D| by log |D| in the
running time. However, for all choices of D we consider this does not make a difference.
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5.2 Algorithms and Lower Bounds for p ∈ (0, 1]

The main motivation for the results in this section is the study of k-Clustering
with the L1 distance, the natural variant of Euclidean k-Median with the recti-
linear/Manhattan distance. However, our main algorithmic result also extends to
distances of order p ∈ (0, 1) since in some sense they behave similarly to the L1

distance.

5.2.1 FPT Parameterized by D

In this subsection, we prove Theorem 5.1: when p ∈ (0, 1], Lp-k-Clustering admits
an FPT algorithm with parameter D. First we state basic geometrical observations
for cases p = 1 and p ∈ (0, 1), Then we propose a general algorithm for Lp-Cluster
Selection which relies only on these properties. Finally, we show how Theorem
5.10 could be applied.

The next two claims deal with the structure of optimal cluster centers. We state
and prove them in the case of weighted vectors where each vector has a positive
integer weight given by a weight function w. The unweighted case is just a special
case when the weight of each vector is one.

First, we show that coordinates of cluster centers could always be selected among
the values present in the input, which helps greatly in enumerating cluster centers
that may be optimal.

Claim 5.11. Assume p ∈ (0, 1], let C = {x1, . . . ,xt} be a cluster and w : {x1, · · · ,xt} →
Z>0 be a weight function. There is an optimal (subject to the weighted distance
w(xi) · distp(xi, c)) center c for the cluster C such that for each i ∈ {1, . . . , d}, the
i-th coordinate c[i] of the center c is from the values present in the input in this
coordinate, that is c[i] ∈ {x1[i], . . . ,xt[i]}. Moreover, for p = 1 we may assume that
the optimal value is a weighted median of the values present in the i-th coordinate.

Proof. For cluster C, consider the corresponding multiset of unweighted vectors C ′ =
{x1, . . . ,xt}, where each vector x ∈ C is repeated w(x) times. We define yj = xj [i]
for j ∈ {1, . . . , t}. Assume that y1 ≤ y2 ≤ · · · ≤ yt. Let us consider an optimal
cluster center c for C and denote z = c[i]. Figure 5.3 shows how the cluster cost
behaves with respect to z on a concrete set of values {yi} for p = 1 and p = 1/2.

For the formal proof, we start with the case p = 1. The total cost of C contributed
by the i-the coordinate is

|y1 − z|+ |y2 − z|+ · · ·+ |yt − z|.

If z ∈ (yi, yi+1) for i ∈ {1, . . . , t− 1}, then the derivative with respect to z is

((z − y1) + · · ·+ (z − yi) + (yi+1 − z) + · · ·+ (yt − z))′ = i− (t− i).
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|z − 6|1/2 + |z − 8|1/2

Figure 5.3: Graphs of cluster cost over different values of z: dist1 in the left plot, dist1/2 in
the right plot. The set of coordinate values is given as y1 = 2, y2 = 3, y3 = 6, y4 = 8.

Analogously, when z = yi for i ∈ {1, . . . , t}, the derivative is i − 1 − (t − i). When
z < y1 the derivative is −t, and when z > yt the derivative is t. So if t is odd, then
the derivative is zero at ydt/2e, strictly negative before and strictly positive after, so
ydt/2e, which is the only median, is the optimal value for z. If t is even, then the
derivative is zero on [yt/2, yt/2+1], strictly negative before and strictly positive after.
So any value from [yt/2, yt/2+1] is optimal, and we may assume that it is one of the
two medians yt/2, yt/2+1.

Now to the case p ∈ (0, 1), the contribution of the coordinate i is

|y1 − z|p + |y2 − z|p + · · ·+ |yt − z|p.

When z is between yi and yi+1, then the derivative of the above with respect to z is
equal to

p ·
(
(z − y1)p−1 + · · ·+ (z − yi)p−1 − (yi+1 − z)p−1 − · · · − (yt − z)p−1

)
.

It is monotone on (yi, yi+1): when z increases, the sum decreases, as terms of the form
(z − yj)p−1 decrease and terms of the form (yj − z)p−1 increase, because p− 1 < 0.
Thus, the optimal value on this interval is achieved at one of its ends. Doing the same
for all intervals, we conclude that the optimal value for z must be in {y1, . . . , yt}.

In particular, by Claim 5.11 we may assume that the coordinates of optimal
cluster centers are integers. Then, the α-property holds with α = 1 since at most one
of the initial clusters could have distance zero to the cluster center, and all others
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have distance at least one since the cluster center is integral. Namely, let x be a
vector in the cluster, and c be the cluster center, if x 6= c, then there is a coordinate
j where x and c differ, and since they are both integral, |x[j]− c[j]| ≥ 1, and

distp(x, c) =

d∑
i=1

|x[i]− c[i]|p ≥ |x[j]− c[j]|p ≥ 1p = 1.

In what follows, the expression half of vectors by weight means that the total
weight of the corresponding set of vectors is at least half of the total weight of C.

Claim 5.12. If at least half of the vectors by weight in the cluster C have the same
value z in some coordinate i, then the optimal cluster center is also equal to z in this
coordinate.

Proof. Let S be the weight-respecting multiset of values which vectors from C have in
the i-th coordinate: S = {x[i] : x ∈ C,w(x) times}. Consider the difference between
selecting z and some other value z′ as the i-th coordinate of the center:∑

y∈S
|y − z|p −

∑
y∈S
|y − z′|p ≤

∑
y∈S,y 6=z

(|y − z|p − |y − z′|p − |z − z′|p).

The inequality holds since at least half of the elements of S are equal to z, and so
for any value y 6= z there is a term |z − z′|p in

∑
y∈S |y − z′|p corresponding to one

of the values from S equal to z. The last sum is non-positive because in every term

|y − z|p ≤ |y − z′|p + |z − z′|p,

as p ∈ (0, 1]. This concludes the proof.

In order to apply Theorem 5.10, we need an FPT algorithm for Lp-Cluster
Selection. Before obtaining it, we state some properties of hypergraphs, which we
need for the algorithm. Intuitively, our algorithm reduces selecting a center in a Lp-
Cluster Selection instance to finding a subhypergraph with certain properties.

A hypergraph G is a set of vertices V (G) and a collection of hyperedges E(G),
each hyperedge is a subset of V (G). If G and H are hypergraphs, we say that H
appears at V ′ ⊂ V (G) as a subhypergraph if there is a bijection π : V (H)→ V ′ with
a property that for any E ∈ E(H) there is E′ ∈ E(G) such that π(E) = E′ ∩ V ′.
Here we consider that the action of π is extended to subsets of V (H) in a natural
way, π(E) = {π(v)}v∈E for E ⊂ V (H).

A fractional edge cover of a hypergraph H is an assignment ψ : E(H) → [0, 1]
such that for every v ∈ V (H),

∑
E∈E(H):v∈E ψ(E) ≥ 1. The fractional cover number

ρ∗(H) is the minimum of
∑
E∈E(H) ψ(E) taken over all fractional edge covers ψ.

We need the following result of Marx [156] about finding occurrences of one hy-
pergraph in another.
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Theorem 5.13 ([156]). Let H be a hypergraph with fractional cover number ρ∗(H),
and let G be a hypergraph where each hyperedge has size at most `. There is an
algorithm that enumerates in time |V (H)|O(|V (H)|) · `|V (H)|ρ∗(H)+1 · |E(G)|ρ∗(H)+1 ·
|V (G)|2 every subset V ′ ⊂ V (G) where H appears in G as a subhypergraph.

We are ready to proceed with the proof that Lp-Cluster Selection with p ∈
(0, 1] is FPT when parameterized by D.

Theorem 5.14. For every p ∈ (0, 1], Lp-Cluster Selection is solvable in time
2O(D logD)(md)O(1).

Proof. First we check if any of the given vectors could be the center of the resulting
composite cluster. When the center is fixed, we find the optimal solution in poly-
nomial time by just selecting the cheapest vector with respect to this center from
each set. If at some point we find a suitable center, then we return that the solution
exists. If not, we may assume that the center is not equal to any of the given vectors.
As a consequence, any vector x selected into the solution cluster contributes at least
w(x) to the total distance, since the center must be integral by Claim 5.11. So we
may now consider only vectors of weight at most D and, moreover, the total weight
of the resulting cluster is at most D.

Consider a resulting cluster C with the center c. There is some x1 in C from
X1, and distp(x1, c) ≤ D. So if we try all possible x1 from X1 (there are at most
m of them), any feasible center is at distance at most D from at least one of them.
Since x1 and c are integral, they could be different in at most D coordinates, as
distp(x1, c) =

∑d
i=1 |x1[i]− c[i]|p ≤ D.

We try all possible x1 ∈ X1. After x1 is fixed, we enumerate all subsets P of
coordinates {1, . . . , d} where x1 and c could differ, we show how to do it efficiently
afterwards. When the subset of coordinates P is fixed, we consider all possible
centers, which are integral, equal to x1 in all coordinates except P , and differ from
x1 by at most D1/p in each of coordinates from P . If |x1[i∗] − c[i∗]| > D1/p for

some coordinate i∗, then distp(x1, c) =
∑d
i=1 |x1[i]− c[i]|p ≥ |x1[i∗]− c[i∗]|p > D, so

c cannot be a center. With restrictions stated above, there are at most 2O(D logD)

possible centers.
It remains to show that we could enumerate all possible coordinate subsets effi-

ciently. We reduce this task to the task of finding a specific subhypergraph and then
apply Theorem 5.13.

Claim 5.15. There are 2O(D logD) coordinate subsets where x1 and an optimal cluster
center c could differ. There exists an algorithm which enumerates all of them in time
2O(D logD)(md)O(1).

Proof. LetG be a hypergraph with V (G) = {1, . . . , d}, one vertex for each coordinate,
and for each vector x in ∪tj=1Xj we take w(x) multiple hyperedges Ex which contains
exactly the coordinates where x and x1 differ. We add an edge only if there are at
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D = 2

v 1 2 3 4 5
x1 0 2 1 3 2
x2 0 1 1 3 1
x3 1 2 1 3 1
x4 0 2 2 3 2
x5 0 2 2 3 1

c 0 2 2 3 2

1

2

3

45

x2

x3
x5

x4

Figure 5.4: An illustration of the hypergraph construction in Claim 5.15. On the left, the
vector x1 and other input vectors x2, . . . , x5 are given. On the right, the corresponding
hypergraph G. The solution is marked in red on both sides: on the left, the resulting
cluster {x1,x4,x5} of cost 2; on the right, the corresponding to {x1,x4,x5} subhypergraph
H. Note that in H the hyperedge x5 is restricted to the only vertex 3, so its size is one.

most D such coordinates, otherwise x can not be in the same cluster as x1. So
hyperedges in G are of size at most D. Since we consider only vectors of weight at
most D, |E(G)| ≤ Dm.

For a solution, let xj be the vector selected from the corresponding Xj , for j ∈
{1, . . . , t}, C = {x1, . . . ,xt} be the solution cluster and c be the center. All vectors
in C are identical in all coordinates except at most D, since if there are different
values in at least D + 1 coordinates, the cost is at least D + 1. Denote this subset
of coordinates as Q, c could also differ from x1 only at Q. Denote the subset of
coordinates where c differs from x1 as P , P ⊂ Q and so |P | ≤ D. The solution
(C, c) induces a subhypergraph H of G in the following way. Leave only hyperedges
corresponding to the vectors in C, and restrict them to vertices in P . There are at
most D vertices and at most D hyperedges in H, since the total weight is at most D.
An example of the correspondence between input vectors and hypergraphs is given
in Figure 5.4.

The next claim shows that the fractional cover number of H is bounded by a
constant.

Claim 5.16. Each vertex in H is covered by at least half of the hyperedges of H,
and ρ∗(H) ≤ 2.

Proof. Consider a vertex p ∈ P , and assume that less than half of the hyperedges
cover p. It means that in the p-th coordinate the center c differs from x1, but less than
half of the vectors in C by weight differ from x1 in this coordinate. This contradicts
Claim 5.12.

So each vertex is covered by at least half of the hyperedges, and setting ψ ≡ 2
|E(H)|

leads to ρ∗(H) ≤ 2.
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In order to enumerate all possible subsets of coordinates P , we try all hypergraphs
H with at most D vertices and at most D hyperedges, and if each vertex is covered
by at least half of the hyperedges, we find all places where H appears in G by
Theorem 5.13. The last step is done in 2O(D logD) · (md)O(1) time. However, the

number of possible H could be up to 2Ω(D2). The following claim, which is analogous
to Proposition 6.3 in [156], shows that we could consider only hypergraphs with a
logarithmic number of hyperedges.

Claim 5.17. If D ≥ 2, it is possible to delete all except at most 160 lnD hyperedges
from H so that in the resulting hypergraph H∗ each vertex is covered by at least 1/4
of the hyperedges, and ρ∗(H∗) ≤ 4.

Proof. Denote s = |E(H)|, construct a new hypergraph H∗ on the same vertex set
V (H) by independently selecting each hyperedge of H with probability (120 lnD)/s.
Applying Proposition 11.14 with β = 1/3, probability of selecting more than 160 lnD
hyperedges is at most exp((−120 lnD)/27) < 1/D2. By Claim 5.16, each vertex v of
H is covered by at least s/2 hyperedges, and the expected number of hyperedges cov-
ering v in H∗ is at least 60 lnD. By Proposition 11.14 with β = 1/3, the probability
that v is covered by less than 40 lnD hyperedges in H∗ is at most exp(−60 lnD/18) ≤
1/D3. By the union bound, with probability at least 1 − 1/D2 − D · 1/D3 > 0 we
select at most 160 lnD hyperedges and each vertex is covered by at least 40 lnD
hyperedges. So the claim holds, and ρ∗(H∗) ≤ 4 by setting ψ ≡ 4

|E(H∗)| .

Thus, if there is a subhypergraph H in G corresponding to a solution, then there
is also a subhypergraph H∗ in G appearing at the same subset of V (G) with at
most 160 lnD hyperedges and where each vertex is covered by at least 1/4 of the
hyperedges. Since we only need to enumerate possible coordinate subsets, in our
algorithm we try all hypergraphs of this form and apply Theorem 5.13 for each
of them. Since there are at most 2O(D logD) hypergraphs with at most 160 lnD
hyperedges and since the fractional cover number is still bounded by a constant, the
total running time is 2O(D logD) · (md)O(1), as desired.

With Claim 5.15 proven, the proof of the theorem is complete. The pseudocode
given in Figure 5.5 summarizes the main steps of the algorithm.

Combining Theorem 5.10 and Theorem 5.14, we obtain an FPT algorithm for
Lp-k-Clustering. This proves Theorem 5.1, which we recall here.

Theorem 5.1. Lp-k-Clustering is solvable in time 2O(D logD)(nd)O(1) for every
p ∈ (0, 1].

Proof. We have an algorithm for Lp-Cluster Selection whose running time is
specified by Theorem 5.14. By Claim 5.11, the α-property holds. The only missing
part is to describe the way of producing the set D of all possible cluster costs which
are at most D.



68 5 | Parameterized Lp-k-Clustering

Lp-Cluster Selection (X1, . . . , Xt, w, D)
Input : Sets of vectors X1, . . . , Xt, a weight function w, a nonnegative

integer D
Output: Yes or No

1 for vector c in the input do

2 if
∑t
i=1 minxi∈Xi w(xi) distp(xi, c) ≤ D then

3 Yes, STOP

4 for x1 ∈ X1 do
5 G← hypergraph with V (G) = {1, . . . , d}, E(G) =

{positions where x1 and x differ : x ∈ ∪tj=1Xj , w(x) times}
6 for hypergraph H with at most D vertices and at most 160 lnD

hyperedges do
7 if each vertex of H is covered by at least 1/4 of its hyperedges then
8 for place P where H appears in G as subhypergraph do
9 for integer vector c which differs from x1 only at P by at most

D1/p do

10 if
∑t
i=1 minxi∈Xi w(xi) distp(xi, c) ≤ D then

11 Yes, STOP

12 No, STOP

Figure 5.5: Lp-Cluster Selection algorithm from Theorem 5.14

In the case p = 1 all distances are integral since optimal centers have integral
coordinates by Claim 5.11, and we can take D = {0, . . . , D}.

For the general case, let B = {bp : b ∈ {1, . . . , dD1/pe}}. Consider a cluster
C = {x1, . . . ,xt} and the corresponding optimal cluster center c. For any xj ∈ C,

distp(xj , c) =
∑d
i=1 |xj [i]− c[i]|p is a combination of elements of B with nonnegative

integer coefficients. This is because xj and c are integral and the cluster cost is at
most D, hence |xj [i] − c[i]| ≤ D1/p for each i ∈ {1, . . . , d}. Since weights are also
integral, the whole cluster cost is a combination of distances between cluster vectors
and the center with nonnegative integer coefficients, and so also a combination of
elements of B with nonnegative integer coefficients. This means that we can take

D =

{∑
b∈B

ab · b : ab ∈ Z,ab ≥ 0,
∑
b∈B

ab ≤ D

}
,

where a is a vector indexed by the set B. The sum of coefficients ab is at most D
since all elements of B are at least 1. The size of D is at most |B|D = 2O(D logD).

Another widely studied version of k-Clustering is where the centers ci could
be selected only among the set of given vectors, this version is usually referred to as
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discrete k-Clustering. Naturally, Theorem 5.1 also holds in this setting since Lp-
Cluster Selection is then trivially solvable in polynomial time. As was observed
in the proof of Theorem 5.14, if the cluster center is fixed, we can pick the cheapest
vector from each of the sets given to a Lp-Cluster Selection algorithm, and there
are now only polynomially many candidates for the cluster center.

Note that Claim 5.11 and Claim 5.12 do not hold in the case 1 < p <∞, and our
algorithm relies heavily on the structure provided by these claims. Therefore, it does
not seem that the algorithm could be extended to the case 1 < p <∞. Moreover, in
Theorem 5.5 we formally prove that Lp-Cluster Selection parameterized by D
is W[1]-hard for 1 < p <∞.

In the cases p = 0 and p = ∞ there are different obstacles for the algorithm
above. In L0-Cluster Selection, even knowing the center that differs in at most k
positions from an optimal one, is not enough, as any distinct value in the coordinate
would incur the same cost of one. For p = ∞, it simply does not hold that the
number of coordinates where points and the center can differ is small: any number
of coordinates might differ as long as the absolute difference is at most D. To
formalize this intuition we later prove Theorem 5.2 and Theorem 5.3, showing that
Lp-k-Clustering parameterized by D is W[1]-hard for both p = 0 and p =∞.

5.2.2 W[1]-hardness Parameterized by t+ d for L1

In this subsection, we restrict our attention to the p = 1 case. What happens when
D is not bounded, but the dimension d and the number of clusters k are parameters?
There is a trivial XP-algorithm in time nO(kd), as by Claim 5.11 it suffices to try all
possible combinations of the values present in coordinates as possible cluster centers.
There are at most n distinct values in each coordinate, so at most nd candidates for
a cluster center. After the cluster centers are fixed, each vector goes to the cluster
with the closest center. The next observation is the result of this discussion.

Observation 5.18. L1-k-Clustering is solvable in time nO(kd).

We do not know of a lower bound for L1-k-Clustering complementing Obser-
vation 5.18. However, we are able to show the hardness of L1-Cluster Selection
with respect to the dimension.

Theorem 5.19. L1-Cluster Selection is W[1]-hard when parameterized by t+d.

Proof. We construct a reduction from Multicolored Clique with the input G and
k. We set d to k, for each pair of colors 1 ≤ i < j ≤ k and each e = {u, v} between
a vertex u of color i and a vertex v of color j we add a vector xe to the set Xi,j ,
such that xe[i] = u, xe[j] = v and all other coordinates are set to zero, and a vector
ye to the set Yi,j which is the same as xe, only coordinates other that i and j are
set to |V (G)| + 1. We will refer to 0 and |V (G)| + 1 as boundary values. The sets
Xi,j and Yi,j are the input to L1-Cluster Selection, so t is 2

(
k
2

)
, and we set D to
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1

2

3

4

X1,2
1 2 0
1 3 0

X2,3 0 2 4

X1,3 1 0 4

Y1,2
1 2 5
1 3 5

Y2,3 5 2 4

Y1,3 1 5 4

x12 1 2 0
x24 0 2 4
x14 1 0 4
y12 1 2 5
y24 5 2 4
y14 1 5 4

c 1 2 4

Figure 5.6: An example illustrating the reduction in Theorem 5.19: an input graph G with
vertices colored in three colors, the sets of vectors produced by the reduction, and the
resulting optimal cluster, corresponding to the clique on {1, 2, 4}.

k(|V (G)| + 1)
(
k−1

2

)
. Intuitively, the set Xi,j corresponds to the choice of the clique

edge between i-th and j-th color, and Yi,j mirrors it. All vectors have weight one.
An example is given in Figure 5.6.

Note that in any feasible cluster, each coordinate i has exactly 2(k− 1) values in
[1, |V (G)|], one from each of the sets Xi,j and Yi,j for j 6= i. Out of all 2(

(
k
2

)
−k+1) =

2
(
k−1

2

)
other values, exactly half are zero and half are |V (G)| + 1. So the median

is always in [1, |V (G)|], and the boundary values in each column contribute exactly
(|V (G)|+ 1)

(
k−1

2

)
to the total distance.

Assume there is a colorful k-clique in G, with vertices v1, v2, . . . , vk. We form the
resulting cluster by choosing the vector corresponding to the clique’s edge between
its i-th and j-th vertices from Xi,j , and also from Yi,j , for all 1 ≤ i < j ≤ k. For
this cluster, in the i-th coordinate we have all non-boundary values equal to vi. So
the median is also vi, and the total distance is D, since non-boundary values do not
contribute anything.

In the other direction, if we are able to select a cluster of cost exactly D, then all
non-boundary values in each coordinate must be equal, denote this common value
in the i-th coordinate as vi. We claim that vertices v1, v2, . . . , vk form a colorful
clique in G. Indeed, since we have 2(k − 1) times vi in the i-th column, then we
have (k − 1) of them from the sets Xi,j , one from each, and in the j-th column the
only non-boundary value is vj . So vi must have an edge to each vj for j 6= i. By
construction, vertices in the i-th coordinate are of color i.

5.3 The L0 Distance

In this section, we consider the case of the dist0 distance. It is a natural measure of
difference to consider since observation parameters are often incomparable, and we
very well may be interested in counting only the number of different entries. From
another point of view, the L0 distance gives the k-Clustering problem a more
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combinatorial flavor, since the input vectors could be viewed as strings and we are
interested about how close they are according to the Hamming distance. However, in
comparison to a number of problems on strings, the size of the alphabet is unbounded.

First, note that there is a simple rule for finding the optimal cluster center for a
given cluster.

Observation 5.20. For a given cluster C, the coordinates of the optimal cluster
center c could be set as

c[i] = the most frequent element of the multiset {x[i]}x∈C , 1 ≤ i ≤ d,

breaking ties in favor of the lowest values.

By Observation 5.20, we may assume that optimal cluster centers could never
have values not present in the input, and in particular that they are integral.

We prove W[1]-hardness of L0-k-Clustering by showing a reduction from Clique.
The reduction also shows hardness of L0-Cluster Selection.

Note that when d is fixed, we could apply Theorem 5.10 to obtain an FPT al-
gorithm: L0-Cluster Selection can be solved trivially by trying every present
value in each coordinate as a value for the center, there are only nd variants. The
α-property holds for L0 distance with α = 1 since at most one initial cluster could
coincide with the cluster center, and all others have distance at least one. We state
this formally in the next observation.

Observation 5.21. L0-Cluster Selection is solvable in time nO(d), and L0-k-
Clustering is solvable in time 2O(D logD)nO(d).

Next we restate and prove Theorem 5.2. Note that Theorem 5.2 essentially com-
plements the trivial algorithms given by Observation 5.21.

Theorem 5.2. L0-k-Clustering parameterized by d + D and L0-Cluster Se-
lection parameterized by d+ t+D are W[1]-hard.

Proof. First we show how to obtain an FPT reduction from Clique parameterized
by the clique size to L0-k-Clustering.

Given an instance (G, k) of Clique, for each pair of indices {i, j}, 1 ≤ i < j ≤ k,
we make |E(G)| vectors in Zk, assume k ≥ 3. For each e = {u, v} ∈ E(G), we add a
vector xi,j,e: two coordinates are set to vertex values, xi,j,e[i] = u, xi,j,e[j] = v, and
in all other coordinates xi,j,e is set to the special padding value ci,j,e = |V (G)|+ (k ·
i+ j) · |E(G)|+ e. In total, there are n =

(
k
2

)
|E(G)| vectors and |V (G)|+

(
k
2

)
|E(G)|

different values, since there are |V (G)| vertex values, all padding values are distinct
from vertex values and from each other.

Finally, we set k′ = n−
(
k
2

)
+ 1 and D =

(
k
2

)
(k− 2). An example of the reduction

is shown in Figure 5.7.
Now we prove that the original instance has a k-clique iff the transformed instance

has a k′-clustering of cost at most D.
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1

2

3

4

x1,2,·

1 2 ·
1 3 ·
1 4 ·
2 4 ·

x1,3,·

1 · 2
1 · 3
1 · 4
2 · 4

x2,3,·

· 1 2
· 1 3
· 1 4
· 2 4

x1,2,12 1 2 ·
x1,3,14 1 · 4
x2,3,24 · 2 4

c 1 2 4

Figure 5.7: An example illustrating the reduction in Theorem 5.2: an input graph G, the
vectors produced by the reduction (for clarity, they are separated over corresponding pairs
{i, j}, and padding values are replaced by dots), and the only composite cluster in the
resulting optimal clustering of cost 3, corresponding to the clique on {1, 2, 4}.

If there is a k-clique, there is a clustering with cost D: we take one nontrivial
cluster of size

(
k
2

)
and all other clusters are of size 1. Let v1,..., vk be the vertices

of the clique, for each {i, j}, 1 ≤ i < j ≤ k we take xi,j,{vi,vj} into the cluster. The
cluster center is (v1, ..., vk), each vector in the cluster has distance to the center of
exactly (k − 2).

Now to the opposite direction. Assume that there is a clustering of cost at most
D, and there are t composite clusters: C1, ..., Ct. In each cluster and each coordinate,
by Observation 5.20 we may assume that we select the most frequent vertex there as
the value of the center, since all padding values are distinct. If there are no vertex
values in this cluster in this coordinate, we may assume that we select any of the
occurring padding values. For a cluster C, denote the number of vertex-containing
coordinates as β(C), and the total number of vertex-valued entries which do not
match with the center value in the corresponding coordinate as γ(C). We could
write the total cost of the clustering as

t∑
i=1

(|Ci|(k − 2)− (k − β(Ci)) + γ(Ci)) .

That holds since in each cluster Ci each of the |Ci|(k − 2) padding values is not
matched with the cluster center and increases the total distance by one, except for
the (k − β(Ci)) vertex-free coordinates, where exactly one of the padding values
is selected as the value of the center. Also each vertex-valued entry which is not
matched with the center increases the total distance by one, there are γ(Ci) of them.

There are n−
(
k
2

)
+ 1 clusters in total, n−

(
k
2

)
+ 1− t of them are simple. We may

assume that in the optimal clustering there are no empty clusters, since we could
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always move a vector from a composite cluster to an empty one without increasing
the cost. So there are n − (n −

(
k
2

)
+ 1 − t) = t +

(
k
2

)
− 1 vectors in the composite

clusters, which is equal to
∑t
i=1 |Ci|. We could rewrite the total cost as

(t+

(
k

2

)
−1)(k−2)−tk+

t∑
i=1

(β(Ci)+γ(Ci)) =

(
k

2

)
(k−2)−(k−2)+

t∑
i=1

(β(Ci)−2+γ(Ci)).

Now we show that for any clustering the value
∑t
i=1(β(Ci)−2+γ(Ci)) is at least

(k − 2), and it is equal to (k − 2) only in the k-clique clustering. It suffices to prove
the following lemma.

Lemma 5.22. For any cluster C such that 2 ≤ |C| ≤
(
k
2

)
, β(C)−2+γ(C)

|C|−1 ≥ κ, where

κ = k−2

(k2)−1
= 2

k+1 , and the equality holds only when C is a k-clique.

The lemma implies

t∑
i=1

(β(Ci)− 2 + γ(Ci)) =

t∑
i=1

β(Ci)− 2 + γ(Ci)

|Ci| − 1
(|Ci| − 1)

≥ κ
t∑
i=1

(|Ci| − 1) = κ

((
k

2

)
− 1

)
= k − 2,

and also that the equality holds only when each term is equal to κ, so each Ci is a
k-clique, but then t = 1 since

∑t
i=1(|Ci|−1) =

(
k
2

)
−1. So G must contain a k-clique

if there is a clustering of cost at most D, and the reduction is correct. Note that
none of the Ci could have size larger than

(
k
2

)
since there are n−

(
k
2

)
+ 1 clusters in

total.

Proof of Lemma 5.22. First, we consider the case γ(C) = 0, so in each coordinate all
vertex values are equal.

Claim 5.23. If C is a cluster of vectors obtained by applying the reduction described
in the proof of Theorem 5.2 to any graph H, γ(C) = 0, and

(
`
2

)
< |C|, then β(C) ≥

`+ 1.

Proof. The proof is by induction on `. The base is ` = 1, and each non-empty cluster
contains at least one vector and so at least 2 coordinates with vertices, we assume(

1
2

)
= 0.
For the general case, if there are at least ` occurrences of a vertex v in a coordinate

i, then there are at least (` + 1) coordinates with vertices. Each vector with v in
the i-th coordinate has also some other vertex in some other coordinate. As in each
coordinate all vertex values are equal, it could not be that two of the vectors with
the value v in the i-th coordinate share the second vertex-valued coordinate, since
then they would represent the same edge.
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So each coordinate has at most (` − 1) vertex occurrences, otherwise the claim
holds. Select a coordinate j which contains some vertex value u and remove the
j-th coordinate and all vectors which have the value u in the j-th coordinate. That
corresponds to the natural restriction C ′ of the cluster C to a subgraph H − u. The
size of C ′ is at least

(
`
2

)
+ 1− (`− 1) =

(
`−1

2

)
+ 1, and by induction there are at least

` coordinates which contain vertex values, so the original cluster C has at least `+ 1
such coordinates, since there is also the j-th coordinate with the vertex value u.

Now consider a cluster C with γ(C) = 0. Let ` be the largest value with
(
`
2

)
+1 ≤

|C|, so |C| ≤
(
`+1

2

)
. Since |C| ≤

(
k
2

)
, `+ 1 ≤ k. By Claim 5.23, β(C) ≥ `+ 1, then

β(C)− 2

|C| − 1
≥ `− 1(

`+1
2

)
− 1

=
2

`+ 2
≥ 2

k + 1
= κ,

and so if `+ 1 < k, the inequality is strict. It is also strict if `+ 1 = k and |C| <
(
k
2

)
,

as the denominator becomes larger in the first step. Thus the only possibility of
getting exactly κ is when |C| =

(
k
2

)
.

But then we have exactly k · (k− 1) vertex values across k coordinates, and each
coordinate has at most (k− 1) vertex values by the argument in Claim 5.23, so each
coordinate must have exactly (k − 1) vertex values. Since γ(C) = 0, they must
be all equal. Denote the common vertex value in the i-th coordinate as vi. Since
each occurrence of vi in the i-th coordinate corresponds to an edge to a different vj ,
vertices v1, . . . , vk form a clique in G.

In the case γ(C) > 0, consider a new cluster C ′ which is obtained from C by
removing all vectors which have a vertex-valued entry not equal to the center value.

Assume for now that |C ′| ≥ 2. By the proof above, β(C′)−2
|C′|−1 ≥ κ, since γ(C ′) = 0. The

value β(C)−2+γ(C)
|C|−1 could be obtained from β(C′)−2

|C′|−1 by adding γ(C) + (β(C)− β(C ′)

to the numerator and |C| − |C ′| to the denominator. Removing vectors could not
increase β, so β(C) − β(C ′) ≥ 0, and γ(C) ≥ |C| − |C ′| since each of the removed

vectors has at least one vertex value not equal to the center value. If β(C′)−2
|C′|−1 ≥ 1,

then the new fraction is also at least 1 and so strictly greater than κ. If |C ′| ≤ 1,

then β(C)−2+γ(C)
|C|−1 ≥ 1 since β(C) ≥ 2 and γ(C) ≥ |C| − |C ′|. If β(C′)−2

|C′|−1 < 1, then

the new fraction became strictly larger, and so strictly larger than κ. In all cases,
the inequality is strict when γ(C) > 0.

Now to L0-Cluster Selection: the reduction is almost the same, only we start
from Multicolored Clique, and for each pair of indices {i, j}, 1 ≤ i < j ≤ k we
obtain the set of vectors Xi,j from edges in G starting in color i and ending in color
j. The vectors are constructed in the same way as in the previous reduction. All
weights are set to one. The value of D is the same, D =

(
k
2

)
(k − 2).

Since vectors are constructed in the same way, all statements about the cost of
grouping them remain valid, in particular Lemma 5.22. Only now the statement of
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L0-Cluster Selection already guarantees that we select exactly one cluster and
exactly one vector from each Xi,j , so exactly one edge between each pair of colors.
And by Lemma 5.22 only the proper k-clique has the optimal cost.

Note that L0-Cluster Selection is very similar to the known problem Con-
sensus String With Outliers, studied e.g. in [32]. The only difference of Clus-
ter Selection [0] is that we have to select one point from each of the given sets,
whereas in Consensus String With Outliers the goal is to select the arbitrary
subset of size (n− k). The construction from Theorem 5.2 also shows W[1]-hardness
of Consensus String With Outliers with respect to (d+D+n− k) in the case
of unbounded alphabet.

5.4 The L∞ Distance

In this section, we consider the case p = ∞. We prove two hardness results for
L∞-k-Clustering: W[1]-hardness when parameterized by D and NP-hardness in
the case k = 2.

First, we prove some useful facts about the structure of optimal cluster centers.
The one thing, in which the L∞ distance is harder than all other distances in our
consideration, is that even when the cluster is given, we cannot simply find the
optimal cluster center by optimizing the value in each coordinate independently. So
there seems to be no simple rule of finding the optimal cluster center of a given cluster.
However, one could still do that in polynomial time by solving a linear program, as
we show in the next claim.

Claim 5.24. Given a multiset C of vectors in Zd, there is a polynomial time algo-
rithm to find c ∈ Rd minimizing ∑

x∈C
dist∞(x, c).

Proof. We reduce to solving a linear program, which we define next. Denote C =
{x1, . . . ,xn}, introduce variables c1, . . . , cd corresponding to coordinates of the un-
known cluster center and variables d1, . . . , dn, where di corresponds to the value
dist∞(xi, c). Consider the following linear program.

n∑
i=1

di → min

xi[j]− cj ≤ di ∀ i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ d
cj − xi[j] ≤ di ∀ i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ d

Clearly, solving this linear program provides an optimal cluster center by the values
c1, . . . , cd.
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The next claim shows that we could only consider half-integral cluster centers.

Claim 5.25. For any multiset C of vectors in Zd, the vector c ∈ Rd which minimizes∑
x∈C

dist∞(x, c)

could always be chosen from 1
2Zd (coordinates are either integer or half-integer).

Proof. Assume that we have an optimal solution c that has at least one coordinate
not of the form z/2, z ∈ Z. For a ∈ R we denote frac(a) = a− bac, and

rem(a) =

{
frac(a), if frac(a) < 1/2

1− frac(a), otherwise
,

calling this value the remainder of a.
We could partition all coordinates into equivalence classes by remainder of c.

One could also define a partition of all vectors by the remainder of the distance to c.
These two partitions are related in the following sense: if dist∞(x, c) has remainder
ξ then each coordinate j where |x[j]− c[j]| = dist∞(x, c) also has remainder ξ, and
vice versa. Now we take one particular remainder and show that we can shift it
without losing optimality.

There are two kinds of vectors with the particular remainder ξ: call bottom those
vectors x for which frac(dist∞(x, c)) = ξ, and call top those vectors x for which
frac(dist∞(x, c)) = 1 − ξ. Similarly, there are also two kinds of coordinates of c,
which we also call bottom and top depending of the value of frac(c[j]).

Consider a bottom coordinate j. Increasing c[j] increases |x[j] − c[j]| for all
bottom vectors x, and decreases |x[j]−c[j]| for all top vectors x. Decreasing c[j] does
the opposite, as well as increasing a top coordinate. So if we take some sufficiently
small value β and simultaneously increase all bottom coordinates and decrease all top
coordinates by β then for all bottom vectors their distance will become larger by β,
and for all top vectors — smaller by β. An if we do the opposite, the bottom vectors
will cost less and the top vectors will cost more. Then, we could just take the group
which has more vectors (bottom or top) and choose that action which decreases the
distance for these vectors. The larger group has at least as many vectors as the
smaller group, so the total distance does not increase.

It remains to see which value of β we could take. We could safely shift until we
either reach a value in 1

2Z or another remainder. In any case, we reduce the number
of distinct remainders by one, and so we conclude the proof by doing this inductively
over the number of distinct remainders.

By Claim 5.25, the α-property holds with α = 1/2, since at most one vector
could be equal to the cluster center, and all others have distance at least 1/2 due to
half-integrality. We can also see that when the problem is parameterized by d + D,
it admits an FPT algorithm..
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Claim 5.26. L∞-k-Clustering distance is FPT when parameterized by d+D.

Proof. We use Theorem 5.10. We have the α-property, and for the set D of all possible
cluster costs not exceeding D we could take all half-integral values not exceeding D
by Claim 5.25. All that remains is to solve L∞-Cluster Selection in FPT time.

For that, we try all possible x1 ∈ X1, and then try each possible resulting cluster
center c. Since dist∞(x1, c) ≤ D and c is half-integral by Claim 5.25, we can try
only vectors c of this form, and that is done in time (2D + 1)d.

5.4.1 W[1]-hardness Parameterized by D

Knowing that L∞-k-Clustering is in FPT when parameterized by d+D, the next
natural question is, is the problem FPT or W[1]-hard when parameterized only by
D? We show that W[1]-hardness is the case, proving Theorem 5.3, which we recall
here for convenience.

Theorem 5.3. L∞-k-Clustering parameterized by D and L∞-Cluster Selec-
tion parameterized by t+D are W[1]-hard.

Proof. First, we show a reduction from Clique to L∞-k-Clustering. Given a
graph G and a clique size k, we construct the following instance of the clustering
problem.

We set the dimension to |V (G)| +
(|V (G)|

2

)
− |E(G)|. We take |V (G)| vectors

{xi}|V (G)|
i=1 corresponding to vertices. For the vertex v, first |V (G)| coordinates are

set to zero, except v-th coordinate, which is set to 2.
The last

(|V (G)|
2

)
−|E(G)| coordinates correspond to non-edges, vertex pairs which

are not connected by an edge. For each vertex pair {u, v} /∈ E(G) in the coordinate
{u, v} we set xu to 2, xv to −2, the order on u, v is chosen arbitrarily, and all other
vectors to zero.

Finally, we set the number of clusters to |V (G)| − k+ 1 and the total distance to
k. We show an example on how the reduction works in Figure 5.8.

If there is a clique of size k in G, then we have a solution of cost k: take k vectors
corresponding to the clique vertices in one cluster, and make all other clusters trivial.
For the only nontrivial cluster C, we can always choose c so that |x[j]− c[j]| ≤ 1 for
any x ∈ C and for any coordinate j. Each vertex coordinate has only 0 and 2, so
setting c to 1 there suffices. As in C we have an edge between any two vertices, in
any non-edge coordinate j there are either all zeros, or zeros and 2, or zeros and −2.
In each of the cases there is a suitable value for c[j]: 0, 1 or −1 correspondingly.

Next, we prove that any solution has cost at least k, and any solution which is
not a k-clique has strictly larger cost. For that, we prove the following claim.

Claim 5.27. In the instance above, the cost of any cluster C containing at least two
vectors is at least |C|. If there is at least one non-edge in C, then the cost is at least
|C|+ 1.
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1

2

3

4

5

1 2 3 4 5 23 34 15 25
x1 2 0 0 0 0 0 0 2 0
x2 0 2 0 0 0 2 0 0 2
x3 0 0 2 0 0 −2 2 0 0
x4 0 0 0 2 0 0 −2 0 0
x5 0 0 0 0 2 0 0 −2 −2

x1 2 0 0 0 0 0 0 2 0
x2 0 2 0 0 0 2 0 0 2
x4 0 0 0 2 0 0 −2 0 0
c 1 1 0 1 0 1 −1 1 1

Figure 5.8: An example illustrating the reduction in Theorem 5.3: an input graph G, the
vectors produced by the reduction (for clarity, the coordinates corresponding to vertices
and to non-edges are separated), and the only composite cluster in the resulting optimal
clustering of cost 3, corresponding to the clique on {1, 2, 4}. Note that dist∞(x1, c) =
dist∞(x2, c) = dist∞(x4, c) = 1.

Proof. Denote the cluster center as c. If each vector x in C has dist∞(x, c) ≥ 1,
the first statement is trivial. So assume that there is a vector x∗ in C such that
dist∞(x∗, c) = ξ < 1. Consider the coordinate j∗ which corresponds to the same
vertex as the vector x∗, x∗[j∗] = 2, and all other vectors are zero in the coordinate j∗.
As dist∞(x∗, c) = ξ, c[j∗] ≥ 2−ξ. Then, for any other x ∈ C, dist∞(x, c) ≥ 2−ξ > 1.
The total cost of the cluster is at least ξ+(|C|−1)(2−ξ) = 2+(|C|−2)(2−ξ) ≥ |C|,
as 2− ξ > 1.

Now to the second part of the claim. Assume there are only two vectors in C and
they do not have an edge, there is a coordinate j∗ where one is 2 and the other is −2.
No matter what we choose for c[j∗], the cost is at least |2− c[j∗]|+ |− 2− c[j∗]| ≥ 4,
and the statement follows. So assume that |C| ≥ 3 and there is a coordinate j∗

corresponding to a non-edge in C. One vector from C has 2 in the coordinate j∗,
another −2, and all others have 0. Then there is a vector in C with distance to c of
at least 2, as either c[j∗] ≥ 0 and | − 2 − c[j∗]| ≥ 2 or c[j∗] < 0 and |2 − c[j∗]| > 2.
Let us just forget about this vector and consider all other vectors in C. There are
|C| − 1 ≥ 2 of them, and by the reasoning in the proof of the first statement, their
cost is at least |C| − 1. In this proof we considered only vertex coordinates, so the
vector we forgot and the j∗-th coordinate (which is a non-edge coordinate) does not
affect it. So, the total cost is at least |C| − 1 + 2 = |C|+ 1.

Assume that we have l ≥ 1 nontrivial clusters of sizes {ti}li=1, nontrivial means
that the size is at least two, ti ≥ 2 for i ∈ {1, . . . , l}. By Claim 5.27, the total cost is
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at least
l∑
i=1

ti = k + l − 1 ≥ k,

as there are |V (G)| − k + 1 clusters in total, |V (G)| − k + 1− l trivial clusters, and

the total number of vectors is |V (G)| =
∑l
i=1 ti + |V (G)| − k + 1− l, from which it

follows that
∑l
i=1 ti = k + l − 1. So no solution has cost less than k.

Also, if there are at least two nontrivial clusters, then k + l − 1 ≥ k + 1. So if a
solution has cost k, it must have only one nontrivial cluster, and its size must be k.

Finally, assume that the solution indeed has only one nontrivial cluster, but there
is a non-edge in it. Then, as the size is k, by Claim 5.27 its cost is at least k+ 1. So
only a k-clique has cost k, which proves the correctness of the reduction.

Now, to L∞-Cluster Selection. We consider essentially the same reduction,
only we start from Multicolored Clique. We obtain sets of vectors X1, . . . , Xk

in the same way as X in the reduction above, only vectors obtained from vertices of
color j are put into Xj . The total distance parameter is also set to k. So parameters
t and D of the obtained instance have the same value as the starting parameter k.

Since vectors are constructed in the same way, Claim 5.27 still works. And now
the statement of L∞-Cluster Selection enforces that exactly one cluster of k
vectors is selected. By Claim 5.27 it could be done with the cost k if and only if
there is a colorful k-clique in the original graph.

5.4.2 NP-hardness for k = 2

In this subsection we prove NP-hardness of L∞-k-Clustering when k = 2. Intu-
itively, if we consider the previous reduction, partitioning the vectors optimally into
two clusters loosely corresponds to partitioning the vertices into two sets such that
there are as many as possible vertices having no edges inside their set. Which, in
turn, is Odd Cycle Transversal: the problem of removing the smallest number
of vertices so that the remaining graph is bipartite. However, to make everything
really work, we need to consider a modified version of Odd Cycle Transversal
which we call Half-Integral Odd Cycle Transversal.

Input: An undirected graph G, an integer t.
Task: Is there an assignment δ : V (G) → {0, 1, 2}, such that∑

v∈V (G) δ(v) ≤ t and G− S is bipartite, where S = {{u, v} ∈
E(G) : δ(u) + δ(v) ≥ 2}?

Half-Integral Odd Cycle Transversal

The definition of Half-Integral Odd Cycle Transversal is illustrated in Fig-
ure 5.9.

First we show that Half-Integral Odd Cycle Transversal is also NP-hard
by constructing a reduction from 3-SAT.
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(a) A graph G. (b) An optimal assignment δ
of cost 3. The set S, i.e.
“deleted” edges, is in dashed.

1

1 1

0 0

0

(c) A different choice of δ.
This assignment models the
optimal solution for Odd Cy-
cle Transversal on the
same graph, and has the cost
of 4.

0

2 2

0 0

0

Figure 5.9: An illustration to Half-Integral Odd Cycle Transversal.

Lemma 5.28. There is a polynomial time reduction from 3-SAT to Half-Integral
Odd Cycle Transversal.

Proof. Given an instance of 3-SAT with n variables and m clauses, make a graph G
as follows. The example of the reduction is given in Figure 5.10. For each variable xi,
introduce two vertices xi and x′i, connect them with an edge. Also introduce 2n+ 1
vertices yi,j connect them to both xi and x′i.

For each clause Cj introduce four vertices Cj,1,. . . ,Cj,4. Consider following seven
vertices: Cj,1, . . . , Cj,4, and three variable vertices which are present in Cj : if xi ∈ Cj
then we consider the vertex xi, and if ¬xi ∈ Cj then we consider the vertex x′i.
Connect all these seven vertices in a cycle such that each variable vertex is adjacent
to two clause vertices. Finally, set t to 2n.

First, assume there is a satisfying assignment. Consider the following δ : V (G)→
{0, 1, 2}: if xi is true, δ(xi) = 2, otherwise δ(x′i) = 2, on all other vertices δ ≡ 0.
Clearly,

∑
v∈V (G) δ(v) = 2n.

Since δ does not take value 1, deleting edges {u, v} with δ(u) + δ(v) ≥ 2 is
equivalent to deleting vertices on which δ is 2. From each vertex gadget we deleted
either xi or x′i, so the remaining part is a star with leaves yi,j and center xi or x′i.
Since the assignment we started from is satisfying, from each clause cycle we deleted
at least one vertex. So each cycle present in G lost at least one vertex, and what
remains is bipartite.

Now assume there is a solution δ to the Half-Integral Odd Cycle Transver-
sal instance. We claim that δ(xi) + δ(x′i) ≥ 2 for each variable xi. Consider a
2-coloring of G− S: either xi and x′i have the same color or not. In the former case,
δ(xi) + δ(x′i) ≥ 2 since the edge {xi, x′i} must be removed.
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x1 x′1

y1,1 y1,7· · ·

x2 x′2

y2,1 y2,7· · ·

x3 x′3

y3,1 y3,7· · ·

C1,1 C1,2 C1,3 C1,4

Figure 5.10: A graph obtained from the 3CNF-formula (x1 ∨ ¬x2 ∨ x3) by the reduction
from Lemma 5.28. A 7-cycle corresponding to the only clause of the formula is highlighted
in blue.

If xi and x′i have different colors, assume that δ(xi) ≤ 1 and δ(x′i) ≤ 1. Then,
each of the 2n + 1 vertices yi,j takes one of the two colors, and so has an incident
edge to xi or x′i which needs to be deleted. But then, δ(yi,j) ≥ 1 for each j, and the
total cost on these vertices is already 2n+ 1. Then either δ(xi) = 2 or δ(x′i) = 2.

So we have n variables and δ is at least 2 on each pair of variable vertices, and in
total δ is at most 2n. Then δ has to be exactly 2 on each variable pair, and zero on
all other vertices. Now we claim that on each clause cycle there is a variable vertex
v with δ(v) = 2. If not, then none of the cycle edges gets deleted, as δ is equal to
zero on clause vertices. But then the remaining graph could not be bipartite, since
it contains an odd cycle.

To get a satisfying assignment, set xi to true if δ(xi) = 2, or to false otherwise.
In particular, if δ(x′i) = 2, xi is set to false, since δ(x1) + δ(x′1) = 2. Each clause
is satisfied since each clause cycle contains a variable vertex on which δ is equal to
2.

Now we prove NP-hardness of L∞-k-Clustering when k = 2 by constructing a
reduction from Half-Integral Odd Cycle Transversal.

Theorem 5.29. L∞-k-Clustering is NP-hard when k = 2.

Proof. Consider an instance (G, t) of Half-Integral Odd Cycle Transversal,
if t ≥ |V (G)|, we have a yes-instance since δ ≡ 1 deletes all edges from the graph,
so we may assume t < |V (G)|. Remove all isolated vertices in G and add t + 5
isolated edges to G, it clearly does not change the type of the instance. The number
of clusters k is 2, set the dimension d to |E(G)|, each coordinate corresponds to an
edge. For each vertex v ∈ V (G) add a vector xv to X with all coordinates set to
zero. Then, for each edge {u, v} ∈ E(G) set xu[u, v] to 2 and xv[u, v] to −2, the
order on u, v is chosen arbitrarily. Finally, set D to |V (G)|+ t. An example is given
in Figure 5.11, additional isolated edges are dropped out for clarity.
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(a) A starting graph G, t = 2.

1 2

3 4

(b) The obtained instance: set of vectors X =
{x1,x2,x3,x4}, D = 6.

edges: 12 13 14 23 24
x1 = ( 2 2 2 0 0 )
x2 = ( −2 0 0 2 2 )
x3 = ( 0 −2 0 −2 0 )
x4 = ( 0 0 −2 0 −2 )

(c) A possible solution: δ(1) =
δ(3) = δ(4) = 0, δ(2) = 2. Edges
from S are dashed, a 2-coloring of
G− S is in red and blue.

1 2

3 4

(d) The corresponding clustering of cost 6, C1 = {x1,x2},
C2 = {x3,x4}, and optimal centers c1, c2.

c1 = ( 1, 1, 1, 1, 1)
x1 = ( 2, 2, 2, 0, 0), dist∞(x1, c1) = 1
x2 = (−2, 0, 0, 2, 2), dist∞(x2, c1) = 3

c2 = ( 0,−1,−1,−1,−1)
x3 = ( 0,−2, 0,−2, 0), dist∞(x3, c1) = 1
x4 = ( 0, 0,−2, 0,−2), dist∞(x4, c1) = 1

Figure 5.11: An illustration of the reduction from Theorem 5.29.

If (G, t) is a yes-instance of Half-Integral Odd Cycle Transversal, con-
sider the solution δ. Split vectors into clusters according to any proper 2-coloring
of G − S. Now we show the way to select cluster centers so that each vertex v has
distance at most 1 + δ(v) to the corresponding center. We consider separately each
of two clusters and each coordinate, indexed by an edge {u, v} ∈ E(G). For a cluster
C, there are three cases on how u and v are present in the cluster, for each of them
we assign a particular value to the cluster center c in the coordinate {u, v}.

· If u and v are both not in C, for vectors in C all entries in the coordinate {u, v}
are zero, and we set c[u, v] also to zero. Each vector is at distance zero to the
center in this coordinate.

· If only one of u and v are in C, for vectors in C all entries in the corresponding
coordinate are zero, except one entry corresponding to the edge’s endpoint
belonging to C, which is either 2 or −2. Set c[u, v] to 1 or −1, correspondingly,
then each vector is at distance 1 in this coordinate.

· If both u and v are in C, w.l.o.g. xu[u, v] is 2 and xv[u, v] is −2, and all other
points are zero. It must hold that δ(u) + δ(v) ≥ 2, either δ(u) = δ(v) = 1 or
w.l.o.g δ(u) = 2 and δ(v) = 0. In the former case, set c[u, v] to zero, then all
vectors have distance zero, xu and xv have distance 2 in this coordinate. In
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the latter case, set c[u, v] to −1, then u is at distance 3, and all other vectors,
including v, are at distance 1.

For any v ∈ V (G), since it holds for all coordinates that distance from xv to the
corresponding cluster center is at most 1+ δ(v), then the L∞ distance is also at most
1 + δ(v), and the total cost of the clustering defined above is at most∑

v∈V (G)

1 + δ(v) = |V (G)|+ t.

In the other direction, assume there is a clustering C1, C2 with centers c1, c2

such that the total cost is at most D. By Claim 5.25 we may assume that centers
are integral, and for any vector the distance to the nearest center is also an integer.
We also may assume that centers are between −2 and 2 in each coordinate since all
the input vectors have entries in this range, and so we could move the centers to the
same range without increasing distances.

So, each vector has distance in {0, 1, 2, 3, 4} to the closest center. We claim that
it could not be that a vector xv has distance zero: in this case w.l.o.g xv = c1, and so
c1 is equal to 2 or −2 in some coordinate, since each vertex has at least one incident
edge. But then each vector in C1 has distance at least 2 to c1. And since at most
two vectors could be equal to the centers, each of the remaining |V (G)| − 2 vectors
has distance at least 1. Consider t + 5 isolated edges, at least t + 3 of them do not
have any endpoint equal to one of c1 and c2. For these edges, the total distance of
their endpoints is at least 3: either their endpoints are in different clusters, and so
the endpoint in C1 costs at least 2, or both endpoints are in the same cluster, and
in total they cost 4 since there are simultaneously values 2 and −2 in the coordinate
corresponding to this edge. So each of the t+3 edges increases the cost by additional
1, and the total cost is at least |V (G)| − 2 + t+ 3 > |V (G)|+ t.

Since each vector has distance at least 1, we may assume that the centers are
in {−1, 0, 1}d. If we have 2 (or −2) we could change it to 1 (or −1), all vectors
which could become farther from the centers have 2 in this coordinate. But then the
distance for these vectors is still at most 1. We also may assume that distances are
in {1, 2, 3}, since distance 4 could be only from 2 to −2.

We claim that if we set δ(v) := min2
i=1 dist∞(xv, ci), δ is a solution to Half-

Integral Odd Cycle Transversal. Remove all edges {u, v} with δ(u)+δ(v) ≥ 2,
and consider 2-coloring of G induced by the partition {C1, C2}. Assume that we
have an edge {u, v} such that δ(u) + δ(v) ≤ 1 and u and v are in the same cluster
(w.l.o.g C1). Then we have a coordinate {u, v} such that w.l.o.g xu[u, v] = 2 and
xv[u, v] = −2, but dist∞(xu, c1) + dist∞(xv, c1) ≤ 3 due to δ(u) + δ(v) ≤ 1 and so
|xu[u, v] − c1[u, v]| + |xv[u, v] − c1[u, v]| ≤ 3, which is a contradiction. So (G, t) is
also a yes-instance.

Note that the reduction from the proof of Theorem 5.29 also implements k-
Coloring, if we set k to the number of colors and D to |V (G)|, since with such
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a small budget we can not allow any same-colored neighbors in the optimal cluster-
ing. However, k-Coloring is only known to be NP-hard for 3 or colors. Thus in
Theorem 5.29 we show a reduction from Half-Integral Odd Cycle Transver-
sal to show the hardness of L∞-k-Clustering even for two clusters.

5.5 The Case p ∈ (1,∞)

In this section we consider the case p ∈ (1,∞), with the particular emphasis on the
most commonly used case p = 2. With the L2 distance, the k-Clustering problem
is widely studied under the name k-Means.

5.5.1 FPT Parameterized by d+D for L2

When we consider both d andD as the parameters, L2-Cluster Selection becomes
FPT, and so L2-k-Clustering is also FPT by Theorem 5.10.

Note that in any composite cluster, each vector except at most one is at distance
at least 1/4 from the center, so the α-property holds with α = 1/4. Consider two
different vectors, they have different values in some coordinate, and in this coordinate
at least one of them is at distance at least (1/2)2 = 1/4 from the center.

Now we prove Theorem 5.4, which we restate here.

Theorem 5.4. L2-k-Clustering and L2-Cluster Selection are FPT when pa-
rameterized by d+D.

Proof. We start with the proof that L2-Cluster Selection is FPT. The distance
dist2 satisfies the α-property. Hence if t > 4D + 1 then any composite cluster costs
more than D and the instance is clearly a no-instance. So we may assume that
t ≤ 4D + 1.

We claim that there are at most 4mtD possible total weights of the resulting
composite cluster. First, in the resulting cluster there could be at most one vector
with weight strictly larger than 4D. Otherwise, let us consider two such vectors and
the coordinate in which they differ. No matter which value the center has there, it is
at distance of at least 1/2 from at least one of the vectors, so the total cost is larger
than 4D(1/2)2 ≥ D. So there are at most m possibilities for the largest weight, and
all of the other (t− 1) weights are at most 4D.

We fix the total resulting cluster weight W , the vector in the resulting cluster
with the largest weight xj∗ ∈ Xj∗ , and the coordinate i. Since the center c is the
mean of the vectors in the resulting cluster, c[i] is of form y

W , where y ∈ Z. We claim
that the distance from y to W · xj∗ [i] is bounded by a function of D, and so each
possible y could be enumerated in FPT time. Moreover, all possible centers could
also be enumerated in FPT time since d is a parameter.
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Let {x1, . . . ,xt} be the resulting cluster, xj ∈ Xj for all j ∈ {1, . . . , t}. The
difference between c[i] and xj∗ [i] could be written as

xj∗ [i]− c[i] = xj∗ [i]−
t∑

j=1

w(xj)xj [i]

W
=

∑t
j=1 w(xj)(xj∗ [i]− xj [i])

W
.

The absolute value of the numerator is O(D3) since t = O(D), w(xj∗) gets multiplied
by zero, and all other weights are at most 4D. Also, for any j ∈ {1, . . . , t}, |xj∗ [i]−
xj [i]| ≤ 4D, since

4D ≥ 4
(
(xj∗ [i]− c[i])2 + (xj [i]− c[i])2

)
≥ (xj∗ [i]− xj [i])

2 ≥ |xj∗ [i]− xj [i]|.

The total running time is at most

4mtd ·m · O(D3)d ·m,

since we try all possible cluster weights, all possible xj∗ out of the input vectors,
then all possible centers which differ from xj∗ by O(D3) in each coordinate. And
then for each center we check whether the optimal cluster for it has cost at most D
by selecting the best xj ∈ Xj for each j ∈ {1, . . . , t}. This concludes the proof that
L2-Cluster Selection is FPT when parameterized by d+D.

Now we proceed with showing that L2-k-Clustering is FPT parameterized by
d + D. For that we employ Theorem 5.10. We already have the α-property and
an FPT algorithm for L2-Cluster Selection. Hence the only thing left is to
enumerate the set D of all possible optimal cluster costs not exceeding D.

Since there are n vectors in total, each cluster contains from 1 to n vectors. For
each possible cluster size s the center is of the form y

s , where y ∈ Z. Since input
vectors have integer coordinates, the cost of any cluster of size s is of form z

s2 , where
z ∈ Z. And since the cost is at most D, z ∈ {0, . . . , Ds2}. We enumerate all possible
cluster sizes in {1, . . . , n}, and for each cluster size s all possible cluster costs in
{0/s2, . . . , Ds2/s2}. In this way we obtain D, and |D| = O(Dn3).

5.5.2 W[1]-hardness Parameterized by t+D

In our setting, L2-k-Clustering seems to be harder than L1-k-Clustering, since
we do not have the nice property that if many vectors have the same value in some
coordinate then the center must also have this value. On the contrary, even if only one
vector diverges from the rest, the optimal center also diverges. So the approach with
enumerating nontrivial coordinate sets, which we successfully used in the p ∈ (0, 1]
case, is not likely to work.

We are able to prove that Lp-Cluster Selection for p ∈ (1,∞) is W[1]-hard
parameterized by t+D. It remains open whether Lp-k-Clustering for p ∈ (1,∞)
or specifically for p = 2 is W[1]-hard or not, but our result shows that at least the



86 5 | Parameterized Lp-k-Clustering

approach we used to obtain an FPT algorithm in the p ∈ (0, 1] case would not yield
an FPT algorithm for p ∈ (1,∞).

First we state and prove two technical claims about the geometrical properties of
clustering zero-one valued vectors in the p ∈ (1,∞) case.

Claim 5.30. If we have a cluster of size a+b where a vectors have zero and b vectors
have one in the coordinate i, then the optimal center value in this coordinate is equal
to

b
1
p−1

a
1
p−1 + b

1
p−1

,

and the coordinate i contributes

ab(
a

1
p−1 + b

1
p−1

)p−1 ,

to the total cost.

Proof. Assume that the center value in the coordinate i is equal to c, then the cost
is

acp + b(1− c)p.
It is easy to see that c < 0 is worse than c = 0, and similarly c > 1 is worse than
c = 1, so we could restrict c to [0, 1]. The derivative with respect to c is

p(acp−1 − b(1− c)p−1),

as p > 1, the derivative is zero if and only if

acp−1 = b(1− c)p−1(
c

1− c

)p−1

=
b

a

c

1− c
=

(
b

a

) 1
p−1

c =
1

1 +
(
a
b

) 1
p−1

=
b

1
p−1

a
1
p−1 + b

1
p−1

.

The derivative increases monotonically: when we increase c, cp−1 increases and (1−
c)p−1 decreases as p− 1 > 0. So the optimal value must be at its unique root defined
by the expression above. Thus, the optimal cost is equal to

a
b

p
p−1(

a
1
p−1 + b

1
p−1

)p + b
a

p
p−1(

a
1
p−1 + b

1
p−1

)p =
ab(

a
1
p−1 + b

1
p−1

)p−1 ,

finishing the proof.
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Now we prove that it is optimal to have as many ones in the same coordinate as
possible. For that, we calculate how much each one adds to the total cost depending
on how many ones are there in a coordinate.

Claim 5.31. Consider a cluster of s zero-one valued vectors, denote as f(b) the
contribution of a coordinate in which there are b ones and s− b zeros. The function
f(b)/b is strictly decreasing for 0 < b < s.

Proof. Denote the number of zeros in the coordinate as a := s − b. By Claim 5.30,
the contribution of the coordinate per each one is

f(b)

b
=

ab(
a

1
p−1 + b

1
p−1

)p−1 ·
1

b
=

a/s(
(a/s)

1
p−1 + (1− a/s)

1
p−1

)p−1 .

Let us denote x = a/s, 0 < x < 1, the derivative of the above with respect to x is
equal to

d

dx

 x(
x

1
p−1 + (1− x)

1
p−1

)p−1


=
(
x

1
p−1 + (1− x)

1
p−1

)−(p−2)

·
(

(1− x)
1
p−1 + x(1− x)

1
p−1−1

)
,

which is strictly positive for 0 < x < 1, hence proving the claim.

Now we are ready to prove the hardness result, which was stated in the introduc-
tion as Theorem 5.5. We recall the statement here.

Theorem 5.5. Lp-Cluster Selection is W[1]-hard for every p ∈ (1,∞) when
parameterized by t+D.

Proof. We construct a reduction from Multicolored Clique. Given a graph G
and a clique size k, we construct the following instance of Lp-Cluster Selection.

We set t to
(
k
2

)
, each input set of vectors represents a choice of an edge of the clique

between two particular colors, so we number them by unordered pairs of indices from
1 to k. We set the dimension d to |V (G)|, coordinates are numbered by vertices.

The set Xi,j consists of the following vectors: for each edge {u, v} ∈ E(G) between
a vertex u of color i and vertex v of color j, we add a vector with 1 in the coordinate
u and 1 in the coordinate v, all other coordinates are set to zero. All vectors have
weight one. Finally, we set

D = k ·
(k − 1)

(
k−1

2

)(
(k − 1)

1
p−1 +

(
k−1

2

) 1
p−1

)p−1 .
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1

2

3

4

1 2 3 4

X1,2
1 1 0 0
1 0 1 0

X2,3 0 1 0 1

X1,3 1 0 0 1

{1, 2} 1 1 0 0

{2, 4} 0 1 0 1

{1, 4} 1 0 0 1

c 2
3

2
3 0 2

3

Figure 5.12: An example illustrating the reduction in Theorem 5.5: an input graph G
colored in three colors, the vector sets produced by the reduction, and the resulting optimal
cluster of cost 2, corresponding to the clique on {1, 2, 4}. Note that in the resulting cluster,
each non-zero coordinate has the maximal number of ones, (k − 1).

In Figure 5.12, we show the intuition behind the reduction by considering a simple
example.

If there is a colorful k-clique in G then we construct a solution to our instance
of Lp-Cluster Selection. Assume the clique is formed by vertices v1, v2, . . . ,
vk, for each i ∈ {1, · · · , l} vertex vi is of color i. From each Xi,j choose the vector
corresponding to the edge {vi, vj} ∈ E(G). Among the chosen vectors, in every

coordinate of the form vi there are (k− 1) ones from edges to vi and
(
k
2

)
− (k− 1) =(

k−1
2

)
zeros. All other coordinates are zeros in the chosen vectors, so they do not

contribute anything to the total distance. By Claim 5.30, the total distance is

k ·
(k − 1)

(
k−1

2

)(
(k − 1)

1
p−1 +

(
k−1

2

) 1
p−1

)p−1 = D.

In the other direction, we prove that only the solution described above could
have the cost D, all others have strictly larger cost. First notice that in any resulting
cluster there are at most (k − 1) ones in each coordinate, since for any vertex v ∈
V (G), if we denote its color by i, only vectors from (k − 1) sets of the form Xi,j

(j ∈ {1, . . . , k}\{i}) have ones in the coordinate v, and we take one vector from each
set by the definition of Lp-Cluster Selection.

Each vector has exactly two ones, so in any resulting cluster there are 2 ·
(
k
2

)
ones

in total. By Claim 5.31, any resulting cluster which does not have (k − 1) ones in k
coordinates has strictly larger cost, since only coordinates with exactly (k − 1) ones
have the optimal cost per each one.

So, if the resulting cluster has the cost D, then there are k coordinates such that
in each of them exactly (k − 1) of the chosen vectors have one. We show that in
this case the original instance of Clique has a k-clique. For any color i ∈ {1, . . . , k}
there are at most (k − 1) ones in all coordinates indexed by vertices of color i in
the resulting cluster. So all of these ones are in the same coordinate vi for some vi.
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We claim that the vertices v1, . . . , vk form a clique. Consider vertices vi and vj ,
we have taken some vector from Xi,j , and this vector must have added a one to the
coordinates vi and vj , then by construction the edge {vi, vj} is in E(G).

5.6 Conclusion and Open Problems

In this chapter, we presented an FPT algorithm for Lp-k-Clustering with p ∈
(0, 1] parameterized by D. However, for the case p ∈ (1,∞) we were only able to
show the W[1]-hardness of Lp-Cluster Selection. While intractability of Lp-
Cluster Selection does not exclude that Lp-k-Clustering could be FPT with
p ∈ (1,∞), it indicates that the proof of this (if it is true at all) would require an
approach completely different from ours. Thus an interesting open question concerns
the parameterized complexity of Lp-k-Clustering with p ∈ (1,∞) and parameter
D.

Another open question is about the fine-grained complexity of Lp-k-Clustering
when parameterized by k + d. For several distances, we know XP-algorithms: an
O(ndk+1) algorithm by Inaba et. al. [118] for p = 2, as well as trivial algorithms for
p ∈ [0, 1]. For the case when the possible cluster centers are given in the input, the
matching lower bound is shown in [63]. However, we are not aware of a lower bound
complementing the algorithmic results in the case when any point in Euclidean space
can serve as a center.

Finally, let us note that our W[1]-hardness reductions could be easily adapted
to obtain ETH-hardness results. Our reductions are from Clique and, assuming
ETH, there is no no(k) algorithm for Clique. In most of our results, the ETH lower
bounds derived from our reductions, can be complemented by matching upper bounds
through a trivial algorithm for Lp-Cluster Selection in time nO(d) or nO(t) and,
consequently, an algorithm for Lp-k-Clustering obtained by Theorem 5.10. How-

ever, the reduction in Theorem 5.5 excludes only an (nd)o(t
1/2+D1/2) algorithm for

Lp-Cluster Selection with p ∈ (1,∞) under ETH. Both the trivial algorithm in
time nO(t) and the algorithm from Theorem 5.4 in time DO(d) (which could also be
turned into a dO(D)-time algorithm) fail to match this lower bound. So, another open
question is, whether there exists a better reduction or a subexponential algorithm
could be obtained in this case.
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Robust Categorical Clustering

In this chapter, we are interested in studying clustering problems on categorical data.
Naturally, the most common similarity (or dissimilarity) measure for categorical data
objects is the Hamming distance, which is basically the number of mismatched at-
tributes of the objects. As Hamming distance is a metric, the existing constant
approximations for clustering problems in general metrics can be easily adapted for
categorical data. However, these algorithms need the whole metric space (points,
potential centers and all-pair distances) as input, whose size depends exponentially
on the dimension of the Hamming space. By increasing the cost by a constant fac-
tor, one can assume that the potential centers are the input points. This leads to
polynomial time approximations, albeit with large constant approximation factors.
Consequently, researchers have focused on obtaining clustering algorithms with bet-
ter performance guarantees tailored for Hamming spaces. While a large number of
such algorithms have been proposed in recent years, the development of provably
good algorithms remains an intriguing challenge [11]. Among these results, the most
relevant to our work is the one in [90], which shows that the k-median clustering
problem on binary data is FPT parameterized by the cost of clustering. While the
previous chapter covers the generalization of this work to integer-valued vectors under
various Lp-norms, here we consider a different extension. As discussed in Chapter 3,
our main interest for categorical clustering lies in the study of robust variants of the
problem. Specifically, we are interested in Categorical k-Clustering with Row
Outliers, where it is allowed to remove a given number of points from the dataset,
and Categorical k-Clustering with Column Outliers, where instead we re-
move a predefined number of features. In both variants, the removed rows/columns
do not contribute to the cost of clustering. Thus the task in both problems can be
thought of as to remove the noisy part of data so that the remaining part fits the
Categorical k-Clustering objective the best. Again, we are primary interest in
the exact parameterized complexity of these problems with the respect to the pa-
rameter D, representing the cost of the target clustering. We refer to Chapter 5 for

91
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the discussion on the choice of the parameter; here we note that in the robust setting
parameterizing by D becomes more powerful, as the removed rows/columns do not
contribute to the cost. We recall the formal definitions of the two problems next.
Let Σ be a finite set of non-negative integers. We refer to Σ as the alphabet and we
denote the d-dimensional space over Σ by Σd.

Input: An alphabet Σ, an n×d matrix A with rows a1,a2, . . . , an such
that ai ∈ Σd for all 1 ≤ i ≤ n, a positive integer k, non-negative
integers D and `.

Task: Decide whether there is a subset O ⊂ {1, 2, . . . , n} of size at
most `, a partition of {1, 2, . . . , n}\O into k sets {I1, I2, . . . , Ik}
called clusters, and vectors c1, c2, . . . , ck ∈ Σm such that the
cost of clustering is at most D, that is,

k∑
t=1

∑
i∈Ii

dH(ai, ct) ≤ D.

Categorical k-Clustering with Row Outliers

Now we recall the feature selection variant. For a set of indices S ⊂ {1, 2, . . . , d}
and an n×d matrix A, A−S is the matrix obtained from A by removing the columns
with indices in S.

Input: An alphabet Σ, an n×d matrix A with rows a1,a2, . . . , an such
that aj ∈ Σd for all 1 ≤ i ≤ n, a positive integer k, non-negative
integers D and `.

Task: Decide whether there is a subset O ⊂ {1, 2, . . . , d} of size at
most `, a partition {I1, I2, . . . , Ik} of {1, 2, . . . , n}, and vectors
c1, c2, . . . , ck ∈ Σd−|O| such that

k∑
t=1

∑
i∈Ii

dH(a−Oi , ct) ≤ D.

Categorical k-Clustering with Column Outliers

For a set of indices S ⊂ {1, 2, . . . ,m} and an m × n matrix A, let A−S be the
matrix obtained from A by removing the rows with indices in S. We denote the rows
of A−S by a−Sj for 1 ≤ j ≤ n.

While Categorical k-Clustering with Column Outliers looks very simi-
lar to the one with row outliers, it appears that the former is computationally much
more challenging. Later, we will discuss more about this. Our first result is the
following theorem.
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Theorem 6.1. Categorical k-Clustering with Column Outliers is solvable
in time f(k,D, |Σ|) · dg(k,|Σ|) · n2, where f and g are computable functions.

In particular, this implies that for fixed k and |Σ|, the problem is FPT parame-
terized by D. Note that the running time of the algorithm does not depend on the
number of irrelevant features `. In particular, for fixed k, D, and |Σ|, it runs in
polynomial time even when ` = Ω(d). Also, the theorem could be used to identify
the minimum number of irrelevant features ` such that the cost of k-clustering on the
remaining features does not exceed D. Note that our time complexity also exponen-
tially depends on the number of clusters k. In this regard, one can compare our result
with the result in [90] that shows that the binary version of the problem without the
row outliers is FPT parameterized by only D. However, in the presence of the row
outliers the dependence on k is unavoidable as we state in our next theorem.

Theorem 6.2. Categorical k-Clustering with Column Outliers is W[1]-
hard parameterized by

· either k + (d− `)

· or `

even when D = 0 and Σ = {0, 1}. Moreover, assuming the Exponential Time Hypoth-
esis (ETH), the problem cannot be solved in time f(k) · do(k) · nO(1) for any function
f , even when D = 0 and the alphabet Σ is binary.

Note that when D = 0 and Σ = {0, 1}, from Theorem 6.1 it follows that
Categorical k-Clustering with Column Outliers can be solved in time
f(k) · dg(k) ·n2. Theorem 6.2 shows that the dependence on such a function g on k is
inevitable, unless W[1] = FPT, and g(k) is unlikely to be sublinear up to ETH. Theo-
rem 6.1 follows from a more general algorithm for Constrained Clustering with
Outliers. In this problem, one seeks a clustering with centers of clusters satisfying
the property imposed by a set of relations. Constrained clustering was introduced
in [88] as the tool in the design of approximation algorithms for binary low-rank ap-
proximation problems. The Constrained Clustering with Outliers problem
is basically the robust variant of this problem. This problem encompasses a number
of well-studied problems related to robust clustering and dimensionality reduction,
and our algorithm for constrained clustering implies fixed-parameter tractability for
all these problems. Now we move to define Constrained Clustering with Out-
liers formally.

A p-ary relation on Σ is a collection of p-tuples whose elements are in Σ. For
example, R = {(0, 1, 0), (1, 1, 0)} is a 3-ary relation on {0, 1}.

Definition 6.3 (Vectors satisfying R). An ordered set C = {c1, c2, . . . , cp} of
d-dimensional vectors in Σd is said to satisfy a set R = {R1, R2, . . . , Rm} of p-ary
relations on Σ if for all 1 ≤ i ≤ d, the p-tuple formed by the i-th coordinates of
vectors from C, that is (c1[i], c2[i], . . . , cp[i]), belongs to Ri.
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For example, consider Σ = {0, 1}, d = 2, p = 3, and relation R = {R1, R2}, where
R1 = {(0, 1, 0), (1, 1, 0)}, R2 = {(1, 0, 0), (1, 1, 1)}. Then the set with

c1 =

(
0
1

)
, c2 =

(
1
0

)
, c3 =

(
0
0

)
satisfies R, as (c1[1], c2[1], c3[1]) = (0, 1, 0) ∈ R1 and (c1[2], c2[2], c3[2]) = (1, 0, 0) ∈
R2. On the other hand, the set with

c1 =

(
0
1

)
, c2 =

(
0
0

)
, c3 =

(
0
0

)
does not satisfy R, because (c1[1], c2[1], c3[1]) = (0, 0, 0) 6∈ R1.

We define the following constrained variant of robust categorical clustering.

Input: An alphabet Σ, an n × d matrix A with rows a1,a2, . . . , an
such that aj ∈ Σd for all 1 ≤ j ≤ n, a positive integer k, non-
negative integers D and `, a set R = {R1, R2, . . . , Rd} of k-ary
relations on Σ.

Task: Decide whether there is a subset O ⊂ {1, 2, . . . , n} of size at
most `, a partition I = {I1, I2, . . . , Ik} of {1, 2, . . . , n} \O, and
a set C = {c1, c2, . . . , ck} of d-dimensional vectors in Σd such
that C satisfies R and

k∑
i=1

∑
j∈Ii

dH(aj , ci) ≤ D.

Constrained Clustering with Outliers

Thus in Constrained Clustering with Outliers we want to identify a set
of outliers ai, i ∈ O, such that the remaining n− ` vectors could be partitioned into
k clusters {I1, I2, . . . , Ik}. Each cluster Ij could be identified by its center cj ∈ Σd

as the set of vectors that are closer to cj ∈ Σd than to any other center (ties are
broken arbitrarily). Then the cost of each cluster Ij is the sum of the Hamming
distances between its vectors and the corresponding center cj ∈ Σd. However, there
is an additional condition that the set of cluster centers C = {c1, c2, . . . , ck} must
satisfy the set of k-ary relations R. And, the total sum of costs of all clusters must
not exceed D.

We prove the following theorem.

Theorem 6.4. Constrained Clustering with Outliers is solvable in time
(kD)O(kD)|Σ|kD · nO(k) · d2.
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Note that Categorical k-Clustering with Row Outliers is also a re-
stricted version of Constrained Clustering with Outliers corresponding to
the case when every relation Ri ∈ R contains all possible k-tuples over Σ, that is,
there are no constraints on the centers. Hence, by Theorem 6.4, we readily obtain
the same result for this problem. However, in this special case we show that it is
possible to obtain an improved result that matches the result without outliers.

Theorem 6.5. Categorical k-Clustering with Column Outliers is solvable
in time 2O(D logD)|Σ|D · (nd)O(1).

In particular, the theorem implies that the problem is FPT parameterized by D
and |Σ|. We note that the running time of Theorem 6.5 matches the running time
in [90] obtained for the (vanilla) k-median clustering problem without outliers on
binary data. The interesting feature of the theorem is that the running time of the
algorithm does not depend on the number of outliers `, matching the bound of the
problem without outliers. Most of the clustering procedures in robust statistics, data
mining and machine learning perform well only for small number of outliers. Our
theorem implies that if all of the inlier points could be naturally partitioned into k
distinct clusters with small cost, then such a clustering could be efficiently recovered
even after arbitrarily many outliers are added. Indeed, the time complexity in all
of our results are independent of the number of outliers `, which essentially portray
the same kind of behavior. One of our main contributions is to design algorithms
that return exact solutions and are insensitive to the amount of noise and irrelevant
features as well.

Beyond the proof of Theorem 6.1, Theorem 6.4 has a number of interesting appli-
cations on low-rank approximation type problems. In particular, it implies a number
of FPT algorithms for Robust L0-Low Rank Approximation, Robust Low
Boolean-Rank Approximation and Robust Projective Clustering. We
define these problems and explain the connections with Theorem 6.4 later in this
chapter.

Both of our algorithmic results, Theorems 6.4 and 6.5, have at their core the sub-
hypergraph enumeration technique introduced by Marx [156]. This is fairly natural,
since our algorithms solve generalized versions of the vanilla binary clustering prob-
lem, and the only known FPT algorithm [90] for the latter problem parameterized by
D relies on the hypergraph enumeration as well. In fact, our algorithm for Categor-
ical k-Clustering with Row Outliers closely follows this established approach
of applying the hypergraph construction to clustering problems, presented in the pre-
vious chapter for Lp-k-Clustering. However, for the Constrained Clustering
with Outliers problem the existing techniques do not work immediately. To deal
with this, we generalize the previously used hypergraph construction.

In what remains of this chapter, we present the algorithms and lower bounds
discussed above. We begin with the simpler case of Categorical k-Clustering
with Row Outliers in Section 6.1. In Section 6.2 we discuss implications of the
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Constrained Clustering with Outliers algorithm for other problems, includ-
ing Categorical k-Clustering with Column Outliers and several low-rank
approximation problems. Then in Section 6.3 we move on to the main result, the
FPT algorithm for Constrained Clustering with Outliers. We present the
hardness result for Categorical k-Clustering with Column Outliers in Sec-
tion 6.4. Finally, in Section 6.5, we conclude this chapter with some open problems.

6.1 Categorical k-Clustering with Row Outliers

In this section we give a proof of Theorem 6.5. Let us recall that the theorem
states that Categorical k-Clustering with Row Outliers is solvable in time
2O(D logD)|Σ|D(nd)O(1).

First, we briefly discuss the intuition of the algorithm. Given an instance (A, k,
D, `) of Categorical k-Clustering with Row Outliers, we note that at most
2D distinct rows can belong to “nontrivial” clusters (with at least 2 distinct rows),
exactly like in the case without the outliers. So we employ a color-coding scheme
to partition the rows in a way so that every row belonging to a nontrivial cluster of
a fixed feasible solution is colored with its own color. Thus we reduce to multiple
instances of the problem we call Cluster Selection. In Cluster Selection,
we are given sets of rows U1, U2, . . . , Up and a parameter D. The goal is to select
p rows b1, b2, . . . , bp and a cluster center s such that bt ∈ Ut for 1 ≤ t ≤ p and∑p
t=1 dH(bt, s) ≤ D. Up to the change to categorical data, this is the same problem

as defined in [90] under the same name, and as L0-Cluster Selection defined in
the previous chapter. The hypergraph-based algorithm for it is essentially the same
too, although we present it for completeness in this section.

A specific issue we need to deal with in the Categorical k-Clustering with
Row Outliers problem is the following. If we encounter a number of identical rows,
we need to treat them as an indivisible set (initial cluster), as only a cluster with
sufficiently many different rows can have large cost. However, a potential flaw of this
approach is that in an optimal solution, identical rows can belong to different clusters
and to the set of outliers. To handle this, we prove that the optimal solution can
always be “normalized”. Namely, we can rearrange clusters of the optimal solution
in a way that at most one initial cluster is split between a solution cluster and the
set of outliers, and every other initial cluster is completely contained in either one
of the resulting clusters or the set of outliers. Then, guessing the one initial cluster
being split solves the issue. After the color-coding and solving Restricted Clustering,
each remaining initial cluster is either a trivial cluster in the solution, or belongs to
the outliers. This can be decided greedily.

Now we move to the formal proof of Theorem 6.5. Let (A, k,D, `) be the input to
Categorical k-Clustering with Row Outliers, where A is an n×d matrix, k
is the number of clusters, D is the cost of the solution and ` is the number of outliers.

Let β be the number of pairwise distinct rows in A. We start with partitioning
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the rows of A into sets of identical rows J = {J1, J2, . . . , Jβ}. That is, all rows in
each Ji are equal. We refer to such a set Ji as an initial cluster.

We show that for any yes-instance, there is a feasible solution such that the rows
of at most one initial cluster are “split” by the solution. More formally, consider a
clustering C = {I1, I2, . . . , Ik} of {1, 2, . . . , n} \ O. Then each of the initial clusters
Ji is exactly one of the following types with respect to C.

(i) {Ji} such that there is t with Ji ⊆ It,

(ii) {Ji} such that Ji is not of type (i), and Ji ⊆ ∪kj=1Ij ,

(iii) {Ji} such that Ji ⊆ O,

(iv) {Ji} such that Ji 6⊆ ∪kj=1Ij , Ji 6⊆ O, and there is t with Ji ⊆ It ∪O, and

(v) {Ji} such that Ji 6⊆ ∪kj=1Ij , Ji 6⊆ O, and there is no t with Ji ⊆ It ∪O.

Lemma 6.6. Let (A, k,D, `) be a yes-instance of Categorical k-Clustering
with Row Outliers. Then there is a set O ⊆ {1, 2, . . . , n} of size ` and k-clustering
C of {1, 2, . . . , n}\O of cost at most D such that every initial cluster of A with respect
to C is of type (i), (iii) or (iv). Moreover, there is at most one initial cluster of type
(iv).

Proof. Because (A, k,D, `) is a yes-instance, there is a set of outliers O and a k-
clustering of the remaining vectors of cost at most D. Among all such clusterings,
we select a clustering C = {I1, I2, . . . , Ik} of {1, 2, . . . , n} \O of cost at most D such
that with respect to C

the number of initial clusters of type (ii) is minimum, (6.1)

subject to (6.1)

the number of initial clusters of type (v) is minimum, (6.2)

and subject to (6.1) and (6.2),

the number of initial clusters of type (iv) is minimum. (6.3)

We claim that C is the required clustering. Targeting towards a contradiction, assume
first that there is an initial cluster of J of type (ii) with respect to C. Without loss
of generality, let this cluster be J1. Then J1 is not fully contained in any cluster of
C, but it is fully contained in the union of all clusters. We convert J1 into a type
(i) initial cluster by the following modification of C. Let ci be the center of cluster
Ii for i ∈ {1, . . . , k}. Also, let a be the unique row corresponding to Ji (the whole
initial cluster consists of rows equal to a). Let cq be a center that minimizes the cost
dH(a, ci) over all centers ci. We construct a new clustering C′ by reassigning the
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rows of J1 to the cluster Iq. Thus in the new clustering J1 becomes of type (i). The
assignment of all other initial clusters remains the same. Since dH(a, cq) ≤ dH(a, c1),
we have that the cost of the new clustering C′ is at most D, thus contradicting
assumption (6.1). Hence, there are no initial clusters of J of type (ii) with respect
to C.

By applying the same arguments to the non-outlier part of a type (v) initial cluster
with respect to C. The only difference that now type (v) initial cluster becomes type
(iv) thus contradicting assumption (6.2).

Finally, we already know that there are no types (ii) and (v) initial clusters with
respect to C. Assume that there are at least two, say J1 and J2, initial clusters of
type (iv) with respect to C. Then, there are clusters Ci1 and Ci2 in C such that
J1 ⊆ Ci1 ∪O and J2 ⊆ Ci2 ∪O. (We do not exclude the possibility of i1 = i2 here.)
Let ci1 and ci2 be the centers of Ci1 and Ci2 respectively. Let also a1 and a2 be
the unique rows corresponding to J1 and J2. Without loss of generality, we assume
that dH(a1, ci1)) ≤ dH(a2, ci2)). There are two cases: (1) |J2 ∩ Ci2 | ≤ |J1 ∩O|, and
(2) |J2 ∩ Ci2 | > |J1 ∩ O|. In the first case, we can assign additional |J2 ∩ Ci2 | rows
of Ji to Ci1 , and move |Jt ∩ Ci2 | rows of J2 from Ci2 to O. The cost increase is
|J2 ∩ Ci2 | · (dH(a1, ci1) − dH(a2, ci2)) ≤ 0. Also, type of J2 is now changed to (iii)
with respect to the new clustering. Thus, the number of type (iv) initial clusters has
decreased by at least 1 and no type (ii) or (iv) clusters were created. For the second
case, assign the |J1∩O| rows of J1 from O to Ci1 , and move |J1∩O| more rows of J2

from Ci2 to O. The cost increase is |J1 ∩ O| · (dH(a1, ci1) − dH(a2, ci2)) ≤ 0. Also,
type of J1 is now changed to (i) with respect to the new clustering. Thus, in this case
also, the number of type (iv) initial clusters has decreased by 1. In both cases we
constructed clusterings contradicting (6.3). Hence there is at most one initial cluster
of type (iv) with respect to C.

Now, we describe our algorithm. The algorithm tries to find a feasible clustering
(if any) that satisfies the property of Lemma 6.6. As there is at most one initial
cluster that can get split, we can guess it in advance. Suppose Jt be this initial
cluster. We can also guess the number of rows `′ of Jt that would be part of the
outliers set. We construct a new instance of the problem which contains all the rows
in Ji for 1 ≤ i ≤ β and i 6= t, and exactly |Jt| − `′ rows of Jt. Let A′ be the matrix
A containing these rows. Then, our new instance is (A′, k,D, `− `′). The advantage
of working with this instance is that in the desired clustering no initial cluster gets
split. Next, we show how to find such a clustering for this instance.

For simplicity of notations, let us denote the input instance by (A, k,D, `). As no
initial cluster in the desired clustering gets split, an initial cluster can either form its
own cluster, or becomes part of the outliers, or gets merged with other initial clusters
to form a new cluster. We refer to the last type of clusters as composite clusters.
Now, we have the following simple observation.

Observation 6.7. In a feasible clustering, the total number of initial clusters that
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can be part of the composite clusters is at most 2D. The total number of composite
clusters is at most D.

Next, we use the color coding technique of [10] to randomly color the initial clus-
ters by one of the colors in {1, 2, . . . , 2D}. This is done analogously to Section 5.1,
where we reduced Lp-k-Clustering to Lp-Cluster Selection in the case of clus-
tering integer-valued points with the distance distp. The idea is that with good
probability the initial clusters that form the composite clusters get colored by pair-
wise distinct colors. Thus, assuming this event occurs, it is sufficient to select only
one initial cluster from each color class to find out such initial clusters. However, we
do not know how to combine those initial clusters. Nevertheless, we can guess such
combination by trying all possible partitions of {1, 2, . . . , 2D} that contains at most
D parts. For each part, we can also guess the cost of the corresponding composite
cluster. By Observation 6.7, the selected initial clusters corresponding to each part
form a composite cluster. Each initial cluster which is not selected would either form
its own cluster or become part of the outliers. However, an initial cluster that forms
its own cluster does not incur any cost. Hence, any subsets of the appropriate num-
ber of non-selected initial clusters can form their own clusters without incurring any
extra cost. However, we need to ensure that the number of outliers is at most `. To
ensure this, we assign the non-selected initial clusters to the outliers set O in non-
decreasing order of their cardinalities. This makes sure that we can pack maximum
number of initial clusters into O.

In the light of the above discussion, the problem boils down to the Cluster
Selection problem with exactly one cluster that we recall here. Let Sj be the
set of indices of the initial clusters colored by the color j for all 1 ≤ j ≤ 2D.
Also, denote the unique row in Jj by bj for 1 ≤ j ≤ β, and let the weight of bj ,
wj = |Jj |. Fix a partition T1, T2, . . . , Tτ of {1, 2, . . . , 2D}. Also, guess τ positive
integers D1, D2, . . . , Dτ such that

∑τ
i=1Di = D. Di is the guess for the cost of the

ith composite cluster.

Fix a part i of the partition, where 1 ≤ i ≤ τ . Let the set of color indices
Ti = {i1, i2, . . . , ip}. For each 1 ≤ t ≤ p, let U it = ∪j∈Sitbj , i.e the set of unique rows
of the initial clusters which are colored by color it. The Cluster Selection problem
that we need to solve is the following. We are given the sets of rows U i1, U

i
2, . . . , U

i
p

and a parameter Di. The goal is to select p rows bj1 , bj2 , . . . , bjp and a cluster center
si such that bjt ∈ U it for 1 ≤ t ≤ p and

∑p
t=1 wjt · dH(bjt , s

i) ≤ Di.

Solving Cluster Selection for categorical data equipped with the Hamming
distance is practically identical to the case of Theorem 5.14. The only difference is
that when we obtain a candidate center and coordinates where its value needs to be
changed, we do a bruteforce enumeration of all possible values in time |Σ|Di . Thus, we

obtain an algorithm for Cluster Selection with running time 2O(Di logDi)|Σ|Di ·
(nd)O(1). For completeness, we present the detailed proof next.
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Solving Cluster Selection for categorical data

For simplicity, we drop the suffix i from all the notations. Thus, now we are given
the sets of rows U1, U2, . . . , Up and a parameter D. Let c be a center corresponding
to an optimum feasible clustering I with the set B = {bj1 , bj2 , . . . , bjp} of chosen
rows. Also, let U = ∪pt=1Ut.

Suppose x is a vector such that there are at most D positions h with x[h] 6= c[h].
Consider the hypergraph H defined in the following way with respect to x. The
labels of the vertices of H are in {1, 2, . . . , d}. For each bjt ∈ B, we add wjt copies
of the edge S ⊆ {1, 2, . . . , d} such that h ∈ S if x[h] 6= y[h].

Lemma 6.8. Suppose the input is a yes-instance. Consider a vector x such that
there is at most D positions h where x[h] 6= c[h]. Also, consider the hypergraph H
defined in the above with respect to x. There exists a subhypergraph H∗0 of H with
the following properties.

(i) |V (H∗0 )| ≤ D.

(ii) |E(H∗0 )| ≤ 200 lnD.

(iii) The indices in V (H∗0 ) are the exact positions h such that x[h] 6= c[h].

(iv) The fractional cover number of H∗0 is at most 4.

To prove the above lemma, first, we show the existence of a subhypergraph that
satisfies all the properties except the second one. Let P be the set of positions h such
that x[h] 6= c[h]. Let H0 be the subhypergraph of H induced by P . We show that
H0 satisfies the first, third and fourth properties mentioned in Lemma 6.8.

By definition of x, P contains at most D indices. The first property follows
immediately. Next, we show that the third property also follows for H0. As V (H0) ⊆
P , in every position h ∈ V (H0), x[h] 6= c[h]. It is sufficient to show that for any
position h with x[h] 6= c[h], h ∈ V (H0). Consider any such position h. Then, if there
is at least one y ∈ B such that x[h] 6= y[h], there is an edge e in H that contains h.
Now, h ∈ P by definition. Thus, the edge e′ = e ∩ P ∈ H0 also contains h. Hence,
h ∈ V (H0). In the other case, for all y ∈ B, x[h] = y[h]. However, this case does
not occur. Otherwise, we can replace the value c[h] by x[h]. The new center c would
incur lesser cost, as now c[h] = y[h] for all y ∈ B and previously c[h] 6= y[h] for all
y ∈ B. Next, we show that the fourth property holds for H0.

Lemma 6.9. The fractional cover number of H0 is at most 2.

Proof. Note that the total number of edges of H0 is τ =
∑p
t=1 wjt . We claim that

each vertex of H0 is contained in at least τ/2 edges.
Consider any vertex h of H0. Let h be contained in δτ edges. Thus, by definition,

(1− δ)τ vectors of B (with multiplicity equal to their weights) do not differ from x
at location h. Consider replacing c[h] by x[h] at position h of c. Next, we analyze
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the change in cost of the clustering I. Note that the cost corresponding to positions
other than h remains same. As c[h] 6= x[h], previously each of the (1 − δ)τ rows
were paying a cost of at least 1 corresponding to position h. Now, as c[h] is replaced
by x[h] and consequently c[h] = x[h], for these rows, the cost decrease is at least
(1− δ)τ . Now, the cost increase for the remaining δτ rows is at most δτ .

As I is an optimum feasible clustering, the cost decrease must be at most the
cost increase. It follows that δ ≥ 1/2.

So far we have proved the existence of a subhypergraph that satisfies all the
properties except the second. Next, we prove the existence of a subhypergraph that
satisfies all the properties. The proof of the following lemma is very similar to the
proof of Lemma 6.20.

Lemma 6.10. Let D ≥ 2. Consider the subhypergraph H0 that satisfies all the
properties of Lemma 6.8 except (2). It is possible to select at most 200 lnD edges
from H0 such that the subhypergraph H∗0 obtained by removing all the other edges
from H0 satisfies all the properties of Lemma 6.8.

The Algorithm

We consider all possible rows x ∈ U and for each of them construct a hypergraph
G whose vertices are in {1, 2, . . . ,m}. For each row bj ∈ U , we add wj copies of
the edge S ⊆ {1, 2, . . . ,m} such that h ∈ S if x[h] 6= bj [h]. For all hypergraphs H0

having at most D vertices and at most 200 lnD edges, we check if each vertex of H0 is
contained in at least 1/4 fraction of the edges. If that is the case, we use the algorithm
of Theorem 5.13 to find every place P ′ where H0 appears in G as subhypergraph.
For each such set P ′, we perform all possible D′ ≤ D edits in x at the locations in
P ′. After each such edit, we retrieve the edited vector x and construct a clustering
considering x as its center in the following way. For each 1 ≤ t ≤ p, we select a
vector bj from Ut such that dH(x, bj) is the minimum over all bj ∈ Ut. If the cost of
this clustering is at most D, we output x as a candidate center. If no such vector is
output as a candidate center, we return “NO”.

Next, we analyze the correctness and time complexity of this algorithm.

The Analysis.

Lemma 6.11. The above algorithm successfully outputs c as a candidate center.

Proof. Consider any vector x ∈ B. Note that there is at most D positions h where
x[h] 6= c[h]. Consider the hypergraph G constructed by the algorithm corresponding
to x. Note that the hypergraph H defined in Lemma 6.8 is a partial subgraph of G.
Thus, the subhypergraph H∗0 of H is also a subhypergraph of G. As we enumerate
all hypergraphs having at most D vertices, at most 200 lnD edges and at most 4
fractional covering number, H∗0 must be considered by the algorithm. Let P ′ be the
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place in G where H∗0 appears. By the third property of Lemma 6.8, the locations in P ′

are the exact positions h such that x[h] 6= c[h]. It follows that an edit corresponding
to P ′ generates the vector c, as dH(x, c) ≤ D. Hence, c must be an output of the
algorithm.

Time Complexity. Next, we discuss the time complexity of our algorithm. For
each choice of x, the hypergraph G can be constructed in nO(1) time. The number
of distinct hypergraphs H0 with at most D vertices and at most 200 lnD edges is
2O(D logD), since there are 2D possibilities for each edge. Now we analyze the time
needed for locating a particular H0 in G. For any vector y ∈ B, dH(y, c) ≤ D. By
triangle inequality, dH(x,y) ≤ 2D. Thus, the size of any edge in H is at most 2D,
and we can remove any edge of G of size more than 2D. From Theorem 5.13, it
follows that every occurrence of H0 in G can be found in DO(D) · (2D)

4D+1 ·n5 ·m2 =
DO(D)nO(1)m2 time. If H0 appears at some place in G, it would take O((D|Σ|)D)

time to edit x. Hence, in total the algorithm runs in 2O(D logD)|Σ|D(nm)O(1) time.

Finally, Theorem 6.5 is proven. We restate it here for convenience.

Theorem 6.5. Categorical k-Clustering with Column Outliers is solvable
in time 2O(D logD)|Σ|D · (nd)O(1).

6.2 Constrained Clustering Applications

Before showing the algorithm for Constrained Clustering with Outliers, we
discuss the implications of solving this general problem. This section is dedicated to
two applications of Constrained Clustering with Outliers, the Categori-
cal k-Clustering with Column Outliers problem, and several binary low-rank
approximation problems.

6.2.1 Categorical k-Clustering with Column Outliers

Here we show that Categorical k-Clustering with Column Outliers is a
special case of Constrained Clustering with Outliers. Observe that for Cat-
egorical k-Clustering with Column Outliers, the approach of Section 6.1 for
Categorical k-Clustering with Row Outliers is not applicable, for several
reasons. Most crucially, it does not seem that one can partition the problem into k
independent instances of a simpler single-center selection problem, in a way that we
reduce Categorical k-Clustering with Row Outliers to k instances of Clus-
ter Selection (for a fixed coloring). Intuitively, the possibility to remove outlier
rows does not allow such a partition as all the clusters depend simultaneously on the
choice of the outlier rows. Moreover, our hardness result shows that for Categori-
cal k-Clustering with Column Outliers the running time cannot match with
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Categorical k-Clustering with Row Outliers, as no no(k) time algorithm is
possible for constant D, assuming ETH.

Intuitively, the hardness of Categorical k-Clustering with Column Out-
liers lies in the fact that we have to select the outlier rows and to group columns
into clusters at the same time. Thus, to make the problem more accessible, it is nat-
ural to give a reduction to Constrained Clustering with Outliers, where both
partitioning into clusters and removing the outliers are with respect to the columns,
at the cost of having arbitrary row-wise constraints on the cluster centers.

The general idea of the reduction from Categorical k-Clustering with Col-
umn Outliers to Constrained Clustering with Outliers is as follows. For
any matrix, a set of row outliers can be treated as column outliers of the transposed
matrix. Similarly, a clustering of the columns of the transposed matrix induces a
clustering of the rows of the original matrix. However, we want to find a clustering
of the columns of the original matrix. To do this, one can add extra constraints
on the cluster centers so that a clustering of the columns of the transposed matrix
implicitly induces also a clustering of its rows. Essentially, grouping rows into k clus-
ters corresponds to grouping columns into |Σ|k clusters such that the centers of these
column clusters can be “read off” from the k row centers. Simply by transposing,
the clustering of the columns of the transposed matrix induces a clustering of the
rows of the original matrix, which is our desired clustering. This is the crux of our
reduction. The next lemma shows this reduction formally.

Lemma 6.12. For any instance (A, k,D, `) of Categorical k-Clustering with
Column Outliers, one can construct in time O(nd+k ·|Σ|k) an equivalent instance
(B, k′, D′, `′,R) of Constrained Clustering with Outliers such that B is the

transpose of A, k′ = |Σ|k, D′ = D and `′ = `.

Proof. Given an instance I = (A, k,D, `) of Categorical k-Clustering with
Column Outliers, we construct an instance I ′ = (B, k′, D′, `′,R) of Constrained

Clustering with Outliers such that B is the transpose of A, k′ = |Σ|k, D′ = D
and `′ = `. The set of constraints R is defined as follows. Let S = {s1, s2, . . . , s|Σ|k}
be the lexicographic ordered collection of all |Σ|k strings of length k on alphabet Σ.

Also, let Q be the |Σ|k × k matrix such that the i-th row of Q is the i-th string of
S. Thus, each element of Q is in Σ. For each column qj of Q with 1 ≤ j ≤ k, we

construct a tuple zj = (qj [1], qj [2], . . . , qj [|Σ|k]). Let R be the set of these tuples.
To construct R we set Ri = R for all i. This finishes our construction.

Next, we prove that I is a yes-instance of Categorical k-Clustering with
Column Outliers if and only if I ′ is a yes-instance of Constrained Clustering
with Outliers. The lemma follows immediately.

First, suppose I ′ is a yes-instance of Constrained Clustering with Out-
liers. Let X = {X1, X2, . . . , X|Σ|k} be a feasible clustering of the rows of B \ O,
the matrix B after removing the rows in O, where O is the set of outliers. Also, let
c1, c2, . . . , c|Σ|k be the corresponding centers. Note that as this clustering satisfies
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the constraints in R, each tuple (c1[j], c2[j], . . . , c|Σ|k [j]) is one of the k tuples of

R. Let Y = {Y1, Y2, . . . , Yk} be the partition of the columns of B \ O, such that
Yt contains all the indices j such that (c1[j], c2[j], . . . , c|Σ|k [j]) = zt for 1 ≤ t ≤ k.

We reorder the columns of matrix B \ O based on this partition. In particular, we
modify the column numbers in a way so that the columns in Y1 become the first |Y1|
columns, the columns in Y2 become the next |Y2| columns, and so on (see Figure 6.1).
Now, let us go back to the clustering {X1, X2, . . . , X|Σ|k}. Note that this is still a

clustering of the new matrix B \O with cost at most D with columns of the centers
reordered in the same way. Indeed, by construction, the reordering of the centers
ensures that the center of Xi is the row vector (z1[i], . . . |Y1| times , z2[i], . . . |Y2| times
, . . . , zk[i], . . . |Yk| times) (see Figure 6.1). Now, note that {Y1, Y2, . . . , Yk} is a clus-
tering of the rows in A−O. We claim that its cost is at most D. As |O| ≤ l, it follows
that I is a yes-instance of Categorical k-Clustering with Column Outliers.
Note that some clusters might be empty. But, as they do not incur any cost, we
keep them for simplicity. To analyze the cost, set the center of Yj to the row vector

(zj [1], . . . |X1| times , zj [2], . . . |X2| times , . . . , zj [|Σ|k], . . . |X|Σ|k | times) (see Figure

6.1). Now, because of the symmetry between the two clusterings X and Y , their
costs are the same. Hence, the claim follows.

Now, suppose I is a yes-instance of Categorical k-Clustering with Column
Outliers and consider a feasible clustering Y = {Y1, Y2, . . . , Yk}. Let O be the
set of indices of the outliers. Also, let c1, c2, . . . , ck be the corresponding centers.
Note that each string of the form c1[j]c2[j] . . . ck[j] ∈ S. For a string s ∈ S, we
say column j is of type s if c1[j]c2[j] . . . ck[j] = s. Let {X1, X2, . . . , X|Σ|k} be the

partition of the columns of A−O based on their types. In particular, for the i-th
string s ∈ S, Xi contains all columns of type s. Note that {X1, X2, . . . , X|Σ|k} is

also a clustering of the rows of B \O. We show that the cost of this clustering is at
most D. To analyze the cost, choose the row vector (si[1], . . . |Y1| times , si[2], . . . |Y2|
times , . . . , si[k], . . . |Yk| times) as the center vector of the cluster Xi of the columns
of B \ O. Note that the centers chosen in this way satisfy the constraints in R, as

the center tuple (s1[j], s2[j], . . . , s|Σ|k [j]) = (qj [1], qj [2], . . . , qj [|Σ|k]) corresponding
to index j is in R. It follows that the cost of this clustering is at most D, as it is
induced by the clustering Y and the centers c1, c2, . . . , ck.

Lemma 6.12 together with Theorem 6.4 immediately give us Theorem 6.1 with

f(k,D, |Σ|) = (k′D)O(k′D)|Σ|k
′D

and g(k, |Σ|) = O(k′), where k′ = |Σ|k. The theo-
rem is restated here.

Theorem 6.1. Categorical k-Clustering with Column Outliers is solvable
in time f(k,D, |Σ|) · dg(k,|Σ|) · n2, where f and g are computable functions.
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Figure 6.1: Figure showing the clustering X of D \O and Y of A−O. The common center
coordinate values are shown inside submatrices.

6.2.2 Low Rank Approximation

Now we show that Constrained Clustering with Outliers encapsulates not
only Categorical k-Clustering with Column Outliers, but also robust vari-
ants of binary/finite field low-rank approximations problems, and projective cluster-
ing. We give the formal definitions next.

Robust L0-Low Rank Approximation. The vanilla case of the L0-Low
Rank Approximation problem is the following. Given an n × d matrix A over
GF(p) (a finite field of order p), the task is to find an n × d matrix B over GF(p)
of GF(p)-rank at most r which is closest to A in the L0-entrywise norm. Thus, the
goal is to minimize ‖A −B‖0,0, the number of different entries in A and B. In the
robust version of this problem some of the rows of A could be outliers, which brings
us to the following problem.
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Input: An n×dmatrix A over GF(p), a positive integer r, non-negative
integers D and `.

Task: Decide whether there is a matrix B of GF(p)-rank at most r,
and a matrix C over GF(p) with at most ` non-zero rows such
that

‖A−B−C‖0,0 ≤ D

Robust L0-Low Rank Approximation

Note that in this definition the non-zero rows of C can take any values. However, it
is easy to see that the problem would be equivalent if the rows of C were constrained
to be either zero rows or the respective rows of A. This holds since if C contains a
non-zero row, it could be replaced by the respective row of A, and the respective row
of B can be replaced by a zero row. This does not increase the cost nor the rank of
B. Thus any of the two formulations allows to restore the row outliers in A from C.

The following lemma gives a reduction from Constrained Clustering with
Outliers.

Lemma 6.13. For any instance (A, r,D, `) of Robust L0-Low Rank Approxi-
mation, one can construct in time O(n+d+pO(r)) an equivalent instance (X, k′, D′,
`,R) of Constrained Clustering with Outliers, where X = A, k′ = pr,
D′ = D and R is a set of constraints.

(By equivalent instances we mean that (A, r,D, `) is a yes-instance if and only
if (X, k′, D′, `,R) is a yes-instance and solution corresponding to a yes-instance
(X, k′, D′, `,R) can be used to construct a solution for the yes-instance (A, r,D, `).)
The proof of Lemma 6.13 is almost identical to the proof of [88, Lemma 1] and we
omit it here. By Lemma 6.13 and Theorem 6.4, we derive the following corollary.

Theorem 6.14. Robust L0-Low Rank Approximation is FPT parameterized by
D when p and r are constants.

Robust Low Boolean-Rank Approximation is a variant of the robust low-
rank approximation problem when the approximation matrix B is of low Boolean
rank. More precisely, let A be a binary n× d matrix. Now we consider the elements
of A to be Boolean variables. The Boolean rank of A is the minimum r such that
A = U ∧ V for a Boolean n × r matrix U and a Boolean r × d matrix V, where
the product is Boolean, that is, the logical ∧ plays the role of multiplication and ∨
the role of sum. Here 0 ∧ 0 = 0, 0 ∧ 1 = 0, 1 ∧ 1 = 1 , 0 ∨ 0 = 0, 0 ∨ 1 = 1, and
1 ∨ 1 = 1. Thus the matrix product is over the Boolean semi-ring (0, 1,∧,∨). This
can be equivalently expressed as the normal matrix product with addition defined as
1 + 1 = 1. Binary matrices equipped with such algebra are called Boolean matrices.
The variant of the low Boolean-rank matrix approximation is the following problem.
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Input: A binary n × d matrix A a positive integer r, non-negative
integers D and `.

Task: Decide whether there is a binary matrix B of Boolean-rank at
most r, and a binary matrix C with at most ` non-zero rows
such that

‖A−B−C‖0 ≤ D

Robust Low Boolean-Rank Approximation

By Theorem 6.4 and reduction from constrained clustering to the Boolean-rank
matrix approximation identical to [88, Lemma 2], we derive the following corollary.

Theorem 6.15. Robust Low Boolean-Rank Approximation is FPT parame-
terized by D when r is a constant.

Robust Projective Clustering generalizes Categorical k-Clustering with
Row Outliers and Robust Low GF(p)-Rank Approximation. Here the cen-
ters of clusters are linear subspaces of bounded dimension r. More precisely, in
Robust Projective Clustering we are given a set X ⊆ Σd of n d-dimensional
vectors over GF(p) and positive integers k, r,D and `. The task is to decide whether
there is a family of r-dimensional linear subspaces C = {C1, . . . , Ck} over GF(p) and
a set of outliers O ⊆ X of size at most `, such that∑

x∈X\O

min
1≤i≤k

dH(x, Ci) ≤ D.

The proof of the following lemma is similar to the proof of [88, Lemma 3].

Lemma 6.16. For any instance (X, k, r,D, `) of Robust Projective Cluster-
ing, one can construct in time O(n+d+pk·r) an equivalent instance (X, k′, D′, `,R)
with X = X, k′ = pk·r, D′ = D, and `′ = ` of Constrained Clustering with
Outliers.

Then by Theorem 6.4, we obtain the following.

Theorem 6.17. Robust Projective Clustering is FPT parameterized by D
when k, r and p are constants.

Related work. To give more context on the problems introduced above, here we
survey briefly relevant literature. For the general introduction to robust variants of
the low-rank approximation problem, we refer to Chapter 3 of this work; here we
focus on the results concerning finite fields/Boolean rank.



108 6 | Robust Categorical Clustering

For robust variants of categorical low-rank matrix approximation, we are not
aware of any approximation or parameterized algorithms. For the vanilla variant,
L0-Low Rank Approximation, a number of parameterized and approximation
algorithms were developed. Ban et al. [17] gave a PTAS for L0-Low Rank Ap-
proximation when the rank r of matrix B is a constant. For the case when the field
is GF(2), faster EPTAS was obtained in [17] and [88], see also [138]. When the rank
r is not bounded, Ban et al. [17] proved that assuming P 6=NP, there is no constant
factor approximation in polynomial time for the problem. Moreover, assuming ETH,
for every α > 1 there is δ > 0 such that no α-approximate solution could be found

in time 2r
δ

(mn)O(1).

L0-Low Rank Approximation is strongly related to the problem of finding the
rigidity of a matrix. (For a target rank r, the rigidity of a matrix A over field GF(p)
is the minimum `0-distance between A and a matrix of rank at most r.) Rigidity is a
classical concept in Computational Complexity Theory studied due to its connections
with lower bounds for arithmetic circuits [105, 182, 170]. We refer to [148] for an
extensive survey on this topic. Most of the known results about the parameterized
complexity of L0-Low Rank Approximation follows from the results for Matrix
Rigidity. Fomin et al. have proved in [91] that for every finite field, L0-Low
Rank Approximation is W[1]-hard being parameterized by D. However, when
parameterized by D and r, the problem becomes fixed-parameter tractable. The
result of Fomin et al. [91] also implies that L0-Low Rank Approximation admits
a polynomial kernel of size O(r2D2). For the special case of the binary field GF(2),

algorithm of running time 2O(r
√
D log(rD))(nd)O(1) was given in [90].

Low Boolean-Rank Approximation has attracted much attention, especially
in the data mining and knowledge discovery communities. In data mining, matrix
decompositions are often used to produce concise representations of data. Since much
of the real data is binary or even Boolean in nature, Boolean low-rank approximation
could provide a deeper insight into the semantics associated with the original matrix.
There is a big body of work done on Low Boolean-Rank Approximation, see e.g.
[18, 21, 72, 149, 158, 159, 180]. While computing GF(2)-rank (or rank over any other
field) of a matrix can be performed in polynomial time, deciding whether the Boolean
rank of a given matrix is at most r is already an NP-complete problem. Thus, Low
Boolean-Rank Approximation is NP-complete already for D = 0. This follows
from the well-known relation between the Boolean rank and covering edges of a
bipartite graph by bicliques [104]. The latter Biclique Cover problem is known to

be NP-complete [164]. Biclique Cover is solvable in 22O(r) · (nm)O(1) time [103]

and unless Exponential Time Hypothesis (ETH) fails, it cannot be solved in 22o(r) ·
(nm)O(1) time [46]. For the special case r = 1 and D ≤ ‖A‖0/240, an exact algorithm

of running time 2D/
√
‖A‖0 · (nm)O(1) for Low Boolean-Rank Approximation

was given in [38]. EPTAS for this problem were obtained in [17] and [88]. Finally,
parameterized algorithm for Low Boolean-Rank Approximation of running time
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2O(r2r
√
D logD)(nm)O(1) is known [90].

6.3 Solving Constrained Clustering with Outliers

In this section we prove Theorem 6.4 by giving an algorithm for Constrained
Clustering with Outliers that runs in (kD)O(kD)nO(k)d2|Σ|kD time.

Clearly, the approach used for Categorical k-Clustering with Row Out-
liers fails for Constrained Clustering with Outliers, as the constraints on
the centers do not allow to form clusters independently. Instead, we generalize the
hypergraph construction used for Cluster Selection to handle the choice of all
k centers simultaneously, as opposed to just one center at a time. This is the most
technical part of this chapter, and we will now sketch the generalized construction
briefly. The main idea is to base the hypergraph on k-tuples of rows instead of just
single rows.

Fix an optimal solution: a subset of outlier rows O ⊂ {1, 2, . . . , n}, a partition
I = {I1, I2, . . . , Ik} of {1, 2, . . . , n} \ O, and a k-tuple C = (c1, c2, . . . , ck) of d-
dimensional vectors representing the centers. First, pick a k-tuple x = (x1, . . . ,xk)
such that it is at distance at most D to the optimal k-tuple of centers C. This can be
done by guessing a row xj from each of the optimal clusters Ij , in total time nO(k).
To obtain the desired set C, it is sufficient to know in which rows x is different from
C, that is, positions h ∈ {1, . . . , d} such that (x1[h], . . . ,xk[h]) 6= (c1[h], . . . , ck[h]).
Denote this set of positions by P , which is a subset of {1, . . . , d}. There can be at
most D such rows, since x is at distance at most D from C, so |P | ≤ D. As there
are |Σ|k choices for a row, we can try all the |Σ|kD possible choices for C once the
set of row positions P is identified.

If x does not satisfy the constraints at a position h ∈ {1, . . . , d}, meaning that
x[h] = (x1[h], . . . ,xk[h]) /∈ Rh, then definitely x[h] 6= C[h]. For each such h, replace
the row x[h] with any tuple from Rh, this does not increase the number of rows
where C and x are different. From now on we assume that all rows of x satisfy the
constraints.

To identify the deviating rows, construct a hypergraph H in the following way.
Vertices of H are labeled by {1, . . . , d} representing row indices, like in the Cluster
Selection construction. However, the edges correspond to k-tuples of rows now.
For each k-tuple y = (y1, . . . ,yk) of rows of A, we add an edge S ⊆ {1, 2, . . . , d}
containing the rows where y and x are not equal. That is, h ∈ {1, 2, . . . , d} belongs
to S if (x1[h], . . . ,xk[h]) 6= (y1[h], . . . ,yk[h]). Now observe that the set of positions
P and the optimal clustering I correspond to the following subhypergraph H0 of
H. The vertex set V (H0) is exactly P . As for the edges, we have to carefully
select the subset of E(H). Recall that to apply Theorem 5.13 we crucially need
that the fractional edge cover number of H0 is bounded by a constant. It turns out
that restricting all edges of E(H) to V (H0) does not provide us with such a bound.
Instead, let T be the set of all k-tuples a = (ai1 , . . . , aik) such that ij ∈ Ij for all
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1 ≤ j ≤ k. The hyperedge set E(H0) is the subset of E(H) corresponding to the
tuples in T , and restricted to the vertices in V (H0). Intuitively, the tuples in T are
those that are relevant for the optimal clustering, and as we show next this gives us
the required fractional edge cover bound.

We claim that the fractional edge cover number of H0 is at most 2. Surprisingly,
the choice of T allows us to essentially lift the single-row argument to k-tuples of
rows as well. It suffices to show that for every vertex h in V (H0), at least half of
edges in E(H0) cover h. Or equivalently, at least for half of tuples y in T it holds
that y[h] 6= x[h]. Fix h, assume there is a cluster Ij such that there are at least
d|Ij |/2e elements a in Ij with a[h] 6= xj [h]. Then at least half of tuples in T do not
agree with x in the row h, since T is the Cartesian product of all optimal clusters
Ij . Otherwise, for every cluster Ij there are strictly less than d|Ij |/2e elements a in
Ij such that a[h] 6= xj [h]. This contradicts the optimality of C. Replace C[h] by
x[h], since the tuple x can be assumed to satisfy the constraints, the clustering is
still valid. If cj [h] = xj [h] for j ∈ {1, . . . , r}, the cost for the j-th cluster does not
change. If cj [h] 6= xj [h], then the cost decreases as xj [h] matches more than half of
the elements of Ij , while cj [h] could only match at most the remaining portion of
the elements.

By Theorem 5.13, we can enumerate all possible locations where H0 appears in
H in FPT time, as the fractional edge cover number of H0 is bounded. Since we can
also enumerate all possible hypergraphs on k vertices in FPT time (and even in kO(k)

time by repeating the proof of Lemma 6.20), we can enumerate all possible sets of
row positions where x differs from C, and Theorem 6.4 follows.

Now we move to the detailed proof. First, we show a structural lemma that would
be useful for analysis of the algorithm.

6.3.1 Structural Lemma

In this section, we prove a structural lemma that shows the existence of a “good”
subhypergraph. Consider a feasible clustering I = {I1, I2, . . . , Ik} having the min-
imum cost. Let {c1, c2, . . . , ck} be a fixed set of centers corresponding to I. Also,
let T be the set of all tuples of the form (ai1 ,ai2 , . . . , aik) such that ij ∈ Ij for all
j. Note that we do not actually need to know the set T — we just introduce the
notation for the sake of analysis. For a k-tuple x = (x1, . . . ,xk), we denote the tuple
(x1[j],x2[j], . . . ,xk[j]) by x[j]. Two k-tuples x and y are said to differ from each
other at location j if x[j] 6= y[j].

Let C be the k-tuple such that C = (c1, c2, . . . , ck). Suppose x = (x1, . . . ,xk) is
such that there are at most D positions h where x[h] 6= C[h], and for each 1 ≤ j ≤ d,
x[j] ∈ Rj . Consider the hypergraph H defined in the following way with respect to x.
The labels of the vertices of H are in {1, 2, . . . , d}. For each k-tuple y = (y1, . . . ,yk)
of T , we add an edge S ⊆ {1, 2, . . . , d} such that h ∈ S if x[h] 6= y[h].

In the following lemma, we show that the hypergraph H has a “good” subhyper-
graph.
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Lemma 6.18. (Structural Lemma) Suppose the input is a yes-instance. Consider a
k-tuple x = (x1, . . . ,xk) such that there are at most D positions h where x[h] 6= C[h]
and for each 1 ≤ j ≤ d, x[j] ∈ Rj. Also, consider the hypergraph H defined in the
above with respect to x. There exists a subhypergraph H∗ of H with the following
properties.

(i) |V (H∗)| ≤ D.

(ii) |E(H∗)| ≤ 200 lnD.

(iii) The indices in V (H∗) are the exact positions h such that x[h] 6= C[h].

(iv) The fractional cover number of H∗ is at most 4.

To prove the above lemma, first, we show the existence of a subhypergraph that
satisfies all the properties except the second one. Let P be the set of positions h such
that x[h] 6= C[h]. Let H0 be the subhypergraph of H induced by P . We show that
H0 satisfies the first, third and fourth properties mentioned in Lemma 6.18.

By definition of x, P contains at most D indices. The first property follows
immediately. Next, we show that the third property also follows for H0. As V (H0) ⊆
P , in every position h ∈ V (H0), x[h] 6= C[h]. It is sufficient to show that for any
position h with x[h] 6= C[h], h ∈ V (H0). Consider any such position h. Then, if
there is at least one tuple y ∈ T such that x[h] 6= y[h], there is an edge e in H that
contains h. Now, h ∈ P by definition. Thus, the edge e′ = e ∩ P ∈ H0 also contains
h. Hence, h ∈ V (H0). In the other case, for all tuples y in T , x[h] = y[h]. We show
that this case does not occur. For the sake of contradiction, suppose this case does
occur. This implies, for 1 ≤ j ≤ k, all rows in Ij contains the value xj [h] at location
h. Now, by definition of x, there is a k-tuple z in Rh such that z = x[h]. Replace
C[h] by z at position h of C. Let us compute the change in cost of the clustering I.
Note that the cost corresponding to positions other than h remains same. Previously
C[h] 6= x[h]. Thus, there is at least one 1 ≤ j ≤ k such that cj [h] 6= xj [h]. As all
rows in Ij contains the value xj [h] at location h, the previous cost corresponding to
location h is at least 1. However, after replacement the cost corresponding to location
h is exactly 0. Thus, the cost decrease is at least 1, which contradicts the optimality
of the previously chosen centers. Thus, the current case cannot occur, and hence the
third property follows.

Next, we show that the fourth property holds for H0. Indeed, we show a stronger
bound of 2.

Lemma 6.19. The fractional cover number of H0 is at most 2.

Proof. Note that the total number of edges of H0 is τ = |T |. We claim that each
vertex of H0 is contained in at least τ/2 edges.

Consider any vertex h of H0. Suppose there is a 1 ≤ j ≤ k, such that for at
least d|Ij |/2e rows in Ij the value at location h is not xj [h]. Note that each such
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row contributes to Πj−1
t1=1|It1 | ·Π

k
t2=j+1|It2 | = τ/|Ij | tuples (y1, . . . ,yk) of T such that

yj [h] 6= xj [h]. Thus, the edge corresponding to each such tuple contains h. It follows
that, at least d|Ij |/2e · (τ/|Ij |) ≥ τ/2 edges in E(H0) contain h.

In the other case, for all 1 ≤ j ≤ k and less than d|Ij |/2e rows in Ij , the value
at location h is not xj [h]. We prove that this case does not occur. Note that there
is a k-tuple z in Rh such that z = x[h]. Consider replacing C[h] by z at position h
of C. Next, we analyze the change in cost of the clustering I. Note that the cost
corresponding to positions other than h remains same. For a 1 ≤ j ≤ k, if previously
cj [h] = xj [h], the cost remains same. Otherwise, cj [h] 6= xj [h]. Note that for more
than d|Ij |/2e rows in Ij , the value at location h is xj [h]. Thus, by replacing cj [h] by
xj [h], the cost decrement corresponding to the index j and location h is at least 1.
As x[h] 6= C[h], there is an index j such that cj [h] 6= xj [h]. It follows that the overall
cost decrement is at least 1, which contradicts the optimality of the previously chosen
centers. Hence, this case cannot occur. This completes the proof of the lemma.

So far we have proved the existence of a subhypergraph that satisfies all the
properties except the second. Next, we show the existence of a subhypergraph that
satisfies all the properties. The following claim completes the proof of Lemma 6.18.
Its proof follows a standard sampling argument, and is nearly identical to the proof
of the corresponding Claim 5.17 for Lp-Cluster Selection.

Claim 6.20. Let D ≥ 2. Consider the subhypergraph H0 that satisfies all the prop-
erties of Lemma 6.18 except (2). It is possible to select at most 200 lnD edges from
H0 such that the subhypergraph H∗0 obtained by removing all the other edges from H0

satisfies all the properties of Lemma 6.18.

Proof. Recall that τ is the number of edges in H0. Construct a hypergraph H ′0
by selecting each edge of H0 independently at random with probability 150 lnD

τ .
The expected number of edges selected is 150 lnD. Also, by Proposition 11.14
with β = 1/3, the probability that at least 200 lnD edges are selected is at most
exp(−150 lnD/27) < 1/D2. Each vertex of H0 is contained in at least τ/2 edges.
Thus, the expected number of edges that cover a vertex of H ′0 is at least 75 lnD.
Moreover, by Proposition 11.14 with β = 1/3, the probability that a given vertex of
H∗0 is covered by at most 50 lnD edges is at most exp(−75 lnD/18) < 1/D3. There-
fore, with probability at least 1−1/D2−D ·1/D3, H ′0 contains at most 200 lnD edges
and each vertex of H ′0 is covered by at least 50 lnD edges. Thus, the fractional cover
number of H ′0 is at most 4. Hence, the second and the fourth property are satisfied.
As the vertex set does not get changed, the first and the third property also hold. It
follows that there exists a subhypergraph H∗0 that contains at most 200 lnD edges
from H0 and satisfies all the properties of Lemma 6.18.
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6.3.2 The Algorithm

In this section, we first describe our algorithm, and then provide the analysis of its
correctness and running time. Note that the goal of our algorithm is to retrieve a
feasible clustering if there is one.

A k-tuple x of rows of A is said to differ from R at a position j for 1 ≤ j ≤ d if
x[j] /∈ Rj .

First, we consider all k-tuples x = (x1, . . . ,xk) such that xj is a row of A for
1 ≤ j ≤ k, and apply the following refinement process on each of them.

· Let P ⊆ {1, 2, . . . , d} be the set of positions where x differs from R.

· If |P | > D, probe the next k-tuple x.

· For each position h ∈ P , replace x[h] by any element of Rh.

Next, for each refined k-tuple x = (x1, . . . ,xk), we construct a hypergraph G
whose vertices are in {1, 2, . . . , d}. For each k-tuple y = (y1, . . . ,yk) of rows of A,
we add an edge S ⊆ {1, 2, . . . , d} such that h ∈ S if x[h] 6= y[h]. For all hypergraphs
H∗0 having at most D vertices and at most 200 lnD edges, we check if each vertex
of H∗0 is contained in at least 1/4 fraction of the edges. If that is the case, we use
the algorithm of Theorem 5.13 to find every place P ′ where H∗0 appears in G as
subhypergraph. For each such set P ′, we perform all possible D′ ≤ D · k edits of
the tuple x at the locations in P ′. In particular, for each D′, the editing is done in
the following way. For each possible D′ entries (a1, . . . , aD′) in (x1, . . . ,xk) at the
locations in P ′ and each set of D′ symbols (s1, . . . , sD′) from Σ, we put sj at the
entry aj for all j. After each such edit, we retrieve the edited tuple (x1, . . . ,xk) and
perform a sanity check on this tuple to ensure that it is a valid k-tuple center. In
particular, for each index 1 ≤ h ≤ d, if there is a z ∈ Rh such that z = x[h], we tag x
as a valid tuple. Lastly, we output all such valid k-tuples as candidate centers if the
corresponding cost of clustering is at most D. If no k-tuple is output as a candidate
center, we return “NO”.

Note that, given a k-tuple candidate center z = (z1, . . . , zk), one can compute
a minimum cost clustering in the following greedy way, which implies that we can
correctly compute the cost of clustering in the above. At each step i, we assign a new
row of A to a center. In particular, we add a row aj of A to a cluster I ′t such that
aj incurs the minimum cost over all unassigned rows if it is assigned to a center, i.e,
it minimizes the quantity minkt′=1 d(aj , zt′), and zt is a corresponding center nearest
to aj . As we are allowed to exclude ` outliers, we assign n − ` rows. {I ′1, . . . , I ′k} is
the desired clustering. This finishes the description of our algorithm.

Analysis Again consider the feasible clustering with partition I = {I1, I2, . . . , Ik}
and the corresponding center tuple C = (c1, c2, . . . , ck) having the minimum cost.
First, we have the following observation.
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Observation 6.21. Suppose for a k-tuple x, x differs from C at D1 positions. Then,
after refinement, there is at most D1 positions h such that x[h] 6= C[h]. Moreover,
after refinement, dH(x,C) ≤ D1 · k.

The first part is true for the following reason. If x was different from R at a
position h, then x[h] 6= C[h] as well. Thus, refinement is applied for a position h
where x[h] already differs from C[h]. Hence, refinement does not affect a position h
where x[h] = C[h]. The moreover part follows trivially from the first part as x is a
k-tuple. Now, it is sufficient to prove the following lemma.

Lemma 6.22. Suppose there is a feasible clustering with partition I = {I1, I2, . . . , Ik}
as defined above. The above algorithm successfully outputs the k-tuple (c1, c2, . . . , ck).

Proof. Consider a k-tuple x = (x1, . . . ,xk) such that the row xj is in cluster Ij . As
the algorithm considers all possible k-tuples of rows in A, it must consider x. Note
that there can be at most D positions h such that x[h] 6= C[h]. By Observation
6.21, after refinement, there are at most D positions h where x[h] 6= C[h]. Also, for
each 1 ≤ j ≤ d, x[j] ∈ Rj . Let G be the hypergraph constructed by the algorithm
corresponding to this refined x. Note that the hypergraph H defined in Lemma
6.18 is a partial subhypergraph of G. Thus, the subhypergraph H∗ of H is also a
subhypergraph of G. As we enumerate all hypergraphs having at most D vertices, at
most 200 lnD edges and at most 4 fractional covering number, H∗ must be considered
by the algorithm. Let P ′ be the place in G where H∗ appears. By the third property
of Lemma 6.18, the locations in P ′ are the exact positions h such that x[h] 6= C[h].
It follows that an edit corresponding to P ′ generates the tuple C = (c1, . . . , ck), as
dH(x,C) ≤ D · k. It is easy to see that C also passes the sanity check. Hence, C
must be an output of the algorithm.

Given the tuple center C = (c1, . . . , ck), we use the greedy assignment scheme
(described in the algorithm) to find the underlying clustering. Note that given any k-
tuple candidate center z = (z1, . . . , zk), this greedy scheme computes a minimum cost
clustering with z1, . . . , zk being the cluster centers. Thus, the cost of the clustering
computed by the algorithm is at most D. Hence, the algorithm successfully outputs
C as a candidate center. We summarize our findings in the following lemma.

Lemma 6.23. Suppose the input instance is a no-instance, then the algorithm suc-
cessfully outputs “NO”. If the input instance is a yes-instance, the algorithm correctly
computes a feasible clustering.

Time Complexity Next, we discuss the time complexity of our algorithm. The
number of choices of x is nO(k). For each choice of x, the hypergraph G can be
constructed in nO(k) time. The number of distinct hypergraphs H∗0 with at most
D vertices and at most 200 lnD edges is 2D·200 lnD = DO(D), since there are 2D

possibilities for each edge. Now we analyze the time needed for locating a particular
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H∗0 in G. For any tuple y ∈ T , dH(y, C) ≤ D. By triangle inequality, dH(x, y) ≤ 2D.
Thus, the size of any edge in H is at most 2D, and we can remove any edge of G
of size more than 2D. From Theorem 5.13, it follows that every occurrence of H∗0
in G can be found in DO(D) · (2D)

4D+1 · n4k+k · d2 = DO(D) · nO(k)d2 time. If H∗0
appears at some place in G, it would take O((kD|Σ|)kD) time to edit x. Hence, in

total the algorithm takes (kD)O(kD)|Σ|D ·nO(k)d2 time. By the above discussion, we
have Theorem 6.4.

Theorem 6.4. Constrained Clustering with Outliers is solvable in time
(kD)O(kD)|Σ|kD · nO(k) · d2.

6.4 Hardness Results

In this section we present the lower bound results. First we recall a few complexity
notions essential to our hardness proofs.

Our lower bounds hold for the Categorical k-Clustering with Column
Outliers problem, and even for its special case where D = 0. This case may be
viewed upon as the problem of partitioning rows of the input matrix into clusters
where rows in each cluster are identical, except for the outlier columns. We show
that this exact version of Categorical k-Clustering with Column Outliers
is W[1]-hard when parameterized by the number of clusters k and the number of
inliers (n− `), and also W[1]-hard when parameterized by the number of outliers `.

The first lower bound shows that the result in Theorem 6.1 is tight in the sense
that k must be a constant. This is in contrast to the Categorical k-Clustering
with Row Outliers problem, for which we show the FPT algorithm for the stronger
parameterization (Theorem 6.5). Thus, Categorical k-Clustering with Col-
umn Outliers is fundamentally more difficult than Categorical k-Clustering
with Row Outliers. Also, note that Categorical k-Clustering with Row
Outliers is trivially solvable in polynomial time when the cost D is zero.

First, we describe briefly the idea of the proof. We give a reduction from Inde-
pendent Set. Consider an instance (G, t) of the latter problem. Take as A the
incidence matrix of G, such that columns correspond to the vertices, and rows to the
edges. Now selecting a set of size t in G corresponds to selecting t inlier columns in
A. For an independent set of size t, we aim to select t columns of A that have a
zero-cost clustering with t+ 1 clusters. Equivalently, we are to select t columns of A
such that there are at most t + 1 distinct rows in the resulting submatrix. Observe
that whenever we select a subset S ⊂ V (G), each edge inside S corresponds to a
unique row with two ones. An edge from S to V (G) \ S corresponds to a row with a
single one in the column of the vertex of S, and an edge inside V (G) \S corresponds
to a zero row. By a certain preprocessing of the input graph G, we can assume
that for every t-sized subset S the zero row and all the t distinct rows with a single
one necessarily appear in the corresponding submatrix of t columns. This is already
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t+ 1 distinct rows, and every edge inside S must be a new row. Thus no edges can
be inside S whenever there is a valid clustering. In the next lemma, we make the
intuition above formal.

Lemma 6.24. Categorical k-Clustering with Column Outliers is W[1]-
hard when parameterized by k+ (d− `) when D = 0 and Σ = {0, 1}. Assuming ETH,
there is no algorithm solving the problem with D = 0 and the binary alphabet in time
do(k) · nO(1).

(a) The input graph G, t = 2.

a b

c

de

(b) The corresponding 5 × 5
matrix of the clustering prob-
lem. The number of columns
to remove is 3, the number of
clusters is 3.

a b c d e
ab 1 1 0 0 0
bc 0 1 1 0 0
cd 0 0 1 1 0
de 0 0 0 1 1
ae 1 0 0 0 1

(c) A selection of two in-
lier columns achieving a zero-
cost clustering (left), and a
nonzero cost (right).

b d
1 0
1 0
0 1
0 1
0 0

d e
0 0
0 0
1 0
1 1
0 1

Figure 6.2: An illustration of the reduction in Theorem 6.2 showing a possible input graph,
the obtained matrix, and two possible selections of the inliers.

Proof. We show a reduction from the Independent Set problem. Given a graph G
and a parameter t, the task in Independent Set is to determine whether there is an
independent set of size at least t in G. Consider an instance (G, t) of Independent
Set. Assume that for any t-sized subset S of V (G), each of s in S is adjacent to
a vertex in V (G) \ S, and there is an edge inside V (G) \ S. Any graph G can be
tweaked to meet this assumption by adding a (t+ 2)-sized clique C to the graph and
connecting each vertex of G to each vertex of C. Note that no vertex of C can be in
any independent set of size at least two, and any independent set of the original graph
is present in the newly constructed graph. Thus, the new instance of Independent
Set is equivalent to the original one, and it satisfies the assumption stated.

From (G, t), we construct an instance of Categorical k-Clustering with
Column Outliers over the alphabet Σ = {0, 1}. The input matrix A is the inci-
dence matrix of G where columns are indexed by vertices and rows by edges. Set
k = t+ 1, ` = |V (G)| − t, D = 0. See Figure 6.2 for an example.

Now it remains to show the correctness of the reduction. Assume there is an
independent set I of size t in G. Let the inliers be the columns corresponding to I,
and O be the set of the remaining outlier columns. Restricted to the inlier columns,
every row of A is either a zero row, or has a single one, since no edge of G has both
ends in I. Thus, there are at most t+ 1 distinct rows in A−O, so there is a zero-cost
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(t + 1)-clustering. The centers in this clustering are the following t-rows: the zero
row and all the t possible rows with a single one.

For the other direction of the correctness proof, assume there is a solution to
the constructed Categorical k-Clustering with Column Outliers instance.
Consider the set I of the vertices corresponding to the inlier columns, and the set O
of the outlier columns. By the assumption on G, every vertex in I is adjacent to a
vertex in V (G) \ I, and there is an edge inside V (G) \ I. Thus, A−O has a zero row
and all t distinct rows with a single one. If there is an edge e inside I, then there
are at least t+ 2 distinct rows in the matrix, since even after removing the columns
of O, the row corresponding to e has two ones. In this case no zero-cost clustering
with t+ 1 clusters is possible. Thus, I must be an independent set.

Thus, the reduction is valid. It is well-known that Independent Set is W[1]-
hard, and also not solvable in time f(t) · |V (G)|o(t) for any computable function f
unless ETH fails. Observing that k = t+ 1 and d− ` = t concludes the proof of the
lemma.

Since Lemma 6.12 gives a parameterized reduction from Categorical k-Clustering
with Column Outliers to Constrained Clustering with Outliers, we im-
mediately get the following corollary.

Corollary 6.25. Constrained Clustering with Outliers is W[1]-hard when
parameterized by k + (n− `) when D = 0 and Σ = {0, 1}.

We do not get the analogous ETH bound however, as the number of clusters in the
constructed instance of Constrained Clustering with Outliers is exponential.

The second lower bound shows that bounding both the number of outliers and
the cost D is insufficient for an FPT algorithm as well. The reduction is essentially
the same, only we start from the Partial Vertex Cover problem. The input
matrix is again the incidence matrix of G, and now we argue that choosing the set
of t outlier columns minimizing the number of distinct rows corresponds to the best
partial vertex cover of G of size t. The analysis is sufficiently more technical than in
the previous case.

Lemma 6.26. Categorical k-Clustering with Column Outliers is W[1]-
hard when parameterized by ` when D = 0 and Σ = {0, 1}. Assuming ETH, there
is no algorithm solving the problem with D = 0 and the binary alphabet in time
do(`) · nO(1).

Proof. We show a reduction from the Partial Vertex Cover problem. The input
to Partial Vertex Cover is a graph G and numbers t, q. The problem is to
decide whether there is a subset C ⊂ V (G) of size at most t such that at least q
edges of G are covered by C. The Partial Vertex Cover problem is well-known
to be as hard as Independent Set ([70], Theorem 13.6). That is, when Partial
Vertex Cover is parameterized by t, there is a parameter-preserving reduction
from Independent Set.
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Consider an instance (G, t, q) of Partial Vertex Cover. First, we modify G
to obtain a new graph G′. Let P be a set of two new vertices, and D be a set of d
new vertices, where d = 5+t+ |E(G)|−q. Set V (G′) to V (G)∪P ∪D. Keep all edges
of G on V (G), and connect each vertex of P to all other vertices of G′, including the
other vertex of P . That is,

E(G′) = E(G) ∪ {pv | p ∈ P, v ∈ V (G′) \ {p}} .

The total number of edges in G′ is |E(G)|+ 2 · |V (G′)| − 3.

The graph G′ behaves in the same way as G with respect to Partial Vertex
Cover, as stated in the following claim. Set t′ = t+ 2 and q′ = q + 2 · |V (G′)| − 3.

Claim 6.27. The instance (G, t, q) is a yes-instance of Partial Vertex Cover
if and only if (G′, t′, q′) is a yes-instance of Partial Vertex Cover.

Proof. First, assume there is a subset C ⊂ V (G) of size at most t covering at least q
edges of G. Set C ′ = C ∪ P , |C ′| ≤ t+ 2 = t′, and vertices of P cover the additional
2 · |V (G′)| − 3 edges which are not present in G.

To the other direction, assume there is a subset C ′ ⊂ V (G′) of size at most t′

covering at least q′ edges of G′. We may assume that P ⊂ C ′, otherwise we may
replace any vertex of C by a vertex of P , and the number of covered edges does not
decrease since vertices in P are adjacent to all vertices. Now, C = C ′ ∩ V (G) is a
solution for (G, t, q): |C| ≤ |C ′ \ P | ≤ t, and since |E(G′) \ E(G)| = q′ − q, C must
cover at least q edges in G.

Now we construct the input instance (A, k,D, `) of Categorical k-Clustering
with Column Outliers over the alphabet Σ = {0, 1}. The input matrix A is the
incidence matrix of G′ where columns are indexed by vertices and rows by edges. Set
k = 1 + |V (G′)| − t′ + |E(G′)| − q′, ` = t′, D = 0.

To show the correctness of the reduction, first assume there is a set C ⊂ V ′ of size
t′ covering at least q′ edges in G′. Let O be the set of columns in A corresponding to
C. We claim that there are at most 1 + (|V (G′)| − t′) + (|E(G′)| − q′) distinct rows
in A−O. That is, at most one zero row, at most |V (G′)| − t′ rows with a single one
corresponding to the vertices of V (G′) \ C adjacent to C, and at most |E(G′)| − q′
rows with two ones corresponding to the edges not covered by C. Since there are at
most k distinct rows, the cost of k-clustering is zero if we remove the columns of O.

In the other direction, assume there is a solution to the constructed Categorical
k-Clustering with Column Outliers instance, that is, a set O of at most t′

columns such that A−O has at most k distinct rows. Consider the set C of vertices
corresponding to the outlier columns O. First, we show that C must contain P . If
this does not hold, either C ∩P is empty, or |C ∩P | = 1. Assume C ∩P is empty, in
this case out of 2 · |V (G′)| − 3 edges incident to P at most 2t′ are covered by vertices
of C. These edges correspond to at least 2 · |V (G′)| − 3 − 2t′ rows of A that have
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still two ones each in A−O, and thus they are all distinct. However, the number of
clusters is smaller than the number of such rows, since

2 · |V (G′)|−3−2t′ = |V (G′)|−2t′−1+ |V (G)|+d > 1+ |V (G′)|−t′+ |E(G′)|−q′ = k,

as d = 3 + t′ + |E(G)| − q and |E(G)| − q = |E(G′)| − q′. This is a contradiction to
O being a solution.

In the other case |C ∩ P | = 1, denote by p the vertex of P that is in C, and by
p′ the other vertex of P . At most t′ vertices in V (G′) \ {p} are in C, thus there are
at least |V (G′)| − 1 − t′ distinct rows in A−O that correspond to edges from p to
V (G′) \ C, they each have a single one in the column corresponding to the second
endpoint. There are also at least |V (G′)|−2−t′ distinct rows in A−O that correspond
to edges from p′ to V (G′)\C, they each have two ones in the columns corresponding
to p′ and the second endpoint. Thus, there are at least 2 · |V (G′)| − 3− 2t′ distinct
rows in A−O, and we have already shown that this quantity is strictly larger than k,
leading to the contradiction.

Now that we have shown P ⊂ C, we argue that all possible rows with less than
two ones are present in A−O, giving an exact bound on the number of distinct rows
with two ones. Formally, since P ⊂ C, there is a zero row in A−O corresponding
to the edge inside P . Take any p ∈ P , since p ∈ C and any vertex v in |V (G′)| \ C
is adjacent to p, there is a row in A−O corresponding to the edge vp that has a
single one in the column corresponding to v. This gives |V (G′)| − t′ distinct rows
with single ones, one for each vertex of V (G′) \ C. Thus, there must be at most
k − 1 − (|V (G′)| − t′) = |E(G′)| − q′ distinct rows with two ones in A−O. These
rows correspond exactly to the uncovered by C edges of G′. So C covers at least q′

edges, and (G′, t′, q′) is a yes-instance. This finishes the correctness proof, and from
the hardness of Partial Vertex Cover the lemma follows.

Clearly, Theorem 6.2, restated next for convenience, follows from Lemma 6.24
together with Lemma 6.26.

Theorem 6.2. Categorical k-Clustering with Column Outliers is W[1]-
hard parameterized by

· either k + (d− `)

· or `

even when D = 0 and Σ = {0, 1}. Moreover, assuming the Exponential Time Hypoth-
esis (ETH), the problem cannot be solved in time f(k) · do(k) · nO(1) for any function
f , even when D = 0 and the alphabet Σ is binary.

6.5 Conclusion

The results presented in this chapter initiate the systematic study of parameterized
complexity of robust categorical data clustering problems. In particular, for Cat-
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egorical k-Clustering with Row Outliers, we proved that the problem can
be solved in 2O(D logD)|Σ|D · (nd)O(1) time. Further, we considered the case of row
outliers and proved that Categorical k-Clustering with Column Outliers
is solvable in time f(k,D, |Σ|) · dg(k,|Σ|)n2. We also proved that we cannot avoid the
dependence on k in the degree of the polynomial of the input size in the running
time unless W[1] = FPT, and the problem cannot be solved in do(k) · nO(1) time,
unless ETH is false. To deal with row outliers, we introduced the Constrained
Clustering with Outliers problem and obtained the algorithm with running
time (kD)O(kD)|Σ|kD · d2nO(k). This problem is very general, and the algorithm
for it not only allowed us to get the result for Categorical k-Clustering with
Row Outliers, but also led to algorithms for robust low rank approximation prob-
lems. In particular, we obtained that Robust L0-Low Rank Approximation is
FPT if k and p are constants when the problem is parameterized by D. However,
even if the low rank approximation problems are closely related to the matrix clus-
tering problems, they are quite different. Just to give an illustrative example, the
parameterized complexity of the column and row outliers variants of the clustering
problem considered in our paper are different with respect to k, but clearly the low
rank approximation problems for matrices over fields are symmetric with respect
to rows and columns. This leads to the question whether Robust L0-Low Rank
Approximation, Robust Low Boolean-Rank Approximation and Robust
Projective Clustering could be solved by better algorithms specially tailored
for these problems. It is unlikely that the possible improvements would considerably
change the general qualitative picture. For example, Robust L0-Low Rank Ap-
proximation for p = 2 and ` = 0 is NP-complete if k = 2 [72, 100] and W[1]-hard
when parameterized by D [91]. It is also easy to observe that Robust L0-Low
Rank Approximation for p = 2, D = 0 and k = n − ` − 1 is equivalent to asking
whether the input matrix A has n − ` linearly dependent rows. This immediately
implies that Robust L0-Low Rank Approximation for p = 2 and D = 0 is W[1]-
hard when parameterized by k or n − ` by the recent results about the Even Set
problem [28]. The most interesting open question, by our opinion, is whether the
exponential dependence on k in the degree of the polynomial of the input size in the
running time produced by the reduction of Robust L0-Low Rank Approxima-
tion to Constrained Clustering with Outliers from Lemma 6.13 could be
avoided, even if p is a constant. Can the dependence of k be made polynomial (or
even linear)?
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7

Coreset Approach: Color-constrained Clus-

tering

This chapter is dedicated to clustering problems with color constraints. Recall that
these are the problems where the input is partitioned into ` groups, and the con-
straints are defined in terms of how many points from each group are assigned to
each cluster. The primary tool we use in this chapter are coresets, small-sized sum-
maries of the input. As we discussed in Chapter 4, coresets are of independent interest
for a variety of uses in the big data setting, and they also help in designing FPT-time
approximation algorithms. We will discuss results of both kinds in this chapter. Our
main example is the fair clustering problem introduced by Chierichetti et al. [56].
We employ the most general version of this problem due to [23], we recall the formal
definition next.

Definition 7.1 (Definition 1, [23]). In the fair version of a clustering problem, one
is additionally given ` many (not necessarily disjoint) groups of P , namely P1, P2,
. . . , P`. One is also given two fairness vectors α, β ∈ [0, 1]`, α = (α1, . . . , α`),
β = (β1, . . . , β`). The objective is to select a set of at most k centers C ⊂ F and an
assignment ϕ : P → S such that ϕ satisfies the following fairness constraints:

|{x ∈ Pi : ϕ(x) = c}| ≤ αi · |{x ∈ P : ϕ(x) = c}| , ∀c ∈ C, ∀i ∈ [`],

|{x ∈ Pi : ϕ(x) = c}| ≥ βi · |{x ∈ P : ϕ(x) = c}| , ∀c ∈ C, ∀i ∈ [`],

and cost(ϕ) is minimized among all such assignments.

In the (α, β)-Fair k-median problem, cost(ϕ) :=
∑
x∈P dist(x, ϕ(x)), and in the

(α, β)-Fair k-means problem, cost(ϕ) :=
∑
x∈P dist(x, ϕ(x))2. To refer to these two

problems together, we will use the term (α, β)-Fair Clustering. We call ϕ that
satisfies the fairness constraints a fair assignment. We denote the minimum cost of
a fair assignment of a set of points P to a set of k centers C by faircost(P,C), and

123
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faircost(P ) denotes the minimum of faircost(P,C ′) over all possible sets of k centers
C ′.

Our first main result is the following theorem.

Theorem 7.2 (Informal). For general discrete metric spaces, there is an O(n(k+`))
time randomized algorithm that w.p. at least 1 − 1/n, computes a coreset of size
O(Γ(k log n)2/ε3) for (α, β)-fair k-Median and O(Γ(k log n)7/ε5) for (α, β)-fair k-
Means, where Γ is the number of distinct collections of groups to which a point may
belong. If the groups are disjoint, the algorithm runs in O(nk) time. Moreover, in
Rd, the coreset sizes are

O

(
Γ

ε3
· k2 log n(log n+ d log(1/ε))

)
for (α, β)-fair k-Median and

O

(
Γ

ε5
· k7(log n)6(log n+ d log(1/ε))

)
for (α, β)-fair k-Means.

Theorem 7.2 provides the first coreset construction for fair clustering problem
in general metric spaces. Our result is comparable to the best-known bound of
Oε(k log n) [83] in the vanilla case. In particular, if the number of groups in our case
is just 1, we obtain coresets of size Oε(poly(k log n)), which matches with the best-
known bound in the vanilla case, up to a small degree polynomial factor. We note,
that this is the first sampling based coreset construction scheme for fair clustering,
and in Rd, the first coreset construction scheme where the size of the coreset does
not depend exponentially on the dimension d. In fact, the dependency on d is only
linear. Additionally, for k-means objective this dependency can be avoided (replaced
by k/ε) by using standard dimension reduction techniques [60, 84] (this was also
noted in [173]). Hence, our result solves the open question proposed in [173] and
partly solves the open question proposed in [115]. As we already mentioned, in all of
the previous results [173, 115], coreset sizes depended exponentially on d (see Table
7.1). We note that the formal statement of Theorem 7.2 appears in Theorems 7.26,
7.30 and 7.37.

In fact, our coreset construction scheme is much more general in the following
sense. The coreset can preserve not only the cost of optimal fair clustering, but also
the cost of any optimal clustering with group-cardinality constraints. In particu-
lar, for any set C of k centers and any constraint matrix M ∈ Zk×`, our coreset
approximately preserves the cost of an optimal clustering that satisfies M,

(1− ε) · cost(P,M, C) ≤ wcost(W,M, C) ≤ (1 + ε) · cost(P,M, C).
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k-Median k-Means

[173] O(Γkε−d−2 log n)

[115] O(Γk2ε−d) O(Γk3ε−d−1)

Thm. 7.30
and 7.37

O( Γ
ε3 · k2 log n(log n+

d log(1/ε)))
O( Γ

ε5 · k
7(log n)6(log n+

d log(1/ε)))

Table 7.1: Previous and current coreset sizes in Rd.

Therefore, for any clustering problem with constraints where the constraints can be
represented by a set of matrices, we obtain a small size coreset. This gives rise to
coresets for a wide range of clustering problems including lower-bounded clustering
[179, 5, 23]. Notably, in the case of lower-bounded clustering, the input consists of
only one group of points, and thus M is a column matrix.

We further exploit the new coreset construction to design clustering algorithms
in various settings. In general metrics, we obtain the first fixed-parameter tractable
(FPT) constant-factor approximation for (α, β)-fair clustering with parameters k and
Γ. That is, the running time of our algorithm is exponential only in the values k
and Γ while polynomial in the size of the input. All previous constant-approximation
algorithms were bicriteria and violated the fairness constraints by some additive fac-
tors. Hence, the study of FPT approximation is well-motivated. Our approximation
factors are reasonably small and improve the best-known approximation factors of
the existing bicriteria algorithms (see Table 7.2). Moreover, our coreset leads to
improved constant FPT approximations for many other clustering problems. For
example, we obtain an improved ≈ 3-approximation algorithm for lower-bounded
k-median [179, 5, 23] that is FPT parameterized by k. Previously, the best-known
factor for FPT approximation for this problem was 3.736 [23].

Based on our coreset, we also obtain the first FPT (1+ε)-approximation for (α, β)-
fair clustering in Rd with parameters k and Γ. Furthermore, the running time has a
near-linear dependency on n and does not depend exponentially on d. A comparison
with the running time of the previous (1+ ε)-approximation algorithms can be found
in Table 7.3. We also obtain FPT (1+ε)-approximation algorithms with parameter k
for the Euclidean version of several other problems including capacitated clustering
[66, 62] and lower-bounded clustering. We note that these are the first (1 + ε)-
approximations for these problems with near-linear dependency on n. For Euclidean
capacitated clustering, quadratic time FPT algorithms follow due to [75, 27] (see
Table 7.4). Also, the (1 + ε)-approximation for Euclidean capacitated clustering in

[66] and [62] have running time (kε−1)kε
−O(1)

nO(1) and at least nε
−O(1)

(see Table
7.4).

Our coreset also leads to small space (1+ε)-approximation in streaming setting for
(α, β)-fair clustering in Rd when the groups are disjoint. We show how to maintain
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an O(d2` · poly(k log n)/ε4) size coreset in each step. One can apply our (1 + ε)-
approximation algorithm on the coreset to compute a near-optimal clustering. In the
previous streaming algorithms [173], the space complexity depended exponentially
on either d or k.

Our technical contributions are summarized in Section 7.1.

multi k-Median
approx.

k-Means
approx.

running time

[24] (4.675, 1) (62.856, 1) poly(n)

[23] X (O(1), 4Λ +
3)

(O(1), 4Λ +
3)

poly(n)

Thm. 7.50 ≈ 3 ≈ 9 (k`)O(k`)n log n

Thm. 7.50 X ≈ 3 ≈ 9 (kΓ)O(kΓ)n log n

Table 7.2: Approximation results for (α, β)-fair clustering in general metrics. “multi” de-
notes if the algorithm can handle overlapping groups. In “approx.” columns, the first (resp.
second) value in a tuple is the approximation factor (resp. violation). [23] does not explic-
itly compute the O(1) factor, but it is > 3 + ε (resp. > 9 + ε) for k-median (resp. k-means),
where ε is a sufficiently large constant.

running time version

[173] nO(k/ε) 2-color, (1, k)-fair clustering

[115] (k2ε−d)O(k/ε) +O(kε−d+1n) 2-color, (1, k)-fair clustering

[30] npoly(k/ε) `-color, (1, k)-fair clustering

Thm.
7.45

2Õ(k/εO(1))(kΓ)O(kΓ)nd log n (α, β)-fair clustering

Table 7.3: The running time of the (1 + ε)-approximations for fair clustering in Rd.

Schmidt et al. [173] defined the concept of fair coresets and gave coreset of size
O(`kε−d−2 log n) for the disjoint group case of Euclidean (α, β)-fair k-means. This
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running time

[75] 2poly(k/ε)n2(log n)k+2d

[27] 2Õ(k/εO(1)) · n2(log n)2d

[66] (kε−1)kε
−O(1)

nO(1)

[62]
nε
−O(1)

(d = 2)

n(log n/ε)O(d)

(d ≥ 3)

Thm. 7.58 2Õ(k/εO(1))ndO(1) + nk2ε−O(1) log n

Table 7.4: The running time of the (1 + ε)-approximations for capacitated clustering in Rd.

can be extended to the overlapping case by replacing ` with Γ in the size bound.
Using a sophisticated dimension reduction technique [60], they showed how to stream
coreset whose size does not depend exponentially on d. Unfortunately, this coreset
size depends exponentially on k. Schmidt et al. also gave an nO(k/ε) time (1 + ε)-
approximation for the two-color version of the problem. Note that this chapter
improves over all these results (see Tables 7.1 and 7.3). Using the framework in [109],

Huang et al. [115] improved the coreset size bound of [173] by a factor of Θ
(

log n
εk2

)
and gave the first coreset for Euclidean (α, β)-fair k-median of size O(Γk2ε−d). Both
the coreset construction schemes in [173] and [115] use deterministic algorithms, and
thus they proposed whether random sampling can be employed to remove the curse of
dimensionality. Note that our result based on random sampling improves the bound

(for k-median) in [115] by a factor of Θ
(

ε−d+3

log n(log n+d)

)
(see Table 7.1). By applying

the (1 + ε)-approximation of [173] on their coreset, Huang et al. [115] obtained an
algorithm with improved running time. However, the algorithm of [173] is only for
two colors. Moreover, due to the inherent exponential dependency on d of the coreset
size, the running time of the algorithm in [115] still depends exponentially on d (see
Table 7.3). Böhm et al. [30] considered (1, k)-fair clustering with multiple colors.
They designed near-linear time constant-approximation algorithms in this restricted
setting. They also obtained an npoly(k/ε) time (1+ε)-approximation for the Euclidean
version in the same setting. An FPT (1 + ε)-approximation follows from our results
for this version (see Table 7.3).

Chierichetti et al. [56] gave a polynomial time Θ(t)-approximation for (t, k)-fair
k-median with two groups (or colors). We improve their result by giving an FPT
constant-approximation algorithm with parameters k and ` for (t, k)-fair clustering
with arbitrary number of colors. Based on the framework implicitly mentioned in
[45], Bera et al. [23] obtained polynomial time O(1)-approximation for (α, β)-fair
clustering that violates the fairness constraints by at most an additive factor of
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4Λ + 3. This framework first computes k centers using a ρ-approximation algorithm
for vanilla clustering, and then finds an assignment of the points to these centers that
satisfies the fairness constraints. They showed, e.g, for k-median, there is always such
an assignment whose cost is at most ρ + 2 times the optimal cost of fair clustering.
However, computing such an assignment is not an easy task. Indeed, this is a big hur-
dle one faces while studying fair clustering, which makes this problem substantially
harder compared to other clustering problems like capacitated clustering. Based on
the algorithm due to Király et al. [131], Bera et al. [23] showed that an optimal
assignment can be computed by violating any fairness constraint by the mentioned
factor. For the disjoint group case, their violation factor is only 3. Independently,
Bercea et al. [24] obtained algorithms with the same approximation guarantees as in
[23] for the disjoint version, but with at most 1 additive factor violation. We show
that the above mentioned assignment problem for (α, β)-fair clustering can be solved
exactly in FPT time parameterized by k and Γ. Plugging this in with our coreset, we
obtain algorithms with better constant approximation factors compared to [23] and
[24] that do not violate any constraint (see Table 7.2).

Ding and Xu [75] gave an unified framework with running time 2poly(k/ε)(log n)k+1nd
that generates a collection of candidate sets of centers for clustering problems with
constraints in Rd. Subsequently, Bhattacharya et al. [27] and Feng et al. [86] designed
similar frameworks having improved time complexity. None of these works study fair
clustering. The results of this chapter can be viewed as an extension of these works
to general metrics in the sense that we obtain constant-approximations for a range
of constrained clustering problems. Furthermore, by applying the framework of [27]
on our coreset, we obtain (1+ ε)-approximation algorithms with improved time com-
plexity bounds for several clustering problems in Rd.

Organization. Section 7.1 summarizes the main technical ideas used to obtain the
new results. The “stronger coreset” construction algorithm appers in Section 7.2. In
the rest of the chapter, we describe the applications of our coresets. In Section 7.3,
we describe an algorithm for solving an assignment problem, which we will need to
design our algorithms for (α, β)-fair clustering. In Section 7.4 and 7.5, we describe our
approximation algorithms for the Euclidean and metric case of (α, β)-fair clustering,
respectively. In Section 7.6, we apply our coreset to design improved algorithms for
other constrained clustering problems. In Section 7.7, we show how to maintain our
coreset in the streaming setting. Finally, in Section 7.8, we conclude with some open
questions.

7.1 Our Techniques

In this section, we summarize the techniques and key ideas used to obtain the new
results of this chapter. The detailed version of our results and formal proofs appear
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in the following sections. For simplicity, we limit our discussion here to k-median
clustering. We start with the coreset results.

7.1.1 Universal Coreset Construction

Our coreset construction algorithms are based on random sampling and we will prove
that our algorithms produce universal coresets with high probability (w.h.p.). At first
glance, it is not easy to see how to sample points in the overlapping group case, as
the decision has an effect on multiple groups. To give intuition to the reader, at first
we discuss the disjoint group case.

The Disjoint Group Case

Our coreset construction algorithm is built upon the coreset construction algorithm
for vanilla clustering due to Chen [53]. In our case, we have points from ` disjoint color
classes. So, we apply Chen’s algorithm for each color class independently. Note that
Chen’s algorithm was used to show that for any given set of centers C, the constructed
coreset approximately preserves the optimal clustering cost. However, we would like
to show that for any given set of centers C, the constructed coreset approximately
preserves the optimal clustering cost corresponding to any given constraint M. At
this stage, it is not clear why Chen’s algorithm should work in such a generic setting.
Our main technical contribution is to show that sampling based approaches like
Chen’s algorithm can be used even for such a stronger notion of universal coreset.
We will try to give some intuition after describing our algorithm. Our algorithm is
as follows.

Given the set of points P , first we apply the algorithm of Indyk [119] for computing
a vanilla k-median clustering of P . This is a bicriteria approximation algorithm that
uses O(k) centers and runs in O(nk) time. Let C∗ be the set of computed centers,
ν be the constant approximation factor and Π be the cost of the clustering. Also,
let µ = Π/(νn) be a lower bound on the average cost of the points in any optimal
k-median clustering. Note that for any point p, dist(p, C∗) ≤ Π = νn · µ.

For each center c∗i ∈ C∗, let P ∗i ⊆ P be the corresponding cluster of points
assigned to c∗i . We consider the ball Bi,j centered at c∗i and having radius 2jµ for
0 ≤ j ≤ N , where N = dlog(νn)e. We note that any point at a distance 2Nµ ≥ νn ·µ
from c∗i is in Bi,N , and thus all the points in P ∗i are also in Bi,N . Let B′i,0 = Bi,0
and B′i,j = Bi,j \ Bi,j−1 for 1 ≤ j ≤ N . We refer to each such B′i,j as a ring for
1 ≤ i ≤ k, 0 ≤ j ≤ N . For each 0 ≤ j ≤ N and color 1 ≤ t ≤ `, let P ′i,j,t be the

set of points in B′i,j of color t. Let s = Θ(k log n/ε3) for a sufficiently large constant
hidden in Θ(.).

For each center c∗i ∈ C∗, we perform the following steps.

Random Sampling. For each color 1 ≤ t ≤ ` and ring index 0 ≤ j ≤ N , do the
following. If |P ′i,j,t| ≤ s, add all the points of P ′i,j,t to Wi,j and set the weight of each
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such point to 1. Otherwise, select s points from P ′i,j,t independently and randomly
(without replacement) and add them to Wi,j . Set the weight of each such point to
|P ′i,j,t|/s.

The set W = ∪i,jWi,j is the desired universal coreset. As the number of rings
is O(k log n), the size of W is O(`(k log n)2/ε3). From [53], it follows that for each
color, the coreset points can be computed in time linear in the number of points of
that color times O(k). Thus, our coreset construction algorithm runs in O(nk) time.

An Intuitive Discussion about Correctness. Note that we need to show that
for any set of centers C, the optimal clustering cost is approximately preserved w.r.t.
all possible combination of cluster sizes as defined by the constraint matrices. In
Chen’s analysis, it was sufficient to argue that for any set of centers C, the optimal
clustering cost needs to be preserved. This seems much easier compared to our case.
(Obviously, the details are much more complicated even in the vanilla case.) For
example, suppose p ∈ P be a point that is assigned to a center c ∈ C in an optimal
clustering. Note that c must be a closest center to p. For simplicity, suppose p has
a unique closest center. Now, if p is chosen in the coreset, then the total weight of p
must also be assigned to c in any optimal assignment w.r.t. C. Thus, the assignment
function for original and coreset points remains same in the vanilla case. This fact
is in the heart of their analysis. Let h be this assignment function: h(p) = dist(p, C)
and for any set S, h(S) =

∑
p∈S h(p). Consider any point set V and an uniformly

drawn random subset U ⊆ V . Also, assume that h(p) lies in an interval of size T .
Then, using a result due to Haussler [112], one can show that if |U | is sufficiently

large, then w.h.p,
∣∣∣h(V )
|V | −

h(U)
|U |

∣∣∣ ≤ εT . Now, we can apply this observation to each

ring separately. Note that for any ring B′i,j with points Pi,j , and for all p ∈ Pi,j ,

h(p) is in an interval I of length at most the diameter of the ball Bi,j , i.e, 2(2jµ). It
follows that,∣∣∣∣ ∑

p∈Pi,j

dist(p, C)−
∑

p∈Wi,j

w(p) · dist(p, C)

∣∣∣∣ ≤ |Pi,j | · ∣∣∣∣h(Pi,j)

|Pi,j |
− |Pi,j |
|Wi,j |

· h(Wi,j)

|Pi,j |

∣∣∣∣
≤ |Pi,j | · ε2j+1µ

The first inequality follows, as the weight of each point in Wi,j was set to
|Pi,j |
|Wi,j | .

The second inequality follows from the observation mentioned above. Summing over
all rings, we get,∣∣∣∣∑

p∈P
dist(p, C)−

∑
p∈W

w(p) · dist(p, C)

∣∣∣∣ ≤∑
(i,j)

|Pi,j | · ε2j+1µ

Now, as we show later, one can upper-bound this by O(ε · OPTv), where OPTv
is the optimal cost of vanilla clustering. This is shown by charging the error bound
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for each point with its cost in the bicriteria solution. Now, note that in the case of
vanilla k-median, cost of a weighted set S of points in an optimal clustering with
centers in C, wcost(S,C) =

∑
p∈S w(p) · dist(p, C) (similarly define cost(P,C)). By

scaling ε appropriately and taking union bound over all rings, we obtain that w.h.p,∣∣cost(P,C)− wcost(W,C)
∣∣ ≤ ε · cost(P,C).

This is how Chen obtained the bound for k-median. Note that the observation
that a coreset point has the same optimal assignment as the one w.r.t. the original
point set is not-necessarily true in our case. We cannot just use the nearest neighbor
assignment scheme, as in our case cluster sizes are predefined through M. Indeed, in
our case we might very well need to assign the weight of a coreset point to multiple
centers to satisfy M. In general, this is the main hurdle one faces while analyzing a
sampling based approach for fair coreset construction.

For analyzing our algorithm, we follow an approach similar to the one by Cohen-
Addad and Li in [66]. They considered the capacitated clustering problem, where for
each center c a capacity value Uc is given, and if the center c is chosen, at most Uc
points can be assigned to c. They analyzed Chen’s algorithm and showed that for
any center C, the coreset approximately preserves the optimal capacitated clustering
cost. In the following we describe their approach.

Fix a set C of centers. Again consider a single ring B′i,j and assume that we
sample points from only this ring. Thus the coreset consists of sampled points from
this ring and original points from the other rings. We would like to obtain an error
bound for the points Pi,j in B′i,j similar to the one in the vanilla case. For simplicity,

let P ′ = Pi,j , m = |P ′| and µ′ = 2jµ. Also, let S be the samples chosen from P ′.
Recall that |S| = s. Let W ′ be the coreset, i.e, W ′ = S∪ (P \P ′). Instead of directly
analyzing the sampling scheme of Chen, they consider a different sampling scheme.
The two sampling schemes are same up to repetition as they argue. This is one of
the most important ideas that they use in the analysis.

An Alternative Way of Sampling. For each p ∈ P ′, select p w.p. s/m inde-
pendently and set its weight to m/s. Otherwise, set its weight to 0. Let X ∈ Rm≥0

be the corresponding random vector such that X[p] = m/s if p is selected, otherwise
X[p] = 0.

We note two things here. First, for each p, E[X[p]] = 1. Thus, E[X] = 1, where
1 is the vector of length m whose entries are all 1. Intuitively, this shows that in
expectation the chosen set of samples behave like the original points. They heavily use
this connection in their analysis. Second, this sampling is different from the original
sampling scheme in the sense that here we might end up selecting more (or less) than
s samples. However, one can show that with sufficient probability, this sampling
scheme selects exactly s points, as the expected number is m · (s/m) = s. It follows
that X contains exactly s non-zero entries with the same probability. Conditioned
on this event, X accurately represents the outcome of the original sampling process.
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Thus, both the sampling processes are same up to repetition. Henceforth, we assume
that X contains exactly s non-zero entries.

The next crucial idea is to represent assignments through network flow. Suppose
we are given a fixed set of centers and weighted input points and we would like
to compute a minimum cost assignment of the points to the centers such that the
capacities are not violated. This problem can be modeled as a minimum cost network
flow problem. In particular, given any vector Y that represents weights of the points,
one can compute a network GY . A minimum cost flow in this network corresponds
to a minimum cost assignment. For any Y ∈ Rm≥0, we denote by f(Y ) the minimum
cost of any feasible flow in GY . Note that as the weight of the points in P \ P ′ are
fixed, it is sufficient to consider an m-dimensional vector to represent the weights of
the points in P ′.

Now, note that f(X) and wcost(W ′, C) (for capacitated clustering) are identically
distributed, as X contains exactly s non-zero entries. Also, as E[X] = 1, f(E[X]) =
f(1) = cost(P,C). Thus it is sufficient to prove that w.h.p, |f(X) − f(E[X])| ≤
εmµ′. They show this in two steps. First, w.h.p, |f(X) − E[f(X)]| ≤ εmµ′/2,
which can be proved using a variant of Chernoff bound. Then, they show that
|E[f(X)]− f(E[X])| ≤ εmµ′/2.

The proof in the second step is much more involved. First, they show that
f(E[X]) ≤ E[f(X)]. This follows from the fact that the value of f(1) is not more
than the average value of f(X), as one can find an assignment of cost at most
E[f(X)] where 1 weight is assigned for each point, by summing up the costs of
all assignments weighted by their probabilities. The proof completes by showing
E[f(X)] ≤ f(E[X])+εmµ′/2. It is not hard to prove that (i) f(X) ≤ f(E[X])+nmµ′.
They show that (ii) w.p. at least 1 − 1/n10, f(X) ≤ f(E[X]) + 0.49εmµ′. From
these above two claims, we obtain E[f(X)] ≤ f(E[X]) + εmµ′/2. The proof that
f(X) ≤ f(E[X]) + 0.49εmµ′ holds w.p. at least 1 − 1/n10 is the most crucial part
of their analysis. To prove this, they start with an assignment corresponding to the
cost f(1), i.e, an original assignment where all points are assigned to the centers.
They compute a feasible assignment corresponding to the vector X, by modifying
this assignment whose cost is at most f(1) + 0.49εmµ′ w.p. at least 1− 1/n10. The
details are much more involved. But, the crucial part is that the given assignment
can be represented as a flow, and can be modified to obtain a new feasible flow in
GX whose cost is not much larger than f(1).

Now, let us come back to fair clustering. The first hurdle to adapt the approach in
[66] is that it is not possible to represent the assignment problem for fair clustering as
a simple flow computation problem. It can be modeled as an ILP. But, then we loose
the “nice” structure of the function f that is needed for analysis. For example, they
show that f is a Lipschitz function and that helps them obtain good concentration
bound. Thus it is not clear how to directly use their approach for fair clustering.
However, we show that for a fixed constraint M, the assignment problem can be
modeled in the desired way. Thus, we can get high probability bound w.r.t. a fixed
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constraint M. However, to obtain a coreset for fair clustering we need to show this
w.r.t. all such constraints (and this leads us towards a universal coreset). The number
of such constraints can be as large as nΩ(k`). Hence, to obtain the h.p. bound over
all M, we need to show that for a fixed M the error probability is at most 1/nΩ(k`).
However, it is not clear how to show such a bound (1/nΩ(k) bound can be shown).
Nevertheless, we show that it is not necessary to consider all those choices of the
constraints together – one can focus on a single color and the constraints w.r.t. that
color only. Indeed, this is the reason that we apply Chen’s algorithm to different
color classes independently. Unfortunately, we pay a heavy toll for this: the coreset
size is proportional to `, unlike the vanilla coreset size. However, it is not clear how
to avoid this dependency. Nevertheless, this solves our problem, as now we have only
nΩ(k) constraints.

The Overlapping Group Case

Recall that we are given ` groups of points P1, . . . , P` such that a point can potentially
belong to multiple groups. In this section we design a sampling based algorithm
for construction of universal coreset in this case. Note that the algorithm in the
disjoint case clearly does not work. This is because we sample points from each
group separately and independently, and thus it is not clear how to assign the weight
of a point that belongs to multiple groups. One might think of the following trivial
modification of the algorithm in the disjoint case. Assign each point to a single
group to which it belongs. Based on this assignment, now we have disjoint groups,
and we can apply our previous algorithm. However, this algorithm can have a very
large error bound. For example, suppose a point p belongs to two groups i and
j, and it is assigned to group i. Also, suppose p was not chosen in the sampling
process. Note that the weight of p is represented by some other chosen point p′,
which was also assigned to group i. However, now we have lost the information
that this weight of p was also contributing towards fairness of group j. Thus, the
constructed coreset might not preserve any optimal fair clustering with a small error.
In the overlapping case, it is not clear how to obtain a coreset whose size depends
linearly in `. Nevertheless, we design a new coreset construction algorithm that have
very small error bound and its size depends linearly on Γ. As we noted before, in
practice Γ is reasonably small, a polynomial in `.

The main idea of our algorithm is to divide the points into equivalence classes
based on their group membership and sample points from each equivalence class. Let
P = ∪`i=1Pi. For each point p ∈ P , let Jp ⊆ [`] be the set of indexes of the groups
to which p belongs. Let I be the distinct collection of these sets {Jp | p ∈ P} and
|I| = Γ. In particular, let I1, . . . , IΓ be the distinct sets in I. Now, we partition the
points in P based on these sets. For 1 ≤ i ≤ Γ, let P i = {p ∈ P | Ii = Jp}. Thus,
{P i | 1 ≤ i ≤ Γ} defines equivalence classes for P such that two points p, p′ ∈ P
belong to the same equivalence class if they are in exactly the same set of groups. Now
we apply our algorithm in the disjoint case on the disjoint sets of points P 1, . . . , PΓ.
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Let W be the constructed coreset.

Note that here we have Γ disjoint classes, and thus the coreset size is O(Γ(k log n)2/ε3).
As our coreset size is at least Γ, we assume that Γ < n. Note that the equiva-
lence classes can be computed in O(n`) time, and thus the algorithm runs in time
O(n`) +O(nk) = O(n(k + `)). Next, we argue that W is indeed a universal coreset
w.h.p.

An Intuitive Discussion of Correctness. Again, the idea here is to reduce the
analysis to the one class case. However, this is not as straightforward as in the
disjoint case. Note that although the classes P 1, . . . , PΓ are disjoint, two classes can
contain points from the same group. Moreover, the constraints are defined w.r.t. the
groups. Thus, two classes need to interact to satisfy the constraints.

Fix a set of centers C. Let Wτ be the chosen samples from class τ . For any ring
B′i,j , let P ′i,j,τ be the points from class τ in the ring.

Consider any class 1 ≤ t ≤ Γ. We can show that if our coreset contains samples
from one specific class and original points from the other classes, then the error
comes from only that class. In particular, we will show that for all matrices M,
w.h.p, | cost(P,M, C)− wcost(Wt ∪ (P \ P t),M, C)| ≤

∑
(i,j) ε|P ′i,j,t| · 2jµ.

Now, one can safely take union bound over all Γ < n classes, to obtain the bound
similar to the one in the disjoint case.

Next, we prove the above claim. Denote the size of the set It of indexes corre-
sponding to points in P t by Λ and WLOG, assume that It = {1, 2, . . . ,Λ}. To prove
the above claim, we show that it is sufficient to prove that w.h.p, for all k×Λ matrix
M′ such that M′ has Λ identical columns and the sum of the entries in each column
is exactly |P t|, | cost(P t,M′, C)− wcost(Wt,M

′, C)| ≤
∑

(i,j) ε|P ′i,j,t| · 2jµ. Now, as

M′ contains all identical columns, points of P t belong to the same set of groups, and
we select samples from P t separately and independently, this claim boils down to a
case similar to the disjoint-group-one-color case.

One might find our approach in parallel with the one in [115], as they also reduce
the problem with overlapping groups to a single class. However, in contrast to ours,
their coreset construction algorithm is deterministic.

The Euclidean Case

The algorithm in the Euclidean case is the same as for general metrics, except we
set s to Θ(k log(nb)/ε3) instead of Θ(k log n/ε3), where b = Θ(k log(n/ε)/εd). The
analysis for general metrics holds in this case, except the assumption that the number
of distinct sets of centers is at most nk is no longer true. Here any point in Rd is
a potential center. This is the main challenge in the Euclidean case, as now it is
not possible to take union bound over all possible sets of k centers. Nevertheless,
we show that for every set C ⊆ Rd of k centers and constraint M, the optimal cost
is preserved approximately w.h.p. The idea is to use a discretization technique to
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obtain a finite set of centers so that if instead we draw centers from this set, the cost
of any clustering is preserved approximately.

First, we construct a set of points F that we will use as the center set. Recall
that C∗ is the set of centers computed by the bicriteria approximation algorithm.
ν is the constant approximation factor and Π is the cost of this clustering. Also,
µ = Π/(νn).

For each center c∗i ∈ C∗, we consider the d-dimensional axis-parallel hypercubes
Ri,j having sidelength 2jµ, and centered at c∗i for 0 ≤ j ≤ N , where N is sufficiently
large. Let R′i,0 = Ri,0 and R′i,j = Ri,j \ Ri,j−1 for 1 ≤ j ≤ N . For each 0 ≤ j ≤ N ,

we divide R′i,j into gridcells of sidelength ε2jµ. Let Qi be the exponential grid for
R′i,0, . . . , R

′
i,N , i.e., Qi is the amalgamation of the gridcells in R′i,0, . . . , R

′
i,N . For

each gridcell in the exponential grid Qi, we select any arbitrary point and add it to
Fi.

We repeat the above process for all c∗i ∈ C∗. Let F = ∪iFi. One can show that
the size of F is O(k log(n/ε)/εd).

Now we show that if the centers can only be chosen from F , then the analysis
for general metrics holds in this case as well with the modified value of s mentioned
above. We need to extend this argument for any set C ⊆ Rd of k centers. To do this,
we consider two cases. In the first case, C contains a center ĉ such that ĉ is not in
∪iQi. Thus, ĉ is very far away from the centers of bicriteria solution. In this case
we show that the cost of this clustering is at least 1/ε times the cost of the bicriteria
solution. We also showed that the cost difference of any clustering w.r.t. P and W
is at most the cost of the bicriteria solution. Together it follows that the above cost
difference is at most ε times the cost of the bicriteria solution and we obtain the
desired bound w.p. 1.

In the second case, all centers in C are in ∪iQi. In this case we can approximate
C with C ′ by choosing centers from F : for each center c, select the point c′ in F
chosen from the gridcell that contains c. Intuitively, the distance between c and c′ is
relatively small. Note that we showed before that W is a coreset w.r.t. points in F
w.h.p, and so is w.r.t. C ′. As C ′ approximates C, it follows that W is also a coreset
w.r.t. C.

7.1.2 Approximation Algorithms Based on Universal Coresets

All the approximation algorithms that we show boil down to one general strategy:
first, compute a suitable universal coreset, then, enumerate a small family of sets
of possible k centers, such that at least one of them is guaranteed to provide a
good approximation, and finally pick the best set of centers by finding the optimal
fair assignment from the coreset to each of the center sets. Apart from the coreset
construction, the notable challenge in the case of (α, β)-Fair Clustering is solving
the assignment problem. We devise a general FPT time algorithm for the assignment
problem. The approach for obtaining approximations for other problems are very
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similar. Thus, in this summary part, we limit our discussion to fair clustering.

Solving the Assignment Problem

The fair assignment problem is the following: given an instance of (α, β)-Fair Clus-
tering and a set of k centers C, compute a minimum-cost fair assignment to the
centers of C. The fair assignment problem is one of the features that makes fair
clustering harder than other constrained clustering problems. While often the op-
timal assignment can be found with the help of a network flow, like in the case of
capacitated clustering or lower-bounded clustering, there was no previously known
algorithms to compute an optimal or approximate fair assignment without violating
the constraints. Moreover, it was observed by Bera et al. [23] that the assignment
problem for (α, β)-Fair Clustering is NP-hard, so there is no hope to have a
polynomial time assignment algorithm.

We show an assignment algorithm with running time (kΓ)O(kΓ)nO(1), the formal
statement and the proof is given in Theorem 7.39. The general idea is to reduce to
a linear programming instance. The unknown optimal assignment can be naturally
expressed in terms of linear inequalities by introducing a variable fij for the i-th
point and the j-th center, denoting what fraction of the point is assigned to each
center, and constraints fij ≥ 0 for all i, j, and

∑k
j=1 fij = 1. Clearly this generalizes

a discrete assignment, which corresponds to exactly one of {fij}kj=1 being equal to
1, for each i ∈ [n]. Observe that the condition that the assignment is fair can also
be expressed as linear constraints: for each j ∈ [k], summing all fij from the points
belonging to a particular group provides the number of the points from this group
assigned to the j-th center. And the fairness conditions just bound the ratio of points
from a particular group to the size of the cluster.

However, the issue is that in general the optimal fractional solution to this linear
programming problem is not integral, and the integrality gap could be arbitrarily
large. Thus, an optimal fractional solution does not yield the desired assignment,
and this is not surprising since the fair assignment problem is NP-hard. One possible
solution would be to restrict the variables to be integral, solving an integer linear
program (ILP) instead. But we cannot afford to make all variables integral, as the
number of variables can be sufficiently large. Even if we aim to solve the assignment
problem on the coreset, the number of points is polylogarithmic in n, and solving the
ILP would take at least (log n)Ω(log n) time, which is not FPT. Instead, we introduce
the integral variable gtj denoting how many points from the t-th point equivalence
class gets to the j-th center, while leaving the {fij} variables to be fractional. Thus,
we obtain an instance of mixed-integer linear programming (MILP) with kΓ integer
variables and nk fractional variables. By using the celebrated result of Lenstra [142]
with subsequent improvements by Kannan [127], and Frank and Tardos [93], we
obtain an optimal solution to the MILP instance in time (kΓ)O(kΓ)nO(1).

Now we explain that after constraining the {gtj} variables to be integral, we can
assume that all the other variables {fij} are integral too, thus we actually obtain an
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optimal discrete assignment of the same cost. Consider a particular point equivalence
class P t, and the integral values {gtj}kj=1 from the optimal solution to the MILP.
When these values are fixed, the problem boils down to finding an assignment from
P t to C such that exactly gtj points are assigned to the j-th center. This problem
can be solved by a minimum-cost maximum flow in the network where each point
has supply one, the j-th center has demand of gtj , and the costs are the distances
between the respective points. Moreover, the values {fij} from the MILP correspond
exactly to the flow values on the respective edges. Since there is an optimal integral
flow in this network, this flow is also an optimal integral solution for {fij}.

The downside of Theorem 7.39 is that the dependency on n is a high degree
polynomial, roughly n5, and we cannot use it directly to obtain a near-linear time
algorithm. So we also show how to obtain a fair assignment that has the cost of at
most (1 + ε) times the optimal fair assignment cost in near-linear time with the help
of the coreset. For this, we compute a universal coreset from the input points, and
then compute the optimal fair assignment from the coreset to the centers C. Since
the coreset preserves the cost of an optimal assignment w.r.t. any constraint matrix
M , and fair assignments are precisely those that satisfy a certain set of constraint
matrices, we obtain immediately that the cost of the optimal fair assignment on the
coreset is within a factor of (1 + ε) from the optimal cost of the original instance.
However, this does not yet give us a fair assignment of the original points to the
centers. To construct this assignment, we take the values {gtj} computed by the
assignment algorithm on the coreset, and then, for each point equivalence class P t,
we solve the simple assignment problem from P t to C that assigns exactly gtj points
to the j-th center. As mentioned above, this can be done by a network flow algorithm.
Since the network is bipartite and one of the parts is small, only of size k, this problem
can be solved in near-linear time by a specialized flow algorithm given by [6]. Finally,
the resulting assignment on the original points has cost at most (1+ ε) times the cost
of the optimal assignment on the coreset. This holds since the coreset construction
preserves the cost with respect to the set of centers C and any constraint matrix
M , in particular the one that is constructed from the values {gtj}. This argument
is presented in full detail in Lemma 7.42. Combining the above steps, we obtain a
near-linear time algorithm via coreset for the assignment problem on P given a set
of centers.

(1 + ε)-Approximation in Rd

Apart from our coreset construction and our assignment algorithm, the key ingredient
to obtain a (1 + ε)-approximation algorithm is the general constrained clustering

algorithm of Bhattacharya et al. [27]. Their algorithm outputs a list of 2Õ(k/εO(1))

candidate sets of k centers, such that for any clustering of the points there exists a
set of centers C in this list that is only slightly worse than the optimal set of centers
for this clustering. Naturally, this holds for any fair clustering too, thus there exists
a set of centers C in the list such that faircost(P,C) ≤ (1 + ε) faircost(P ). Together
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with our exact assignment algorithm this provides a (1+ ε)-approximation algorithm

with the running time of 2Õ(k/εO(1))(kΓ)O(kΓ)nO(1)d: compute the list of candidate
sets of centers, then find an optimal assignment to each set, and return the one with
the smallest cost. Replacing the exact assignment algorithm with the approximate

one that employs coreset, we obtain a 2Õ(k/εO(1))(kΓ)O(kΓ)nd(log n)2-time algorithm.
Finally, if for each candidate set of centers we solve the assignment problem on the
coreset, then choose the best set of centers, and then solve (approximately) the
assignment problem on the original points and this particular set of centers, we

reduce the running time to 2Õ(k/εO(1))(kΓ)O(kΓ)nd log n.

(3 + ε)-Approximation in General Metric

With the help of our universal coreset, the strategy to obtain (3 + ε)-approximation
for (α, β)-Fair k-median is essentially identical to that used in [64] and [66]: from
each of the clusters in an optimal solution on the coreset we guess the closest point
to the center, called a leader of that cluster. We also guess a suitably discretized
distance from each leader to the center of the corresponding cluster. Finally, selecting
any center that has roughly the guessed distance to the leader provides us with a
(3 + ε)-approximation. That holds since if we assign each point to the guessed center
of its leader, the distance that this point contributes will be at most its distance in
the optimal solution, plus the distance from the leader to the optimal center, plus
the distance from the leader to the guessed center. Since the leader is the closest
point in the cluster to the optimal center, this is at most (3 + ε) times the distance
that the point contributes in the optimal solution. Note that this assignment is fair
since the composition of the clusters is exactly the same as in the optimal solution.

We cannot directly find this assignment, but we can compute the lowest-cost
fair assignment to this set of centers that can only be better. Thus, we solve the
assignment problem on the coreset for each guess of the centers, choose the best set
of centers, and then compute an approximately optimal fair assignment from the
original points to these centers. By the property of the universal coreset, going to
the coreset and back changes the cost of the optimal solution only slightly, so with
the appropriate selection of error parameters the obtained assignment is a (3 + ε)-
approximate solution. There are |W |k possible choices for leaders and (log n/ε)O(k)

for the respective distances, and we solve the assignment problem on our coreset for
each such guess. Thus, we need a running time of (kΓ)O(kΓ)/εO(k) ·n log n to compute
the best set of centers and retrieve a corresponding assignment of the original points.

One technical difficulty is that for the distance guessing step we require that the
aspect ratio of the instance, that is the ratio of the maximum distance between the
points in the instance to the minimum, is polynomially bounded. Only in this case we
can consider just (log n/ε)O(k) choices for the distances. The technique to reduce the
aspect ratio of the instance is fairly standard, it was also employed in [66] for the case
of capacitated clustering. It requires a bound on the cost of an optimal solution, and
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one notable difference is that for (α, β)-Fair Clustering there were no previously
known true approximation algorithm. Thus we also devise a simple linear-time O(n)-
approximation, based on the classical min-max algorithm for k-center.

7.2 Coreset Construction

In this section, we present in full detail the coreset construction. We start with k-
Median, and first we deal with the simpler disjoint group case. Then we show how
to extend the result from disjoint groups to overlapping groups. Finally, we extend
We start with k-median in the disjoint group case in Section 7.2.1. Then we extend
this result to the overlapping group case in Section 7.2.2. Section 7.2.3 describes
the coreset construction for k-median in Rd. Finally, the coreset constructions for
k-means appear in Section 7.2.4.

7.2.1 Disjoint Group Case

In this section, we prove the following theorem.

Theorem 7.3. Given a set P of n points in a metric space along with a color
function c : P → {1, . . . , `}, there is an O(nk) time randomized algorithm that
w.p. at least 1 − 1/n, computes a universal coreset for k-median clustering of size
O(`(k log n)2/ε3).

To prove this theorem, we analyze the coreset construction algorithm in the dis-
joint group case described in Section 7.1. For convenience of the reader, we again
state our algorithm here.

Given the set of points P , first we apply the algorithm of Indyk [119] for computing
a vanilla k-median clustering of P . This is a bicriteria approximation algorithm that
uses O(k) centers and runs in O(nk) time. Let C∗ be the set of computed centers,
ν be the constant approximation factor and Π be the cost of the clustering. Also,
let µ = Π/(νn) be a lower bound on the average cost of the points in any optimal
k-median clustering. Note that for any point p, dist(p, C∗) ≤ Π = νn · µ.

For each center c∗i ∈ C∗, let P ∗i ⊆ P be the corresponding cluster of points
assigned to c∗i . We consider the ball Bi,j centered at c∗i and having radius 2jµ for
0 ≤ j ≤ N , where N = dlog(νn)e. We note that any point at a distance 2Nµ ≥ νn ·µ
from c∗i is in Bi,N , and thus all the points in P ∗i are also in Bi,N . Let B′i,0 = Bi,0
and B′i,j = Bi,j \ Bi,j−1 for 1 ≤ j ≤ N . We refer to each such B′i,j as a ring for
1 ≤ i ≤ k, 0 ≤ j ≤ N . For each 0 ≤ j ≤ N and color 1 ≤ t ≤ `, let P ′i,j,t be the

set of points in B′i,j of color t. Let s = Θ(k log n/ε3) for a sufficiently large constant
hidden in Θ(.).

For each center c∗i ∈ C∗, we perform the following steps.
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Random Sampling. For each color 1 ≤ t ≤ ` and ring index 0 ≤ j ≤ N , do the
following. If |P ′i,j,t| ≤ s, add all the points of P ′i,j,t to Wi,j and set the weight of each
such point to 1. Otherwise, select s points from P ′i,j,t independently and randomly
(without replacement) and add them to Wi,j . Set the weight of each such point to
|P ′i,j,t|/s.

The set W = ∪i,jWi,j is the desired universal coreset.

The Analysis

One way to prove that W is a universal coreset is to show that w.h.p. for any fixed
set of centers C of size k and any coloring constraint M,

(1− ε) · cost(P,M, C) ≤ wcost(W,M, C) ≤ (1 + ε) · cost(P,M, C).

Then, by taking union bound over all C and M, we obtain the desired bound. How-
ever, as we potentially have nΩ(k) choices for C and nΩ(`k) choices for M, we need
this bound for fixed C and M w.p. 1 − 1/nΩ(`k). It is not clear how to prove such
a bound, as we pick only O(k log n/ε3) size sample from each ring corresponding to
each color. Instead, we prove that for any fixed C, and for all M, w.p. 1− 1/nΩ(k),
the above bound holds. In particular, we will show that for each ring B′i,j with points

Pi,j the error is bounded by ε|Pi,j | · 2jµ.

Lemma 7.4. For any fixed set C of k centers and for all k× ` matrices M, w.p. at
least 1− 1/nk+2, |cost(P,M, C)− wcost(W,M, C)| ≤

∑
(i,j) ε|Pi,j | · 2jµ.

Now, consider all the rings B′i,j with j = 0. Then,∑
(i,j):j=0

ε|Pi,j | · 2jµ ≤ εn · µ ≤ ε ·OPTv ≤ ε · cost(P,M, C).

Here, OPTv is the optimal cost of vanilla k-median clustering. The last inequality
follows, as the optimal cost of vanilla clustering is at most the cost of any constrained
clustering. Now, for any ring B′i,j with j ≥ 1 and any point p in the ring, dist(p, c∗i ) ≥
2j−1µ. Thus,∑

(i,j):j≥1

ε|Pi,j | · 2jµ ≤ ε
∑
p∈P

2 · dist(p, C∗) ≤ 2ε ·OPTv ≤ 2ε · cost(P,M, C).

By taking union bound over all C and scaling ε down by a factor of 3, we obtain
the desired result.

Lemma 7.5. For every set C of k centers and every k × ` matrix M, w.p. at least
1− 1/n, |cost(P,M, C)− wcost(W,M, C)| ≤ ε · cost(P,M, C).

This completes the proof of Theorem 7.3. Now, we are left with the proof of
Lemma 7.4.



7.2. Coreset Construction 141

Proof of Lemma 7.4 Let Pτ be the points in P of color τ . Also, let Wτ be the
chosen samples of color τ . For 1 ≤ t ≤ ` − 1, let W t = (

∑t
τ=1Wτ ) ∪ (∪`τ=t+1Pτ ).

Also, let W ` =
∑`
τ=1Wτ be the coreset points of all colors. Recall that for any ring

B′i,j , P
′
i,j,τ is the points of color τ in the ring. Also, Pi,j = ∪`τ=1P

′
i,j,τ .

Note that in the above, W t contains the sampled points for color 1 to t and
original points of color t + 1 to `. We will prove the following lemma that gives a
bound when the coreset contains sampled points of a fixed color t and original points
of the other colors.

Lemma 7.6. Consider any color 1 ≤ t ≤ `. For any fixed set C of k centers and
for all k× ` matrices M, w.p. at least 1− 1/nk+4, |cost(P,M, C)−wcost(Wt ∪ (P \
Pt),M, C)| ≤

∑
(i,j) ε|P ′i,j,t| · 2jµ.

Note that for a particular color class if we select all original points in the coreset,
then there is no error corresponding to those coreset points. This is true, as one can
use the corresponding optimal assignment for these points. Assuming that the above
lemma holds, now, we prove Lemma 7.4. Consider the coreset W 1. From the above
lemma we readily obtain the following.

Corollary 7.7. For any fixed set C of k centers and for all k × ` matrices M, w.p.
at least 1− 1/nk+4, |cost(P,M, C)− wcost(W 1,M, C)| ≤

∑
(i,j) ε|P ′i,j,1| · 2jµ.

Now, in W 1 consider replacing the points of P2 by the samples in W2. We obtain
the coreset W 2. Note that the samples in W1 and W2 are chosen independent of each
other. Thus, by taking union bound over color 1 and 2, from Lemma 7.6 we obtain,
for all k×` matrices M, w.p. at least 1−2/nk+4, |cost(P,M, C)−wcost(W 2,M, C)| ≤∑

(i,j) ε(|P ′i,j,1|+ |P ′i,j,2|) · 2jµ. Similarly, by taking union bound over all ` ≤ n colors

and noting that W ` = W , Lemma 7.4 follows.

Next, we prove Lemma 7.6, which is the key part of the analysis.

Proving Core Lemma

Recall that Pt is the set of points of color t, and Wt is the coreset points of color t.
C is the given set of centers. For any matrix M, let Mt be the tth column of M. We
have the following observation that implies that it is sufficient to consider the points
only in Pt to give the error bound.

Observation 7.8. Suppose w.p. at least 1 − 1/nk+4, for all column matrix M′,
|cost(Pt,M

′, C) − wcost(Wt,M
′, C)| ≤

∑
(i,j) ε|P ′i,j,t| · 2jµ. Then, with the same

probability, for all k × ` matrix M, |cost(P,M, C) − wcost(Wt ∪ (P \ Pt),M, C)| ≤∑
(i,j) ε|P ′i,j,t| · 2jµ.

Proof. Consider any k × ` matrix M. Then,
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cost(P,M, C) =
∑̀
τ=1

cost(Pτ ,M
τ , C)

Also,

wcost(Wt ∪ (P \ Pt),M, C) = wcost(Wt,M
t, C) +

∑
τ∈[`]\{t}

cost(Pτ ,M
τ , C)

It follows that,

|cost(P,M, C)−wcost(Wt ∪ (P \ Pt),M, C)| = |cost(Pt,M
t, C)−wcost(Wt,M

t, C)|

Now, by our assumption, it follows that the probability of the event: for all M,
|cost(Pt,M

t, C) − wcost(Wt,M
t, C)| exceeds

∑
(i,j) ε|P ′i,j,t| · 2jµ is at most 1/nk+4.

Hence, the observation follows.

By the above observation, it is sufficient to prove that w.p. at least 1 − 1/nk+4,
for all column matrix M, |cost(Pt,M, C) − wcost(Wt,M, C)| ≤

∑
(i,j) ε|P ′i,j,t| · 2jµ.

The proof of this claim is similar to the analysis in [66]. In the rest of this section we
prove this claim. For simplicity, we first do the analysis for a single ring. Later we
will show how this idea in single ring case can be extended to obtain the h.p. bound
for the multiple ring case.

Single Ring Case

We fix a ring B′i,j and rename the color t to γ. Note that we have points of only one
color γ. For simplicity of notation, we rename Pγ to P . We do the analysis assuming
that we sample points only from the ring B′i,j . For simplicity, we denote this ring by

B′. Let P ′ = P ′i,j,γ , m = |P ′|, µ′ = 2jµ and c′ = c∗i for 1 ≤ i ≤ k and 0 ≤ j ≤ N .
Also, let S be the random sample chosen from P ′. Thus in this case, our coreset W ′

consists of the points S, which have weight m/s and all the points in P \ P ′, which
have weight 1, i.e, W ′ = S ∪ (P \P ′). We will show that the cost difference between
P and W ′ is at most εmµ′ w.h.p. Intuitively, for each point in P ′, we allow at most
εµ′ error on average.

For the rest of the proof we fix a column matrix M such that cost(P,M, C) <∞.
We will prove the following theorem.

Theorem 7.9. W.p. at least 1−1/n2k+10, it holds that |cost(P,M, C)−wcost(W ′,M, C)| ≤
εmµ′.

By taking union bound over all (at most nk) column matrices, we obtain the
desired bound w.h.p. Towards this end, assume that s < m, otherwise W ′ = P and
the above theorem is trivially true.
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An Alternative Way of Sampling. Consider the points of P ′ and the following
alternative way of sampling points from P ′. For each p ∈ P ′, select p w.p. s/m
independently and set its weight to m/s. Otherwise, set its weight to 0. Let X ∈ Rm≥0

be the corresponding random vector such that X[p] = m/s if p is selected, otherwise
X[p] = 0.

We note two things here. First, for each p, E[X[p]] = 1. Thus, E[X] = 1,
where 1 is the vector of length m whose entries are all 1. Intuitively, this shows
that in expectation the chosen set of samples behave like the original points. We
will heavily use this connection in our analysis. Second, this sampling is different
from our sampling scheme in the sense that here we might end up selecting more (or
less) than s samples. However, one can show that with sufficient probability, this
sampling scheme selects exactly s points, as the expected number is m · (s/m) = s.

Claim 7.10. [66] Let n be a positive integer, and p ∈ (0, 1) such that np is an integer.
The probability that Bernoulli(n, p) = np is at least

√
p.

Using the above claim with n = m and p = s/m, it follows that X contains
exactly s non-zero entries w.p. Ω(1/

√
n). Conditioned on this event, X accurately

represents the outcome of our sampling process. Thus, both the sampling processes
are same up to repetition. Henceforth, we assume that X contains exactly s non-zero
entries.

Representing Assignment By Network Flow. Given a vector Y ∈ Rm≥0 in-
dexed by the points of P ′ we construct the following flow network GY . GY has two
designated vertices s and t, which are called the source and the sink, respectively.
For each point pj ∈ P , there is a vertex uj . For each center ci ∈ C, there is a vertex
vi. There is also an auxiliary vertex w in GY corresponding to the center c′ of the
bicriteria solution. For each uj , there is an edge between s and uj , and also between
w and uj . s is also connected to w via an edge. w is connected to each vi via an
edge. Also, each vi is connected to t via an edge. For each point pj and center ci,
there is an edge between uj and vi. Formally, the vertex set VY of GY is defined
as, VY = {s} ∪ {t} ∪ {w} ∪ {uj | 1 ≤ j ≤ n} ∪ {vi | 1 ≤ i ≤ k}. The set of edges
EY = {(s, uj) | 1 ≤ j ≤ n} ∪ {(uj , w) | 1 ≤ j ≤ n} ∪ {(vi, t) | 1 ≤ i ≤ k} ∪ {(w, vi) |
1 ≤ i ≤ k)} ∪ {(uj , vi) | 1 ≤ j ≤ n, 1 ≤ i ≤ k}. For each pj ∈ P \ P ′, (s, uj) has a
demand of 1. For each pj ∈ P ′, (s, uj) has a demand of Y [pj ]. The demand of (s, w)
is exactly m−

∑
p∈P ′ Y [p], which can be negative. The capacity of each edge (vi, t)

is exactly M[i], the ith entry of M. Lastly, the cost of all the edges is 0 except the
edges of {(uj , vi)}, {(uj , w)} and {(w, vi)}. The cost of (uj , vi) is dist(pj , ci) and the
cost of (uj , w) is dist(pj , c

′). The cost of (w, vi) is dist(c′, ci).

We note that the assignment of points in P to the centers in C corresponding to
an optimal clustering (with cost(P,M, C) < ∞) induces a flow for GY with Y = 1
that satisfies all the demands, which sum to |P |. Hence, for any Y ∈ Rm≥0, GY always
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has a feasible flow, as the sum of demands is exactly |P \ P ′| +
∑
p∈P ′ Y [p] + (m −∑

p∈P ′ Y [p]) = |P |.
For any Y ∈ Rm≥0, we denote by f(Y ) the cost of the minimum cost feasible flow in

GY . Consider the random vector X defined before. We have the following important
observation.

Observation 7.11. f(X) and wcost(W ′,M, C) are identically distributed. More-
over, f(E[X]) = cost(P,M, C).

Proof. Note that the total demand in GX is |P |, as argued before. This demand
must be routed to t through the edges {(vi, t)}. Now, the capacity of (vi, t) is M[i].

If M is a valid partition matrix, then
∑k
i=1 M[i] must be |P |. Thus, any feasible

flow in GX , which satisfies all the demands, must saturate all the edges {(vi, t)}. It
follows that from this flow we can retrieve an assignment of the points in W ′ to the
centers in C, such that exactly M[i] weight is assigned to each center ci ∈ C. Finally,
as X contains exactly s non-zero entries, the cost of the minimum cost feasible flow
in GX and wcost(W ′,M, C) must be identically distributed.

The moreover part follows by noting that E[X] = 1.

From the above observation it follows that to prove Theorem 7.9, it is sufficient
to prove that w.p. 1 − 1/nΩ(k), |f(X) − f(E[X])| ≤ εmµ′. Now, we have another
observation which will be useful later.

Observation 7.12. The function f is µ′-Lipschitz w.r.t. the `1 distance in Rm≥0.

Proof. Consider two vectors Y, Y ′ ∈ Rm≥0 such that Y ′ = Y + δ1p, where 1p is the
m-dimensional vector which has a single non-zero entry 1 corresponding to p ∈ P ′.
Suppose we are given a minimum cost flow in GY . We can route δ additional flow
from the vertex of p to w, which incurs δµ′ cost. The modified flow is a feasible flow
in GY ′ . Thus, f(Y ′) ≤ f(Y ) + δµ′.

Similarly, suppose we are given a minimum cost flow in GY ′ . We can route δ
additional flow from w to the vertex of p, which incurs δµ′ cost. The modified flow
is a feasible flow in GY . Thus, f(Y ) ≤ f(Y ′) + δµ′. Together these show that f is
µ′-Lipschitz.

Towards this end, we state the following concentration bound, which will be useful
in the analysis.

Lemma 7.13. W.p. at least 1− 1/n2k+20, |f(X)− E[f(X)]| ≤ εmµ′/2.

The proof of this lemma is very similar to the proof of Lemma 15 in [66], which
essentially follows from the fact that f is µ′-Lipschitz and from the following Chernoff
type bound.
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Theorem 7.14. [66] Let x1, . . . , xn be independent random variables taking value b
w.p. p and value 0 w.p. 1 − p, and let g : [0, 1]

n → R be an L-Lipschitz function in
`1 norm. Define X := (x1, . . . , xn) and µ := E[g(X)]. Then, for 0 ≤ ε ≤ 1 :

Pr[|g(X)− E[g(X)]| ≥ εpnbL] ≤ 2 exp(−ε2pn/3).

We apply the above theorem with p = s/m, n = m, b = m/s, g = f and L = µ′.
Then,

Pr[|f(X)− E[f(X)]| ≥ εmµ′/2]

= Pr[|f(X)− E[f(X)]| ≥ (ε/2)(s/m) ·m · (m/s) · µ′]
= Pr[|f(X)− E[f(X)]| ≥ (ε/2) · pnbL]

≤ 2 exp(−(ε/2)2pn/3)

= 2 exp(−(ε/2)2s/3)

= 2 exp(−(ε2/12)Θ(k log n/ε3))

≤ 1/n2k+20

The last inequality follows due to the sufficiently large constant hidden in the Θ
notation. Now, we proceed towards the proof of Theorem 7.9. We will show the
desired bound in two steps. Here we take a slightly different way than [66] for our
convenience. First, we show that w.p. at least 1−1/n2k+20, f(E[X]) ≤ f(X)+εmµ′.
Then, we show that w.p. at least 1 − 1/n2k+20, f(X) ≤ f(E[X]) + εmµ′.

The First Step. From Lemma 7.13 it follows that it is sufficient to prove f(E[X]) ≤
E[f(X)]. Now, E[X] = 1. Let Y be any outcome of X and X = Y w.p. p(Y ). Let
yi be the value in Y corresponding to pi ∈ P ′. Then, there is a feasible flow in GY ,
where for each pi, at least yi demand is satisfied. Now, consider the flow φ obtained
by summing, for each Y , the minimum cost feasible flow in GY scaled by p(Y ). Note
that the cost of φ is

∑
Y p(Y )f(Y ) = E[f(X)]. Also, this flow does not violate any

capacity, as the sum of the probabilities is 1. Now, in each flow corresponding to Y
scaled by p(Y ), for each pi, p(Y ) · yi demand is satisfied. Hence, in φ, for each pi, at
least

∑
Y p(Y ) · yi = 1 demand is satisfied, as the expected value of yi is 1. It follows

that, f(1) = f(E[X]) is at most the cost of φ and we obtain the desired bound.

The Second Step. Here we will show that w.p. at least 1 − 1/n2k+20, f(X) ≤
f(E[X]) + εmµ′. First, we prove that it is sufficient to show that w.p. at least
1− 1/n3, f(X) ≤ f(E[X]) + εmµ′/3.

Lemma 7.15. If f(X) ≤ f(E[X]) + εmµ′/3 holds w.p. at least 1− 1/n3, then w.p.
1− 1/n2k+20, f(X) ≤ f(E[X]) + εmµ′.
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Proof. Here we will prove that E[f(X)] ≤ f(E[X]) + εmµ′/2. Then, by Lemma 7.13,
it follows that w.p. 1− 1/n2k+20, f(X) ≤ E[f(X)]|+ εmµ′/2 ≤ f(E[X]) + εmµ′.

First, note that X ∈ [0,m/s]m. As the function f is µ′-Lipschitz by Observation
7.12, the values of f(X) must lie in an interval of length at most m/s ·mµ′ ≤ m2µ′.
Similarly, E[X] = 1 ∈ [0,m/s]m, and thus f(E[X]) is also contained in that interval.
Hence, f(X) ≤ f(E[X]) +m2µ′. Now,

E[f(X)] ≤ (1− 1/n3) · (f(E[X]) + εmµ′/3) + (1/n3) · (f(E[X]) +m2µ′)

≤ f(E[X]) + εmµ′/3 + (1/n2) ·mµ′

≤ f(E[X]) + εmµ′/2

The following lemma completes the proof of Theorem 7.9. Its proof is very similar
to the proof of Lemma 20 in [66]. For completeness, we present the proof here.

Lemma 7.16. W.p. at least 1− 1/n3, f(X) ≤ f(1) + εmµ′/3.

Proof. We consider a minimum cost feasible flow φ in GY for Y = 1. We can assume
that this flow is integral, as all the demands and capacities are integral. We compute
a feasible flow φ′ in GX modifying the flow φ whose cost is at most f(1) + εmµ′/3
w.p. at least 1− 1/n3.

The construction of the modified flow is as follows. For each point p ∈ P \P ′, we
route the demand of p in φ′ in the same way as in φ. Now consider the points in P ′.
Let P ′i be the subset of points of P ′ that are assigned to the center ci ∈ C. Also, let
Q′i be the subset of points of P ′i that are sampled, and hence are contained in W ′.

For each center ci ∈ C, we have two cases. The first case is |Q′i| ≤ |P ′i | · s/m. In
this case, we route m/s amount of flow from each vertex uj corresponding to the point
pj of Q′i to the vertex vi corresponding to ci. We also route |P ′i | − |Q′i| ·m/s amount
of flow from w to vi. Note that the total amount of flow routed to vi in these above
two steps is exactly |P ′i | and does not depend on |Q′i| as long as |Q′i| ≤ |P ′i | · s/m.
In the second case, |Q′i| > |P ′i | · s/m. In this case, first we select a random sample
Q′′i from Q′i of size b|P ′i | · s/mc and apply the same steps in the first case with Q′′i
instead of Q′i. Finally, route m/s amount of flow from the vertex corresponding to
each point in Q′i \Q′′i to w.

We note that the computed flow φ′ in the above satisfies all the demands. Also,
none of the capacities are violated, as the flow in and out for each vertex vi remain
the same as in φ. In the following we give a bound on the cost of φ′. To unify the
analysis, in the first case, we set Q′′i = Q′i. We consider two cases depending on the
value of E[|Q′i|] for every ci ∈ C.
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Case 1. E[|Q′i|] ≥ εs/(100k). AsQ′i is distributed as Bernoulli(|P ′i |, s/m), E[|Q′i|] =
|P ′i | ·s/m. Thus, |P ′i | ·s/m ≥ εs/(100k), or |P ′i | ≥ εm/(100k). We have the following
observation.

Observation 7.17. W.p. at least 1− 1/n10, ||Q′i| − |P ′i | · s/m| ≤ ε|P ′i | · s/(50m).

Proof. Using the Chernoff bound, Pr[||Q′i|−|P ′i |·s/m| > ε|P ′i |·s/(50m)] ≤ exp(−Θ(ε2·
|P ′i |·s/m)) ≤ exp(−Θ(ε2 ·ε(m/k)·(s/m))) ≤ exp(−Θ(log n)) ≤ 1/n10, for sufficiently
large constant hidden in Θ(.) in the definition of s.

From the above observation and considering the fact that |Q′′i | ≥ |P ′i | · s/m − 1,
we have the following bound.

Observation 7.18. W.p. at least 1− 1/n10, |Q′i| − |Q′′i | ≤ ε|P ′i | · s/(40m).

From the above two observations, we have the following observation.

Observation 7.19. W.p. at least 1− 1/n9, |P ′i | · s/m− |Q′′i | ≤ ε|P ′i | · s/(20m).

Now, we give bound on the cost of the computed flow. Note that we route m/s
flow for each point in Q′′i to ci whose total cost is

∑
p∈Q′′i

(m/s) · d(p, ci). To give

bound on this cost we need the following lemma from [53].

Lemma 7.20. (Lemma 3.2. of [53]) Let T ≥ 0 and η be fixed constants, and let
h(.) be a function defined on a set V such that η ≤ h(p) ≤ η + T for all p ∈ V . Let
U = {p1, . . . , pr} be a set of r samples drawn independently and uniformly from V ,

and let δ > 0 be a parameter. If r ≥ (T 2/2δ2) ln (2/λ), then Pr[|h(V )
|V | −

h(U)
|U | | ≥ δ] ≤ λ,

where h(U) =
∑
u∈U h(u) and h(V ) =

∑
v∈V h(v).

Fix any integer r ∈ [1− ε/20, 1] · |P ′i | · s/m and consider the event that |Q′′i | = r.
Conditioned on this event Q′′i is a set of r samples drawn independently and uniformly
from P ′i . We apply Lemma 7.20 setting T = 2µ′, V = P ′i , U = Q′′i , h(p) = d(p, ci),
δ = εµ′/20 and λ = 1/n10. Note that,

r ≥ (1− ε/20) · |P ′i | · s/m ≥ (1− ε/20) · εm
100k

· s
m
≥ Θ(log n/ε2) ≥ (T 2/2δ2) ln (2/λ)

The last inequality follows assuming a sufficiently large constant is hidden in Θ(.) in
the definition of s.
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We obtain, w.p. at least 1 − 1/n10,∣∣∣∣h(P ′i )

|P ′i |
− h(Q′′i )

|Q′′i |

∣∣∣∣ ≤ δ
Or,

∣∣∣∣h(P ′i ) · |Q′′i |
|P ′i |

− h(Q′′i )

∣∣∣∣ ≤ δ|Q′′i |
Or, h(Q′′i ) ≤ h(P ′i ) · |Q′′i |

|P ′i |
+ δ · (|P ′i | · s/m)

Or, h(Q′′i ) · (m/s) ≤ h(P ′i ) · |Q′′i |
|P ′i |

· (m/s) + ε|P ′i | · µ′/20

Note that h(Q′′i ) · (m/s) is exactly the cost of flow routing for the points in Q′′i
to ci. Taking union bound over all possible values of r = |Q′′i |, we obtain the above
bound w.p. at least 1− 1/n9.

Now, we give a bound on the cost of flow routing from w to ci. The cost is
(|P ′i | − |Q′′i | ·m/s) · d(c′, ci). Now, for any p ∈ P ′i , d(c′, ci) ≤ d(p, ci) + µ′. Averaging
gives, d(c′, ci) ≤ h(P ′i )/|P ′i |+ µ′. Thus, the cost is at most,

(|P ′i | − |Q′′i | ·m/s) · (h(P ′i )/|P ′i |+ µ′)

≤ h(P ′i )−
h(P ′i ) · |Q′′i |
|P ′i |

· (m/s) + (|P ′i | − |Q′′i | ·m/s) · µ′

≤ h(P ′i )−
h(P ′i ) · |Q′′i |
|P ′i |

· (m/s) + (ε|P ′i |/20)µ′

= h(P ′i )−
h(P ′i ) · |Q′′i |
|P ′i |

· (m/s) + ε|P ′i |µ′/20

The second inequality follows from Observation 7.19. Next, we bound the third
and the last type of cost, which corresponds to flow routing from points in Q′i \ Q′′i
to w. This cost is at most,

∑
p∈(Q′i\Q′′i )

(m/s) · d(p, c′)

≤ (|Q′i| − |Q′′i |) · (m/s) · µ′

≤ (ε|P ′i | · s/(40m)) · (m/s) · µ′

≤ ε|P ′i |µ′/40

The second inequality follows from Observation 7.18. Thus, in this case, the total
cost is bounded by,
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h(P ′i ) + ε|P ′i |µ′/20 + ε|P ′i |µ′/20 + ε|P ′i |µ′/40

≤ h(P ′i ) + ε|P ′i |µ′/8.

Case 2. E[|Q′i|] < εs/(100k). Note that in this case, |P ′i | < εm/(100k). First, we
have the following observation.

Observation 7.21. W.p. at least 1− 1/n10, |Q′i| ≤ εs/(50k).

Proof. We use the Chernoff bound:

Pr[|Q′i| ≥ εs/(50k)] ≤ exp(−Θ(εs/k)) ≤ exp(−Θ(log n)) ≤ 1/n10.

The cost of flow routing from points in Q′′i to ci is,

∑
p∈Q′′i

(m/s) · d(p, ci) ≤
∑
p∈Q′′i

(d(p, c′) + d(c′, ci)) · (m/s)

≤ |Q′′i | · µ′ · (m/s) + |Q′′i | · (m/s) · d(c′, ci)

The cost of flow routing from w to ci is,

(|P ′i | − |Q′′i | ·m/s) · d(c′, ci) ≤
∑
p∈P ′i

d(c′, ci)− |Q′′i | · (m/s) · d(c′, ci)

≤
∑
p∈P ′i

(d(c′, p) + d(p, ci))− |Q′′i | · (m/s) · d(c′, ci)

≤ |P ′i | · µ′ +
∑
p∈P ′i

d(p, ci)− |Q′′i | · (m/s) · d(c′, ci)

The cost of flow routing from points in Q′i \Q′′i to w is,

∑
p∈(Q′i\Q′′i )

(m/s) · d(p, c′)

≤ |Q′i| · (m/s) · µ′

The total cost in this case is at most,
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|Q′′i | · µ′ · (m/s) + |Q′′i | · (m/s) · d(c′, ci) + |P ′i | · µ′ +
∑
p∈P ′i

d(p, ci)− |Q′′i | · (m/s) · d(c′, ci)

+ |Q′i| · (m/s) · µ′

≤ (εs/(50k)) · µ′ · (m/s) + (εm/(100k)) · µ′ +
∑
p∈P ′i

d(p, ci) + (εs/(50k)) · µ′ · (m/s)

≤ (εm/(20k)) · µ′ +
∑
p∈P ′i

d(p, ci)

The first inequality follows from Observation 7.21 and by noting that |Q′′i | ≤ |Q′i|.

General Upper Bound on the Cost. By merging the cost in both cases, we
obtain the common upper bound,

∑
p∈P ′i

d(p, ci) + (ε|P ′i | · µ′/8) + (εm/(20k)) · µ′.
Summing over all the centers in C, we obtain,

f(X) ≤ f(1) + ε|P ′| · µ′/8 + (εm/20) · µ′ ≤ f(1) + ε|P ′| · µ′/3.

It is not hard to see that this bound holds w.p. at least 1− 1/n3. This completes
the proof of Lemma 7.16.

Multiple Ring Case

In the previous section, we have shown how to bound the error for a fixed ring. Here
we extend the ideas to the multiple ring case. Intuitively, we use a union bound over
all rings to obtain the desired high probability bound. However, we need to consider
the samples from all the rings corresponding to the color γ together. Let W ′ be the
corresponding coreset.

We consider any arbitrary ordering of all the rings, and for any two rings B′i,j
and B′i′,j′ , we say (i, j) < (i′, j′) if B′i,j precedes B′i′,j′ in this ordering. Consider any
ring B′i,j . We define a function fi,j corresponding to this ring similar to the function
f . Let P ′i,j = P ′i,j,γ . Also, let W ′i,j be the samples chosen from P ′i,j . The input to

the function fi,j is a vector Y ∈ R
|P ′i,j |
≥0 that is indexed by the points of the ring. We

construct a network GY as before. But, as we consider samples from all the rings,
the demands of the points are defined in a different way than before. For each point
in p ∈ P ′i,j , its demand is Y [p]. Set the demand of w to |P ′i,j | −

∑
p∈P ′i,j

Y [p]. For

each ring B′i′,j′ 6= B′i,j , and for each point p ∈ W ′i′,j′ , set its demand to |P ′i′,j′ |/s.
Note that the total demand corresponding to B′i′,j′ is s · |P ′i′,j′ |/s = |P ′i′,j′ |. Thus, in
GY we fix the samples of all the rings except B′i,j . fi,j(Y ) is the cost of the minimum
cost flow in GY .
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Let EW ′i,j :(i′,j′)>(i,j)[fi,j(Y )|W ′i1,j1 : (i1, j1) < (i, j)] (E>(i,j)[fi,j(Y )] in short) be

the expectation of fi,j(Y ) over all samples W ′i′,j′ for (i′, j′) > (i, j) given fixed sam-
ples W ′i1,j1 for all (i1, j1) < (i, j). Similarly, define EW ′i,j :(i′,j′)≥(i,j)[fi,j(Y )|W ′i1,j1 :

(i1, j1) < (i, j)] or E≥(i,j)[fi,j(Y )] in short. Recall that in the single ring case we

showed that w.p. at least 1 − 1/n2k+10, |f(X) − f(E[X])| ≤ εmµ′. Similarly, here
we obtain the following lemma.

Lemma 7.22. W.p. at least 1− 1/n2k+10, for any ring B′i,j,

|E>(i,j)[fi,j(Y )]− E≥(i,j)[fi,j(Y )]| ≤ ε|P ′i,j | · 2jµ.

Note that we would like to show the bound in terms of multiple rings together
instead of just one ring B′i,j . In particular, we would like to give a bound w.r.t.
wcost(W ′,M, C), where M is a column matrix. Correspondingly, we define
E>(i,j)[wcost(W ′,M, C)] and E≥(i,j)[wcost(W ′,M, C)]. From Lemma 7.22, we read-
ily obtain the following lemma.

Lemma 7.23. W.p. at least 1− 1/n2k+8,

|E>(i,j)[wcost(W ′,M, C)]− E≥(i,j)[wcost(W ′,M, C)]| ≤ ε|P ′i,j | · 2jµ.

Now consider going over all the rings in the ordering and applying the above
lemma. Let (i1, j1) and (i′, j′) be the indexes of the first and last ring, respec-
tively. Then the total difference between the values E≥(i1,j1)[wcost(W ′,M, C)] and
E>(i′,j′)[wcost(W ′,M, C)] is at most

∑
(i,j) ε|P ′i,j |·2jµ. But, E≥(i1,j1) [wcost(W ′,M, C)] =

cost(P,M, C) and E>(i′,j′)[wcost(W ′,M, C)] = wcost(W ′,M, C), and hence by tak-
ing union bound over all O(k log n) rings, we obtain the following lemma.

Lemma 7.24. For any fixed set C of k centers and any fixed column matrix M, w.p.
at least 1− 1/n2k+5, |cost(P,M, C)− wcost(W ′,M, C)| ≤

∑
(i,j) ε|P ′i,j | · 2jµ.

By taking union bound over all column matrices M, we obtain the desired bound.

Lemma 7.25. For any fixed set C of k centers and for all column matrices M, w.p.
at least 1− 1/nk+4, |cost(P,M, C)− wcost(W ′,M, C)| ≤

∑
(i,j) ε|P ′i,j | · 2jµ.

7.2.2 Overlapping Group Case

In this section, we prove the following theorem.

Theorem 7.26. Given a collection of ` possibly overlapping groups consisting of n
points in total in a metric space, there is an O(n(k + `)) time randomized algorithm
that w.p. at least 1 − 1/n, computes a universal coreset for k-median clustering of
size O(Γ(k log n)2/ε3).
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Let P = ∪`i=1Pi. For each point p ∈ P , let Jp ⊆ [`] be the set of indexes of the
groups to which p belongs. Let I be the distinct collection of these sets {Jp | p ∈ P}
and |I| = Γ. In particular, let I1, . . . , IΓ be the distinct sets in I. Now, we partition
the points in P based on these sets. For 1 ≤ i ≤ Γ, let P i = {p ∈ P | Ii = Jp}. Thus,
{P i | 1 ≤ i ≤ Γ} defines equivalence classes for P such that two points p, p′ ∈ P
belong to the same equivalence class if they are in exactly the same set of groups.

In the overlapping case, we will work with an even stronger definition of coresets.
This is for the ease of computation of an optimal cost assignment of the points in
the coreset. Here instead of k× ` matrices, coloring constraints are defined by k× Γ
matrices. The rows still correspond to k centers, but the columns now correspond to
the Γ equivalence classes. Thus, for such a matrix M, Mij denotes the number of
points from P j that are in cluster i. Thus, the entries of M define a partition of the
points in P . We note that Proposition 4.10 continues to hold, as any fair assignment
of the points in P defines such a matrix M. Now, the definition of universal coreset
remains same, except here wcost(W,M, C) is defined in the following natural way.

Suppose we are given a weight function w : P → R≥0. Let W ⊆ P × R be the set
of pairs {(p, w(p)) | p ∈ P and w(p) > 0}. For a set of centers C = {c1, . . . , ck} and
a coloring constraint M, wcost(W,M, C) is the minimum value

∑
p∈P,ci∈C ψ(p, ci) ·

dist(p, ci) over all assignments ψ : P × C → R≥0 such that

(i) For each p ∈ P ,
∑
ci∈C ψ(p, ci) = w(p).

(ii) For each ci ∈ C and class 1 ≤ j ≤ Γ,
∑
p∈P j ψ(p, ci) = Mij .

If there is no such assignment ψ, wcost(W,M, C) = ∞. When w(p) = 1 for all
p ∈ P , we simply denote W by P and wcost(W,M, C) by cost(P,M, C). Note that
for a fixed matrix M, an optimal assignment ψ must be integral due to integrality
of flow. This was not-necessarily true with our previous definition in the overlapping
case. We will compute a coreset that satisfies this even stronger definition.

With the above definitions, our algorithm in the overlapping case is a natural
extension of the one in the disjoint case. The main idea of our algorithm is to
divide the points into disjoint equivalence classes based on their group membership
and sample points from each equivalence class. We compute the disjoint classes
{P i | 1 ≤ i ≤ Γ} defined above. Then, apply our algorithm in the disjoint case on
these disjoint sets of points P 1, . . . , PΓ. Let W be the constructed coreset.

The Analysis

Recall that Pi,j is the total number of points in each ring B′i,j . We will prove the
following lemma.

Lemma 7.27. For any fixed set C of k centers and for all k× Γ matrix M, w.p. at
least 1− 1/nk+2, |cost(P,M, C)− wcost(W,M, C)| ≤

∑
(i,j) ε|Pi,j | · 2jµ.

Like before, by taking union bound over all C, we obtain the desired result. This
completes the proof of Theorem 7.26. Next, we prove Lemma 7.27.
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Proof of Lemma 7.27 Note that P τ is the points in P from class τ for 1 ≤ τ ≤ Γ.
Let Wτ be the chosen samples from class τ . For any ring B′i,j , let P ′i,j,τ be the points

from class τ in the ring. Also, let Pi,j = ∪Γ
τ=1P

′
i,j,τ .

Like in the disjoint case, here also we will prove the following lemma that gives
a bound when the coreset contains sampled points from a fixed class t and original
points from the other classes.

Lemma 7.28. Consider any class 1 ≤ t ≤ Γ. For any fixed set C of k centers and
for all k × Γ matrix M, w.p. at least 1− 1/nk+4, |cost(P,M, C)− wcost(Wt ∪ (P \
P t),M, C)| ≤

∑
(i,j) ε|P ′i,j,t| · 2jµ.

By using expectation argument similar to the one in the disjoint-group-multiple-
ring case and taking union bound over all Γ < n classes, Lemma 7.27 follows. Next,
we prove Lemma 7.28.

Proof of Lemma 7.28 We have the following lemma that implies that it is suffi-
cient to consider the points only in P t to give the error bound.

Lemma 7.29. Suppose w.p. at least 1−1/nk+4, for all k×1 matrix M′ such that the
sum of the entries in each column is exactly |P t|, |cost(P t,M′, C)−wcost(Wt,M

′, C)| ≤∑
(i,j) ε|P ′i,j,t| · 2jµ. Then, with the same probability, for all k × Γ matrix M,

|cost(P,M, C)− wcost(Wt ∪ (P \ P t),M, C)| ≤
∑

(i,j) ε|P ′i,j,t| · 2jµ.

Proof. Consider any k × Γ matrix M. Also consider a clustering C1, . . . , Ck of P
that has cost cost(P,M, C). We construct two k × Γ matrices M1 and M2 from M.
For j 6= t, and for 1 ≤ i ≤ k, M1[i][j] = 0 and M2[i][j] = M[i][j]. For 1 ≤ i ≤ k,
M1[i][t] = |Ci ∩ P t| and M2[i][t] = M[i][t]− |Ci ∩ P t|.

cost(P,M, C) = cost(P t,M1, C) + cost(P \ P t,M2, C)

Also, as Wt ⊆ P t and the sum of the weights of the points in Wt is |P t|,

wcost(Wt ∪ (P \ P t),M, C) = wcost(Wt,M1, C) + cost(P \ P t,M2, C)

It follows that,

|cost(P,M, C)−wcost(Wt ∪ (P \P t),M, C)| = |cost(P t,M1, C)−wcost(Wt,M1, C)|

Let M′
1 be the tth column of M1. Now, considering the fact that P t does not

contain any points from any other classes, cost(P t,M1, C) − wcost(Wt,M1, C) =
cost(P t,M′

1, C) − wcost(Wt,M
′
1, C). Also, by the definition of M1, the sum of the

entries in M′
1 is

∑k
i=1 |Ci ∩ P t| = |P t|.

Now, by our assumption, it follows that the probability of the event: for all M,
|cost(P t,M′

1, C)− wcost(Wt,M
′
1, C)| exceeds

∑
(i,j) ε|P ′i,j,t| · 2jµ is at most 1/nk+4.

Hence, the lemma follows.
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By the above observation, it is sufficient to prove that w.p. at least 1 − 1/nk+4,
for all k×1 matrix M such that the sum of the entries in each column is exactly |P t|,
|cost(P t,M, C)−wcost(Wt,M, C)| ≤

∑
(i,j) ε|P ′i,j,t| · 2jµ. Now, as we select samples

from P t separately and independently, this claim boils down to the corresponding
claim in the disjoint case. Recall that we proved this claim for a single ring first,
and then extended to multiple rings. The proof of our claim here is very similar, and
thus we omit it.

7.2.3 Euclidean Space

In this section, we prove the following theorem.

Theorem 7.30. Given a collection of ` possibly overlapping groups consisting of n
points in total in Rd, there is an O(nd(k + `)) time randomized algorithm that w.p.
at least 1 − 1/n, computes a universal coreset for Euclidean k-median clustering of
size O

(
Γ
ε3 · k

2 log n(log n+ d log(1/ε))
)
.

The algorithm in the Euclidean case is the same as for general metrics, except we
set s to Θ(k log(nb)/ε3) instead of Θ(k log n/ε3), where b = Θ(k log(n/ε)/εd). The
analysis for general metrics holds in this case, but the assumption that the number
of distinct sets of centers is at most nk is no longer true. Here any point in Rd is a
potential center. Nevertheless, we show that for every set C ⊆ Rd of k centers and
constraint M, the optimal cost is preserved approximately w.h.p. The idea is to use
a discretization technique to obtain a finite set of centers so that if instead we draw
centers from this set, the cost of any clustering is preserved approximately.

In the following, we analyze the coreset construction algorithm in the overlapping
case. First, we construct a set of points F that we will use as the center set. Recall
that C∗ is the set of centers computed by the bicriteria approximation algorithm. ν is
the constant approximation factor and Π is the cost of clustering. Also, µ = Π/(νn).
Note that for any point p, dist(p, C∗) ≤ Π = νn · µ.

For each center c∗i ∈ C∗, we consider the d-dimensional axis-parallel hyper-
cubes Ri,j having sidelength 2jµ and centered at c∗i for 0 ≤ j ≤ N , where N =
dlog(14νn/ε)e. We note that any point at a distance (2Nµ)/2 ≥ 7νn · µ/ε from c∗i is
in Ri,N . Let R′i,0 = Ri,0 and R′i,j = Ri,j \Ri,j−1 for 1 ≤ j ≤ N . For each 0 ≤ j ≤ N ,

we divide R′i,j into gridcells of sidelength (ε2jµ)/(10ν). Let Qi be the exponential
grid for R′i,0, . . . , R

′
i,N , i.e., Qi is the amalgamation of the gridcells in R′i,0, . . . , R

′
i,N .

For each gridcell in the exponential grid Qi, we select any arbitrary point and add it
to Fi.

We repeat the above process for all c∗i ∈ C∗. Let F = ∪iFi. Note that the total
number of gridcells of Qi is at most O(log(n/ε)/εd). Now, from each such gridcell, we
pick at most 1 point. As C∗ contains O(k) centers, the size of F is O(k log(n/ε)/εd).

Note that if the centers can only be chosen from F , then by the analysis for
general metrics, we obtain the following lemma.
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Lemma 7.31. For any fixed set C ⊆ F of k centers and for all k × Γ matrices M,
w.p. at least 1− 1/(bn)k+2, |cost(P,M, C)− wcost(W,M, C)| ≤ ε · cost(P,M, C).

This lemma is similar to Lemma 7.27. The error probability is now 1/(bn)k+2 as
s is set to the larger value Θ(k log(nb)/ε3) instead of Θ(k log n/ε3). Now the number
of distinct sets of k centers from F is at most |F |k ≤ bk. Thus, by taking union
bound over all such sets, we obtain the bound in the above lemma for every C ⊆ F
w.h.p.

Lemma 7.32. For every set C ⊆ F of k centers and for all k×Γ matrices M, w.p.
at least 1− 1/n2, |cost(P,M, C)− wcost(W,M, C)| ≤ ε · cost(P,M, C).

Next, we show that if in a clustering a center c is chosen that is not in any of the
exponential grids considered before, then W preserves the cost of such clustering.

Lemma 7.33. Consider any set C ⊆ Rd of k centers containing a center ĉ such that
a point p̂ ∈ P is assigned to ĉ in a clustering that satisfies a constraint M. Moreover,
suppose ĉ is not in ∪iQi. Then, |cost(P,M, C)−wcost(W,M, C)| ≤ ε·cost(P,M, C).

Proof. Consider any class P t and a ring B′i,j . Let P ′i,j,t be the points in B′i,j from
P t and Wi,j,t be the points of P ′i,j,t that are in W . Then, there is an assignment
φ : P ′i,j,t → Wi,j,t such that exactly |P ′i,j,t|/|Wi,j,t| points are assigned to each point

q ∈Wi,j,t. Note that dist(p, φ(p)) ≤ dist(p, c∗i ) + dist(c∗i , φ(p)) ≤ 2jµ+ 2jµ = 2j+1µ.
Now, consider an optimal assignment ψ corresponding to cost(P,M, C). We compute
the following assignment for each 1 ≤ t ≤ Γ and ring B′i,j . Assign 1 weight of each
point φ(p) ∈ Wi,j,t to the center of C where p is assigned in ψ. (WLOG, one can
assume that the weights of our coreset points are integral.) Note that for each
point in Wi,j,t exactly |P ′i,j,t|/|Wi,j,t| amount of weight has been assigned. The new
assignment for coreset points induces a valid clustering and satisfies M. By triangle
inequality it follows that,
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|cost(P,M, C)− wcost(W,M, C)| ≤
Γ∑
t=1

∑
(i,j)

∑
p∈P ′i,j,t

dist(p, φ(p))

≤
Γ∑
t=1

∑
(i,j)

∑
p∈P ′i,j,t

2j+1µ

≤
∑
(i,j)

∑
p∈Pi,j

2j+1µ

=

k∑
i=1

∑
p∈Pi,0

2µ+
∑

p∈Pi,j |j≥1

2j+1µ

≤ 2nµ+ 4

k∑
i=1

∑
p∈P∗i

dist(p, c∗i )

≤ 2 ·OPTv + 4 ·Π ≤ 6 ·Π

Here P ∗i ⊆ P is the set of points assigned to c∗i . The second last inequality follows,
as for each point p ∈ Pi,j with j ≥ 1, dist(p, c∗i ) ≥ 2j−1µ. Now there is a point p̂ that
is assigned to ĉ ∈ C such that ĉ is not in ∪iQi. Let p̂ ∈ P ∗i . It follows that,

cost(P,M, C) ≥ dist(ĉ, p̂) ≥ dist(ĉ, c∗i )−dist(c∗i , p̂) ≥ 7νn·µ/ε−νnµ ≥ 6νn·µ/ε = 6·Π/ε

The third inequality follows, as dist(ĉ, c∗i ) > (2Nµ)/2 ≥ νn ·µ/ε and dist(c∗i , p̂) ≤
Π = νnµ. Thus, Π ≤ ε · cost(P,M, C)/6. Hence,

|cost(P,M, C)− wcost(W,M, C)| ≤ 6 ·Π ≤ ε · cost(P,M, C).

Next, we consider the case when all points in C are in ∪iQi. Let C ′ ⊆ F be the
set of centers constructed by replacing each point c in C, by the representative of the
gridcell that contains c. Then, we have the following observation.

Observation 7.34. |cost(P,M, C)−cost(P,M, C ′)| ≤ ε·OPTv and |cost(W,M, C)−
cost(W,M, C ′)| ≤ ε ·OPTv.

Lemma 7.35. For every set C ⊆ Rd of k centers such that all centers are con-
tained in ∪iQi and for all constraint M, w.p. at least 1 − 1/n2, |cost(P,M, C) −
wcost(W,M, C)| ≤ ε · cost(P,M, C).
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Proof. Define the set C ′ from C as above. It follows that,

|cost(P,M, C)− wcost(W,M, C)|
≤ |cost(P,M, C)− cost(P,M, C ′) + cost(P,M, C ′)− wcost(W,M, C ′)+

wcost(W,M, C ′)− wcost(W,M, C)|
≤ |cost(P,M, C)− cost(P,M, C ′)|+ |cost(P,M, C ′)− wcost(W,M, C ′)|+

|wcost(W,M, C ′)− wcost(W,M, C)|
≤ 2ε ·OPTv + |cost(P,M, C ′)− wcost(W,M, C ′)|

The last inequality follows from Observation 7.34. By Lemma 7.32, we obtain for
every C and all M, w.p. at least 1− 1/n2,

|cost(P,M, C)− wcost(W,M, C)| ≤ 2ε ·OPTv + ε · cost(P,M, C ′)

≤ ε · cost(P,M, C) + 3ε ·OPTv ≤ 4ε · cost(P,M, C)

By scaling ε by a factor of 4, the lemma follows.

Now, Θ(log(nb)) = Θ(log n + log k + log log(n/ε) + d log(1/ε)) = Θ(log n +
d log(1/ε)). Thus s = Θ

(
1
ε3 · k(log n+ d log(1/ε))

)
. By Lemmas 7.35 and 7.33,

Theorem 7.30 follows.

7.2.4 k-Means Clustering

Here we describe the changes needed to extend the coreset construction scheme for k-
median to k-means. In the end of the section, we also show how to apply well-known
dimensionality reduction techniques to obtain a coreset with the size independent
of d in the Euclidean case. First, we consider the disjoint group case. The coreset
construction algorithm is identical except here from each ring and for each color, we
select a sample of size O(k log n/ε5). The analysis remains almost the same except
in places we obtain worse bounds due to squaring of the distances.

In the single ring-single color case, instead of Theorem 7.9, we have the following
modified theorem.

Theorem 7.36. W.p. at least 1− 1/n2k+10, it holds that

|cost(P,M, C)− wcost(W ′,M, C)| ≤ εmµ′2 +O(ε) · cost(P,M, C).

The network GY is defined in a different way in this case to deal with the square
of distances. In particular, we adapt a bipartite matching framework. The points
(sources) have positive demands and are placed on the left side, and centers (sinks)
have negative demands and are placed on the right. If the demand m−

∑
p∈P ′ Y [p]

corresponding to the bicriteria center c′ is non-negative, it is placed on the left as a
source. Otherwise, it is placed on the right as a sink. The costs of the edges are now
set to square of the corresponding distances.
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Lemma 7.13 continues to hold even in this case. Thus for the same reason we
readily obtain, w.p. 1 − 1/n2k+20, f(E[X]) ≤ f(X) + εmµ′. To prove, w.p. 1 −
1/n2k+20, f(X) ≤ f(E[X]) + εmµ′, we need to show, w.p. at least 1− 1/n3, f(X) ≤
f(E[X])+εmµ′/3. Here we need significant amount of changes in the analysis. Again
we have two cases based on the expectation of |Q′i|. Here we need a slightly different
bound on the expectation ε3s/(100k) instead of εs/(100k).

Case 1. E[|Q′i|] ≥ ε3s/(100k). In this case, |P ′i | · s/m ≥ ε3s/(100k), or |P ′i | ≥
ε3m/(100k). Note that Observation 7.17 continues to hold, as s is set to Θ(k log n/ε5),
and thus Observations 7.18 and 7.19 as well.

Now, we give bound on the cost of the computed flow. Note that we route m/s
flow for each point in Q′′i to ci whose total cost is

∑
p∈Q′′i

(m/s) · dist(p, ci).

For points p ∈ P ′i , the distances dist(p, ci) lie in an interval of length at most 2µ′.
Thus the average of these distances must also lie in this interval. It follows that,

dist(p, ci)
2 ≤ (

1

|P ′i |
·
∑
p∈P ′i

dist(p, ci) + 2µ′)2

≤ 2(
1

|P ′i |
·
∑
p∈P ′i

dist(p, ci))
2 + 8µ′

2

≤ 2

(|P ′i |)2
· |P ′i | ·

∑
p∈P ′i

dist(p, ci)
2 + 8µ′

2

≤ 2

|P ′i |
·
∑
p∈P ′i

dist(p, ci)
2 + 8µ′

2

The second last inequality follows from Cauchy-Schwarz’s inequality. Now, we can
apply Lemma 7.20 setting T = 8µ′

2
, V = P ′i , U = Q′′i , h(p) = dist(p, ci), δ = εµ′

2
/20

and λ = 1/n10. Note that,

r ≥ (1− ε/20) · |P ′i | · s/m ≥ (1− ε/20) · ε
3m

100k
· s
m
≥ Θ(log n/ε2) ≥ (T 2/2δ2) ln (2/λ)

The last inequality follows assuming a sufficiently large constant is hidden in Θ(.) in
the definition of s.

We obtain, w.p. at least 1 − 1/n10,

h(Q′′i ) ≤ h(P ′i ) · |Q′′i |
|P ′i |

+ δ · (|P ′i | · s/m)

Or, h(Q′′i ) · (m/s) ≤ h(P ′i ) · |Q′′i |
|P ′i |

· (m/s) + ε|P ′i | · µ′
2
/20

Or, h(Q′′i ) · (m/s) ≤ (1 +
ε

50
) · h(P ′i ) + ε|P ′i | · µ′

2
/20
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The last inequality follows from Observation 7.17 considering both cases in the
flow construction. Next we compute the additional costs. We have two cases. In the
first case, |Q′i| ≤ |P ′i | · s/m and we need to route (|P ′i | − |Q′i| ·m/s) amount of flow
from c′ to ci. The cost is at most,

(|P ′i | − |Q′i| ·m/s) · dist(c′, ci)

≤ ε · |P
′
i |

50
· ( 2

|P ′i |
·
∑
p∈P ′i

dist(p, ci)
2 + 8µ′

2
)

≤ ε

25
·
∑
p∈P ′i

dist(p, ci)
2 +

4ε · |P ′i |
25

µ′
2

The first inequality follows from Observation 7.17 and from the fact that c′ is the
ring center.

In the second case, |Q′i| > |P ′i | · s/m. Note that in this case we need to route at
least |P ′i | − |Q′′i | ·m/s flow from one point p to ci, as |Q′′i | = b|P ′i | · s/mc, and m/s
flow for each point in Q′i \Q′′i to w. The first cost is at most,

(|P ′i | − |Q′′i | ·m/s) · dist(p, ci)

≤ ε · |P
′
i |

20
· ( 2

|P ′i |
·
∑
p∈P ′i

dist(p, ci)
2 + 8µ′

2
)

≤ ε

10
·
∑
p∈P ′i

dist(p, ci)
2 +

2ε · |P ′i |
5

µ′
2

The first inequality follows from Observation 7.19. The second cost can be
bounded by,

∑
p∈(Q′i\Q′′i )

(m/s) · dist(p, c′)2

≤ (|Q′i| − |Q′′i |) · (m/s) · µ′
2

≤ (ε|P ′i | · s/(40m)) · (m/s) · µ′2

≤ ε|P ′i |µ′
2
/40

The second inequality follows from Observation 7.18. Thus, in this case, the total
cost is bounded by,

(1 +
3ε

25
) ·
∑
p∈P ′i

dist(p, ci)
2 +

19ε · |P ′i |
40

µ′
2
.
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Case 2. E[|Q′i|] < ε3s/(100k). We give separate bounds for the two cases. In the
first case, |Q′i| ≤ |P ′i | · s/m. In this case, we need to route m/s flow from points in
Q′′i to ci and (|P ′i | − |Q′i| ·m/s) amount of flow from c′ to ci. Let pmin and pmax be
the nearest and farthest points in P ′i from ci. The total cost is,

∑
p∈Q′i

(m/s) · dist(p, ci)
2 + (|P ′i | − |Q′i| ·m/s) · dist(c′, ci)

2

≤
∑
p∈Q′i

(m/s) · dist(pmax, ci)
2 + (|P ′i | − |Q′i| ·m/s) · dist(c′, ci)

2

≤ |P ′i | ·max{dist(pmax, ci)
2, dist(c′, ci)

2}
≤ |P ′i | · (µ′ + dist(c′, ci))

2

≤ |P ′i | · (2µ′ + dist(pmin, ci))
2

The first inequality follows by replacing the squares of the distances by their max-
imum. The third inequality follows by noting that dist(pmax, ci) ≤ dist(pmax, c

′) +
dist(c′, ci) ≤ µ′ + dist(c′, ci). The last inequality follows by noting that dist(c′, ci) ≤
dist(c′, pmin) + dist(pmin, ci).

Next, we upper bound the above expression. We consider two subcases. The first
one is dist(pmin, ci) ≤ 2µ′/ε. In this subcase,

|P ′i | · (2µ′ + dist(pmin, ci))
2 ≤ ε3m

100k
· (2µ′ + 2µ′/ε)2

≤ ε3m

25k
· µ′2(1 + 1/ε)2

=
O(εm)

k
· µ′2.

In the other subcase dist(pmin, ci) > 2µ′/ε.

|P ′i | · (2µ′ + dist(pmin, ci))
2 ≤ |P ′i | · (ε dist(pmin, ci) + dist(pmin, ci))

2

≤ |P ′i | · dist(pmin, ci)
2 · (1 + ε)2

= (1 +O(ε))
∑
p∈P ′i

dist(p, ci)
2

The last inequality follows, as dist(p, ci) ≤ dist(pmin, ci) for all p ∈ P ′i . Now, we
consider the second case: |Q′i| > |P ′i | · s/m. We need to route the flow from points
in Q′′i to ci. Additionally, we need to route at least |P ′i | − |Q′′i | ·m/s flow from one
point p∗ to ci, as |Q′′i | = b|P ′i | · s/mc, and m/s flow for each point in Q′i \Q′′i to w.
The sum of the first two costs is at most,
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∑
p∈Q′′i

(m/s) · dist(p, ci)
2 + (|P ′i | − |Q′′i | ·m/s) · dist(p∗, ci)

2

≤
∑
p∈Q′′i

(m/s) · dist(pmax, ci)
2 + (|P ′i | − |Q′′i | ·m/s) · dist(pmax, ci)

2

≤ |P ′i | · dist(pmax, ci)
2

=
O(εm)

k
· µ′2 + (1 +O(ε))

∑
p∈P ′i

dist(p, ci)
2

The last equality follows in the same way as in the first case. The remaining cost
in the second case can be bounded by,

∑
p∈(Q′i\Q′′i )

(m/s) · dist(p, c′)2

≤ (|Q′i| − |Q′′i |) · (m/s) · µ′
2

≤ |Q′i| · (m/s) · µ′
2

≤ (εs/(50k)) · (m/s) · µ′2

= (εm/(50k)) · µ′2

Thus, the total cost in both the cases is bounded by,

O(εm)

k
· µ′2 + (1 +O(ε))

∑
p∈P ′i

dist(p, ci)
2

General Upper Bound on the Cost. By merging the cost in both cases, we
obtain the common upper bound,

(1 +O(ε))
∑
p∈P ′i

dist(p, ci)
2 +

19ε · |P ′i |
40

µ′
2

+
O(εm)

k
· µ′2

= (1 +O(ε))
∑
p∈P ′i

dist(p, ci)
2 +O(ε · |P ′i |) · µ′

2
+
O(εm)

k
· µ′2

Summing over all the centers in C, we obtain,

wcost(W ′, C,M) ≤ (1 +O(ε)) · cost(P,C,M) +O(ε · |P ′|) · µ′2 +O(ε) ·m · µ′2

= (1 +O(ε)) · cost(P,C,M) +O(ε) ·m · µ′2.
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Summing the cost over all rings gives us,

|cost(P,C,M)− wcost(W ′, C,M)| ≤
∑
(i,j)

O(ε) · |P ′i,j | · 2jµ2 +O(εk log n) · cost(P,C,M)

= O(εk log n) · cost(P,C,M)

Note that the coreset size for each ring and for each color was O(k log n/ε5). To
obtain the desired ε error, we need to scale ε by a factor of Θ(k log n). Thus, the
required size of the coreset becomes O((k log n)6/ε5). Summing over all rings and
colors we obtain the desired bound of O(`(k log n)7/ε5) on our coreset size.

This proves the disjoint case of Theorem 7.2 for k-means. The coreset construction
algorithm for k-means in the overlapping group case is again the same as that for k-
median, except the bound on sample size. From the above analysis and the analysis
for k-median, we obtain the desired result. This proves the overlapping case of
Theorem 7.2 for k-means.

In the Euclidean case, the extension of the analysis for k-median to k-means is
trivial. We obtain the following generic theorem.

Theorem 7.37. Given a collection of ` possibly overlapping groups consisting of
n points in total in a metric space, there is an O(n(k + `)) time randomized algo-
rithm that w.p. at least 1 − 1/n, computes a universal coreset for k-means clus-
tering of size O(Γ(k log n)7/ε5). In the Euclidean case, the size of the coreset is
O
(

Γ
ε5 · k

7(log n)6(log n+ d log(1/ε))
)
, and the running time is O(nd(k + l)).

7.3 Assignment Problem for (α, β)-Fair Clustering

Recall that we are given ` groups {Pi} of P , and P 1, . . . , PΓ are the point equivalence
classes. Also, It is the set of indexes of the groups corresponding to P t, for each
t ∈ [Γ]. We aim to solve (α, β)-Fair Clustering on our coreset W instead of on
the original points. Suppose we are given the optimal set of centers C for (α, β)-
Fair Clustering. Let M be the collection of coloring constraints that express the
assignment restriction of (α, β)-Fair Clustering. Since W is a universal coreset,
computing the minimum wcost(W,M, C) over all k × Γ matrix M ∈ M would give
us the optimal cost of fair clustering, modulo a (1 ± ε) factor. Now, recall that, for
k-median, wcost(W,M, C) is the minimum value

∑
x∈P,cj∈C ψ(x, cj) ·dist(x, cj) over

all assignments ψ : P × C → R≥0 such that

(i) For each x ∈ P ,
∑
cj∈C ψ(x, cj) = w(x).

(ii) For each cj ∈ C and class 1 ≤ t ≤ Γ,
∑
x∈P t ψ(x, cj) = Mjt.

Thus, given an M, we can compute wcost(W,M, C) by solving a minimum cost
flow problem. But, as the size of M can be sufficiently large, we cannot try out
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all possible M. Note that as the optimal M ∈ M represents a fair partition of the
equivalence classes {P t} between the centers , ψ automatically satisfies the fairness
properties: ∑

x∈Pi

ψ(x, cj) ≤ αi ·
∑
x∈P

ψ(x, cj), ∀cj ∈ C, ∀i ∈ [`],

∑
x∈Pi

ψ(x, cj) ≥ βi ·
∑
x∈P

ψ(x, cj), ∀cj ∈ C, ∀i ∈ [`].

Now, as the optimal M has all integer entries, the optimal cost assignment ψ
must also be integral. Here we assume that the coreset points have integer weights.
We note that our construction can be slightly modified to obtain coreset with integer
weights (e.g, see Chen’s adaptation [53]). Thus, given W and C it is sufficient to
compute a minimum cost integral assignment that satisfies the above two inequali-
ties and the constraint: For each x ∈ P ,

∑
cj∈C ψ(x, cj) = w(x). We refer to this

assignment problem as Weighted Fair Assignment. Our main theorem of this
section provides an algorithm with running time (kΓ)O(kΓ)|W |O(1) for this problem.
The general idea is to reduce the assignment problem to a linear programming prob-
lem. The unknown optimal assignment can be naturally expressed in terms of linear
inequalities, along with the condition that the assignment is fair. However, the issue
is that in general the optimal fractional solution to this linear programming problem
is not integral, and the integrality gap could be arbitrarily large. Thus, an optimal
fractional solution does not yield the desired assignment. And indeed, it was observed
already by Bera et al. [23] that the assignment problem for (α, β)-Fair Clustering
is NP-hard, so there is no hope to have a polynomial time assignment algorithm.

We cannot afford to make all variables integral and solve an integer linear program
(ILP) instead, as the number of variables is large, of order |W |k, and in our construc-
tion |W | is polylogarithmic in n. However, note that the optimal assignment has the
property that for each cj ∈ C and class 1 ≤ t ≤ Γ,

∑
x∈P t ψ(x, cj) = Mjt. Thus the

amount of weight assigned from each class to each center is an integer. Using this
observation, we reduce our problem to a mixed-integer linear programming problem
and force only k ·Γ variables to be integral. These variables correspond exactly to the
entries of the constraint matrix M. Then, we show that this automatically ensures
that all the other variables are integral as well, in the optimal solution.

Next, we state one of the equivalent formulations of the Mixed-Integer Linear
Programming problem. The input to the problem is a matrix A ∈ Rm×d, a vector
b ∈ Rm, a vector c ∈ Rd, and a parameter p, 0 ≤ p ≤ d. The goal is to find a vector
x = (x1, . . . , xd) ∈ Rd such that x1, . . . , xp ∈ Z, A · x ≤ b, and the value c · x is
minimized across all vectors satisfying the above.

By the celebrated result of Lenstra [142], Mixed-Integer Linear Program-
ming is solvable in FPT time when parameterized by the number of integer variables
p. We use the following commonly employed version of this result, following the
improvements to the original Lenstra’s algorithm given by Kannan [127], and Frank
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and Tardos [93].

Proposition 7.38 ([142], [127], [93]). There is an algorithm solving Mixed-Integer
Linear Programming in time O(p2.5p+o(p)d4L) and space polynomial in L, where
L is the bitsize of the given instance.

Now we present the assignment algorithm itself. Note that it is sufficient to
consider only the points in W for the purpose of computing an assignment, as the
other points in P have zero weights. For simplicity, we denote |W | by n. There is
practically no difference between the cases of k-median and k-means concerning the
assignment problem, and thus we state it for both cases.

Theorem 7.39. There is an algorithm that given an instance of Weighted Fair
Assignment, i.e, a weighted set W of n points and a set C = {c1, . . . , ck} of k
centers, computes an optimal assignment of W with the set of centers C. That is,
the output is a minimum cost assignment ψ : P × C → Z≥0 that corresponds to
(α, β)-Fair Clustering. The running time of the algorithm is (kΓ)O(kΓ)nO(1)L,
where L is the total number of bits in the encoding of distances and weights in the
instance.

Proof. We reduce Weighted Fair Assignment to Mixed-Integer Linear Pro-
gramming. The formulation of our problem itself follows the natural way of treating
a clustering assignment problem as a flow problem. Let W = {(p1, w(p1)), · · · , (pn, w(pn))}.
For every point pi and center cj introduce a variable fij corresponding to how much
weight from the i-th point is assigned to the j-th center. Also, for every center cj and
point equivalence class t ∈ {1, . . . ,Γ} introduce a variable gtj , corresponding to how
much weight from points of the class t the j-th center gets. The following constraints
express that {fij} and {gtj} define a fair clustering:

fij ≥ 0 ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, (7.1)

gtj ∈ Z≥0 ∀j ∈ {1, . . . , k}, t ∈ {1, . . . ,Γ}, (7.2)∑
1≤j≤k

fij = w(pi) ∀i ∈ {1, . . . , n}, (7.3)

∑
i∈[n]:pi∈P t

fij = gtj ∀j ∈ {1, . . . , k}, t ∈ {1, . . . ,Γ}, (7.4)

∑
i∈[n]:pi∈Pq

fij ≥ βq
∑
i∈[n]

fij ∀j ∈ {1, . . . , k}, ∀q ∈ {1, . . . , `}, (7.5)

∑
i∈[n]:pi∈Pq

fij ≤ αq
∑
i∈[n]

fij ∀j ∈ {1, . . . , k}, ∀q ∈ {1, . . . , `}. (7.6)

Note that for a color q ∈ {1, . . . , `},
∑
i∈[n]:pi∈Pq fij is precisely the weight assigned

from points of color q to the center j, and
∑
i∈[n] fij is the total weight assigned to
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the center j. Thus Constraints (7.5) and (7.6) ensure that the assignment is indeed
fair. Finally, the objective function is

Minimize

n∑
i=1

k∑
j=1

dijfij , (7.7)

where dij = dist(pi, cj) in the case of k-median, and dij = dist(pi, cj)
2 in the case of

k-means.
We solve the Mixed-Integer Linear Programming defined above by using

Proposition 7.38. We require that the variables {gtj} take integral values, while we
do not impose this restriction on the variables {fij}. Thus, in time (kΓ)O(kΓ)nO(1)L
we find the optimal solution {fij}, {gtj}.

Clearly, Constraints (7.1)–(7.6) ensure that the assignment defined by {fij} cor-
responds to Weighted Fair Assignment, except for the fact that some of {fij}
might be fractional. We now show that the integrality of {gtj} guarantees that there
exists an optimal solution to (7.1)–(7.7) that is integral. For every equivalence class
t ∈ {1, . . . ,Γ} consider the following flow network. The network is essentially a re-
striction of (7.1)–(7.4) to the class t assuming that the values {gtj} are fixed. There
is a node associated with every point pi ∈ P t that has a supply of w(pi), and there
is a node associated with every cj ∈ C that has a demand of gtj . There is an edge
eij between each point pi ∈ P t and every center cj ∈ C that has an unlimited ca-
pacity and the cost dij . In this network, there is a maximum flow of minimal cost
{f ′ij} that has only integral values, since all the supplies, demands and capacities
in the network are integers. Now we replace the respective values of {fij} with the
obtained {f ′ij} that are integral and still satisfy (7.1)–(7.4). The cost is unchanged
since {fij} induces a maximum flow in the network as well. Thus the old cost can
only be larger, but also {fij} is an optimal solution to the Mixed-Integer Linear
Programming instance, so the new cost cannot be smaller. After we perform the
above for every class, the whole assignment is integral, now satisfying the statement
of the theorem completely. Finally, note that {f ′ij} can be found in nO(1)L time with
the known values of {gtj} by any polynomial time minimum-cost flow algorithm.

The algorithm in Theorem 7.39 allows us to solve (α, β)-Fair Clustering on
the original points as well, as long as we know a suitable set of k centers. However,
the running time would have a heavy dependence on n, roughly n5. So to obtain
a near-linear time algorithm, we cannot use Theorem 7.39 directly on the original
points, even if we know the centers. Instead, in the approximation algorithms we
present, we first compute a universal coreset of the original set of points, and then
solve all the arising instances of the assignment problem on the coreset, thus inflicting
only polylogarithmic in n time. Still, at the end we have to output a low-cost fair
assignment of the original points, and again we cannot directly use Theorem 7.39.
So we show how to compute the assignment in near-linear time with the help of the
coreset. The idea is to run Theorem 7.39 on the coreset and then use the optimal
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solution there to find a good assignment of the original points in a simpler way.
Namely, knowing how many points from each equivalence class are assigned to each
center, the assignment problem boils down to finding a minimum-cost flow in a
bipartite network where one of the parts is small. First, we recall a suitable minimum-
cost flow result by Ahuja et al. [6].

Proposition 7.40 (Theorem 7.3 in [6]). The minimum-cost flow problem on a bi-
partite network is solvable in time O((n1m + n3

1) log(n1D)), where n1 is the size of
the smaller part in the network, m is the number of edges, and D is the maximum
cost of an edge in the network.

Now we prove a general lemma that allows us to transfer any fair assignment
from the coreset to a fair assignment on the original points in polynomial time, while
losing only a factor of (1 + ε) in the cost.

Lemma 7.41. There is an algorithm that given a set of points P with the ` groups P1,
. . . , P`, a coreset W of P , a set of k centers C, a fair assignment ψ : P ×C → Z≥0,
and a value 0 < ε ≤ 1, computes a fair assignment of the points of P to the centers
of C with the cost at most (1+ε) ·cost(ψ) in time O(Γ ·k3/εO(1) ·n log n). This holds
for both (α, β)-Fair k-median and (α, β)-Fair k-meanss in general metric, provided
that W satisfies

cost(P t,M, C) ≤ (1 + ε/3) wcost(W t,M, C),

for every column constraint matrix M ∈ Zk, where by W t we denote the restriction
of W to the points of the equivalence class P t. In the Euclidean case, the running
time is multiplied by d.

Proof. For the assignment ψ, consider the values {gtj}t∈[Γ], j∈[k], using the notation
in Theorem 7.39, where gtj denotes how many points from the t-th class are assigned
to the j-th center by ψ, and the values {At}t∈[Γ], where At is the cost of ψ restricted
to the t-th class. Now for each class P t in the original point set P , solve the following
assignment problem: assign points of P t to centers in C such that there are exactly
gtj points assigned to the j-th center, and the cost of the assignment is minimum
among all such assignments. We naturally view this problem as a minimum-cost flow
problem, and we solve it by running the algorithm given by Proposition 7.40. Note
that the resulting network has O(k) vertices in the part corresponding to the centers
C, and O(nk) edges in total. Finally, the resulting fair assignment ϕ from P to C is
the union of assignments from P t to C for all t ∈ [Γ]. Clearly, the obtained assignment
is fair, since the fairness condition is completely determined by the numbers {gtj}.
This is true, as in the Constraints 7.5 and 7.6,

∑
i∈[n]:pi∈Pq fij can be expressed

by
∑
t∈[Γ]:q∈It gtj and

∑
i∈[n] fij by

∑Γ
t′=1 gt′j . We now argue about the cost. By

construction, the cost of the resulting assignment is
∑Γ
t=1 cost(P t, (gtj)

k
j=1, C). Now,

cost(P t, (gtj)
k
j=1, C) ≤ (1 + ε/3) wcost(W t, (gtj)

k
j=1, C) ≤ (1 + ε/3)At, ∀ t ∈ [Γ].
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Summing over all t ∈ [Γ], we obtain

cost(ϕ) =

Γ∑
t=1

cost(P t, (gtj)
k
j=1, C) ≤ (1 + ε/3)

Γ∑
t=1

At = (1 + ε/3) cost(ψ).

By Proposition 7.40 it takes time O(Γ · k3/ε2 · n log n) to run the minimum-cost
flow algorithm Γ times, where we assume that logD = O(log n/ε2). Finally, we
justify the latter by a standard argument reducing the ratio of maximum distance
in the instance to the minimum distance. In the network flow instance that we
construct from P t and C, tweak slightly the costs on the edges. Set ε0 = ε/6, if
an edge costs more than Dmax := 2At, replace its cost by Dmax, and if an edge
costs less than Dmin := ε0At/(2n), replace its cost by Dmin. For all the other
edges, round up their cost to the closest value of the form (1 + ε0)qDmin, where q
is an integer. In the modified network, the cost scaling part then induces a factor of
log1+ε0(Dmax/Dmin) = log1+ε0(4n/ε0) = O(log n/ε2), instead of O(logD).

Now we argue about how this change influences the cost. Consider an optimal
assignment ϕ : P t → C in the modified network, obtained by the network flow
algorithm. Its cost is at most (1 + 2ε0) · (1 + ε/3)At, since the cost of an optimal
assignment ϕ∗ in the original network is at most (1 + ε/3)At by the argument above,
and the cost of ϕ∗ in the new network is at most (1+2ε0) times the cost in the original
network. The latter holds since ϕ∗ never uses edges of cost more than Dmax = 2At,
for the edges between Dmin and Dmax the cost increase is at most a factor of (1+ε0),
and for the edges with the cost less than Dmin, their total contribution in the new
network is at most n ·ε0At/n = ε0At. The algorithm outputs the optimal assignment
ϕ in the modified network, and its cost in the original network is at most its cost
in the modified network, since edges with cost at least Dmax are never used, and
the cost of all the other edges is less in the original network. Thus, we have shown
that the cost of the assignment we constructed is at most (1 + 2ε0)(1 + ε/3)At =
(1 + ε/3)(1 + ε/3)At ≤ (1 + ε)At. From this point, the cost analysis above proceeds,
and summing over all t ∈ [Γ] we obtain cost(ϕ) ≤ (1 + ε) cost(ψ).

Observe that in the Euclidean case we compute distances between the points from
their respective d-dimensional vectors, thus taking an extra factor of d in the running
time.

Note that the condition on W in Lemma 7.41 is satisfied by the coresets ob-
tained from Theorem 7.26 and Theorem 7.37 with a suitable error parameter, since
the coreset construction samples points in each equivalence class independently, and
thus approximately preserves the cost with respect to any column matrix constraint
on each of them. Now we show that any instance of the assignment problem can be
approximately solved in near-linear FPT time with the help of our coreset construc-
tion, Theorem 7.39, and Lemma 7.41.

Lemma 7.42. Given a set of points P with the ` groups P1, . . . , P`, a set of k
centers C, and a parameter 0 < ε ≤ 1, a fair assignment of the points of P to the
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centers of C with the cost at most (1 + ε) faircost(P,C) can be computed in time
(kΓ)O(kΓ)(log n/ε)O(1) + O(Γ · k3/ε2 · n log n) w.h.p. This holds for both (α, β)-Fair
k-median and (α, β)-Fair k-meanss in general metric. In the Euclidean case, the
running time is multiplied by d.

Proof. The algorithm proceeds as follows. First, we compute a coreset W from the
point set P using Theorem 7.26 or Theorem 7.37, depending on the problem, with the
error parameter ε0 to be defined later. Then we compute an optimal fair assignment
ψ from W to the centers C by applying Theorem 7.39. Finally, we invoke Lemma 7.41
on the assignment ψ to obtain a fair assignment ϕ : P → C with the cost at most
(1 + 3ε0) cost(ψ). The algorithm returns ϕ, and in what follows we bound the cost
of this assignment. Denote by M ∈ Zk×` the constraint matrix corresponding to the
assignment ψ, i.e. Mij is equal to how many points from the j-th group ψ sends to
the i-th center, and by M∗ the constraint matrix corresponding to an optimal fair
assignment from P to C. By the choice of M and M∗, and the fact that W is a
universal coreset of P , we obtain

cost(ψ) = wcost(W,M, C) ≤ wcost(W,M∗, C)

≤ (1 + ε0) cost(P,M∗, C) = (1 + ε0) faircost(P,C).

Thus, cost(ϕ) is at most (1 + 3ε0)(1 + ε0) faircost(P,C), and setting ε0 such that
(1 + 3ε0)(1 + ε0) ≤ (1 + ε) finishes the proof.

As for the running time, the O((k + l) · n) is for the coreset construction,
O((kΓ)O(kΓ)(k log n/ε)O(1)) is for solving the assignment problem on the coreset,
and O(Γ · k3/εO(1) · n log n) is for restoring ϕ by Lemma 7.41. Not that the coreset
construction time is dominated by the last term.

Finally, in the Euclidean case we compute distances between the points from their
respective d-dimensional vectors, thus taking an extra factor of d in the running time.
Note that we still use the general metric case in Theorems 7.26 and 7.37 for coreset
construction, since we only need to preserve the objective with respect to the given
set of centers C.

7.4 (1 + ε)-Approximation in the Euclidean Space

In this section, we present a near-linear time (1 + ε)-approximation algorithm for
Euclidean (α, β)-Fair k-median and (α, β)-Fair k-meanss. For that purpose, we com-
bine our coreset construction (Theorem 7.26 and Theorem 7.37), our assignment
algorithm (Theorem 7.39), and the linear-time constrained clustering algorithm of
Bhattacharya et al. [27].

We denote the cost of clustering C1, . . . , Ck with the centers C = (c1, . . . , ck)
by costC(C1, . . . , Ck). By cost(C1, . . . , Ck) we denote minC costC(C1, . . . , Ck), where
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the minimum is over all possible k centers C. It is well-known that in the case of
k-means the optimal center for a cluster Ci is its mean µ(Ci) := 1/|Ci|

∑
x∈Ci x, thus

cost(C1, . . . , Ck) = cost(µ(C1),..., µ(Ck))(C1, . . . , Ck).
Next, we formally restate the result of Bhattacharya et al.

Proposition 7.43 ([27], Theorem 1). Given a set of n points P ⊂ Rd, parameters k

and ε, there is a randomized algorithm that outputs a list L of 2Õ(k/ε) sets of centers
of size k such that for any clustering {C∗1 , . . . , C∗k} of P , the following event happens
with probability at least 1/2 : there is a set C ∈ L such that

costC(C∗1 , . . . , C
∗
k) ≤ (1 + ε) cost(C∗1 , . . . , C

∗
k),

where cost is with respect to the k-means clustering objective. The running time of

the algorithm is nd · 2Õ(k/ε), where Õ notation hides a O(log k
ε ) factor. The same

statement holds for k-median, except the size of the list L becomes 2Õ(k/εO(1)), and

the running time becomes nd · 2Õ(k/εO(1)).

Note that Proposition 7.43 together with our assignment algorithm from Theo-
rem 7.39 already implies (1+ε)-approximation algorithm, as stated in the next claim.

Claim 7.44. There exists a (1 + ε)-approximation algorithm solving (α, β)-Fair

Clustering in Rd in time 2Õ(k/εO(1))(kΓ)O(kΓ)nO(1)d with high probability. The
algorithm also extends to the weighted version of the problem.

Proof. The proof is by solving the assignment problem with the help of Theorem 7.39
on each set of centers in the list returned by Proposition 7.43. We run Proposi-
tion 7.43 Θ(log n) times to succeed with high probability, and thus run Theorem 7.39

on 2Õ(k/εO(1)) log n candidate sets of centers.
For the weighted version, observe that the algorithm of Proposition 7.43 trivially

extends to the case where the input points have weight, since the only step where
all the input points are used is to perform D2-sampling, and there the sampling
probabilities just need to be multiplied by the respective weights. Theorem 7.39
holds in the weighted case by definition.

However, the running time of Claim 7.44 has a high-degree polynomial depen-
dency on n. To achieve a near-linear time algorithm, we use the help of our coreset
construction. Observe that Proposition 7.43 together with Lemma 7.42 already imply
an algorithm of this form. Nevertheless, we proceed with a variation of this scheme
that leads to a slightly better running time, in particular, avoiding a n log2 n factor.

The general idea of our algorithm is as follows. First, we obtain a list of candidate
sets of centers by Proposition 7.43. Then we compute a universal coreset from the
input points such that the objective is preserved with respect to all the computed
sets of centers. For each set of k centers in the list we run our assignment algorithm
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on the coreset to determine the set of centers with the best cost. The algorithm of
Bhattacharya et al. and the coreset computation take linear time, and the assignment
problem is solved on the coreset, thus taking time polylogarithmic in n. Finally, we
run Lemma 7.41 on the best set of centers to construct a fair assignment on the
original points. We state and prove the theorem formally next.

Theorem 7.45. There is a randomized algorithm that given an instance P of (α, β)-
Fair Clustering and a parameter 0 < ε ≤ 1 outputs a set of k centers C and a fair
assignment ϕ : P → C satisfying cost(ϕ) ≤ (1 + ε) faircost(P ) with high probability.
The running time of the algorithm is

2Õ(k/εO(1))(kΓ)O(kΓ)nd log n.

Proof. First, we run the algorithm given by Proposition 7.43 to obtain a list L of

2Õ(k/ε
O(1)
0 ) candidate sets of centers, using the error parameter ε0 < ε to be defined

later. To increase the probability of success, we repeat this Θ(log n) times concate-

nating all the obtained lists, to form a list L of 2Õ(k/ε
O(1)
0 ) log n candidate sets of

centers.
For (α, β)-Fair k-median, we then compute a universal coreset W of size

O(
Γ

ε3
0

k2(log(n+ k2Õ(k/ε
O(1)
0 ) log n))2) = Γ(k/ε0 log n)O(1),

using Theorem 7.26, again with the error parameter ε0. We use the general metric
case of the theorem with respect to the points P and the possible centers contained
in the list L. For (α, β)-Fair k-meanss, we employ instead Theorem 7.37 to obtain a
universal coreset W , its size is also Γ(k/ε0 log n)O(1). For the rest of the proof, there
is no difference between the two problems.

For each set of k centers in L we run the assignment algorithm given by The-
orem 7.39, and select the set of centers C with the best cost. Now we bound
faircost(P,C). Denote by M the color constraint matrix that corresponds to an
optimal fair assignment from W to C, it holds that

faircost(P,C) ≤ cost(P,M, C) ≤ 1

1− ε0
wcost(W,M, C),

where the last inequality is by the definition of a universal coreset. By Proposi-
tion 7.43 with probability 1− (1/2)Θ(log n) = 1− (1/n)Θ(1) there is a set C̃ in L such
that faircost(P, C̃ ≤ (1 + ε0) faircost(P ). Denote by M̃ the color constraint matrix
that corresponds to an optimal fair assignment from W to C̃, since C achieves the
lowest cost of fair clustering for W among L, wcost(W,M, C) ≤ wcost(W, M̃, C̃).
Denote by M̃∗ the constraint matrix achieving faircost(P, C̃) = cost(P, M̃∗, C̃), by
the choice of M̃ we have that

wcost(W, M̃, C̃) ≤ wcost(W, M̃∗, C̃) ≤ (1 + ε0) cost(P, M̃∗, C̃),
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where the last inequality is because W is a universal coreset of P . And since
cost(P, M̃∗, C̃) = faircost(P, C̃) ≤ (1+ε0) faircost(P ) by the choice of M̃∗ and C̃, we
have the following bound:

faircost(P,C) ≤ 1 + ε0

1− ε0
cost(P, M̃∗, C̃) ≤ (1 + ε0)2

1− ε0
faircost(P ).

Finally, we compute a fair assignment from P to C running the algorithm from
Lemma 7.42, using the error parameter ε0. The computed assignment has cost at

most (1+ε0) faircost(P,C), which by the above is at most (1+ε0)3

1−ε0 faircost(P ). Setting

ε0 such that 1 + ε ≥ (1+ε0)3

1−ε0 concludes the proof.

The running time of the algorithm is the sum of the 2Õ(k/εO(1))nd running time
of Proposition 7.43 multiplied by O(log n), the O((k + l)nd) running time given

by Theorem 7.26/Theorem 7.37, 2Õ(k/εO(1)) times the (kΓ)O(kΓ)(log n)O(1)d run-
ning time of the assignment algorithm given by Theorem 7.39 on the coreset, and
finally the running time of Lemma 7.41. All of these terms are dominated by

2Õ(k/εO(1))(kΓ)O(kΓ)nd log n.

Note that the algorithm in Theorem 7.45 is in a sense a non-typical use of a
coreset: we first do the heavy part of running Proposition 7.43 on the original points,
and only then use the coreset to speed up the assignment problem. We can also
devise a true reductive algorithm, where we first construct a universal coreset from
the input data, and then do everything on the coreset, both Proposition 7.43 and
selection of the best centers. We show this algorithm in the next subsection.

7.4.1 Reduction to a Small-sized Instance

In fact, we show a general reduction result: that the original instance of (α, β)-Fair
Clustering could be replaced by a small-sized one, such that any approximate
solution could be lifted from the reduced instance with an extra error factor of (1+ε).
Moreover, it can be done in polynomial time that is near-linear in n and linear in
d. Essentially, this result is a combination of the universal coreset property and
Lemma 7.41, and it shows that our universal coreset construction can indeed be used
for data compression wrt. (α, β)-Fair Clustering. In the next theorem, we state
and prove the result formally.

Theorem 7.46. There is a randomized algorithm that given an instance P of (α, β)-
Fair Clustering in Rd outputs a reduced weighted instance W of size d(k/ε log n)O(1)

in the same space. W.h.p. it holds that for any γ ≥ 1, and for any set of k centers C
in Rd and a fair assignment ψ from W to C such that cost(ψ) ≤ γ faircost(W ), there
exists a fair assignment ϕ : P → C with the cost at most (1 + ε)γ faircost(P ) that
can be restored from ψ and C. Both constructing W from P and restoring ϕ from ψ
and C take time O(Γk3/ε2nd log n).
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Proof. The algorithm to construct W from P is simply the algorithm from Theo-
rem 7.26 constructing a universal coreset for (α, β)-Fair k-median in the Euclidean
case (Theorem 7.37 for (α, β)-Fair k-median). We invoke the coreset construction
algorithm with the error parameter ε0 < ε to be defined later, the O((k + l)nd)
running time is dominated by O(Γk3/ε2nd log n). The reduced weighted instance W
is exactly the obtained coreset. Its size is d(k/ε log n)O(1), and w.h.p. for any set C
of k centers in Rd and any constraint matrix M ∈ Zk×Γ it holds that

(1− ε) · cost(P,M, C) ≤ wcost(W,M, C) ≤ (1 + ε) · cost(P,M, C).

Now consider a particular γ > 1, a set of k centers C and a fair assignment
ψ : P × C → Z≥0 of the coreset W such that cost(ψ) ≤ γ faircost(W ). Observe that
faircost(W ) ≤ (1 + ε0) faircost(P ) since for the set of centers C∗ and the constraint
matrix M∗ achieving faircost(P ) = cost(P,M, C), it holds that

faircost(W ) ≤ wcost(W,M∗, C∗) ≤ (1 + ε0) cost(P,M∗, C∗) = (1 + ε0) faircost(P ).

Thus, cost(ψ) ≤ (1 + ε0)γ faircost(P ). To construct the fair assignment ϕ, we invoke
Lemma 7.41 on the assignment ψ. By Lemma 7.41, the cost of ϕ is at most

(1 + 3ε0) cost(ψ) ≤ (1 + 3ε0)(1 + ε0)γ faircost(P ).

Finally, we set ε0 such that (1 + 3ε0)(1 + ε0) ≤ (1 + ε) to obtain the desired bound.
The running time of Lemma 7.41 is exactly O(Γk3/ε2nd log n), and this dominates

the O((k + l)nd) running time required by the coreset construction.

Theorem 7.46 allows for any exact or approximate algorithm for (α, β)-Fair
Clustering to be run on the small-sized coreset instead of the original points.
By plugging in the (1 + ε)-approximation algorithm given by Claim 7.44, we obtain
the following theorem.

Theorem 7.47. There is an algorithm solving (α, β)-Fair Clustering in time

O(Γk3/ε2nd log n) + 2Õ(k/εO(1))(kΓ)O(kΓ)(d log n)O(1)

with high probability, for any given 0 < ε ≤ 1.

Proof. Set ε0 = ε/3. Invoke Theorem 7.46 with the error parameter ε0 to obtain
a reduced weighted instance W from the input points P . Run the algorithm from
Claim 7.44 on W to obtain the set of k centers C and a fair assignment ψ from W to
C of cost at most (1 + ε0) faircost(W ). Finally, by the second part of Theorem 7.46
compute a fair assignment ϕ : P → C. The assignment ϕ is the output of the
algorithm, and its cost is at most (1 + ε0)2 faircost(P ) ≤ (1 + ε) faircost(P ).

Both algorithms from Theorem 7.46 run in time O(Γk3/ε2nd log n), and running
the algorithm from Claim 7.44 on the input of size n′ := d(k/ε log n)O(1) amounts to
the time complexity of

2Õ(k/εO(1))(kΓ)O(kΓ)(n′)O(1)d = 2Õ(k/εO(1))(kΓ)O(kΓ)(d log n)O(1).
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In the running time of Theorem 7.47, observe that the exponential term is just
polylogarithmic in n, compared to Theorem 7.45. However, the dependency on d in
Theorem 7.47 is a high-degree polynomial. That is since we invoke the Euclidean case
of Theorem 7.26/Theorem 7.37 so that coreset preserves the objective with respect
to every k points in Rd, and that requires an additional factor of d in the coreset size.

7.4.2 Dimensionality Reduction

In the case of k-means, we show how to apply the recent dimensionality reduction
tools to effectively replace the dimension d by O(k/ε), thus making the algorithm
from Theorem 7.47 linear in d too, and independent of d after the computation
of the coreset. At the end, dimensionality reduction and our coreset construction
effectively compress the instance to just (k/ε log n)O(1) real numbers, providing a
stronger variant of Theorem 7.46.

In the proof of the theorem, we employ the notion and results on projection-cost
preserving sketches, introduced in Section 4.1.

Theorem 7.48. There is a randomized algorithm that given an instance P of (α, β)-
Fair Clustering in Rd outputs a reduced weighted instance W of size (k/ε log n)O(1)

in a low-dimensional space Rm, where m = O(k/ε). W.h.p. for any γ ≥ 1, and
for any set of k centers C̃ in Rm and a fair assignment ψ from W to C̃ such that
cost(ψ) ≤ γ faircost(W ), there exists a set of k centers C in Rd and a fair assignment
ϕ : P → C with the cost at most (1 + ε)γ faircost(P ) that can be restored from ψ
and C̃. Both constructing W from P and restoring (C,ϕ) from (C̃, ψ) takes time
O(Γk3/ε2nd log n).

Proof. Fix a value 0 < ε0 < ε to be defined later. Represent the given points P as
a matrix A ∈ Rn×d, where each row corresponds to a point. Set s = dk/ε0e and
run the algorithm given by Theorem 4.8 on the matrix A and the parameter s to
obtain a matrix S ∈ Rd×s. By Markov inequality, it holds with probability at least
1− 1+ε0

1+2ε0
= Ω(ε0) that

||A−ASST ||2F ≤ (1 + 2ε0)||A−As||2F .

By invoking Theorem 4.8 O(ε−1
0 log n) times and picking S with the smallest value of

||A−ASST ||2F , we achieve that the bound above holds with high probability. Then,
the sketch Ã = AS is a projection-cost preserving sketch, i.e. it holds that

||A−MA||2F ≤ ||Ã−MÃ||2F + c ≤ (1 + 3ε0)||A−MA||2F ,

for any rank k orthogonal projection matrix M ∈ Rn×n and some constant c indepen-
dent of M. Consider the corresponding to Ã set of points P̃ in Rm. Recall that any
k-means clustering of the rows of A may be represented by a particular orthogonal
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projection matrix M, such that the cost of the clustering is equal to ||A −MA||2F .
Thus, for any clustering C1, . . . , Ck of P and the corresponding clustering C̃1, . . . ,
C̃k of P̃ , it holds that

cost(C1, . . . , Ck) ≤ cost(C̃1, . . . , C̃k) + c ≤ (1 + 3ε0) cost(C1, . . . , Ck). (7.8)

In particular, if we equip P̃ with the same l groups as P , (7.8) holds for any fair
clustering.

We run the algorithm given by Theorem 7.46 on P̃ to obtain a reduced weighted
instance W in Rm, using the error parameter ε0. Now, consider a set of k centers C̃
in Rm, and an assignment ψ from W to C̃ that has the cost of at most γ faircost(W ).
By Theorem 7.46, ψ can be lifted to a fair assignment ϕ̃ from P̃ to C̃ with the
cost of at most (1 + ε0)γ faircost(P̃ ). Consider the clustering {C̃1, . . . , C̃k} of P̃ that
corresponds to the assignment ϕ̃. Consider also the clustering {C1, . . . , Ck} of P that
corresponds to {C̃1, . . . , C̃k}, i.e. for each i ∈ [k], Ci contains exactly the preimages
of points in C̃i under sketching. The resulting set of centers C = {c1, . . . , ck} is the
set of means of the clusters C1, . . . , Ck, that is, for each i ∈ [k], ci = µ(Ci). The
resulting assignment ϕ sends Ci to ci, for each i ∈ [k]. Clearly, ϕ is a fair assignment
since it clusters together exactly the same points as ϕ̃, and ϕ̃ is a fair assignment by
Theorem 7.46. Now we bound the cost of ϕ, by (7.8),

cost(ϕ) = cost(C1, . . . , Ck) ≤ cost(C̃1, . . . , C̃k) + c ≤ (1 + ε0)γ faircost(P̃ ) + c.

To bound faircost(P̃ ) in terms of faircost(P ), consider an optimal clustering C∗1 , . . . ,

C∗k of P , and the corresponding clustering C̃1
∗
, . . . , C̃k

∗
of P̃ . By (7.8),

faircost(P̃ )+c ≤ cost(C̃1
∗
, . . . , C̃k

∗
)+c ≤ (1+ε0) cost(C∗1 , . . . , C

∗
k) = (1+ε0) faircost(P ).

Combining it with the earlier bound on cost(ϕ), we obtain

cost(ϕ) ≤ (1 + ε0)2γ faircost(P ).

Finally, setting ε0 such that (1 + ε0)2 ≤ (1 + ε) shows that ϕ satisfies the statement
of the theorem.

The running time of the algorithm reducing P to W is O((k/ε2)nd log n) from
Proposition 4.7 andO(Γk3/ε2nd log n) from Theorem 7.46. The algorithm computing
(C,ϕ) from (C̃, ψ) runs in time O(Γk3/ε2nd log n) by Theorem 7.46, plus an addi-
tional O(ndk) time required to compute φ and C from ϕ̃. Clearly, O(Γk3/ε2nd log n)
dominates the total running time.

As Theorem 7.46, Theorem 7.48 allows to speed up any approximate algorithm
for weighted (α, β)-Fair k-means by running it on the small-sized coreset in the low-
dimensional space instead of the original points. In particular, we obtain an analogue
of Theorem 7.47.
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Theorem 7.49. There is a randomized algorithm that given an instance P of (α, β)-
Fair k-meanss and a parameter 0 < ε ≤ 1 outputs a set of k centers C and a fair
assignment ϕ : P → C such that cost(ϕ) ≤ (1 + ε) faircost(P ) with high probability.
The running time of the algorithm is

O(Γk3/ε2nd log n) + 2Õ(k/εO(1))(kΓ)O(kΓ)(log n)O(1).

Proof. The proof is identical to the proof of Theorem 7.47, the only difference is that
Theorem 7.48 is used to reduce the instance, instead of Theorem 7.46.

The benefit of the algorithm in Theorem 7.49 compared to Theorem 7.45 is that
only the “simple” steps like sketching, sampling the coreset, and running the flow
to restore the assignment, are applied to the “big” original data. On the other
hand, the “heavy” part of the algorithm that has an exponential dependency on the
parameters, deals exclusively with the compressed instance, with the size independent
of the dimension d, and polylogarithmic in the number of points n. It might be said
that the combination of the dimensionality reduction and our coreset construction in
the proof of Theorem 7.48 obtains a coreset of size O((k log n/ε)O(1)) for fair k-means
in the Euclidean case. However, since after reducing the dimension the points lie in
a different low-dimensional space, our definition of a universal coreset could not be
applied to the coreset with respect to the original points. Therefore we do not state
Theorem 7.48 as a coreset result, but rather as a reduction procedure.

Finally, note that we only implement the dimensionality reduction for k-means,
since for k-median the reduction techniques are more limiting. In particular, the
correspondence between clusterings and particular orthogonal projection operators
does not hold. It is an open question whether it is possible to achieve the analogue
of Theorem 7.48 for k-median.

7.5 (3 + ε)- and (9 + ε)-Approximations in General
Metric

In this section, we show a (3 + ε)-approximation algorithm for fair k-median in
general metric, and (9 + ε)-approximation for fair k-means in general metric. After
computing the coreset by Theorem 7.26, the strategy is essentially identical to that
used in [64] and [66]: from each of the clusters in an optimal solution on the coreset
we guess the closest point to the center, called a leader of that cluster. We also guess
a suitably discretized distance from each leader to the center of the corresponding
cluster. Finally, selecting any center that has roughly the guessed distance to the
leader provides us with a (3 + ε)-approximation, in the case of k-median. Now we
state formally the main result of the section.
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Theorem 7.50. For any 1 ≥ ε > 0, there exists a (3+ε)-approximation algorithm for
(α, β)-Fair k-median, and (9 + ε)-approximation algorithm for (α, β)-Fair k-means.
Both algorithms run in time

(kΓ)O(kΓ)/εO(k) · n+ Γk3/ε2n log n.

Note that the distance guessing step of our algorithm requires that the aspect
ratio of the instance is bounded by a polynomial in n, where the aspect ratio is the
ratio of the maximum distance between the points to the minimum distance. As
opposed to the case of capacitated clustering studied in [66], achieving polynomial
aspect ratio is less straightforward for fair clustering, since there was no previously
known true approximation algorithm for the general version of fair clustering. We
refer the reader to the introduction for the discussion on assumptions and limitations
in previous works. So, for the ease of presentation, we first prove Theorem 7.50
under the polynomial aspect ratio assumption, and later show how to achieve this
assumption for any instance.

Claim 7.51. The statement of Theorem 7.50 holds in the case when the aspect ratio
of the input instance is bounded by nO(1).

Proof. For now, focus on the case of k-median. Fix a small positive number ε0 < ε
that will be defined later. We start by computing a universal coreset W of size
O(Γ(k log n)2ε−3

0 ) by Theorem 7.26, applied with the error parameter ε0. Then we
try all possible sets of k points l1, . . . , lk out of the points in the coreset W . We
also try all possible sets of k values R1, . . . , Rk, where each Ri ranges from the
minimum distance between the points in the space to the maximum distance, taking
values that are powers of (1 + ε0) times the minimum distance. Thus, there are |W |k
choices of l1, . . . , lk, and (log n/ε0)O(k) choices for R1, . . . , Rk, since the ratio of
maximum distance to minimum distance is at most nO(1). Now, for every choice of
l1, . . . , lk and R1, . . . , Rk, we take a tuple of k centers C = (c1, . . . , ck) such that
dist(li, ci) ∈ [Ri, (1 + ε0)Ri) for every i ∈ [k]. If for i ∈ [k] there are multiple choice
of ci, we take any one of them. If for some i ∈ [k] there is no suitable ci, we continue
to the next choice of l1, . . . , lk, and R1, . . . , Rk. After the centers are fixed, we run
the assignment algorithm given by Theorem 7.39 on the coreset W and the centers
C. Out of all considered tuples of centers, we select the one with the lowest cost of
the assignment. Then we compute a fair assignment from P to these centers with
the help of Lemma 7.42, and return the assignment and the centers. This concludes
the algorithm.

For the proof of correctness, consider an optimal solution C∗ = {c∗1, . . . , c∗k}. Since
W is a universal coreset of P , faircost(P,C∗) ≤ (1 + ε0) faircost(W,C∗). Consider an
optimal assignment ϕ from W to C∗ achieving the cost of faircost(W,C∗). Take l∗1,
. . . , l∗k such that l∗i is the closest point to c∗i among the points in ϕ−1(c∗i ), for each
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i ∈ [k]. Here by ϕ−1(c∗i ) we mean the set of points in W such that ϕ sends positive
weight from them to c∗i . Take R∗1, . . . , R∗k such that for each i ∈ [k], R∗i = (1 + ε0)tm
for a certain nonnegative integer t, where m is the minimum distance between the
points, and R∗i ≤ dist(l∗i , c

∗
i ) < (1 + ε0)R∗i . At some point, the algorithm considers

the choice of l∗1, . . . , l∗k and R∗1, . . . , R∗k, take the tuple of centers C = (c1, . . . , ck)
obtained by the algorithm at this iteration. We know that C exists since (c∗1, . . . , c

∗
k)

is one of the possible choices for C. Consider the assignment ψ from W to C that
behaves in the same way as ϕ: for each i ∈ [k], ψ sends to ci exactly the same weight
from the same points in W , as ϕ does to c∗i . Clearly, ψ is a fair assignment since the
composition of each cluster is exactly the same as for ϕ. Now we bound the cost of
ψ, for each point x in the coreset W and each center ci such that a positive weight
is assigned from x to ci by ψ, it holds that

dist(x, ci) ≤ dist(x, l∗i ) + dist(l∗i , ci) ≤ dist(x, c∗i ) + dist(c∗i , l
∗
i ) + dist(l∗i , ci)

≤ dist(x, c∗i ) + (2 + ε0) dist(c∗i , l
∗
i ).

The first two inequalities are by triangle inequality, and the last is since dist(l∗i , c
∗
i )

is at least R∗i , and dist(l∗i , ci) is at most (1 + ε0)R∗i . Moreover, l∗i is chosen in a way
that dist(l∗i , c

∗
i ) ≤ dist(x, c∗i ), thus dist(x, ci) ≤ (3 + ε0) dist(x, c∗i ). Now, the total

cost of ψ is

∑
x∈W

k∑
i=1

ψ(x, ci) · dist(x, ci) ≤
∑
x∈W

k∑
i=1

(3 + ε0)ψ(x, ci) · dist(x, c∗i )

= (3 + ε0)
∑
x∈W

k∑
i=1

ϕ(x, c∗i ) · dist(x, c∗i ) = (3 + ε0) · faircost(W,C∗)

≤ (3 + ε0)(1 + ε0) faircost(P,C∗).

Observe that faircost(P,C) ≤ 1
1−ε0 faircost(W,C) since W is a universal coreset. The

assignment ψ is a particular fair assignment form W to C, thus its cost is at least
faircost(W,C), and finally we get

faircost(P,C) ≤ 1

1− ε0
(3 + ε0)(1 + ε0) faircost(P,C∗).

Recall that faircost(P,C∗) is the cost of an optimal solution, and that Lemma 7.42
returns a fair assignment of cost at most (1+ε0) faircost(P,C). Thus setting ε0 small

enough such that (3+ε0) (1+ε0)2

1−ε0 is at most (3+ε), provides the desired approximation.
For the running time, recall that first we compute the coreset in time O(n(k+ l)),

and then we consider

|W |k(log n/ε0)O(k) = (Γ(k log n)2/ε3
0)k(log n/ε0)O(k) = (kΓ log n/ε0)O(k)
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tuples of k centers, and for each of them we run the assignment algorithm in time
(kΓ)O(kΓ)(log n/ε0)O(1). Thus, the total running time is

n(k + l) + (kΓ)O(kΓ)(log n)O(k)/εO(k).

Note that for any constant c > 0, (log n)O(k) might be upper-bounded by nc +
kOc(k), and we can bound the total running time required to find the best cen-
ters by (kΓ)O(kΓ)/εO(k) · n. Finally, an additional term of O(Γk3/ε2n log n) is from
Lemma 7.41.

Now to the case of fair k-means. The algorithm and analysis are essentially the
same, up to a few minor details. For the coreset construction here we use Theo-
rem 7.37 that constructs a universal coreset with respect to the k-means objective.
The size of the coreset is still bounded by Γ(k log n/ε)O(1). Now the only difference
is the bound on the cost of the assignment ψ. It becomes

∑
x∈W

k∑
i=1

ψ(x, ci) · dist(x, ci)
2 ≤

∑
x∈W

k∑
i=1

(3 + ε0)2ψ(x, ci) · dist(x, c∗i )
2

= (3 + ε0)2
∑
x∈W

k∑
i=1

ϕ(x, c∗i ) · dist(x, c∗i )
2 = (3 + ε0)2 · faircost(W,C∗)

≤ (3 + ε0)2(1 + ε0) faircost(P,C∗).

Analogously, we obtain

faircost(P,C) ≤ 1

1− ε0
(3 + ε0)2(1 + ε0) faircost(P,C∗),

and we set ε0 small enough such that (3+ε1)2 (1+ε0)2

1−ε0 ≤ 9+ε to finally get the desired
(9 + ε) approximation.

7.5.1 Polynomial Aspect Ratio

We follow the standard trick to reduce the aspect ratio of the instance, see e.g. [66].
For that, we require an estimate of the cost of the optimal solution. So we start
with showing a O(n)-factor approximation algorithm for (α, β)-Fair Clustering.
This algorithm combines the simple linear time O(n)-approximation to the vanilla
clustering problem, then the argument due to Bera et al. [23] that a set of centers
that provides a good approximation w.r.t. vanilla clustering objective is also good
enough for the purpose of fair clustering, and finally our assignment algorithm given
by Theorem 7.39. We state a slight modification of the result of Bera et al. [23] first.

Proposition 7.52 (Lemma 3 in [23]). Assume we are given a ρ-approximation al-
gorithm A for k-median. Run A on the input set of points P and denote by C the
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returned set of centers. It holds that faircost(P,C) is at most (ρ+ 2) times the cost
of an optimal solution to (α, β)-Fair k-median on P . The same holds for k-means
and (α, β)-Fair k-means, only the cost factor is (ρ+ 2)2.

Proof. The statement for k-median is exactly a special case of Lemma 3 in [23]
where we only restrict to k-median and k-means, and the assignment algorithm has
no violation of the constraints. For k-means, Lemma 3 in [23] holds for the same
k-means and (α, β)-Fair k-means we consider in this paper, with the only difference
that their objective function is the square root of the sum of squared distances.
Thus, from their lemma we immediately get that the square root of the cost of the
approximate solution is at most (ρ+2) times the square root of the cost of the optimal
solution. Squaring both sides provides the approximation factor of (ρ+ 2)2.

To achieve a linear-time algorithm, we are rather restricted in what kind of al-
gorithm we can use to get the initial approximation for the vanilla clustering. Thus
we use a simple O(n)-approximation given by the classical k-center algorithm that
is enough for our purposes. We also need to use the coreset construction as an in-
termediate step, so that computing the fair assignment takes time sublinear in n.
Note that in this result, we do not aim to return the actual fair assignment, just the
approximation to the cost.

Lemma 7.53. There exists a O(n)-factor approximation algorithm for computing the
optimal cost in both (α, β)-Fair k-median and (α, β)-Fair k-means, with the running
time of (kΓ)O(kΓ) · n.

Proof. For k-median, we start with computing the initial approximation using the
min-max algorithm for k-center [102] in time O(nk). It is well-known that this gives
a O(n)-approximation of the k-median objective. For the obtained set C of k centers,
by Proposition 7.52 it holds that faircost(P,C) is at most O(n) times the optimal
fair clustering cost of P . So it only remains to run the assignment algorithm. First,
we compute a universal coreset W of P of size O(Γ(k log n)O(1)) by Theorem 7.26,
using a constant error parameter. Then we run the assignment algorithm given
by Theorem 7.39 on the weighted points W and the centers C. By definition of a
universal coreset, the cost is changed by at most a constant factor, thus the cost
of the fair assignment achieved by the algorithm is an O(n)-approximation of the
optimal solution on the original points P . The total running time of the algorithm
is O(nk + n(k + l) + (kΓ)O(kΓ) · (log n)O(1)).

For k-means, the only difference is that we run the k-center min-max algorithm
using distances given by d′(u, v) = dist(u, v)2 for all u, v ∈ X . This is not a metric,
but it holds that d′(u, v) ≤ 2(d′(u,w)+d′(w, v)) for all u, v, w ∈ X , since dist(u, v)2 ≤
(dist(u,w) + dist(w, v))2 ≤ 2(dist(u,w)2 + dist(w, v)2). The min-max algorithm still
obtains a O(1)-approximation for the k-center objective with such a relaxed triangle
inequality, and thus a O(n)-approximation for the k-means objective with the original
distances given by d. The rest is the same, but we invoke Theorem 7.37 to obtain
the coreset.
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Finally, we show how to reduce an arbitrary instance of (α, β)-Fair Clustering
to an equivalent one that has polynomial aspect ratio by modifying the distances.

Lemma 7.54. Given an instance of (α, β)-Fair Clustering in the metric space
with the distance function dist, we can construct a distance function dist′ such that
the cost of any n10-approximate solution changes by at most a factor of 1+1/n. The
distance function dist′ has polynomial aspect ratio. This requires the preprocessing
time of (kΓ)O(kΓ) · n.

Proof. We state first how dist′ is obtained from dist. By Lemma 7.53 compute D
that is a O(n)-approximation of the cost of an optimal solution. Set Dmax = 2n10D
and Dmin = αD/n3, for a sufficiently small constant α. For all the distances that
are larger than Dmax, set them to Dmax. Then increase the distance between every
pair of points by Dmin. Clearly, the distances still form a metric.

No solution to the instance of (α, β)-Fair Clustering that has the cost of at
most n10 times the optimal cost uses distances that are set to Dmax, since Dmax =
2n10D and D is at least the cost of the optimal solution. Thus the decreasing large
distances to Dmax does not affect the instance. Due to increasing by Dmin, the cost of
any solution is increased by at most a factor of (1+1/n), since n·Dmin = αD/n2. This
is at most 1/n times the cost of the optimal solution, since D is aO(n)-approximation.
Now the aspect ratio is at most Dmax/Dmin = O(n13).

Note that running Lemma 7.53 incurs the preprocessing time of (kΓ)O(kΓ) · n.
After Dmax and Dmin are computed, the distance oracle for dist′ is obtained from
the distance oracle for dist by an extra constant time per query.

Finally, we prove Theorem 7.50 by combining Lemma 7.53 and Claim 7.51.

Proof of Theorem 7.50. Apply Lemma 7.53 to obtain the new instance of (α, β)-Fair
Clustering with polynomial aspect ratio. For every solution that is 3 + ε (or 9 + ε
in the case of k-means), the cost w.r.t. the new instance is at least the cost w.r.t. the
old instance, and at most (1 + 1/n) of that cost. Observe that 1/ε = o(n), otherwise
all possible sets of centers can be trivially enumerated in time nk = (1/ε)O(k). Thus
(1 + 1/n) ≤ (1 + ε/3), and invoking Claim 7.51 with the error parameter ε/3 finishes
the proof.

7.6 Algorithms for Other Clustering Problems

We note that the algorithms for fair clustering in general metrics suggest a generic
algorithm for any clustering problem with constraints, such that the constraints can
be represented by a set of matrices. Here we state this algorithm. Let D be the
set of all possible distinct distances. Also, let Dmin and Dmax be the minimum and
maximum distances in D, respectively. This algorithm has the following steps.

· Compute a universal coreset W .
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· For every pair of tuples (l1, . . . , lk) and (R1, . . . , Rk) such that li ∈ W for all
i and Rj ∈ D for all j, do the following.

– Select a set C = {c1, . . . , ck} of centers such that ci ∈ F and dist(li, ci) ∈
[Ri, (1 + ε)Ri] for all i. If no such set C exists, probe the next choice.

– Find an assignment of the points in P to the centers in C of the mini-
mum cost that satisfies the respective clustering constraints (assignment
problem).

· Return the set of centers and the assignment that minimizes the cost over all
choices.

From the analysis for fair clustering, we have the following theorem.

Theorem 7.55. Consider any clustering problem with constraint K, such that the
constraint can be represented by a set of matrices, and suppose the aspect ratio
Dmax/Dmin is bounded by ∆ for all instances. Moreover, suppose the universal core-
set can be computed in T1(n, k, `) time and the assignment problem for the clustering
problem can be solved in T2(n, k) time. Then one can obtain, w.h.p, a (3 + ε)- (resp.
(9 + ε)-) approximation for k-median (resp. k-means) with constraint K in time
T1(n, k, `) + (ε−1kΓ log(n+ ∆))O(k) · T2(n, k).

From the above theorem, it is sufficient to (i) show that the aspect ratios of in-
stances are bounded and (ii) design an efficient algorithm for the assignment problem,
to obtain constant approximations for a clustering problem with constraints. We will
use this theorem on various clustering problems.

For the Euclidean version of clustering problems with constraints, we have the
following generic algorithm.

· Compute a universal coreset W .

· Apply the algorithm mentioned in Proposition 7.43 to find the list L of candi-
date sets of centers.

· For every set C = {c1, . . . , ck} of centers in L, do the following.

– Find an assignment of the points in W to the centers in C of the mini-
mum cost that satisfies the respective clustering constraints (assignment
problem).

· Let C ′ be the set of centers that minimizes the cost over all choices. Find an
assignment of the points in P to the centers in C ′ of the minimum cost that
satisfies the respective clustering constraints.
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From the analysis for fair clustering and Proposition 7.43, we know that C ′ is an
approximately optimal set of centers with constant probability. By repeating step
3 of the above algorithm O(log n) times, we obtain this w.h.p. Hence, we have the
following theorem.

Theorem 7.56. Consider any Euclidean clustering problem with constraint K, such
that the constraint can be represented by a set of matrices. Moreover, suppose the
universal coreset can be computed in T1(n, k, `, d) time and the assignment problem
for the clustering problem can be solved in T2(n, k) time. Then one can obtain,
w.h.p, a (1 + ε)-approximation for k-median (resp. k-means) with constraint K in

time T1(n, k, `, d) + 2Õ(k/εO(1)) · (nd+ log n · T2(|W |, k)) + T2(n, k).

From the above theorem, it is sufficient to design an efficient algorithm for the
assignment problem, to obtain constant approximations for a clustering problem with
constraints. In the following, we will use this theorem on various clustering problems.

7.6.1 Lower-Bounded Clustering

In the lower-bounded clustering problem, we are given a lower bound parameter L
and the size of each cluster must be at least L. In the Euclidean version of the
problem the set of points P ⊂ Rd and the set of centers F = Rd.

First, we note that the lower bound constraint can be represented by a set of k×1
column matrices such that each of the entries is at least L and at most n.

To apply Theorem 7.55, we need to show two things as mentioned before. To
show the bounded aspect ratio, we can argue in the same way as we did for fair
clustering. The assignment problem for lower-bounded clustering can be modeled
as a minimum cost network flow problem that can be solved in polynomial time.
Indeed, the modeling is similar to the one in the proof of Lemma 7.41. We construct
a bipartite network where on one side we have the n points of P and on the other side
the k centers of C and an additional node w. Source s is connected to all points of
P . Sink t is connected to all centers through edges of capacity L. t is also connected
to w through an edge of capacity n − kL. w is connected to all points through an
edge. The cost of the edges between points and centers are their respective distances.
The cost between a point p and w is dist(p, C). The idea is to route L flow to each
center and n− kL flow to w. This is equivalent to assigning at least L points to each
center using the minimum cost and assigning the remaining points to their closest
neighbor in C. We also scale the distances, as mentioned in the proof of Lemma
7.41. Then, the cost of the minimum cost flow in this network (with n flow) is a
(1 + ε)-approximation of the minimum assignment cost. Hence, by Proposition 7.40,
the assignment problem in this case can be solved in time nk2ε−O(1) log n. Hence,
the constant approximations follow for this problem in general metrics in time

O(nk) + (ε−1k log n)O(k)nk2ε−O(1) log n = (ε−1k log n)O(k)n = (k/ε)O(k)nO(1).
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From the above discussion, one can also apply Theorem 7.56. However, to solve
the assignment problem on coreset, we do not want to spend nk2ε−O(1) log n time.
We would like to obtain an algorithm that is polynomial in the size of the coreset.
We do the same as we did for fair clustering. We solve a mixed ILP that has |W |× k
unconstrained variables and k integer variables. The construction is much easier
compared to fair clustering. The running time is kO(k)|W |O(1). Hence, we obtain
(1 + ε)-approximation for the Euclidean version in time

2Õ(k/εO(1))(nd+ log n · kO(k)(k log n/ε)O(1)) + nk2ε−O(1) log n

=2Õ(k/εO(1))(nd+ (d log n)O(1)) + nk2ε−O(1) log n.

Theorem 7.57. For any ε > 0, there exists a (3 + ε)- and a (9 + ε)-approximation
algorithm for lower-bounded k-median and lower-bounded k-means, respectively, that
runs in time (k/ε)O(k)nO(1). In Rd, there are improved (1 + ε)-approximation al-

gorithms for both of the problems that run in time 2Õ(k/εO(1))(nd + (d log n)O(1)) +
nk2ε−O(1) log n.

7.6.2 Capacitated Clustering

Here we study the Euclidean capacitated clustering where the set of points P ⊂ Rd

and the set of centers F = Rd. Additionally, we are given a capacity parameter U
and the size of each cluster must be at most U .

First, we note that the capacity constraint can be represented by a set of k × 1
column matrices such that each of the entries is at least 0 and at most U .

Now, the assignment problem for capacitated clustering can be modeled as a
minimum cost network flow problem that can be solved in polynomial time. Again,
the modeling is similar to the one in the proof of Lemma 7.41. We construct a
complete bipartite network where on one side we have the n points of P and on the
other side the k centers of C. Source s is connected to all points of P . Sink t is
connected to all centers with edges of capacity U . The cost of the edges between
points and centers are their respective distances. We also scale the distances, as
mentioned in the proof. Then, the cost of the minimum cost flow in this network (with
n flow) is a (1 + ε)-approximation of the minimum assignment cost. We note that
one can assume that the aspect ratio of the input instance is bounded by (n/ε)O(1).
The assumption can be removed in the same way as in the case of fair clustering.
Hence, by Proposition 7.40, the assignment problem in this case can be solved in
time nk2ε−O(1) log n.

We solve the assignment problem on coreset in the same way mentioned for lower-
bounded clustering. A (1+ε)-approximation follows for the Euclidean version in time
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2Õ(k/εO(1))(nd+ log n · kO(k)(k log n/ε)O(1)) + nk2ε−O(1) log n

=2Õ(k/εO(1))(nd+ (d log n)O(1)) + nk2ε−O(1) log n.

Theorem 7.58. For any ε > 0, there exists (1 + ε)-approximation algorithms for

capacitated k-median and capacitated k-means that run in time 2Õ(k/εO(1))(nd +
(d log n)O(1)) + nk2ε−O(1) log n.

7.6.3 `-Diversity Clustering

In the `-Diversity clustering problem, P = ∪ñi=1Pi is a set of n colored points such
that all points in Pi have the same color, and each cluster must have no more than
a fraction 1/` (for some constant ` > 1) of its points sharing the same color. Thus,
for each cluster A and i ∈ [`], |A ∩ Pi| ≤ |A|/`. We note that each point can have
only one color. Ding and Xu [75] gave a (1 + ε)-approximation for this problem in
Rd with time complexity O(n2(log n)k+2(t+ 1)kd), where t = max1≤i≤ñ |Pi|.

We note that `-Diversity clustering is a special case of (α, β)-fair clustering with-
out the lower bound constraints involving parameter β, and αi = 1/` for all i. Thus,
we obtain algorithms for this problem with bounds same as for (α, β)-fair clustering,
including a (1 + ε)-approximation that significantly improves the time complexity of
the one in [75].

Theorem 7.59. For any ε > 0, there exists a (3 + ε)- and a (9 + ε)-approximation
algorithm for `-Diversity k-median and `-Diversity k-means, respectively, that runs
in time (k`)O(k`)/εO(k) · n + `k3/ε2n log n. In Rd, there are improved (1 + ε)-
approximation algorithms for both of the problems that run in time

2Õ(k/εO(1))(k`)O(k`)nd log n.

7.6.4 Chromatic Clustering

In chromatic clustering, again P = ∪ñi=1Pi is a set of n colored points such that all
points in Pi have the same color, and each cluster contains at most one point from
Pi for each i. Ding and Xu [75] obtained a linear time (1 + ε)-approximation for this
problem in Rd. To the best of our knowledge the metric version of the problem was
not studied before. Thus, we give the first constant approximation for this version.

First, we note that the chromatic constraint can be represented by a set of k × `
matrices with 0/1 entries.

Ding and Wu [75] showed that the assignment problem for chromatic clustering
can be modeled as a bipartite matching problem that can be solved in O(k3n) time.
However, it is not clear how to bound the aspect ratio for this problem. Hence, the
constant approximations follow for this problem in general metrics in time O(nk) +
(ε−1k` log(n+ ∆))O(k)n.
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Theorem 7.60. For any ε > 0, there exists a (3 + ε)- and a (9 + ε)-approximation
algorithm for chromatic k-median and chromatic k-means, respectively, that runs in
time O(nk) + (ε−1k` log(n+ ∆))O(k)n.

7.7 Streaming Universal Coreset

Here we describe a streaming algorithm for maintaining universal coreset for k-
median. The algorithm can be trivially extended to k-means with a slightly larger
space complexity. Our algorithm is based on the merge and reduce framework of
Bentley and Saxe [22], which was first applied in the context of clustering in [2].
Indeed, in streaming setting this is a standard technique, which have been applied in
many works [110, 53, 1]. We mainly follow the approach of Har-Peled and Mazum-
dar [110], which was further refined by Chen [53] for randomized coresets. In the
following we describe how to maintain a small size coreset in each step. Let us refer
to a universal coreset as an ε-coreset, where ε is the corresponding error parameter.
Our approach is based on composability of coresets.

Lemma 7.61. Suppose S1 and S2 are the ε-coresets of the points in P1 and P2,
respectively. Then, S1 ∪ S2 is an ε-coreset of the points in P1 ∪ P2.

The proof of this lemma follows by definition of universal coresets and can be
found in [173]. The proof assumes that the coreset points have integer weights. We
note that our construction can be slightly modified to obtain coreset with integer
weights (e.g, see Chen’s adaptation [53]). Next, we have an observation that again
follows by the definition of coresets.

Observation 7.62. Suppose S1 is an ε-coreset of the points in S2 and S2 is an
δ-coreset of the points in S3. Then, S1 is an ((1 + ε)(1 + δ)− 1)-coreset of the points
in S3.

Let λ be the confidence probability parameter for the coreset we want to construct.
Suppose the points arrive in the order p1, p2, . . . and let P = (p1, . . . , pn) be the set
of points arrived so far. We partition P into t + 1 subsets P0, P1, . . . , Pt such that
|Pi| = 2iT , where T = d`k2/ε3e.

Let ρj = ε/(b ·(j+1)2) for a sufficiently large constant b, and 1+δj = Πj
i=0(1+ρi)

for j = 1, . . . , dlog ne. It is not hard to verify that 1+δj ≤ 1+ε for all j. We maintain
a δj-coreset Qj for the points in Pj , where Q0 = P0. Thus, by composability of
coresets, ∪j≥0Qj is an ε-coreset for points in P .

When a new point pm arrives, we add it to Q0. If Q0 contains fewer than T points,
we are done. Otherwise, let r ≥ 1 be the minimum index such that Qr is empty. We
compute a ρr-coreset Q′r of ∪r−1

j=0Qj with confidence parameter λm = λ/m2 and set
Q′r to be Qr. We also make all the sets Qj empty for 1 ≤ j ≤ r − 1. It is not hard
to verify that the total weight of the points in Qr is 2r−1T .
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Note that here we need to compute coresets of weighted points. We can trivially
extend our coreset construction algorithm in the sequential setting to handle points
with integer weights. For example, for a point p with weight w, now we treat it as
the point p with w copies. Instead of using the algorithm of Indyk at the start, we
use our algorithm in Section 7.4. Thus the algorithm can be implemented where the
space complexity is linear in the number of points.

Next we claim that Q = ∪i≥0Qi is an ε-coreset of the points received so far
w.p. at least 1 − λ. First, note that Qr is constructed by computing a ρr-coreset
of ∪r−1

j=0Qj . By applying Observation 7.62 repetitively, Qr is a (Πr
i=0(1 + ρi) − 1)-

coreset of the corresponding subset of the input points w.p. at least 1 − λ/m2.
Now for m ≥ T , when pm arrives, our computation fails w.p. at most λ/m2. The
failure probability over all iterations is at most

∑n
m=T λ/m

2 ≤ λ for T ≥ 2. As
Πr
i=0(1 + ρi)− 1 = 1 + δr ≤ 1 + ε, the claim follows by composability.

Now, we bound the size of individual coreset Qi. Note that |Q0| ≤ T = d`k2/ε3e.
Also for i ≥ 1, Qi is constructed for a subset of input points of size 2i−1T and with
error parameter ρi = ε/(b · (i+ 1)2). Thus by Theorem 7.26, the size of Qi is

O(`k2 log(2i + T )(log(2i + T ) + d log(1/ε)) · i6/ε3) = O(d`k2(log n)
8
/ε4).

Hence, the total size of the coreset Q = ∪dlog ne
i=0 Qi is bounded by O(d`k2(log n)

9
/ε4).

In Rd, we need O(d) space for storing each point, and thus we obtain the following
theorem.

Theorem 7.63. In one pass streaming model, a universal coreset for k-median clus-
tering of size O(d2`k2(log n)

9
/ε4) can be computed w.h.p.

7.8 Conclusions and Open Questions

In this chapter, we studied the widely popular fair clustering problem with k-median
and k-means objectives. Our universal coreset construction allows us to obtain the
first coreset for fair clustering in general metric spaces. The coreset size is comparable
to the best-known bound in the vanilla case. For Euclidean spaces, we obtain the first
coreset for this problem whose size does not depend exponentially on the dimension.
In the vanilla case, it is possible to construct coresets of size (k/ε)O(1). Thus, an
interesting open question is to remove the dependence on d and (log n)O(1) completely
from our coreset size.

The new coreset construction helps to design improved FPT constant-approximations
for a wide range of problems including fair clustering in general metrics and (1 + ε)-
approximations in the Euclidean metric. However, for fair clustering, it is not trivial
to find an optimal solution on a coreset like in the case of other popular clustering
problems. This is true, as the assignment problem is not easy to solve in this case. We
give a novel algorithm for this problem that runs in time FPT parameterized by k and
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Γ. We note that for (t, k)-fair clustering the factor of (k`)O(k`) in the running time
of our algorithms can be improved to only (k`)O(k), as in this case the assignment
problem can be solved in time FPT parameterized by only k. Designing a polynomial
time constant-approximation for fair clustering still remains an open question. Our
(1 + ε)-approximation algorithms in the Euclidean case run in near-linear time. It
would be interesting to see if one can obtain similar (1 + ε)-approximation in linear
time matching the bound of the vanilla case.
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8

Sampling Approach: Clustering with Miss-

ing Entries

In this chapter, we consider a generalization of the fundamental Euclidean k-means
clustering for data with incomplete or corrupted entries. It is a common occurrence
in practical applications that some features of data can be missing or unspecified.
Since missing pieces could significantly affect the information retrieved from the
data, handling such data is a pervasive challenge. Various heuristic, greedy, convex
optimization, statistical, or even ad hoc methods were proposed throughout the years
in different practical domains to handle missing data [8, 185].

Gao, Langberg, and Schulman in [96] proposed the following geometric approach
to the clustering of incomplete data. A d-dimensional data object that misses ∆
entries corresponds to a ∆-dimensional affine subspace in Rd. This subspace is parallel
to coordinate axes corresponding to the missing coordinates. We call such affine
subspaces ∆-points. With this notation, a regular point in Rd is a 0-point. The
distance between a ∆-point x and a point y is naturally defined as the minimum
distance between y and a point from x. In this setting, the classical k-means and other
clustering problems like k-median and k-center, can be defined on a set of ∆-points.
The only difference is that we minimize the corresponding objective function based
on the distances between the center of the cluster and the ∆-points from the cluster.
Note that in this setting the center of the cluster is a regular d-dimensional vector
with no missing entries. Gao et al.’s geometric model has the following explanation:
It provides the values of missing entries that are most suitable for clustering objective.
In particular, under the assumption that the set of “complete” data objects is well-
clustered, this approach yields the correct clustering.

From the computational perspective, the ∆-point clustering models are way more
challenging than their vanilla clustering counterparts. Most of the clustering algo-
rithms crucially exploit the fact that clustering occurs in a metric space. The major
obstacle of using these algorithms for the more general clustering problem is that

189
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the “distances” between ∆-points do not satisfy the triangle inequality. As Gao
et al. [96] wrote: “This problem defeats many existing algorithmic approaches for
“clustering”-type tasks, and for good reason—the geometry seems, in a genuine sense,
to be absent.”

While the definition of clustering of Gao et al. [96] is applicable to k-center,
k-means, and k-median versions of clustering, most of the work in this direction
concentrated on k-center. (In k-center clustering the objective is to minimize the
distance r such that every point is within distance r from at least one of the k
centers.) Only very recently the first approximation algorithm for k-means ∆-point
clustering was given by Marom and Feldman [155] for the special case of ∆ = 1. We
discuss in details the literature relevant to our work in the next subsection.

The main result of this chapter is the following theorem, which is the first step
in the study of the computational complexity of k-means ∆-point clustering beyond
∆ ∈ {0, 1}.

Theorem 8.1. The problem of k-means clustering of ∆-points in Rd admits an

(1 + ε)-approximation algorithm with running time 2O( ∆7k3

ε log k∆
ε )n2d.

Related Work Naturally, Theorem 8.1 provides a generalization of the seminal
result by Kumar, Sabharwal, and Sen [137] to clustering of ∆-points. Recall that
there Kumar et al. gave a (1 + ε)-approximation algorithm for Euclidean k-means

that runs in time 2(k/ε)O(1)

nd. If we consider ∆ to be a parameter together with
k, our algorithm is an FPT approximation scheme with the same kind of running
time as their result, Moreover, the general shape of our algorithm stems from their
approach as well, although clustering of ∆-points presents considerable challenges
compared to regular points in Rd. We discuss these connections in more detail later.

Clustering of ∆-points was defined by Gao, Langberg, and Schulman [96]. (They
call ∆-points axis-parallel ∆-flats.) In [96] and the consecutive work [97], Gao et al.
developed several constant factor approximation algorithms for k-center clustering of
∆-points and lines. Lee and Schulman [141] gave a (1 + ε)-approximation algorithm

for k-center ∆-point clustering that runs in time 2O(∆k log k(1+1/ε2))nd. On the neg-
ative side, they show that even if one of k or ∆ (but not both) is a fixed constant
greater that 3, it is NP-hard to decide whether there is a k-center ∆-point clustering
of value 0. This implies that there is no approximation algorithm running in time
polynomial in n+d+k, respectively polynomial in n+d+ ∆, for any approximation
factor for k-center as well as k-median and k-means clustering of ∆-points. Eiben
et al. [81] provide a thorough study of different variants of k-center with incomplete
information.

A number of results on k-means and k-median clustering of lines can be found
in the literature. Ommer and Malik [163] studied k-median clustering of lines in
R3. Their algorithm does not have any approximation guarantee and can run for
unbounded time. Perets [168] gave an algorithm that in time n(log n/ε)O(k)d finds a
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(1 + ε)-approximate solution for k-median line clustering in R2. Finally, Marom and
Feldman in [155] gave the first PTAS for k-means clustering of lines by providing an
(1 + ε)-approximation algorithm of running time f(k, d, ε)n log n. The algorithm of
Marom and Feldman follows from the construction of a coreset of size dkO(k) log n/ε2.
Comparing Theorem 8.1 with the result of Marom and Feldman, since every 1-point
is a line, their result implies a PTAS for k-means clustering of ∆-points for ∆ = 1.
However, Theorem 8.1 implies PTAS only for axis-parallel lines. To the best of our
knowledge, no approximation algorithm was known for k-means for ∆ > 1.

Overview of the Algorithm In order to describe our algorithm, let us recall
roughly the argument of Kumar et al. [137] for the case when ∆ = 0 and k = 2. Let
P denote the set of points in the instance, let (P1, P2) be an optimal partition of P
such that |P1| ≥ |P2|, and let (c1, c2) be the optimal cluster centers for this partition.
The algorithm starts by picking at random some s = s(ε) points S ⊆ P . Because
|P1| ≥ |P2|, it means that with constant probability, all these points belong to P1

and the center c′1 of S gives a good approximation of c1. Once this is achieved, the
algorithm tries to sample inside P2 in order to get an approximation of c2. Because
|P1| can be very large compared to |P2|, the algorithm needs to remove some elements
of P from the sampling pool. What Kumar et al. show is that, if t denote the distance
between c1 and c2, then the ball B of radius t/4 around c′1 contains only elements
of P1. Moreover, they show that either P2 is large compared to P1 − B or the
solution containing only one cluster with center c′1 is a good enough approximation.
Therefore, by guessing an approximation of B, the algorithm is able to sample inside
P2 with constant probability and thus obtain a good estimate c′2 for c2.

Let us now explain some of the difficulties encountered while trying to generalize
this argument to ∆-points. Let P denote an instance of 2-clustering with ∆-points
and let (P1, P2) be an optimal clustering with centers (c1, c2). The first problem we
encounter is that sampling elements of P1 might not give a good approximation for c1.
Indeed, suppose, for example, that for almost all the points in P1, the first coordinate
value is missing. In that case, almost surely, a constant number of randomly sampled
elements of P1 will be such that for all of them the value of the first coordinate is
missing, and we get no information about the value of c1 on this coordinate. However,
we can show that the number of such “bad” coordinates is at most ∆. This means
that we can obtain a good approximation of c1 on some set of coordinates I1 such
that |I1| ≥ d − ∆. Let us call this approximation u1. Moreover, a large portion of
the elements of P1 will have all their missing values outside of I1. For these points,
u1 contains all the information necessary to decide whether they belong to P1 or not.
So the algorithm will then guess these points and remove them from the sampling
pool (we will come back to how exactly this is done later). Afterward, either P2 is
large enough so that we can sample inside this set with good probability, or what
remains of P1 is still larger than P2. In the last case, we can sample in P1 to obtain
information on the value of c1 outside of I1. The first time we sample inside P1
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we get information about d − ∆ coordinates, and with each of the subsequent set
of samples, learn at least one new coordinate. Hence we only have to do 2(∆ + 1)
sampling steps to obtain an estimate of all the coordinates of c1 and c2.

However, the major problem that we face is how to find the elements of P1

with missing values outside of I1 to remove from the sampling pool. The triangular
inequality does not hold for ∆-points, and in particular, if t is the distance between c1

and c2, it is not true that the ball of radius t/4 around c1 does not contain any point
of P2. What we are able to prove is that the above holds if we exclude a certain small
set of coordinates from the computation. Namely, if I1,2 is the set of indices obtained
from [d] by removing the ∆ indices that maximize |c1[r] − c2[r]| over r ∈ [d], then
for t′ = distI1,2(c1, c2) (i.e., the distance between c1 and c2 when considering only
coordinates in I1,2), no point of P2 is at distance less than t′/4 from c1. Moreover,
we can also show that either the ball of radius t′/4 around c1 removes enough points
from the sampling pool, or the coordinates of I1,2 are “useless”, meaning that we
can set the two centers to be equal on these coordinate and still obtain a good
approximation. The main difficulty here is that we do not know the coordinates I1,2
and guessing this set would add a factor

(
d
∆

)
to the running time, which we can not

afford. We will show how to deal with this problem in Section 8.2, which is the main
technical part of our proof.

8.1 Notations and Preliminaries

As the problem of clustering ∆-points is considerably different from the regular Eu-
clidean k-Means, we introduce a variety of notations that will help to present our
algorithm in a concise manner. We list these chapter-specific definitions in this sec-
tion, together with some simple observations about the structure of our problem.

Points with Missing Coordinates

As explained above, the goal of this chapter is to study clustering of points in Rd

with missing entries in some coordinates. Let us denote the missing entry value by
“?” and let Hd denote the set of elements of Rd where we allow some coordinates
to take value “?”. We say that a point x = (x[1], . . . , x[d]) in Hd is a ∆-point, if at
most ∆ of the coordinates x[i] of x have value “?”.

Definition 8.2 (Domain of a point). For an element x ∈ Hd, we call the domain
of x, denoted by Dom(x), the set of coordinates i ∈ [d] such that x[i] 6= ?.

Definition 8.3 (FD and PD points). For a set S of elements of Hd and a set I
of indices in [d], corresponding to coordinates, let FD(S, I) denote the set of points
in S that are fully defined on I, i.e. x ∈ S such that Dom(x) ⊆ I. Formally,

FD(S, I) = {x ∈ S | Dom(x) ⊆ I}.
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By PD(S, I), we denote the set of points in S that are partially defined on I, i.e.
x ∈ S such that Dom(x) ∩ I 6= ∅. Formally,

PD(S, I) = {x ∈ S | Dom(x) ∩ I 6= ∅}.

With a slight abuse of notation, in all the definitions here and next that concern
a particular set of indices I ⊂ [d], we might use i ∈ [d] instead of {i}, i.e., PD(S, i) =
PD(S, {i}).

For elements x,y ∈ Hd and a set of coordinates in I ⊆ [d], we define

distI(x,y) =

√∑
i∈I

(x[i]− y[i])2,

where by convention if either y =? or x =?, then (x− y)2 = 0. When I = [d], we let
dist(x,y) = distI(x,y). Note that dist(x,y) corresponds to the standard Euclidean
distance when x and y are elements of Rd. For a set P of elements of Hd and a set I
of coordinates, we denote by cI(P ) the “mean” of P on the coordinates of I. That
is, cI(P ) is the element of Hd such that for every i ∈ I,

cI(P )i =

{
? if PD(P, i) is empty,∑

x∈PD(P,i) x[i]

|PD(P,i)| otherwise.

When I contains all elements of [d], we let c(P ) = cI(P ). For an element y ∈ Hd,
a set X of elements of Hd and a set I of coordinates in [d], let us define

f I2 (X,y) =
∑
x∈X

(distI(x,y))2.

Note that if I1 and I2 are disjoint sets of coordinates, then f I2∪I12 (X,y) = f I12 (X,y)+
f I22 (X,y). For I = [d], we write f2(X,y) = f I2 (X,y).

For a set (Pi)i∈[k] of subsets of Hd and a set of points (ci)i∈[k], we set

val
(
(Pi)i∈[k], (ci)i∈[k]

)
=
∑
i∈[k]

f2(Pi, ci).

Lemma 8.4. For every point x ∈ Hd, set of points P ⊆ Hd, and set of coordinates
I ⊆ [d], it holds that

f I2 (P,x) = f I2 (P, c(P )) +
∑
i∈I
|PD(P, i)|(x[i]− c(P )[i])2.

In particular,

f I2 (P,x) ≤ f I2 (P, c(P )) + |PD(P, I)| dist(x, c(P ))2.
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Proof. For an index i ∈ I, we have

f i2(P,x) =
∑

v∈PD(P,i)

(v[i]− x[i])2

=
∑

v∈PD(P,i)

(v[i]− c(P )[i] + c(P )[i]− x[i])2

=
∑

v∈PD(P,i)

(v[i]− c(P )[i])2 +
∑

v∈PD(P,i)

(x[i]− c(P )[i])2,

because
∑

v∈PD(P,i)(v[i] − c(P )[i]) = 0 by definition of c(P ). This means that

f i2(P,x) = f i2(P, ci(P )) + |PD(P, i)|(x[i] − c(P )[i])2. We conclude by summing over
all i ∈ I.

k-Means Clustering of ∆-Points

Let us define the k-Means problem for ∆-points. Given an instance P of n ∆-points
in Hd, the task is to partition P into k sets (P1, . . . , Pk), which we will refer to as
clusters. A solution also consists of a set of centers (c1, . . . , ck) and the objective
is to minimize

∑
i∈[k] f2(Pi, ci). Note that, by Lemma 8.4, for a given cluster Pi

the optimal center is exactly c(Pi), and we can equivalently minimize the objective
value

∑
i∈[k] f2(Pi, c(Pi)) over all partitions (P1, . . . , Pk). Furthermore, note that if

Dom(x) = ∅, then x always contributes zero to
∑
i∈[k] f2(Pi, ci), so we can assume

that Dom(x) 6= ∅ for all x ∈ P , and, consequently, ∆ < d.
From now on we fix an instance of the ∆-point k-Means problem, and denote

by P the corresponding set of ∆-points in Hd.

Partial clustering. Suppose (P1, . . . , Pk) together with centers (c1, . . . , ck) is an
optimal solution. As explained earlier, the goal of our algorithm is to discover the
centers of the clusters step by step, while assigning some elements of P to some
clusters. For this purpose we define the notion of partial clustering. We say that
integers (n1, . . . , nk), sets (H1, . . . ,Hk), (I1, . . . , Ik) and points (u1, . . . ,uk) form a
partial clustering if for every i ∈ [k]:

· Hi is a set of elements of P ,

· ni is an integer in [∆ + 1],

· Ii is a set of indices in [d],

· if ni > 0, then |Ii| ≥ d−∆ + (ni − 1),

· if ni = 0, then Ii and Hi are empty, and

· ui is a point of Hd such that Dom(ui) = Ii.
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Intuitively, for every i ∈ [k], Hi is a set of points which are already assigned to
the cluster i, ui is a partially discovered center of the cluster, and Ii represents the
coordinates where ui is already specified. As we will incur some error each time we
are performing a sampling step, the values ni represent the number of sampling steps
that has been done for guessing ui on Ii, and the fact that Ii ≥ d−∆ + (ni − 1) is
used to show that the number of sampling steps performed before reaching a point
where Ii = [d] for each i is just O(∆ · k). Let R denote the set P − (

⋃
i∈[k]Hi) of the

points in P that are not yet assigned to a cluster.
For a partial clustering P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]}, an extension

is a partition (P ′i )i∈[k] of the elements of P such that for every i ∈ [k], Hi ⊆ P ′i . We
say that the points (c′i)i∈[k] are the centers associated with (P ′i )i∈[k]

if for every i ∈ [k], c′i and ui are equal on the coordinates of Ii and c′i is equal
to c[d]−Ii(P ′i ) on [d]− Ii. The value of an extension (P ′i )i∈[k] with associated centers

(c′i)i∈[k], denoted val
(
(P ′i )i∈[k]

)
, is equal to val

(
(P ′i )i∈[k], (c

′
i)i∈[k]

)
. The value of a

partial clustering P, denoted OPT(P), is the minimum value of an extension (P ′i )i∈[k]

of P. We call the extension optimizing this value optimal.

Observation 8.5. Let P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} be a partial clus-
tering and x ∈ R such that Dom(x) ⊆ Ii for all i ∈ [k] and f2(x,uj) is minimal
among all the f2(x,ui). The partial clustering obtained from P by putting x in the
set Hj has the same value as P.

Proof. It follows from the fact that, for any extension with associated centers (c′i)i∈[k],
f2(x, c′i) = f2(x,ui) for every i ∈ [k].

Therefore from now on, we can assume that no point of x ∈ R is such that
Dom(x) ⊆ Ii for all i ∈ [k]. The previous statement and the conditions on |Ii| imply
the following remark:

Observation 8.6. If P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} is a partial cluster-
ing such that

∑
i∈[k] ni = k(∆ + 1), then

⋃
i∈[k]Hi = P .

Let P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} be a partial clustering, and let
(P ′i )i∈[k] with centers (c′i)i∈[k] be its optimal extension. Let us denote Ri = R ∩ P ′i .
The goal of the algorithm is to sample some of the elements of R in order to guess,
for some i ∈ [k], coordinates of c′i which are not in Ii. To do so we need to make sure
that our sampling avoids elements x of Ri such that Dom(x) ⊆ Ii (x ∈ FD(Ri, Ii)) as
these elements do not provide any information about [d]−Ii. The goal of the following
section will be to cluster some of the elements of FD(Ri, Ii) in order to make this
set small compared to R. Note that we might need to consider an extension which
is not an optimal one.

8.2 Finding a Proper Partial Clustering

This section is devoted to the proof of the following lemma:
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Lemma 8.7. Let P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} be a partial clustering.
For every constant α ∈ R≥0, 0 < α < 1, there exists an algorithm running in time
O(ndk), that with probability at least ( 1

3k2∆ log(n)k
) either:

· Returns a partial clustering P ′ = {(n′i)i∈[k], (H
′
i)i∈[k], (I

′
i)i∈[k], (u

′
i)i∈[k]} with

OPT(P ′) ≤ (1 + α)OPT(P) and
∑
i∈[k] n

′
i >

∑
i∈[k] ni; or

· Finds a set B of elements of R such that there exists an extension (P ′i )i∈[k] of
P with value at most (1 + α)OPT(P) and such that B ⊆

⋃
i∈[k] FD(P ′i , Ii) and

for every i ∈ [k], there is an index j ∈ [k] such that |PD(P ′j ∩ R, Ii − Ij)| ≥
α

32·6(∆+1)k |FD(P ′i ∩R, Ii)−B|.

The Lemma 8.7 will serve as the base for one step of our algorithm in Section 8.3.
The basic idea behind our main algorithm is to iteratively extend the partial clus-
tering, until we get a clustering of P . In each step it computes a partial clustering
P ′ = {(n′i)i∈[k], (H

′
i)i∈[k], (I

′
i)i∈[k], (u

′
i)i∈[k]} with OPT(P ′) ≤ (1 + α)OPT(P) and∑

i∈[k] n
′
i >

∑
i∈[k] ni with high enough probability. Observations 8.5 and 8.6 then al-

low us to conclude in at most k(∆+1) steps. Note that the first case of the Lemma 8.7
is precisely what we want. On the other hand, the second case, together with the fact
that there are at most k clusters and the pigeonhole principle, will allow us to show
that there is an index r ∈ [k] such that |(P ′r∩R)−FD(P ′r∩R, Ir)| ≥ h(k,∆, α)|R−B|
for some function h depending only on k, ∆, and α and (P ′r ∩R)−FD(P ′r ∩R, Ir) ⊆
R−B. Hence we can with sufficiently high probability, by sampling in R−B, obtain
some points from (P ′r ∩R)−FD(P ′r ∩R, Ir) and a good approximation of the center
cr on some coordinate outside of Ir.

8.2.1 Overview of the Proof

Before presenting our quite technical proof in the next subsection, let us first explain
some of the ideas and difficulties encountered. Let

P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]}

be a partial clustering and (Pi)i∈[k] be an optimal extension with the associated
centers (c′i)i∈[k]. Let us denote Ri = Pi ∩R for every i ∈ [k].

Suppose first that ∆ = 0 and let (ci)i∈[k] be the centers of an optimal extension.
Kumar et al. [137] proved a similar statement as Lemma 8.7, where the first condition
is replaced by the statement that two centers can be equal. To do that, assuming
that they have a good approximation ui of one center ci, they consider the ball B
with center ui and radius t/4 where t is the minimum over all j ∈ [k], j 6= i of
the distance of ci to the other centers cj . Because ui is a good approximation, B
contains only elements of Pi. Moreover, they are able to show that either |Pj | is
large enough compared to |Pi−B|, or putting all the points of Pj in Pi gives a good



8.2. Finding a Proper Partial Clustering 197

approximation. Unfortunately, this property is not true anymore for ∆-points with
∆ > 0.

First note that in the case when ∆ > 0, as opposed to Kumar et al. [137] where
all approximate centers ui are either in Rd or not set at all, we have approximate
centers that are partially set. Now, if we have some two centers ui and uj and we
want to extend uj to some coordinates in Dom(ui)−Dom(uj) = Ii− Ij then even if

t = distIi−Ij (ui, c
′
j), it might not be true that the ball with center ui and diameter

t/4 contains no elements of Pj which makes the previous argument considerably more
difficult to make. To overcome this problem we will consider the coordinates r in
Ii − Ij where distr(ui, c

′
j) is large, separately one by one.

Let us now fix an index i for the rest of this subsection. For every j ∈ [k], let

Jj = Ii − Ij , let ij1, . . . , i
j
|Jj | be the coordinates in Jj , and let djr = disti

j
r (ui, c

′
j) for

all r ∈ [|Jj |]. Without loss of generality, we can assume that dj1 ≥ dj2 ≥ · · · ≥ dj|Jj |.

We distinguish two cases depending on whether |Jj | ≥ ∆ + 1 or not.

Case 1: |Jj | ≥ ∆ + 1. Let us denote by J ′j the set {ij∆+1, . . . , i
j
|Jj |} and let dj =

distJ
′
j (ui, c

′
j). Note that in this case it follows from the definition of partial clustering

that Ij = ∅, nj = 0, and, consequently, Jj = Ii.

Lemma 8.8. For every j ∈ [k] \ {i} such that Ij = ∅ and every x ∈ Rj such that
Dom(x) ⊆ Ii, it holds that dist(x,ui) > dj/4.

Proof. First observe that if dj = 0, then the lemma trivially holds and we can
assume for the rest of the proof that dj > 0. Now, note that |Ii − Dom(x)| ≤ ∆
and |Ii − J ′j | = ∆. Because both sets (Dom(x) and J ′j) are subsets of Ii, we have
|Dom(x) − J ′j | ≥ |J ′j − Dom(x)|. Moreover, by the definition of J ′j and because

Dom(x) ⊆ Ii we have that Dom(x) − J ′j ⊆ {i
j
1, . . . , i

j
∆}. Since dj1, . . . , d

j
∆ are larger

than any djr for r > ∆, we have that distDom(x)(ui, c
′
j) ≥ dj .

For the sake of contradiction, let us assume for the remainder of the proof

that dist(x,ui) ≤ dj

4 . Since Dom(x) ⊆ Ii, we have dist(x, c′i) = dist(x,ui) and

dist(x, c′i) ≤ dj

4 . Moreover, because (Pi)i∈[k] is optimal, we have that dist(x, c′j) ≤
dist(x, c′i) ≤ dj

4 . Finally, since x, ui, and c′j are points without any “?” on

Dom(x), the triangle inequality implies that distDom(x)(ui, c
′
j) ≤ distDom(x)(ui, x) +

distDom(x)(x, c′j) ≤ 2d
j

4 , which contradicts distDom(x)(ui, c
′
j) ≥ dj .

Given the above, we show in the following lemma that the set of elements in
FD(R, Ii) at distance at most dj/4 from ui is basically what is sufficient to include
in the set B of elements in R for the index i to satisfy the second case of Lemma 8.7
with a caveat that if it is not the case, then we can actually set uj to be the same as
ui on the coordinates of J ′j without introducing too large error.
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Lemma 8.9. For every constant c > 0 and every index j ∈ [k] \ {i} such that
Ii − Ij > ∆, if B denotes the set of all elements in FD(R, Ii) at distance at most
dj/4 from ui, then:

· Either |PD(Rj , J
′
j)−B| ≥ c|Pi −B|;

· or f
J′j
2 (Pj ,ui)− f

J′j
2 (Pj , c

′
j) ≤ 16cf2(Pi,ui).

Proof. Recall that Ii − Ij > ∆ implies that Ij = ∅ and by the definition of par-
tial clustering we have nj = 0, Hj = ∅ and consequently Pj = Rj . Suppose that
|PD(Rj , J

′
j) − B| < c|Pi − B| (otherwise we are done). We know that f2(Pi,ui) ≥

|Pi − B|(dj/4)2 as all the points of Pi − B are at distance at least (dj/4) from ui.
By Lemma 8.8, we have that

|PD(Rj , J
′
j)| = |PD(Rj , J

′
j)−B| ≤ c|Pi −B|.

However, by Lemma 8.4,

f
J′j
2 (Rj ,ui)− f

J′j
2 (Rj , c

′
j) ≤ |PD(Rj , J

′
j)|(dj)2,

which implies that

f
J′j
2 (Pj ,ui)− f

J′j
2 (Pj , c

′
j) = f

J′j
2 (Rj ,ui)− f

J′j
2 (Rj , c

′
j) ≤ 16cf2(Pi,ui).

Now let j be the index that minimizes dj among all indices j′ in [k] \ {i} for
which Ij′ = ∅ (i.e., an index j such that dj = minj′∈[k]\{i},Ij′=∅{d

j′}). Then the set

B = {x ∈ FD(R, Ii) | dist(x,ui) ≤ dj/4}, i.e., the set of all the elements in FD(R, Ii)
at distance at most dj/4 from ui, does not contain any element in

⋃
j′∈[k]\i,Ij′=∅

Rj′

(that is, any element of Rj′ for every j′ ∈ [k] \ {i} with Ij′ = ∅). Furthermore, we
have that

· either |PD(Rj , Jj)−B| ≥ c|Ri −B|,

· or f
J′j
2 (Rj ,u1)− fJ

′
j

2 (Rj , c
′
2) ≤ 4α∆f2(R1,u1).

When the first inequality occurs, this is the good case. Basically it means that
PD(Rj , J

′
j) is large enough so that sampling in R−B avoids FD(Ri, Ii) with constant

probability. Note that even though we do not know dj , we can get a superset of R−B
of size at most 2|R − B| with probability 1

log n by taking n
2r furthest points from ui

for some r ∈ [blog nc]. To deal with the case when the second inequality holds, let
us first show the following lemma, which will be useful throughout the paper.
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Lemma 8.10. Let P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} be a partial clustering,
(Pi)i∈[k] be an optimal extension of P with associated centers (c′i)i∈[k], and C ∈ R≥0.
If there exist two indices i, j ∈ [k] and I ′ ⊆ Ii such that Ij is empty, |I ′| ≥ d−∆, and

f I
′

2 (Pj ,ui) − f I
′

2 (Pj , c
′
j) ≤ Cf2(Pi,ui), then the partial clustering P ′ obtained from

P by setting Ij = I ′, uj the element of Hd equal to ui on the coordinates of I ′ and
“?” on the rest and nj := 1 is a partial clustering of value at most (1 + C)OPT(P).

Proof. Indeed, (Pi)i∈[k] is an extension of P ′. Let Cj be the point of Hd such that

(Cj)r =

{
(ui)r if r ∈ I ′,
(c′j)r otherwise,

(8.1)

and let Cs = c′s for s ∈ [k] \ {j}. Then

val
(
(Pi)i∈[k], (Ci)i∈[k]

)
≤ val

(
(Pi)i∈[k], (c

′
i)i∈[k]

)
+ Cf2(Pi,ui)

≤ (1 + C)OPT(P).

This means that the extension P ′ obtained by applying the previous Lemma with
I ′ = J ′j satisfies the first property of Lemma 8.7. A major problem is that we do not

know J ′j and in the worst case there are d∆ possibilities for J ′j , so guessing a feasible
set I ′ for Lemma 8.10 is not an option here. We postpone dealing with this problem
for later and switch our focus to the second case.

Case 2: |Jj | ≤ ∆. Let r = |Jj |. Recall that ij1, . . . , i
j
r denote the coordinates of

Jj = Ii − Ij and r is such that djr is minimal. Let us denote by Bj the ball of
elements of FD(R, Ii) at distance at most djr from ui. We show now that we can
adapt Lemmas 8.8 and 8.9 to this setting as well.

Lemma 8.11. Suppose j ∈ [k] is such that Ii − Ij ≤ ∆, if x ∈ PD(Rj , Ii − Ij), then
dist(x,ui) ≥ djr/4.

Proof. Let i′ be the index of Ii − Ij such that i′ ∈ Dom(x). By the choice of ijr, we

have that disti
′
(ui, c

′
j) > djr, and the triangle inequality allows us to conclude.

Note that this time the set of elements of FD(R, Ii) at distance at most djr/4 from
ui can contain some elements of Rj , but only those such that Dom(x) ⊆ Ij , which
are the “useless” ones for our sampling as they do not give any information for the
coordinates outside of Ij . An analogous proof to the one of Lemma 8.9 gives the
following result:

Lemma 8.12. For every constant c ∈ R≥0 and j ∈ [k] such that r = |Ii − Ij | ≤ ∆,
if we denote by B the set of elements of FD(R, Ii) at distance at most djr/4 from u1,
then:
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· Either |PD(Rj , i
j
r)−B| ≥ c|Ri −B|;

· or f
ijr
2 (Rj ,u1)− f i

j
r

2 (Rj , c
′
2) ≤ 16cf2(P1,u1).

Again the first case is the good one, as B then provides a set such that drawing
a sample from R − B has constant probability to avoid FD(Ri, Ii). In the second
case, however, it means that setting Ij = Ii ∪ ijr and (uj)r := (ui)r gives a partial
clustering of value at most (1 + 16c)OPT(P). In that case, we can guess the index ijr
uniformly among Ii− Ij and succeed with probability at least 1/∆. Since we do this
only when Ij is non-empty, and thus of size at least d−∆, the number of times we
can do this for each j ∈ [k] is at most ∆. In total, it means that we will perform this
guessing only k∆ times, and it will only contribute (∆)k∆ to the time complexity.

Therefore, the main problem we have to overcome is the case |Ij | = 0 and

f
J′j
2 (Pj ,ui)− f

J′j
2 (Pj , c

′
j) ≤ 16cf2(Pi,ui) where we do not know J ′j . The main idea is

the following. Recall that j is the index of [k]\{i} such that Ij is empty and dj is min-

imal among all such indices. Suppose f
J′j
2 (Pj ,ui) − f

J′j
2 (Pj , c

′
j) ≤ 16cf2(Pi,ui) and

now consider the next smallest distance dj
′

and B′ the set of elements of FD(R, Ii)
at distance at most dj

′
/4 from ui. If |PD(Rj′ , J

′
j′)−B′| ≥ c|Pi−B′|, then we almost

have the set that we want, except that some elements of FD(Pj , Ii) can belong to
B′. The idea will be to move these elements to Pi so that B′ satisfies the desired
properties for this new extension. While we are able to control the value of the new
extension, as it increases by at most 16cf2(Pi,ui), the fact that it stops being an
optimal one creates some problems. Moreover, since we want to do this for each
i ∈ [k], we have to also impose some control over the centers associated with these
extensions. This is the goal of the next subsection.

8.2.2 Extensions and Useless Sets of Coordinates

Let us fix some partial clustering P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]}. By
Observation 8.5, we can assume that for every index i ∈ [k] such that Ii−Ij is empty
for every j ∈ [k], no point x satisfying Dom(x) ⊆ Ii belongs to R. For the rest of
this section, P will be fixed, and any extension (P ′i )i∈[k] will refer to an extension
of P unless stated otherwise. We say that an extension is safe if for every x ∈ R
and every i, j ∈ [k] such that Dom(x) ⊆ Ii and Dom(x) ⊆ Ij , x ∈ P ′i implies that
dist(x, c′i) ≤ dist(x, c′j).

As explained before, the hard case is when |Ii − Ij | > ∆, which means that Ij is
empty. To deal with this case, let us first introduce the following notion of useless
sets of coordinates. Let t ∈ R≥0, i, j ∈ [k] such that Ij = ∅ and Ii 6= ∅, let (P ′i )i∈[k]

be an extension of P, and finally set R′i = P ′i ∩ R. A set of indices Zi,j ⊆ Ii is a
t-useless set of coordinates for (P ′i )i∈[k] if

· Zi,j is either empty or of size at least d−∆, and
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· fZi,j2 (R′j ,ui)− f
Zi,j
2 (R′j , c

′
j) ≤ t · OPT(P).

To simplify the quantifications over i, j ∈ [k] where Zi,j appears, we define t-useless
sets of coordinates to be empty sets when Ii = ∅ or Ij 6= ∅. Intuitively, Zi,j corre-
sponds to a set of coordinates such that setting uj to be equal to ui on these coordi-
nates still gives a good partial clustering. The whole argument revolves around mod-
ifying the extension by “moving” some elements of some R′i into some R′j . However,

by doing this we might change the values of |fZi,j2 (R′j ,ui)−f
Zi,j
2 (R′j , c

′
j))|, especially

we might change the centers associated with the extension. The next lemma allows
us to have some control of what happens for t-useless sets of coordinates when the
changes are “small”.

Lemma 8.13. Let (P ′i )i∈[k] be an extension with associated centers (c′i)i∈[k] of value
at most (1+t1) ·OPT(P) and (Zi,j)i,j∈[k] be t-useless sets of coordinates for (P ′i )i∈[k].
Let (P 1

i )i∈[k] be another extension of P, and denote by X the set of points of P
belonging to different clusters in (P 1

i )i∈[k] and (P ′i )i∈[k]. For every x ∈ X such that
x ∈ P ′r and x ∈ P 1

s for some r, s ∈ [k], let F (x) = f2(x, c′s)− f2(x, c′r). If

· for every x ∈ X and r ∈ [k] such that x ∈ P 1
r , Dom(x) ⊆ Ir and

·
∑
x∈X F (x) ≤ t2 · OPT(P),

then (Zi,j)i,j∈[k] are (t+ t1 + t2)-useless sets of coordinates for (P 1
i )i∈[k].

Proof. Let (c1
i )i∈[k] be the centers associated with the extension (P 1

i )i∈[k] and for
each r ∈ [k] let R1

r = R ∩ P 1
r . Note that by the definition of X, for every r ∈ [k],

every element x of P 1
r − P ′r is such that Dom(x) ⊆ Ir. In particular, if for some

r ∈ [k] it holds that Ir = ∅, then P 1
r ⊆ P ′r (as we assume that no point x in P is such

that Dom(x) = ∅).
Moreover, the t-useless sets of coordinates Zi,j , for some i, j ∈ [k], are only defined

in the case that Ij = ∅. This implies that, for all i, j ∈ [k] such that Zi,j is defined,
it holds that:

f
Zi,j
2 (P 1

j ,ui) ≤ f
Zi,j
2 (P ′j ,ui) and f

[d]−Zi,j
2 (P 1

j ,ui) ≤ f
[d]−Zi,j
2 (P ′j ,ui). (8.2)

Suppose now that for some i, j ∈ [k] such that Zi,j is defined, it holds that
fZi,j (P 1

j , c
1
j ) < fZi,j (P ′j , c

′
j) − (t1 + t2)OPT(P). We want to reach a contradiction

by showing that in this case the value of (P 1
i )i∈[k] is smaller than OPT(P). For this

purpose, let Cj be the element of Rd equal to c1
j on the coordinates of Zi,j and to c′j

on the rest of coordinates, and let Cr = c′r for r ∈ [k] \ {j}. By the definitions of X,
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F (•), f2(•, •), and by (8.2), we have that∑
r∈[k],r 6=j

f2(P 1
r , Cr) + f

[d]−Zi,j
2 (P 1

j , Cj)

≤
∑

r∈[k],r 6=j

f2(P ′r, Cr) +
∑
x∈X

F (x) + f
[d]−Zi,j
2 (P ′j , Cj). (8.3)

Note that

val
(
(P 1
r )r∈[k], (Cr)r∈[k]

)
=

∑
r∈[k],r 6=j

f2(P 1
r , Cr) + f

[d]−Zi,j
2 (P 1

j , Cj) + f
Zi,j
2 (P 1

j , c
1
j )

and

val
(
(P ′r)r∈[k], (c

′
r)r∈[k]

)
=

∑
r∈[k],r 6=j

f2(P ′r, Cr) + f
[d]−Zi,j
2 (P ′j , Cj) + f

Zi,j
2 (P ′j , c

′
j).

Hence the inequality (8.3) together with our assumption implies that

val((P 1
r )r∈[k], (Cr)r∈[k])

< val((P ′r)r∈[k], (c
′
r)r∈[k]) + t2 · OPT(P)− (t1 + t2)OPT(P)

< OPT(P),

a contradiction. This means that(
f
Zi,j
2 (P ′j , c

′
j)− f

Zi,j
2 (P 1

j , c
′
j)
)
≤ (t1 + t2)OPT(P),

and thus

f
Zi,j
2 (P 1

j ,ui)− f
Zi,j
2 (P 1

j , c
′
j) ≤ f

Zi,j
2 (P ′j ,ui)− f

Zi,j
2 (P 1

j , c
′
j)

≤
(
f
Zi,j
2 (P ′j ,ui)− f

Zi,j
2 (P ′j , c

′
j)
)

+
(
f
Zi,j
2 (P ′j , c

′
j)− f

Zi,j
2 (P 1

j , c
′
j)
)

≤ (t+ t1 + t2) · OPT(P).

An important part of the proof of Lemmas 8.8 and 8.11 is that the extension we
consider is optimal. This allowed us to say that picking balls of small radius around
ui will contain only elements of P ′i . Since we have to handle extensions which are
not optimal, we have to require similar properties for them. This is the role of the
next definition.

For an extension (P ′i )i∈[k] with associated centers (c′j) and a t-useless set of co-
ordinates Zi,j for some i, j ∈ [k], we say that Zi,j is compatible with (P ′i )i∈[k] if
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· there is no element x ∈ P ′j such that Dom(x) 6⊆ Ij and Dom(x) ⊆ Zi,j ; and

· there is no element x ∈ P ′j such that Dom(x) ⊆ Ii and dist(x,ui) <
dist(x,c′j)

2 .

Note that the factor 1/2 here might seems strange, since if dist(x,ui) ≤ dist(x, c′j),
putting x in P ′i decreases the value of the extension. However, the problem with the
definition without the factor 1/2 would be the following: suppose we have an exten-
sion (P ′i )i∈[k], a set of t-useless sets of coordinates Zi,j and the goal is to make Zi,j
compatible with (P ′i )i∈[k]. To do so, suppose we move iteratively elements x ∈ P ′j
such that Dom(x) ⊆ Ii and dist(x,ui) < dist(x, c′j) to P ′i (where c′j is the updated
center), until there are no such elements. The value of the extension can only de-
crease after this modification. However, we have to show that the (Zi,j) are still t′

useless for some bounded t′. As we have seen in Lemma 8.13, if we have some upper
bound on the sum of f2(x, c′r)− f2(x, c′j) over the elements x which are moved, then
we achieve our goal. If dist(x,ui) < dist(x, c′j), it doesn’t seem like we can have

control over these values, however if dist(x,ui) <
dist(x,c′j)

2 every time we move an
element x, the value of the extension decrease by at least f2(x, c′r)/2. This means
that if we start with an extension of value (1 + t1)OPT(P), then the sum of f2(x, c′r)
over the elements x which are moved is bounded by 2t1OPT(P) and we can apply
Lemma 8.13. This will be the main argument of the next lemma.

Lemma 8.14. Suppose (P ′i )i∈[k] is a safe extension of value at most (1+ t1)OPT(P)
with associated centers (c′j) and (Zi,j)i,j∈[k] are compatible t2-useless sets of coor-
dinates for (P ′i )i∈[k]. If there exist i, j ∈ [k] with Ii 6= ∅ and Ij = ∅ as well as a

set Ii,j of coordinates in Ii such that |Ii,j | ≥ d −∆, Ii,j 6⊆ Zi,j, and f
Ii,j
2 (P ′j ,ui) −

f
Ii,j
2 (P ′j , c

′
j) ≤ t3 · OPT(P), then there exists a safe extension (P 1

i )i∈[k] of P with

compatible 3t1 + 2t3 + t2-useless sets of coordinates (Z1
i,j)i,j such that the value of

(P 1
i )i∈[k] is at most (1 + t1 + t3)OPT(P) and

∑
i,j∈[k] |Z1

i,j | >
∑
i,j∈[k] |Z ′i,j |.

Proof. Define Z1
i,j = Zi,j ∪ Ii,j , and note that |Z1

i,j | > |Zi,j | and |Z1
i,j | ≥ |d − ∆|.

Let Z1
i′,j′ = Zi′,j′ for any other pair i′, j′ ∈ [k]. Note that Z1

i′,j′ is still a compatible

t-useless set of coordinates for (P ′i )i∈[k]. Because f
Ii,j
2 (P ′j ,ui) − f

Ii,j
2 (P ′j , c

′
j) ≤ t3 ·

OPT(P) and Zi,j is t2-useless, we get that Z1
i,j is a t3 + t2 useless set of coordinates

for (P ′i )i∈[k].
Consider now the extension (P 1

r )r∈[k] obtained from (P ′r)r∈[k] by putting in P ′i the
set X1 of elements x ∈ P ′j such that Dom(x) 6⊆ Ij and Dom(x) ⊆ Z1

i,j . Let us define

a sequence (P 2
r )r∈[k], . . . (P

q
r )r∈[k] of extensions with the associated centers (c2

r)r∈[k],
. . . , (cqr)r∈[k]. For each s ∈ [q−1], we obtain the extension (P s+1

r )r∈[k] from (P sr )r∈[k]

as follows. If there is an element in P sj such that Dom(x) ⊆ Ii′ for some i′ ∈ [k] and

dist(x,ui′) ≤
dist(x,csj)

2 then we get (P s+1
r )r∈[k] from (P sr )r∈[k] by moving x from P sj

to P si′ . If there are multiple choices, we simply take any i′ such that dist(x,ui′) is
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minimal. Note that throughout this process, we are only removing elements from P sj
to put it in another P si′ , which means that this process has to stop after at most |P 1

j |
steps. Let (P ′′r )r∈[k] be the final extension of this process. Note as well that since
we only add to P si′ elements x such that Dom(x) ∈ Ii′ , it means that csi′ = c′i′ for
every i′ different from j. Denote by X2 the set of all elements we moved between
(P 1
r )r∈[k] and (P ′′r )r∈[k], that is, X2 = P 1

j − P ′′j . For x ∈ X2 such that x ∈ P ′′r , let
f(x) = f2(x, c′r).

Claim 8.15.
∑
x∈X2

f(x) ≤ 2(t1 + t3)OPT(P).

Proof. Since f
Ii,j
2 (P ′j ,ui) − f

Ii,j
2 (P ′j , c

′
j) ≤ t3 · OPT(P), we have that (P 1

r )r∈[k] has
value at most (1 + t1 + t3)OPT(P). However, suppose x is such that x ∈ P sj and

x ∈ P s+1
r for some r ∈ [k] \ j. It means that dist(x,ur) ≤

dist(x,c(P sj ))

2 and:

val((P s+1
r )r∈[k]) = val((P sr )r∈[k]) + (dist(x,ur)

2 − dist(x, c(P sj ))2)

≤ val((P sr )r∈[k])−
3f(x)

4
.

Since val((P ′′i )i∈[k]) ≥ OPT(P), this ends the proof of the claim.

Overall, if we set X := X1 ∪ X2, then we can apply Lemma 8.13 to show that
each Z1

i′,j′ is a 3t1 + 2t3 + t2-useless set of coordinates for i′, j′ ∈ [k]. Moreover, since
we only move elements of P ′j and c′r = c′′r for every other r ∈ [k] \ j, the extension

(P ′′r )r∈[k] remains safe. Finally we can verify that the (Z1
i′,j′) are compatible with

(P ′′r )r∈[k] as well. Indeed, for every i′ ∈ [k], Z1
i′,j is compatible with (P ′′r )r∈[k] by

the definition of X. For every j′ 6= j and i′ ∈ [k], we have that Z1
i′,j′ = Zi′,j′ and

thus since Zi′,j′ is compatible with (P ′i )i∈[k] and the elements x of P ′′j′ − P ′j′ are
such that Dom(x) ⊆ Ij′ , there is no element x ∈ P ′′j′ such that Dom(x) 6⊆ Ij′ and

Dom(x) ⊆ Z1
i′,j′ . Moreover, since c′′j′ = c′j′ , we have dist(x, c′′j′) = dist(x, c′j′), which

means that there is no element of P ′j such that dist(x,ui′) ≤
dist(x,c′′j )

2 . Finally for
every x ∈ P ′′j′ − P ′j′ , dist(x, c′′j′) = dist(x,uj′), which ends the proof, as we chose j′

as the index such that Dom(x) ⊆ Ij′ and dist(x,uj′) is minimal.

The next lemma is the main technical part of this subsection.

Lemma 8.16. Let t ∈ R≥0, let (P ′i )i∈[k] be a safe extension of P with value at
most (1 + t)OPT(P) and for every i, j ∈ [k] let Zi,j be a compatible t-useless set of
coordinates, such that (Zi,j) are compatible with (P ′i )i∈[k]. One of the following holds:

· Either Zi,j = Ii for one pair i, j ∈ [k] such that Ii 6= ∅ and Ij = ∅; or

· There exists i, j ∈ [k] such that Ii and Ij are nonempty and f
ij1
2 (P ′j ,ui) −

f
ij1
2 (P ′j , c

′
j) ≤ t · f2(R′i,ui) for some index ij1 ∈ Ii − Ij; or
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· There is an algorithm running in time O(nkd) that returns for every i ∈ [k] a
set T ′i such that T ′i ⊆ FD(R′i, Ii) and |PD(P ′j , Ii−Ij)−T ′i | ≥ t

32 |FD(R′i, Ii)−T ′i |
for some j ∈ [k] with probability at least ( 1

log(n) )k; or

· There exists an extension (P 1
i )i∈[k] of P with compatible (5t + t2)-useless sets

of coordinates (Z1
i,j)i,j∈[k] such that the value of (P 1

i )i∈[k]) is at most (1 +
3t+t2

2 )OPT(P) and
∑
i,j∈[k] |Z1

i,j | >
∑
i,j∈[k] |Zi,j |.

Proof. Let c = t/32. If Zi,j = Ii for one pair i, j ∈ [k] such that Ij = ∅ and Ii 6= ∅,
then nothing needs to be done, so let us assume this is not the case. Let F be the
set of indices i ∈ [k] such that Ii is empty and G = [k]− F .

Let i be some index of G. For any j ∈ F , let us denote ij,min the element of Ii−Zi,j
such that distij,min(ui, c(P ′j)) is minimal. Let us now denote by r1,j , . . . , r∆,j the ∆
coordinates of Ii−ij,min such that the distrs,j (ui, c(P ′j)) for s ∈ [∆] are the ∆ maximal
values among all distr(ui, c(P ′j)) for r ∈ Ii − ij,min, and set Ii,j = Ii − {r1, . . . , r∆}.
Let dj = distIi,j (ui, c(P ′j)). The following claim is the analogue of Lemma 8.8, but
using the fact that Zi,j is compatible with (P ′r)r∈[k] instead of the extension being
optimal.

Claim 8.17. For any x ∈ P ′j such that Dom(x) ⊆ Ii, d(x,ui) > dj/4.

Proof. Let x be an element of P ′j such that Dom(x) ⊆ Ii and note that Dom(x) −
Ii < ∆. Because Zi,j is compatible with (P ′i )i∈[k], we have that Dom(x) ∩ (Ii −
Zi,j) is nonempty, and thus, by the choice of Ii,j , we have that distDom(x)(ui, c

′
j) ≥

distIi,j (ui, c
′
j). However, because Zi,j is compatible with (P ′i )i∈[k] and Dom(x) ⊆ Ii,

we have that distDom(x)(x, c′j) ≤ 2 dist(x,ui). Therefore, if

dist(x,ui) ≤ distIi,j (ui, c
′
j)/4 ≤ distDom(x)(ui, c

′
j)/4,

then the triangle inequality gives us

distDom(x)(ui, c
′
j) ≤ distDom(x)(ui, x) + distDom(x)(x, c′j) < distDom(x)(ui, c

′
j),

where the triangle inequality applies because no coordinates of x,ui and c′j have “?”
on Dom(x). This is a contradiction and thus ends the proof.

We can also show the following.

Claim 8.18. For every constant c ∈ R≥0 and j ∈ F , the set Bj of elements of
FD(R, Ii) at distance at most dj/4 from ui is such that one of the following properties
is satisfied:

· |P ′j −Bj | ≥ c|FD(R′i, Ii)−Bj |; or

· f Ii,j2 (P ′j ,ui)− f
Ii,j
2 (P ′j , c

′
j) ≤ 16c(1 + t)OPT(P).
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Proof. Indeed, suppose that |P ′j−Bi| < c|FD(R′i, Ii)−Bj | . We know that f2(P ′i ,ui) ≥
|FD(R′i, Ii)−B|(dj/4)2 as all the points of FD(R′i, Ii)−Bi are at distance at least dj/4
from ui. Because of Claim 8.17, we have that |P ′j −Bj | = |P ′j | ≤ c|FD(R′i, Ii)−Bi|.
Moreover, since Ij is empty, it means that c′j = c(P ′j) and thus, by Lemma 8.4, we

have that f2(P ′j ,ui)− f2(P ′j , c
′
j) ≤ |P ′j | dist(ui, c

′
j)

2, which implies that f2(P ′j ,ui)−
f2(P ′j , c

′
j) ≤ 16c · f2(P ′i ,ui) ≤ 16c(1 + t)OPT(P).

If f
Ii,j
2 (P ′j ,ui)− f

Ii,j
2 (P ′j , c

′
j) ≤ 16c(1 + t)OPT(P), then Lemma 8.14 gives us the

existence of an extension and some sets of coordinates satisfying the fourth property
of the lemma. Therefore, from now on we assume that for every j ∈ F , |P ′j − Bj | ≥
c|FD(R′i, Ii)−Bj |.

For any j ∈ G different from i such that Ii − Ij 6= ∅, let us define ij1, . . . , i
j
|Ii−Ij |

as the coordinates of Ii− Ij , and set djr = disti
j
r (ui, c

′
j) for all r ∈ [|Ii− Ij |]. Without

loss of generality, we can assume dj1 is minimum, and let dj = dj1. Using analogous
proofs as those of Lemmas 8.11 and 8.12, we can use the fact that (P ′i )i∈[k] is safe to
prove the following two claims.

Claim 8.19. For j ∈ G, if x ∈ PD(P ′j , Ii − Ij), then dist(x,ui) ≥ dj/4.

Claim 8.20. For every constant c ∈ R≥0 and j ∈ G, if we denote by Bj the set of
elements of FD(R, Ii) at distance at most dj from u1, then:

· Either |PD(P ′j , i
j
1)−Bj | ≥ c|R′i −B|; or

· f i
j
1

2 (P ′j ,ui)− f
ij1
2 (P ′j , c

′
j) ≤ 16cf2(P ′i ,ui).

Note that if there exists j such that f
ij1
2 (P ′j ,ui)−f

ij1
2 (P ′j , c

′
j) ≤ 16cf2(R′i,ui), then

the second property of the lemma is satisfied, so we can assume that |PD(P ′j , i
j
1) −

Bj | ≥ c|R′i −Bj | for all j ∈ G.
Let us consider now the index j ∈ G ∪ F such that dj is defined and minimal.

Note that if no dj is defined, it means that Ii − Ij is empty for every j and thus
because of Observation 8.5, we can assume that FD(R′i, Ii) is empty. Let us denote
by Bi the set of elements x of FD(R, Ii) at distance at most dj/4 from ui and such
that, if Dom(x) ⊆ Ij for some j ∈ [k], then dist(x,ui) ≤ dist(x,uj). By combining
Claims 8.17 and 8.19, the choice of j and the assumptions we made on the results of
Claims 8.20 and 8.18 we get the following claim:

Claim 8.21. Bi contains only elements of R′i and |PD(P ′j , I1−Ij)−Bi| ≥ c|FD(R′i, Ii)−
Bi|.

Consider the integer r such n
2r ≤ |FD(R, Ii)−Bi| ≤ n

2r−1 , let H be the set of n
2r−1

points of FD(R, Ii) that are the farthest away from u1 and let B′i = FD(R, Ii)−H.
By the definition of H, B′i ⊆ Bi and |Ri − B′| ≤ 2|Ri − B| which means that
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|PD(P ′j , Ii − Ij) − B′i| ≥
c|Ri−B′|

2 . Therefore, if the algorithm selects uniformly at
random an integer in [log(n)], then with probability 1/ log(n) this integer is equal
to r, and the algorithm is then able to find the set T ′i := B′i. Note that once r is
selected, the set B′ can be found in O(nd) time. We finish the proof by repeating
this for every i such that dj can be defined. For the other indices i, as explained,
FD(R′i, Ii) is empty and thus B′i := ∅ has the required properties.

A very important remark here is that in the case where there is an algorithm
running in time O(nkd) that returns for every i ∈ [k] a set T ′i such that T ′i ⊆
FD(R′i, Ii) and |PD(P ′j , Ii − Ij) − T ′i | ≥ t

32 |FD(R′i, Ii) − T ′i | for some j ∈ [k] with

probability at least ( 1
log(n) )k, the algorithm does not need to know the extension

(P ′i )i∈[k], as the only thing that matters are the distances of the elements of P to the
point ui that are given in P.

8.2.3 Proof of Lemma 8.7

We are now ready to prove the main result of this section, Lemma 8.7.

Proof of Lemma 8.7. Let t1 = α
6(∆+1)k and note that 6(∆+1)kt1 = α. Let (P 1

i )i∈[k] be
an optimal extension of P and Z1

i,j = ∅ for every pair i, j ∈ [k]. Note that (P 1
i )i∈[k] is

safe and the (Z1
i,j) are compatible t1-useless sets of coordinates. By applying Lemma

8.16 to (P 1
i )i∈[k] and (Z1

i,j)i,j∈[k], we have that, denoting R1
i = P 1

i ∩R:

· Either Zi,j = Ii for one pair i, j ∈ [k] such that Ii 6= ∅ and Ij = ∅; or

· There exists i, j ∈ [k] such that Ii and Ij are non empty and f
ij1
2 (P 1

j ,ui) −

f
ij1
2 (P 1

j , c
′
j) ≤ t1 · f2(R1

i ,ui) for some index ij1 ∈ Ii − Ij ; or

· There is an algorithm that returns for every i ∈ [k] a set T ′i such that T ′i ⊆
FD(R1

i , Ii) and |PD(P 1
j , Ii − Ij) − T ′i | ≥ t1

32 |FD(R1
i , Ii) − T ′i | for some j ∈ [k]

with probability at least ( 1
log(n) )k; or

· There exists an extension (P 2
i )i∈[k] of P with some compatible 5t1 + t21-useless

set of coordinates (Z2
i,j)i,j such that the value of (P 2

i )i∈[k] is at most (1 +
3t1+t21

2 )OPT(P) ≤ (1 + 5t1 + t21)OPT(P) and
∑
i,j∈[k] |Z2

i,j | >
∑
i,j∈[k] |Z1

i,j |.

In the first case, the partial clustering P ′ obtained from P by setting Ij := Ii,
uj := ui, and nj := ni, has value at most

OPT(P) +
(
f
Zi,j
2 (P ′j ,ui)− f

ij1
2 (P ′j , c

′
j)
)
≤ (1 + t1)OPT(P)

by definition of t1-useless sets of coordinates, and therefore P ′ satisfies the first
property of Lemma 8.7. In the second case, the partial clustering P ′ obtained from
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P by setting Ij := Ij ∪ ij1, (uj)ij1
:= (ui)ij1

and nj := nj + 1 is a partial clustering of

value at most

OPT(P) +
(
f
ij1
2 (P ′j ,ui)− f

ij1
2 (P ′j , c

′
j)
)
≤ (1 + t1)OPT(P),

and therefore P ′ satisfies the first property of Lemma 8.7. In the third case, then
the set B =

⋃
i∈[k] T

′
i satisfies the second property of Lemma 8.7.

In the last case, we can again apply Lemma 8.16 to (P 2
i )i∈[k] and (Z2

i,j)i,j∈[k]

with t2 = 5t1 + t21. By repeating this process until we arrive to an application of
Lemma 8.16 where one of the first three cases is satisfied, we can define a sequence
of extensions (P si )i∈[k], (Zsi,j)i,j∈[k] and ts = 5ts−1 + t2s−1 such that the (Zsi,j)i,j∈[k]

are compatible ts-useless sets of coordinates for (P si )i∈[k]. Note that if ts−1 ≤ 1, then
ts ≤ 6ts−1 and recall that α < 1. Moreover, this process has to stop after at most
(∆ + 1)k iterations, because

∑
i,j∈[k] |Z

s+1
i,j | >

∑
i,j∈[k] |Zsi,j |, and if Zri,j increases

more than ∆ times, then |Zri,j | = d, and we are in the first case. Therefore, by the
choice of t1, there exists a safe extension (P ′i )i∈[k] with compatible α-useless sets
(Z ′i,j)i,j∈[k] such that the application of Lemma 8.16 falls into one of the first three
cases, and we can conclude.

The desired algorithm proceeds as follows. First, it guesses with probability 1/3
in which of the above cases it falls. In the first case, guessing the pair i, j allows
us to conclude with probability 1/k2. In the second, guessing i, j and ij1 ∈ Ii − Ij
allows us to conclude with probability 1

k2∆ (remember that |Ii − Ij | ≤ ∆). Finally
in the last case, the algorithm succeeds if the algorithm of Lemma 8.16 succeeds, so
the probability of that is ( 1

log(n) )k.

Overall, the probability of success is at least 1
3k2∆ log(n)k

, and the algorithm runs

in time O(nkd).

8.3 The Algorithm

Now that we have Lemma 8.7, we can describe our algorithm. Let us first recall
the following lemma, which is a direct consequence of the definition of variance (see
Lemma 1 of Inaba et al. [118]).

Lemma 8.22. Let x1, . . . , xm be a set of reals with average µ and s1, . . . , st be a set
of elements obtained by t independent and uniform draws among the xi. The random

variable s =
∑
i∈t si/t is such that E(|s− µ|2) ≤

∑
i∈[m] |xi−µ|

2

tm .

The main element of our proof is the following lemma providing one step of the
algorithm.

Lemma 8.23. For every constant α ∈ R≥0, there exists an algorithm that, given a
partial clustering P = {(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} outputs in time O(nkd)



8.3. The Algorithm 209

with probability at least

min{ 1

2O( ∆3k
α log 1

α )(log n)k
,

1

2O(∆6k log ∆)(log n)k
}

a partial clustering P ′ = {(n′i)i∈[k], (H
′
i)i∈[k], (I

′
i)i∈[k], (u

′
i)i∈[k]} such that

∑
i∈[k] n

′
i >∑

i∈[k] ni and OPT(P ′) ≤ (1 + α)OPT(P).

Proof. Let us fix sufficiently small q ∈ R≥0 such that (1 + q)2 ≤ (1 + α) and
exp(− 1

4∆q ) ≤ q
4∆ . The choice of q will be clear later in the proof. For now just

notice that q < 1 and setting q = min{α3 ,
1

128∆3 } satisfies both conditions. Addition-
ally, let q′ = q

32·6(∆+1)k . By applying Lemma 8.7 with the constant q, we have an

algorithm that runs in time O(nd) and with probability at least ( 1
2 log(n) )k returns

either:

· A partial clustering P ′ = {(n′i)i∈[k], (H
′
i)i∈[k], (I

′
i)i∈[k], (u

′
i)i∈[k]} with OPT(P ′) ≤

(1 + q)OPT(P) and
∑
i∈[k] n

′
i >

∑
i∈[k] ni; or

· a set B of elements of R such that there exists an extension (P ′i )i∈[k] of P with
value at most (1 + q)OPT(P) and such that B ⊆

⋃
i∈[k] FD(P ′i ∩R, Ii) and for

every i ∈ [k], there is an index j ∈ [k] such that |PD(P ′j ∩ R, Ii − Ij) − B| ≥
q′|FD(P ′i ∩R, Ii)−B|.

In the former case, nothing needs to be done as P ′ satisfies all the properties of
the lemma. Therefore, from now on we assume that we are in the latter case and we
are given a set B ⊆ R satisfying all the conditions of the second case of Lemma 8.7.
Let (P ′i )i∈[k] be the hypothetical extension with value at most (1 + q)OPT(P) whose
existence is guaranteed. Let R′i = P ′i ∩ (R − B) for all i ∈ [k] and let (c′i)i∈[k] be
the centers associated with (P ′i )i∈[k]. Let i be the index such that |R′i| is maximal,
meaning |R′i| ≥ |R−B|/k. Now either |FD(R′i, Ii)| ≥ |R′i|/2, in which case we know
that there exists an index j ∈ [k] such that |PD(R′j , Ii − Ij)| ≥ q′|FD(R′i, Ii)| ≥
q′|R−B|

2k , or |R′i − FD(R′i, Ii)| ≥
|R−B|

2k . Note that PD(R′j , Ii − Ij) ∩ FD(R′j , Ij) = ∅
which means that there exists an index r ∈ {i, j} such that |R′r − FD(R′r, Ir)| ≥
q′|R−B|

2k . The goal of the algorithm now will be to sample points inside R′r−FD(R′r, Ir)
in order to obtain a good estimate of some coordinates of c′r that are not yet in Ir.
We will consider two different cases, depending on whether |Ir| ≥ d−∆ or not.

Case 1: |Ir| < d−∆. Note that in this case, by the definition of a partial clustering,
nr = 0 and Hr ∪ FD(R′r, Ir) is empty. This implies that R′r = P ′r. Let δ = 1

2∆ and
note that (1−δ)∆ ≥ 1/2. We claim that there exists a set Lr of at most ∆ coordinates
(possibly empty) such that there exists a set Fr ⊆ R′r, |Fr| ≥ |R′r|/2 where every
element x of Fr is such that xj = ? on every j ∈ Lr and for every i ∈ [d]−Lr, there
are at most (1− δ)|Fr| points x in Fr with x[i] = ?. We can obtain the set Fr from
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R′r as follows. Start with Lr = ∅ and Fr = R′r. As long as there exists a coordinate
i ∈ [d] − Lr where a (1 − δ) fraction of points in Fr has value ? on the coordinate
i, then set Lr := Lr ∪ {i} and Fr as the set of points of Fr with value ? on the
coordinate i. This process has to stop after ∆ steps as P consists of ∆-points. This
means that, at the end, |Fr| ≥ (1− δ)∆|R′r|, which ends the proof of the claim. For
i ∈ Lr, let Rir = PD(R′r, i) and pi = |Rir|/|R′r|. The previous discussion shows that
pi ≥ δ

2 for all i 6∈ Lr.
Intuitively, Lr corresponds to the set of coordinates such that, if we sample in

R′r, then we might not get a good estimate for c′r on these coordinates. Suppose now

we pick uniformly at random an element x of R−B. Because |Fr| ≥ |R
′
r|

2 ≥ q′|R−B|
4k ,

with probability at least q′

4k , x ∈ Fr. Assume from now on this is the case, and let
Jr = Dom(x). Note that Lr ⊆ [d]− Jr and |Jr| ≥ d−∆.

Let t = 8
qδ . From the choice of q and because pi ≥ δ

2 one can show that

exp(−tp2
i /4) ≤ 2

tpi
. Consider X = {x1, . . . , xt}, a (multi)set of t elements in R − B

obtained by doing t independent and uniform draws. With probability at least ( q
′

2k )t,
all these points belong to R′r. From now on we assume this is the case, and all the
probabilities computed will be conditioned by that fact. Note that the set {x1, . . . , xt}
then follows exactly the same distribution as the one obtained by doing t indepen-
dent and uniform draws in R′r. Let J ′r be the set of coordinates e of Jr for which
there exists an element xs ∈ X such that xs[e] 6= ?, note that |Jr − J ′r| ≤ ∆. Let
u′ = cJ

′
r (X). For every i ∈ J ′r, denote by Xi the random variable counting the

number of the points xj with j ∈ [t] such that xj [i] 6= ?. Note that Xi follows the
binomial distribution with parameters t and pi. By using standard tail bounds for
the binomial distribution (see, e.g., Theorem 1 of [113]) we can show the following
claim:

Claim 8.24. For every i ∈ J ′r, Pr[Xi ≤ tpi/2] ≤ exp(−tp2
i /4).

Moreover, if we condition by the event that Xi = p, then the distribution followed
by the p values of xs[i] is exactly the same as the one obtained by doing p uniform
and random draws among all the vi for v ∈ PD(R′r, i). This implies the following
result.

Claim 8.25. For every i ∈ J ′r, we have E
(
|c′r[i]− u′[i]|2

)
≤

∑
x∈Rir

|x[i]−c′r[i]|2

|Rir|
· 4
tpi

.

Proof. By the definition of a partial clustering and an extension, and because Ir is
empty, we know that c′r[i] is equal to the average of x[i] over all elements x of Rir.
By applying Lemma 8.22, we get that, for every s ≤ t,

E
(
|c′r[i]− u′[i]|2|Xi = s

)
≤
∑

x∈Rir
|x[i]− cr[i]|2

|Rir|s
.
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This means that:

E
(
|c′r[i]− u′[i]|2

)
= E

(
|c′r[i]− u′[i]|2 | Xi ≤ tpi/2

)
Pr[Xi ≤ tpi/2]

+ E
(
|c′r[i]− u′[i]|2 | Xi > tpi/2

)
Pr[Xi > tpi/2]

≤
∑

x∈Rir
|x[i]− cr[i]|2

|Rir|
· Pr[Xi ≤ tpi/2]

+

∑
x∈Rir

|x[i]− cr[i]|2

|Rir|tpi/2

≤
∑

x∈Rir
|x[i]− cr[i]|2

|Rir|

(
exp(−tp2

i /4) +
2

tpi

)
.

Which ends the proof as we chose q such that exp(−tp2
i /4) ≤ 2

tpi
.

Now for every index a ∈ Jr − J ′r, consider Aa = {xa1 , . . . ,xat } a new (multi)set
of t elements in R − B obtained by doing uniform and independent draws. With

probability at least ( q
′δ

4k )t, all these elements belong to Rar . From now on, let us
assume that it is the case for every a ∈ Jr−J ′r. Setting u′[a] = ca(Aa), an analogous
proof as the one of Claim 8.25 would yield:

Claim 8.26. For every a ∈ (Jr−J ′r), we have E
(
|c′r[a]− u′[a]|2

)
≤

∑
x∈Rar

|x[a]−c′r[i]|2

|Rar |
·

4
tpa

.

By summing over all coordinates of Jr, we obtain the following result.

Claim 8.27. With probability at least 1/2, fJr2 (R′r,u
′) ≤ (1 + 8

tpi
)(fJ1

2 (Rr, c
′
r)).

Proof. Indeed, E(fJr2 (R′r,u
′)−fJr2 (Rr, c

′
r)) =

∑
i∈Jr |R

i
r|·E(|c′r[i]−u′[i]|2) by Lemma

8.4, which is smaller than 4
tpi

(fJr2 (Rr, c
′
1)) by the previous claims. Markov’s inequal-

ity allows us to conclude.

Therefore, by choosing the following at random:

· an index r ∈ [k] such that |R′r − FD(R′r, Ir)| ≥
q′|R−B|

2k ,

· an element x ∈ R−B,

· t elements x1, . . . ,xt in R−B, and

· t elements xa1 , . . . ,x
a
1 in R−B for each a ∈ Jr − J ′r

we find, with probability at least 1
k ·

q′

4k · (
q′

2k )(t−1) · ( q
′δ

4k )t∆ · 1/2 ≥ (q′δ)(∆+1)t

(4k)(∆+1)t+1 =
1

2
O( ∆3k

q
log 1

q
)
, a point u1 ∈ Hd such that fJr2 (R′r,u

′) ≤ (1 + 8
tpi

)(fJr2 (Rr, c
′
r)). Now

consider the set of points (ci)i∈[k] defined as follows: if i 6= r, then ci = c′i and cr is
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the point obtained from c′r by setting (cr)j = u′j on all the coordinates of Jr. We
have that:

val((P ′i )i∈[k], (ci)i∈[k]) ≤ val((P ′i )i∈[k], (c
′
i)i∈[k]) +

8

tpi
(fJ1

2 (Rr, c
′
r))

≤ (1 + q)2OPT(P)

≤ (1 + α)OPT(P).

Therefore, it means that the partial clustering P ′ obtained from P by setting
nr = 1, ur = u′ and Ir = Jr satisfies the property of the lemma. Indeed, the
partition (P ′i )i∈[k] is an extension of P ′ with value at most val

(
(P ′i )i∈[k], (ci)i∈[k]

)
and |Jr| ≥ d−∆.

Case 2: |Ir| ≥ d−∆. Let S = [d]−Ir and note that, by the definition of FD(R′r, Ir),
for every element y ∈ R′r−FD(R′r, Ir), there is an index j ∈ S such that j ∈ Dom(y).
In particular it means that there exists an index j ∈ S such that j ∈ Dom(y) for at
least |R′r − FD(R′r, Ir)|/∆ of the elements of R′r − FD(R′r, Ir). Because |S| ≤ ∆, by
picking a random element of S, with probability at least 1/∆, we can assume that
we know this index j. Our main goal now will be to guess c′r[j]. Let t′ = 2

q and

suppose that s1, . . . , st′ is a (multi)set of elements of R−B obtained by t′ uniform and

independent draws. With probability at least ( q′

2k∆ )t
′
, all the si belong to PD(R′r, j).

From now on, let us assume that this is the case. Note that in this case, the random
set (s1, . . . , st′) follows the same distribution as one obtained by doing t uniform and
independent draws in PD(R′r, j). Let aj =

∑
i∈[t] si[j]/t

′, a proof similar to the one
of Claim 8.27 gives the following claim:

Claim 8.28. With probability at least 1/2, f j2 (R′r, aj) ≤ (1 + q)(f j2 (R′r, c
′
r)).

In that case, the partial clustering P ′ obtained from P by setting ur[j] = aj and
nr := nr + 1 satisfies the desired properties.

By considering both cases, we obtain an algorithm running in time O(knd) and
succeeding with probability at least the probability that the algorithm of Lemma 8.7

succeeds times the minimum of (q′δ)(∆+1)t

(4k)(∆+1)t+1 and 1
∆ · (

q′

2k∆ )t
′
, which is at least

1

2O( ∆3k
q log 1

q )(log n)k
.

Note that if α is sufficiently small, then this is 1

2O( ∆3k
α

log 1
α

)(log n)k
and else it is

1
2O(∆6k log ∆)(log n)k

, finishing the proof.

Finally, by applying Lemma 8.23 at most k(∆ + 1) times we obtain Theorem 8.1.
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Theorem 8.1. The problem of k-means clustering of ∆-points in Rd admits an

(1 + ε)-approximation algorithm with running time 2O( ∆7k3

ε log k∆
ε )n2d.

Proof. Let P be a instance of the k-means clustering problem consisting of ∆-
points. Fix α = ((1 + ε)1/k(∆+1) − 1), note that α ≥ ε

3k(∆+1) , and let P =

{(ni)i∈[k], (Hi)i∈[k], (Ii)i∈[k], (ui)i∈[k]} be the partial clustering such that for each

i ∈ [k], ni = 0, Hi = ∅, Ii = ∅ and ui is the point of Hd with only “?” entries. Note
that OPT(P) is equal to the optimal value of the instance.

The algorithm consists of applying inductively Lemma 8.23 with the constant α
and Observation 8.5 until

⋃
i∈[k](Hi) = P . Since

∑
i∈[k] ni increases in every applica-

tion of Lemma 8.23, we get by Observation 8.6 that this process stops after at most

k(∆+1) steps. The probability that all the steps succeed is at least ( g(α,k,∆)
log(n)k

)k(∆+1),

where g(α, k,∆) = min{ 1

2O( ∆3k
α

log 1
α

)
, 1

2O(∆6k log ∆)
}, and if it holds then the partial

clustering P ′ = {(n′i)i∈[k], (H
′
i)i∈[k], (I

′
i)i∈[k], (u

′
i)i∈[k]} obtained at the end is such

that OPT(P ′) ≤ (1 + α)k(∆+1). Since
⋃
i∈[k](Hi) = P , this gives us indeed a (1 + ε)

approximation. Note that we can obtain a center for Hi simply by either taking
ui or computing c(Hi). The running time is O(k2∆nd) and the probability of suc-

cess is at least ( g(α,k,∆)
log(n)k

)k(∆+1), which means that running the previous algorithm

O(( log(n)k

g(α,k,∆) )k(∆+1)) times allows us to find the approximation with constant proba-

bility. Finally, it is well-known that for any constant C, log(n)C ≤ n+CO(C) which
gives the total running time of

max{2O( ∆3k
α log 1

α ), 2O(∆6k log ∆)}k(∆+1)2O(k2∆) log(k∆)k2∆n2d.

It can be simplified to

max{2O( ∆5k3

ε log k∆
ε ), 2O(∆7k2 log(k∆))}n2d,

finishing the proof.

8.4 Concluding Remarks

In this paper we gave the first PTAS for k-means clustering of ∆-points when ∆ > 1

running in time 2O( ∆7k3

ε log k∆
ε )n2d based on iteratively sampling points to discover

new coordinates of some center. We believe that the study of clustering problems of
∆-points is an interesting research direction and there is still a lot to be discovered.
We conclude with concrete open questions.

Arguable, the most popular clustering objectives are k-center, k-means, and k-
median. For k-center clustering of ∆-points a PTAS was obtained by Lee and Schul-
man in [141]. However, for k-median clustering of ∆-points, the question whether
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the problem admits a PTAS, remains open. We would like to remark here that the
algorithm of Kumar et al. [137] for clustering of points in Rd works not only for
k-means, but also for k-medial clustering.

Since ∆-points are basically ∆-dimensional axis-parallel subspaces, another inter-
esting question would be whether it is possible to extend our result to clustering of
arbitrary ∆-dimensional affine subspaces in Rd. This is a very natural computational
geometry problem which complexity, to the best of our knowledge, is widely open.

Following the coreset construction for k-means clustering of lines by Marom and
Feldman [155], it is a natural open question whether it is possible do design a coresets
of small size for clustering of ∆-points for ∆ > 1. For lines, the size of coreset of
Marom and Feldman is dkO(k) log n/ε2. In particular, whether log n can be removed
even for ∆ = 1, is open.

Finally, we do not know how tight is the running time of our algorithm. While
it is plausible to suggest that the dependency in k and ∆ is not optimal, to design a
faster algorithm we need new ideas. It ls also an interesting open question whether
one can improve the dependency on n from quadratic to linear.
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Low-Rank Approximation
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Algebraic Geometry Approach for Robust

PCA

In this chapter, our primary focus is the following algorithmic question about low-
rank approximation with outliers. For a set of n points in Rd, how to learn a subset
of points, say 1% of the total number of points, such that the remaining part of the
points is best fit into some unknown r-dimensional subspace? This is the PCA with
Outliers problem introduced in Subsection 3.2.1, and we recall its formal definition
next.

Input: Data matrix A ∈ Rn×d, integer parameters r and k.

Task:

minimize ‖A− L−N‖2F
subject to L,N ∈ Rn×d,

rank(L) ≤ r, and

N has at most k non-zero rows.

PCA with Outliers

Even though PCA with Outliers was assumed to be NP-hard, to the best
of our knowledge, this has never been studied formally. For an in-depth discussion
about previous works on low-rank approximation problems, we refer to Section 3.2.
While NP-hardness is a serious strike against the tractability of the problem, on the
other hand, it only says that in the worst case the problem is not tractable. But
since the complexity of the problem could be governed by several parameters like

217
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the rank r of L, the number of outliers k or the dimension d of A, it is natural to
ask how these parameters influence the complexity of the problem. For example,
when k is a small constant, we can guess which points are outliers and run PCA for
the remaining points. This will bring us to nk calls of PCA which is polynomial for
constant k and is exponential when k is a fraction of n.

In this chapter we give an algorithm solving PCA with Outliers roughly in
time |A|O(rd), where |A| is the size of the input matrix A. Thus for fixed dimension
d, the problem is solvable in polynomial time. Note that the algorithms works in
polynomial time for any number of outliers k. Our algorithm strongly relies on
the tools developed in computational algebraic geometry, in particular, for handling
arrangements of algebraic surfaces in Rd defined by polynomials of bounded degree.

We complement this algorithmic result by a complexity lower bound. Our lower
bound not only implies that the problem is NP-hard when dimension d is part of the
input, it also rules out a possibility of certain type of approximation algorithms for
PCA with Outliers. More precisely, assuming the Exponential Time Hypothesis
(ETH), we show that for any value α, constant or depending on the input size, PCA
with Outliers cannot be α-approximated in time f(d)|A|o(d), for any function
f of d only. The reduction holds in fact for the Robust Subspace Recovery
problem, which is the special case of deciding whether for an instance of PCA with
Outliers the value of the optimal solution is 0 or not. Equivalently, the input to
Robust Subspace Recovery is an instance (A, r, k) of PCA with Outliers, and
the task is to decide whether there exist matrices L and N such that A = L + N,
the rank of L is at most r, and N has at most k non-zero rows.

Our algorithm is, foremost, of theoretical interest, especially in the presence of the
nearly-matching lower bound showing that doing something essentially better is next
to impossible. In practice, PCA is often applied to reduce high-dimensional datasets,
and for this task the running time exponential in d is not practical. However, there
are cases where such an algorithm could still be useful. One example could be the
visualization of low-dimensional data, where the number of dimensions, even if it is
small already, needs to be lowered down to two to actually draw the dataset. Another
example could be when we suspect a small subset of features to be highly correlated,
and we want to reduce them to one dimension in order to get rid of the redundancy
in data. This potential application is well illustrated by the popular PCA tutorial
[175], where essentially one-dimensional movement of a spring-mass is captured by
three cameras, resulting in 6 features.

9.1 Polynomial-time Algorithm for Bounded Dimen-
sion

First, we emphasize on a folklore observation that geometrically the low-rank ap-
proximation matrix L is defined as orthogonal projection of rows of A on some
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r-dimensional subspace of Rd. For the proof see e.g. [29].

Proposition 9.1. Given a matrix A ∈ Rn×d with rows a1, . . . , an, the task of
finding a matrix L of rank at most r which minimizes ||A − L||2F is equivalent to
finding an r-dimensional subspace of Rd which minimizes the total squared distance
from rows of A treated as points in Rd:

min
L∈Rn×d
rankL≤r

||A− L||2F = min
U⊂Rd

U is a linear subspace of dim r

n∑
i=1

||ai − projU ai||2F ,

where projU x is the orthogonal projection of x on U for x ∈ Rd.

By Proposition 9.1, if we fix an r-dimensional subspace U containing the span of
rows of L, then the outliers are automatically defined as k farthest points from U
among {ai}ni=1. In the next proposition, we give a precise statement of this.

Proposition 9.2. The optimization objective of PCA with Outliers for a given
matrix A ∈ Rn×d with rows a1, . . . , an can be equivalently redefined as follows.

min
L,N∈Rn×d

rankL≤r
N has at most k non-zero rows

||A−L−N||2F = min
U⊂Rd

U is a linear subspace of dim r

||A−LU−NU ||2F ,

where NU has k non-zero rows which are k rows of A with the largest value of
||ai − projU ai||2F , and LU is the orthogonal projection of the rows of (A −NU ) on
U .

NU =



a1

...

ak

0
...

0


, LU =



0
...

0

projU ak+1

...

projU an


,

assuming that rows of A are ordered by the descending value of ||ai − projU ai||2F .

So for a fixed U we may determine SU easily and then solve the classical PCA for
the matrix (A− SU ). The intuition behind our algorithm is that the set of k farthest
points is the same for many subspaces, and solving PCA for (A− SU ) treats all these
subspaces. The crucial point is to bound the number of different matrices SU we have
to consider. There is of course a trivial bound of nk since SU is always obtained by
choosing k rows of A. But the number of different SU is also geometrically limited,
and exploiting this we are able to obtain another bound of nO(rd), resulting in the
following theorem.
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Theorem 9.3. Solving PCA with Outliers is reducible to solving(
n

2

)min(rd,(d−r)d)

2O(d) = nO(d2)

instances of PCA. This reduction can be computed in the number of operations over
R bounded by the expression above.

First, a note about the statement of Theorem 9.3. Our algorithm relies on solving
the classical PCA, and since only iterative algorithms for PCA and SVD exist, we
could not claim that our algorithm solves PCA with Outliers in some fixed number
of operations. However, if we are only interested in solving the problem up to some
constant precision, for example machine epsilon, then PCA is solvable in polynomial
number of operations and so by Theorem 9.3, PCA with Outliers is solvable in
nO(d2) operations.

Proof of Theorem 9.3. We start with associating r-dimensional subspaces of Rd with
points of a certain algebraic set. Consider the matrix space R(d−r)×d, and for an
element V ∈ R(d−r)×d, V = (Vij)i,j , the following polynomial conditions:

QOi,j(V) :=

d∑
`=1

Vi`Vj` = 0, for 1 ≤ i < j ≤ (d− r),

QNj (V) :=

(
d∑
`=1

V2
j`

)
− 1 = 0, for 1 ≤ j ≤ (d− r),

where the condition QOi,j(V) = 0 requires rows i, j of V to be pairwise orthogonal

and the condition QNj (V) = 0 requires row j of V to have length one. We may write
all these conditions as a single polynomial condition Q(V) = 0 by taking the sum of
squares:

Q(V) =
∑

1≤i<j≤(d−r)

(QOi,j(V))2 +

d−r∑
j=1

(QNj (V))2.

Thus Q(V) = 0 if and only if each of QOi,j(V) = 0 and each of QNj (V) = 0.

Consider an algebraic set W ⊂ R(d−r)×d defined as the zero set of Q(V). For any
V ∈ W with rows v1, . . . , vd−r, consider the r-dimensional subspace comp(V) :=
span({v1, · · · ,vd−r})⊥ ⊂ Rd which is the orthogonal complement of the span of the
rows of V. Since Q(V) = 0, the rows of V are pairwise orthogonal and are of length
one. Thus, the dimension of comp(V) is r and for any point x ∈ Rd the squared
distance from x to comp(V) is equal to

d−r∑
i=1

(vi · x)2 = ||Vx>||2F ,
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assuming that x is a row vector.
Each V ∈ W defines an r-dimensional subspace comp(V) ⊂ Rd and each r-

dimensional subspace U ⊂ Rd is of this form for some V ∈ W since there exists
an orthonormal basis of the orthogonal complement of U . Then we can reformulate
Proposition 9.2 in terms of elements of W as follows.

min
L,N∈Rn×d

rankL≤r
N has at most k non-zero rows

||A−L−N||2F = min
V∈W

||A−Ncomp(V)−Lcomp(V)||2F , (9.1)

where Ncomp(V) and Lcomp(V) are defined in accordance with notation in Proposition
9.2. Let a1, . . . , an be the rows of the input matrix A; Ncomp(V) has k non-zero rows

which are the k rows of A with the largest value of ||ai−projcomp(V) ai||2F = ||Va>i ||2F ,
and Lcomp(V) is the orthogonal projection of the rows of (A−Ncomp(V)) on comp(V).
Denote Ncomp(V) by NV and Lcomp(V) by LV.

Now, consider the set of polynomials P = {Pi,j}1≤i<j≤n defined on W , where

Pi,j(V) = ||Va>i ||2F − ||Va>j ||2F .

Consider the partition C of W on cells over P. For each cell C, the sign condition
with respect to P is constant over C, meaning that for every pair 1 ≤ i < j ≤ n, the
sign of

||Va>i ||2F − ||Va>j ||2F

is the same for all V ∈ C. So the relative order on {||Va>i ||2F }ni=1 is also the same for

all V ∈ C. Since ||Va>i ||2F is exactly the squared distance from ai to V, the k rows
of A which are the farthest are also the same for all V ∈ C. Then NV is constant
over V ∈ C, denote this common value by NC . We can rewrite (9.1) as

min
V∈W

||A−NV − LV||2F = min
C∈C

min
V ∈C
||A−NV − LV||2F = min

C∈C
min
V∈C

||(A−NC−LV||2F .

Note that

min
C∈C

min
V∈C

||(A−NC)− LV||2F = min
C∈C

min
V∈W

||(A−NC)− LV||2F , (9.2)

as for any C ∈ C, minV∈C ||(A−NC)−LV||2F ≥ minV∈W ||(A−NC)−LV||2F since
C ⊂ W . Also, any (NC , LV) in the right-hand side of (9.2) is still a valid choice of
(N, L) for the original problem, and the optimum of the original problem is equal to
the left-hand side of (9.2).

For a fixed C ∈ C computing right-hand side of (9.2) is equivalent to solving an
instance (A−NC , r) of the classical PCA by Proposition 9.1:

min
V∈W

||(A−NC)− LV||2F = min
L∈Rn×d, rank(L)≤r

||(A−NC)− L||2F .
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V11

V12

W

a1

a2

||V
a >1 || 2F

=
||V

a >2 || 2F

||Va
>
1
||2F

= ||
Va
>
2
||2F

remove a1

remove a1

remove a2

remove a2

Figure 9.1: An example with d = 2, n = 2, r = 1, k = 1. Two rows of the input matrix A
are represented as two points a1 and a2 on the plane. The same plane represents the choice
of 1-dimensional approximation subspace through the selection of a vector V orthogonal
to it. The algebraic set W is the unit circle since V must be of length one. The diagonal
lines mark the values of V for which a1 and a2 are equidistant. They split W into four
one-dimensional and four zero-dimensional cells. For each of the one-dimensional cells it is
shown in the corresponding sector which of the points is the outlier and hence is removed.

By the reasoning above, the optimum of the original instance of PCA with Out-
liers is reached on one of the constructed instances {(A−NC , r)}C∈C of PCA. A
toy example of an algebraic set W and its partitioning is shown in Figure 9.1.

Putting all together, our algorithm proceeds as follows.

(i) Using the algorithm from Theorem 4.12, obtain a point VC from each cell C
of W over P.

(ii) For each VC , compute the optimal NVC
: select the k rows of A with the

largest value of ||VCa>i ||2F . Construct the instance (A−NVC
, r) of PCA.

(iii) The solution to the original instance of PCA with Outliers is the best
solution among the solutions of all the constructed PCA instances.

Since degrees of Q and polynomials from P are at most 4, |P| =
(
n
2

)
, and the real

dimension of W is at most (d − r)d, which is the dimension of R(d−r)×d ⊃ W , the
algorithm of Theorem 4.12 does at most

t =

(
n

2

)(d−r)d

2O(d)
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operations and produces at most t matrices VC , and our algorithm produces one
instance of PCA for each computed matrix.1

We are also able to obtain a reduction to(
n

2

)rd
2O(d)

instances of PCA by proceeding in the same manner for a slightly different character-
ization of r-dimensional subspaces. Intuitively, now points on the algebraic set define
the orthonormal basis of the subspace itself, and not of its orthogonal complement
as in the previous part.

Now the matrix space is Rr×d, the conditions that an element V ∈ Rr×d defines
an orthonormal basis of size r are analogous:

Q̄Oi,j(V) :=

d∑
`=1

Vi`Vj` = 0, for 1 ≤ i < j ≤ r,

Q̄Nj (V) :=

(
d∑
`=1

V2
j`

)
− 1 = 0, for 1 ≤ j ≤ r.

Again, we may write them as a single polynomial condition Q̄(V) = 0 where

Q̄(V) =
∑

1≤i<j≤r

(Q̄Oi,j(V))2 +

r∑
j=1

(Q̄Nj (V))2,

Consider an algebraic set W̄ ⊂ Rr×d defined as the set of zeroes of Q̄(V). Sim-
ilarly, any V ∈ W̄ defines an r-dimensional subspace U ∈ Rd which is the span of
the rows of V. Since the rows of V form an orthonormal basis of U , for any point
x ∈ Rd the squared distance from x to U is equal to

||x||2F −
r∑
i=1

(vi · x)2 = ||x||2F − ||Vx>||2F .

The new distance formula leads to a slightly different set of polynomials P̄ =
{P̄i,j}1≤i<j≤n on W , comparing the distance from ai and from aj ,

P̄i,j(V) = (||ai||2F − ||Va>i ||2F )− (||aj ||2F − ||Va>j ||2F ).

Again, the k farthest points and the matrix NV are the same over any cell in the
partition of W̄ over P̄. So by the same reasoning as in the first part, it suffices to

1As W is restricted by Q(V ) = 0, its dimension is actually smaller. It could be bounded more
precisely as (d−r)(d+r−1)/2, but we omit the calculation in order not to unnecessarily complicate
the text.
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take a point V from each cell, compute the outlier matrix NV and solve the vanilla
PCA for (A−NV, r).

As we can choose the most efficient of the two subspace representations, we can
reduce PCA with Outliers to(

n

2

)min(rd,(d−r)d)

2O(d)

instances of PCA.2

9.2 Hardness of Robust Subspace Recovery

Recall that Robust Subspace Recovery is the special case of PCA with Out-
liers where the objective value is zero. In other words, the input matrix A has to
be exactly represented as the sum of a low-rank matrix L and an outlier matrix N.
In this section, we prove our hardness result for Robust Subspace Recovery, and
hardness of approximation for PCA with Outliers with any approximation factor
follows immediately from that. We state the result formally in the next theorem.

Theorem 9.4. There is no algorithm solving Robust Subspace Recovery in
time f(d) · no(d) for any computable function f of d, unless ETH fails.

First, we give a high-level overview of the proof. We show a parameter-preserving
reduction from Clique. Assume that we are given an instance (G, r) of Clique with
|V (G)| = n, |E(G)| = m. Set d = r+ 1, one larger than the size of the clique to find,
and the target rank will be exactly r. With each vertex vi of G, we associate a vector
wi in Rd, such that the resulting set W = {w1, . . . ,wn} of n vectors satisfies a certain
generality condition, in particular that any d of the vectors are linearly independent.
One may think of W as a set of n random vectors in Rd, though the construction
may be made discrete and deterministic. Now consider the matrix A ∈ Rm×d where
the rows correspond to the edges of G,

A = (wi + wj | {vi, vj} ∈ E(G)) .

The matrix A is the input matrix to Robust Subspace Recovery, the target rank
is r, the number of outliers k is set to m−

(
r
2

)
. We claim that (G, r) is a yes-instance

of Clique if and only if the constructed instance of Robust Subspace Recovery
is a yes-instance.

To reformulate the objective of Robust Subspace Recovery, an instance
(A, r, k) is a yes-instance if and only if there is a subset of n − k =

(
r
2

)
rows of

2As with W , the dimension of W̄ could be bounded more precisely as r(2d− r− 1)/2, and with

these dimension bounds PCA with Outliers reduces to
(n
2

)min(r(2d−r−1)/2,(d−r)(d+r−1)/2)
2O(d)

instances of PCA.
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A with rank at most r. Crucial to the proof is the following claim that shows how
to identify the rank just by the structure of the edges corresponding to the selected
rows.

Claim 9.5. The rank of any submatrix A′ ⊂ A obtained by deleting rows from A is

max(d, |V (G(A′))| − number of bipartite graphs among cc(G(A′))),

where G(A′) is the subgraph of G such that its edges are exactly the edges correspond-
ing to the rows of A′, and its vertex set is the set of all endpoints of the edges, and
cc(G(A′)) is the set of connected components of G(A′).

Intuitively, the claim holds since for each connected component C of G(A′) one
can find a basis for the corresponding row space going along a spanning tree of the
component. The size of the basis is |V (C)|−1 if C is bipartite (e.g. for a single edge,
the space will be spanned by the corresponding row), and |V (C)| otherwise.

Now the role that Claim 9.10 plays in the reduction is as follows. We need
to keep exactly

(
r
2

)
rows while minimizing the rank, and by the claim this boils

down to making the corresponding graph as dense as possible. A computation shows
that only an r-clique can achieve the rank of r on

(
r
2

)
edges, thus the subspace

recovery is possible if and only if the given graph contains an r-clique, which proves
the correctness of the reduction. By [51], see also [70], assuming ETH, there is no
algorithm solving Clique in time f(r) ·no(r) where r is the size of the clique, for any
computable function f of r. In our reduction d is equal to r + 1, thus the theorem
follows.

Finally we note that since Robust Subspace Recovery is the zero-valued re-
striction of PCA with Outliers, the hardness of approximation for the latter easily
follows from Theorem 9.4.

Corollary 9.6. Assuming ETH, there is no algorithm approximating PCA with
Outliers with any multiplicative guarantee in time f(d) · no(d).

Now we move to the formal proof.

Proof of Theorem 9.4. We show a reduction from Clique. First, we need a set of
points satisfying a certain generality condition.

Definition 9.7. For d < n, let us say that a set W ⊂ Rd of size n is in a forest-
general position if for any forest F such that V (F ) ⊂W and |E(F )| plus the number
of isolated vertices in F is exactly d, the set

vectF := {u + v | uv ∈ E(F )} ∪ {w ∈ V (F ) | w is isolated in F},

is linearly independent and of size d.
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Note that this definition extends the common notion of vectors in a general linear
position, which requires every d vectors to be linearly independent, since F can also be
an empty forest on d vertices. The next claim extends the behavior in Definition 9.7
to forests of any size.

Claim 9.8. If a set W ⊂ Rd is in a forest-general position, for any forest F such
that V (F ) ⊂W ,

rank(vect(F )) = min(d, | vect(F )|).

Proof. If | vect(F )| = d, the claim is by definition.
If | vect(F )| > d, obtain a subforest F ′ of F such that | vect(F ′)| = d. This

is always possible since removing either an isolated vertex from F or a leaf of a
tree in F together with the incident edge decreases the size of vect(F ) by one. By
Definition 9.7, vectF ′ is linearly independent, and since vect(F ′) ⊂ vect(F ), they
both have rank d.

If | vect(F )| < d, obtain F ′ by adding isolated vertices or edged in F such that
vect(F ′) = d. This is always possible since d < n. By Definition 9.7, vect(F ′) is
linearly independent, and since vect(F ) ⊂ vect(F ′), vect(F ) has full rank.

Finally, to use Definition 9.7 in our reduction, we need to construct a correspond-
ing set of points.

Claim 9.9. For any n and d, there exists a set of n vectors in Nd in a forest-general
position such that the total bit-length of the coordinates is bounded by poly(n+ d).

Proof. Let W = {w1,w2, · · · ,wn} be a set of n vectors in Rd. Assume that Def-
inition 9.7 does not hold for W and a particular forest F . Then there exists a
linear combination of vect(F ) which is a zero vector. Without loss of generality,
V (F ) = {w1,w2, · · · ,wt}, let a = (ai)

t
i=1 be the zero linear combination of vect(F ),

treated as a linear combination of vectors in V (F ). We claim that M · a is a zero
vector for the t× t matrix M defined as follows. The first d rows are the coordinates
of w1, w2, . . . , wt, written as columns. Since a is the zero linear combination of
these vectors, clearly each of these rows times a is zero. Next, for every connected
component C of F append a row r such that ri = 0 if wi /∈ C, and ri = ±1 if wi ∈ C,
and for every edge of C its endpoints have different signs, this encodes a 2-coloring
of C. The orthogonality to a follows from observing how a on the coordinates of C
is obtained from the original linear combination of vect(F ). Note that now we have
exactly t rows. Thus, Definition 9.7 does not hold if and only if M is non-invertible.

Now, the way to construct the required set is to take the rows of a Vandermonde
matrix where the generating elements are selected to be in a certain general position
regarding the differences between them, in this case it is possible to show that every
matrix of the form discussed above is invertible. For the sake of brevity we omit
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this technical argument, and instead explain the simple randomized procedure of
generating the set, which also shows why sets in a forest-general position are common.

Let W be a set of n vectors in Nd where each coordinate of each vector is sampled
independently and uniformly from the set {1, · · · , N}, where N is a value we fix later.
The number of matrices which must be invertible by the observation above is at most
d ·
(
n
2d

)
· d2d · 22d, since the matrix up to permutations is defined by the number of

components in F (at most d), the choice of t vectors in W (at most
(
n
2d

)
), the partition

of them into components (at most d2d), and the 2-coloring on each component (at
most 22d). We bound the probability that a fixed matrix is non-invertible, and then
apply union bound. For a fixed matrix M, we can treat the process as follows. First
we are given the t − d rows obtained from the components of the forest, and then
we sample one by one the d rows each composed out of t coordinates of vectors in
W . For the first row, probability of falling into the span of already existing rows
is at most 1/Nd, for the second it is 1/Nd−1, and so on. Then the probability of
success for M is at least (1−1/N) · (1−1/N2) · · · , which could be lower-bounded by
1 − 1/(N − 1). By taking N sufficiently large compared to the number of matrices,
the union bound is satisfied. Note that logN is polynomially bounded in n and d,
and thus the total bit-length is also polynomially bounded.

Now we are ready to show the reduction. Assume that we are given an instance
(G, r) of Clique with |V (G)| = n, |E(G)| = m. Set d = r + 1, one larger than the
size of the clique to find. By Claim 9.9, obtain a set W = {w1, . . . ,wn} of n vectors
in Rd in a forest-general position.

Vectors from W are associated with vertices of G. Now consider the matrix A
where rows correspond to the edges of G,

A = (wi + wj | {vi, vj} ∈ E(G)) .

The matrix A is the input matrix to Robust Subspace Recovery, the target rank
is r, the number of outliers k is set to m−

(
r
2

)
. We claim that (G, r) is a yes-instance

of Clique if and only if the constructed instance of Robust Subspace Recovery
is a yes-instance.

To reformulate the objective of Robust Subspace Recovery, an instance
(A, r, k) is a yes-instance if and only if there is a subset of n − k =

(
r
2

)
rows of

A with rank at most r. The following claim shows how to identify the rank just by
the structure of the edges corresponding to the selected rows.

Claim 9.10. The rank of any submatrix A′ ⊂ A obtained by deleting rows from A
is

max(d, |V (G(A′))| − number of bipartite graphs among cc(G(A′))),

where G(A′) is the subgraph of G such that its edges are exactly the edges correspond-
ing to the rows of A′, and its vertex set is the set of all endpoints of the edges, and
cc(G(A′)) is the set of connected components of G(A′).
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Proof. We will modify A′ to vect(F ) for a certain forest F , by using elemental row
operations which do not change rank. Then Claim 9.8 finishes the proof.

The modification is performed on each connected component of G(A′) indepen-
dently. Consider a set of rows C which corresponds to the edges of a connected
component in G(A′). If this component contains an odd cycle, then from the rows of
C we can obtain all the underlying elements of W by elimination: start from the row
corresponding to one edge of a cycle, iteratively subtract/add subsequent edges of
the cycle. In the end we are left with 2w, where w is a vector in W which corresponds
to the vertex of the cycle we started the elimination from. After multiplication by
1/2 we have one of the vertex vectors. Now by consequently subtracting from the
edge vectors along a spanning tree of G(C) we can obtain all the vertex vectors of
V (G(C)). After zeroing out the remaining edge vectors C is (wi|vi ∈ V (G(C))), up
to permuting the rows and appending zero rows.

In the other case, if G(C) is bipartite, consider the matrix S ⊂ C which corre-
sponds to the edges of a spanning tree T of G(C). Let uv be an edge of G(C) which
is not in T . Since G(C) is bipartite, u and v are connected by a path in T with odd
number of edges. Then by consequently adding/subtracting the edge vectors of this
path we can obtain the edge vector corresponding to uv, in the same fashion as in
the previous case. Thus we can zero out all rows of C except for S.

After dealing with each component, consider the forest F where V (F ) = V (G(A′)),
and E(F ) is the union of the edges of all spanning trees picked during the modifica-
tion in the bipartite components. Thus, vertices of all the non-bipartite components
are isolated in F . We claim that the set of non-zero rows of matrix B obtained from
A′ by the modifications above is exactly vect(F ). Indeed, for each non-bipartite
component we obtained all the vertex vectors while zeroing out everything else, and
for each bipartite component we kept only the edge vectors of the corresponding
spanning tree. Now, since modifications are rank-preserving,

rank(A′) = rank(B) = rank(vect(F )) = min(d, | vect(F )|)

by Claim 9.8. The size of vect(F ) by definition is the number of isolated vertices in F
plus the number of edges in F , and that is equal to the number of vertices in F minus
the number of non-trivial connected components in F , since F is a forest. Finally,
we observe that |V (F )| = |V (G(A′))|, and bipartite components of G(A′) are in
one-to-one correspondence with non-empty components of F , finishing the proof of
Claim 9.10.

With Claim 9.10 proven, we show that the only way to keep at least
(
r
2

)
edge

vectors in such a way that the rank is at most r, is to select the rows corresponding

to the edges of an r-clique. For any A′ ⊂ A, let κ(A′) = |A′|
rankA′ , the number of

edges per unit of rank. We claim that κ is strictly maximized on an r-clique over all
A′ ⊂ A which have rank at most r.
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For a matrix K corresponding to an r-clique, κ(K) = r−1
2 by Claim 9.10. Consider

any A′ ⊂ A such that G(A′) is connected. Since rank(A′) is at most r, there are two
possibilities by Claim 9.10. If G(A′) is a non-bipartite graph on at most r vertices,
it has less edges than an r-clique, and so κ(A′) < r−1

2 . Otherwise G(A′) is bipartite,

and |V (G(A′))| must be r+1. Then there are at most
(
r+1

2

)2
edges, so κ(A′) < r−1

2
for r ≥ 4.

To prove the statement for any A′ ⊂ A such that rank(A′) ≤ r, we do an
induction on the number of connected components in G(A′). The base case when
there is only one connected component is already proven. Now, consider A′ = B∪C
where G(C) is connected. By Claim 9.10, rank(B ∪ C) = rank(B) + rank(C), and
also |A′| = |B|+|C|. By the induction, |B|/rank(B) < r−1

2 , and |C|/rank(C) < r−1
2 ,

so

κ(A′) =
|B|+ |C|

rank(B) + rank(C)
<
r − 1

2
.

Thus, the rows selected have rank r if and only if they correspond to an r-clique,
which proves the correctness of the reduction.

By [51], see also [70], assuming ETH, there is no algorithm solving Clique in
time f(r) · no(r) where r is the size of the clique, for any computable function f of r.
Since in our reduction d = r + 1, the theorem follows.3

Finally, for completeness we give the proof of Corollary 9.6, restated here.

Corollary 9.6. Assuming ETH, there is no algorithm approximating PCA with
Outliers with any multiplicative guarantee in time f(d) · no(d).

Proof. An algorithm described in the statement could distinguish between OPT ≤ D
and OPT > α ·D for given D, where α is the approximation guarantee which may
depend on the input instance. Then this algorithm could also distinguish between
OPT = 0 and OPT > 0, violating Theorem 9.4.

3The same reduction also shows that Robust Subspace Recovery is W[1]-hard when parame-
terized by (d, n− k).
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Dimensionality Reduction for Robust PCA

In this chapter, we tackle again the PCA with Outliers problem. Complementing
the algebraic geometry methods of the previous chapter, here we focus on various
dimensionality reduction techniques. In contrast to the “exact” algorithm given by
Theorem 9.3, here we obtain either (1 + ε)-approximation, or exact algorithms under
certain separating conditions on outliers. As opposed to Theorem 9.3, the running
time of all the algorithms presented in this chapter depends only polynomially on d,
while the exponential dependence is, instead, in r.

First, we show that PCA with Outliers admits a randomized Polynomial Time
Approximation Scheme (PTAS) when the dimension r of the solution subspace is a
fixed constant.

Theorem 10.1. For every ε > 0, an (1 + ε)-approximate solution to PCA with

Outliers can be found in time nO( r log r

ε2
) · dO(1).

Since r ≤ d, Theorem 9.4 shows that, in particular, a running time of nΩ(r) is
essential for any approximation algorithm. Thus up to the log r factor in the exponent
of n, the running time of our PTAS is tight.

We also provide algorithms for solving PCA with Outliers exactly. While the
nature of outliers can be elusive, we make two natural assumptions on outliers. It
appears that these assumptions can be very useful from the algorithmic perspective.
The intuition behind the first assumption is that every outlier is further from some
optimal solution than any inlier. The second assumption is stronger, it assumes that
the squared distance from any outlier to the solution subspace is larger than the sum
of all inliers’ squared distances to the subspace.

Definition 10.2 (α-gap and α-heavy assumptions). For α > 0, the α-gap as-
sumption about instance (A, r, k) of PCA with Outliers is that there is an optimal
solution (L,N) with the following properties. Denote the rows of A by a1, . . . , an, let
O be the indices of outliers, that is, the indices of non-zero rows of N, and I = [n]\O,

231
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the indices of inliers. Then for every i ∈ O and j ∈ I,

dist2(ai,V
∗) > (1 + α) · dist2(aj ,V

∗),

where V∗ is the r-dimensional subspace which spans the rows of L. Similarly, the
α-heavy assumption about (A, r, k) is that for every i ∈ O,

dist2(ai,V
∗) > (1 + α)

∑
j∈I

dist2(aj ,V
∗)

For example, if all inliers lie in V∗, as in Robust Subspace Recovery, then
such an instance satisfies both α-gap and α-heavy assumptions. Thus both “α-
assumptions” create parameterized classes of problems “between” PCA with Out-
liers (no assumptions on the outliers) and Robust Subspace Recovery (all inliers
belong to a subspace and all outliers do not).

Theorem 10.3. For constant α, there exists a randomized algorithm for PCA with
Outliers that in time

2O(r(log k+log log n)(r+log n+log(1/δ)))(nd)O(1)

under α-gap assumption outputs an optimal solution with success probability 1− δ.

Theorem 10.4. For constant α, there exists a randomized algorithm for PCA with
Outliers that in time

2O(r2(log k+log log n)(log k+log log n+log(1/δ)))(nd)O(1)

under α-heavy assumption outputs an optimal solution with success probability 1− δ
.

Observe that the running time of our nearly-tight (1 + ε)-approximation al-
gorithm for PCA with Outliers given by Theorem 10.1 can be represented as
2Oε(r log r log n). Essentially, Theorem 10.3 gives an analogue of that for solving the
problem exactly in the α-gap case. The running time of Theorem 10.4 is also similar
in the general case. Moreover, if k grows sufficiently slower than n, then this running
time is asymptotically better than that of Theorem 10.1, as the former depends only
polynomially on log k and log log n in the exponent. Thus, in the regime where the
α-heavy assumption holds and k is small enough, it is possible to overcome the lower
bound given by Theorem 9.4.

The proofs of both Theorems 10.3 and 10.4 are based on the following strategy:
apply randomized dimensionality reduction (sketching), and then use the methods
of algebraic geometry to compute the exact solution. The difficulty is that in gen-
eral, the dimensionality reduction distorts distances between the points. The main
technical contribution of this chapter is the proof that under α-gap and α-heavy
assumptions, carefully selected sketches still can be used to obtain exact solutions.
We believe that these ideas could find applications beyond robust PCA problems.

Finally, for Robust Subspace Recovery we prove the following theorem.
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Theorem 10.5. Robust Subspace Recovery is solvable in time

2O(k(log r+log k))(nd)O(1).

Note that when k is small, this running time improves considerably all the theo-
rems above in this special case of PCA with Outliers. However, when k grows,
the performance of Theorem 10.5 gets worse, as its running time depends exponen-
tially on k, while for Theorems 10.3 and 10.4 the exponential dependency is only
on poly(log k). The proof of Theorem 10.5 is essentially by a combination of Theo-
rem 10.1 and known kernelization methods for the Matrix Rigidity problem given
by Fomin et al. [91].

10.1 Approximation Scheme for PCA with Outliers

In this section, we present the nO(r log rε−2) time algorithm for solving the general
case of PCA with Outliers with (1 + ε)-factor approximation, as claimed by The-
orem 10.1. First, we give a high-level overview of the algorithm. The general idea is
to observe that the unknown rows of A that form the inlier submatrix can be well
approximated by a small-sized sample of them, in terms of low-rank approximation.
This follows from established results saying that one can obtain a projection-cost
preserving sketch of a matrix by sampling and reweighting a few of its rows in pro-
portion to a certain modification of their leverage scores. In particular, we employ
the result of [61] stating that sampling O(r log rε−2) rows in accordance with their
ridge leverage scores provides a (1 + ε) approximation for any rank-r orthogonal
projection.

Note that we do not know the actual inlier matrix to compute the scores and to
perform the sampling from, as an arbitrary set of k rows of the given matrix might
be outliers. However, we can guess the particular rows from a successful sample
and also guess the approximated ridge leverage scores so that the optimal low-rank
approximation of the resulting small matrix will also approximate well the unknown
inlier matrix. Here we use crucially that constant-factor overestimates of the ridge
leverage scores still suffice for the result of [61]. After this, it is only a matter of
greedily selecting the rows of A that are the closest to the computed low-dimensional
approximation space. The above summarizes the intuition behind Theorem 10.1, and
the detailed proof follows next. We restate the theorem here for convenience.

Theorem 10.1. For every ε > 0, an (1 + ε)-approximate solution to PCA with

Outliers can be found in time nO( r log r

ε2
) · dO(1).

First, we recall the known results about row sampling. We will use the ridge
leverage score construction due to [61]. For a matrix A ∈ Rn×d and an index i ∈ [n]
the i-th ridge leverage score of A is given as

τi(A) = ai(A
>A + λId)

+a>i ,
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where λ = ||A − Ar||2F /k, and + denotes the Moore–Penrose pseudoinverse of a
matrix. The following statement about sampling w.r.t. to ridge leverage scores is
proven in [61].

Theorem 10.6 (Theorem 6 in [61]). For i ∈ [n], let τ̃i ≥ τi(A) be an overestimate

for the i-th ridge leverage score. Let pi = τ̃i∑
i τ̃i

. Let t = c log(r/δ)
ε2

∑
i τ̃i for any ε > 0

and some sufficiently large constant c. Construct C by sampling t rows of A, each
set to 1√

tpi
ai with probability pi. With probability 1 − δ, for any rank r orthogonal

projection X,

(1− ε)||A−AX||2F ≤ ||C−CX||2F ≤ (1 + ε)||A−AX||2F .

Observe that Theorem 10.6 essentially provides a projection-cost preserving sketch
for A, as per Definition 4.5. The only difference is that for the purpose of this chap-
ter, it is more convenient to sketch the matrix from the left, as we need to select out
rows.

Our objective now is to guess certain ridge leverage score overestimates. For that,
we will need a lemma bounding the range of ridge leverage scores, following from [61].

Lemma 10.7.
1

2
≤

n∑
i=1

τi(A) ≤ 2r.

Proof. The upper bound is precisely given by Lemma 4 in [61]. For the lower bound,

n∑
i=1

τi(A) =

n∑
i=1

σi(A)2

σi(A)2 +
||A−Ar||2F

r

=

n∑
i=1

σi(A)2

σi(A)2 + 1
r

∑n
j=r+1 σj(A)2

≥
n∑

i=r+1

σi(A)2(
1 + 1

r

)∑n
j=r+1 σj(A)2

≥ 1

1 + 1
r

≥ 1

2
,

where the first equality is given by the proof of Lemma 4 in [61], and then we lower
bound the first r terms of the sum by zero.

Now we are ready to prove the main result of this section.

Proof of Theorem 10.1. The algorithm proceeds as follows. Set T = 6r, a sufficiently

small ε0 < ε (to be defined later), and t = c log(2r)
ε20

T where c is a sufficiently large

constant from the statement of Theorem 10.6. First, guess t indices {i1, . . . it} in [n],
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each corresponding to a row in A. For each index i in {i1, . . . , it}, guess a value τ̃i
from the set T = { 2r

2q ,
2r

2p−1 , . . . , 2r}, where q is the smallest integer such that 2q ≥ n.
Compose the matrix C ∈ Rt×d from the rows of A: for each j ∈ [t], take the ij-th row
of A multiplied by 1√

tτ̃i
. By using the standard PCA algorithm, find in polynomial

time the optimal low-rank approximation of C, i.e. the rank r orthogonal projection
matrix X ∈ Rd×d minimizing ||C − CX||2F . Construct the matrix N ∈ Rn×d such
that it contains k rows of A maximizing the distance to the r-dimensional subspace
corresponding to X, at the respective positions of these rows in A, and all the other
rows of N are zero rows. Set L to be (A−N)X. Finally, return L and N minimizing
the value ||A− L−N||2F over all guesses performed by the algorithm.

Correctness of the algorithm. Clearly, the matrices L and N returned by the
algorithm are subject to the constraints that rankL ≤ r and N contains at most k
non-zero rows, thus it only remains to prove that the cost of the returned solution
is at most (1 + ε) times the cost of the optimal solution. Fix an optimal solution
(L∗, N∗). Denote by A∗ = A −N∗ the optimal inlier matrix, that is, the matrix
A where the outlier rows are replaced by zero rows. Recall that for i ∈ [n], τi(A

∗)
is the i-th ridge leverage score of A∗. For each i ∈ [n], denote by τ̃∗i the smallest
element of T that is at least τi(A

∗), τ̃∗i is well-defined since τi(A
∗) is at most 2r by

Lemma 10.7, and the set T contains 2r. We show now that
∑n
i=1 τ̃i is at most T ,

and thus the number of the sampled rows t = c log(r/δ)
ε20

T is sufficiently large to apply

Theorem 10.6. For each i ∈ [n] consider two cases. First, if τi(A
∗) is at least the

smallest element of T ′, then τ̃i ≤ 2τi(A
∗), as elements of the set T ′ are at factor two

from each other. Over all such indices,
∑
i τ̃i ≤ 2

∑n
i=1 τi(A

∗) ≤ 4r by Lemma 10.7.
Second, if τi(A

∗) is less than 2r
2q , then τ̃i is set to this value, and the sum of all such

τ̃i is at most 2r as there are n ≤ 2q values in total. Summing the bounds for both
cases, we get that

∑n
i=1 τ̃i ≤ 6r = T .

Now denote δ = 1/2 and invoke Theorem 10.6 for A∗ with the set values of δ,
t, and τ̃i for each i ∈ [n], and with the error parameter ε0. With probability 1 − δ,
the sampling procedure described in the statement of Theorem 10.6 succeeds. Since
this probability is positive, there exists a particular selection of t rows that produces
the desired matrix. Thus the matrix C∗ composed of these rows and reweighted
according to Theorem 10.6, satisfies

(1− ε0)||A∗ −A∗X||2F ≤ ||C∗ −C∗X||2F ≤ (1 + ε0)||A∗ −A∗X||2F , (10.1)

for any rank r orthogonal projection matrix X ∈ Rd×d. Denote the indices of these
rows by i∗1, . . . , i∗t . In one of the branches, our algorithm considers the values i1 = i∗1,
. . . , it = i∗t , and τ̃i = τ̃∗i for all i ∈ {i1, · · · , it}. Thus the matrix C constructed by
our algorithm at this step is exactly the matrix C∗ where every entry is multiplied
by 1/

√∑n
i=1 τ̃i. Consider the orthogonal projection matrix X ∈ Rd×d that provides

the optimal rank k approximation of C, and also of C∗ since these two matrices are
identical up to multiplying by a constant. Let X∗ be the projection matrix of the
optimal solution, that is, L∗ = A∗X∗. Then by (10.1), and because X gives the best
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low-rank approximation for C∗, we have that

||A∗ −A∗X||2F ≤
1

1− ε0
||C∗ −C∗X||2F

≤ 1

1− ε0
||C∗ −C∗X∗||2F (10.2)

≤ 1 + ε0

1− ε0
||A∗ −A∗X∗||2F ≤

1 + ε0

1− ε0
OPT.

Finally, denote A′ = A −N. Let us note that both A′ and A∗ contain certain
(n− k) rows of A, but A′ contains precisely the (n− k) rows that incur the smallest
loss w.r.t. X. Therefore,

||A′ −A′X||2F ≤ ||A∗ −A∗X||2F . (10.3)

Since L is exactly A′X, by (10.2) and (10.3), we have

||A− L−N||2F ≤
1 + ε0

1− ε0
OPT.

Setting ε0 = Θ(ε) so that 1+ε0
1−ε0 is at most 1 + ε, concludes the proof of correctness.

Running time. The algorithm consider n choices for each of the t values i1, . . . ,
it, and O(log n) choices for each of the t values τ̃i1 , . . . , τ̃it , where t = O(r log r/ε2).
For each choice, the optimal low-rank approximation and the outliers are found in
polynomial time. Thus, the total running time of the algorithm is upper-bounded by

(n log n)O(t)(nd)O(1) = nO(r log r/ε2)dO(1).

10.2 Robust Subspace Recovery Algorithm

In this section we prove Theorem 10.5 that Robust Subspace Recovery is solvable
in time 2O(min{k,r log r}·(log r+log k))·(nd)O(1). The algorithm we give is almost identical
to the algorithm of [91] for the Matrix Rigidity problem. We provide here full
details for completeness.

Let us remind that in Robust Subspace Recovery, we are given a matrix
A ∈ Rn×d, whose rows correspond to the data points, and integers r, k. The question
is whether there are matrices L and N such that A = L + N, the rank of L is at
most r, and N has at most k non-zero rows. Equivalently, the question is whether it
is possible to delete at most k rows of A such that the resulting matrix is of rank at
most r.

We need the following observation: For every set X of r+ 1 independent rows of
matrix A, at least one row from X is an outlier. In other words,
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Proposition 10.8. Let X be a set of indices of r+ 1 independent rows of A. Then
for every optimal solution (L,N), at least one index from X is the index of a non-zero
row of N.

Proof. The rank of L is at most r, thus L cannot contain more than r independent
rows.

The crux of the algorithm is in the procedure that for an input (A, r, k) of Robust
Subspace Recovery in polynomial time constructs an equivalent instance (Ã, r, k),
with matrix Ã containing at most (r + 1)(k + 1) rows. We assume that the rank
of A is more than r, otherwise L = A is trivially a solution. We also assume that
n > (r+ 1)(k+ 1) because otherwise we can put Ã = A. The procedure runs in two
steps.

First, we find pairwise disjoint sets R1, . . . , Rt of rows in A. Each set Ri consists
of r + 1 independent rows. We construct such sets greedily by picking a set of r + 1
independent rows and deleting them from A until the rank of the remaining rows
will be at most r. By Proposition 10.8, each of these sets Ri contains at least one
outlier. Thus if t > k, the rank of A cannot be reduced to r by deleting k rows,
hence (A, r, k) is a no-instance.

Second, from the remaining rows of A, that is, the rows that are not in R1∪· · ·∪Rt,
we select pairwise disjoint sets Rt+1, . . . , Rk+1 as follows. For i ≥ t + 1 let Mi be
the rows of A that are not in R1 ∪ · · · ∪Ri−1. Then Ri is a subset of Mi forming its
basis. Note that |Ri| ≤ r for i ≥ t+ 1.

Finally, the matrix Ã is the matrix whose rows are R1 ∪ · · · ∪ Rk+1. At every
step of the construction of Ã we find an independent set of rows and thus the total
running time is polynomial. Since every set Ri contains at most r+ 1 row, matrix Ã
contains at most (r+ 1) · (k+ 1) rows. Thus what remains is to show the equivalence
of both instances.

Lemma 10.9. (A, r, k) is a yes-instance of Robust Subspace Recovery if and
only if (Ã, r, k) is a yes-instance.

Proof. In one direction the proof is trivial. If the rank of A can be reduced to r by
deleting at most k rows, the same is true for Ã.

For the opposite direction. Let O be the set of outliers, that is, the set of rows of
Ã of size at most k whose removal decreases the rank of the matrix down to r. The
rows of matrix A are partitioned into the rows of Ã and the remaining rows, which
we denote by M . (By slightly abusing notation, we do not distinguish a matrix and
a set of rows forming this matrix.) We claim that removing rows of O from A also
reduces its rank to r. Targeting a contradiction, let us assume that this is not true.
Then A \O contains a set X of r + 1 linearly independent rows.

The rows of Ã are R1 ∪ · · · ∪Rt ∪ · · · ∪Rk+1. Because |O| ≤ k, by the pigeonhole
principle, there is Ri that does not contain a row from O. For i ≤ t, each Ri consists
of r + 1 independent rows, and by Proposition 10.8 must contain at least one row
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from O. This means that at least one Ri, i > t, contains no row from O. But by the
construction of sets Ri for i > t, the set of rows M is in the span of Ri. Hence the
set X ′ = (X ∩ Ã) ∪Ri ⊆ Ã \O contains r + 1 linearly independent rows of Ã \O ,
which is a contradiction.

Finally, to prove Theorem 10.5, for input (A, r, k), we construct an equivalent
instance (Ã, r, k), where Ã contains at most (r + 1)(k + 1) rows. For each subset
of rows of Ã of size k, we check whether removal of this set results in a matrix
of rank at most r. If we found such a set O, by Lemma 10.9, the same rows are
outliers for A as well. If we did not find a set of outliers for Ã, we can safely
conclude that (A, r, k) is a no-instance. Construction of the reduced instance can
be done in polynomial time, and the number of all subsets of rows of Ã of size k,
does not exceed

(
(r+1)(k+1)

k

)
= 2O(k(log r+log k)). Hence the total running time is

2O(k(log r+log k)) · (nd)O(1).

Alternatively, instead of trying all subsets of k rows of Ã, we can run the algo-
rithm of Theorem 10.1 on the instance (Ã, r, k) with the error parameter ε set to an
arbitrary constant. Recall that by Theorem 10.1 an (1 + ε)-approximate solution to

PCA with Outliers can be found in time nO( r log r

ε2
) · dO(1). Since an instance of

Robust Subspace Recovery is a yes-instance if and only if it has the objective
value of zero as an instance of PCA with Outliers, a constant-factor approxima-
tion for PCA with Outliers suffices for solving Robust Subspace Recovery
exactly. Thus the whole algorithm for Robust Subspace Recovery finishes in time
2O(r log r(log r+log k))(nd)O(1), as there are at most (r + 1)(k + 1) rows in the matrix
Ã. The running time of 2O(min{k,r log r}·(log r+log k)) · (nd)O(1) follows by combining
the above two algorithms.

10.3 α-heavy and α-gap PCA with Outliers

In this section, we present Theorems 10.3 and 10.4, their proofs are done in two steps.
First, we show an 2O(log k+log log n)rdpoly(n, d, 1/δ) subspace-sampling algorithm for
α-gap and α-heavy instances of PCA with Outliers which succeeds with probabil-
ity 1− δ, building upon the nO(rd) algorithm given by Theorem 9.3. Second, we get
rid of the exponential dependence on d by using dimensionality reduction techniques.

10.3.1 Subspace-sampling Algorithm

We start with briefly recalling the idea of the algorithm from Theorem 9.3. One
can parameterize the unknown r-dimensional subspace by r × d variables, and then
for every pair of points construct a polynomial in these variables such that its sign
determines the farthest point from a subspace. Thus the signs of all the

(
n
2

)
poly-

nomials determine exactly which k points are the farthest from the subspace, and
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so are the outliers. By enumerating all possible sign conditions via Theorem 4.12 in
time nO(rd), we get all potential sets of outliers.

The main idea for the new algorithm is as follows. We show that it is possible to
replace the trivial

(
n
2

)
-sized polynomial system by a much smaller one that still allows

to detect the outliers, provided that either the α-gap or the α-heavy assumption
holds. Intuitively, we first partition the points into m = Θ(k) buckets such that there
is at most one outlier in each bucket w.h.p. Then, we compose

(
m
2

)
polynomials to

determine the k buckets containing the outliers, and for each bucket we also construct
log n polynomials to detect the outlier in the bucket. Thus, our system contains only
poly(k log n) polynomials, giving the desired running time.

Now we give the proof in full detail. Denote the rows of A by a1, . . . , an. The
algorithm, later denoted as Subspace-sampling algorithm, proceeds as follows.

(i) Partition the rows of A (the points) into m buckets using perfect hashing. Let
B1, B2,...,Bm ⊂ [n] be the indices of points in each bucket.

(ii) For each bucket Bi, i ∈ [m], construct the set of polynomials Pi = {P ji }1≤j≤log2 n,

P ji (V) =
∑
`∈Bi
`j=1

(dist2(a>` ,V))b −
∑
`∈Bi
`j=0

(dist2(a>` ,V))b

where `j is the j-th bit in the binary representation of ` and b = Θ( log n
log(1+α) )

for α-gap instances and b = 1 for α-heavy instances. Note that V can be
parameterized by r×d variables such that for each ` ∈ [n], dist2(a>` ,V) can be
expressed as a constant-degree polynomial in these variables. See Section 9.1
for details.

(iii) Consider also the set of polynomials Q = {Qi,j}1≤i<j≤m, where

Qi,j(V) =
∑
`∈Bi

(dist2(a>` ,V))b −
∑
`∈Bj

(dist2(a>` ,V))b

and let P be the collection of all the polynomials defined above, i.e., P =⋃
i Pi ∪Q.

(iv) Using Theorem 4.12, enumerate all possible sign conditions of P on X , the
space of all r-dimensional subspaces, i.e. compute the set T = Sample(A, r, k)
where

Sample(A, r, k) = {(S,VS)|S is a sign condition of

P on X and VS realizes S}

(v) For each (S,VS) ∈ T , do the following:
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(a) Note that the signs of Q give an ordering on [m]. Take the top k indices
from this ordering and let WLOG this set be [k].

(b) For each Bi, i ∈ [k], choose p ∈ Bi such that pj is set to 1 if P ji (VS) > 0
and 0 otherwise. This gives us k rows of A, one from each bucket, let N ∈
Rn×d be the matrix containing these k rows at their respective positions
in A.

(c) Find the optimal r-dimensional projection L of A−N via the vanilla PCA
algorithm.

(vi) Return N and L from step 5 with the minimum cost of projection.

Running time. The sampling step 4 dominates the running time. Since |P| =
m log n+

(
m
2

)
= O(k log n+k2) and the degree of all the polynomials involved in P is

bounded by O( log n
log(1+α) ), Theorem 4.12 gives the time 2O(log k+log log n−log log(1+α))rd,

and this bound also holds for the size of T . Also in step 1, in time O(n/δ) one can
construct a perfect hash function with success probability 1 − δ. All the other steps
of the algorithm take poly(n, d) time. So the total running time is

2O(log k+log log n−log log(1+α))rdpoly(n, d, 1/δ).

Correctness of the algorithm. Assume that in the optimal solution the outlier
matrix is N∗, and the low-rank matrix is L∗. Denote by V∗ the r-dimensional
subspace corresponding to L∗. The following claim shows that the sign condition
corresponding to V∗ allows the algorithm to restore N∗.

Claim 10.10. In step 5 of the algorithm, with high probability, the outlier matrix N
generated on the sign condition S∗ which comes from evaluating P on V∗ is equal to
N∗.

Proof. Getting buckets with outliers, Step 5(a): Note that in Step 1 of the
algorithm we map points to O(k) buckets in order to ensure that each bucket has at
most one outlier. So some buckets will end up having no outliers at all. We show
that in step 5(a) of the algorithm for the sign condition S∗ we correctly find the k
buckets containing outlier points. Specifically, for a bucket Bi with an outlier point
p and a bucket Bj with no outliers we show that Qi,j(V

∗) > 0. For α-gap instances
we have

Qi,j(V
∗) =

∑
`∈Bi

(dist2(a>` ,V
∗))b −

∑
`∈Bj

(dist2(a>` ,V
∗))b

≥ (dist2(a>p ,V
∗))b − nmax

`∈I
(dist2(a>` ,V

∗))b

≥ ((1 + α)b − n) max
`∈I

(dist2(a>` ,V
∗))b > 0.
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Similarly, for α-heavy instances we have

Qi,j(V
∗) =

∑
`∈Bi

dist2(a>` ,V
∗)−

∑
`∈Bj

dist2(a>` ,V
∗)

≥ dist2(a>p ,V
∗)−

∑
`∈I

dist2(a>` ,V
∗)

≥ α
∑
`∈I

dist2(a>` ,V
∗) > 0.

Therefore, taking the top k buckets by the ordering induced by the signs of Q(V∗) will
give us precisely the k buckets containing the outlier points. WLOG, let B1, B2, ..., Bk
be those buckets, later referred to as the outlier buckets.

Extracting outliers from the outlier buckets, Step 5(b): Fix an i ∈ [k],
denote the sole outlier point in the bucket Bi by p. We show that for each j ∈ [log n],
pj = 1 iff P ji (V∗) > 0 and pj = 0 iff P ji (V∗) < 0. For α-gap instances, if pj = 1 then
we have

P ji (V) =
∑
`∈Bi
`j=1

(dist2(a>` ,V))b −
∑
`∈Bi
`j=0

(dist2(a>` ,V))b

≥ (dist2(a>p ,V
∗))b − nmax

`∈I
(dist2(a>` ,V

∗))b

≥ ((1 + α)b − n) max
`∈I

(dist2(a>` ,V
∗))b

> 0.

Analogously, if pj = 0, then P ji (V∗) < 0. Similar analysis works for α-heavy instances
with b = 1.

Thus the outlier matrix N generated on the sign condition S∗ in step 5 is precisely
the optimal N∗. Success of the algorithm relies on perfect hashing of the outlier points
into m buckets in step 1 and for m = Θ(k) one can find in time O(n/δ) a perfect
hash function with success probability 1 − δ.

Since in our algorithm we go over all possible sign conditions of P on X , the sign
condition S∗ will also be considered, and will provide the optimal outlier matrix.
Once we have the optimal N∗, computing the optimal rank-r projection of A−N∗ as
the matrix L will give us the optimal cost. Thus, Claim 10.10 implies the correctness
of the algorithm.

10.3.2 Dimensionality Reduction

In this subsection we improve upon the d in the exponent of the running time of the
algorithm from the previous section. We achieve this by observing that for α-gap and
α-heavy instances we only need the approximate distances of points to a subspace
instead of the exact ones. The new algorithm proceed as follows:
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(i) Sample a Normal Transform matrix S ∈ Rd×t, where t = O(r+log n+log(1/δ))
for α-gap instances and t = O(r(log k + log log n + log(1/δ)) for α-heavy in-
stances.

(ii) Sketch the input matrix, A, from the right, Ã = AS.

(iii) Find the optimal set of outliers for AS using the algorithm from the previous
subsection.

(iv) Construct the matrix N from the corresponding rows of A, and return N
together with the optimal rank-r projection L of A−N.

Running Time. Clearly, step 3 dominates the running time. Since the ambient
dimension is reduced from d to t, the running time of the new algorithm is

2O(r(log k+log log n)(r+log n+log(1/δ)))(nd)O(1)

for α-gap instances and

2O(r2(log k+log log n)(log k+log log n+log(1/δ))(nd)O(1)

for α-heavy instances.
Correctness of the algorithm. Correctness of the algorithm relies on the

following two lemmas, handling α-gap instances and α-heavy instances respectively.
Intuitively, we prove that a suitable embedding preserves the set of the optimal
outliers. For the α-gap case, we use ε-embeddings (Definition 4.1).

Lemma 10.11. Let A ∈ Rn×d and integer parameters r and k be an α-gap instance
of PCA with Outliers. Let S ∈ Rd×t be an ε-embedding for

col([V∗>|a1]), col([V∗>|a2]), . . . , col([V∗>|an]),

simultaneously, for a small enough constant ε. Here V∗ ∈ Rr×d is the r-dimensional
linear subspace which spans the rows of the optimal rank-r matrix L∗. Let Ã = AS
and T̃ = Sample(Ã, r, k) where Sample is the procedure from step 4 of the Subspace-

sampling algorithm. Then there exists (C̃, Ũ) ∈ T̃ such that the outlier matrix Ñ

generated on (C̃, Ũ) in step 5 of the Subspace-sampling algorithm is same as the
optimal outlier matrix N∗

Proof. We begin by observing that the distances of the rows of AS from row(V∗S)
are the same as the distances of rows of A from row(V∗), up to a constant factor dis-
tortion. Since S is a ε-embedding for col([V∗>|a1]), col([V∗>|a2]), . . . , col([V∗>|an])
simultaneously, using Theorem 4.3 we have for each i ∈ [n]

(1− ε) dist2(a>i ,V
∗) ≤ dist2(a>i S,V∗S) ≤ (1 + ε) dist2(a>i ,V

∗). (10.4)
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Now let P̃ = ∪P̃i ∪Q̃ be the collection of polynomials same as P, but defined on the

smaller space, i.e. the space of all r-dimensional subspaces in Rt. Let (C̃,V∗S) ∈ T̃ be

the sign condition of P̃ on (V∗S; AS). We claim that the outlier matrix, N, generated

on (C̃,V∗S) in the step 5 of the Subspace-sampling algorithm is the optimal outlier
matrix N∗. To see this, first we we claim that in step 5(a) the top k indices obtained

from ordering on [m] given by signs of V∗S on Q̃ give us k buckets containing outlier

points. Note that to prove this it suffices to show that Q̃i,j(V
∗S; AS) > 0 for a

bucket Bi with an outlier point p and a bucket Bj with no outlier point. Starting

with the definition of Q̃i,j(V
∗S; AS),∑

`∈Bi

(dist2(a>` S,V
∗S))b −

∑
`∈Bj

(dist2(a>` S,V
∗S))b

≥
∑
`∈Bi

((1− ε) dist2(a`,V
∗))b −

∑
`∈Bj

((1 + ε) dist2(a`,V
∗))b

≥ (1− ε)b(dist2(ap,V
∗))b − (1 + ε)bnmax

`∈I
(dist2(a`,V

∗))b

≥ ((1− ε)b(1 + α)b − n(1 + ε)b) max
`∈I

(dist2(a`,V
∗))b

> 0 (For an appropriate ε)

where we have used (10.4) in the first inequality and the α-gap property in the third
inequality.

Similarly the signs of P̃ on V∗S in the Subspace-sampling algorithm will be able
to retrieve the outlier points N∗. The analysis is analogous to the above.

While in the α-gap case it suffices to use simple subspace embeddings, for the
α-heavy case we require a stronger sketch to achieve the improved dimension bound.
We are going to employ the notion of an affine embedding given by Definition 4.4
that we recall next.

Definition 4.4 (Affine embedding). Let U ∈ Rr×d and A ∈ Rn×d, then S ∈ Rd×s is
an ε-affine embedding for (U,A) if for every X ∈ Rn×r, we have

‖(A−XU)S‖22 = (1± ε) ‖A−XU‖22 .

Lemma 10.12. Let A ∈ Rn×d and integer parameters r and k be a α-heavy instance
of PCA with Outliers. After bucketing points in step 1 of the Subspace-sampling
algorithm let I1

i,j and I0
i,j be sets of indices of points in bucket Bi whose j-bit is 1 and

0 respectively. Let S ∈ Rd×t be a ε-affine embedding for {(V∗>,A[Iki,j :]>)} 1≤i≤m
1≤j≤log n

0≤k≤1

simultaneously, where ε is a sufficiently small constant. Here V∗ ∈ Rr×d is the r-
dimensional linear subspace which spans the rows of optimal L. Let Ã = AS and
T̃ = Sample(Ã, r, k) where Sample is the procedure from step 4 of the Subspace-

sampling algorithm. Then there exist (C̃, Ũ) ∈ T̃ such that the outlier matrix Ñ
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generated on (C̃, Ũ) in step 5 of the Subspace-sampling algorithm is same as the
optimal outlier matrix N∗

Proof. The proof is similar to Lemma 10.11. We start by observing that since S is
a ε-affine embedding for {V∗>,A[Iki,j :]>} 1≤i≤m

1≤j≤logn
0≤k≤1

simultaneously, we have that for

all i ∈ [m], j ∈ [log n] and k ∈ {0, 1}

(1− ε)
∑
`∈Bi
`j=k

dist2(a>` ,V
∗) ≤

∑
`∈Bi
`j=k

dist2(a>` S,V
∗S)

≤ (1 + ε)
∑
`∈Bi
`j=k

dist2(a>` ,V
∗).

(10.5)

Now let P̃ = ∪P̃i ∪ Q̃ be the collection of polynomials same as P but defined on

smaller space i.e. all r-dimensional subspaces of t-dimensional space. Let (C̃,V∗S) ∈
T̃ be the sign condition of P̃ on (V∗S; AS). We claim that the outlier matrix,

N, generated on (C̃,V∗S) in the step 5 of the Subspace-sampling algorithm is the
optimal outlier matrix N∗. To see this note that that in step 5(a) the top k indices

obtained from ordering on [s] given by signs of V∗S on Q̃ gives us k-buckets with

outlier points. To prove this it suffices to show that Q̃i,j(V
∗S; AS) > 0 for a bucket

Bi with an outlier point p and a bucket Bj with no outlier point. Starting with the

definition of Q̃i,j(V
∗S; AS),∑

`∈Bi

(dist2(a`S,V
∗S))−

∑
`∈Bj

(dist2(a`S,V
∗S))

≥ (1− ε)
∑
`∈Bi

(dist2(a`,V
∗))− (1 + ε)

∑
`∈Bj

(dist2(a`,V
∗))

≥ (1− ε)(dist2(ap,V
∗))− (1 + ε)

∑
`∈I

(dist2(a`,V
∗))

≥ ((1− ε)(1 + α)− (1 + ε))
∑
`∈I

(dist2(a`,V
∗))

> 0 (For appropriate ε)

where we have used (10.5) in the first inequality and the α-heavy property in the
third inequality.

Next we claim that using signs of P̃ on V∗S the Subspace-sampling algorithm
will be able to retrieve the outlier points N∗. Analysis is analogous to the above.

Lemma 10.11 and 10.12 prove the correctness of the algorithm, given that the
sketching matrix S satisfies the conditions in the lemmas. Next we prove that the
embedding dimension t is large enough for that to happen with probability at least
1− δ.
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Claim 10.13. Let ε, δ ∈ (0, 1) and S = 1√
s
G ∈ Rd×s where the entries of G are

independent standard normal random variables with s = O((r+p+log(1/δ))ε−2) and
p = min(rank(A), log n). Then S is a ε-embedding simultaneously for col([U>|a1]),
col([U>|a2]), . . . , col([U>|an]), for fixed U ∈ Rr×d, with probability at least 1− δ.

Proof. Consider the following two arguments.

(i) By Theorem 4.2, for a fixed i ∈ {1, . . . , n}, S is an ε-subspace embedding for
col([U>|ai]) with probability at least 1 − δ

2p . By the union bound, S is the

desired ε-embedding with probability at least 1 − δ
2pn.

(ii) Let B = {b1,b2, . . . ,brank(A)} be the row basis for A and let V ′ be the column

space of [U>|b1|b2| · · · |brank(A)]. Since col([U>|ai]) ⊆ V ′ for each i ∈ [n], and
dim(V ′) ≤ r+ rank(A), by Theorem 4.2, we have that S is an ε-embedding for
V with probability at least 1 − δ

2p 2rank(A).

Combining the above two arguments we have that S is ε-embedding for each col([U>|ai]),
i ∈ [n], with probability at least 1 − δ.

Affine Embedding for the α-heavy case

Before proving the analogue of Claim 10.13 for the α-heavy case, we present a con-
struction for ε-affine embedding based on the known results. The work [59] introduces
several oblivious (data independent) constructions for affine embeddings like sparse
embedding matrices, fast JL matrices, etc. These construction vary in dimension
they embed into, dependence of embedding dimension on the failure probability, and
time it takes to apply them. For our results, we would need an oblivious construction
with embedding dimension as small as possible and log( 1

δ ) dependence on the failure
probability δ. The embedding dimension in various constructions of [59] are opti-
mized while keeping the time taken to apply them small and with only 1

δ dependence
on the failure probability. For our purposes, the time taken to apply the sketch is
not the bottleneck and thus we show the following theorem, which gives the optimal
dependence on the embedding dimension.

Theorem 10.14. Let 0 < ε, δ < 1 and S = 1√
s
G ∈ Rd×s, where the entries of the ma-

trix G are independent standard normal random variables. If s = Θ(r log(1/δ)ε−2),
then for every fixed U ∈ Rr×d and A ∈ Rn×d, with probability at least 1− δ, S is an
ε-affine embedding for (U,A).

Proof. First we state the following theorem from [59], see Theorem 39, which gives
sufficient conditions for S to be an ε-affine embedding.

Theorem 10.15. Let U ∈ Rr×d and A ∈ Rn×d, then S ∈ Rd×s is a 3ε-affine
embedding for (U,A) if the following events occur simultaneously.
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(i) Subspace Embedding: S is a subspace embedding for column space of U.

(ii) Approximate Matrix Multiplication: For given matrices Y and Z with n rows
and d columns we have∥∥∥YSS>Z> −YZ>

∥∥∥2

F
≤ ε2

r
‖Y‖2F ‖Z‖

2
F .

(iii) Approximate Matrix Norm: For a given matrix W ∈ Rn×d,

‖WS‖2F = (1± ε) ‖W‖2F

.

The next two lemmas show that random Gaussian matrices satisfy conditions (ii)
and (iii) of above theorem.

Lemma 10.16. Fix matrices Y,Z ∈ Rn×d. Let 0 < ε, δ < 1 and S = 1√
s
G ∈ Rd×s

where the entries of matrix G are independent standard normal random variables.
Then for s = O( 1

ε2 log(1/δ))

PrS

(∥∥∥YSS>Z> −YZ>
∥∥∥2

F
≤ ε2 ‖Y‖2F ‖Z‖

2
F

)
≥ 1− δ

Proof. The proof follows from Theorem 6.2 and Remark 6.3 from [126].

For the next lemma, we use the following inequality form [108].

Theorem 10.17. (Hanson-Wright Inequality) Let g ∈ Rn be a vector of standard
normal random variables. There exists a constant C > 0 such that for all ε > 0 and
for any matrix Q ∈ Rn×n,

Prg
(∣∣g>Qg − E[g>Qg]

∣∣ > ε
)
≤ e−Cε

2/‖Q‖2F + e−Cε/‖Q‖2 .

Lemma 10.18. Fix a matrix W ∈ Rn×d. Let 0 < ε, δ < 1 and S = 1√
s
G ∈ Rd×s

where the entries of matrix G are independent standard normal random variables.
Then for s = Θ( 1

ε2 log(1/δ)),

PrS

(∣∣∣‖WS‖2F − ‖W‖
2
F

∣∣∣ ≤ ε ‖W‖2F) ≥ 1− δ.

Proof. First we show that E[‖WS‖2F ] = ‖W‖2F .

ES[‖WS‖2F ] = ES[Tr(WSS>W>)]

= Tr(WES[SS>]W)

= Tr(WInW>) = ‖W‖2F
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Now let gi ∈ Rd denote the i-th column of S. Introduce random variables Xi =
g>i W>Wgi for each i ∈ [s], and X = 1

s

∑s
i=1 Xi. Then observe that

‖WS‖2F =
1

s

s∑
i=1

g>i W>Wgi =
1

s

s∑
i=1

Xi = X.

By Hanson-Wright Inequality, we have that

Prgi(|g>i W>Wgi − E[g>i W>Wgi]| > ε ‖W‖2F ) ≤ e−Cε
2

+ e−Cε ≤ 2e−Cε
2

.

Which tell us that Xi is a sub-Gaussian random variable and that X = ‖WS‖2F is
an average of s independent sub-Gaussian random variables. Using Chernoff tail-
inequality for sub-Gaussian random variables, we get

PrS(| ‖WS‖2F − ‖S‖
2
F | > ε ‖S‖2F ) = PrS(|X− E[X]| > ε ‖A‖2F ) ≤ eO(−sε2) ≤ δ.

Combining the above two lemmas with Theorem 4.2 completes the proof of The-
orem 10.14.

Now we can conclude the dimensionality reduction for α-heavy instances with the
help of the ε-affine embedding given by Theorem 10.14.

Claim 10.19. Let ε, δ ∈ (0, 1) and S = 1√
t
G ∈ Rd×t where the entries of G

are independent standard normal random variables with t = Θ(r(log k + log log n +
log(1/δ))ε−2). Then S is a ε-affine embedding simultaneously for {V∗>,A[Iki,j :

]>} 1≤i≤m
1≤j≤log n

0≤k≤1

, for fixed V ∈ Rr×d, with probability 1− δ.

Proof. Follows from Theorem 10.14 and union bound.

Finally, we observe that we have two sources of error in our algorithm. One is
coming from the Subspace-sampling algorithm and the other from the dimensionality
reduction. Setting failure probability to δ/2 in each of them and applying union
bound gives us 1− δ success probability.
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11

Low-Rank Approximation in Column-sum

Norm

In this chapter, we present a polynomial-time approximation scheme for the L1-
Rank-r Approximation over GF(2). Recall that in this problem, given a binary
n × d matrix A and a positive integer constant r, one seeks a binary matrix L of
rank at most r, minimizing the column-sum norm ‖A− L‖1, defined as

‖A‖1 = sup
‖x‖1 6=0

‖Ax‖1
‖x‖1

= max
1≤j≤d

n∑
i=1

|Aij |.

More precisely, we prove the following theorem.

Theorem 11.1. For every ε ∈ (0, 1), there is a randomized (1+ε)-approximation al-

gorithm for L1-Rank-r Approximation over GF(2) of running time nO(24r·ε−4)dO(1).

In order to prove Theorem 11.1 we obtain a PTAS for a more general problem
that we call Binary Constrained k-Center. This problem is very similar to
Constrained Clustering with Outliers that was the key technical problem in
Chapter 6. Only, in Binary Constrained k-Center there are no outliers, and
the cost of clustering is the maximum Hamming distance between a point and the
closest center. Binary Constrained k-Center has as much expressive power as
Constrained Clustering with Outliers, and we use it to obtain PTASes for
a number of problems related to L1-Rank-r Approximation over GF(2). For
example, for the variant, when the rank of the matrix L is not over GF(2) but is
Boolean. Or a variant of clustering, where we want to partition binary vectors into
groups, minimizing the maximum distance in each of the group to some subspace
of small dimension. We provide discussions of other applications of our work in
Section 11.4.

249
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Our approach

The usual toolbox of techniques to handle NP-hard variants of low-rank matrix
approximation problems like sketching [189], sampling, and dimensionality reduc-
tion [29] is based on randomized linear algebra. It is very unclear whether any of
these techniques can be used to solve even the simplest case of L1-Rank-r Ap-
proximation over GF(2) with r = 1. For example for sampling, the presence of
just one outlier outside of a sample, makes all information we can deduce from the
sample about the column sum norm of the matrix, completely useless. This is ex-
actly the reason why approximation algorithms for Closest String do not rely on
such techniques. On the other hand, randomized dimension reduction appears to be
very helpful as a “preprocessing” procedure whose application allows us to solve L1-
Rank-r Approximation over GF(2) by applying linear programming techniques
similar to the ones developed for the Closest String. From a very general per-
spective, our algorithm consists of three steps. While each of these steps is based on
the previous works, the way to combine these steps, as well as the correctness proof,
is a non-trivial task. We start with a high-level description of the steps and then
provide more technical explanations.

Step 1. In order to solve L1-Rank-r Approximation over GF(2), we en-
code it as the Binary Constrained k-Center problem. This initial step is almost
identical to the encoding used in [88] for Low GF(2)-Rank Approximation. Infor-
mally, Binary Constrained k-Center is defined as follows. For a given set of bi-
nary vectors X, a positive integer k, and a set of constraints, we want to find k binary
vectors C = (c1, . . . , ck) satisfying the constraints and minimizing maxx∈X dH(x, C),
where dH(x, C) is the Hamming distance between x and the closest vector from C.
For example, when k = 1 and there are no constraints, then this is just the Closest
String problem over binary alphabet.

In the technical description below we give a formal definition of this encoding and
in Section 11.4 we prove that L1-Rank-r Approximation over GF(2) is a special
case of Binary Constrained k-Center. From now on, we work with the Binary
Constrained k-Center problem.

Step 2. We give an approximate Turing reduction which allows to find a parti-
tion of vector set X into clusters X1, . . . , Xk such that if we find a tuple of vectors C =
(c1, . . . , ck) satisfying the constraints and minimizing max1≤i≤k,x∈Xi dH(x, {ci}),
then the same tuple C will be a good approximation to Binary Constrained
k-Center. In order to obtain such a partition, we use the dimension reduction
technique of Ostrovsky and Rabani [165]. While this provides us with important
structural information, we are not done yet. Even with a given partition, the task
of finding the corresponding tuple of “closest strings” C satisfying the constraints, is
non-trivial.
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Step 3. In order to find the centers, we implement the approach used by Li,
Ma, and Wang in [144] to solve Closest String. By brute-forcing, it is possible
to reduce the solution of the problem to special instances that, loosely speaking,
have a large optimum. Moreover, Binary Constrained k-Center has an Integer
Programming (IP) formulation. Similar to [144], for the reduced instance of Binary
Constrained k-Center (which has a “large optimum”) it is possible to prove that
the randomized rounding of the corresponding Linear Program (LP) relaxation of
this IP, provides a good approximation.

11.1 Overview of the Algorithm

Now we give a more technical description of the algorithm.

Step 1. Binary Constrained k-Center. Note that the Binary Con-
strained k-Center problem is nearly identical to Binary Constrained Clus-
tering defined in [88], except for the cost function, and similar to the Constrained
Clustering with Outliers problem introduced in Chapter 6. Still, for complete-
ness we define Binary Constrained k-Center formally next. First, we need to
recall some notations from Chapter 6. A k-ary relation R is a set of binary k-tuples
with elements from {0, 1}. A k-tuple t = (t1, . . . , tk) satisfies R, we write t ∈ R, if t
is equal to one of the k-tuples in R.

Definition 11.2 (Vectors satisfying R). Let R = (R1, . . . , Rd) be a tuple of k-ary
relations. We say that a tuple C = (c1, c2, . . . , ck) of binary d-dimensional vectors
satisfies R and write < C,R >, if (c1[i], . . . , ck[i]) ∈ Ri for all i ∈ {1, . . . , d}.

Let us recall that the Hamming distance between two vectors x,y ∈ {0, 1}d,
where x = (x1, . . . , xd)

ᵀ and y = (y1, . . . , yd)
ᵀ, is dH(x,y) =

∑d
i=1 |xi − yi| or, in

words, the number of positions i ∈ {1, . . . , d} where xi and yi differ. Recall that for
a set of vectors C ⊆ {0, 1}d and a vector x ∈ {0, 1}d, dH(x, C) = minc∈C dH(x, c).
For sets X,C ⊂ {0, 1}d, we define cost(X,C) = maxx∈X dH(x, C).

Now we define Binary Constrained k-Center formally.

Input: A set X ⊆ {0, 1}d of n vectors, a positive integer k, and a tuple
of k-ary relations R = (R1, . . . , Rd).

Task: Among all tuples C = (c1, . . . , ck) of vectors from {0, 1}d sat-
isfying R, find a tuple C minimizing cost(X,C).

Binary Constrained k-Center

As in the case of Low GF(2)-Rank Approximation in [88], we prove that L1-
Rank-r Approximation over GF(2) is a special case of Binary Constrained
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k-Center, where k = 2r. For completeness, this proof and other applications of
Binary Constrained k-Center are given in Section 11.4. Thus, to prove Theo-
rem 11.1, it is enough to design a PTAS for Binary Constrained k-Center.

Theorem 11.3. There is an algorithm for Binary Constrained k-Center that
given an instance J = (X, k,R) and 0 < ε < 1, runs in time nO((k/ε)4)dO(1), and
outputs a (1 + ε)-approximate solution with probability at least 1− 2n−2.

By the argument above, Theorem 11.1 is an immediate corollary of Theorem 11.3.

Step 2: Dimensionality reduction. Let J = (X, k,R = (R1, . . . , Rd)) be an
instance of Binary Constrained k-Center and C = (c1, . . . , ck) be a solution to
J , that is, a tuple of vectors satisfying R. Then, the cost of C is cost(X,C). Given
the tuple C, there is a natural way we can partition the set of vectors X into k parts
X1 ] · · · ]Xk such that

cost(X,C) = max
i∈{1,...,k},x∈Xi

dH(x, ci).

Thus, for each vector x in Xi, the closest to x vector from C is ci. We call such
a partition X1 ] · · · ] Xk the clustering of X induced by C and refer to the sets
X1, . . . , Xk as the clusters corresponding to C. We use OPT(J) to denote the cost
of an optimal solution to J . That is, OPT(J) = min{cost(X,C) | < C,R >}. In
fact, even if we know the clustering of X induced by a hypothetical optimal solution,
finding a good solution is not trivial as the case when k = 1 is the same as the
Closest String problem.

As mentioned before, our approach is to reduce to a version of Binary Con-
strained k-Center, where we know the partition of X, and solve the corresponding
problem. That is, we design an approximation scheme for the following partitioned
version of the problem.

Input: A positive integer k, a set X ⊆ {0, 1}d of n vectors par-
titioned into X1 ] . . . ] Xk, and a tuple of k-ary relations
R = (R1, . . . , Rd).

Task: Among all tuples C = (c1, . . . , ck) of vectors from {0, 1}d satis-
fying R, find a tuple C minimizing maxi∈{1,...,k},x∈Xi dH(x, ci).

Binary Constrained Partition Center

For an instance J ′ = (k,X = X1 ] . . . ]Xk,R) of Binary Constrained Par-
tition Center, we use OPT(J ′) to denote the cost of an optimal solution to J ′.
That is,

OPT(J ′) = min
C=(c1,...,ck) s.t. <C,R>

{
max

i∈{1,...,k},x∈Xi
dH(x, ci)

}
.
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Clearly, for an instance J = (X, k,R) of Binary Constrained k-Center and
a partition of X into X1 ] . . . ] Xk, any solution to the instance J ′ = (k,X =
X1 ] . . . Xk,R) of Binary Constrained Partition Center, of cost D, is also a
solution to J with cost at most D. We prove that there is a randomized polynomial
time algorithm that given an instance J = (X, k,R) of Binary Constrained k-
Center and 0 < ε ≤ 1

4 , outputs a collection I of Binary Constrained Partition
Center instances J ′ = (k,X = X1 ] . . . ]Xk,R) such that the cost of at least one
instance in I is at most (1 + 4ε)OPT(J) with high probability.

Lemma 11.4. There is an algorithm that given an instance J = (X, k,R) of Binary

Constrained k-Center, 0 < ε ≤ 1
4 , and γ > 0, runs in time nO(k/ε4)d2, and

outputs a collection I of nO(k/ε4)d instances of Binary Constrained Partition
Center such that each instance in I is of the form (k,X = X1 ] . . . ]Xk,R), and
there exists J ′ ∈ I such that OPT(J ′) ≤ (1 + 4ε)OPT(J) with probability at least
1− n−γ .

To prove Lemma 11.4, we use the dimensionality reduction technique of Ostro-
vsky and Rabani from [165]. Loosely speaking, this technique provides a linear map
ψ with the following properties. For any y ∈ {0, 1}d, ψ(y) is a 0-1 vector of length
O(log n/ε4), and for any set Y of n + k vectors, Hamming distances between any
pair of vectors in ψ(Y ) are relatively preserved with high probability. So we assume
that ψ is “a good map” for the set of vectors X ∪ C, where C = (c1, . . . , ck) is
a hypothetical optimal solution to J . Then, we guess the potential tuples of vec-
tors (φ(c1), . . . , φ(ck)) for the hypothetical optimal solution C = (c1, . . . , ck), and
use these choices for (φ(c1), . . . , φ(ck)) to construct partitions of X, and thereby
construct instances in I. Lemma 11.4 is proved in Section 11.2.

Step 3: LP relaxation. Because of Lemma 11.4, to prove Theorem 11.3, it is
enough to design a PTAS for Binary Constrained Partition Center, which is
the most challenging part of our algorithm. For this, we prove the following lemma.

Lemma 11.5. There is an algorithm for Binary Constrained Partition Cen-
ter that given an instance J = (k,X = Xi

1 ] . . . ] Xi
k,R) and 0 < ε < 1/2, runs

in time nO((k/ε)4)dO(1), and outputs a solution of cost at most (1 + ε)OPT(J) with
probability at least 1− n−2.

Towards the proof of Lemma 11.5, we encode Binary Constrained Partition
Center using an Integer programming (IP) formulation (see (11.4) in Section 11.3).
We show that the randomized rounding using the solution of the linear programming
relaxation of this IP provides a good approximation if the optimum value is large.
Here we follow the approach similar to the one used by Li, Ma, and Wang in [144]
to solve Closest String. We prove that there exist Y1 ⊆ X1, . . . , Yk ⊆ Xk, each of
size r = 1+ 4

ε , with the following property. Let Q be the set of positions in {1, . . . , d}
such that for each i ∈ {1, . . . , k} and j ∈ Q, all the vectors in Yi agree at the position
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j, and for each j ∈ Q, (y1[j], . . . ,yk[j]) ∈ Rj , where yi ∈ Yi for all i ∈ {1, . . . , k}.
Then, for any solution of J such that for each j ∈ Q the entries at the position j
coincide with (y1[j], . . . ,yk[j]), the cost of this solution restricted to Q deviates from
the cost of an optimal solution restricted to Q by at most 1

r−1OPT(J). Moreover,
the subproblem of J restricted to {1, . . . , d} \Q has large optimum value and we are
able to use linear programming to solve this subproblem. Lemma 11.5 is proved in
Section 11.3.

Putting together. Next we explain how to prove Theorem 11.3 using Lem-
mata 11.4 and 11.5. Let J = (X, k,R) be the input instance of Binary Con-
strained k-Center and 0 < ε < 1 be the given error parameter. Let β = ε

8 ,
since ε < 1, β < 1

4 . Now, we apply Lemma 11.4 on J , β, and γ = 2. As
a result, we get a collection I of instances of Binary Constrained Partition
Center such that each instance in I is of the form (k,X = X1 ] . . . ] Xk,R),
and there exists J ′ ∈ I such that OPT(J ′) ≤ (1 + 4β)OPT(J) with probabil-
ity at least 1 − n−2. From now on, we assume that this event happened. Next,
for each instance Ĵ ∈ I, we apply Lemma 11.5 with the error parameter β, and
output the best solution among the solutions produced. Let J ′ ∈ I be the in-
stance such that OPT(J ′) ≤ (1 + 4β)OPT(J) ≤ (1 + ε

2 )OPT(J). Any solution to

Ĵ ∈ I of cost D, is also a solution to J of cost at most D. Therefore, because
of Lemmas 11.4 and 11.5, our algorithm outputs a solution of J with cost at most
(1 + β)OPT(J ′) = (1 + ε

8 )(1 + ε
2 )OPT(J) ≤ (1 + ε)OPT(J) with probability at least

1 − 2n−2, since both Lemmas 11.4 and 11.5 have the success probability of at least
1− n−2. The running time of the algorithm follows from Lemmata 11.4 and 11.5.

As Theorem 11.3 is already proved using Lemmas 11.4 and 11.5, the rest of the
chapter is devoted to the proofs of Lemmata 11.4 and 11.5, and to the examples
of the expressive power of Binary Constrained k-Center, including L1-Rank-r
Approximation over GF(2). In Sections 11.2 and 11.3, we prove Lemmata 11.4
and 11.5, respectively. In Section 11.4, we give applications of Theorem 11.3.

11.2 Reducing to a Partitioned Instance

In this section we prove Lemma 11.4. The main idea is to map the given instance
to a low-dimensional space while approximately preserving distances, then try all
possible tuples of centers in the low-dimensional space, and construct an instance of
Binary Constrained Partition Center by taking the optimal partition of the
images with respect to a fixed tuple of centers back to the original vectors.

To implement the mapping, we employ the notion of (δ, `, h)-distorted maps,
introduced by Ostrovsky and Rabani [165]. Intuitively, a (δ, `, h)-distorted map ap-
proximately preserves distances between ` and h, does not shrink distances larger
than h too much, and does not expand distances smaller than ` too much. In what
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follows we make the definitions formal.

Recall that a metric space is a pair (X , dist) where X is a set (whose elements
are called points), and dist is a distance function dist : X ×X → R (called a metric),
such that for every p1, p2, p3 ∈ X the following conditions hold: (i) dist(p1, p2) ≥ 0,
(ii) dist(p1, p2) = dist(p2, p1), (iii) dist(p1, p2) = 0 if and only if p1 = p2, and
(iv) dist(p1, p2) + dist(p2, p3) ≥ dist(p1, p3). Condition (iv) is called the triangle
inequality. The pair ({0, 1}d, dH), the space of binary vectors of length d equipped
with the Hamming distance, is a metric space.

Definition 11.6 ([165]). Let (X , dist) and (X ′, dist′) be two metric spaces. Let
X,Y ⊆ X . Let δ, `, h be such that δ > 0 and h > ` ≥ 0. A mapping ψ : X → X ′
is (δ, `, h)-distorted on (X,Y ) if and only if there exists α > 0 such that for every
x ∈ X and y ∈ Y , the following conditions hold.

(i) If dist(x, y) < `, then dist′(ψ(x), ψ(y)) < (1 + δ)α`.

(ii) If dist(x, y) > h, then dist′(ψ(x), ψ(y)) > (1− δ)αh.

(iii) If ` ≤ dist(x, y) ≤ h, then (1 − δ)α dist(x, y) ≤ dist′(ψ(x), ψ(y)) ≤ (1 +
δ)α dist(x, y).

If X = Y , then we say that ψ is (δ, `, h)-distorted on X.

For any r, r′ ∈ N and ε > 0, Ar,r′(ε) denotes a distribution over r′× r binary ma-

trices M ∈ {0, 1}r′×r, where entries are independent, identically distributed, random
0/1 variables with Pr[1] = ε. The following theorem by Ostrovsky and Rabani [165]
states that the matrices Ar,r(ε) allow to achieve distorted maps for the Hamming
space.

Theorem 11.7 ([165]). Let d, ` ∈ N, and let X ⊆ {0, 1}d be a set of n vectors. For
every 0 < ε ≤ 1/2, there exists a mapping φ : X → {0, 1}d′ , where d′ = O(log n/ε4),
which is (ε, `/4, `/2ε)-distorted on X (with respect to the Hamming distance in both
spaces). More precisely, for every γ > 0 there exists λ > 0, such that, setting
d′ = λ log n/ε4, the linear map x 7→ Ax, where A is a random matrix drawn from
Am,m′(ε2/`), is (ε, `/4, `/2ε)-distorted on X with probability at least 1− n−γ .

Now we are ready to prove Lemma 11.4. We restate it for convenience.

Lemma 11.4. There is an algorithm that given an instance J = (X, k,R) of Binary

Constrained k-Center, 0 < ε ≤ 1
4 , and γ > 0, runs in time nO(k/ε4)d2, and

outputs a collection I of nO(k/ε4)d instances of Binary Constrained Partition
Center such that each instance in I is of the form (k,X = X1 ] . . . ]Xk,R), and
there exists J ′ ∈ I such that OPT(J ′) ≤ (1 + 4ε)OPT(J) with probability at least
1− n−γ .
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Proof. Without loss of generality, we may assume OPT(J) > 0. If OPT(J) = 0, there
are at most k distinct vectors in X, and we trivially construct a single instance of
Binary Constrained Partition Center by grouping equal vectors together.

Let n = |X| and n′ = n + k. Let λ = λ(γ) be the constant mentioned in
Theorem 11.7, and d′ = λ log n′/ε4. Then, for each ` ∈ [d], we construct the collection

I` of nO(k/ε4) Binary Constrained Partition Center instances as follows.

· Start with I` := ∅.

· Randomly choose a matrix A` from the distribution Ad,d′(ε2/`).

· For each choice of k vectors c′1, . . . , c
′
k ∈ {0, 1}d

′
, construct a partition X1 ]

. . .]Xk of X such that for each x ∈ Xi, c′i is one of the closest vectors to A`x
among C ′ = {c′1, . . . , c′k}. Then, add (k,X = Xi

1 ] . . . Xi
k,R) to I`.

Finally, our algorithm outputs I =
⋃
`∈[d] I` as the required collection of Binary

Constrained Partition Center instances. Notice that for any ` ∈ [d], |I`| =

2d
′k = nO(k/ε4). This implies that the cardinality of I is upper bounded by nO(k/ε4)d,

and the construction of I` takes time nO(k/ε4)d. Thus, the total running time of the
algorithm is nO(k/ε4)d2.

Next, we prove the correctness of the algorithm. Let ` = OPT(J) and C =
(c1, . . . , ck) be an optimum solution of J . Let Y1, . . . , Yk be the clusters corresponding
to C. Consider the step in the algorithm where we constructed I`. By 11.7, the
map ψ : x 7→ A`x is (ε, `/4, `/2ε)-distorted on X ∪ C with probability at least 1 −
n−γ . In the rest of the proof, we assume that this event happened. Let c′1 =
A`c1, . . . , c

′
k = A`ck. Consider the Binary Constrained Partition Center

instance constructed for the choice of vectors c′1, . . . , c
′
k. That is, let X1, . . . , Xk be

the partition of X such that for each x ∈ Xi, c′i is one of the closest vector to A`x
from C ′ = {c′1, . . . , c′k}. Let J ′ be the instance (k,X = Xi

1 ] . . . Xi
k,R) of Binary

Constrained Partition Center.
Now, we claim that C is a solution to J ′ with cost at most (1 + 4ε)` = (1 +

4ε)OPT(J). Since C satisfies R, C is a solution of J ′. To prove OPT(J ′) ≤ (1+4ε)`,
it is enough to prove that for each i ∈ [k] and x ∈ Xi, dH(x, ci) ≤ (1 + 4ε)`. Fix
an index i ∈ [k] and x ∈ Xi. Suppose x ∈ Yi. Since C is an optimum solution of J
with corresponding clusters Y1, . . . Yk, we have that dH(y, ci) ≤ ` for all y ∈ Yi ∩Xi.
Thus, dH(x, ci) ≤ `. So, now consider the case x ∈ Yj for some j 6= i. Notice that if
dH(x, ci) ≤ `, then we are done. We have the following two subcases.

Case 1: dH(x, ci) ≤ `
2ε . We know that the map ψ : x 7→ A`x is (ε, `/4, `/2ε)-

distorted on X ∪ C, and let α > 0 be the number such that conditions of Defini-
tion 11.6 hold. Since x ∈ Xi, we have that (a) dH(ψ(x), ψ(ci)) ≤ dH(ψ(x), ψ(cj)).
Since dH(x, cj) ≤ ` (because x ∈ Yj) and ψ is (ε, `/4, `/2ε)-distorted on X ∪ C,
we have that (b) dH(ψ(x), ψ(cj)) ≤ (1 + ε)α`. Since ` < dH(x, ci) ≤ `

2ε , and ψ is
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(ε, `/4, `/2ε)-distorted onX∪C, we have that (c) (1−ε)αdH(x, ci) ≤ dH(ψ(x), ψ(ci)).
The statements (a), (b), and (c) imply that

dH(x, ci) ≤
1 + ε

1− ε
` ≤ (1 + 4ε)`,

where the last inequality holds since ε ≤ 1/4.

Case 2: dH(x, ci) >
`
2ε . We prove that this case is impossible by showing a

contradiction. Since ε ≤ 1/4, in this case, we have that dH(x, ci) > 2`. Since ψ is
(ε, `/4, `/2ε)-distorted on X ∪ C, dH(x, ci) > 2`, and dH(x, cj) ≤ `, we have that

(1− ε)α · 2` ≤ dH(ψ(x), ψ(ci)) ≤ dH(ψ(x), ψ(cj)) ≤ (1 + ε)α · `.

Then 2(1 − ε) ≤ (1 + ε) and thus ε ≥ 1/3, which contradicts the assumption that
ε ≤ 1/4.

This completes the proof of the lemma.

11.3 Solving the Partitioned Instance

For a set of positions P ⊂ [m], let us define the Hamming distance restricted to P
by

dPH(x,y) =
∑
i∈P
|xi − yi|.

We use the following lemma in our proof.

Lemma 11.8. Let Y = {y1, · · · ,y`} ⊂ {0, 1}d be a set of vectors and c∗ ∈ {0, 1}d
be a vector. Let d∗ = cost(Y, {c∗}) = maxy∈Y dH(y, c∗). For any r ∈ N, r ≥ 2, there
exist indices i1, . . . , ir such that for any x ∈ Y

dPH(x,yi1)− dPH(x, c∗) ≤ 1

r − 1
d∗,

where P is any subset of Qi1,...,ir and Qi1,...,ir is the set of positions where all of
yi1 , . . . ,yir coincide (i.e., Qi1,...,ir = {j ∈ [m] : yi1 [j] = yi2 [j] = . . . = yir [j]}).

Proof. For a vector x = y`′ ∈ Y and P ⊆ Qi1,...,ir , let

JP (`′) = {j ∈ P : yi1 [j] 6= x[j] and yi1 [j] 6= c∗[j]} , and

J(`′) = {j ∈ Qi1,...,ir : yi1 [j] 6= x[j] and yi1 [j] 6= c∗[j]} .

To prove the lemma it is enough to prove that |JP (`′)| ≤ 1
r−1d

∗. Also, since JP (`′) ⊆
J(`′), to prove the lemma, it is enough to prove that |J(`′)| ≤ 1

r−1d
∗. Recall that

for any s ∈ [`] and 1 ≤ i1, . . . , is ≤ `, Qi1,...,is is the set of positions where all of
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yi1 , . . . ,yis coincide. For any 2 ≤ s ≤ r + 1 and 1 ≤ i1, . . . , is ≤ `, let pi1,...,is be the
number of mismatches between yi1 and c∗ at the positions in Qi1,...,is . Let

ρs = min
1≤i1,...,is≤n

pi1,...,is
d∗

.

Notice that for any 2 ≤ s ≤ r + 1, ρs ≤ 1.

Claim 11.9 (Claim 2.2 [144]). 1 For any s such that 2 ≤ s ≤ r, there are indices
1 ≤ i1, i2, . . . , ir ≤ ` such that for any x = y`′ ∈ Y , |J(`′)| ≤ (ρs − ρs+1)d∗.

Proof. Consider indices 1 ≤ i1, . . . , is ≤ ` such that pi1,...,is = ρs · d∗. Next arbi-
trarily pick r − s indices is+1, is+2, . . . , ir from [`] \ {i1, . . . , is}. Next we prove that
i1, i2, . . . , ir are the required set of indices. Towards that, fix x = y`′ ∈ Y ,

J(`′) = | {j ∈ Qi1,...,ir : yi1 [j] 6= x[j] and yi1 [j] 6= c∗[j]} |
≤ | {j ∈ Qi1,...,is : yi1 [j] 6= x[j] and yi1 [j] 6= c∗[j]} |

(Because Qi1,...,ir ⊆ Qi1,...,is)
= | {j ∈ Qi1,...,is : yi1 [j] 6= c∗[j]} \ {j ∈ Qi1,...,is : yi1 [j] = x[j] ∧ yi1 [j] 6= c∗[j]} |
= | {j ∈ Qi1,...,is : yi1 [j] 6= c∗[j]} \ {j ∈ Qi1,...,is,`′ : yi1 [j] 6= c∗[j]} |

(Since x = y`′)

= | {j ∈ Qi1,...,is : yi1 [j] 6= c∗[j]} | − | {j ∈ Qi1,...,is,`′ : yi1 [j] 6= c∗[j]} | (11.1)

= pi1,...,is − pi1,...,is,`′ (By definition)

≤ (ρs − ρs+1)d∗ (11.2)

The equality (11.1) holds since Qi1,...,is ⊇ Qi1,...,is,`′ . The inequality (11.2) holds
because pi1,...,is = ρs · d∗ by the choice of i1, . . . , is, and ρs+1d

∗ ≤ pi1,...,is,`′ by
definition.

Notice that (ρ2−ρ3) + (ρ3−ρ4) + . . .+ (ρr−ρr+1) = (ρ2−ρr+1) ≤ ρ2 ≤ 1. Thus,
one of (ρ2 − ρ3), (ρ3 − ρ4), . . . , (ρr − ρr+1) is at most 1/(r − 1). This completes the
proof.

Consider the instance J = (k,X = Xi
1 ] . . . Xi

k,R) of Binary Constrained
Partition Center. Let C∗ = (c∗1, · · · , c∗k) ⊂ {0, 1}d be an optimum solution to
J . Let dopt = OPT(J) = maxi∈[k],x∈Xi dH(x, c∗i ). For each i ∈ [k] and r ≥ 2, by

Lemma 11.8, there exist r elements x
(1)
i , . . . , x

(r)
i of Xi such that for any x ∈ Xi,

dPH(x,x
(1)
i )− dPH(x, c∗i ) ≤

1

r − 1
dopt, (11.3)

1We remark that Claim 2.2 in [144] is stated for a vector c such that d∗ = cost(Y, {c}) =
minc′ cost(Y, {c′}). But the steps of the same proof work in our case as well.
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where P is any subset of Qi, and Qi is the set of coordinates on which x
(1)
i , . . . , x

(r)
i

agree. Let us denote as Q the intersection of all Qi from which the positions not
satisfying R are removed. That is,

Q =

j ∈ ⋂
i∈[k]

Qi : (x
(1)
1 [j],x

(1)
2 [j], . . . ,x

(1)
k [j]) ∈ Rj

 .

Because of (11.3), there is an approximate solution where the coordinates j ∈ Q
are identified using x

(1)
1 , . . . ,x

(1)
k . Let Q = [d] \ Q. Now the idea is to solve the

problem restricted to Q separately, and then complement the solution on Q by the

values of x
(1)
i . We prove that for the ‘subproblem’ restricted on Q, the optimum

value is large. Towards that we first prove the following lemma.

Lemma 11.10. Let J = (k,X = Xi
1 ] . . . Xi

k,R) be an instance of Binary Con-
strained Partition Center. Let (c∗1, . . . , c

∗
k) be an optimal solution for J , and

r ≥ 2 be an integer. Then, there exist {x(1)
1 , . . . , x

(r)
1 } ⊂ X1, . . . , {x(1)

k , . . . , x
(r)
k } ⊂

Xk with the following properties. For each i ∈ [k], let Qi be the set of coordinates on

which x
(1)
i , . . . , x

(r)
i agree, Q =

{
j ∈

⋂
i∈[k]Qi : (x

(1)
1 [j],x

(1)
2 [j], . . . ,x

(1)
k [j]) ∈ Rj

}
,

and Q = [d] \Q.

· For any i ∈ [k] and x ∈ Xi, d
Q
H(x,x

(1)
i )− dQH(x, c∗i ) ≤ 1

r−1OPT(J), and

· |Q| ≤ rk · OPT(J).

Proof. Fix an integer i ∈ [k]. By substituting Y = Xi and c∗ = c∗i in Lemma 11.8,

we get {x(1)
i , . . . , x

(r)
i } ⊂ Xi such that for any x ∈ Xi, d

Q
H(x,x

(1)
i ) − dQH(x, c∗i ) ≤

1
r−1OPT(J). That is, we have proved the first condition in the lemma. The second
condition is proved in the following claim.

Claim 11.11. |Q| ≤ rk · OPT(J).

Proof. We claim that for each position j ∈ Q there exist i ∈ [k] and s ∈ [r] such that

x
(s)
i [j] 6= c∗i [j]. There are two kinds of positions in Q. First, positions, where for

some i ∈ [k] vectors x
(1)
i , . . . , x

(r)
i do not agree, in this case certainly one of them

does not agree with the corresponding position in c∗i . Second, positions j where for

any i ∈ [k], x
(1)
i [j] = x

(2)
i [j] = · · · = x

(r)
i [j], but (x

(1)
1 [j], . . . ,x

(1)
k [j]) /∈ Rj . Then,

there exists i ∈ [k] such that x
(1)
i [j] 6= c∗i [j] because (c∗i [j], . . . , c

∗
k[j]) ∈ Rj .

Now, for any i ∈ [k] and s ∈ [r], x
(s)
i contributes at most OPT(J) positions to Q,

since dH(x
(s)
i , c∗i ) ≤ OPT(J). Thus, in total there are at most rk ·OPT(J) positions

in Q.

This completes the proof of the lemma.
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As mentioned earlier, we fix the entries of our solution in positions j of Q with

values in x
(1)
1 [j], . . . ,x

(1)
k [j]. Towards finding the entries of our solution in positions

of Q, we define the following problem and solve it.

Input: A positive integer k, a set X ⊆ {0, 1}d of n vectors partitioned
into X1 ] . . .]Xk, a tuple of k-ary relations R = (R1, . . . , Rd),
and for all x ∈ X, dx ∈ N

Task: Among all tuples C = (c1, . . . , ck) of vectors from {0, 1}d satis-
fying R, find a tuple C that minimizes the integer D such that
for all i ∈ [k] and x ∈ Xi, dH(x, ci) ≤ D − dx.

Binary Constrained Partition Center?

Lemma 11.12. Let J ′ = (k,X = X1] . . . Xk,R, (dx)x∈X) be an instance of Binary
Constrained Partition Center?, OPT(J ′) ≥ d

c for some integer c, and 0 < δ <

1/c. Then, there is an algorithm which runs in time nO(c2k/δ2)dO(1), and outputs a
solution C of J ′, of cost at most (1 + δ)OPT(J ′) with probability at least 1− n−2.

Before proving Lemma 11.12, we explain how all these results are put together
to form a proof of Lemma 11.5. We restate Lemma 11.5 for the convenience of the
reader.

Lemma 11.5. There is an algorithm for Binary Constrained Partition Cen-
ter that given an instance J = (k,X = Xi

1 ] . . . ] Xi
k,R) and 0 < ε < 1/2, runs

in time nO((k/ε)4)dO(1), and outputs a solution of cost at most (1 + ε)OPT(J) with
probability at least 1− n−2.

Proof. Let J = (k,X = Xi
1 ] . . . Xi

k,R) be the input instance of Binary Con-
strained Partition Center, and 0 < ε < 1

2 be the error parameter. Let
(c∗1, . . . , c

∗
k) be an optimal solution for J . Let r ≥ 2 be an integer which we fix later.

First, for each i ∈ [k] we obtain r vectors x
(1)
i , . . . , x

(r)
i ∈ Xi which satisfy the condi-

tions of Lemma 11.10. Their existence is guaranteed by Lemma 11.10, and we guess
them in time nO(rk) over all i ∈ [k]. For each i ∈ [k], letQi be the set of coordinates on

which x
(1)
i , . . . , x

(r)
i agree, Q =

{
j ∈

⋂
i∈[k]Qi : (x

(1)
1 [j],x

(1)
2 [j], . . . ,x

(1)
k [j]) ∈ Rj

}
,

and Q = [d] \Q. Next, we construct a solution C = (c1, . . . , ck) as follows. For each

i ∈ [k] and j ∈ Q, we set ci[j] = x
(1)
i [j].

Towards finding the entries of vectors c1, . . . , ck at the coordinates in Q, we
use Lemma 11.12. Let J ′ be the instance of Binary Constrained Partition
Center?, which is a natural restriction of J to Q. That is, J ′ = (k,X ′ = X ′1 ]
. . . X ′k,R|Q, (dx|Q)x∈X′), where for each i ∈ [k], X ′i = {x|Q : x ∈ Xi} and for each

x ∈ Xi, dx|Q = dQH(x,x
(1)
i ). By the second condition in Lemma 11.10, we have that

|Q| ≤ rk · OPT(J).
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Claim 11.13. OPT(J) ≤ OPT(J ′) ≤
(

1 + 1
r−1

)
OPT(J).

Proof. First, we prove that OPT(J) ≤ OPT(J ′). Towards that we show that we can
transform a solution C ′ = (c′1, · · · , c′k) of J ′ with the objective value D to a solution
C of J with the same objective value. For each i ∈ [k], consider ĉi which is equal

to x
(1)
i restricted to Q, and to c′i restricted to Q, and the solution Ĉ = (ĉ1, · · · , ĉk).

Clearly, Ĉ satisfies R since on Q it is guaranteed by C ′ being a solution to J ′, and
on Q by construction of Q. The objective value of C is

max
i∈[k],x∈Xi

dH(x, ci) = max
i∈[k],x∈Xi

(
dQH(x, ci) + dQH(x, ci)

)
= max

i∈[k],x∈Xi

(
dH(x|Q, c

′
i) + dQH(x,x

(1)
i )
)

= max
i∈[k],x∈Xi

(
dH(x|Q, c

′
i) + dx|Q

)
= D.

Thus, OPT(J) ≤ OPT(J ′).

Next, we prove that OPT(J ′) ≤
(

1 + 1
r−1

)
OPT(J). Recall that (c∗1, . . . , c

∗
k) is

an optimal solution for J . Then, (e∗1, . . . , e
∗
k), where each e∗i is the restriction of c∗i

on Q, is a solution for J ′. For each i ∈ [k] and x ∈ Xi,

dH(x|Q, e
∗
i ) + dx|Q = dQH(x, c∗i ) + dQH(x,x

(1)
i )

≤ dQH(x, c∗i ) + dQH(x, c∗i ) +
1

r − 1
OPT(J) (By Lemma 11.10)

≤ dH(x, c∗i ) +
1

r − 1
OPT(J)

≤
(

1 +
1

r − 1

)
OPT(J)

This completes the proof of the claim.

Since |Q| ≤ rk ·OPT(J) and by Claim 11.13, we have that OPT(J ′) ≥ |Q|rk = |Q|
c ,

where c = rk. Let 0 < δ < 1
c be a number which we fix later.

Now we apply Lemma 11.12 on the input J ′ and δ, and let C ′ = (c′1, . . . , c′k) be
the solution for J ′ obtained. We know that the cost d′ of c′ is at most (1+δ)OPT(J ′)
with probability at least 1 − n−2. For the rest of the proof we assume that the cost
d′ ≤ (1 + δ)OPT(J ′). Recall that we have partially computed the entries of the
solution c = (c1, . . . , ck) for the instance J . That is, for each j ∈ Q and i ∈ [k], we

have already set the value of ci[j]. Notice that C ′ ⊆ {0, 1}|Q|. Since J ′ is obtained
from J by restricting to Q, there is a natural bijection f from Q to [|Q|] such that
for each x ∈ X and j ∈ Q, x[j] = y[f(j)], where y = x|Q. Now for each i ∈ [k] and

j ∈ Q, we set ci[j] = c′i[f(j)].
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In Claim 11.13, we have proven that the solution C of J obtained in this way has
cost at most d′. By Lemma 11.12, we know that d′ ≤ (1+δ)OPT(J ′). By Claim 11.13,
OPT(J ′) ≤ (1 + 1

r−1 )OPT(J). Thus, we have that the cost of the solution C of J is

at most (1 + δ)(1 + 1
r−1 )OPT(J). Now we fix r = (1 + 4

ε ) and δ = ε
(2ε+8)k . Then the

cost of C is at most (1 + ε)OPT(J).

Running time analysis. The number of choices for {x(1)
1 , . . . , x

(r)
1 } ⊂ X1,

. . . , {x(1)
k , . . . , x

(r)
k } ⊂ Xk is at most nO(rk) = nO(k/ε). For each such choice,

we run the algorithm of Lemma 11.12 which takes time at most nO(c2k/δ2)dO(1) =
nO((k/ε)4)dO(1). Thus, the total running time is nO((k/ε)4)dO(1).

Now the only piece left is the proof of Lemma 11.12. We use the following tail
inequality (a variation of Chernoff bound) in the proof of Lemma 11.12.

Proposition 11.14 (Lemma 1.2 [144]). Let X1, . . . , Xn be n independent 0-1 random

variables, X =
∑n
i=1Xi, and 0 < ε ≤ 1. Then, Pr[X > E[X] + εn] ≤ e− 1

3nε
2

.

Finally, we prove Lemma 11.12.

Proof of Lemma 11.12. First, assume that d < 9c2 log n/δ2. If this is the case, we
enumerate all possible solutions for J ′ and output the best solution. The number
of solutions is at most 2kd = nO(c2k/δ2). Thus, in this case the algorithm is exact
and deterministic, and the running time bound holds. For the rest of the proof we
assume that d ≥ 9c2 log n/δ2.

Binary Constrained Partition Center? can be formulated as a 0-1 opti-
mization problem as explained below. For each j ∈ [d] and tuple t ∈ Rj , we use a
0-1 variable yj,t to indicate whether the jth entries of a solution form a tuple t ∈ Rj
or not. For any i ∈ [k], x ∈ Xi, j ∈ [d] and t ∈ Rj , denote χi(x[j], t) = 0 if x[j] = t[i]
and χi(x[j], t) = 1 if x[j] 6= t[i]. Now Binary Constrained Partition Center?

can be defined as the following 0-1 optimization problem.

minD

subject to∑
t∈Rj

yj,t = 1, for all j ∈ [d]; (11.4)

∑
j∈[m]

∑
t∈Rj

χi(x[j], t) · yj,t ≤ D − dx, for all i ∈ [k] and x ∈ Xi

yj,t ∈ {0, 1}, for all j ∈ [d] and t ∈ Rj .

Any solution yj,t (j ∈ [d] and t ∈ Rj) to (11.4) corresponds to the solution C =
(c1, . . . , ck) where for all j ∈ [d] and t ∈ Rj such that yj,t = 1, we have (c1[j], . . . , ck[j]) =
t.
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Now, we solve the above optimization problem using linear programming relax-
ation and obtain a fractional solution y?j,t (j ∈ [d] and t ∈ Rj) with cost D′. Clearly,
D′ ≤ dopt = OPT(J ′). Now, for each j ∈ [d], independently with probability y?j,t, we
set y′j,t = 1 and y′j,t′ = 0, for any t′ ∈ Rj \ {t}. Then y′j,t (j ∈ [d] and t ∈ Rj) form
a solution to (11.4). Next we construct the solution C = (c1, . . . , ck) to Binary
Constrained Partition Center?, corresponding to y′j,t (j ∈ [d] and t ∈ Rj).
That is, for all j ∈ [d] and t ∈ Rj such that yj,t = 1, we have (c1[j], . . . , ck[j]) = t.

For the running time analysis, notice that solving the linear program and perform-
ing the random rounding takes polynomial time in the size of the problem (11.4). And
the size of (11.4) is polynomial in the size of J ′, so the running time bound is satisfied.
It remains to show that the constructed solution has cost at most (1 + δ)OPT(J ′)
with probability at least 1 − n−2.

For any j ∈ [d], the above random rounding procedure ensures that there is
exactly one tuple t ∈ Rj such that y′j,t = 1. This implies that for any j ∈ [d],
i ∈ [k] and x ∈ Xi,

∑
t∈Rj χi(x[j], t) · y′j,t is a 0-1 random variable. Since for each

j ∈ [d] the rounding procedure is independent, we have that for any i ∈ [k] and
x ∈ Xi the random variables (

∑
t∈R1

χi(x[1], t) ·y′1,t), . . . , (
∑
t∈Rd χi(x[d], t) ·y′j,t) are

independent. Hence, for any i ∈ [k] and x ∈ Xi, the Hamming distance between x
and ci, dH(x, ci) =

∑
j∈[d]

∑
t∈Rj χi(x[j], t) · y′j,t, is the sum of d independent 0-1

random variables. For each i ∈ [k] and x ∈ Xi, we upper bound the expected value
of dH(x, ci) as follows.

E[dH(x, ci)] = E

∑
j∈[d]

∑
t∈Rj

χi(x[j], t) · y′j,t


=

∑
j∈[d]

∑
t∈Rj

χi(x[j], t) · E[y′j,t]

=
∑
j∈[d]

∑
t∈Rj

χi(x[j], t) · y?j,t

≤ D′ − dx (By the constraints of (11.4))

Fix ε = δ
c . Then, by Proposition 11.14, for all i ∈ [k], and x ∈ Xi,

Pr[dH(x, ci) > D′ − dx + εd] ≤ e− 1
3dε

2

.

Therefore, by the union bound,

Pr[There exist i ∈ [k] and x ∈ Xi such that dH(x, ci) > D′ − dx + εd] ≤ n · e− 1
3dε

2

(11.5)

We remind that d ≥ 9c2 log n/δ2 = 9 log n/ε2 and so n · e− 1
3dε

2 ≤ n−2. Thus, by
(11.5),

Pr[There exist i ∈ [k] and x ∈ Xi such that dH(x, ci) > D′−dx+εd] ≤ n−2. (11.6)
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Since D′ ≤ OPT(J ′) and OPT(J ′) ≥ d/c, D′ + εd ≤ (1 + cε)OPT(J ′). Then, the
probability that there exist i ∈ [k] and x ∈ Xi such that dH(x, ci) > (1+cε)OPT(J ′)−
dx is at most n−2 by (11.6). Since cε = δ, the proof is complete.

11.4 Applications

In this section we explain the impact of Theorem 11.3 about Binary Constrained
k-Center to other problems around low-rank matrix approximation. We would
like to mention that Binary Constrained k-Center is very similar to the Bi-
nary Constrained Clustering problem from [88]. In Binary Constrained
k-Center we want to minimize the maximum distance of a vector from the input
set of vectors to the closest center, whereas in Binary Constrained Clustering
the sum of distances is minimized. While these problems are different, the reduction
we explain here, except a few details, are identical to the ones described in [88]. For
reader’s convenience, we give one reduction (Lemma 11.15) in full details and skip
all other reductions, which are similar.

In the following lemma we show that L1-Rank-r Approximation over GF(2)
is a special case of Binary Constrained k-Center.

Lemma 11.15. There is an algorithm that given an instance (A, r) of L1-Rank-r
Approximation over GF(2), where A is an n× d-matrix and r is an integer, runs
in time O(n + d + 22r), and outputs an instance J = (X, k = 2r,R) of Binary
Constrained k-Center with the following property. Given any α-approximate
solution C to J , an α-approximate solution L to (A, r) can be constructed in time
O(rnd) and vice versa.

Proof. Notice that if GF(2)−rank(L) ≤ r, then L has at most 2r distinct rows,
because each row is a linear combination of at most r vectors of a basis of the row
space of L. Moreover, L1-Rank-r Approximation over GF(2) can also be stated
as follows: find vectors s1, . . . , sr ∈ {0, 1}d such that maxi∈[n] dH(ai, S) is minimum,
where a1, . . . , an are the rows of A and

S = {s ∈ {0, 1}d : s is a linear combination of s1, . . . , sr over GF(2)}.

To encode an instance of L1-Rank-r Approximation over GF(2) as an instance
of Binary Constrained k-Center, we construct the following relation R. Set
k = 2r. Let Λ = (λ1, . . . , λk) be the k-tuple composed of all distinct vectors in {0, 1}r.
Thus, each element λi ∈ Λ is a binary r-vector. We define R = {(xᵀλ1, . . . , x

ᵀλk) |
x ∈ {0, 1}r}. Thus, R consists of k = 2r k-tuples and every k-tuple in R is a row of
the matrix Λᵀ · Λ. Now we define X to be the set of rows of A and for each i ∈ [d],
Ri = R. Our algorithm outputs the instance J = (X, k,R = (R1, . . . , Rd)).

To show that the instance (A, r) of L1-Rank-r Approximation over GF(2) is
equivalent to the constructed instance J , assume first that the vectors s1, . . . , sr ∈
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{0, 1}d compose an (approximate) solution of L1-Rank-r Approximation over
GF(2). For every i ∈ [k] define the vector

ci = λi[1]s1 ⊕ · · · ⊕ λi[r]sr,

where λᵀi = (λi[1], . . . , λi[r]), ⊕ denotes the sum over GF(2), and define the tuple C =
(c1, . . . , ck). That is, C contains all linear combinations of s1, . . . , sr. For every i ∈ [k]
and j ∈ [d], we have that ci[j] = (s1[j], . . . , sr[j])λi. Therefore, (c1[j], . . . , ck[j]) ∈ R
for all j ∈ [d]. Thus, C is a solution to J of cost maxx∈X dH(x, C).

For the opposite direction, assume that C = (c1, . . . , ck) is an (approximate)
solution to J . We construct the vectors s1, . . . , sr as follows. Let j ∈ [d]. We have that
(c1[j], . . . , ck[j]) ∈ R. Therefore, there is x ∈ {0, 1}r such that (c1[j], . . . , ck[j]) =
(xᵀλ1, . . . ,x

ᵀλk). We set si[j] = x[i] for i ∈ [r]. Observe that vectors in C are linear
combinations of the vectors s1, . . . , sr. This immediately implies that for any α-
approximate solution C of J an α-approximate solution L of (A, r) can be constructed
in time O(rnd).

Thus, Theorem 11.1 follows from Theorem 11.3 and Lemma 11.15.

Low Boolean-Rank Approximation. Let A be a binary n× d matrix. Now
we consider the elements of A to be Boolean variables. The Boolean rank of A is
the minimum r such that A = U ∧V for a Boolean n× r matrix U and a Boolean
r× d matrix V, where the product is Boolean, that is, the logical ∧ plays the role of
multiplication and ∨ the role of sum. Here 0∧ 0 = 0, 0∧ 1 = 0, 1∧ 1 = 1 , 0∨ 0 = 0,
0 ∨ 1 = 1, and 1 ∨ 1 = 1. Thus the matrix product is over the Boolean semi-ring
(0, 1,∧,∨). This can be equivalently expressed as the normal matrix product with
addition defined as 1 + 1 = 1. Binary matrices equipped with such algebra are called
Boolean matrices.

In Boolean L1-Rank-r Approximation, we are given an n × d binary data
matrix A and a positive integer r, and we seek a binary matrix L optimizing

minimize ‖A− L‖1
subject to rank(L) ≤ r.

Here, by the rank of binary matrix L we mean its Boolean rank, and norm ‖ · ‖1
is the column sum norm. Similar to Lemma 11.15, one can prove that Boolean
L1-Rank-r Approximation is a special case of Binary Constrained k-Center,
where k = 2r. Thus, we get the following corollary from Theorem 11.3.

Corollary 11.16. There is an algorithm for Boolean L1-Rank-r Approxima-
tion that given an instance I = (A, r) and 0 < ε < 1, runs in time nO(24r/ε4)dO(1),
and outputs a (1 + ε)-approximate solution with probability at least 1− 2n−2.
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Projective k-center. The Binary Projective k-Center problem is a vari-
ation of the Binary k-Center problem, where the centers of clusters are linear
subspaces of bounded dimension r. (For r = 1 this is Binary k-Center and for
k = 1 this is L1-Rank-r Approximation over GF(2).) Formally, in Binary
Projective k-Center we are given a set X ⊆ {0, 1}d of n vectors and positive
integers k and r. The objective is to find a family of r-dimensional linear subspaces
C = {C1, . . . , Ck} over GF(2) minimizing maxx∈X dH(x,

⋃k
i=1 C).

To see that Binary Projective k-Center is a special case of Binary Con-
strained k-Center, we observe that the condition that Ci is an r-dimensional
subspace over GF(2) can be encoded (as in Lemma 11.15) by 2r constraints. This
observation leads to the following lemma.

Lemma 11.17. There is an algorithm that given an instance (X, r, k) of Binary
Projective k-Center, runs in time O(n+d+2O(rk)), and outputs an instance J =
(X, k′ = 2kr,R) of Binary Constrained k-Center with the following property.
Given any α-approximate solution C to J , an α-approximate solution C ′ to (X, r, k)
can be constructed in time O(rknd) and vice versa.

Combining Theorem 11.3 and Lemma 11.17 together, we get the following corol-
lary.

Corollary 11.18. There is an algorithm for Binary Projective k-Center that
given an instance I = (X, r, k) and 0 < ε < 1, where X ⊆ {0, 1}d is a set of n vectors

and r, k ∈ N, runs in time nO(24kr/ε4)dO(1), and outputs a (1+ε)-approximate solution
with probability at least 1− 2n−2.

11.5 Conclusion

In this chapter we gave a randomized PTAS for the Binary Constrained k-
Center problem. This yields the first approximation scheme for L1-Rank-r Ap-
proximation over GF(2) and its Boolean variant. This result leaves several inter-
esting open problems. The running time of our (1 + ε)-approximation algorithm is

nO(24r·ε−4)dO(1). How far is this running time from being optimal? A simple adap-
tation of the result of Cygan et al. [71] for Closest String, yields that already for
r = 1, an (1 + ε)-approximation in time nO(1) · f(ε), for any computable function f ,
would imply that FPT = W[1]. Also the existence of a PTAS for r = 1 with running
time f(ε)no(1/ε), for any computable function f , would contradict the Exponential
Time Hypothesis [71]. But these results do not exclude the opportunity of having
an algorithm of running time f(r, ε) · (nd)poly(1/ε) for some function f . Even the
existence of an algorithm for L1-Rank-r Approximation over GF(2) of running
time npoly(r,ε)dO(1) is an interesting open question.
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Future Directions

We conclude with listing key open problems that follow from the results presented
in this thesis. A number of open questions and concluding remarks are stated in
the respective sections at the end of each chapter. However, here we would like to
spotlight the most important directions for further research.

Parameterized complexity of k-Means The most intriguing question about
parameterized complexity of k-Means concerns the parameterization by d+k. Recall
that an nO(dk)-time algorithm by Inaba et al. [118] is known from the 1990s, however,
so far nothing would contradict an FPT algorithm with respect to this parameter.
On the other hand, the W[1]-hardness parameterized by k for constant d, shown by
Cohen-Addad et al. [63] in the discrete case2, strongly suggests that the continuous
case might very well have the same behavior. Also, in Chapter 5, we have shown
quite strong W[1]-hardness results for several variants of Lp-k-Clustering: for the
parameter d + D in the case p = 0, the parameter D in the case p = ∞, and the
W[1]-hardness of Lp-Cluster Selection for the parameterization by t + d in the
case p = 1, and t + D in the case 1 < p < ∞. Recall that d is the dimension, k is
the number of clusters, D is the optimal cost of clustering, and in the case of Lp-
Cluster Selection t denotes the size of the target cluster; for the formal definition
of Lp-Cluster Selection we refer to Chapter 5. While in general the parameters
D, d and k can compare arbitrarily, intuitively it seems that the parameter D is more
or less the “strongest” out of these three. From this discussion, we get naturally the
following.

Open Problem 1. Is k-Means W[1]-hard parameterized by d+k? Can this at least
be said about some other variant of Lp-k-Clustering?

Another natural open problem concerns FPT algorithms parameterized by D for
versions of Lp-k-Clustering. In Chapter 5, we encountered a curious distinction:
while for p ∈ {0,∞} we showed W[1]-hardness, and for p = 1 an FPT algorithm, for

2Recall that in the discrete version of a clustering problem, the set of possible center locations
is given in the input.
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the most interesting case p = 2 we have neither. We know only W[1]-hardness of
L2-Cluster Selection, meaning that our approach for an FPT algorithm is not
applicable in this case. Thus we arrive to the second question of interest.

Open Problem 2. Is there an FPT algorithm for k-Means parameterized by D,
where input is in Zd?

Constrained clustering problems In Chapter 7, for a number of constrained
clustering problems we have shown the existence of a small-sized coreset. Namely,
for any kind of constraints that can be defined in terms of partitioning the input into
` colors and measuring the cardinality of each color in each cluster, e.g. capacity or
fairness constraints, there is an ` · poly(k, log n, ε)-sized (1 + ε)-coreset for both k-
Median in general discrete metric spaces and k-Means in Rd. While this bound has
a very modest dependence on the size of the input and approaches the best known
coresets even in the vanilla setting, it is not “tight” in two aspects. First, while in
general metric spaces it is known that the size Ω((k log n)/ε) is required [16], for Eu-
clidean k-Means in the vanilla setting there is a better upper bound of poly(k/ε) [84],
that is, the size of the coreset is completely independent of the input size. The ana-
logue of this would be interesting even for the simplest kind of constraints that can
be defined in terms of only one color, like capacitated or lower-bounded clustering.
Second, since there is no colors in the vanilla setting, there is also no dependence on
` for vanilla clustering coresets. While the size of the coreset depends linearly on `
in all coreset constructions for constrained clustering, to the best of our knowledge
there is no known lower bound requiring such a dependence. And if we would aim
not for a coreset, but just a (1 + ε)-approximate algorithm, for k-Means in Rd it is
known that any kind of constraints admits an efficient FPT-time algorithm that does
not depend exponentially on `, as long as the assignment problem can be solved in
the same time [27]. We summarize the above in the following open problems.

Open Problem 3. For (α, β)-Fair Clustering, is there a non-trivial coreset
construction that achieves a size bound that is independent of the number of colors
`?

Moreover, this question is interesting for any variant of fairness constraints, and
in fact for any version of color-constrained clustering.

Open Problem 4. For capacitated k-Means problem in the Euclidean space, is
there a coreset of size independent of n?

We have chosen capacitated clustering as a working example for Open Problem 4,
however this kind of result would be interesting for any non-trivial clustering con-
straints.

Additionally, in Chapter 7 we provided a (3 + ε) approximation algorithm for
color-constrained k-Median in general discrete metric spaces in time f(k, `, ε) ·nO(1)
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for a certain function f . To the best of our knowledge, there are no known algorithms
with a similar running time that improve this approximation factor. On the other
hand, it is known that for the vanilla version, such an FPT-time algorithm allows to
achieve an approximation factor of (1+2/e+ε), and this is tight [64]. Thus, even for
the simplest kind of constraints, such as capacitated clustering, beating the factor of
3 remains an interesting question.

Open Problem 5. For capacitated k-Median problem in the general metric setting
and any ε > 0, is there a (3 − ε)-approximation algorithm with running time f(k) ·
nO(1), for some function f?

Again, such results are not known for any kind of constraints, so progress here
would be interesting for any constrained clustering problem.

Clustering affine subspaces In Chapter 8, we presented a (1+ ε)-approximation
algorithm for k-Means clustering of ∆-points in Rd with running time f(k,∆, ε) ·
(nd)O(1). Recall that ∆-points are vectors in Rd that can have at most ∆ coordinates
replaced with the unknown “?” value. Another way to look at this problem, is that
the objects to cluster are axis-parallel affine subspaces in Rd of dimension at most
∆. A natural and intriguing question is whether it is possible to extend this result
to clustering of arbitrary low-dimensional affine subspaces in the Euclidean space.

Open Problem 6. Given a set of ∆-dimensional affine subspaces in Rd, is it possible
to find a (1+ε)-approximate k-Means clustering of these subspaces in time f(k,∆, ε)·
(nd)O(1)? The clustering objective here is the sum of squared distances from each
subspace to the respective center, where the center is a point in Rd and the distance
is the Euclidean distance from the center to the closest point on the subspace.

Efficient dimensionality reduction for PCA with Outliers Recall that in
Chapters 9 and 10 we presented an exact nO(rd)-time algorithm and a (1 + ε)-

approximate nO(r log rε−2)-time algorithm for PCA with Outliers. Since we also
know that there is no no(d)-time algorithm with any approximation factor, these al-
gorithms are practically tight. However, in our reduction the number of outliers is
of order n, so better algorithms in the case k = o(n) are not excluded. Moreover, for
the α-heavy assumption on the outliers, we give a 2poly(r,log k,log log n) · (nd)O(1)-time
algorithm, which is, in particular, FPT-time when parameterized by k+ r. So a nat-
ural question is, could the same be achieved for other assumptions on the outliers,
or for a general-case (1 + ε)-approximation algorithm with a suitable dependence on
ε? Such an algorithm would be interesting even if the dependence of the running
time on k is worse than ours, which is exponential in poly(log k). Our algorithm
is based on the existence of an efficient dimensionality reduction procedure for the
problem, therefore one potential approach to addressing this question may lie in de-
veloping a custom dimensionality reduction routine that works well with the PCA
with Outliers objective.
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Open Problem 7. Is there a (1+ε)-approximation algorithm for PCA with Out-
liers with running time f(k, r, ε)·(nd)O(1), for some function f? Could it be possible
with a certain reasonable assumption on the outliers?
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Karthik C. S., Bingkai Lin, Pasin Manurangsi, and Dániel Marx. Parameterized
intractability of even set and shortest vector problem. CoRR, abs/1909.01986,
2019.

[29] Avrim Blum, John Hopcroft, and Ravi Kannan. Foundations of Data Science.
June 2017.
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[48] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-
factor approximation algorithm for the k-median problem. J. Computer and
System Sciences, 65(1):129–149, 2002.

[49] Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Al-
gorithms for facility location problems with outliers. In Proceedings of the
12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
642–651. ACM/SIAM, 2001.

[50] Danny Z. Chen, Jian Li, Hongyu Liang, and Haitao Wang. Matroid and knap-
sack center problems. Algorithmica, 75(1):27–52, 2016.

[51] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational
lower bounds via parameterized complexity. J. Computer and System Sciences,
72(8):1346–1367, 2006.



278 Bibliography

[52] Ke Chen. A constant factor approximation algorithm for k -median clustering
with outliers. In Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 826–835. SIAM, 2008.

[53] Ke Chen. On coresets for k-median and k-means clustering in metric and eu-
clidean spaces and their applications. SIAM Journal on Computing, 39(3):923–
947, 2009.

[54] Xingyu Chen, Brandon Fain, Liang Lyu, and Kamesh Munagala. Proportion-
ally fair clustering. In International Conference on Machine Learning, pages
1032–1041, 2019.

[55] Yudong Chen, Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Ro-
bust matrix completion and corrupted columns. In Proceedings of the 28th
International Conference on Machine Learning (ICML), pages 873–880, 2011.

[56] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair
clustering through fairlets. In Advances in Neural Information Processing Sys-
tems, pages 5029–5037, 2017.

[57] Alexandra Chouldechova. Fair prediction with disparate impact: A study of
bias in recidivism prediction instruments. Big data, 5(2):153–163, 2017.

[58] Julia Chuzhoy and Yuval Rabani. Approximating k-median with non-uniform
capacities. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada,
January 23-25, 2005, pages 952–958. SIAM, 2005.

[59] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and
regression in input sparsity time. In Proceedings of the 45th Annual ACM
Symposium on Theory of Computing (STOC), pages 81–90. ACM, 2013.

[60] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and
Madalina Persu. Dimensionality reduction for k-means clustering and low rank
approximation. In Proceedings of the 47tg annual ACM symposium on Theory
of Computing (STOC), pages 163–172. ACM, 2015.

[61] Michael B. Cohen, Cameron Musco, and Christopher Musco. Input sparsity
time low-rank approximation via ridge leverage score sampling. In Proceedings
of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
page 1758–1777, USA, 2017. SIAM.

[62] Vincent Cohen-Addad. Approximation schemes for capacitated clustering in
doubling metrics. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 2241–2259. SIAM, 2020.



Bibliography 279

[63] Vincent Cohen-Addad, Arnaud de Mesmay, Eva Rotenberg, and Alan Royt-
man. The bane of low-dimensionality clustering. In Proceedings of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 441–
456. SIAM, 2018.

[64] Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Ja-
son Li. Tight FPT approximations for k-median and k-means. In Christel Baier,
Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th
International Colloquium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 42:1–42:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[65] Vincent Cohen-Addad and Karthik C. S. Inapproximability of clustering in
lp metrics. In David Zuckerman, editor, 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA,
November 9-12, 2019, pages 519–539. IEEE Computer Society, 2019.

[66] Vincent Cohen-Addad and Jason Li. On the fixed-parameter tractability of
capacitated clustering. In Christel Baier, Ioannis Chatzigiannakis, Paola Floc-
chini, and Stefano Leonardi, editors, 46th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras,
Greece, volume 132 of LIPIcs, pages 41:1–41:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

[67] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing, STOC
’71, page 151–158, New York, NY, USA, 1971. Association for Computing Ma-
chinery.

[68] Christophe Crespelle, P̊al Grøn̊as Drange, Fedor V. Fomin, and Petr A. Golo-
vach. A survey of parameterized algorithms and the complexity of edge modi-
fication, 2020.

[69] Cynthia S. Crowson, Elizabeth J. Atkinson, and Terry M. Therneau. Assessing
calibration of prognostic risk scores. Statistical methods in medical research,
25(4):1692–1706, 2016.

[70] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

[71] Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and
Saket Saurabh. Lower Bounds for Approximation Schemes for Closest String. In
Proceedings of the 15th Scandinavian Symposium and Workshops on Algorithm



280 Bibliography

Theory (SWAT), volume 53 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 12:1–12:10, Dagstuhl, Germany, 2016. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[72] Chen Dan, Kristoffer Arnsfelt Hansen, He Jiang, Liwei Wang, and Yuchen
Zhou. On low rank approximation of binary matrices. CoRR, abs/1511.01699,
2015.

[73] Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated exper-
iments on ad privacy settings: A tale of opacity, choice, and discrimination.
Proceedings on privacy enhancing technologies, 2015(1):92–112, 2015.
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[134] Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. Fair k-center
clustering for data summarization. In 36th International Conference on Ma-
chine Learning, ICML 2019, pages 5984–6003. International Machine Learning
Society (IMLS), 2019.

[135] Mehmet Koyutürk and Ananth Grama. Proximus: A framework for analyzing
very high dimensional discrete-attributed datasets. In Proceedings of the 9th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 147–156, New York, NY, USA, 2003. ACM.

[136] Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation
for k-median and k-means with outliers via iterative rounding. In Proceedings
of the 50th Annual ACM Symposium on Theory of Computing (STOC), pages
646–659. ACM, 2018.

[137] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation
schemes for clustering problems in any dimensions. J. ACM, 57(2):5:1–5:32,
2010.

[138] Ravi Kumar, Rina Panigrahy, Ali Rahimi, and David P. Woodruff. Faster
algorithms for binary matrix factorization. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, (ICML), volume 97 of Proceedings of
Machine Learning Research, pages 3551–3559. PMLR, 2019.

[139] Michael Langberg and Leonard J Schulman. Universal ε-approximators for
integrals. In Proceedings of the twenty-first annual ACM-SIAM symposium on
Discrete Algorithms, pages 598–607. SIAM, 2010.

[140] Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How we ana-
lyzed the compas recidivism algorithm. ProPublica (2016), 9(1), 2016.

[141] Euiwoong Lee and Leonard J. Schulman. Clustering affine subspaces: Hardness
and algorithms. In Proceedings of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 810–827. SIAM, 2013.

[142] H. W. Lenstra. Integer programming with a fixed number of variables. Math-
ematics of Operations Research, 8(4):538–548, November 1983.

[143] Jian Li, Ke Yi, and Qin Zhang. Clustering with diversity. In International Col-
loquium on Automata, Languages, and Programming, pages 188–200. Springer,
2010.

[144] Ming Li, Bin Ma, and Lusheng Wang. On the closest string and substring
problems. J. ACM, 49(2):157–171, 2002.



286 Bibliography

[145] Shi Li. On uniform capacitated k -median beyond the natural LP relaxation.
ACM Trans. Algorithms, 13(2):22:1–22:18, 2017.

[146] Tao Li. A general model for clustering binary data. In Robert Gross-
man, Roberto J. Bayardo, and Kristin P. Bennett, editors, Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Chicago, Illinois, USA, August 21-24, 2005, pages 188–197.
ACM, 2005.

[147] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory,
28(2):129–136, 1982.

[148] Satyanarayana V. Lokam. Complexity lower bounds using linear algebra.
Found. Trends Theor. Comput. Sci., 4:1–155, January 2009.

[149] Haibing Lu, Jaideep Vaidya, Vijayalakshmi Atluri, and Yuan Hong. Constraint-
aware role mining via extended boolean matrix decomposition. IEEE Trans.
Dependable Sec. Comput., 9(5):655–669, 2012.

[150] Bin Ma and Xiaoming Sun. More efficient algorithms for closest string and
substring problems. SIAM J. Computing, 39(4):1432–1443, 2009.

[151] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar
k-means problem is NP-hard. In Proceedings of the 3rd International Workshop
on Algorithms and Computation (WALCOM), Lecture Notes in Comput. Sci.,
pages 274–285. Springer, 2009.

[152] Michael W. Mahoney. Randomized algorithms for matrices and data. Founda-
tions and Trends® in Machine Learning, 3(2):123–224, 2011.

[153] Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Perfor-
mance of johnson-lindenstrauss transform for k-means and k-medians cluster-
ing. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, page 1027–1038, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery.

[154] Rashmi Malhotra and Davinder K Malhotra. Evaluating consumer loans using
neural networks. Omega, 31(2):83–96, 2003.

[155] Yair Marom and Dan Feldman. k-means clustering of lines for big data. In
Proceedings of the 33rd Annual Conference on Advances in Neural Information
Processing Systems (NeurIPS), pages 12797–12806, 2019.

[156] Dániel Marx. Closest substring problems with small distances. SIAM J. Com-
put., 38(4):1382–1410, 2008.



Bibliography 287

[157] N. Megiddo and K. Supowit. On the complexity of some common geometric
location problems. SIAM J. Computing, 13(1):182–196, 1984.
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