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Abstract

Numerical simulations and laboratory studies are our main tools to com-
prehend better processes happening in the subsurface. The phenomena
are modeled thanks to systems of partial di�erential equations (PDEs),
which are extraordinarily complex to solve numerically due to their often
highly nonlinear and tightly coupled character. After decades of research
on new and improved solving algorithms, there is still a need for accurate
and robust schemes. In this work, we investigate linearization schemes and
splitting techniques for fully coupled �ow and transport in porous media.

A particular case of multiphase �ow in porous media, the study of
water �ow in variably saturated porous media, modeled by the Richards
equation, is studied here. An external component, e.g., a surfactant, is
transported by the water phases. The resulting system of equations is
fully coupled and nonlinear.

In this work, we investigate three di�erent linearization schemes, the
classical Newton method, commonly used throughout the industry, the
modi�ed Picard method, and the L-scheme. Even though only linearly
convergent, the latter appears to be the most robust scheme for some
particular cases. The convergence of the L-scheme has also been studied
theoretically. Both the Newton method and modi�ed Picard are faster, in
terms of numbers of iterations, but fail to converge in cases of unsaturated-
saturated porous media or complex phenomena such as hysteresis e�ects.

The rate of convergence of the L-scheme can be improved by combin-
ing it with the Newton method or by using the Anderson acceleration.
The scheme resulting by combining the L-scheme and the Newton method
appears practically to be both quadratically and globally convergent. It
requires fewer iterations than the L-scheme, it is more robust than the
Newton method, and it also converges for larger time steps. Using larger
time steps can considerably decrease the total number of iterations over the
full simulation. Alternatively, by applying the Anderson acceleration, one
avoids the computation of any derivatives, and thus the implementation
of the algorithm is less invasive. The rate of convergence of the L-scheme
depends on user-de�ned parameters. Finding the optimal L values can be
tedious. Optimizing the Anderson acceleration is more straightforward,
and the improvements obtained are remarkable.

The equations investigated in this work are not only characterized by
nonlinear terms but are also fully coupled. The external component, dis-
solved into the water phase, directly in�uences the �ow. We investigate
two splitting approaches, the canonical nonlinear splitting, and an alter-
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nate linearized splitting. We compare them in terms of the numbers of
iterations required to achieve the convergence, and the condition numbers
of the systems to be solved within each iteration. After all, the latter ap-
pears to be a better alternative; it requires fewer iterations and achieves
equally accurate results. A monolithic or fully implicit formulation is also
investigated. The solution algorithm is computationally slower than the
splitting ones but appears to be more robust.

Finally, a global random walk approach for solving the coupled nonlin-
ear problem is also studied. The scheme results in being free of numerical
di�usion. Using vast numbers of particles, almost as many as the molecules
involved in the reaction, it produces an intuitive representation of the pro-
cess. The global random walk algorithms are explicit and thus often more
straightforward than the typical �nite volume/element schemes.

The models investigated in this work represent a particular case of two-
phase �ow in porous media. Still, we are con�dent that similar results,
concerning the linearization schemes and solving algorithms, can also be
achieved in the case of more canonical models.
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Chapter 1

Introduction

Modeling �ow in porous media is a classic example of a mathematical
approach used to represent complex physical phenomena. Numerous pro-
cesses, which play fundamental roles in our society, are instances of �ow in
porous media. Enhanced oil recovery, soil remediation, and medical di�u-
sion in biological tissues are a few examples. The problems span entirely
di�erent �elds, from energy production to preservation of natural habitats
to medicine. Later on, we will observe that such porous structures are
present in various materials, both natural and manufactured.

All the aforementioned phenomena are complex physical processes and
are remarkably challenging to model and simulate. In applied mathemat-
ics, engineering, and physics, one aims to simplify the processes as much
as possible to be able to investigate them while at the same time, obtain
accurate simulations. This can be achieved in various ways, e.g., by ne-
glecting some secondary e�ects, but also by assuming that some quantities
remain constant, and more. The description will then not be completely
accurate, but the problems are otherwise too complex to solve. The er-
rors here obtained are de�ned as modeling errors due to the simpli�cations
and assumptions taken into account. Furthermore, one incurs in numerical
errors due to inaccuracies in the numerical computations.

Partial di�erential equations (PDEs) are one of the mathematical tools
used to study all these processes. Even though these equations have been
investigated for decades, there is still a need for accurate and robust solvers
due to their complexity. We will concentrate mainly on how to treat the
nonlinearities that often characterized such equations. Furthermore, when
investigating systems of PDEs, the equations involved can be coupled to-
gether. We will study di�erent solution algorithms that either solve the

3



4 Chapter 1. Introduction

equations all together or split them.
A central focus of this work is the �ow of water in variably saturated

porous media, modeled by the Richards equation [12, 33, 55]. Unsatu-
rated/saturated domains are found, for example, in the section of the soil
closer to the surface. In the upper part of the soil, air and water phases
coexist; thus, the domain is unsaturated. Below the water table, only
the water phase is found, and thus the domain becomes fully saturated.
Furthermore, an external component, e.g., a surfactant, is dissolved and
transported in the water phase. The process is modeled by a reactive
transport equation [3, 21, 35, 43, 47, 49, 65, 70, 80]. Soil remediation
is a classical physical phenomenon that can be studied thanks to this set
of equations. The surfactant is dissolved in the water phase �owing in
the variably saturated porous medium. Of large interest is, for example,
to understand which regions have already been reached by the substance.
Furthermore, it allows us to know if the reservoirs below the water tables
have been contaminated. Surfactants are chemical compounds commonly
used in our everyday life, from detergency to emulsi�cation. Moreover,
they are also used in enhanced oil recovery (EOR) processes. They are fre-
quently used to remove contaminants from underground reservoirs. They
are considered safe at low concentrations [20], but their accumulation in
water reservoirs can results in natural disasters [86]. Thus one needs to
pay particular attention to the transportation of such substances.

The equations used here to describe the �ow and transport are fully
coupled, nonlinear, possibly degenerate PDEs. The resulting system is ex-
traordinarily complex to solve numerically. When investigating �ow and
transport, the equations are commonly one-way coupled. The �ow in�u-
ences the transport, but the external component's e�ects on the �ow are
neglected for ease of the study. In this work, we will include such e�ects,
and thus the equation will be fully coupled.

To solve numerically the system of PDEs obtained, one needs �rst to
discretize in time and space the equations involved. We refer to [28] for
a practical review of numerical methods for the Richards equation. Due
to the low regularity of the solution and the need of relatively large time
steps, the backward Euler method is an optimal candidate for the time
discretization. There exist numerous spatial discretization techniques, to
name a few the Galerkin Finite Element Method (FEM ) [9, 46, 61, 73], the
Discontinuous Galerkin Method (DGM ) [7, 52], the Mixed Finite Element
Method (MFEM ) [6, 13, 30, 66, 67, 83, 87], the Finite Volume Method
(FVM ) [16, 25, 26] and the Multi-Point Flux Approximation (MPFA) [1,
8, 10, 45], which is an example of FVM.
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Since the time discretization, given by the backward Euler, is implicit,
the resulting fully discretized problem is a sequence of nonlinear equations.
Nonlinear quantities characterize, in fact, both Richards and transport
equations. Thus, one needs to linearize the resulting discretized nonlin-
ear problems. There exist numerous linearization techniques, each with
its advantages and disadvantages. For example, one can use the classi-
cal Newton method, here presented in Section 3.2.1, which is remarkably
fast but not very robust. The scheme can fail to converge for especially
complex problems. A possible alternative, here thoroughly investigated
and �rst presented in Section 3.2.3, is the L-scheme [55, 64]. The scheme
is usually slower in terms of the number of iterations than the Newton
method, but it is more robust. Also, there exist various techniques that
can be used to accelerate the scheme. In this work, we test two di�erent
approaches; �rst, we combined the Newton method and the L-scheme, ob-
taining a so-called mixed scheme. The linearization technique appears to
be both globally and quadratically convergent. Moreover, we implement
the Anderson acceleration (Section 3.4), a powerful post-processing tool
that can drastically improve the rate of convergence of linearly convergent
schemes [5].

Furthermore, either monolithic (Section 3.3.1) or splitting solvers (Sec-
tions 3.3.2 and 3.3.3) are implemented to solve the coupled problem. The
former are often easier to construct and more stable. The latter give more
freedom in the solving process. One can combine di�erent solvers for the
�ow and the transport, respectively. We presented two di�erent splitting
schemes, the canonical nonlinear splitting, and an alternate linearized spit-
ting. The latter appears to be a valid alternative to the more commonly
used nonlinear approach.

1.1 Main results

This thesis's main contributions are novel linearization schemes and solving
algorithms for coupled Richards and transport equations. Four di�erent
papers compose this thesis. In each one of them, we studied di�erent mod-
els, but the conclusions were often similar. The original �ow and transport
in variably saturated porous media are extended by adding the dynamic
capillarity e�ects and later the hysteresis e�ects. The L-scheme, already
studied in various previous works, e.g., [55, 64], is here extended to this
particular coupled problem. The Anderson acceleration is used to improve
the rate of convergence of the linearly convergent scheme. Moreover, given
the coupled nature of the problem, we investigate di�erent solving algo-
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rithms. We propose a linearized splitting solver as an alternative to the
canonical nonlinear splitting. Finally, we also investigate a global random
walk (GRW) solution algorithm.

1. To develop solvers for fully coupled Richards and transport
equations. In Papers A and C, we design and numerically assess
three di�erent algorithms' performance: a monolithic solver and two
splitting ones. The alternate linearized splitting proposed here ap-
pears to be a better alternative to the canonical nonlinear splitting.
It results faster in terms of the number of iterations required to ob-
tain the solution. Furthermore, the two solvers are equally accurate.

2. Rigorous convergence analysis for the L-scheme applied to
the coupled Richards and transport equations. In Paper A, we
prove the convergence of the L-scheme, in its monolithic formulation,
and discuss the convergence of modi�ed Picard and Newton methods.

3. To propose an improved linearization scheme. In Paper B, we
observed that a combination of the L-scheme and the Newton method
results in being a globally and quadratically convergent linearization
scheme. The model studied here includes the dynamic capillarity
e�ects.

4. To study the Anderson acceleration for the fully coupled
nonstandard problem. In Paper C, we implement the Anderson
acceleration, observing how such a tool can drastically improve lin-
early convergent schemes, e.g., the L-scheme. The model investigated
includes both dynamic capillarity and hysteresis e�ects.

5. To develop a global random walk solver. In Paper D, we pro-
pose and investigate a GRW solver for di�erent sets of equations.
The solution algorithm is �rst built upon a one-dimensional Richards
equation, and it is �nally extended to the fully coupled �ow and
transport investigated in the other papers. The resulting technique
is free of numerical di�usion and presents considerable improvements
compared to the standard two-point �ux approximation.



Chapter 2

Mathematical modeling

Conservation of mass, momentum and energy are examples of conserva-
tion laws, forming the basis for many physical models, including �ow in
porous media. The governing equations are then completed by including
constitutive laws. Such are based on experimental observations and often
take into account many simpli�cations. Darcy's law is a classic example
of constitutive law. It describes the �ow of a single �uid through a porous
medium. It was stated after Henry Darcy performed numerous experi-
ments on columns of sands. To close a model, �nally, boundary conditions
have to be stated.

In the following sections, we will present the fundamental elements on
which models for �ow in porous media are built. We will start with a
brief discussion regarding what is a porous medium and its properties.
Then, thanks to Darcy's law and the mass conservation law, we present
the model for single-phase �ow in porous media. From there, we extend
the model to two-phase �ows including the nonstandard e�ects, such as
dynamic capillary pressure and hysteresis. A particular case of two-phase
�ow, a so called one a-half phase �ow, modelled by the Richards equation
is the model mainly investigated in this work. An external component
is dissolved in the water phase and a transport equation is also taken
into account. All in all, this chapter provides a brief introduction of the
mathematical models which have been the basis of this work.

7
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2.1 Porous media

Porous media are materials presenting pores through which �uid can �ow
and be stored. They can be found all around us. We can observe them in
the soil, in biological tissues and also in man-made materials, e.g., cement.
In this work, we mainly concentrate on underground water reservoirs, but
similar models can be used for di�erent media. Two properties are funda-
mental when describing a porous medium: its porosity and its permeability.
The �rst describes the ability to store �uid and depends on the size and
number of pores. The latter describes the ability to transmit a �uid and
thus depends on the connection between the pores.

When studying �ow in porous media one need to establish which mod-
eling scale is most appropriate. One could investigate the individual pores
and pore channels, thus studying the �ow on a so called pore-scale. The
domains considered in reservoir simulations extend often for kilometers and
thus it is not convenient to use such scale. One needs to individuate an ap-
propriate representative elementary volume (REV). REVs are the smallest
volumes over which reservoir properties, such as porosity and permeability,
are representative of the whole domain.

2.1.1 Porosity

The porosity is de�ned as the fraction of pore space within a REV [54, 62],
precisely

φ =
Vp
Vb

(2.1)

where Vp is the volume of the pores, and Vb is the bulk volume. By its
de�nition, φ is a fraction between 0 and 1. Porosity equal to 0 means
that no pores are included in the domain. In this work, we consider a
rigid or nondefomable domain; thus, Φ is a non-changing value that can be
measured in the absence of �uid. In the case of deformable domains, the
porosity depends on the pressure of the �uid and the rock compressibility.

2.1.2 Permeability

As previously stated, the permeability describes the ability to transmit
�uids, [54, 62]. It is commonly indicated with K and it is a proportionality
factor between the �ow rate and the applied pressure. The SI-unit is
m2, but it is more often measured in darcy, 1D ≈ 0.987 · 10−12m2. The
permeability of reservoirs usually studied ranged from 0.1 mD (millidarcy)
to 20 D [54].
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For ease of presentation, one often assumes that the permeability is a
scalar; more generally, it is a tensor of the form

K =

KxxKxyKxz

KyxKyyKyz

KzxKzyKzz

 . (2.2)

The elements on the diagonal of K represent how the pressure drop in
one direction directly in�uences the �ow rate in the same axial direction.
The remaining terms describe the relationship between �ow rate in one
direction and pressure drop in the perpendicular directions.

A parameter, such as the permeability, is de�ned as anisotropic when
it changes values depending on the direction in which it is considered.
Alternatively, in case of no directional di�erences, it is de�ned as isotropic
[62]. Whenever the full tensor K is needed, the porous medium is de�ned
as anisotropic. Opposite to that, if a diagonal representation is su�cient,
it is called isotropic. Furthermore, the full tensor K is always symmetrical
and positive de�nite [54].

2.1.3 Heterogeneous porous media

The soil under our feet and many other porous media contain complex
structures and have heterogeneous properties. A property is de�ned as
homogeneous if its values do not depend on the position in the domain.
Conversely, it is de�ned as heterogeneous if it is a function of spatial lo-
cation. To describe heterogeneous porous media, one often uses statistical
tools [2, 38]. MRST, the Matlab Reservoir Simulation Toolbox [54], for
example, includes two simpli�ed methods to generate geostatistical rela-
tions, the gaussianField and the logNormLayers functions. Such tools
were brie�y used in Paper A, when we investigated a more realistic porous
medium, with a heterogeneous permeability. Furthermore, in Paper D, we
study domains with permeability modeled as a log-normal space random
function with �xed variance and correlation lengths. An example of such
domains is given by Fig. 2.1. The permeability is obtained thanks to a
Kraichnan �eld generator [79].

2.2 Mass conservation and Darcy's law

The mass conservation law states that the temporal changes in mass within
a volume must equal the �uxes �owing through its boundary and any
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Figure 2.1: Example of heterogeneous conductivity studied in Paper D.

source and sink within the volume itself. Formally this becomes:∫
ω

∂(φρ)

∂t
dV = −

∫
∂ω

ρu · ndA+

∫
ω

ρqdV, (2.3)

where ω is a general volume, contained within the porous media Ω, ∂ω its
boundary, φ the porosity of the porous medium, ρ the density of the �uid,
u the �ux, n the outward pointing normal vector and q any source or sink
inside the domain ω. The divergence theorem can be applied to the surface
integral, and considering that the volume ω is arbitrary one can conclude
that the single-phase �uid must satisfy the continuity equation:

∂(φρ)

∂t
+∇ · (ρu) = ρq, in Ω. (2.4)

As previously stated, constitutive laws are also required to complete
the model. Henry Darcy, in 1856, studied how water �ows in a column of
sand. The main result out of his numerous experiments is the Darcy's law
for single-phase �ow:

u = −K

µ

(
∇p− ρg

)
, (2.5)

where u is the volumetric �ux, K is the permeability introduced in the pre-
vious section, µ the dynamic viscosity, p the pressure of the �uid, ρ its den-
sity, and g the gravitational acceleration. Note that g = (0, 0,−9.81)T =
−9.81∇z

In the case of incompressible �uid and matrix, the porosity and the
density are pressure independent and constant in time. Thus, one can
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simplify the continuity equation (2.4), and combining it with Darcy's law
(2.5), it results in:

−∇ ·
(K
µ

(
∇p− ρg

))
= q in Ω. (2.6)

2.3 Initial and boundary conditions

To close the system of equations introduced in the previous section, so that
a solution is de�ned, one needs to de�ne the boundary conditions. They
determine the behavior on the boundary of the domain. Furthermore,
in the case in which the �uid or the rock are compressible, one studies
a parabolic equation and thus needs an initial condition. When study-
ing incompressible �uid and rock, equation (2.6) is elliptic, and no initial
condition is required.

Considering the domain Ω and the time interval [0, T ], with T the �nal
time step, one is often interested in describing a closed �ow system; no �uid
can �ow across the external boundary of the domain. This is achieved by
imposing a homogeneous Neumann condition,

u(x, t) · n = 0 for x ∈ ∂Ω and t ∈ (0, T ]. (2.7)

Using the boundary condition (2.7), also called no-�ow condition, any pres-
sure solution of (2.6) is de�ned up to a constant. One must prescribe a
value along the boundary. The reservoir investigated is often connected,
along at least one side, to a more extensive porous medium which can
provide additional pressure support. One �xes the pressure on such a
boundary by imposing a Dirichlet condition

p(x, t) = pDiric(x, t) for x ∈ Γ ⊂ ∂Ω and t ∈ (0, T ]. (2.8)

Finally,a non-vanishing normal �ux could be prescribed on a part of the
boundary, which is included by a so-called inhomogeneous Neumann con-
dition

u(x, t) · n = uNeu(x, t) for x ∈ Γ ⊂ ∂Ω and t ∈ (0, T ]. (2.9)

As previously stated, in the case of a parabolic equation, one also needs
to impose an initial condition of the form

p(x, 0) = p0(x) for x ∈ Ω. (2.10)
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2.4 Two-phase �ow

We will now extend the formulation previously presented for single-phase
�ow to two-phase �ow. When studying two-phase �ow, two �uids are
transmitted within the reservoir. We can always individuate a wetting
phase and a nonwetting one. The wetting phase is the �uid that is more
easily attracted by the medium (wettability) [54], while the other is the
nonwetting one. A typical example can be water and oil, the �rst being
the wetting phase, the latter being the nonwetting one. Considering that
two phases are now present in the reservoir, one can de�ne the saturation.
The saturation of the phase α, Sα, is the fraction of the pore volume
occupied by the phase α. We always assume that the �uids �ll the entire
void space in the porous medium, so that:∑

α

Sα = 1. (2.11)

Given the pressures of the two phases, we de�ne the macroscopic capillary
pressure as the di�erence between the nonwetting (pn) and the wetting
(pw) pressures:

pcap = pn − pw. (2.12)

The capillary pressure plays a fundamental role in the modeling of two-
phase �ows. Thanks to numerous experiments [19, 71, 72], it has been
observed that the capillary pressure depends on the saturation of the wet-
ting phase, i.e. pcap = Pc(Sw). Such holds true for steady states �ow
under static condition. A typical example of the capillary pressure curve is
presented in Fig. 2.2. There, we can observe two curves, the drainage and
the imbibition curves. The former describes the process of a nonwetting
�uid displacing the wetting one. The latter describes the opposite; the
wetting phase displaces the nonwetting one.

When discussing single-phase �ows, we de�ned the permeability. In the
case of two-phase �ows, one needs to introduce the e�ective permeability
Ke
α, which describes the capacity of the rock to transmit the phase α. Ke

α

is always smaller than K; the second �uid β can be seen as an additional
obstacle. Thus, one can de�ne the relative permeability as

krα = Ke
α/K. (2.13)

Relative permeabilities are usually functions of the saturations, in case of
two-phase �ow we have

krn = krn(Sn) and krw = krw(Sw), (2.14)
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Figure 2.2: The hysteresis loop, �gure inspired by the study done in [57].

where the index n indicates the nonwetting component and w the wetting
one.

Finally, given the relative permeabilities krα we can write the conser-
vation equations and generalized Darcy's law for two-phase �ows

∂

∂t

(
φραSα

)
+∇ · (ραuα) = ραqα,

uα = −Kkrα
µα

(
∇pα − ραg

)
,

(2.15)

for α = w, n and every domain Ω.

2.4.1 Richards equation

The Richards equation is commonly used to study the water �ow in vari-
ably saturated porous media, [12, 33, 55]. The vadose or unsaturated
zone extends from the ground surface to the underground water table. In
this region, water and air, classical examples of two immiscible phases,
coexist. Many simpli�cations are often taken into account, reducing the
two-phase �ow to a so called one-a half phase [54]. One central assump-
tion for this is that the inactive phase, the air phase, is connected to the
atmosphere. Thus the air pressure is set equal to the atmospheric one,
due to the fact that air is much less viscous than water. Furthermore,
the atmospheric pressure is set equal to zero, obtaining pn = pair = 0
and pcap = pn − pw = −pw. Based on these assumptions, the equations
commonly used to model two-phase �ows can be reduced to the simpler
Richards equation:

∂θ(Ψ)

∂t
−∇ ·

(
K(θ(Ψ))∇(Ψ + z)

)
= H, (2.16)
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where θ is the water content (ΦSw), expressed as a function of the pressure
head Ψ, K is the conductivity, z denotes the vertical coordinate of x,
opposite to the gravity, and H is an external force or source term involved.
The pressure head Ψ is de�ned as: Ψ = p

ρg , with p the pressure of the
water phase. The conductivity K is a quantity that depends from both
the medium and the �uid. Given the permeability K̃, the conductivity is
K := ρgK̃/µ. In the following, if not otherwise speci�ed, K will always
refer to the conductivity, not the permeability. The Richards equation is a
degenerate parabolic PDE, whose solution has typically low regularity [4].

One commonly used set of expressions for θ and K is given by the van
Genuchten-Mualem model [82], precisely

θ(Ψ) =

{
θr + (θs − θr) (1 + (−βΨ)m)

−m−1
m , Ψ ≤ 0

θs, Ψ > 0,
(2.17)

K(θ(Ψ)) =

Ksθe(Ψ)
1
2

[
1−

(
1− θe(Ψ)

m
m−1

)m−1
m

]2
, Ψ ≤ 0

Ks, Ψ > 0,

(2.18)

where θr and θs represent the values of the residual and saturated water
content, θe = (θ − θr)/(θs − θr) is the e�ective water content, Ks is the
saturated conductivity and β and m are model parameters dependent on
the soil [33].

2.5 Dynamic capillarity and hysteresis

Previously, we have introduced the concepts of drainage and imbibition.
These processes can repeat themselves, one after the other. For instance,
one can start by injecting water (water�ooding) in a reservoir �lled with
oil, until a certain oil saturation is reached (residual saturation). This
value represents the quantity of oil that remains trapped in the pores and
cannot be extracted by merely injecting more water. The process will
create an imbibition curve, like the one presented in Fig. 2.2. If then water
is displaced by injecting oil, the drainage curve and a residual saturation
for the water are obtained. It is evident that the two curves are completely
di�erent, thus the cycle is de�ned hysteretical [11, 36, 57, 74].

Moreover, a new imbibition process, results in a curve di�erent from the
primary one. The reason for this is a so-called dynamic capillary pressure.
The behavior of the hysteretical system depends not only on its current
state but also on its history. Such dynamic e�ects have been observed in
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laboratory experiments and have already been studied in many papers, e.g.,
[22, 29, 31, 34, 58, 75, 90]. The complex structure of the pores forming the
medium, and thus the droplets of oil trapped in it, are part of the causes for
this phenomenon. Any point of the area bounded by the primary drainage
and imbibition curves of Fig. 2.2 could represent an equilibrium point.
In Paper A, both hysteresis and dynamic capillary pressure e�ects were
neglected. This formulation is the easiest and thus the most commonly
used. In Articles B and C, we use the play-type hysteresis and dynamic
capillary e�ects as introduced in [11]. More precisely,

pn − pw ∈ Pc(Sw)− τ(Sw)∂tSw − γsign(∂tSw) (2.19)

where τ(Sw) > 0 denotes the dynamic capillary coe�cient and sign(∂tSw)
is the sign graph

sign(∂tSw) =


1 for ∂tSw > 0,

[−1, 1] for ∂tSw = 0,

−1 for ∂tSw < 0,

(2.20)

used to describe the hysteresis e�ects, with γ the width of the primary
hysteresis cycle. By choosing τ(Sw) = 0, the dynamic e�ect are neglected.
Similarly, if γ = 0, there is no di�erence between the drainage and im-
bibition curves and thus the hysteresis e�ects are not taken into account.
The resulting model is investigated in Paper B, only the dynamic capillary
e�ects are included.

2.6 Surfactant transport

The �nal model studied in this work is the reactive transport equation. It
describes the movement of an external component, dissolved in one of the
phases. We will consider, e.g., a surfactant transported by the water phase
in a variably saturated domain. Surfactants are substances that can re-
duce the forces occurring between two phases inside a porous medium. For
instance, surfactants can be used to reduce the interfacial tension between
oil and water, enabling them to combine. Thus, they are commonly used in
enhanced oil recovery because they can improve the production, allowing
the extraction of trapped oil [53]. Furthermore, surfactants are commonly
used for remediation of contaminated soil [60]. Water is injected in con-
taminated reservoirs (soil washing or �ushing), and the pollutant is thus
removed. The water solubility is the controlling removing mechanism; sur-
factants and other additives can accelerate the process. Moreover, it has
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been observed that pretreatment of contaminated soil with surfactant can
enhance these contaminants' biodegradation.

All the aforementioned processes, involving the injection, and thus the
transportation of a surfactant in porous media, can be described by the
following equation.

∂
(
θ(Ψ)c

)
∂t

−∇ · (D∇c− uwc) +R(c) = H2, (2.21)

where c is the concentration of the external component, D is the di�usion /
dispersion coe�cient, assumed to be constant for ease of presentation, uw

is the water �ux, R(c) is the reaction term, expressed as a function of the
concentration, and �nally H2 is an external force or source term involved
in the process. The e�ects due to the di�usion and the dispersion of the
component are also taken into account. When studying �ow in porous
media, and particularly oil recovery, they are often neglected because the
advection e�ects dominate the transport.

2.7 Fully coupled systems for reactive trans-
port in variably saturated porous media

Combining the Richards (2.16) and the transport (2.21) equations de�ned
in the previous sections, one obtains the coupled system:

∂θ(Ψ)

∂t
−∇ · (K(θ(Ψ))∇(Ψ + z)) = H1,

∂
(
θ(Ψ)c

)
∂t

−∇ · (D∇c− uwc) +R(c) = H2.

(2.22)

Initial conditions and homogeneous Dirichlet boundary conditions for both
pressure and concentration close the system. The formulation is restricted
to the homogeneous boundary conditions for sake of simplicity. The system
(2.22) is not fully coupled, but only one-way coupled. The concentration of
the external component does not in�uence the water �ow. System (2.22)
represents a simpli�ed formulation which is often valid.

A more precise formulation is obtained by including the e�ects of the
external component on the water �ow. The external component, dissolved
in the water phase, in�uences the surface tension ζ, which becomes a func-
tion of the concentration, and this results in a rescale of the pressure [78]

θ(Ψ, c) := θ
(
ζ(c)Ψ

)
, with ζ(c) =

1

1− b log(c/a+ 1)
. (2.23)
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The water content θ becomes itself a function of both pressure and con-
centration. The parameters a and b depend on the �uid and the medium.
We refer to [37, 77, 78] for details regarding (2.23). The equation above is
used to model the in�uence of a surfactant on the water tension but simi-
lar equations can be used for di�erent substances. One should not neglect
such e�ects when studying the transport of surfactants, which are injected
in the reservoir for their abilities to modify the surface tension. Given the
double dependency of θ on both Ψ and c, from (2.23) one naturally obtains
the fully coupled system:

∂θ(Ψ, c)

∂t
−∇ ·

(
K
(
θ(Ψ, c)

)
∇(Ψ + z)

)
= H1,

∂
(
θ(Ψ, c)c

)
∂t

−∇ · (D∇c− uwc) +R(c) = H2.

(2.24)

The van Genuchten-Mualem formulation for the water content and the
conductivity becomes:

θ(Ψ, c) =

θr + (θs − θr)
(

1 +
(
− β( 1

1−b log(c/a+1) )Ψ
)m) 1−m

m

Ψ ≤ 0,

θs Ψ > 0,

K(θ(Ψ, c)) =

Ksθe(Ψ, c)
1
2

[
1−

(
1− θe(Ψ, c)

m
m−1

)m−1
m

]2
Ψ ≤ 0,

Ks Ψ > 0.

Once more homogeneous boundary conditions and initial conditions for Ψ
and c close the system. We will refer to system (2.24) as the standard
fully coupled model. This system is studied in Paper A and Paper D. In
[67], a similar fully coupled problem is studied. The reaction term, in the
transport equation, produces water and thus the problem results being
fully coupled.

A more complete formulation is obtained when dynamic capillary pres-
sure and hysteresis e�ects are taken into account. The water content is
not expressed as a function of the unknown pressure and concentration,
but it becomes itself an unknown. Including the nonstandard e�ects into
the coupled system (2.24), we obtain:

∂tθ −∇ · (K(θ)∇(Ψ + z)) = H1,

Ψ + pcap(θ, c)− τ(θ)∂tθ ∈ γ(θ)sign(∂tθ),

∂t(θc)−∇ · (D∇c− uwc) +R(c) = H2,

(2.25)
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with θ, Ψ and c the three unknowns. The sign graph can be regularized
by using

Ξ(ξ) =

{
sign(ξ) if |ξ| ≥ δ,
ξ/δ if |ξ| < δ,

(2.26)

setting ξ = ∂tθ and choosing a positive δ, the system representing the
nonstandard formulation becomes

∂tθ −∇ · (K(θ)∇(Ψ + z)) = H1,

Ψ + pcap(θ, c)− τ(θ)∂tθ = γΞ(∂tθ),

∂t(θc)−∇ · (D∇c− uwc) +R(c) = H2.

(2.27)

We investigated the system (2.27) in Paper C. In Paper B we have studied
the special case γ = 0, i.e. a system characterized by dynamic capillary
pressure but no hysteresis.



Chapter 3

Numerical methods

In this chapter, we present di�erent techniques that can be used to nu-
merically solve the equations described in the previous chapter. First, we
introduce time and space discretizations. The discretized equations cannot
directly be solved due to the nonlinearities of the terms involved. We there-
fore investigate di�erent linearization schemes. Finally, we present both
monolithic and splitting schemes to solve the obtained fully coupled, dis-
cretized and linearized systems. For ease of presentation, we consider here
the standard model (2.24) where dynamic capillary pressure and hystere-
sis e�ects are neglected. The discretization techniques, the linearization
schemes and the solving algorithms can easily be extended to the nonstan-
dard model (2.25), as in Papers B and C.

3.1 Discretization in space and time

Before introducing the discretization, we discuss the weak formulation of
system (2.24), serving as foundation for the following discussion. We start
by presenting some spaces commonly used in functional analysis. We de-
note by L2(Ω) the space of real valued, squared integrable functions de�ned
on Ω, andH1(Ω) its subspace, containing the functions having also the �rst
order weak derivatives in L2(Ω). H1

0 (Ω) is the space of functions belonging
to H1(Ω) and having a vanishing trace on ∂Ω. Furthermore, we denote
by < ·, · > the standard L2(Ω) scalar product (and by ‖·‖ the correspond-
ing norm) and the pairing between H1

0 (Ω) and its dual H−1(Ω). Finally,
by L2(0, T ;X), for some T > 0, we mean the Bochner space of functions
taking values in the Banach-space X, the extension to H1(0, T ;X) being

19
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straightforward. For a more detailed introduction we refer to the textbook
[23].

We state the weak formulation of the problem related to (2.24), as
presented in Paper A:

Problem P: Find Ψ, c ∈ L2(0, T ;H1
0 (Ω))∩H1(0, T ;H−1(Ω)) such that

< ∂tθ(Ψ, c), v > + < K
(
θ(Ψ, c)

)
∇(Ψ + z),∇v >=< H1, v >, (3.1)

and

< ∂t
(
θ(Ψ, c)c

)
, w > + < D∇c+ uwc,∇w >=< H2, w >, (3.2)

hold for all v, w ∈ H1
0 (Ω) and for almost every t ∈ (0, T ]. For ease of

presentation, we neglected the reaction term R(c).
Due to the low regularity of the solution [4] and the need for relatively

large time steps, the backward Euler method is the best candidate for the
time discretization. The process studied in reservoir simulations can take
place over considerable time intervals, thus the need for large time steps.
We discretize Problem P by combining the backward Euler method with
linear Galerkin �nite elements as spatial discretization.

Let N ∈ N be a strictly positive natural number and the time step
∆t := T/N . Thus, the discrete times are tn := n∆t (n ∈ {0, 1, . . . , N}).
Furthermore, let Th be a regular decomposition of Ω into d-dimensional
simplices, Ω = ∪

T ∈Th
T , with h denoting the mesh diameter. The �nite

element space Vh ⊂ H1
0 (Ω) is de�ned by

Vh := {vh ∈ H1
0 (Ω) s.t. vh|T ∈ P1(T ), for any T ∈ Th}, (3.3)

where P1(T ) denotes the space of linear polynomials on T and vh|T the
restriction of vh onto T .

For the fully discrete counterpart of Problem P we let n ≥ 1 be �xed
and assume that Ψn−1

h , cn−1h ∈ Vh are given. The solution pair at time tn
solves:

Problem Pn: Find Ψn
h, c

n
h ∈ Vh such that for all vh, wh ∈ Vh there

holds

< θ(Ψn
h, c

n
h)− θ

(
Ψn−1
h , cn−1h

)
, vh >

+∆t < K(θ(Ψn
h, c

n
h))(∇Ψn

h + ez),∇vh >= ∆t < H1, vh >,
(3.4)

and

< θ(Ψn
h, c

n
h)cnh − θ(Ψn−1

h , cn−1h )cn−1h , wh >

+∆t < D∇cnh + un
wc

n
h,∇wh >= ∆t < H2, wh >,

(3.5)
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where ez denotes the unit vector in the direction opposite to gravity. Note
that Problem Pn is a coupled system of two elliptic, nonlinear equations.
The water content θ and the conductivity K are both expressed as func-
tions of the unknown pressure Ψn

h and concentration cnh.
The space discretization presented above is based on linear Galerkin

�nite elements. Finite element methods are the most common discretiza-
tion techniques used for these sets of equations. The linearization schemes
and solving algorithms, already investigated in previous papers, e.g., [55,
64], are built on them. For this reason, Problem Pn will serve as a basis
for the presentation of the linearization schemes and solving algorithms in
the following sections.

Finite elements methods are not the only discretization techniques
available. There exist also a large number of �nite-di�erence and �nite-
volume methods. The standard discretization used in MRST and also
throughout the industry is the two-point �ux approximation scheme (TPFA).
TPFA is a �nite-volume method which is easy and computationally cheap
to implement. We refer to [54] for both a presentation of the method
and description of the implementation in MRST. Di�erent discretization
schemes can be taken into consideration; the linearization schemes do not
depend on them.

3.2 Linearization schemes

The models presented in the previous chapter contain several nonlineari-
ties. In particular, the water content θ and the conductivity K, de�ned
by the van Genuchten formulation, are highly nonlinear. Furthermore, the
reaction term, often included in the transport equation, can be nonlinear.

There exist numerous techniques to linearize nonlinear quantities. In
this work, we investigate mainly the classical Newton method, the L-
scheme, presented as an alternative to the former, and the modi�ed Picard
method. All of them are characterized by the introduction of a lineariza-
tion loop, with iteration index j, starting at j = 1. At the time step n
and iteration j + 1 we will indicate with Ψn,j+1

h , the unknown pressure,
similarly we can de�ne the other unknowns. One needs to specify an ini-
tial guess for j = 1. The most natural choice is setting Ψn,1

h = Ψn−1
h .

For globally converging schemes, such as the L-scheme, one could use a
di�erent value for the pressure, but such choice is necessary when using
the Newton method. This may induce severe restrictions on the time step
size as observed in [69].

We decided to investigate three linearization schemes because each has
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its advantages and disadvantages; a perfect scheme has not been found
yet. The Newton method is quadratically but only locally convergent.
The L-scheme is generally globally but only linearly convergent. Thus, the
former, when converging, is faster in term of numbers of iterations. The
latter is more robust and often converges when the Newton method fails.
The modi�ed Picard method is only linearly and locally convergent but it
is more robust than the Newton method.

In the following, we introduce the three di�erent linearization schemes
of interest, by de�ning a single iteration. To illustrate these, we exemplary
utilize Richards equation, part of the coupled Problem Pn.

3.2.1 Newton method

The Newton method is the most commonly used linearization scheme, due
to its potential quadratic convergence. However, it is only locally conver-
gent. Thus, su�ciently small time steps are required to obtain the numer-
ical solution. It is conveniently implemented in numerous programs, e.g.,
it is the standard solver in MRST. The scheme requires the computation
of the Jacobian matrix, which can be challenging and time-consuming. In
MRST, automatic di�erentiation is implemented. In the following chap-
ter, we will present, through snapshots of the code, how to use the Newton
solver already implemented in MRST.

Taking into consideration the Richards equation, its linearization thanks
to the Newton method for �nding Ψn,j+1

h , given Ψn,j
h and Ψn−1

h is:

< θ(Ψn,j
h )− θ(Ψn−1

h ), vh > + < θ′(Ψn,j
h )(Ψn,j+1

h −Ψn,j
h ), vh >

+ ∆t < K
(
θ(Ψn,j

h )
)
(∇Ψn,j+1

h + ez),∇vh >
+ ∆t < K ′

(
θ(Ψn,j

h )
)
θ′(Ψn,j

h )(∇Ψn,j
h + ez)(Ψn,j+1

h −Ψn,j
h ),∇vh >

= ∆t < H1, vh > .

(3.6)

We observed in numerous simulations, that the Newton method as here
de�ned, can fail to converge [40, 41, 39]. For this reason, there is a need
for alternative linearization schemes which, even though only linearly con-
verging, are more robust. In particular, when modeling �ows in porous
media, there is a need for large time steps. The phenomena investigated
can take place on considerable intervals of times and thus using a too �ned
time step can become computationally unpractical.

It should be stressed that there are several modi�cations of the Newton
scheme improving the aforementioned aspects as, to name a few, line-
search and trust-region methods, or Anderson acceleration techniques, as
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discussed in [28, 42, 48, 51, 84, 85, 89]. Nevertheless, considering their
complexities, we believe that the modi�ed Picard method and especially
the L-scheme are better alternatives due to their lower computational cost.

3.2.2 Modi�ed Picard method

The modi�ed Picard method, introduced by Celia in 1990 [18], can be
interpreted as a reduced version of the Newton method. Anyhow, the
scheme appears to be more robust. Instead of computing �rst order Taylor
approximations, particular nonlinearities are merely approximated at the
previous iteration value. The Richards equation, linearized by the modi�ed
Picard method, at iteration j + 1, reads:

< θ(Ψn,j
h )− θ(Ψn−1

h ), vh > + < θ′(Ψn,j
h )(Ψn,j+1

h −Ψn,j
h ), vh >

+ ∆t < K
(
θ(Ψn,j

h )
)
(∇Ψn,j+1

h + ez),∇vh > = ∆t < H1, vh > .
(3.7)

No derivatives of the conductivity term K are computed. Only the deriva-
tive of the water content θ is taken into account. The resulting scheme
is linearly convergent and thus, in general, slower, in term of numbers of
iterations than the Newton method, yet more robust in practice. Still, as
for the Newton method, the modi�ed Picard method can fail to converge
for particularly complex problems [41]. Still the results can be improved
by investigating smaller time steps. This can be time-consuming and can
result in overall slow solving algorithms.

3.2.3 L-scheme

The L-scheme is an ever more robust method than the modi�ed Picard
method. It does not require the computation of any derivative and thus
is extremely easy to implement. For the Richards equation, the L-scheme
linearized formulation reads:

< θ(Ψn,j
h )− θ(Ψn−1

h ), vh > +L < Ψn,j+1
h −Ψn,j

h , vh >

+ ∆t < K
(
θ(Ψn,j

h )
)
(∇Ψn,j+1

h + ez),∇vh >= ∆t < H1, vh >,
(3.8)

where L is a positive user-de�ned parameter, on which only mild restriction
are applied [41, 55]. To ensure the converge of the scheme, the quantities in-
volved must satisfy some conditions, e.g., the function θ must be Lipschitz
continuous and monotonically increasing. The global, linear convergence
of the scheme, for Richards equation, is proved in [55]. In Paper A, we
extended the proof the the coupled problem (2.24).
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In all the numerical examples investigated in this work, the scheme has
appeared to be particularly robust and it ensured the convergence to the
solution even when both the Newton and the modi�ed Picard methods
have failed to converge. Due to its linear order of convergence, the scheme
can result to be slower, in terms of numbers of iterations, than the Newton
method. Anyhow, because it does not require the computation of the Ja-
cobian, it can be overall computationally faster. Furthermore, it converges
also for larger time steps, compared to the Newton method, which can
result in fewer total iterations on the full simulation.

Finally, in Paper B, we propose a scheme obtained by combining the
Newton method and the L-scheme, in the hope to achieve a quadrati-
cally and globally convergent scheme. First, a few iterations are applied
using the L-scheme, until a close enough approximation of the solution is
achieved. Then, the Newton method is applied and thanks to its quadratic
order of convergence, the solution is obtained within a few extra itera-
tions. The scheme had already been investigated, for the Richards equa-
tion, in [55]. In paper B, we test it on the fully coupled problem (2.24),
including the dynamic capillary e�ects. We have observed that such an L-
scheme/Newton method can converge for larger time steps than the classi-
cal Newton method and in fewer iterations than the L-scheme. The scheme
appears to be a clear improvement compared to both the Newton method
and the L-scheme. The disadvantage is that the user must choose of when
to switch between the methods and must compute the Jacobian.

3.3 Solvers for coupled problems

The systems of equations presented in the previous chapters are charac-
terized not only by their nonlinearities but also by their coupled nature.
Considering the fully coupled Richards and reactive transport formulation,
the water content θ is a function of both unknowns, the pressure Ψ and
the concentration c. Among several, there exist two approaches for solving
coupled equations, either a fully implicit solver, also called monolithic, or
a splitting/sequential approach. In this work, we investigate the mono-
lithic solver and two di�erent splitting algorithms. The former is usually
more robust but requires the study of larger matrices and in case of �ne
meshes can be computationally expensive. The latter formulation gives
more freedom to the reader. Solving the equation separately, one can
choose di�erent solvers for each of them. The solvers handle matrices half
the size compared to the ones investigated in the monolithic formulation.

In the following, for each approach, we present how the di�erent lin-
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Figure 3.1: Monolithic scheme.

earization schemes are implemented.

3.3.1 Monolithic solver

We start with the fully implicit or monolithic solver. Given the standard
formulation (2.24), at the time step n and iteration j+1, the two equations
are expressed as functions of both the unknown pressure Ψn,j+1

h and the

unknown concentration cn,j+1
h .{
F lin1 (Ψn,j+1

h , cn,j+1
h ) = 0,

F lin2 (Ψn,j+1
h , cn,j+1

h ) = 0,
(3.9)

with F1 the Richards equation and F2 the transport. Such equations are
characterized by nonlinear quantities and thus, a linearization scheme is
required. We indicate with F lin, the linearized formulation of F obtained
by the Newton method, the modi�ed Picard method, or the L-scheme.
Having two equations and two unknowns, we can solve the system at once.
In Figure 3.1, we report a schematized version of this approach.

We will present now how the di�erent linearization schemes can be
implemented together with the monolithic solver.
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Monolithic Newton method

The Newton method in its monolithic formulation (Mono-Newton) reads:
Let Ψn−1

h , cn−1h ,Ψn,j
h , cn,jh ∈ Vh be given, �nd Ψn,j+1

h , cn,j+1
h ∈ Vh such that

< θ(Ψn,j
h , cn,jh )− θ(Ψn−1

h , cn−1h ), vh >

+ <
∂θ

∂Ψ
(Ψn,j

h , cn,jh )(Ψn,j+1
h −Ψn,j

h ), vh >

+ <
∂θ

∂c
(Ψn,j

h , cn,jh )(cn,j+1
h − cn,jh ), vh >

+ ∆t < K
(
θ(Ψn,j

h , cn,jh )
)(
∇(Ψn,j+1

h ) + ez
)
,∇vh >

+ ∆t < K ′
(
θ(Ψn,j

h , cn,jh )
) ∂θ
∂Ψ

(Ψn,j
h , cn,jh )

(
∇(Ψn,j

h )

+ ez
)
(Ψn,j+1

h −Ψn,j
h ),∇vh >

+ ∆t < K ′
(
θ(Ψn,j

h , cn,jh )
)∂θ
∂c

(Ψn,j
h , cn,jh )

(
∇(Ψn,j

h )

+ ez
)
(cn,j+1
h − cn,jh ),∇vh >= ∆t < H1, vh >,

< θ(Ψn,j
h , cn,jh )cn,j+1

h − θ(Ψn−1
h , cn−1h )cn−1h , wh >

+ <
∂θ

∂Ψ
(Ψn,j

h , cn,jh )(Ψn,j+1
h −Ψn,j

h )cn,jh , wh >

+ <
∂θ

∂c
(Ψn,j

h , cn,jh )(cn,j+1
h − cn,jh )cn,jh , wh >

+ ∆t < D∇cn,j+1
h + un−1

w cn,j+1
h ,∇wh >

+ ∆t < R(cn,j), wh > +∆t < R′(cn,j)(cn,j+1
h − cn,jh ), wh >

= ∆t < H2, wh >,

(3.10)

hold true for all vh, wh ∈ Vh.

Remark 1 Observe that un−1
w := −K(θn−1h , cn−1h )∇(Ψn−1

h +z) appears in
the advection term of the linearized transport equation. This is done for
the ease of presentation. Nevertheless, the calculations carried out in this
work were also performed using un

w := −K(θn,jh , cn,jh )∇(Ψn,j+1
h + z). The

di�erences in the results were marginal.

Monolithic modi�ed Picard

The monolithic modi�ed Picard (Mono-Picard) approach for solving (2.24)
reads as:
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Let Ψn−1
h , cn−1h ,Ψn,j

h , cn,jh ∈ Vh be given, �nd Ψn,j+1
h , cn,j+1

h ∈ Vh such that

< θ(Ψn,j
h , cn,jh )− θ(Ψn−1

h , cn−1h ), vh >

+ <
∂θ

∂Ψ
(Ψn,j

h , cn,jh )(Ψn,j+1
h −Ψn,j

h ), vh >

+ <
∂θ

∂c
(Ψn,j

h , cn,jh )(cn,j+1
h − cn,jh ), vh >

+ ∆t < K
(
θ(Ψn,j

h , cn,jh )
)
(∇(Ψn,j+1

h ) + ez),∇vh >
= ∆t < H1, vh >,

< θ(Ψn,j
h , cn,jh )cn,j+1

h − θ(Ψn−1
h , cn−1h )cn−1h , wh >

+ <
∂θ

∂Ψ
(Ψn,j

h , cn,jh )(Ψn,j+1
h −Ψn,j

h )cn,jh , vh >

+ <
∂θ

∂c
(Ψn,j

h , cn,jh )(cn,j+1
h − cn,jh )cn,jh , vh >

+∆t < D∇cn,j+1
h + un−1

w cn,j+1
h ,∇wh > +∆t < R(cn,j), wh >

= ∆t < H2, wh >,

(3.11)

hold true for all vh, wh ∈ Vh.
We note that no derivative of the nonlinear conductivity K and the

reaction term R have been computed. Instead, the quantities are linearized
by simply using the values of pressure and concentration obtained from the
previous iteration j.

Monolithic L-scheme

The monolithic L-scheme (Mono-LS) approach for solving (2.24) reads as:
Let Ψn−1

h , cn−1h ,Ψn,j
h , cn,jh ∈ Vh be given, L1 and L2 are free to be chosen
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parameters, �nd Ψn,j+1
h , cn,j+1

h ∈ Vh such that

< θ(Ψn,j
h , cn,jh )− θ(Ψn−1

h , cn−1h ), vh >

+ < L1(Ψn,j+1
h −Ψn,j

h ), vh >

+ ∆t < K
(
θ(Ψn,j

h , cn,jh )
)
(∇(Ψn,j+1

h ) + ez),∇vh >
= ∆t < H1, vh >,

< θ(Ψn,j
h , cn,jh )cn,j+1

h − θ(Ψn−1
h , cn−1h )cn−1h , wh >

+ < L2(cn,j+1
h − cn,jh ), vh >

+∆t < D∇cn,j+1
h + un−1

w cn,j+1
h ,∇wh > +∆t < R(cn,j), wh >

= ∆t < H2, wh >,

(3.12)

hold true for all vh, wh ∈ Vh. L1 and L2 should be large enough in order
to ensure the convergence of the scheme [41].

The L-scheme does not involve the computations of any derivatives,
the linear systems to be solved within each iteration are better conditioned
compared to the ones given by Newton or Picard methods [40, 41, 39, 55]
and it is globally (linearly) convergent.

3.3.2 The nonlinear splitting approach (NonLinS)

An iterative splitting approach involves successively solving the �ow and
the transport equations separately, iterating between the two. The main
advantage of such an algorithm is that two matrices just half the size of the
one used in the monolithic formulation have to be handled. Furthermore,
solving the problem sequentially allows for combining tailored di�erent
solvers for each equation.

We investigate two splitting schemes: the nonlinear splitting (NonLinS)
and the alternate linearized splitting (AltLinS), presented in Fig. 3.2 and
Fig. 3.3, respectively. The former reads:
Let cn,jh ∈ Vh be given, �nd Ψn,j+1

h such that

F1(Ψn,j+1
h , cn,jh ) = 0, (3.13)

and then �nd cn,j+1
h ∈ Vh such that

F2(Ψn,j+1
h , cn,j+1

h ) = 0. (3.14)

Multiple iterations are required to solve the nonlinear equations. The pres-
sure Ψn,j+1

h computed is incorporated in the transport F2(Ψn,j+1
h , cn,j+1

h ),
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Figure 3.2: Nonlinear splitting scheme (NonLinS).

which becomes a function of only the unknown concentration cn,j+1
h . The

resulting F1 and F2, being nonlinear, are linearised using the Newton
method, the modi�ed Picard method or the L-scheme.

The nonlinear splitting approach for solving (2.24) reads as:
Let Ψn−1

h , cn−1h ,Ψn,j
h , cn,jh ∈ Vh be given, �nd Ψn,j+1

h ∈ Vh such that

< θ(Ψn,j+1
h , cn,jh )− θ(Ψn−1

h , cn−1h ), vh >

+∆t < K(Ψn,j+1
h , cn,jh )(∇Ψn,j+1

h + ez),∇vh >
= ∆t < H1, vh >

(3.15)

hold true for all vh ∈ Vh, and next
�nd cn,j+1

h ∈ Vh such that

< θ(Ψn,j+1
h , cn,j+1

h )cn,j+1
h − θ(Ψn−1

h , cn−1h )cn−1h , wh >

+∆t < D∇cn,j+1
h + un,j+1

w cn,j+1
h ,∇wh >

+∆t < R(cn,j+1
h ), wh > = ∆t < H2, wh >

(3.16)

hold true for all wh ∈ Vh. In Fig. 3.2, we illustrate the schematized version
of the nonlinear splitting scheme.
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Figure 3.3: Alternate linearised splitting scheme (AltLinS).

3.3.3 The alternate linearized splitting approach (Al-
tLinS)

Finally, the alternate linearized splitting scheme performs only one lineari-
sation step per iteration, see Fig. 3.3. The alternate splitting scheme can
be written as:
Let cn,jh ∈ Vh be given, �nd Ψn,j+1

h ∈ Vh such that

F lin1 (Ψn,j+1
h , cn,jh ) = 0, (3.17)

and then cn,j+1
h such that

F lin2 (Ψn,j+1
h , cn,j+1

h ) = 0. (3.18)

Depending on which linearisation is used, we refer to alternate splitting
Newton (AltLinS-Newton), alternate splitting Picard (AltLinS-Picard) or
alternate splitting L-scheme (AltLinS-LS). All of the schemes are presented
in details below.

The alternate linearized Newton method (AltLinS-Newton)

The alternate Newton method applied to (2.24) reads as
Let Ψn−1

h , cn−1h ,Ψn,j
h , cn,jh ∈ Vh be given, �nd Ψn,j+1

h ∈ Vh such that

< θ(Ψn,j
h , cn,jh )− θ(Ψn−1

h , cn−1h ), vh >

+ <
∂θ

∂Ψ
(Ψn,j

h , cn,jh )(Ψn,j+1
h −Ψn,j

h ), vh >

+ ∆t < K
(
θ(Ψn,j

h , cn,jh )
)
(∇(Ψn,j+1

h ) + ez),∇vh >

+ ∆t < K ′
(
θ(Ψn,j

h , cn,jh )
) ∂θ
∂Ψ

(Ψn,j
h , cn,jh )

(
∇Ψn,j

h

+ ez
)
(Ψn,j+1

h −Ψn,j
h ),∇vh >= ∆t < H1, vh >

(3.19)
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hold true for all vh ∈ Vh. Next,
�nd cn,j+1

h ∈ Vh such that

< θ(Ψn,j+1
h , cn,jh )cn,j+1

h − θ(Ψn−1
h , cn−1h )cn−1h , wh >

+ <
∂θ

∂c
(Ψn,j+1

h , cn,jh )(Ψn,j+1
h , cn,jh )(cn,j+1

h − cn,jh ), vh >

+ ∆t < D∇cn,j+1
h + un,j+1

w cn,j+1
h ,∇wh > +∆t < R(cn,j), wh >

+ ∆t < R′(cn,jh )(cn,j+1
h − cn,jh ), wh >= ∆t < H2, wh >

(3.20)

hold true for all wh ∈ Vh.

The alternate linearized Picard (AltLinS-Picard)

The alternate Picard method applied to (2.24) is formulated as follows:
Let Ψn−1

h , cn−1h ,Ψn,j
h , cn,jh ∈ Vh be given, �nd Ψn,j+1

h ∈ Vh such that

< θ(Ψn,j
h ,cn,jh )− θ(Ψn−1

h , cn−1h ), vh >

+ <
∂θ

∂Ψ
(Ψn,j

h ,cn,jh )(Ψn,j+1
h −Ψn,j

h ), vh >

+∆t < K
(
θ(Ψn,j

h ,cn,jh )
)(
∇Ψn,j+1

h + ez
)
,∇vh >

= ∆t < H1, vh >

(3.21)

hold true for all vh ∈ Vh. Next
�nd cn,j+1

h ∈ Vh such that

< θ(Ψn,j+1
h , cn,jh )cn,j+1

h − θ(Ψn−1
h , cn−1h )cn−1h , wh >

+ <
∂θ

∂c
(Ψn,j+1

h , cn,jh )(cn,j+1
h − cn,jh )cn,jh , wh >

+∆t < D∇cn,j+1
h + un,j+1

w cn,j+1
h ,∇wh > +∆t < R(cn,jh ), wh >

= ∆t < H2, wh > .

(3.22)

hold true for all wh ∈ Vh.

The alternate linearized L-scheme (AltLinS-L)

The alternate L-scheme for solving (3.1�3.2) reads as
Let Ψn−1

h , cn−1h ,Ψn,j
h , cn,jh ∈ Vh be given, �nd Ψn,j+1

h ∈ Vh such that

< θ(Ψn,j
h , cn,jh )− θ(Ψn−1

h , cn−1h ), vh > +L1 < Ψn,j+1
h −Ψn,j

h , vh >

∆t < K
(
θ(Ψn,j

h , cn,jh )
)(
∇(Ψn,j+1

h ) + ez
)
,∇vh > = ∆t < H1, vh >

(3.23)
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hold true for all vh ∈ Vh. Next
�nd cn,j+1

h ∈ Vh such that

< θ(Ψn,j+1
h , cn,jh )cn,j+1

h − θ(Ψn−1
h , cn−1h )cn−1h , wh >

+L2 < cn,j+1
h − cn,jh , wh >+ ∆t < D∇cn,j+1

h + un,j+1
w cn,j+1

h ,∇wh >
+∆t < R(cn,jh ), wh > = ∆t < H2, wh >

(3.24)

hold true for all wh ∈ Vh.

Remark 2 (Stopping criterion) For both monolithic and splitting schemes,
one stops the iterations when∥∥∥Ψn,j+1

h −Ψn,j
h

∥∥∥ ≤ ε1, (3.25)∥∥∥cn,j+1
h − cn,jh

∥∥∥ ≤ ε2, (3.26)

where, in our numerical studies, we choose ε1 = ε2 = 10−6.

Remark 3 We have presented here the linearization schemes and the solv-
ing algorithms for the standard model, we have neglected the dynamic cap-
illarity and the hysteresis e�ects. Similarly, one can apply the schemes to
the nonstandard formulation including these e�ects. The resulting solving
algorithms are presented in Paper C.

3.4 Anderson acceleration

The Anderson acceleration (AA) is a powerful post-processing tool which
can drastically improve linearly convergent �xed point schemes. The L-
scheme is clearly a perfect candidate. In previous studies [55, 59, 64, 76,
88], it has been observed that the scheme is more robust than the Newton
method and can be considered a valid alternative. The L-scheme is only
linearly convergent, and the rate of convergence depends on the linearizing
parameters. Tuning the parameters to obtain optimal results, in terms of
numbers of iterations, and thus computational times, can be tedious and
time-consuming. The AA can drastically reduce the numbers of iterations,
especially in case of non-optimal L parameters. In Paper C we observed
how simpler it is to tune the AA instead of �nding the optimal L.

D. G. Anderson introduced the acceleration tool in 1965 [5], and since
then it has been investigated in multiple works, to list a few [15, 24, 84].
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We recall here the de�nition of AA, presented in [84], formulated for a
general �xed point problem, of the form: given g : Rn → Rn, solve the
system x = g(x),

Algorithm 1 Classical Fixed-Point iteration

1: Given x0
2: for k = 0, 1,... until convergence do
3: xk+1 = g(xk)
4: end for

In the AA one utilizes previously computed iterates and combines their
contribution to obtain a new iterate. In the following, we denote with
AA(m) the Anderson acceleration, where m + 1 previously computed it-
erates are taken into account. AA(0) correspond to the nonaccelerated
formulation.

Algorithm 2 Anderson Acceleration(m)

1: Given x0
2: for k = 1, 2... until convergence do
3: Set mk = min{m, k − 1}
4: De�ne the matrix Fk = (fk−mk−1, · · · , fk−1), where fi = g(xi)−xi
5: Find α ∈ Rmk+1 that solves

min
α=(α0,··· ,αmk

)T
‖Fkα‖ s.t.

mk∑
i=0

αi = 1.

6: De�ne xk :=
∑mk

i=0 αig(xk−mk+i−1)
7: end for

The original formulation presented in [5] allows a more general step,

xk := βk

mk∑
i=0

αig(xk−mk+i−1) + (1− βk)

mk∑
i=0

αixk−mk+i−1,

for a user-de�ned relaxation parameter βk ∈ (0, 1]. We considered the
simpli�ed formulation, obtained with βk = 1, because we achieved no
improvements in the numerical results when using the extended one.

Summarizing observations from Paper C, large values for the depth m
can result in an instability of the solution algorithm. When implementing
the Anderson acceleration, one has to tune such parameter properly. A
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small m could produce only a small reduction in the numbers of iterations,
too large m could result in a non-converging algorithm, as also previously
reported in [27].

The de�nition of the nonlinear splitting solvers allows for di�erent ways
to apply the AA. We study three di�erent loops, the coupling one and
two linearizing ones, one for each equation. We can apply the Anderson
acceleration to each of them. Two di�erent parameters, m and mlin, are
de�ned. The former is used for the AA on the coupling loop, the latter
for the implementation on the linearisation ones. For simplicity, the same
mlin will be used for the loop regarding the �ow equation and for the one
regarding the transport.

3.5 Global random walk algorithm

In Paper D, a global random walk (GRW) solution algorithm [14, 50, 63,
81], for solving �ow and transport in variably saturated porous media,
is presented. The solution is approximated by moving large numbers of
computational particles on regular lattices, according to a speci�c random
walk rule. The GRW can use vast numbers of particles, almost as many as
the molecules involved in the reaction, resulting in an intuitive represen-
tation of the process. GRW algorithms are explicit and thus often more
straightforward than typical �nite volume/element schemes. Finally, the
resulting scheme is practically free of numerical di�usion.

We investigated the GRW for di�erent sets of equations, from one-
dimensional Richards equation to fully coupled two-dimensional �ow and
transport in variably saturated porous media. For illustration, we will
present here the GRW solver for the one-dimensional Richards equation in
the space-time domain [0, 1] × [0, T ], for a through investigation of global
random walk solvers we refer to the aforementioned papers.

We start by implementing the staggered �nite di�erence scheme and
the backward Euler method, which approximate (2.16) at the position
zi = i∆z, i = 1, · · · , 1/∆z and time t = n∆t, n = 1, · · · , T/∆t, as

θ(ψni )− θ(ψn−1i ) =
∆t

∆z2
{[K(ψni+1/2)(ψni+1 − ψni )

−K(ψni−1/2)(ψni − ψni−1)] +
(
K(ψni+1/2)−K(ψni−1/2)

)
∆z},

(3.27)

with ∆z the mesh diameter and ∆t the time step. Once more, we use the
L-scheme to linearize the water content θ and the conductivity K. The
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resulting equation is

ψn,j+1
i =

[
1− (rn,ji+1/2 + rn,ji−1/2)

]
ψn,ji + rn,ji+1/2ψ

n,j
i+1

+ rn,ji−1/2ψ
n,j
i−1 + (rn,ji+1/2 − r

n,j
i−1/2)∆z

−
(
θ(ψn,ji )− θ(ψn−1i )

)
/L,

(3.28)

where
rn,ji±1/2 = K(ψn,ji±1/2)∆t/(L∆z2). (3.29)

The solution ψn,ji is further represented by the distribution of N
computational particles at the sites of the one-dimensional lattice, i.e.
ψn,ji ≈ nn,ji a/N , with a being a constant equal to a unit length, and the
L-scheme (3.28) becomes

nn,j+1
i =

[
1−

(
rn,ji+1/2 + rn,ji−1/2

)]
nn,ji + rn,ji+1/2n

n,j
i+1

+ rn,ji−1/2n
n,j
i−1 + bN fs∆tc ,

(3.30)

where the source term is de�ned as

fs =
(
rn,ji+1/2 − r

n,j
i−1/2

)
∆z −

[
θ(nn,ji )− θ(nn−1i

]
/L, (3.31)

and b·c denotes the �oor function.

Remark 4 One can extend the GRW solver presented above to solve the
fully coupled �ow and transport problem investigated in this work. The
scheme is presented, in its detail, in Paper D.
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Chapter 4

Implementation in MRST

In this chapter, through snapshots of the code, we will explain how to
implement in MRST [54] the equations from Chapter 2, as well as the lin-
earization schemes and solving techniques from Chapter 3. MRST, Matlab
Reservoir Simulation Toolbox, is a comprehensive collection of functions
used to investigate di�erent �ow problems in porous media. Two pow-
erful utilities are the ad-core, which is a collection of all the functions
necessary to solve systems of equations using automatic di�erentiation,
and ad-blackoil. The latter is used to study black oil problems with auto-
matic di�erentiation. The �ow problem, coupled with reactive transport,
investigated in this work, is a special case of the more complete black-oil
problem.

We will illustrate how the functions and tools available in ad-blackoil
can be used to numerically model the Richards equations and to apply
the di�erent linearization schemes for the numerical solution. Many of the
functions and tool already implemented in MRST will be considered as
known to the reader. For a more through guide and basic use of MRST
we refer to the book [54].

First, we present how the Richards equation and its linearized formu-
lations are de�ned. We then move our attention to the coupled problem
studying the monolithic solvers. Finally, we brie�y introduce how the given
formulation can be used to obtain a splitting algorithm.

37
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4.1 Richards equation

At the start of this thesis, the Richards equation (2.16) was not explic-
itly implemented in any o�cial distribution of MRST. We present here
how to de�ne the quantities involved, and then how to solve the equation
obtained. Precisely, the equation is solved employing to the simulateSched-
uleAD function.

1 [states , report] = simulateScheduleAD(state0 , model , schedule);

The argument state0 represents the initial pressure, the equation is de-
�ned inside model and �nally schedule includes the boundary conditions
and the time step. The outputs of the simulateScheduleAD function are
the pressures at all discrete times, saved in states, and in report, among
many other useful information, the residuals and the numbers of iterations
required to obtain the solution are stored.

Equation (2.16), involves the two nonlinear quantities, θ(Ψ) and K(θ),
the water content and the conductivity. We de�ne them by:

1 theta = @(p) getTheta(psi , theta_res , theta_sat , alpha , n);
2 % theta(p) is a function of the pressure
3 function theta = getTheta(p,theta_R ,theta_S ,alpha ,n)
4 theta_neg = theta_res + (theta_sat - theta_res).*(1./(1 + alpha*abs(

p).^n)).^((n-1)/n);
5 theta_pos = theta_sat;
6 neg = p <= 0;
7 theta = theta_neg .*neg + theta_pos .*~neg;
8 end

and

1 K =@(p, theta(p)) getConductivity(p, theta , theta_res , theta_sat , n) ;
2 % K(p,theta(p)) is a function of both pressure and water content
3 function K = getConductivity(p, theta , theta_res , theta_sat , K_sat , n)
4 theta_e = (theta - theta_res)/( theta_sat - theta_res) %

effective water content
5 K_pos = K_sat*theta_e .^(1/2) .*(1 - (1 - theta_e .^(n./(n-1))).^((n-1)

./n)).^2;
6 K_neg = K_sat;
7 neg = p <= 0;
8 K = K_neg.*neg + K_pos .*~neg;
9 end

Both functions are based on the van Genuchten formulation (2.17)�(2.18).
The conductivity K will be later treated as a multiplier of the transmissi-
bility matrix T , already de�ned within MRST.

Next we move our attention to the Richards equation itself. Its im-
plementation is based on the TwoPhaseOilWaterModel, already available
in MRST, inside ReservoirModel. Here, we report a few snapshots to
present how the code has been implemented. The Richards equation can
be seen as a special case of a two phase �ow in which, one of the phases
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is air. Here, the air phase is assumed to be constant, and thus only the
water phase is investigated.

1 classdef RichardsEquationFixedPointSchemes < ReservoirModel
2 properties % new defined properties
3 Newton
4 LScheme
5 end
6

7 methods
8 function model = RichardsEquationFixedPointSchemes(G, rock ,

fluid , varargin)
9 model = model@ReservoirModel(G, rock , fluid);

10 model.water = true; % only water phase
11 model.oil = false;
12 model.gas = false;
13

14 model = merge_options(model ,varargin {:});
15 end
16

17 function [problem , state] = getEquations(model , state0 , state ,
dt , drivingForces , varargin)

18

19 if model.Newton % if using the classical Newton method
20 [problem , state] = equationsRichardsNewton(state0 , state ,

model , dt , drivingForces , varargin {:});
21 end
22 if model.LScheme % if using the L-Scheme
23 [problem , state] = equationsRichardsLScheme(state0 ,

state , model , dt, drivingForces , varargin {:});
24 end
25 end
26 end

We observe that each linearization scheme corresponds to one equation.
We will now proceed in presenting both of them, starting with the Newton
method.

Richards equation linearized by the Newton method

Thanks to the automatic di�erentiation techniques already implemented
within ad-core, one only needs to de�ne the Richards equation. The
Jacobian and the residuals are computed with the SimulateScheduleAD
function.
Here ,we report some snapshots from the equationsRichardsNewton func-
tion. The pressure is the only unknown in this equation.

1 % Properties at current timestep
2 [p] = model.getProps(state , 'pressure ');
3 % Properties at previous timestep
4 [p0] = model.getProps(state0 , 'pressure ');
5 % Initialize independent variables.
6 [p] = initVariablesADI(p);
7 primaryVars = {'pressure '};
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The water content is expressed as a function of the unknown pressure, and
the conductivity K is a multiplier, also function of p, for the transmissi-
bility matrix T. In addition the water �ux vW is de�ned.

1 % Compute transmissibility
2 theta = fluid.theta;
3 Kmult = fluid.Kmult(p, theta(p)); % K is a function of p and theta
4

5 % Compute pressure gradient
6 gdz = model.getGravityGradient (); % gravitational contribution
7 dp = s.Grad(p) - gdz;
8 upc = (double(dp) <=0); % for upwind discretizations
9

10 T = s.T.*s.faceUpstr(upc , Kmult);
11 % transmissibility matrix multiplied by the conductivity K
12 % Finally the water flux is
13 vW = -T.*dp;

Then the nonlinear equation (previously presented as (3.6)) is here de�ned.

1 % Conservation of mass for water
2 V = model.G.cells.volumes;
3 richards = (V./dt).*( theta(p) - theta(p0)) + s.Div(vW); %Richards

equation

The Newton method is implemented in the framework of ad-core.

Richards equation linearized by the L-scheme

We now present how to implement the L-Scheme from equation (3.8) into
MRST. We use the same automatic di�erentiation techniques used for the
Newton method but the equation solved at each iteration are linearized by
the L-Scheme.
The pressure p is the only unknown

1 % Properties at current timestep
2 [p_prev] = model.getProps(state , 'pressure ');
3 % Properties at previous timestep
4 [p0] = model.getProps(state0 , 'pressure ');
5 p = p_prev;
6 % Initialize independent variables.
7 [p] = initVariablesADI(p);
8 primaryVars = {'pressure '};

The value of pressure obtained at the previous iteration (Ψn,j in the nota-
tion from Section 3.2) is here used to compute the water content and the
conductivity.

1 theta = fluid.theta;
2 Kmult = fluid.Kmult(p_prev , theta(p_prev)); % given quantities
3 T = s.T.*s.faceUpstr(upc , Kmult);
4

5 gdz = model.getGravityGradient (); % gravitational contribution
6 dp = s.Grad(p) - gdz;
7
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8 upc = (double(dp) <=0); % for upwind discretizations
9 T = s.T.*s.faceUpstr(upc , Kmult);

10 % transmissibility matrix multiplied by the conductivity K
11 vW = -T.*dp;

The linearized Richards equation becomes

1 richards = (V./dt).*( theta(p_prev) - theta(p0) + model.L.*(p - p_prev))
2 + s.Div(vW);

The equation above is linear, the unknown pressure Ψn,j+1 appears only in
the multiplication with the constant L and the water �ux. The solution is
obtained with an arti�cial Newton method within the ad-core framework,
being the equation linear, only one iteration is necessary.

Remark 5 The modi�ed Picard linearization can be easily obtained from
the formulation employing the L-scheme. Instead of using the constant
model.L, one de�nes the water content θ at the previous pressure. The AD

framework then compute the necessary derivative.

Remark 6 The di�erences between the Richards equation linearized by
the L-scheme and the Newton method are minimal, in their MRST imple-
mentation. We decided to construct two separate functions for the ease of
presentation. Anyhow, everything can be incorporated in a more compre-
hensive structure.

4.1.1 The coupled problem

In case of the coupled problem (2.24), a set of two equations is combined.
We present here how to implement such a system into MRST, extending
the formulation given above for the Richards equation.

We start by de�ning the new expression for the water content, which
becomes now a function of both pressure and concentration, θ(Ψ, c).

1 theta = @(p,c) getThetaCoupled(p, c, theta_R , theta_S , alpha , n,a,b)
2 function theta = getThetaCoupled(p, c, theta_R , theta_S , alpha , n,a,b)
3 theta_neg = theta_R + (theta_S - theta_R).*(1./(1 + abs(alpha

*(1./(1 -b.*log(c./(a) +1))).^(1).*p)).^n).^((n-1)/n);
4 theta_pos = theta_S;
5 neg = p <= 0;
6 theta = theta_neg .*neg + theta_pos .*~neg;
7 end

The function presented above is just an example, commonly used for the
study of surfactants, but di�erent expressions can be easily de�ned. For
the conductivity K, we use the same function, already implemented for
the Richards equation, .
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The model used for the coupled, Richards and reactive transport equa-
tions, is based on the blackoil model already implemented in MRST, typ-
ically used to study the transportation of an external component, e.g., a
polymer within a oil-water model.
An external component is now included in our study.

1 classdef RichardsTransportEquationFixedPointSchemes < ReservoirModel
2 properties
3 % External component present (polymer)
4 polymer
5 Newton
6 LScheme
7 end
8 methods
9 function model = RichardsTransportEquationFixedPointSchemes(G, rock ,

fluid , varargin)
10 model = model@ReservoirModel(G, rock , fluid);
11 model.water = true;
12 model.oil = false;
13 model.gas = false;
14 model.polymer = true; % any external component
15 model = merge_options(model ,varargin {:});
16 end

Once more we will de�ne two di�erent functions, one nonlinear, for the
linearization by the Newton method, and one customized for the linearized
equations obtained thanks to the L-scheme.

1 function [problem , state] = getEquations(model , state0 , state , dt,
drivingForces , varargin)

2 if model.Newton
3 [problem , state] = equationsRichardsTransport(state0 , state , ...
4 model , dt , drivingForces , varargin {:});
5 end
6 if model.LScheme
7 [problem , state] = equationsRichardsTransportLScheme(state0 ,...
8 state , model , dt, drivingForces , varargin {:});
9 end

10 end

4.1.2 Implementation of the monolithic schemes

We are now going to present how to solve the coupled problem monolithi-
cally. We need to express the equations as functions of both the unknown
pressure and concentration.

The monolithic Newton method

First, both pressure and concentration are imposed as unknowns of the
problem.

1 % Properties at current timestep
2 [p, c] = model.getProps(state , 'pressure ', 'concentration ')
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3 % Properties at previous timestep
4 [p0 , c0] = model.getProps(state0 , 'pressure ','concentration ');
5 % Initialize independent variables.
6 [p, c] = initVariablesADI(p, c);
7 primaryVars = {'pressure ', 'concentration '};

Furthermore, the water content θ and the conductivity K are de�ned as
functions of both unknowns and the �ux is computed.

1 % Compute transmissibility
2 theta = fluid.theta;
3 Kmult = fluid.Kmult(p, theta(p,c));
4 upc = (double(dp) <=0); % for upwind discretizations
5 T = s.T.*s.faceUpstr(upc , Kmult);
6

7 dp = s.Grad(p) + gdz;
8 vW = -T.*dp;
9

10 VcW = s.faceUpstr(upc ,c).*vW; % upwind of cell values to face
11 VcD = -model.D.*s.Grad(c); % D is the diffusion/dispersion coef.
12

13 Vc = VcW + VcD;

The Richards and transport equations (3.10) are then obtained as follow

1 R = c./(1+c); % example of reaction term as function of c
2 richards = (V./dt).*( theta(p,c) - theta(p0 ,c0)) + s.Div(vW);
3 transport = (V./dt).*( theta(p,c).*c - theta(p0 ,c0).*c0 ) + s.Div(Vc)
4 + V .* R;

both of them are nonlinear and thanks to ad-solver, the Newton method
is automatically applied to them.

The monolithic L-scheme

Similarly, we can present how to de�ne the linear equations obtained thanks
to the L-Scheme (3.12). We start by de�ning the unknowns

1 [p_prev ,c_prev] = model.getProps(state , 'pressure ', 'concentration ');
2 % Properties at previous timestep
3 [p0 , c0] = model.getProps(state0 , 'pressure ', 'concentration ');
4 p = p_prev;
5 c = c_prev;
6 % Initialize independent variables.
7 [p, c] = initVariablesADI(p, c);
8 primaryVars = {'pressure ','concentration '};

We need the previous values of both pressure and concentration (Ψn,j and
cn,j), to compute the water content, the conductivity and the reaction
term. Also we de�ne the �ux.

1 % Compute transmissibility
2 theta = fluid.theta;
3 rock = model.rock;
4 Kmult = fluid.Kmult(p_prev , theta(p_prev ,c_prev));
5 T = s.T.*s.faceUpstr(upc , Kmult);
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Finally, we can present the linearized equations

1 R = c./(1+ c_prev) % linearized reaction term
2 richards = (V./dt).*( theta(p_prev ,c_prev) - theta(p0,c0)
3 + model.L_p.*(p - p_prev)) + s.Div(bWvW);
4 transport = ((V./dt).*( theta(p_prev ,c_prev).*c - theta(p0,c0).*c0
5 + model.L_c.*(c - c_prev)) + s.Div(Vc) + V .* R;

The equations richards and transport, de�ned above, are linear and the
solution is obtained after only one iteration.

4.1.3 Implementation of the splitting solvers

The splitting solvers investigated in this work are based on the blackoil-
sequential module implemented in MRST. The idea is to de�ne the two
equations separately and then solve them iteratively. Two separate models
are de�ned and then combined together.

1 Richardsmodel = RichardsEquationModelSequential(G, rock , fluid);
2 Transportmodel = SequentialTransportEquationModel(G, rock , fluid);
3 seqmodel = SequentialRichardsTransportModel(Richardsmodel ,

Transportmodel); % splitting model

Inside the seqmodel one �nds the stepFunction, commonly used in
MRST to solve each time step. In our formulation it looks something
like this: one solves �rst the Richards equation and then the transport.

1 function [state , report] = stepFunction(model , state , state0 , dt ,...
2 drivingForces , linsolve , nonlinsolve ,...
3 iteration , varargin)
4 % Solve pressure and transport sequentially
5 psolver = model.RichardsNonLinearSolver;
6 csolver = model.TransportNonLinearSolver;
7

8 % first solve pressure
9 [state , pressureReport] = ...

10 psolver.solveTimestep(state0 , dt, model.RichardsEquationModel ,...
11 'initialGuess ', state , forceArg {:});
12 pressure_ok = pressureReport.Converged
13 if pressure_ok % then solve transport
14 [state , transportReport] = ...
15 csolver.solveTimestep(state0 , dt, model.TransportEquationModel ,...
16 'initialGuess ', state , forceArg {:});
17 end
18 end

Remark 7 In this work, we have investigated two di�erent splitting solvers,
the nonlinear splitting and the linearized alternate splitting. The former is
the one automatically implemented in MRST. The latter can be obtained by
setting the stepfunction as linear in the solver associated with the model.
This forces the solver to use only one iteration on each equation, before to
move to the next one.
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1 model.stepFunctionIsLinear = true;

We will now present the equations for the L-scheme splitting solvers.
As stated above, the only di�erence between the two splitting solvers is
the step function, not their formulation. The linearization of the equations
using the Newton method can be similarly implemented.

The splitting L-scheme

In the splitting formulation, the two equations are de�ned separately and
are expressed as function of only one of the unknowns. We start with the
Richards equation, linearized with the L-scheme (3.23)
We take in consideration both pressure and concentration from the initial
time step and from the previous iteration but only the pressure p is the
primary variable and thus the unknown.

1 % Properties at current timestep
2 [p_prev , c_prev] = model.getProps(state , 'pressure ', 'concentration ');
3 % Properties at previous timestep
4 [p0 , c0] = model.getProps(state0 , 'pressure ', 'concentration ');
5

6 p = p_prev;
7 c = c_prev;
8 % Initialize independent variables.
9 [p] = initVariablesADI(p, wellVars {:});

10 primaryVars = {'pressure '};

The rest of the equation is identical to the L-scheme formulation presented
for the Richards equation at the beginning of the chapter.

The transport equation (3.24) is expressed as function of only the un-
known concentration.

1 % Properties at current timestep
2 [p_prev , c_prev] = model.getProps(state , 'pressure ', 'concentration ');
3 % Properties at previous timestep
4 [p0 , c0] = model.getProps(state0 , 'pressure ','concentration ');
5

6 p = p_prev;
7 c = c_prev;
8 % Initialize independent variables.
9 [c, wellVars {:}] = initVariablesADI( c, wellVars {:});

10 primaryVars = { 'concentration ', wellVarNames {:}};

The remaining of the function can be easily obtained from the previous
section where we presented the monolithic L-scheme for the Richards equa-
tion. In the splitting formulation only the transport is taken into consid-
eration.

Remark 8 One can easily obtain the Newton method linearized equations
by combining the splitting L-scheme and the monolithic Newton formula-
tions presented above.
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4.2 Anderson acceleration

In this section, we present how to implement the Anderson acceleration,
from Section 3.4, into MRST. A modi�ed NonLinearSolver function has
been de�ned: NonLinearSolverAnderson. There, we added a few lines
to the solveMiniStep function, which is used to solve the iteration inside
each time step. We have observed in Paper C, that the non-invasive im-
plementation of the AA can produce major improvements of the overall
performance of the iterative solvers.

Here we report a snapshot of the code, which presents how the AA,
de�ned in 3.4, can be implemented in MRST.

1 function [state , failure , report] = solveMinistep(solver , model , state ,
state0 , dt, drivingForces)

2 if model.UseAnderson == 1
3 m = model.m; % use depth m for AA
4 if m >1
5 m_i = min(i,m); % i is iteration number
6 % Save the report of each iteration , there we find the residuals
7 AndersonReports(i) = stepReport;
8 % Residuals
9 res_p(:,m_i) = cell2mat(stepReport.LinearSolver.VectorResiduals.

pressure);
10 res_c(:,m_i) = cell2mat(stepReport.LinearSolver.VectorResiduals.c);
11 % Values at previous iteration
12 p_prev(:,m_i) = stepReport.LinearSolver.state_prev.pressure;
13 c_prev(:,m_i) = stepReport.LinearSolver.state_prev.c;
14

15 % Solve minimisazion problem min_a ||a*residuals || s.t. norm a=1
16 % new updated solution is x_{k+1} = sum_k a_k * g(x_k) . g is

vector of previously computed solutions
17

18 a0 = 1/m_i * ones(1,m_i); % initial guess for a
19

20 if m_i == 1
21 a_p = 1;
22 a_theta = 1;
23 a_c = 1;
24 else
25 % Pressure
26 A_p = getF(res_p); % difference between the residuals [r_1 - r_n ,

r_2 - r_n , ... , r_n -1 - r_n]
27 b_p = - res_p(:,size(res_p ,2));
28 [Q, R] = qr(A_p ,0); % use reduced QR factorizations.
29 a_p = R^-1 * Q' * b_p;
30 a_p(m_i) = 1 - sum(a_p); % norm a=1
31

32 % Concentration
33 A_c = getF(res_c);
34 b_c = -res_c(:,size(a_c ,2));
35 [Q, R] = qr(A_c ,0);
36 a_c = R^-1 * Q' * b_c;
37 a_c(m_i) = 1 - sum(a_c);
38

39 end
40
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41 % Obtain updated solution using the vecor a and the
42 % previous solutions
43 pressure(:,m_i) = state.pressure;
44 c(:,m_i) = state.c;
45

46 % simplified Anderson formulation , beta=1
47 pressure_sum = sum(a_p.*pressure ,2);% +(1 - beta)*sum(a_p.*p_prev ,2);
48 c_sum = sum(a_c.*c,2);% +(1 - beta) * sum(a_c.*c_prev ,2);
49

50 state.pressure = pressure_sum; % update solutions
51 state.c = c_sum;
52

53 % update matrices of residual and solutions
54 if i >= m
55 for j=1:m_i -1
56 res_p(:,j) = res_p(:,j+1);
57 res_c(:,j) = res_c(:,j+1);
58 pressure(:,j) = pressure(:,j+1);
59 c(:,j) = c(:,j+1);
60 end
61 end
62 end
63 end

The formulation above is valid for the Richards and Transport equations
solved monolithically. It can be easily reformulated for the splitting solver.

Remark 9 The implementations presented in this chapter regard the stan-
dard model, we neglected the dynamic capillarity and hysteresis e�ects. One
can easily extend the formulation to the nonstandard model by introducing
the capillary pressure equation (2.19). In the splitting formulation, the
�ow equations, the Richards and the capillary pressure equations, are al-
ways solved together and expressed as functions of both the pressure and
the water content. In the monolithic formulation, three equations and three
unknowns (Ψ, θ, c) are present.
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Chapter 5

Summary and outlook

We conclude the �rst part of the thesis by presenting a summary and
reporting each article's main results. The chapter ends with a short section,
including our �nal remarks and outlook for future works.

5.1 Summary of the papers

Paper A: Iterative schemes for surfactant transport in porous
media

In Paper A, we consider the transport of a surfactant in variably saturated
porous media. The Richards equation [12, 33] models the water �ow, and it
is fully coupled with the transport equation for the surfactant [3, 35, 43, 47,
49, 65]. The coupling is due to the dependence of the surface tension on the
concentration of the external component [37, 47, 77]. For the analytical
study, the resulting system is discretized, combining a backward Euler
method with the linear Galerkin �nite elements.

Both equations, Richards and the reactive transport, are characterized
by nonlinear quantities. We discuss three linearization techniques: the
Newton method, the modi�ed Picard method [18] and the L-scheme [55,
64]. The former appears to be the fastest scheme in terms of the number of
iterations. The scheme is quadratically but only locally convergent, and it
fails to converge in test cases involving unsaturated-saturated media. The
modi�ed Picard appears to be better conditioned but also fails to converge
in the case of variably saturated domains. Finally, the L-scheme is the
most robust linearization scheme among the three. It is globally convergent

49
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and does not fail in the saturated part of the domain. The scheme is only
linearly convergent and can result in being slower then the Newton method,
in terms of numbers of iteration. The L-scheme convergence is formally
proved, and we discuss the convergence of the other schemes, extending
the theory from [55].

Based on the three linearization techniques, monolithic and splitting
schemes are proposed, and their convergence is numerically studied. We
investigate two di�erent splitting schemes, the canonical nonlinear splitting
and an alternate linearized splitting. The latter appears to be a better al-
ternative to the former. It presents equally accurate results requiring fewer
iterations. We illustrate the performance of these solvers based on �ve nu-
merical examples. We report the numbers of iterations and the condition
numbers of the linear systems emerging in each iteration. We compare
the results concluding that the L-scheme is more robust than the New-
ton method. Furthermore, the alternate linearized splitting is the optimal
splitting technique based on the iteration count. All the numerical simula-
tions are performed in MRST, a Matlab toolbox for reservoir simulations.
The classical two points �ux approximation (TPFA), already implemented
in the program, is used for the space discretization.

Paper B: An e�cient numerical scheme for fully coupled �ow and
reactive transport in variably saturated porous media including
dynamic capillary e�ects

In the second paper, we extend the problem studied in Paper A by includ-
ing the non-equilibrium nature of the system. Particular attention is paid
to the added dynamic capillary e�ects [22, 29, 31, 75, 90]. Such are often
neglected for ease of presentation, but they are clearly observable in the
experiments. The problem investigated, involving the Richards and the re-
active transport equations, is fully coupled together and characterized by
highly nonlinear expressions. In Paper A, we concluded that the L-scheme
is the most robust linearization scheme. Being only linearly convergent, it
can result in being slower than the Newton method. Furthermore, the mod-
i�ed Picard method is less robust than the L-scheme and slower than the
Newton method; thus, it has been neglected here. In this article, we inves-
tigate only the Newton method and the L-scheme. We also study a scheme
obtained by combining the two linearizations (called mixed scheme). The
combined scheme had been already proposed in [55], in case of no external
component and no dynamic capillary e�ects. The idea is to start by using
few L-scheme iterations and then switch, using a user-de�ned criterion, to
the Newton method. This results in a scheme that appears to be globally
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and quadratically convergent. The initial L-scheme iterations ensure global
convergence. Once a good approximation of the solution is achieved, the
Newton method has a quadratic order of convergence. Alternatively, one
can improve the Newton method's convergence by using smaller time steps
[17]. This is computationally expensive, considering that the time domains
investigated are often massive. The mixed scheme, as the L-scheme, also
converges for larger time steps. Thus, the total number of iterations over
the full simulation is reduced. The mixed scheme appears to be the best
linearization scheme, based on the consider numerical test.

For ease of presentation, we have investigated only the monolithic and
the canonical splitting schemes. Similar results can be expected for the
alternate linearized approach presented in the �rst paper. The numeri-
cal example here studied, based on the literature [32], is implemented in
MRST.

Paper C: E�cient solvers for nonstandard �ow and transport in
unsaturated porous media

This paper considers nonstandard �ow and transport in variably saturated
porous media in extension to Papers A and B. We include both dynamic
capillary pressure and hysteresis e�ects [11, 36, 57]. Mainly due to the
latter, the problem becomes particularly complex to solve numerically.

The system of equations is once more fully coupled and highly non-
linear. The Newton method and the L-scheme are again thoroughly nu-
merically investigated. Furthermore, also monolithic, nonlinear splitting,
and alternate linearized splitting solvers are studied. We examined �ve
di�erent numerical examples implemented in MRST. We consider four nu-
merical examples with increasing complexity, based on a manufactured
solution, inspired by the literature [56], and �nally, an example in which
the boundary conditions drive the �ow.

The conclusions are coherent with the ones made in Papers A and B.
The L-scheme is more robust than the Newton method, and the alternate
linearized splitting is faster than the nonlinear splitting in terms of the
numbers of iterations.

Whenever the hysteresis e�ects have been taken into account, the New-
ton method has failed to converge. The L-scheme has ensured the con-
vergence of the algorithms but, being only linearly convergent, it results
in being slow in terms of numbers of iterations. The user-de�ned L pa-
rameters strongly in�uence the rate of convergence. Finding the optimal
L can be tedious and time-consuming. Thus, we decide to improve the
L-scheme's convergence rate by implementing the Anderson acceleration
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(AA) [5]. The AA is a powerful post-processing tool that can drastically
improve linearly convergent schemes, e.g., the L-scheme. Furthermore, the
AA requires one parameter m, which is easier to optimize than the L used
in the linearization. The m represents the depth of the scheme, precisely
how many previously computed iterates one uses to obtain the new solu-
tion. We show how a suitable m can drastically improve an L-scheme with
nonoptimal L parameters. Small m values can result in marginal improve-
ments; too large m can instead give the solver instability. In Paper B, we
combined L-scheme and Newton methods obtaining a mixed scheme. The
results were promising, but one needed to implement the Newton scheme
and thus compute the full Jacobian. This can be challenging and time-
consuming. By accelerating the L-scheme using the AA, one avoids the
computation of any derivatives. Furthermore, the AA is a cheap post-
processing tool, which can be easily implemented. We conclude that the
implementation of the AA is a better alternative to the mixed scheme. The
results are promising and no derivatives need to be computed.

Paper D: Random walk methods for �ow and transport in
unsaturated/saturated natural porous media

In Paper D, we investigate a new global random walk (GRW) solver. We
test the algorithm on di�erent sets of equations. We study the Richards
equation in one and two dimensions, as well as the Richards equation fully
coupled with the transport. Once more, the equations are characterized
by highly nonlinear quantities, and thus the L-scheme is implemented. We
study numerical examples based on manufactured solutions and ones de-
scribing physical experiments. Furthermore, we study domains with highly
heterogeneous conductivity. For ease of the study, one often considers ho-
mogeneous domains but, e.g., the soil and many others, are often highly
heterogeneous porous media. We computed the conductivity by using the
Kraichnan algorithm presented in [79].

The global random walk schemes here investigated are validated by the
�nite volume solvers previously implemented in MRST. The advantage
of using GRW schemes is that the solvers appear being practically free of
numerical di�usion. The �nite volume methods used in the previous article
can be a�ected by such di�usion, which is challenging to isolate among the
other errors occurring when studying coupled �ow and transport.
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5.2 Conclusions and outlook

In this thesis, we focused on developing e�cient numerical solvers for non-
linear coupled problems in porous media. We investigated di�erent lin-
earization schemes but also di�erent solving algorithms. In the �rst pa-
per, we studied the Newton method, the modi�ed Picard method, and
the L-scheme. We have concluded that the L-scheme appears to be the
optimal linearization scheme for our particular set of equations. The New-
ton method is only locally convergent and, due to the Richards equation's
degeneracy, it often failed to converge. Even though only linearly, the
L-scheme is globally convergent and results in being the optimal lineariza-
tion scheme for �ow in porous media. We also compared the monolithic
(or full implicit) solver and two splitting approaches. The alternate lin-
earized splitting proposed here appears to be a better alternative than the
canonical nonlinear splitting. It gives equally accurate results, requiring
few iterations.

In the second paper, considering the conclusions from the �rst one, we
decided to combine the L-scheme and the Newton method, obtaining a
so-called mixed scheme. It results in being globally and quadratically con-
vergent and thus a clear improvement compared to the other two schemes.
The few initial L-scheme iterations ensure the global convergence, while
the subsequent Newton ones give the quadratic order of convergence. The
mixed scheme requires fewer iterations than the L-scheme and converges
for larger time steps than the Newton method.

The main disadvantage of the mixed scheme is the need for the com-
putation of the Jacobian. This can be time-consuming and complicated.
Thus, in the third paper, we decided to improve the L-scheme using the
Anderson acceleration (AA). The nonstandard model investigated resulted
particularly problematic to solve numerically, and the Newton method of-
ten failed to converge. The L-scheme rate of convergence strongly depends
on the L parameters used in the linearization. Tuning such parameters
can result in a tedious job. The AA can drastically improve the scheme
without requiring an optimal value for L. One can either aim for the op-
timal linearization parameter L or depth m for the AA. We observed that
�nding the optimal m is easier than to tune the L.

Finally, in the fourth paper, we decided to use the code developed in
the previous works as a benchmark for a new solving algorithm. A global
random walk (GRW) solver is de�ned and investigated here. We started
by studying a one dimensional Richards equation, eventually extending
the formulation to the fully coupled standard �ow and transport problem
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investigated in this work. The results were particularly impressive. The
GRW can use vast numbers of computational particles, almost as many as
the molecules involved in the reaction, resulting in an intuitive representa-
tion of the process. The GRW algorithms are explicit and thus often more
straightforward than the typical �nite volume/element schemes. Finally,
the solvers result in being practically free of numerical di�usion.

In this work, we studied only a particular case of two-phase �ow, the
one a-half phase �ow modeled by the Richards equation. As we have ex-
plained in the previous chapters, the equation is the result of numerous
simpli�cations. One could easily extend the work done to the more gen-
eral two-phase �ow problems, coupled with a reactive transport equation.
Considering previous works, already investigating the L-scheme for two-
phase �ows, e.g., [44, 68], we expect that the results obtained here would
be valid for the more general problem. Furthermore, there exist numerous
techniques used to improve the Newton method. In this work, we neglected
such, but one could compare the results obtained here with them. Due to
L-scheme and AA's simplicity, we are con�dent that they will still result
in being one of the best solving algorithms. Similarly, we investigated two
splitting solvers. The study can be easily extended to a di�erent set of
coupled equations.

Considering the current general need for robust and fast solvers for
systems of PDEs; we believe that the results obtained in this work can be
an important stepping stone for further works.
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Abstract
In this work, we consider the transport of a surfactant in variably saturated porous media. The water flow is modelled by the
Richards equations and it is fully coupled with the transport equation for the surfactant. Three linearization techniques are
discussed: the Newton method, the modified Picard, and the L-scheme. Based on these, monolithic and splitting schemes are
proposed and their convergence is analyzed. The performance of these schemes is illustrated on five numerical examples.
For these examples, the number of iterations and the condition numbers of the linear systems emerging in each iteration are
presented.

Keywords Richards equation · Reactive transport · Linearization schemes · L-scheme · Modified Picard ·
Newton method · Splitting solvers

1 Introduction

Many societally relevant applications are involving multi-
phase flow and multicomponent reactive transport in porous
media. Examples in this sense appear in the enhanced
oil recovery, geological CO2 storage, diffusion of medical
agents into the human body, or water or soil pollution. In
many situations like these, experimental results are diffi-
cult and expensive to obtain, therefore numerical simula-
tions become a key technology. Together with laboratory
experiments and field data, they provide the key tools in
understanding such complex phenomena. The mathemati-
cal models for problems as mentioned above are (fully or
partially) coupled, nonlinear, possible degenerate partial dif-
ferential equations. In most cases, deriving explicit solutions
is not possible, whereas developing appropriate algorithms
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for finding numerical solutions is a challenge in itself. Here
we investigate robust and efficient methods for solving the
nonlinear problems obtained after performing an implicit
time discretization. The focus is on iterative, splitting, or
monolithic schemes for fully coupled flow and transport.

Of particular interest here is a special case of multiphase,
reactive flow in porous media, namely the surfactant
transport in soil [2, 19, 23, 25, 27, 33]. Surfactants, which
are usually organic compounds, are commonly used for
actively combating soil and water pollution [11, 12, 16, 38,
43]. They contain both hydrophobic and hydrophilic groups
and are dissolved in the water phase, being transported
by diffusion and convection. Typically, the surfactants are
employed in soil regions near the surface (vadose zone),
where water and air are present in the pores. Consequently,
the outcoming mathematical model accounts the transport
of at least one species (the surfactant, but often also
the contaminant) in a variably saturated porous medium.
Whereas the dependence of the species transported from the
flow is obvious, one can encounter the reverse dependence
as well when surfactants are affecting the interfacial tension
between water and air, leading to a dependency of the water
flow on the concentration of surfactant. In other words,
one has to cope with a fully coupled flow and transport
problem, and not only with a one-way coupling, i.e., when
only the transport depends on the flow, as mostly considered
in reactive transport [35].

Whereas the surfactant transport is described by a
reaction-diffusion-convection equation, water flow in vari-
ably saturated porous media is modelled by the Richards
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equation [7, 18]. The main assumption in this case is that
the air remains in contact with the atmosphere, having a
constant pressure (the atmospheric pressure, here assumed
zero). This allows reducing the flow model to one equation,
the Richards equation. In mathematical terms, this equation
is degenerate parabolic, whose solution has typically low
regularity [3].

From the above, and adopting the pressure head as the
main unknown in the Richards equation, we study here
different linearization schemes for the model

∂θ(Ψ, c)

∂t
− ∇ · (K(θ(Ψ, c))∇(Ψ + z)) = H1 (1)

and

∂θ(Ψ, c)c

∂t
− ∇ · (D∇c − uwc) + R(c) = H2, (2)

holding for x ∈ Ω (z being the vertical coordinate of
x, pointing against gravity) and t ∈ (0, T ]. Here Ω is a
bounded, open domain in R

d (d = 1, 2 or 3) having a
Lipschitz continuous boundary ∂Ω and T > 0 is the final
time. Further, θ(·, ·) denotes the water content, and is a
given function depending on the pressure head Ψ and on
the surfactant concentration c. Also, K(·) is the hydraulic
conductivity, D > 0 the diffusion/dispersion coefficient.
Finally, uw := −K(θ, c)∇(Ψ +z) is the water flux,R(·) the
reaction term, expressed as a function of the concentration
c, and H1, H2 are the external sinks/sources. Initial and
boundary conditions, which are specified below, complete
the system.

We point out that the water content and the hydraulic
conductivity, θ(·, ·) and K(·) are given nonlinear functions.
They are medium- and surfactant-dependent and are
determined experimentally (see [18]). Specific choices are
provided in Section 2.

To solve numerically the system (1)–(2) one needs to
discretize in time and space. We refer to [15] for a practical
review of numerical methods for the Richards equation.
Due to the low regularity of the solution and the need of
relatively large time steps, the backward Euler method is the
best candidate for the time discretization. Multiple spatial
discretization techniques are available, such as the Galerkin
finite element method (FEM) [5, 32, 39], the mixed finite
element method (MFEM) [4, 36, 44, 47], the multi-point
flux approximation (MPFA) [1, 6, 24], and the finite volume
method (FVM) [9, 13, 14].

Since the time discretization is not explicit, the outcome
is a sequence of nonlinear problems, for which a
linearization step has to be performed. Widely used
linearization schemes are the quadratic, locally convergent
Newton method and the modified Picard method [10]. For
both, the convergence is guaranteed if the starting point
is close to the solution. Since for evolution equations the

initial guess is typically the solution at the previous time,
this may induces severe restrictions on the time step size
(see [37]). There exist several modifications of the Newton
scheme improving this aspect, including like line-search and
trust-region methods, or Anderson acceleration techniques,
as discussed, e.g., in [15, 21, 26, 28, 45, 46, 49], or
exploiting the structure of the nonlinearity appearing in
the hyperbolic two-phase flow model, as discussed in [22].
Among alternative approaches we mention the L-scheme
(see [30, 34, 40, 48]) and the modified L-scheme [31], both
being robust w.r.t. the mesh size, but converging linearly.
In particular, the L-scheme converges for any starting point,
and the restriction on the time step, if any, is very mild. The
modified L-scheme makes explicit use of the choice of the
starting point as the solution obtained at the previous time,
and has an improved convergence behavior if the changes
in the solutions at two successive times are controlled
by the time step. Nevertheless, the modified L-scheme
involves computation of derivatives while the L-scheme
does not. Finally, the robustness of the Newton method is
significantly increased if one considers combinations of the
Picard and the Newton methods [8], and in particular of the
L-scheme and the Newton scheme [30].

We conclude this discussion by mentioning that in this
paper we adopt the FEM and the FVM, but the iterative
schemes presented here can be applied in combination
with any other spatial discretization. The focus is on
effectively solving the flow and transport system (1)–(2),
and in particular on the adequate treating of the coupling
between the two model components (the flow and the
reactive transport). The schemes are divided into three main
categories: monolithic (Mon), nonlinear splitting (NonLinS)
and alternate splitting (AltS). Subsequently, we denote,
e.g., by Mon-Newton, the monolithic scheme obtained by
applying the Newton method as linearization. The nonlinear
splitting schemes (NonLinS) should be understood as
solving at each time step first the flow equation until
convergence, by using the surfactant concentration from
the last iteration, and then with the obtained flow
solving the transport equation until convergence. The
procedure can be continued iteratively, this being the
usual or classical splitting method for transport problems.
The convergence of NonLinS does not depend on the
linearization approach used for each model component
(Newton, Picard, or L-scheme), because we assume that
the nonlinear subproblems are solved exactly, i.e., until
convergence. Finally, the alternate splitting methods (AltS)
have a different philosophy. Instead of solving each
subproblem until convergence within each iteration, one
performs only one step of the chosen linearization. For
example, AltS-NE will perform one Newton step for each
model component, and iterate. These schemes are illustrated
in Figs. 1 and 2.
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Fig. 1 The nonlinear splitting approach

All the schemes can be analyzed theoretically, and we
do this exemplary for Mon-LS, i.e., for the monolithic
approach combined with the L-scheme. Based on compar-
ative numerical tests performed for academic and bench-
mark problems, we see that the alternate methods can
save substantial computational time, while maintaining the
robustness of the L-scheme.

The remaining of the paper is organized as follows.
In Section 2, we establish the mathematical model and
the notation used and present the iterative monolithic and
splitting schemes. In Section 3, we prove the convergence
of the Mon-LS scheme and briefly discuss the convergence
of the other schemes. Section 4 presents five different
numerical examples. They are inspired by the cases already
studied in the literature [25, 30]. Section 5 concludes this
work.

2 Problem formulation, discretization,
and iterative schemes

We solve the fully coupled system (1)–(2), completed by
homogeneous Dirichlet boundary conditions for both Ψ and
c and the initial conditions:

Ψ = Ψ0 and c = c0 at t = 0.

Fig. 2 The alternate splitting approach

We use the van Genuchten-Mualem parameterization
[17]

θ(Ψ ) =
⎧
⎨

⎩
θr + (θs − θr)

(
1

1+(−αΨ )n

) n−1
n

, Ψ ≤ 0

θs, Ψ > 0,
(3)

K(θ(Ψ ))=
⎧
⎨

⎩

Ksθe(Ψ )
1
2

[

1−
(
1−θe(Ψ )

n
n−1

) n−1
n

]

, Ψ ≤0

Ks, Ψ >0,

(4)

where θr and θs represent the values of the residual and
saturated water content, θe = (θ − θr )/(θs − θr ) is the
effective water content, Ks is the conductivity, and α and n

are model parameters depending on the soil.
Observe that in the expression above for θ , the influence

of the surfactant on the water flow is neglected. As
reported in [20, 25, 42], the surface tension between water
and air does depend on the surfactant concentration c,
implying the same for the function θ above. The following
parametrization is proposed in [25]

θ(Ψ, c) :=θ (γ (c)Ψ ) , with γ (c)= 1

1 − b log(c/a + 1)
.

(5)

Here θ() is given in (3) and γ () is the surface tensions as
depending on the concentration c. The parameters a and b

depend on the fluid and the medium. We refer to [41, 42]
for details about (5).

This gives the following expressions for θ and K

θ(Ψ, c)=
⎧
⎨

⎩
θr +(θs −θr )

[
1/

(
1+

(
−α( 1

1−b log(c/a+1) )Ψ
)n)] n−1

n
, Ψ≤0

θs , Ψ>0,

(6)

K(θ(Ψ, c))=
⎧
⎨

⎩
Ksθe(Ψ, c)

1
2

[

1−
(
1 − θe(Ψ, c)

n
n−1

) n−1
n

]

, Ψ ≤ 0

Ks, Ψ > 0.

(7)

This shows that the flow component also depends on the
reactive transport, implying that the model is coupled in
both directions.

In the following, we proceed by discretizing (1) and (2) in
time and space. We will use common notations in functional
analysis. We denote by L2(Ω) the space of real valued,
squared integrable functions defined on Ω and H 1(Ω) its
subspace, containing the functions having also the first order
derivatives in L2(Ω). H 1

0 (Ω) is the space of functions
belonging to H 1(Ω) and vanishing on ∂Ω . Further, we
denote by < ·, · > the L2(Ω) scalar product (and by ‖·‖
the associated norm) or the pairing between H 1

0 and its
dual H−1. Finally, by L2(0, T ; X), we mean the Bochner
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space of functions taking values in the Banach-space X, the
extension to H 1(0, T ; X) being straightforward.

With this, we state the weak formulation of the problem
related to (1)–(2):

Problem P: Find Ψ, c ∈ L2(0, T ; H 1
0 (Ω)) ∩

H 1(0, T ; H−1(Ω)) such that

< ∂tθ(Ψ, c), v1 >+< K(θ(Ψ, c))∇(Ψ +z), ∇v1 >

= < H1, v1 > (8)

and

< ∂t(θ(Ψ, c)c), v2 > + < D∇c+uwc, ∇v2 >=<H2, v2>

(9)

hold for all v1, v2 ∈ H 1
0 (Ω) and almost every t ∈ (0, T ].

We now combine the backward Euler method with linear
Galerkin finite elements for the discretization of Problem
P. We let N ∈ N be a strictly positive natural number and
the time step τ := T/N . Correspondingly, the discrete
times are tn := nτ (n ∈ {0, 1, . . . , N}). Further, we let
Th be a regular decomposition of Ω , Ω = ∪

T ∈Th

T into d-

dimensional simplices, with h denoting the mesh diameter.
The finite element space Vh ⊂ H 1

0 (Ω) is defined by

Vh := {vh ∈ H 1
0 (Ω) s.t . vh|T ∈ P1(T ), for any T ∈ Th},

(10)

where P1(T ) denotes the space of linear polynomials on T

and vh|T the restriction of vh to T .
For the fully discrete counterpart of Problem P, we let

n ≥ 1 be fixed and assume that Ψ n−1
h , cn−1

h ∈ Vh are given.
The solution pair at time tn solves

Problem Pn: Find Ψ n
h , cn

h ∈ Vh such that for all vh, wh ∈
Vh there holds

< θ(Ψ n
h , cn

h) − θ
(
Ψ n−1

h , cn−1
h

)
, vh >

+τ < K(θ(Ψ n
h , cn

h))(∇(Ψ n
h ) + ez), ∇vh >

= τ < H1, vh > (11)

and

< θ
(
Ψ n

h , cn
h

)
cn
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+τ < D∇cn
h + un-1w cn

h, ∇wh >= τ < H2, wh > . (12)

ez denotes the unit vector in the direction opposite to gravity.

Remark 1 Observe that un-1w appears in the convective term
in (12). This choice is made for the ease of presentation.
Nevertheless, all calculations carried out in this paper
were doubled by ones where unw has replaced un-1w . The
differences in the results were marginal.

Observe that Problem Pn is a coupling system of two
elliptic, nonlinear equations. In the following, we discuss
different iterative schemes for solving this system.

2.1 Iterative linearization schemes

We discuss monolithic and splitting approaches for solving
Problem Pn, combined with either the Newton method, the
modified Picard [10], or the L-scheme [30, 34]. In the
following the index n always refers to the time step, whereas
j denotes the iteration index. As a rule, the iterations start
with the solution at the previous time, tn−1.

In the monolithic approach, one solves the two equations
of the system (11)–(12) at once, combined with a
linearization method. Formally, this becomes

Problem PMonn,j+1: Find Ψ n,j+1 and cn,j+1 such that

{
F lin
1

(
Ψ n,j+1, cn,j+1

) = 0,
F lin
2

(
Ψ n,j+1, cn,j+1

) = 0.
(13)

FLin
k is a linearization of the expression Fk (k = 1, 2)

appearing in the system (11)–(12). Depending on the used
linearization technique, one speaks about a monolithic
Newton scheme (Mon-Newton), or monolithic Picard
(Mon-Picard) or monolithic L-scheme (Mon-LS). These
three schemes will be presented in detail below.

In the iterative splitting approach one solves each
equation separately and then iterates between these, using
the results previously obtained. We distinguish between
two main splitting ways: the nonlinear splitting and the
alternate splitting. These are schematized in Figs. 1 and 2
respectively. The former becomes :

Problem PNonLinSn,j+1: Find Ψ n,j+1 and cn,j+1 such
that
{

F1
(
Ψ n,j+1, cn,j

) = 0, followed by
F2

(
Ψ n,j+1, cn,j+1

) = 0.
(14)

For the linearization of F1 and F2, one can use one of the
three linearization techniques mentioned before. In contrast,
in the alternate splitting, one performs only one linearization
step per iteration (see also Fig. 2). The alternate splitting
scheme becomes

Problem PAltSn,j+1: Find Ψ n,j+1 and cn,j+1 such that

{
F lin
1

(
Ψ n,j+1, cn,j

) = 0, followed by
F lin
2

(
Ψ n,j+1, cn,j+1

) = 0.
(15)

Depending on which linearization is used, one speaks about
alternate splitting Newton (AltS-NE), alternate splitting
Picard (AltS-Picard), or alternate splitting L-scheme (AltS-
LS). The schemes are presented in detail below.
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2.1.1 The monolithic Newtonmethod (Mon-Newton)

We recall that the Newton scheme is quadratically, but only
locally convergent. The monolithic Newton method applied
to (11)–(12) gives

Problem PMon-Newtonn,j+1: Let Ψ n−1
h , cn−1, Ψ

n,j
h , c

n,j
h

∈ Vh be given, find Ψ
n,j+1
h , c

n,j+1
h ∈ Vh such that for all

vh, wh ∈ Vh one has

< θ
(
Ψ

n,j
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+ <
∂θ

∂Ψ

(
Ψ

n,j
h , c

n,j
h

) (
Ψ

n,j+1
h − Ψ

n,j
h

)
, vh >

+τ < K
(
θ

(
Ψ

n,j
h , c

n,j
h

)) (
∇Ψ

n,j+1
h + ez

)
, ∇vh >

+τ < K ′ (θ
(
Ψ

n,j
h , c

n,j
h

)) ∂θ

∂Ψ

(
Ψ

n,j
h , c

n,j
h

)

×
(
∇Ψ

n,j
h + ez

) (
Ψ

n,j+1
h − Ψ

n,j
h

)
, ∇vh >

= τ < H1, vh > (16)

and

< θ
(
Ψ

n,j
h , c

n,j
h

)
c
n,j+1
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+ <
∂θ

∂c

(
Ψ

n,j
h , c

n,j
h

) (
c
n,j+1
h − c

n,j
h

)
, vh >

+τ < D∇c
n,j+1
h + un-1w c

n,j+1
h , ∇wh >

= τ < H2, wh > . (17)

For the ease of presentation, here a simplified monolithic
formulation is given, involving only the derivative of θ with
respect toΨ in (16), and only the derivative of θ with respect
to c in (17). In the full monolithic approach, both partial
derivatives should be involved for all nonlinear functions,
e.g.,

θ
(
Ψ

n,j+1
h , c

n,j+1
h

)
→ θ

(
Ψ

n,j
h , c

n,j
h

)

+
(

∂θ

∂Ψ

)(
Ψ

n,j
h , c

n,j
h

) (
Ψ

n,j+1
h − Ψ

n,j
h

)

+
(

∂θ

∂c

)(
Ψ

n,j
h , c

n,j
h

) (
c
n,j+1
h − c

n,j
h

)
. (18)

However, we have carried out computations with the
full monolithic approach and the results were practically
showing no difference.

2.1.2 The monolithic Picard method (Mon-Picard)

The modified Picard method was initially proposed by Celia
[10] for the Richards equation. It is similar to the Newton
method in dealing with the nonlinearity in the saturation,
but not in the permeability. Being a modification of the
Newton method, the modified Picard method is only linearly
convergent [37]. The monolithic Picard method applied to
(11)–(12) becomes

Problem PMon-Picardn,j+1: Let Ψ n−1
h , cn−1

h , Ψ
n,j
h , c

n,j
h

∈ Vh be given, find Ψ
n,j+1
h , c

n,j+1
h ∈ Vh such that for all

vh, wh ∈ Vh, one has

< θ
(
Ψ

n,j
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+ <
∂θ

∂Ψ

(
Ψ

n,j
h , c

n,j
h

) (
Ψ

n,j+1
h − Ψ

n,j
h

)
, vh >

+τ < K
(
θ

(
Ψ

n,j
h , c

n,j
h

)) (
∇Ψ

n,j+1
h + ez

)
, ∇vh >

= τ < H1, vh > (19)

and

< θ
(
Ψ

n,j
h , c

n,j
h

)
c
n,j+1
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+ <
∂θ

∂c

(
Ψ

n,j
h , c

n,j
h

) (
c
n,j+1
h − c

n,j
h

)
, wh >

+τ < D∇c
n,j+1
h + un-1w c

n,j+1
h , ∇wh >

= τ < H2, wh > . (20)

As before, a Picard iteration for the full monolithic approach
would involve both partial derivatives of θ .

2.1.3 The monolithic L-scheme (Mon-LS)

The monolithic L-scheme for solving (11)–(12) becomes

Problem PMon-LSn,j+1: Let Ψ n−1
h , Ψ

n,j
h , cn−1

h , c
n,j
h ∈

Vh be given and with L1, L2 > 0 large enough (as
specified below), find Ψ

n,j+1
h , c

n,j+1
h ∈ Vh s.t. for all

vh, wh ∈ Vh

< θ
(
Ψ

n,j
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+L1 < Ψ
n,j+1
h − Ψ

n,j
h , vh >

+τ < K
(
θ

(
Ψ

n,j
h , c

n,j
h

)) (
∇Ψ

n,j+1
h + ez

)
, ∇vh >

= τ < H1, vh >, (21)

< θ
(
Ψ

n,j
h , c

n,j
h

)
c
n,j+1
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+L2 < c
n,j+1
h − c

n,j
h , wh >

+τ < D∇c
n,j+1
h + un-1w c

n,j+1
h , ∇wh >

= τ < H2, wh > . (22)

The parameters L1 and L2 should be large enough to ensure
the convergence of the scheme (see Section 3). In practice,
the values ofL1 andL2 are connected to the maximal values
of ∂Ψ θ and ∂cθ (recall that θ is assumed increasing in Ψ and
in c).

The L-scheme does not involve the computations of
derivatives, and the linear systems to be solved within each
iteration are better conditioned compared with the ones
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given by Newton or Picard methods (see [30]). Moreover,
this scheme is (linearly) convergent for any initial guess for
the iteration. Finally, the classical full monolithic approach
is obtained by involving L1 and L2 in both of the equations.

2.1.4 The nonlinear splitting approach (NonLinS)

The nonlinear splitting approach for solving (11)–(12)
becomes

Problem PNonLinSn,j+1: Let Ψ n−1
h , cn−1, Ψ

n,j
h , c

n,j
h ∈

Vh be given, find Ψ
n,j+1
h ∈ Vh s.t.

< θ
(
Ψ

n,j+1
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+τ < K
(
θ

(
Ψ

n,j
h , c

n,j
h

)) (
∇Ψ

n,j+1
h + ez

)
, ∇vh >

= τ < H1, vh > (23)

holds true for all vh ∈ Vh. Then, with Ψ
n,j+1
h obtained, find

c
n,j+1
h ∈ Vh such that for all wh ∈ Vh, it holds

< θ
(
Ψ

n,j+1
h ,c

n,j+1
h

)
c
n,j+1
h −θ

(
Ψ n−1

h ,cn−1
h

)
cn−1
h ,wh >

+τ < D∇c
n,j+1
h + un-1w c

n,j+1
h , ∇wh >

= τ < H2, wh > . (24)

As for the monolithic schemes, one can apply the different
linear iterative schemes to obtain fully linear versions of
the splitting approach. This is done first to solve (23) and,
once a solution to (23) is available, this is employed in the
linearization of (24).

2.1.5 The alternate Newtonmethod (AltS-Newton)

In the alternate Newton method applied to (11)–(12), one
solves

Problem PAltS-Newtonn,j+1: Let Ψ n−1
h , cn−1, Ψ

n,j
h , c

n,j
h

∈ Vh be given, find Ψ
n,j+1
h ∈ Vh s.t.

< θ
(
Ψ

n,j
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+ <
∂θ

∂Ψ

(
Ψ

n,j
h , c

n,j
h

) (
Ψ

n,j+1
h − Ψ

n,j
h

)
, vh >

+τ < K
(
θ

(
Ψ

n,j
h , c

n,j
h

)) (
∇Ψ

n,j+1
h + ez

)
, ∇vh >

+τ < K ′ (θ
(
Ψ

n,j
h , c

n,j
h

)) ∂θ

∂Ψ

(
Ψ

n,j
h , c

n,j
h

)

×
(
∇Ψ

n,j
h + ez

) (
Ψ

n,j+1
h − Ψ

n,j
h

)
, ∇vh >

= τ < H1, vh > (25)

holds true for all vh ∈ Vh. Then, with Ψ
n,j+1
h obtained

above, find c
n,j+1
h ∈ Vh such that for all wh ∈ Vh, one has

< θ
(
Ψ

n,j+1
h , c

n,j
h

)
c
n,j+1
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+ <
∂θ

∂c

(
Ψ

n,j+1
h , c

n,j
h

) (
c
n,j+1
h − c

n,j
h

)
, vh >

+τ < D∇c
n,j+1
h + un-1w c

n,j+1
h , ∇wh >

= τ < H2, wh > . (26)

2.1.6 The alternate Picard method (AltS-Picard)

The alternate Picard method applied to (11)–(12) becomes

Problem PAltS-Picardn,j+1: Let Ψ n−1
h , cn−1, Ψ

n,j
h , c

n,j
h

∈ Vh be given, find Ψ
n,j+1
h ∈ Vh s.t.

< θ
(
Ψ

n,j
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+ <
∂θ

∂Ψ

(
Ψ

n,j
h , c

n,j
h

) (
Ψ

n,j+1
h − Ψ

n,j
h

)
, vh >

+τ <K
(
θ

(
Ψ

n,j
h ,c

n,j
h

))(
∇

(
Ψ

n,j+1
h

)
+ ez

)
,∇vh >

= τ < H1, vh > (27)

hold true for all vh ∈ Vh. Then, withΨ
n,j+1
h obtained above,

find c
n,j+1
h ∈ Vh such that for all wh ∈ Vh, one has

< θ
(
Ψ

n,j+1
h , c

n,j
h

)
c
n,j+1
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+ <
∂θ

∂c

(
Ψ

n,j+1
h , c

n,j
h

) (
c
n,j+1
h − c

n,j
h

)
, wh >

+τ < D∇c
n,j+1
h + un-1w c

n,j+1
h , ∇wh >

= τ < H2, wh > . (28)

2.1.7 The alternate L-scheme (AltS-LS)

The alternate L-scheme for solving (11)–(12) becomes

Problem PAltS-LSn,j+1: Let Ψ n−1
h , cn−1, Ψ

n,j
h , c

n,j
h ∈

Vh be given, find Ψ
n,j+1
h ∈ Vh s.t.

< θ
(
Ψ

n,j
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+L1 < Ψ
n,j+1
h − Ψ

n,j
h , vh >

+τ <K
(
θ

(
Ψ

n,j
h , c

n,j
h

)) (
∇Ψ

n,j+1
h + ez

)
, ∇vh >

= τ < H1, vh > (29)

hold true for all vh ∈ Vh. Then, withΨ
n,j+1
h obtained above,

find c
n,j+1
h ∈ Vh such that for all wh ∈ Vh, one has

< θ
(
Ψ

n,j+1
h , c

n,j
h

)
c
n,j+1
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+L2 < c
n,j+1
h − c

n,j
h , wh >

+τ <D∇c+un-1w c
n,j+1
h , ∇wh >= τ <H2, wh > . (30)
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Remark 2 (Stopping criterion) For all schemes (monolithic
or splitting), the iteration is stopped if for some small
numbers ε1, ε2 > 0 one has
∥
∥
∥Ψ

n,j+1
h − Ψ

n,j
h

∥
∥
∥ ≤ ε1, and

∥
∥
∥c

n,j+1
h − c

n,j
h

∥
∥
∥ ≤ ε2,

later in the numerical section we will consider ε1 = ε2.

3 Convergence analysis

In this section, we analyze the convergence of the
monolithic L-scheme introduced through Problem PMon-
LSn,j+1. We restrict the analysis to this iteration, but
mention that the convergence analysis for the other
(monolithic and splitting) schemes introduced above can be
done in a similar fashion. We start by defining the errors

e
j+1
Ψ := Ψ

n,j+1
h − Ψ

n,j
h and e

j+1
c := c

n,j+1
h − c

n,j
h , (31)

obtained at iteration j +1. The scheme is convergent if both
errors vanish when j → ∞.

The convergence is obtained under the following
assumptions:

(A1) There exist αΨ > 0 and αc ≥ 0 such that for any
Ψ1, Ψ2 ∈ R and c1, c2 ∈ R+

< θ(Ψ1, c1) − θ(Ψ2, c2), Ψ1 − Ψ2 >

+ < c1θ(Ψ1, c1) − c2θ(Ψ2, c2), c1 − c2 >

≥ αΨ ‖θ(Ψ1, c1) − θ(Ψ2, c2)‖2 + αc ‖Ψ1 − Ψ2‖2 .
(32)

Furthermore, there exist two constants θm ≥ 0 and
θM < ∞ such that θm ≤ θ(Ψ, c) ≤ θM, ∀ Ψ, c ∈ R

(A2) The function K(θ(·, ·)) is Lipschitz continuous,
with respect to both variables, and there exist two
constants Km and KM such that 0 ≤ Km ≤ K ≤
KM < ∞.

(A3) There exist also Mu, MΨ , Mc ≥ 0 such that∥
∥unw

∥
∥

L∞ ≤ Mu, ‖∇Ψ n‖L∞ ≤ MΨ and ‖cn‖L∞ ≤
Mc for all n ∈ N.

Remark 3 (A2) is satisfied in most realistic situations. (A3)
is a pure technical requirement, being satisfied when data is
sufficiently regular, which is assumed to be the case for the
present analysis. The inequality (32) in (A1) is a coercivity
assumption. It is in particular satisfied if θ only depends on
Ψ , and for common relationships θ − −Ψ encountered in
the engineering literature.

Theorem 1 Let n ∈ {1, 2, . . . N} be given and assume
(A1)–(A3) be satisfied. If the time step is small enough (see
42 below), the monolithic L-scheme in (29)–(30) is linearly
convergent for any L1 and L2 satisfying (41).

Proof We follow the ideas in [30, 34] and start by
subtracting (11) from (29) to obtain the error equation

< θ
n,j
h − θn

h , vh > +L1 < Ψ
n,j+1
h − Ψ

n,j
h , vh >

+τ < K
n,j
h ∇e

n,j+1
Ψ , ∇vh >

+τ < (K
n,j
h − Kn

h)∇Ψ
n,j+1
h , ∇vh >

+τ < (K
n,j
h − Kn

h)ez, ∇vh >= 0, (33)

where θ
n,j
h := θ(Ψ

n,j
h , c

n,j
h ), θn−1

h := θ(Ψ n
h , cn

h), K
n,j
h :=

Kh(θ
n,j
h ) and Kn

h := Kh(θ
n
h ). Testing now the above

equation with vh = e
j+1
Ψ , one obtains

< θ
n,j
h − θn

h , e
j+1
Ψ > +L1

+τ < Kn,j∇e
n,j+1
Ψ , ∇e

j+1
Ψ >

+τ < (K
n,j
h − Kn

h)∇Ψ
n,j+1
h , ∇e

j+1
Ψ >

+τ < (K
n,j
h − Kn

h)ez, ∇e
j+1
Ψ >= 0. (34)

By (A2) and after some algebraic manipulations, we further
get

< θ
n,j
h − θn

h , e
j
Ψ > +L1

2

∥
∥
∥e

j+1
Ψ

∥
∥
∥
2 + L1

2

∥
∥
∥e

j+1
Ψ − e

j
Ψ

∥
∥
∥
2

+τKm

∥
∥
∥∇e

j+1
Ψ

∥
∥
∥
2

≤ L1

2

∥
∥
∥e

j
Ψ

∥
∥
∥
2 − < θ

n,j
h − θn

h , e
j+1
Ψ − e

j
Ψ >

−τ < (K
n,j
h − Kn

h)∇Ψ
n,j+1
h , ∇e

j+1
Ψ

> −τ < (K
n,j
h − Kn

h)ez, ∇e
j+1
Ψ > . (35)

Using now (A1), (A3), the Lipschitz continuity of K , and
twice the Young and Cauchy-Schwarz inequalities, for any
δ0 > 0 and δ1 > 0, from (35), one obtains

< θ
n,j
h − θn

h , e
j
Ψ > +L1

2

∥
∥
∥e

j+1
Ψ

∥
∥
∥
2

+ L1

2

∥
∥
∥e

j+1
Ψ − e

j
Ψ

∥
∥
∥
2 + τKm

∥
∥
∥∇e

j+1
Ψ

∥
∥
∥
2

≤ L1

2

∥
∥
∥e

j
Ψ

∥
∥
∥
2 + δ0

2

∥
∥
∥θ

n,j
h − θn

h

∥
∥
∥
2 + 1

2δ0

∥
∥
∥e

j+1
Ψ − e

j
Ψ

∥
∥
∥
2

+τ(M2
Ψ + 1)L2

k

2δ1

∥
∥
∥θ

n,j
h − θn

h

∥
∥
∥
2 + τδ1

∥
∥
∥∇e

j+1
Ψ

∥
∥
∥
2
. (36)

Similarly, subtracting (12) from (30) and choosing wh =
e
j+1
c in the results, one gets

< c
n,j+1
h θ

n,j
h − cn

hθn
h , e

j+1
c > +L2 < e

j+1
c − e

j
c , e

j+1
c >

+τ < D∇e
j+1
c + un-1w e

j+1
c , ∇e

j+1
c >= 0. (37)
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This can be rewritten as

< c
n,j
h θ

n,j
h −cnθn

h , e
j
c >+< θ

n,j
h e

j+1
c , e

j+1
c >

+L2

2

∥
∥
∥e

j+1
c

∥
∥
∥
2 + L2

2

∥
∥
∥e

j+1
c − e

j
c

∥
∥
∥
2

+τD < ∇e
j+1
c , ∇e

j+1
c >

= L2

2

∥
∥
∥e

j
c

∥
∥
∥
2 + < θn

h cn
h − θ

n,j
h c

n,j
h , e

j+1
c − e

j
c > −τ

< un-1w e
j+1
c , ∇e

j+1
c > . (38)

Using again (A1), (A3), and the Cauchy-Schwarz and
Young inequalities, from (38), it follows that for any
δ2, δ3, δ4 > 0, one has

< c
n,j
h θ

n,j
h − cn

hθn
h , e

j
c > +θm

∥
∥
∥e

j+1
c

∥
∥
∥
2 + L2

2

∥
∥
∥e

j+1
c

∥
∥
∥
2

+L2

2

∥
∥
∥e

j+1
c − e

j
c

∥
∥
∥
2 + τD

∥
∥
∥∇e

j+1
c

∥
∥
∥
2

≤ L2

2

∥
∥
∥e

j
c

∥
∥
∥
2 + δ2

2

∥
∥
∥θn

h − θ
n,j
h

∥
∥
∥
2 + δ3

2

∥
∥
∥e

j
c

∥
∥
∥
2

+
(

M2
c

2δ2
+ θ2M

2δ3

)
∥
∥
∥e

j+1
c − e

j
c

∥
∥
∥
2 + τ

M2
u

2δ4

∥
∥
∥e

j+1
c

∥
∥
∥
2

+τ
δ4

2

∥
∥
∥∇e

j+1
c

∥
∥
∥
2
. (39)

Adding (36) to (39) and using (A1), one gets

αΨ

∥
∥
∥θn

h − θ
n,j
h

∥
∥
∥
2 + L1

2

∥
∥
∥e

j+1
Ψ

∥
∥
∥
2

+L1

2

∥
∥
∥e

j+1
Ψ − e

j
Ψ

∥
∥
∥
2 + τKm

∥
∥
∥∇e

j+1
Ψ

∥
∥
∥
2

+αc

∥
∥
∥e

j
c

∥
∥
∥
2 + θm

∥
∥
∥e

j+1
c

∥
∥
∥
2 + L2

2

∥
∥
∥e

j+1
c

∥
∥
∥
2

+L2

2

∥
∥
∥e

j+1
c − e

j
c

∥
∥
∥
2 + τD

∥
∥
∥∇e

j+1
c

∥
∥
∥
2

≤ L1

2

∥
∥
∥e

j
Ψ

∥
∥
∥
2 +

(
δ0

2
+ τ(M2

Ψ +1)L2
k

2δ1
+ δ2

2

)
∥
∥
∥θ

n,j
h − θn

h

∥
∥
∥
2

+ 1

2δ0

∥
∥
∥e

j+1
Ψ − e

j
Ψ

∥
∥
∥
2 + τδ1

∥
∥
∥∇e

j+1
Ψ

∥
∥
∥
2 + L2

2

∥
∥
∥e

j
c

∥
∥
∥
2

+δ3

2

∥
∥
∥e

j
c

∥
∥
∥
2 +

(
M2

c

2δ2
+ θ2M

2δ3

)
∥
∥
∥e

j+1
c − e

j
c

∥
∥
∥
2

+τ
M2

u

2δ4

∥
∥
∥e

j+1
c

∥
∥
∥
2 + τ

δ4

2

∥
∥
∥∇e

j+1
c

∥
∥
∥
2
. (40)

Choosing δ0 = δ2 = αΨ

2
, δ1 = Km

2
, δ3 = θm and δ4 = D

2
in (40), and assuming that

L1 ≥ 2

αΨ

and L2 ≥ 2M2
c

αΨ

+ θ2M

θm

, (41)

and the time step τ satisfies the mild conditions

αΨ − 2τ
τ(M2

Ψ + 1)L2
k

Km

≥ 0 and

θm + 2αc + τD

CΩ

− 2τM2
u

D
≥ 0, (42)

where CΩ denotes the Poincare constant; then, we obtain

L1

2

∥
∥
∥e

j+1
Ψ

∥
∥
∥
2+τ

Km

2

∥
∥
∥∇e

j+1
Ψ

∥
∥
∥
2+

(
L2

2
+ θm − τ

M2
u

D

)

×
∥
∥
∥e

j+1
c

∥
∥
∥
2 + τ

D

2

∥
∥
∥∇e

j+1
c

∥
∥
∥
2

≤ L1

2

∥
∥
∥e

j
Ψ

∥
∥
∥
2 +

(
L2

2
+ θm

2
− αc

) ∥
∥
∥e

j
c

∥
∥
∥
2
. (43)

Finally, by using the Poincare inequality two times we get
from (43)

(

L1+τ
Km

CΩ

) ∥
∥
∥e

j+1
Ψ

∥
∥
∥
2+

(

L2 + 2θm+τ
D

CΩ

−2τ
M2

u

D

)

×
∥
∥
∥e

j+1
c

∥
∥
∥
2

≤ L1

∥
∥
∥e

j
Ψ

∥
∥
∥
2 + (L2 + θm − 2αc)

∥
∥
∥e

j
c

∥
∥
∥
2
. (44)

From (42), (44) implies that the errors are contracting
and therefore the monolithic L-scheme (29)–(30) is
convergent.

Remark 4 The convergence rate resulting from (44) does
not depend on the spatial mesh size. Also, observe that this
convergence is obtained for any initial guess. Based on this,
the method is globally convergent, which is in contrast to
the Newton and (modified) Picard schemes, converging only
locally. It can be observed that, larger the time step and
smaller constants L1 and L2, result in a faster convergence.
For small steps instead the convergence rate can approach
1. On the other hand, if the time step is small enough, one
may reach the regime where the Newton scheme becomes
convergent (see [37]). Alternatively, one may first perform
a number of L-scheme iterations, and use the resulting as an
initial guess for the Newton scheme (see [30]), or consider
the modified L-scheme in [31]. In either situations, the
convergence behavior was much improved.

Remark 5 The convergence of the modified Picard and
Newton method applied to the Richards equation has been
already proved in [37]. Such results can be extended to the
coupled problems considered here.
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Table 1 Parameters involved in all examples

L1 0.1

L2 0.1

D 1e−3

Van Genuchten parameters

θs 0.42

θr 0.026

n 2.9

α 0.551

a 0.44

b 0.0046

Ks 0.12

Accuracy requirement

ε1 = ε2 10−06

4 Numerical examples

In this section we consider five test cases for the proposed
linearization schemes, inspired by the literature [25, 30].
The schemes have been implemented in the open source
software package MRST [29], an open source toolbox based
on Matlab, in which multiple solvers and models regarding
flows in porous media are incorporated.

Example 1A: Flow and transport in a strictly unsaturated
medium

For the first example, a van Genuchten parametrization
is considered, with the parameters given in Table 1. The
domain Ω is the unit square. To define the initial pressure,
Ω is divided into two sub-regions: Ωup = (0, 1) ×
[1/4, 1) and Ωdown = (0, 1) × (0, 1/4). In Ωup, the
source term, in the Richards equation, is H1(x, y) =
0.06 cos(4/3πy) sin(x) and H2(x, y) = 0, in the transport.
The lower sub-domain Ωdown contains no external sources,
i.e., H1 = H2 = 0.

We impose Ψ = −2 on �D = [0, 1] × 1, c = 1 on
�D \ �C , where �C = [1/3, 2/3] × 1, c = 4 on �C

and no-flow Neumann boundary conditions for both model
components on �N = ∂Ω \ �D . At t = 0 the initial
pressure in the two sub-domains is Ψ 0

up = −2 and Ψ 0
down =

−y − 1/4, respectively. The initial concentration is c0 = 1.
The simulations are performed on regular meshes, con-

sisting of squares with sides dx = 1/10, 1/20, and 1/40.
The time steps are τ = 1/10, 1/20, and 1/40. Figure 3 dis-
plays the pressure and concentration profiles at the final time
T = 1. Note that in this example the flow is always partially
saturated, implying that the Richards equation does not
degenerate. Furthermore, the flow is completely dominated
by the source termH1 while, for the transport, we can notice
both diffusion and advection effects.

The total number of iterations and the condition numbers
of the linear systems associated to each solving algorithms
are presented in Tables 2 and 3. The condition numbers
are computed using the L1 norm and we report here the
averaged values over the full simulation. A segment (−)

in these tables implies that the method failed to converge
for the particular combination of time step size and mesh.
Table 2 gives the results obtained for the time step τ =
1/10 and for different mesh sizes, dx = 1/10, 1/20
and 1/40. In this case we can observe that the L-scheme
based solvers converges for each mesh. The splitting solvers
obtained instead thanks to the Newton and modified Picard
linearizations, fail to converge in case of finer meshes.
Furthermore, the numbers of iterations for the L-schemes is
mesh independent, which agrees with the theory.

Similarly, Table 3 provides the results for a constant
dx = 1/40, and for τ = 1/10, 1/20, and 1/40. Observe
that for the smaller time steps all schemes converge,
whereas for τ = 1/10, the Newton and Picard-based
variants of the splitting schemes diverge. This is in line with
the results reported in Table 2, where a finer spatial mesh
has led to the divergence of these schemes. Since the number
of iterations is added per each time step, this number is

Fig. 3 Example 1A: pressure
and concentration at the final
time, T = 1. The simulations
were performed for dx = 1/100
and τ = 1/10. a Pressure profile
at T = 1. b Concentration
profile at T = 1
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Table 2 Example 1A: Iterations and condition numbers for fixed τ = 1/10

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.
dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations
1/10 40 492.7535 24 - 44 153.3064 2.6810 44 159.4131 2.6760
1/20 64 2.3911e+03 26 - 94 597.8236 5.9056 94 626.5425 5.8943
1/40 189 1.2294e+04 − − − − − −

L Scheme L Scheme L Scheme
cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport
iterations iterations iterations

1/10 124 349.9054 82 - 119 106.9132 1.9051 124 106.9216 1.8867
1/20 125 1.5698e+03 80 - 110 427.3669 3.5700 120 427.3894 3.5920
1/40 125 7.1229e+03 79 - 100 1.7114e+03 8.7182 120 1.7114e+03 8.9720

Picard Picard Picard
cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport
iterations iterations iterations

1/10 43 667.9851 25 - 44 153.4789 2.6762 44 159.2404 2.6712
1/20 67 3.1574e+03 26 - 94 600.0477 5.8927 94 626.1294 5.8814
1/40 189 1.5969e+04 − − − − − −

Table 3 Example 1A: Iterations and condition numbers for fixed dx = 1/40

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.
τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations
1/10 189 1.2294e+04 − − − − − −
1/20 201 6.3754e+03 42 - 319 1.4157e+03 8.8062 320 1.4641e+03 8.8233
1/40 259 3.2828e+03 72 - 320 782.6252 4.9460 320 808.0468 4.9264

L Scheme L Scheme L Scheme
cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport
iterations iterations iterations

1/10 125 7.1229e+03 79 - 100 1.7114e+03 8.7182 120 1.7114e+03 8.9720
1/20 244 3.7562e+03 162 - 209 932.0422 4.9942 235 932.0541 5.0758
1/40 471 1.9522e+03 331 - 419 480.1427 3.0668 463 480.1378 3.1478

Picard Picard Picard
cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport
iterations iterations iterations

1/10 189 1.5969e+04 − − − − − −
1/20 201 8.4667e+03 44–316 1.4103e+03 8.7983 316 1.4650e+03 8.7777
1/40 258 4.4183e+03 72–318 782.3317 4.9358 320 808.3800 4.9126



Comput Geosci

increasing as the time step is reduced. This is justified by
the fact that smaller τ implies more time steps.

We point out that the alternate splitting schemes are
converging much faster than the classical ones, for which
we report the iterations required by the flow and the
transport equations, separately. Note the differences in the
condition numbers, the L-scheme-based algorithms being
better conditioned. Observe also that for the splitting
schemes, the condition numbers for the Richards equation
are much larger than for the transport model component.
This is due to the fact that the former is nonlinear and
possibly degenerate, whereas the latter has a fairly simple
structure. Finally, one can observe that finer meshes results
in higher condition numbers while smaller time steps give
better conditioned systems.

Example 1B: Flow and transport in a variably saturated
porous medium

The situation given above is changed slightly, so that
the fully saturated regime is achieved. Specially, we take
Ψ 0

up = −2 and Ψ 0
down = −y + 1/4. By this, Ψ 0

down

becomes positive in Ωdown, where the medium is fully
saturated. Consequently, the Richards equation degenerates
to an elliptic one, making the numerical simulation more
challenging. The L parameters are L1 = L2 = 0.2.

Tables 4 and 5 present the iterations and condition
numbers for each of the implemented algorithms, and for
different mesh diameters and time steps. Note that in this
case, only the L-scheme-based algorithms are converging.
It is also interesting to observe the difference in the
number of iterations between the more commonly used
nonlinear splitting approach (NonLinS) and the alternate
splitting (AltLinS) approach. The latter appears to be a valid
alternative to the common formulation. It produces equally
accurate results, requiring fewer iterations.

Finally, we observe as the Newton and Picard-based
schemes fail to converge in all situations. This is due to
the degeneracy of the Richards equation. The L-scheme-
based iterations did converge in all cases. The convergence
behavior is as predicted by the theory: the number of
iterations increases for smaller time steps, while the mesh
size has no influence on the number of iterations.

Example 2A: Well in an unsaturated porous medium
The next example is inspired from [25]. We still

consider the unit square-domain, the initial conditions and
the parameters as in Example 1A. The medium results
again strictly unsaturated. Now Ωup includes a well, and
water with a given surfactant concentration is injected.
The pressure at the well is set to ΨW = −1/4 and the

Table 4 Example 1B: Iterations and condition numbers for fixed τ = 1/10

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 228 204.8977 180 - 206 58.9991 1.8625 242 58.9938 1.9066

1/20 226 879.2575 175 - 182 233.6193 3.3333 236 233.5856 3.6303

1/40 228 4.0163e+03 175 - 150 932.4226 7.1687 230 932.3206 8.2482

Picard Picard Picard

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −



Comput Geosci

Table 5 Example 1B: Iterations and condition numbers for dx = 1/40

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 228 4.0163e+03 175 - 150 932.4226 7.1687 230 932.3206 8.2482

1/20 457 2.1063e+03 362 - 326 480.1123 4.2676 481 480.1165 4.5628

1/40 877 1.0751e+03 724 - 668 241.9597 2.7304 944 241.9634 2.7427

Picard Picard Picard

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

concentration of the surfactant to cW = 2. We impose
no-flow boundary conditions for both model components
on ∂Ω . The simulations are performed on regular meshes,
consisting of squares with sides dx = 1/10, 1/20, and
1/40. The time steps are τ = 1/25, 1/50, and 1/100.
Furthermore, a reaction term is included in the transport
equation, R(c) := 1e − 3 ∗ c/(1 + c). For the iteration

j + 1, this is linearized as R(cn+1,j+1) → 1e − 3 cn+1,j+1

1+cn+1,j .
The L parameters are L1 = L2 = 0.2.

Figure 4 shows the pressure and the concentration at
the final time step (T = 1). As for the first example,
the medium being partially saturated, the Richards equation
does not degenerate and almost all the schemes converge.
The monolithic Newton method requires smaller time steps,
as observable in Table 7. We remark, from both Tables 6
and 7, that the alternate splitting approach (AltLinS), once
more, requires fewer iterations than the classical splitting
algorithm (NonLinS). The linear systems resulting by

Fig. 4 Example 2A: pressure
and concentration at the first
time steps and final times. The
simulations were performed for
dx = 1/80 and τ = 1/10. a
Pressure at final time T1. b
Concentration at final time T1
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Table 6 Example 2A: Iterations and condition numbers for fixed τ = 1/25

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 59 1.1597e+03 57 - 32 3.5250e+03 1.6216e+05 − − −
1/20 − − 57 - 35 3.5250e+03 1.6216e+05 − − −
1/40 − − 57 - 33 3.9905e+04 2.4845e+06 − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 368 9.4574e+04 209 - 315 395.8757 7.8808e+03 338 397.4869 7.9035e+03

1/20 364 7.6020e+03 222 - 327 2.8139e+03 9.0509e+04 346 2.8220e+03 9.0971e+04

1/40 368 9.4574e+04 223 - 332 3.0786e+04 1.3442e+06 348 3.0861e+04 1.3515e+06

Picard Picard Picard

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 106 2.1274e+03 61 - 50 426.0623 1.2673e+04 74 416.8809 1.2985e+04

1/20 105 2.1056e+04 70 - 50 3.4855e+03 1.5665e+05 84 3.3929e+03 1.6001e+05

1/40 105 2.7185e+05 84 - 50 3.9872e+04 2.3954e+06 86 3.9462e+04 2.4544e+06

Table 7 Example 2A: Iterations and condition numbers for dx = 1/20

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/25 − − 57 - 35 3.5250e+03 1.6216e+05 − − −
1/50 109 1.5493e+03 106 - 56 1.1707e+03 4.3558e+04 − − −
1/100 207 795.5026 207 - 105 433.1146 1.2761e+04 − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/25 364 7.6020e+03 222 - 327 2.8139e+03 9.0509e+04 346 2.8220e+03 9.0971e+04

1/50 685 2.3560e+03 436 - 610 994.2747 2.5259e+04 656 996.9713 2.5397e+04

1/100 1284 792.0927 836 - 1133 406.9732 7.8582e+03 1220 408.0727 7.8911e+03

Picard Picard Picard

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/25 105 2.1056e+04 70 - 50 3.4855e+03 1.5665e+05 84 3.3929e+03 1.6001e+05

1/50 206 6.4247e+03 135 - 100 1.1871e+03 4.2339e+04 146 1.1586e+03 4.3126e+04

1/100 406 2.1116e+03 238 - 168 443.2937 1.2691e+04 254 435.4151 1.2755e+04
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Table 8 Example 2B: Iterations and condition numbers for τ = 1/25

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 681 446.0156 271 - 659 275.7570 8.0058e+03 680 275.5587 8.0092e+03

1/20 676 1.5730e+03 270 - 686 740.6757 8.5552e+04 698 739.6510 8.5630e+04

1/40 681 6.7119e+03 256 - 679 2.7866e+03 1.3095e+06 694 2.7602e+03 1.3121e+06

Picard Picard Picard

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

Table 9 Example 2B: Iterations and condition numbers for dx = 1/20

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/25 − − − − − − − −
1/50 − − − − − − − −
1/100 − − − − − − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/25 676 1.5730e+03 270 - 686 740.6757 8.5552e+04 698 739.6510 8.5630e+04

1/50 1253 812.6783 514 - 1285 431.5091 2.4385e+04 1298 430.5647 2.4399e+04

1/100 2350 448.3554 988 - 2388 275.5439 8.0075e+03 2938 275.4834 8.0092e+03

Picard Picard Picard

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/25 − − − − − − − −
1/50 − − − − − − − −
1/100 − − − − − − − −
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Fig. 5 Example 3: A highly
heterogeneous domain. a
Porosity of the domain . b
Permeability of the domain 
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applying the L-scheme-based solvers are better conditioned
compared to the other solvers. Finally, we can observe as
the introduction of a nonlinear reaction term has drastically
increased the condition numbers of the system associated to
the transport equation.

Example 2B: Well in a variably saturated porous medium
As in Example 1B, now the initial condition for the

pressure is changed, leading to a variably saturated porous
media. The pressure at the well is fixed equal to 1/4 and
the concentration and boundary conditions are defined as in
the Example 2A. The L parameters are now L1 = 0.2 and
L2 = 0.5.

As for Example 1B, since the Richards equation degen-
erates, many of the considered schemes show convergence
problems. Tables 8 and 9 present the convergence of the
schemes and the condition numbers for the associated linear
systems. The results are very similar to those in the previ-
ous examples, with the L-scheme-based solvers being the
most robust ones and the only converging for all cases. Fur-
thermore, the alternate method is faster than the classical
splitting scheme.

Example 3: A heterogeneous porous medium
In more realistic situations, the porous medium is often

heterogeneous. In this example we consider again the unit-
square domain but with highly heterogeneous properties
(porosity and permeability), as presented in Fig. 5. Next
to this, the problem is similar to the one in Example 2B,
including the same initial conditions and parameters. The
well is now located in the lower right part of the domain
where we observe larger porosity and permeability. Due to
the initial pressure Ψ 0, the domain results to be variably
saturated and the problem degenerates. The L parameters
are L1 = L2 = 0.7.

Figure 6 present the pressure and concentration at the
final time step. We can observe as, particularly the former,
has increased in the regions with higher permeability.
Similarly we can observe how the structure of the media has
influence the diffusion of the external component.

Tables 10 and 11 present the total numbers of iterations
for each algorithm and the condition numbers of the
associated linearized systems. For this particular problem,
it is interesting to notice that the L-scheme converges,
again, for every time step and mesh investigated. In this

Fig. 6 Example 3: Pressure and
concentration at the final time.
The simulations are performed
for dx = 1/40 and τ = dx/10.
a Pressure at the final time T . b
Concentration at the final time T
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Table 10 Example 3: Iterations and condition numbers for τ = 1/10

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 777 326.5548 433 - 208 71.9066 257.0406 938 71.9110 256.4755

1/20 775 3.9276e+03 433 - 212 678.4042 3.0834e+03 940 678.4266 3.0742e+03

1/40 775 5.1305e+04 433 - 215 8.2423e+03 4.5823e+04 940 8.2423e+03 4.5697e+04

Picard Picard Picard

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

Table 11 Example 3: iterations and condition numbers for dx = 1/10

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 777 326.5548 433 - 208 71.9066 257.0406 938 71.9110 256.4755

1/20 1478 119.8774 751 - 362 32.6411 89.7378 1792 32.6459 89.6573

1/40 2861 50.2801 1241 - 611 18.0060 38.7625 3342 18.0085 38.7304

Picard Picard Picard

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −
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case, neither the Newton method nor the modified Picard,
converged, even when smaller time steps were investigated.
Smaller values were not tested because the resulting number
of iterations would have been much larger than the one
obtained with the original τ and the L-scheme. These
results are coherent with the ones previously investigated.
Whenever the Richards equation degenerate, both Newton
and modified Picard present convergence problems.

5 Conclusions

In this paper, we studied different algorithms for the
numerical solution of a surfactant transport model in
variably saturated porous media. The water flow and the
transport are fully coupled. Three linearization techniques
were considered: the Newton method, the modified Picard
and the L-scheme. Based on these, monolithic and splitting
schemes were designed, analyzed and tested numerically.
We conclude that the only quadratic convergent scheme is
the monolithic Newton, that the L-scheme-based solvers are
the most robust ones and produce well-conditioned linear
systems and that the alternative schemes are often faster
than the classical splitting approaches.

Although acknowledging the existence of improved
Newton solvers, having a more robust convergence behav-
ior, the present study shows that the L-scheme is a viable
alternative. It can be particularly useful in the degenerate
cases, or whenever large time steps have to be considered.
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Abstract
In this paper, we study a model for the transport of an external component, e.g.,

a surfactant, in variably saturated porous media. We discretize the model in time
and space by combining a backward Euler method with the linear Galerkin finite
elements. The Newton method and the L-Scheme are employed for the linearization
and the performance of these schemes is studied numerically. A special focus is
set on the effects of dynamic capillarity on the transport equation.

1 Introduction
In this work, we concentrate on efficiently solving reactive transport models in
saturated/unsaturated porous media [8, 10]. Such media are observable in the
section of the soil closer to the surface where, in the upper part of the domain, we
have a coexistence of both water and air phases while, below the water table, the
soil becomes fully saturated.

In particular, our model includes dynamic capillarity effects. The capillary
pressure is commonly defined as the difference between the pressures of the two
phases, in our case, the air and the water. Note that, in the Richards model, the air
pressure is set to be equal to zero.

Typically, the capillary pressure is assumed to be a nonlinear decreasing func-
tion depending on the water saturation. However, numerous studies are showing
that such formulation is often too simplistic and that dynamic effects, due to the
changes in time of the water phase, should also be included [2, 3, 5, 11, 13]. Based
on this, we consider here the system:

𝜕𝑡 𝜃 − ∇ · (𝐾 (𝜃,Ψ) (∇Ψ + ez)
)
= S1,

Ψ + 𝑝𝑐𝑎𝑝 (𝜃, 𝑐) = 𝜏(𝜃)𝜕𝑡 𝜃,
𝜕𝑡 (𝜃𝑐) − ∇ · (𝐷∇𝑐 − uw𝑐) + 𝑅(𝑐) = S2.

(1)

∗Project founded by VISTA, a collaboration between the Norwegian Academy of Science and Letters and
Equinor.
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The first equation is the Richards equation, whereas the second is an ordinary
differential equation used to include the non-equilibrium effects in the capillary
pressure/water content relation. Equilibrium models are obtained for 𝜏 = 0. Fur-
thermore, the third equation is the reactive transport equation. Here, 𝜃 is the water
content, Ψ the pressure head, 𝑐 the concentration of the chemical component, 𝐾
the conductivity, ez the unit vector in the direction opposite to gravity, 𝐷 the diffu-
sion/dispersion coefficient, uw the water flux, 𝑅(𝑐) the reaction term and finally S1
and S2 are any source terms or external forces involved in the process. Note that
uw := −𝐾 (𝜃,Ψ) (∇Ψ + ez) where 𝐾 is a nonlinear function depending on 𝜃 and Ψ.
In the van Genuchten model [4] one has:

𝐾 (𝜃,Ψ) =


𝐾𝑠𝜃

1
2

[
1 −

(
1 − 𝜃 𝑛

𝑛−1
) 𝑛−1

𝑛

]2
, Ψ ≤ 0

𝐾𝑠 , Ψ > 0.
(2)

𝐾𝑠 is the saturated conductivity and 𝑛 is a soil dependent parameter.
The system (1) is completed by boundary conditions for Ψ and 𝑐, and initial

conditions for 𝜃 and 𝑐.
The rest of the paper is organized as follows: in Section 2 the equations are

discretized and linearized. Section 3 includes a numerical example, based on the
literature [6], which allows us to compare the different numerical schemes. Finally,
Section 4 will conclude this paper with our final remarks.

2 The Numerical Schemes
Applying a Euler implicit time-stepping to (1) gives a sequence of time discrete
nonlinear equations. To solve them we apply different linearization schemes: the
Newton method, the L-Scheme and a combination of the two [7, 9]. They are here
compared thanks to a numerical example inspired by reactive models.

The equations in (1) are fully coupled due to the double dependency of the
capillary pressure of both the water content 𝜃 and the concentration 𝑐. In general,
𝑝𝑐𝑎𝑝 is a function of only 𝜃, e.g., 𝑝𝑐𝑎𝑝 := 1/𝛼(𝜃−1/𝑚 − 1)1/𝑛 as presented in [4].
Anyhow, it has been observed [12] that, if an external component is involved, the
surface tension becomes a function of the concentration 𝑐 and thus, the capillary
pressure itself is influenced by this, i.e. 𝑝𝑐𝑎𝑝 := 𝑝𝑐𝑎𝑝 (𝜃, 𝑐).

In the following, we use the standard notations of functional analysis. The
domain Ω ⊂ R𝑑 , 𝑑 = 1, 2 or 3, is bounded, open and has a Lipschitz continuous
boundary 𝜕Ω. We denote by 𝐿2 (Ω) the space of real-valued, square-integrable
functions defined on Ω and 𝐻1 (Ω) its subspace containing the functions having
also the first order weak partial derivatives in 𝐿2 (Ω). 𝐻1

0 (Ω) is the space of
functions belonging to 𝐻1 (Ω), having zero values on the boundary 𝜕Ω. We denote
by< ·, · > the 𝐿2 (Ω) scalar product and by ‖·‖ the associated norm. Finally, assume
that 𝐾 is continuous and increasing, 𝑝𝑐𝑎𝑝 ∈ 𝐶1 ((0, 1], [0,∞)) is decreasing and
𝜏 ∈ 𝐶1 ((0, 1], [0,∞)) .

We now combine the backward Euler method with linear Galerkin finite ele-
ments for the discretization of the problem (1). Let 𝑁 ∈ N be a strictly positive nat-
ural number, define the time step size Δ𝑡 = 𝑇/𝑁 and 𝑡𝑛 = 𝑛Δ𝑡 (𝑛 ∈ 1, 2, . . . , 𝑁).
Furthermore, Tℎ is a regular decomposition of Ω, Ω = ∪

T∈Tℎ
T, into 𝑑-dimensional
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simplices, with ℎ denoting the maximal mesh diameter. The finite element space
𝑉ℎ ⊂ 𝐻1

0 (Ω) is defined by

𝑉ℎ := {𝑣ℎ ∈ 𝐻1
0 (Ω) 𝑠.𝑡. 𝑣ℎ |T ∈ P1 (T), T ∈ Tℎ}, (3)

where P1 (T) denotes the space of the afine polynomials on T.
The fully discrete Galerkin formulation of the system (1) can be written as:
Problem P(n) Let 𝑛 ≥ 1 be fixed. Given Ψ𝑛−1

ℎ
, 𝜃𝑛−1

ℎ
, 𝑐𝑛−1

ℎ
∈ 𝑉ℎ , find

Ψ𝑛
ℎ
, 𝜃𝑛

ℎ
, 𝑐𝑛

ℎ
∈ 𝑉ℎ such that there holds

< 𝜃𝑛ℎ − 𝜃𝑛−1
ℎ , 𝑣1,ℎ > +Δ𝑡 < 𝐾 (𝜃𝑛ℎ ,Ψ𝑛

ℎ) (∇Ψ𝑛
ℎ + ez),∇𝑣1,ℎ > = Δ𝑡 < S1, 𝑣1,ℎ >,

(4)
Δ𝑡 < Ψ𝑛

ℎ , 𝑣2,ℎ > +Δ𝑡 < 𝑝𝑐𝑎𝑝 (𝜃𝑛ℎ , 𝑐𝑛ℎ), 𝑣2,ℎ > =< 𝜏(𝜃𝑛ℎ) (𝜃𝑛ℎ−𝜃𝑛−1
ℎ ), 𝑣2,ℎ >, (5)

and

< 𝜃𝑛ℎ𝑐
𝑛
ℎ − 𝜃𝑛−1

ℎ 𝑐𝑛−1
ℎ , 𝑣3,ℎ > +Δ𝑡 < 𝐷∇𝑐𝑛ℎ + un−1

w 𝑐𝑛ℎ ,∇𝑣3,ℎ >

+Δ𝑡 < 𝑅(𝑐𝑛ℎ), 𝑣3,ℎ > = Δ𝑡 < S2, 𝑣3,ℎ >,
(6)

for all 𝑣1,ℎ , 𝑣2,ℎ , 𝑣3,ℎ ∈ 𝑉ℎ .
Remark 1 We use un−1

w := −𝐾 (𝜃𝑛−1
ℎ

,Ψ𝑛−1
ℎ

) (∇Ψ𝑛−1
ℎ

+ ez) for the convec-
tive term in the transport equation, for simplicity reasons. Nevertheless, all
the simulations presented in this paper have also been performed with un

w :=
−𝐾 (𝜃𝑛

ℎ
,Ψ𝑛

ℎ
) (∇Ψ𝑛

ℎ
+ ez) instead of un−1

w and the results were almost identical.
In the following, we propose different solving strategies for the system of

equations presented above. These strategies are built on the ones discussed in [7],
extending them to the case of dynamic capillary pressure (𝜏(𝜃) ≠ 0). They are either
a monolithic solver of the full system, or a splitting approach obtained by solving
first the flow component, using a previously computed concentration, then updating
the transport equation, using the newly computed pressure and water content. In
both cases, one has to iterate. Each iteration requires solving a non-linear problem,
for which, either the Newton methods or the L-Scheme [7, 9, 10] are considered.
These strategies are then named: monolithic-Newton scheme (MON-Newton),
monolithic-L-Scheme (MON-LS), nonlinear splitting-Newton (NonLinS-Newton)
and nonlinear splitting-L-Scheme (NonLinS-LS).

The index 𝑗 denotes the iteration index. As a rule, the iterations start with the
solution obtained at the previous time step, for example Ψ𝑛,1 := Ψ𝑛−1. This is not
necessary for the L-Scheme, which is globally convergent, but it appears to be a
natural choice.

2.1 The monolithic Newton method (MON-NEWTON)
The Newton method is a well-known linearization scheme, which is quadratic but
only locally convergent. Applying the monolithic Newton method to (4)-(6) leads
to

Problem MN(n,j+1) Let Ψ𝑛−1
ℎ

, 𝜃𝑛−1
ℎ

, 𝑐𝑛−1,Ψ𝑛, 𝑗
ℎ
, 𝜃

𝑛, 𝑗
ℎ
𝑐
𝑛, 𝑗
ℎ

∈ 𝑉ℎ be given, find
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Ψ𝑛, 𝑗+1
ℎ

, 𝜃
𝑛, 𝑗+1
ℎ

, 𝑐
𝑛, 𝑗+1
ℎ

∈ 𝑉ℎ such that

< 𝜃
𝑛, 𝑗+1
ℎ

− 𝜃𝑛−1
ℎ , 𝑣1,ℎ > +Δ𝑡 < 𝐾 (𝜃𝑛, 𝑗

ℎ
,Ψ𝑛, 𝑗

ℎ
) (∇(Ψ𝑛, 𝑗+1

ℎ
) + ez),∇𝑣1,ℎ >

+Δ𝑡 < 𝜕𝜃𝐾 (𝜃𝑛, 𝑗
ℎ
,Ψ𝑛, 𝑗

ℎ
) (∇(Ψ𝑛, 𝑗

ℎ
) + ez) (𝜃𝑛, 𝑗+1

ℎ
− 𝜃𝑛, 𝑗

ℎ
),∇𝑣1,ℎ >

+Δ𝑡 < 𝜕Ψ𝐾 (𝜃𝑛, 𝑗
ℎ
,Ψ𝑛, 𝑗

ℎ
) (∇(Ψ𝑛, 𝑗

ℎ
) + ez) (Ψ𝑛, 𝑗+1

ℎ
−Ψ𝑛, 𝑗

ℎ
),∇𝑣1,ℎ >

= Δ𝑡 < S1, 𝑣1,ℎ >,

(7)

Δ𝑡 < Ψ𝑛, 𝑗+1
ℎ

, 𝑣2,ℎ > +Δ𝑡 < 𝑝𝑐𝑎𝑝 (𝜃𝑛, 𝑗ℎ
, 𝑐

𝑛, 𝑗
ℎ

), 𝑣2,ℎ >

+Δ𝑡 < 𝜕𝜃 𝑝𝑐𝑎𝑝 (𝜃𝑛, 𝑗ℎ
, 𝑐

𝑛, 𝑗
ℎ

) (𝜃𝑛, 𝑗+1
ℎ

− 𝜃𝑛, 𝑗
ℎ

), 𝑣2,ℎ > +Δ𝑡 < 𝜕𝑐 𝑝𝑐𝑎𝑝 (𝜃𝑛, 𝑗ℎ
, 𝑐

𝑛, 𝑗
ℎ

)
(𝑐𝑛, 𝑗+1

ℎ
− 𝑐𝑛, 𝑗

ℎ
), 𝑣2,ℎ >= < 𝜏(𝜃𝑛, 𝑗ℎ

) (𝜃𝑛, 𝑗+1
ℎ

− 𝜃𝑛−1
ℎ ), 𝑣2,ℎ >

+ < 𝜕𝜃𝜏(𝜃𝑛, 𝑗ℎ
) (𝜃𝑛, 𝑗

ℎ
− 𝜃𝑛−1

ℎ ) (𝜃𝑛, 𝑗+1
ℎ

− 𝜃𝑛, 𝑗
ℎ

), 𝑣2,ℎ >,

(8)
and

< 𝜃
𝑛, 𝑗
ℎ
𝑐
𝑛, 𝑗+1
ℎ

− 𝜃𝑛−1
ℎ 𝑐𝑛−1

ℎ , 𝑣3,ℎ > +Δ𝑡 < 𝐷∇𝑐𝑛, 𝑗+1
ℎ

+ un−1
w 𝑐

𝑛, 𝑗+1
ℎ

,∇𝑣3,ℎ >

+Δ𝑡 < 𝑅(𝑐𝑛, 𝑗
ℎ

), 𝑣3,ℎ > +Δ𝑡 < 𝜕𝑐𝑅(𝑐𝑛, 𝑗ℎ
) (𝑐𝑛, 𝑗+1

ℎ
− 𝑐𝑛, 𝑗

ℎ
) >

= Δ𝑡 < S2, 𝑣3,ℎ >,

(9)

hold true for all 𝑣1,ℎ , 𝑣2,ℎ , 𝑣3,ℎ ∈ 𝑉ℎ .

2.2 The monolithic 𝐿-scheme (MON-LS)
The monolithic 𝐿-scheme for solving (4)-(6) reads as

Problem ML(n,j+1) Let Ψ𝑛−1
ℎ

, 𝜃𝑛−1
ℎ

, 𝑐𝑛−1,Ψ𝑛, 𝑗
ℎ
, 𝜃

𝑛, 𝑗
ℎ
𝑐
𝑛, 𝑗
ℎ

∈ 𝑉ℎ be given,
𝐿Ψ1 , 𝐿

𝜃
1 , 𝐿2, 𝐿3 > 0, big enough.

Find Ψ𝑛, 𝑗+1
ℎ

, 𝜃
𝑛, 𝑗+1
ℎ

, 𝑐
𝑛, 𝑗+1
ℎ

∈ 𝑉ℎ such that

< 𝜃
𝑛, 𝑗+1
ℎ

− 𝜃𝑛−1
ℎ , 𝑣1,ℎ > +Δ𝑡 < 𝐾 (𝜃𝑛, 𝑗

ℎ
,Ψ𝑛, 𝑗

ℎ
) (∇(Ψ𝑛, 𝑗+1

ℎ
) + ez),∇𝑣1,ℎ >

+Δ𝑡 < 𝐿Ψ1 (Ψ𝑛, 𝑗+1
ℎ

−Ψ𝑛, 𝑗
ℎ

),∇𝑣1,ℎ > +Δ𝑡 < 𝐿 𝜃
1 (𝜃

𝑛, 𝑗+1
ℎ

− 𝜃𝑛, 𝑗
ℎ

),∇𝑣1,ℎ >

= Δ𝑡 < S1, 𝑣1,ℎ >,

(10)

Δ𝑡 < Ψ𝑛, 𝑗+1
ℎ

, 𝑣2,ℎ > = −Δ𝑡 < 𝑝𝑐𝑎𝑝 (𝜃𝑛, 𝑗ℎ
, 𝑐

𝑛, 𝑗
ℎ

), 𝑣2,ℎ >

+ < 𝜏(𝜃𝑛, 𝑗
ℎ

) (𝜃𝑛, 𝑗+1
ℎ

− 𝜃𝑛−1
ℎ ), 𝑣2,ℎ > + < 𝐿2 (𝜃𝑛, 𝑗+1

ℎ
− 𝜃𝑛, 𝑗

ℎ
), 𝑣2,ℎ >

(11)

and

< 𝜃
𝑛, 𝑗
ℎ
𝑐
𝑛, 𝑗+1
ℎ

− 𝜃𝑛−1
ℎ 𝑐𝑛−1

ℎ , 𝑣3,ℎ > +Δ𝑡 < 𝐷∇𝑐𝑛, 𝑗+1
ℎ

+ un−1
w 𝑐

𝑛, 𝑗+1
ℎ

,∇𝑣3,ℎ >

+Δ𝑡 < 𝑅(𝑐𝑛, 𝑗
ℎ

), 𝑣3,ℎ > + < 𝐿3 (𝑐𝑛, 𝑗+1
ℎ

− 𝑐𝑛, 𝑗
ℎ

), 𝑣3,ℎ > = Δ𝑡 < S3, 𝑣3,ℎ >,
(12)

hold true for all 𝑣1,ℎ , 𝑣2,ℎ , 𝑣3,ℎ ∈ 𝑉ℎ .
The L-Scheme does not involve the computations of derivatives, the linear

systems to be solved within each iteration are better conditioned, compared to the
ones given by the Newton method [7, 9], and it is globally (linearly) convergent. The
convergence of the scheme has been proved, for the equilibrium model (𝜏(𝜃) = 0)
in [7], and can be easily extended to the non-equilibrium formulation given by the
system (10)-(12).

4



2.3 The splitting approach (NonLinS)
The splitting approach for solving (4)-(6) reads as

Problem S(n,j+1) Let Ψ𝑛−1
ℎ

, 𝜃𝑛−1, 𝑐𝑛−1,Ψ𝑛, 𝑗
ℎ
, 𝜃

𝑛, 𝑗
ℎ
, 𝑐

𝑛, 𝑗
ℎ

∈ 𝑉ℎ be given, find
Ψ𝑛, 𝑗+1
ℎ

, 𝜃
𝑛, 𝑗+1
ℎ

∈ 𝑉ℎ such that

< 𝜃
𝑛, 𝑗+1
ℎ

− 𝜃𝑛−1
ℎ , 𝑣1,ℎ > +Δ𝑡 < 𝐾 (𝜃𝑛, 𝑗+1

ℎ
,Ψ𝑛, 𝑗+1

ℎ
) (∇(Ψ𝑛, 𝑗+1

ℎ
) + ez),∇𝑣1,ℎ >

= Δ𝑡 < S1, 𝑣1,ℎ >,
(13)

Δ𝑡 < Ψ𝑛, 𝑗+1
ℎ

, 𝑣2,ℎ > +Δ𝑡 < 𝑝𝑐𝑎𝑝 (𝜃𝑛, 𝑗+1
ℎ

, 𝑐
𝑛, 𝑗
ℎ

), 𝑣2,ℎ >

= < 𝜏(𝜃𝑛, 𝑗+1
ℎ

) (𝜃𝑛, 𝑗+1
ℎ

− 𝜃𝑛−1
ℎ ), 𝑣2,ℎ >,

(14)

hold true for all 𝑣1,ℎ , 𝑣2,ℎ ∈ 𝑉ℎ .
Then, with Ψ𝑛, 𝑗+1

ℎ
and 𝜃𝑛, 𝑗+1

ℎ
obtained from the equations above, find 𝑐𝑛, 𝑗+1

ℎ
∈

𝑉ℎ such that

< 𝜃
𝑛, 𝑗+1
ℎ

𝑐
𝑛, 𝑗+1
ℎ

− 𝜃𝑛−1
ℎ 𝑐𝑛−1

ℎ , 𝑣3,ℎ > +Δ𝑡 < 𝐷∇𝑐𝑛, 𝑗+1
ℎ

+ un−1
w 𝑐

𝑛, 𝑗+1
ℎ

,∇𝑣3,ℎ >

+Δ𝑡 < 𝑅(𝑐𝑛, 𝑗+1
ℎ

), 𝑣3,ℎ > = Δ𝑡 < S2, 𝑣3,ℎ >,

(15)

holds true for all 𝑣3,ℎ ∈ 𝑉ℎ .
The three equations above can be then linearised using either the Newton

method (NonLinS-Newton) or the L-Scheme (NonLinS-LScheme).

2.4 The mixed linearization scheme
It has been already observed, for a different set of equations [9], that combining
the Newton method and the L-Scheme can improve the convergence of the scheme.
The Newton method is quadratically but only locally convergent and it can produce
badly conditioned linearized systems. Moreover, the time step is subject to severe
restrictions for guaranteeing the convergence of the scheme, and this has also been
observed in numerical examples [1, 7, 9].

Contrarily, the L-Scheme is globally convergent and the linear systems to be
solved within each iteration are better conditioned, however, it has only a linear rate
of convergence.

The mixed formulation, obtained combining the two schemes, appears to be the
best approach and shows practically both global and quadratic convergence. The
Newton method commonly fails to converge, if the initial guess is too far from the
actual solution. Since this guess is usually the solution at the previous time, this can
force restriction on the time step. Instead of reducing the time step one can obtain a
better approximation of the initial guess, for the Newton method, by performing few
L-Scheme iterations. In the numerical simulation here presented, up to 5 iterations
were sufficient to reach a good initial guess for the Newton iteration, which ensured
its convergence.
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3 Numerical examples
In this section, we use a benchmark problem, from [6], to compare the differ-
ent linearization schemes and solving algorithms defined above. It describes the
recharge of a two-dimensional underground reservoir Ω ⊂ R2, in the interval of
time 𝑡 ∈ (0, 3]. The boundary of the domain and the Dirichlet boundary conditions
are defined below.

Ω = (0, 2) × (0, 3),
Γ𝐷1 = {(𝑥, 𝑦) ∈ 𝜕Ω|𝑥 ∈ [0, 1] ∧ 𝑦 = 3},
Γ𝐷2 = {(𝑥, 𝑦) ∈ 𝜕Ω|𝑥 = 2 ∧ 𝑦 ∈ [0, 1]},
Γ𝐷 = Γ𝐷1 ∪ Γ𝐷2 ,

Γ𝑁 = 𝜕Ω \ Γ𝐷 ,

Ψ(𝑥, 𝑦, 𝑡) =


−2 + 2.2 ∗ 𝑡, on Γ𝐷1 , 𝑡 ≤ 1
0.2, on Γ𝐷1 , 𝑡 > 1
1 − 𝑦, on Γ𝐷2 ,

𝑐(𝑥, 𝑦, 𝑡) =



1, on Γ𝐷1 , 𝑡 ≤ 1
0, on Γ𝐷1 , 𝑡 > 1
3 − 𝑦, on Γ𝐷2 ∪ Γ𝑁 .

Furthermore, no flow conditions are imposed on Γ𝑁 . The initial conditions
are given by Ψ(𝑥, 𝑦, 0) := 1 − 𝑦, 𝑐(𝑥, 𝑦, 0) := 3 − 𝑦 and 𝜃 (𝑥, 𝑦, 0) := 0.39. The
capillary pressure is defined as 𝑝𝑐𝑎𝑝 (𝜃, 𝑐) := (1− 𝜃)2.5 + 0.1 ∗ 𝑐, the conductivity
is given by (2) and 𝜏(𝜃) = 1. Finally, the parameters implemented are: 𝐾𝑠 = 1,
𝐿Ψ1 , 𝐿

𝜃
1 , 𝐿2 = 0.01, 𝐿3 = 0.1 and the iterations stop whenever all the error norms,Ψ𝑛, 𝑗+1 −Ψ𝑛, 𝑗

 , 𝜃𝑛, 𝑗+1 − 𝜃𝑛, 𝑗
 and

𝑐𝑛, 𝑗+1 − 𝑐𝑛, 𝑗
, are below 10−6.
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Figure 1: Total numbers of iterations for different solvers

We performed the simulations using regular meshes, consisting of squares, with
sides 𝑑𝑥 = {1/10, 1/20, 1/40}. We considered two fixed time steps Δ𝑡 = 1/10 and
Δ𝑡 = 1/50.

In Figure 1, we can observe the total numbers of iterations required by the
different linearization schemes and solving algorithms. Next to the name of each
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scheme we report, between parenthesis, which time step Δ𝑡 has been used.
We can observe, as the Newton method in the monolithic formulation, converges

only for coarse meshes, for Δ𝑡 = 1/10. For the smaller time step, Δ𝑡 = 1/50, it
converges for all of the tested meshes.

The L Scheme converges for both time steps, but, since it is linearly convergent,
for Δ𝑡 = 1/50 would require more iterations than the Newton method.

The results obtained thanks to the mixed formulation are particularly interesting.
We can observe that this scheme, both in the monolithic and splitting formulation,
converges for all the tested meshes also in case of a large time step. Moreover,
thanks to the Newton iterations, it appears to be faster than the classical L Scheme.
It is as robust as the L Scheme and as fast as the Newton method. For more details
regarding the mixed scheme, we refer to [9].

4 Conclusions
In this paper, we considered multiphase flow coupled with a one-component reactive
transport in variably saturated porous media, including also the dynamic effects
in the capillary pressure. The resulting model is nonlinear and for this reason,
three different linearization schemes are investigated: the L-Scheme, the Newton
method and a combination of the two. We also studied both monolithic solvers and
splitting ones.

The tests show that, for this particular set of equations, the best linearization
scheme is the one obtained combining the Newton method and the L-Scheme. Such
scheme appears to be both quadratically and globally convergent.
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Abstract

We study several iterative methods for fully coupled flow and reactive transport in porous media.
The resulting mathematical model is a coupled, nonlinear evolution system. The flow model com-
ponent builds on the Richards equation, modified to incorporate nonstandard effects like dynamic
capillarity and hysteresis, and a reactive transport equation for the solute. The two model compo-
nents are strongly coupled. On one hand, the flow affects the concentration of the solute; on the
other hand, the surface tension is a function of the solute, which impacts the capillary pressure
and, consequently, the flow. After applying an Euler implicit scheme, we consider a set of iter-
ative linearization schemes to solve the resulting nonlinear equations, including both monolithic
and two splitting strategies. The latter include a canonical nonlinear splitting and an alternate lin-
earized splitting, which appears to be overall faster in terms of numbers of iterations, based on our
numerical studies. The (time discrete) system being nonlinear, we investigate different lineariza-
tion methods. We consider the linearly convergent L-scheme, which converges unconditionally,
and the Newton method, converging quadratically but subject to restrictions on the initial guess.
Whenever hysteresis effects are included, the Newton method fails to converge. The L-scheme
converges; nevertheless, it may require many iterations. This aspect is improved by using the An-
derson acceleration. A thorough comparison of the different solving strategies is presented in five
numerical examples, implemented in MRST, a toolbox based on MATLAB.

1. Introduction

Mathematical models for complex physical phenomena are generally neglecting several pro-
cesses, in order to guarantee that the result is sufficiently simple and to facilitate the numerical
simulations. With a particular focus on porous media applications, in this sense we mention
enhanced oil recovery, diffusion of substances in living tissues, and pollution of underground
aquifers. With the increase of computational power, and the development of efficient simulation
algorithms, mathematical models are improved continuously, and more and more of the neglected
effects are included.

Email addresses: Davide.Illiano@uin.no (Davide Illiano), Jakub.Both@uib.no (Jakub Wiktor Both),
sorin.pop@uhasselt.be (Iuliu Sorin Pop), Florin.Radu@uib.no (Florin Adrian Radu)
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When studying unsaturated flow, the equilibrium capillary pressure plays a fundamental role. It
is typically assumed to be a nonlinear, monotone function of the water content. Explicit represen-
tations have been obtained thanks to numerous experiments under equilibrium conditions (no flow-
ing phases). Even though this formulation has been the most commonly used in the last decades,
it has been observed [Camps-Roach et al.-2010, DiCarlo-2004, Oung et al.-2005, Stauffer-1978],
that changes in time of the water content, thus its time derivatives, do influence the profile of
the capillary pressure. In terms of modeling, this is achieved by including the so-called dynamic
effects [Beliaev et al.-2001, Gray et al.-1998, Mikelic-2010]. Numerous papers investigate the ex-
istence of a solution for systems including such effects, among them we cite [Cao et al.-2016,
Koch et al.-2012, Milisic -2018]. Furthermore, the problem has been already studied numerically
in, e.g., [Abreu et al.-217, Abreu et al.-2020, Cao et al.-2019a].

The hysteresis effect is another phenomenon often neglected. Again, experiments have re-
vealed that the curve obtained when investigating the imbibition process, is different from the
one observed during the drainage, [O’Carroll et al.-2005, Hoa et al.-1977, McClure et al.-2018,
Morrow et al.-2005]. This is sketched in Fig. 1.

Drainage

Imbibition

S
w

P
c
a
p

0.25 0.75

Figure 1: Primary hysteresis loop as presented in [McClure et al.-2018].

In this article, we study unsaturated flow in porous media, modeled by the Richards equa-
tion [Berardi et al.-2018, Helmig-1997], however including both dynamic and hysteresis effects.
Furthermore, we include a solute component, e.g., a surfactant, in the wetting phase, which
can directly influence the fluid properties ([Agosti et al.-2015, Prechtel et al.-2002]). The study
of the transportation of an external components, e.g., surfactant, in variably saturated porous
media has been already investigated both numerically [Illiano et al.-2020a, Knabner et al.-2003,
Radu et al.-2013] and experimentally [Henry et al.-1999, Karagunduz et al.-2015].

Here, we will mainly concentrate on numerical studies, extending the solution techniques
in [Illiano et al.-2020a] to include dynamic capillarity and hysteresis We consider the following
model for coupled unsaturated flow and reactive transport

∂tθ(Ψ, c) − ∇ · (K(θ(Ψ, c))∇(Ψ + z)) = S1,

∂t(θ(Ψ, c)c) − ∇ · (D∇c − uwc) + R(c) = S2.
(1)

Here, θ(Ψ, c) is the water content, expressed as a function of both the unknown pressure head
Ψ and the concentration of the external component c. K, a function of the water content θ, is
the conductivity, z the vertical coordinate of ~x, pointing against gravity, D the dispersion/diffusion
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coefficient, uw := −K(θ(Ψ, c))∇(Ψ+z) the water flux, R(c) the reaction term and S1, S2 the external
sink/source terms involved.

Next to a concentration dependence of θ and Ψ, here we include also play-type hysteresis and
dynamic capillary effects as introduced in [Beliaev et al.-2001]. More precisely,

Ψ ∈ −pcap(θ, c) + τ(θ)∂tθ + γ(θ) sign(∂tθ), (2)

where pcap is the equilibrium capillary pressure, expressed as a function of θ and c, τ(θ) the dy-
namic effects, and γ(θ) the width of the primary hysteresis loop. Later on, for ease of presentation,
we consider γ as a positive constant, γ ∈ R≥0. Note that (2) is a differential inclusion as the sign
graph is multi-valued and defined as follow,

sign(ξ) =



1 for ξ > 0,
[−1, 1] for ξ = 0,
−1 for ξ < 0.

(3)

The multi-valued graph allows switching between the imbibition and drainage curves in the play-
type hysteresis. For more details on the formulation we refer to [Beliaev et al.-2001].

The primary unknowns of the system are the pressure Ψ, the concentration c and the water
content θ. In standard models, also obtained as special case for γ = τ(θ) = 0, θ is a function of
pressure and concentration. Therefore, (2) is replaced by an algebraic relationship, which simpli-
fies the model and allows eliminating θ as an unknown. In the extended/nonstandard formulation,
θ is an unknown and (2) is required as additional equation of the model. Initial and boundary
conditions will complete the system.

To avoid working with a graph, we consider the following regularization,

Φ(ξ) =


sign(ξ) if |ξ| ≥ δ,
ξ

δ
if |ξ| < δ, (4)

where δ ∈ R+ is a small parameter. Using this in (2) gives the regularized system of equations

∂tθ − ∇ · (K(θ)∇(Ψ + z)) = S1,

Ψ = −pcap(θ, c) + τ(θ)∂tθ + γΦ(∂tθ),
∂t(θc) − ∇ · (D∇c − uwc) + R(c) = S2.

(5)

From now on, the system (5) will be further investigated. We will discretize the equations and
study different solving algorithms.

Remark 1. An inverse formulation is proposed in [Beliaev et al.-2001], obtained by solving (2),
as its regularized counterpart in (5), in terms of ∂tθ. This gives

∂tθ = F(Ψ, θ, c), (6)

for a suitable function F. The time derivative in the flow equation can then be substituted by F,

F(Ψ, θ, c) − ∇ · (K(θ)∇(Ψ + z)
)
= S1. (7)

3



This formulation is used for the mathematical analysis of such models,
[Cao et al.-2015, Schweizer-2012]. It has been observed, e.g., in [Lunowa et al.-2020], that such
formulation can reduce the number of iterations required to solve the system of equations, com-
pared to the formulation in (2). However, for the particular test cases investigated here, no re-
markable improvements are observed. Thus, for ease of presentation, we will report the results
obtained only for the formulation given by (5).

We point out that the concentration of the external component directly influences the capillary
pressure. The presence of such a component results in a non-constant surface tension, which
induces a rescaling of the pressures [Husseini-2015, Smith et al.-1994, Smith et al.-1999].

To solve the system (5) numerically, one first needs to discretize in time and space, and then
develop solvers for the discretized equations. In this paper, due to the expected low regular-
ity of the solutions [Alt et al.-1983] and the desire of relatively large time steps, we choose to
use the backward Euler method for the time discretization. Certain processes investigated in
porous media flow can take place on time intervals longer than decades, thus the need for large
time steps. Multiple spatial discretization techniques are available, e.g., the Galerkin Finite Ele-
ment Method (FEM) [Barrett et al.-1997, Nocheto et al.-1988, Russell et al.-1983], Discontinuous
Galerkin Method (DGM) [Arnold et al.-2006, Karpinski et al.-2017, Li et al.-2007, Sun et al.-2005],
the Mixed Finite Element Method (MFEM) [Arbogast-1996, Cao et al.-2019a, Radu et al.-2010,
Radu et al.-2013, Vohralik-2007, Woodward et al.-2000], the Finite Volume Method (FVM)
[Eymard et al.-1999] and the Multi-Point Flux Approximation (MPFA)
[Aavatsmark-2001, Arraras et al.-2020, Bause et al.-2010, Klausen et al.-2008]. We will here con-
centrate on FEM and TPFA (Two Points Flux Approximation), a particular case of MPFA. In
particular, we cite [Berardi et al.-2020, Dolejsi et al.2019, Zha et al.2019] for papers on improved
numerical schemes applied to the Richards equation.

Since the equations investigated here are characterized by several nonlinear quantities, K(θ),
pcap(θ, c), τ(∂tθ), and R(c), and the time discretization is not explicit, one needs to solve a non-
linear system at each time step, requiring a linearization procedure. Examples of possible lin-
earization schemes are: the Newton method [Paniconi et al.-1994], the modified Picard method
[Celia et al.-1990] and the L-scheme [List et al.-2016, Pop et al.-2004]. In this paper, we investi-
gate the Newton method and the L-scheme. The former is a commonly used linearization scheme
which is quadratically convergent. However, this convergence is only local and one needs to com-
pute the Jacobian matrix, which can be expensive. The L-scheme is instead globally (linearly)
convergent, under mild restrictions, and it does not require the computation of any derivative. The
L-scheme is in general slower in terms of numbers of iterations than the Newton method. More-
over, the linear systems to be solved within each iteration are better conditioned when compared
to the ones given by the Newton method [Illiano et al.-2020a, List et al.-2016]. Furthermore, the
rate of convergence of the scheme strongly depends on user-defined parameters. Such aspects
are investigated for numerous nonlinear problems, including Richards equation, and two-phase
flow in porous media, in [Illiano et al.-2020a, List et al.-2016, Mitra et al.-2019, Pop et al.-2004,
Slodicka-2002]. Finally there numerous papers proposing improved formulation of the L-scheme,
among them we cite [Albuja et al.-2021, Mitra et al.-2019].

In this work, we test the L-scheme on more complex problems involving hysteresis and dy-
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namic effects, and coupled reactive transport and flow. Furthermore, we investigate a post-processing
technique, the Anderson Acceleration (AA) [Anderson-1965], which can drastically improve lin-
early convergent schemes. The acceleration tool requires user-defined parameters. As will be
seen below, choosing the suitable parameters for the AA, significantly relaxes the choice of the
parameters for the L-scheme linearization.

We observe that the system (5) is fully coupled. This is due to the dependence of the capillary
pressure on both θ and c. Therefore, we will investigate multiple solution algorithms, combining
different linearization schemes and decoupling techniques. Decoupling/splitting the equations
may present multiple advantages such as: an easier implementation, a better conditioned problem
to solve, similar convergence properties but faster computations. We divide the schemes into three
main categories: monolithic (Mono), nonlinear splitting (NonLinS) and alternate splitting (AltS).
Subsequently, we denote, e.g., by Newton-Mono, the monolithic scheme obtained by applying the
Newton method as linearization. Such schemes have already been investigated for the standard
model in [Illiano et al.-2020a].

The paper is organized as follows. In Section 2, we present the linearization and discretiza-
tion techniques including monolithic or decoupled solution approaches. Section 3 presents five
different numerical examples, which allow to compare the efficiency and robustness of the solving
algorithms. Section 4 concludes this work with the final remarks.

2. Problem formulation, discretization and iterative schemes

In the following, we use the standard notations of functional analysis. The domain Ω ⊂ Rd,
d = 1, 2 or 3, is bounded and has a Lipschitz continuous boundary ∂Ω. The final time is T > 0,
and the time domain is (0,T ]. L2(Ω) denotes the space of real valued, square integrable functions
defined on Ω and H1(Ω) its subspace containing the functions also having weak first derivatives
in L2(Ω). H1

0(Ω) is the space of functions belonging to H1(Ω), having zero trace on the boundary
∂Ω. Furthermore, we denote by < ·, · > the standard L2(Ω) scalar product and by ‖·‖ the associated
norm.

To numerically solve the system of equations (5), one needs to discretize both in time and
space. We combine the backward Euler method with linear Galerkin finite elements. Let N ∈ N
be a strictly positive natural number. We define the time step size ∆t = T/N and tn = n∆t (n ∈
1, 2, . . . ,N). Furthermore, let Th be a regular decomposition of Ω, Ω = ∪

T∈Th
T , with h denoting the

mesh diameter. The finite element spaces Vh ⊂ H1
0(Ω) and Wh ⊂ L2(Ω) are defined by

Vh :=
{
vh ∈ H1

0(Ω) s.t. vh|T ∈ P1(T ), T ∈ Th

}
, Wh :=

{
wh ∈ L2(Ω) s.t. wh|T ∈ P1(T ), T ∈ Th

}
,

(8)
where P1(T ) denotes the space of the linear polynomials on T . The fully discrete Galerkin formu-
lation of the system (5) can now be written as:

Problem Pn: Let n ≥ 1 be fixed. Assuming that Ψn−1
h , cn−1

h ∈ Vh and θn−1
h ∈ Wh are given, find
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Ψn
h, c

n
h ∈ Vh and θn

h ∈ Wh such that

< θn
h − θn−1

h , v1,h > +∆t < K(θn
h)(∇Ψn

h + ez),∇v1,h > = ∆t < S1, v1,h >

∆t < Ψn
h,w1,h > +∆t < pcap(θn

h, c
n
h),w1,h > − < τ(θn

h)(θn
h − θn−1

h ),w1,h > = ∆tγ < Φ
(
θn

h − θn−1
h

∆t

)
,w1,h >

< θn
h(cn

h − cn−1
h ) + cn

h(θn
h − θn−1

h ), v2,h > +∆t < D∇Ψn
h + u

n
wcn

h,∇v2,h > +∆t < R(cn
h), v2,h > = ∆t < S2, v2,h >

(9)

holds for all v1,h, v2,h ∈ Vh and for all w1,h ∈ Wh. We denote by ez the unit vector in the direction
opposite to gravity.

Observe that choosing the space H1
0(Ω) implies that homogeneous boundary conditions have

been adopted for the pressure and the concentration. However, this choice is made for the ease of
presentation, the extension to other boundary conditions being possible without major complica-
tions. We also mention that, for n = 1, we use the approximation in Vh of the initial water content
and concentration, respectively θ0

h and c0
h.

In the following, we investigate different iterative schemes for solving Problem Pn. These
schemes are based on the ones discussed in [Illiano et al.-2020a], extending them, not only to
the case of dynamic capillary pressure (τ(θ) , 0) [Illiano et al.-2020b], but also to the case of
hysteresis. Among the numerous papers investigating numerically the effects of hysteresis and
dynamic capillarity pressure, we cite [Peszynska et al.-2008, Zhang et al.-2017]. As mentioned,
we compare monolithic (Mono) and splitting (NonLinS and AltS) solvers, combined with two
different linearization schemes, the Newton method and the L-scheme. Furthermore, the Anderson
acceleration [Anderson-1965] will be taken into account to speed up the linearly convergent L-
scheme.

2.1. Solving algorithms
In what follows, when solving (9) iteratively, the index n will always refer to the time step

level, whereas j will denote the iteration index. As a rule, the iterations will start with the solution
at the last time step, tn−1, for example Ψn,1 = Ψn−1. As mentioned, this choice is not required for
L-type schemes but it is a natural one.

In a compact form Problem Pn can be seen as the system


F1(Ψn
h, θ

n
h) = 0,

F2(Ψn
h, θ

n
h, c

n
h) = 0,

F3(Ψn
h, θ

n
h, c

n
h) = 0,

(10)

with F1, F2 resulting from the flow equations and F3 from the transport. In the following we will
indicate with F lin, the linearized formulation of F obtained by either the Newton method or the
L-scheme. Finally, we can proceed to present monolithic and splitting solvers.

In the monolithic approach one solves the three equations of the system (10) at once. Formally,
one iteration is:
Find Ψn, j+1

h , θn, j+1
h and cn, j+1

h such that


F lin
1 (Ψn, j+1

h , θ
n, j+1
h ) = 0,

F lin
2 (Ψn, j+1

h , θ
n, j+1
h , cn, j+1

h ) = 0,
F lin

3 (Ψn, j+1
h , θ

n, j+1
h , cn, j+1

h ) = 0,
(11)

6



where FLin
i is the linearization of Fi, i ∈ {1, 2, 3}. Depending on which linearization technique

is used, we refer to the Newton-monolithic scheme (Newton-Mono) or monolithic-L-scheme (LS-
Mono). These two schemes will be presented in details below. Fig. 2 displays the sketched version
of the monolithic solver.

Lin. Flow
Lin. Transp.

Lin. Flow
Lin. Transp.

Lin. Flow
Lin. Transp.

Lin. Flow
Lin. Transp.

...

j iterations

Figure 2: The monolithic approach.

In the iterative splitting approach, the flow and the transport equations are solved subsequently,
iterating between them. We will distinguish between two primary splitting schemes: the nonlinear
splitting (NonLinS) and the alternate linearized splitting (AltLinS), illustrated in Figure 3 and
Figure 4, respectively. Such schemes have already been studied, in the case of a standard flow
model in [Illiano et al.-2020a].
In the nonlinear splitting, one iteration step is:
Find first Ψn, j+1

h , θn, j+1
h such that


F1(Ψn, j+1

h , θ
n, j+1
h ) = 0,

F2(Ψn, j+1
h , θ

n, j+1
h , cn, j

h ) = 0,
(12)

and then find cn, j+1
h such that

F3(Ψn, j+1
h , θ

n, j+1
h , cn, j+1

h ) = 0. (13)

The two flow equations are solved at once. Each of the nonlinear systems (12) and (13) is solved
until some convergence criterion is met. Once the pressure and water content are obtained, Ψn, j+1

h

and θn, j+1
h , are then used in the transport equation (13) to compute cn, j+1

h . The resulting F1, F2 and
F3, being nonlinear, are linearized using the Newton method or the L-scheme.

In contrast, the alternate linearized splitting (AltLinS) schemes perform only one linearization
step per iteration, see Figure 4. One iteration in the alternate splitting scheme can be written as:
Find Ψn, j+1

h , θ
n, j+1
h such that


F lin

1 (Ψn, j+1
h , θ

n, j+1
h ) = 0,

F lin
2 (Ψn, j+1

h , θ
n, j+1
h , cn, j

h ) = 0,
(14)

and then cn, j+1
h such that

F lin
3 (Ψn, j+1

h , θ
n, j+1
h , cn, j+1

h ) = 0. (15)

Again, depending on which linearization is used, we refer to alternate splitting Newton (AltS-
Newton) or alternate splitting L-scheme (AltS-LS). Both schemes will be presented in detail below.

In the following sections we will illustrate, in the details, the different schemes here investi-
gated.
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NonLin. Flow

Lin. Flow

Lin. Flow

Lin. Flow

NonLin. Transp.

Lin. Transp.

Lin. transp.

Lin. Transp.
...

NonLin. Flow

Lin. Flow

Lin. Flow

Lin. Flow

NonLin. Transp.

Lin. Transp.

Lin. transp.

Lin Transp

...
...

...

j iterations

...

Figure 3: The nonlinear splitting approach.

Lin. Flow

Lin. Transp.

j iterations

Lin. Flow

Lin. Transp.

Lin. Flow

Lin. Transp.

...

Figure 4: The alternate splitting approach.

2.1.1. The monolithic Newton method (Newton-Mono)
The standard monolithic Newton method applied to (9) reads as:
Problem P-Newton-Mono: Let j > 1 be fixed. Let Ψn−1

h ,Ψ
n, j
h , cn−1

h , cn, j
h ∈ Vh, and θn−1

h , θ
n, j
h ∈

Wh be given, find Ψn, j+1
h , cn, j+1

h ∈ Vh, and θn, j+1
h ∈ Wh such that

< θ
n, j+1
h − θn−1

h , v1,h > +∆t < K(θn, j
h )(∇(Ψn, j+1

h ) + ez),∇v1,h >

+∆t < ∂θK(θn, j
h )(∇(Ψn, j

h ) + ez)(θn, j+1
h − θn, j

h ),∇v1,h >= ∆t < S1, v1,h >
(16)
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∆t < Ψn, j+1
h ,w1,h >= −∆t < pcap(θn, j

h , cn, j
h ),w1,h > −∆t < ∂θpcap(θn, j

h , cn, j
h )(θn, j+1

h − θn, j
h ),w1,h >

− ∆t < ∂c pcap(θn, j
h , cn, j

h )(cn, j+1
h − cn, j

h ),w1,h > + < τ(θn, j
h )(θn, j+1

h − θn−1
h ),w1,h >

+ < ∂θτ(θn, j
h )(θn, j

h − θn−1
h )(θn, j+1

h − θn, j
h ),w1,h > +∆tγ < Φ


θ

n, j
h − θn−1

h

∆t

 ,w1,h >

(17)

and

< θ
n, j
h (cn, j+1

h − cn−1
h ) + cn, j

h (θn, j+1
h − θn−1

h ), v2,h > +∆t < D∇cn, j+1
h + un,j

w cn, j+1
h ,∇v2,h >

+ ∆t < R(cn, j
h ), v2,h > +∆t < ∂cR(cn, j

h )(cn, j+1
h − cn, j

h ) >= ∆t < S2, v2,h >
(18)

hold true for all v1,h, v2,h ∈ Vh, and for all w1,h ∈ Wh. By ∂θ we denote the partial derivative with
respect to the water content θ, and by ∂c the partial derivative with respect to the concentration c,
and un,j

w := −K(θn, j
h )∇(Ψn, j

h + ez).

2.1.2. The monolithic L-scheme (LS-Mono)
The monolithic L-scheme for solving (9) reads:

Problem P-LS-Mono: Let j > 1 be fixed. Let Ψn−1
h ,Ψ

n, j
h , cn−1

h , cn, j
h ∈ Vh, and θn−1

h , θ
n, j
h ∈ Wh be

given, find Ψn, j+1
h , cn, j+1

h ∈ Vh, and θn, j+1
h ∈ Wh such that

< θ
n, j+1
h −θn−1

h , v1,h > +∆t < K(θn, j
h )(∇(Ψn, j+1

h )+ez),∇v1,h > +L1 < Ψ
n, j+1
h −Ψn, j

h , v1,h >= ∆t < S1, v1,h >
(19)

∆t < Ψn, j+1
h ,w1,h > = −∆t < pcap(θn, j

h , cn, j
h ),w1,h > + < τ(θn, j

h )(θn, j+1
h − θn−1

h ),w1,h >

+ ∆tγ < Φ


θ

n, j
h − θn−1

h

∆t

 ,w1,h > +L2 < (θn, j+1
h − θn, j

h ),w1,h >
(20)

and

< θ
n, j
h (cn, j+1

h − cn−1
h ) + cn, j

h (θn, j+1
h − θn−1

h ), v2,h > +∆t < D∇cn, j+1
h + un,j

w cn, j+1
h ,∇v2,h >

+ ∆t < R(cn, j
h ), v2,h > +L3 < cn, j+1

h − cn, j
h , v2,h >= ∆t < S2, v2,h >

(21)

hold true for all v1,h, v2,h ∈ Vh, and for all w1,h ∈ Wh. L1, L2 and L3 are three positive, user-
defined parameters on which only mild conditions are imposed. We refer to [Illiano et al.-2020a,
List et al.-2016, Pop et al.-2004] for the analysis of the numerical schemes which have inspired
the ones presented here. Often, one needs to properly tune these parameters to obtain a robust and
relatively fast solver.

2.1.3. The nonlinear splitting approach (NonLinS)
The nonlinear splitting approach for solving (9) reads:
Problem P-NonLinS: Let j > 1 be fixed. Let Ψn−1

h ,Ψ
n, j
h , cn−1

h , cn, j
h ∈ Vh and θn−1

h , θ
n, j
h ∈ Wh be

given, find Ψn, j+1
h ∈ Vh, and θn, j+1

h ∈ Wh such that

< θ
n, j+1
h − θn−1

h , v1,h > +∆t < K(θn, j+1
h )(∇(Ψn, j+1

h ) + ez),∇v1,h >= ∆t < S1, v1,h > (22)
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∆t < Ψn, j+1
h ,w1,h >= −∆t <pcap(θn, j+1

h , cn, j
h ),w1,h > + < τ(θn, j+1

h )(θn, j+1
h − θn−1

h ),w1,h >

+ ∆tγ < Φ


θ

n, j
h − θn−1

h

∆t

 ,w1,h >
(23)

holds true for all v1,h ∈ Vh and for all w1,h ∈ Wh.
Then let Ψn−1

h ,Ψ
n, j
h , cn−1

h , cn, j
h ∈ Vh and θn−1

h , θ
n, j
h ∈ Wh be given, Ψn, j+1

h ∈ Vh and θn, j+1
h ∈ Wh are

obtained from the equations above, find cn, j+1
h ∈ Vh such that

< θ
n, j+1
h (cn, j+1

h − cn−1
h ) + cn, j

h (θn, j+1
h − θn−1

h ), v2,h > +∆t < D∇cn, j+1
h + un,j+1

w cn, j+1
h ,∇v2,h >

+ ∆t < R(cn, j+1
h ), v2,h >= ∆t < S2, v2,h >

(24)

holds true for all v2,h ∈ Vh. The water flux is given by un,j+1
w := −K(θn, j+1

h )∇(Ψn, j+1
h + ez).

Observe that (22)–(23) and (24) are nonlinear. To approximate their respective solutions, one
can employ, e.g., the Newton method (NonLinS-Newton) or the L-scheme (NonLinS-LS).

2.1.4. The alternate splitting Newton method (Newton-AltLinS)
Applied to (9), the alternate splitting Newton method reads:
Problem P-Newton-AltLinS: Let j > 1 be fixed. Let Ψn−1

h ,Ψ
n, j
h , cn−1

h , cn, j
h ∈ Vh and θn−1

h , θ
n, j
h ∈

Wh be given, find Ψn, j+1
h ∈ Vh, and θn, j+1

h ∈ Wh such that

< θ
n, j+1
h − θn−1

h , v1,h > +∆t < K(θn, j
h )(∇(Ψn, j+1

h ) + ez),∇v1,h >

+∆t < ∂θK(θn, j
h )(∇(Ψn, j

h ) + ez)(θn, j+1
h − θn, j

h ),∇v1,h >= ∆t < S1, v1,h >
(25)

∆t < Ψn, j+1
h ,w1,h >= −∆t < pcap(θn, j

h , cn, j
h ),w1,h > −∆t < ∂θpcap(θn, j

h , cn, j
h )(θn, j+1

h − θn, j
h ),w1,h >

+ < τ(θn, j
h )(θn, j+1

h −θn−1
h ),w1,h > + < ∂θτ(θn, j

h )(θn, j
h − θn−1

h )(θn, j+1
h − θn, j

h ),w1,h >

+ ∆tγ < Φ


θ

n, j
h − θn−1

h

∆t

 ,w1,h >

(26)

hold true for all v1,h ∈ Vh and w1,h ∈ Wh.
Then, with given Ψn−1

h ,Ψ
n, j
h , cn−1

h , cn, j
h ∈ Vh and θn−1

h , θ
n, j
h ∈ Wh, Ψn, j+1

h ∈ Vh and θn, j+1
h ∈ Wh are

obtained from the equations above, find cn, j+1
h ∈ Vh such that

< θ
n, j+1
h (cn, j+1

h − cn−1
h ) + cn, j

h (θn, j+1
h − θn−1

h ), v2,h > +∆t < D∇cn, j+1
h + un,j+1

w cn, j+1
h ,∇v2,h >

+ ∆t < R(cn, j
h ), v2,h > +∆t < ∂cR(cn, j

h )(cn, j+1
h − cn, j

h ), v2,h >= ∆t < S2, v2,h >
(27)

hold true for all v2,h ∈ Vh.

2.1.5. The alternate splitting L-scheme (LS-AltLinS)
The alternate splitting L-scheme for solving (9) is:
Problem P-LS-AltLinS: Let j > 1 be fixed. Let Ψn−1

h ,Ψ
n, j
h , cn−1

h , cn, j
h ∈ Vh and θn−1

h , θ
n, j
h ∈ Wh

be given, find Ψn, j+1
h ∈ Vh, and θn, j+1

h ∈ Wh such that

< θ
n, j+1
h − θn−1

h , v1,h > +∆t < K(θn, j
h )(∇(Ψn, j+1

h ) + ez),∇v1,h > +L1 < Ψ
n, j+1
h − Ψn, j

h , v1,h >= ∆t < S1, v1,h >

(28)
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∆t < Ψn, j+1
h ,w1,h >= −∆t < pcap(θn, j

h , cn, j
h ),w1,h > + < τ(θn, j

h )(θn, j+1
h − θn−1

h ),w1,h >

+ L2 < θ
n, j+1
h − θn, j

h ,w1,h > +∆tγ < Φ


θ

n, j
h − θn−1

h

∆t

 ,w1,h >
(29)

holds true for all v1,h ∈ Vh and w1,h ∈ Wh.
Then, with given Ψn−1

h ,Ψ
n, j
h , cn−1

h , cn, j
h ∈ Vh and θn−1

h , θ
n, j
h ∈ Wh, and Ψn, j+1

h ∈ Vh and θn, j+1
h ∈ Wh

from the equations above. We find cn, j+1
h ∈ Vh such that

< θ
n, j+1
h (cn, j+1

h − cn−1
h ) + cn, j

h (θn, j+1
h − θn−1

h ), v2,h > +∆t < D∇cn, j+1
h + un,j+1

w cn, j+1
h ,∇v2,h >

+ ∆t < R(cn, j
h ), v2,h > +L3 < cn, j+1

h − cn, j
h , v2,h >= ∆t < S2, v2,h >

(30)

hold true for all v2,h ∈ Vh.

Remark 2. There exist multiple improved formulations of both the Newton method and L-scheme.
We refer, among others, to the trust region techniques [Wang et al.-2013], and the modified L-
scheme in [Mitra et al.-2019].

Remark 3. (Stopping criterion) For all schemes (monolithic or splitting), the iterations are stopped
when,

∥∥∥Ψn, j+1
h − Ψn, j

h

∥∥∥∞ ≤ ε1,
∥∥∥θn, j+1

h − θn, j
h

∥∥∥∞ ≤ ε2 and
∥∥∥cn, j+1

h − cn, j
h

∥∥∥∞ ≤ ε3,

where by ‖·‖∞ we mean the L∞(Ω) norm. Later on, for ease of presentation, we consider ε1 = ε2 =

ε3 = ε. The parameter ε will be defined in the numerical section.

2.2. Anderson acceleration
Although the L-scheme is robust and converges under mild restrictions, the convergence rate

depends strongly on the linearization parameters. We refer to [List et al.-2016, Pop et al.-2004,
Slodicka-2002] for the analysis in case of standard Richards equation, and to [Karpinski et al.-2017]
for the nonstandard model. Tuning the parameters to obtain optimal results in terms of numbers
of iterations and thus of computational times, can be tedious and time-consuming. The Anderson
Acceleration (AA) is a powerful post-processing tool which can drastically reduce the numbers
of iterations required by linearly convergent schemes, such as the L-scheme here investigated. In
addiction, it reduces the need for finding close to optimal linearization parameters.

D. G. Anderson introduced the acceleration tool in 1965 [Anderson-1965], and since then
it has been investigated in multiple works, to name a few [Both et al.-2019, Evans et al.-2020,
Walker et al.-2011]. We recall here the definition of AA, presented in [Walker et al.-2011], for-
mulated for a general fixed point problem, of the form: given g : Rn → Rn, solve the system
x = g(x).

Opposed to utilize only the last iteration xk, in the AA the new approximation is a linear
combination of previously computed ones, see Algorithm 2. In the following, we denote by AA(m)
the Anderson acceleration where m + 1 previously computed iterates are taken into account. With
this, AA(0) is the non-accelerated formulation. As revealed in the test cases below, this technique
can drastically reduce the number of iterations required by the L-scheme.
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Algorithm 1 Classical Fixed-Point iteration
1: Given x0

2: for k = 0, 1,... until convergence do
3: xk+1 = g(xk)
4: end for

Algorithm 2 Anderson Acceleration AA(m)
1: Given x0

2: for k = 1, 2... until convergence do
3: Set mk = min{m, k − 1}
4: Define the matrix Fk = ( fk−mk−1, · · · , fk−1), where fi = g(xi) − xi

5: Find α ∈ Rmk+1 that solves

min
α=(α0,··· ,αmk )T

‖Fkα‖ s.t.
mk∑

i=0

αi = 1.

6: Define xk :=
∑mk

i=0 αig(xk−mk+i−1)
7: end for

The original formulation presented in [Anderson-1965] allows a for more general step,

xk := βk

mk∑

i=0

αig(xk−mk+i−1) + (1 − βk)
mk∑

i=0

αixk−mk+i−1,

for a user-defined tuning parameter βk ∈ (0, 1]. We considered the simplified formulation, obtained
with βk = 1, because no improvements have been observed in the numerical results when using
the extended one.

We remark that large values for the depth m can result in an instability of the solution algorithm.
When implementing the Anderson acceleration, one has to tune this parameter properly. A small
m could produce only a small reduction in the numbers of iterations; too large m could result in a
non-converging algorithm [Fang et al.-2008].

Remark 4. The definition of the nonlinear splitting solvers allows for different ways to apply the
AA. We study three different loops: the coupling one and the linearizing ones, one for each set
of equations. We apply the Anderson acceleration to each of them. Two different parameters,
m and mlin, are defined. The former is used for the AA on the coupling loop, the latter for the
implementation on the linearization ones. The same mlin will be used for the loop regarding the
flow equations and for the one regarding the transport.

3. Numerical examples

In the following, we consider four numerical examples with increasing complexity, based on
a manufactured solution, and an example in which the boundary conditions drive the flow but no
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manufactured solution is given. The first four will differ in the different values for γ, δ and τ(θ)
taken into account. We have implemented the models and solving schemes in MRST, a toolbox
based on Matlab for the simulations of flow in porous media [Lie-2016]. We use the two point
flux approximation, one of the most common spatial discretization techniques. We remark that the
linearization schemes and solving algorithms do not depend on the particular choice of the spatial
discretization, so one may apply these solvers to other methods as well, without any difficulty.

The domain is the unit square Ω and the final time taken into consideration is T = 3. The sim-
ulations are performed on regular meshes, consisting of squares with sides dx = 1/10, 1/20, and
1/40. The time steps are ∆t = T/25, T/50 and T/100. The L parameters, used in the L-scheme
formulations, are L1 = L2 = L3 = 0.1, if not specified otherwise. We took into consideration dif-
ferent values, but the aforementioned choice seems to produce a robust algorithm which required
fewest iterations to achieve the convergence. For the ease of the presentation, we set the three L
parameters equal to each other; one could define different values for each parameter, investigating
even further the linearization of each equation. We avoided this due to the application of the AA.
We will observe that the schemes can be drastically accelerated, even though the L parameters are
not optimal.

The condition numbers, for the stiffness matrices resulting from the different solving algo-
rithms are computed using the L1 norm, and we here report the averaged values over the full
simulation. A minus sign (−), in the tables reporting on iterations and condition numbers, implies
that the method failed to converge for the particular combination of the time step and mesh size.
The tolerance ε used in the stopping criterion presented in Remark 3 is ε = 1e − 6. We always
report the total numbers of iterations required by the full simulation, not the average number re-
quired by each time step. For the splitting solver, we present, separately, the condition numbers
of both flow and transport equations. Furthermore, for the nonlinear splitting, the iterations are
divided in two, the ones required by the flow equations and the ones for the transport. Finally, the
condition numbers reported are obtained by averaging over the full simulations.

We apply the Anderson acceleration to each solving algorithm, always reporting the depths
m and mlin used. Once more, mlin is the Anderson parameter used for the acceleration of the
linearization loops regarding the flow and transport equations in the nonlinear splitting solvers.

Inspired by [Lunowa et al.-2020], the first four examples are constructed in such a way that the
following is an exact solution:

θm(x, y, t) =



1 − 1
2 cos((t1(x, y) − t)2) if t < t1(x, y),

1
2 if t1(x, y) ≤ t ≤ t2(x, y),
1 − 1

2 cos((t − t2(x, y))2) if t > t2(x, y),
(31)

Ψm(x, y, t) =



−pcap(θm) + τ(θm)∂tθm − γ if ∂tθm < −δ,
−pcap(θm) + τ(θm)∂tθm +

γ

δ
∂tθm if − δ ≤ ∂tθm ≤ δ,

−pcap(θm) + τ(θm)∂tθm + γ if ∂tθm > δ,

(32)

cm(x, y, t) = x(x − 1)y(y − 1)t, (33)

where t1(x, y) = xy, t2(x, y) = xy + 2. Once the manufactured water content is defined, one obtains
the pressure by simply using the second equation in (5). The capillary pressure is expressed
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as pcap(θ, c) = 1 − θ2 − 0.1 c3 and the conductivity as K(θ) = 1 + θ2. Even though such a
formulation may appear non-realistic, we are mainly interested in the nonlinearities. Furthermore,
a nonlinear reaction term, R(c) = c/(c + 1), is taken into account in the transport equation and the
diffusion/dispersion coefficient D is set equal to 1.

Given the analytical expressions above, we can easily define the initial conditions, the Dirichlet
boundary conditions on the unit square and compute the source terms S1 and S2 such that Ψm, θm

and cm are solutions of the system. In particular, the initial concentration and water content are

c(x, y, 0) = 0 on Ω,

θ(x, y, 0) = 1 − 1
2

cos
(
t1(x, y)2) on Ω.

We impose a zero concentration c(x, y, t) = 0 on the boundary of the domain. The remaining
boundary conditions, concerning the pressure, are time dependent. One needs to compute t1 and
t2 on every side of the unit square. Once the time intervals given by t1 and t2 are obtained, the
pressure can easily be imposed. For example, on the left side x = 0, thus t1 = 0 and t2 = 2. The
water content θ becomes

θ(0, y, t) = θle f t(t) =


1
2 if 0 < t < 2,
1 − 1

2 cos((t − 2)2) if t ≥ 2,

and the resulting pressure boundary condition is

Ψle f t(0, y, t) =



−pcap(θle f t) + τ(θle f t)∂tθle f t − γ if ∂tθle f t < −δ,
−pcap(θle f t) + τ(θle f t)∂tθle f t +

γ

δ
∂tθle f t if − δ ≤ ∂tθle f t ≤ δ,

−pcap(θle f t) + τ(θle f t)∂tθle f t + γ if ∂tθle f t > δ.

Analogously, one can compute the pressure boundary conditions on the remaining sides.

3.1. Example 1, γ = 0, τ(θ) = 1
In the first example we impose γ = 0, thus, the hysteresis effects are neglected but we include a

dynamic effect by considering a constant τ(θ) = 1. We compare the different algorithms presented
in Section 2.1, reporting in the Tables 1 and 2 the total numbers of iterations required by each
algorithm, and the condition numbers of the systems associated with each scheme. In the former,
we investigate a fixed time step size, ∆t = T/25, in the latter a fixed mesh size, dx = 1/10. As
expected, a finer mesh results in worse conditioned systems, while smaller time steps give better
conditioned ones. Moreover, the total number of iterations is increasing as we reduce the time
step; smaller ∆t implies more time steps and thus more iterations.

The schemes based on the L-scheme appear to be better conditioned than those based on
the Newton method. The result is coherent with the theory [Illiano et al.-2020a, List et al.-2016,
Mitra et al.-2019, Pop et al.-2004, Slodicka-2002]. One could even improve the condition num-
bers by using larger L parameters. However, larger values would have also increased the total
numbers of iterations.
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The alternate splitting schemes are converging much faster than the nonlinear ones. It is also
interesting to observe that the numbers of iterations, required by the alternate splitting schemes,
are comparable with the ones associated with the monolithic solvers. In [Illiano et al.-2020a], we
observed similar results when solving the models without hysteresis and dynamic effects.

We notice also some reduction in the number of iterations required by the L-schemes thanks
to the Anderson acceleration. The results obtained for the non-accelerated L-schemes (m = 0) are
already optimal in terms of numbers of iterations; thus, the improvement can only be minimal. We
report the total number of iterations for the full simulation, but mention that on average, for each
time step, the L-scheme requires only five or six iterations. This is already a remarkable result,
achieved thanks to the optimal L parameters. Furthermore, the Newton solvers have resulted in
being slower when combined with the AA. This is coherent with the theory where it has been
observed that quadratically convergent schemes, cannot be improved and the resulting accelerated
solvers appear slower [Evans et al.-2020].

Monolithic NonLinS AltLinS
Newton Newton Newton

dx # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport
1/10 65 4.91e+02 56 - 50 1.82e+02 1.60e+02 66 1.83e+02 1.60e+02
1/20 69 2.22e+03 57 - 50 7.61e+02 6.33e+02 66 7.60e+02 6.3359e+02
1/40 70 1.11e+04 58 - 50 3.29e+03 2.52e+03 66 3.42e+03 2.5165e+03

Newton (AA m = 1) Newton (AA m = mlin = 1) Newton (AA m = 1)
dx # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport

1/10 93 4.76e+02 65 - 50 1.82e+02 1.60e+02 74 1.82e+02 1.60e+02
1/20 98 2.10e+03 66 - 50 7.54e+02 6.33e+02 74 7.59e+02 6.34e+02
1/40 100 9.92e+03 69 - 50 3.28e+03 2.52e+03 76 3.36e+03 2.52e+03

L-scheme L-scheme L-scheme
dx # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport

1/10 134 4.15e+02 117 - 116 1.43e+02 1.36e+02 140 1.62e+02 1.3717e+02
1/20 140 1.82e+03 119 - 115 6.95e+02 5.41e+02 144 7.37e+02 5.41e+02
1/40 146 8.52e+03 128 - 116 3.12e+03 2.15e+03 150 3.18e+03 2.15 e03

L-scheme (AA m = 1) L-scheme (AA m = mlin = 1) L-scheme (AA m= 1)
dx # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport

1/10 127 4.14e+02 107 - 100 1.9690e+02 1.3681e+02 136 1.44e+02 1.33e+02
1/20 129 1.85e+03 111 - 100 7.9408e+02 5.4122e+02 142 7.13e+02 5.31e+02
1/40 130 8.80e+03 118 - 100 3.3661e+03 2.1522e+03 146 3.01e+03 2.02e+03

Table 1: Example 1: Total number of iterations and condition numbers for fixed
∆t = T/25, and different dx. Here, L1 = L2 = L3 = 0.1 and m = mlin = 1.
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Monolithic NonLinS AltLinS
Newton Newton Newton

∆t # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport
T/25 65 4.91e+02 56 - 50 1.82e+02 1.60e+02 66 1.83e+02 1.60e+02
T/50 103 2.75e+02 98 - 50 1.23e+02 8.86e+01 99 1.24e+02 8.89e+01

T/100 186 1.97e+02 172 - 50 8.69e+01 4.73e+01 172 8.74e+01 4.74e+01
Newton (AA m = 1) Newton (AA m = mlin = 1) Newton (AA m = 1)

∆t # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport
T/25 93 4.76e+02 65 - 50 1.82e+02 1.60e+02 74 1.82e+02 1.60e+02
T/50 137 2.75e+02 114 - 50 1.23e+02 8.86e+01 114 1.23e+02 8.89e+01

T/100 244 1.96e+02 201 - 100 8.59e+01 4.73e+01 200 8.69e+01 4.74e+01
L-scheme L-scheme L-scheme

∆t # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport
T/25 134 4.16e+02 117 - 116 1.43e+02 1.36e+02 140 1.62e+02 1.3717e+02
T/50 219 2.39e+02 182 - 200 1.12e+02 7.51e+01 218 1.2460e+02 7.5203e+01

T/100 425 1.64e+02 346 - 400 8.35e+01 3.98e+01 438 8.2955e+01 3.9923e+01
L-scheme (AA m = 1) L-scheme (AA m = mlin = 1) L-scheme (AA m = 1)

∆t # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport
T/25 127 4.14e+02 107 - 100 1.97e+02 1.37e+02 136 1.44e+02 1.33e+02
T/50 217 2.36e+02 192 - 160 1.25e+02 7.51e+01 238 1.14e+02 7.50e+01

T/100 387 1.66e+02 347 - 300 8.33e+01 3.98e+01 432 8.21e+01 3.91e+01

Table 2: Example 1: Total number of iterations and condition numbers for fixed
dx = 1/10, and different ∆t. Here L1 = L2 = L3 = 0.1, m = mlin = 1.

In Table 3 we present the numerical errors and the estimated order of convergence of the spa-
tial discretization based on the successively refined meshes investigated. Given the manufactured
solution Ψm, we compute the numerical error eΨ = ‖Ψm − Ψn‖, where Ψn is the numerical pressure
computed. Similarly, we can define eθ and ec. Furthermore, eΨ,1 is the numerical error obtained
for the mesh size dx = 1/10 and ∆t = T/25, eΨ,2 for dx = 1/20 and ∆t = T/50, and finally
eΨ,3 for dx = 1/40 and ∆t = T/100. EOC = log

(
eΨ,i

eΨ,i+1

)
/ log(2) is the estimated order of con-

vergence. These results are independent from the solving algorithm taken into account, only the
discretization approach plays a role. In this case we use a TPFA which is known to have a order
of convergence equal to 1, as also reported here in the table.

e1 EOC e2 EOC e3

Ψ 4.61e-02 0.98 2.33e-02 1.00 1.16e-02
θ 1.31e-02 0.97 6.71e-03 0.99 3.38e-03
c 6.24e-03 1.53 2.15e-03 1.32 8.60e-04

Table 3: Example 1: Numerical error and estimated order of convergence (EOC) of the
discretization method.

In Table 4 we tested different values of m and L. We can observe that, for large L, the Mono-
lithic L-Scheme, here investigated, requires more iterations than for smaller parameters. If many
iterations are required to achieve the convergence at each time step, one can take in consideration
larger m values. For L = 0.1, the optimal choice, in terms of numbers of iterations, is m = 1; larger
values result in slightly slower schemes. For the largest L tested, L = 2.3, the optimal choice is
m = 2. Such L value corresponds to the theoretical L, max

θ
{∂pcap

∂θ
} ≈ 2.3. To ensure the monotone

convergence of the scheme it has been proved, that the parameter chosen must be larger than the
Lipschitz constant of the nonlinearity, in this case the capillary pressure as a function of θ (see
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[List et al.-2016, Pop et al.-2004, Slodicka-2002]). We set L1, L2 and L3 equal to the theoretical L
computed for the capillary pressure.

We can conclude that it is possible to obtain significant improvements by investigating the AA
and thus finding the appropriate depth m. In this work, we have focused more on individuating the
optimal L parameters, as refining the AA can be done more easily. The depths used are, in fact,
small natural numbers.

L m = 0 m = 1 m = 2 m = 3 m = 5
.1 146 130 146 179 215
.5 247 161 152 172 200
1 411 202 168 165 195
2 711 290 199 206 217
2.3 810 317 207 215 227

Table 4: Example 1: Comparison of number of iterations for different m and L
parameters for L-Mono.

Here, dx = 1/40, ∆t = T/25 and L1 = L2 = L3 = L.

Finally, we investigate the order of convergence of the linearization schemes. In Figure 5, we
plot the residuals of pressure, water content and concentration, obtained at the final time step for
the finest mesh size, dx = 1/40 and ∆t = T/25. We can deduce the rates of convergence of the
different linearization schemes. The L-schemes appear to be, as expected, linearly convergent in
term of numbers of iterations. The AA improves the results only slightly, as already observed in
Tables 1 and 2. This is justified by the fact that the L parameters (L1, L2, L3) chosen here, appear
to be optimal. The Newton methods are instead quadratically convergent. More precise results are
observable in Table 5. Here we present the exact order of convergence of the different schemes.
Given the residual of each unknown (resΨ, resθ, resc), at each iteration j, we compute the order of
convergence as follow: ORD j =

(
log(res j+1/res j)

)
/
(

log(res j/res j−1)
)
. For a fixed time step, we

can average the orders obtained over the number of iterations required to achieve the convergence.
We report below the values obtained by investigating the final time step; similar results have been
observed for previous time steps.

LS-Mono LS-Mono And. LS-NonLinS LS-NonLinS And. LS-AltLinS LS-AltLinS And.

Ψ 1.00 1.26 1.13 1.46 1.13 2.07
c 0.96 1.55 1.01 1.77 1.01 1.30
θ 1.01 1.40 0.89 1.01 0.94 1.32

New.-Mono New.-Mono And. New.-NonLinS New.-NonLinS And. New.-AltLinS New.-AltLinS And.

Ψ 2.03 1.61 1.94 1.86 2.04 2.03
c 2.41 2.01 1.61 1.41 1.85 1.46
θ 1.97 0.57 1.81 0.97 1.61 0.95

Table 5: Example 1: Estimated order of convergence for the different linearization schemes.
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(a) Pressure residuals.
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(b) Water content residuals.
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(c) Concentration residuals.

Figure 5: Example 1: Residuals of each unknown at the final time step, for the different
schemes.

Here, L1 = L2 = L3 = 0.1, m = mlin = 1, dx = 1/40, ∆t = T/25.

Remark 5. Since the Anderson acceleration with small depth is a cheap post-processing step,
reducing the number of iterations directly reduces the CPU time almost proportionally.
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3.2. Example 2, γ = 0, τ(θ) = 1 + θ2

In the second example, the setup of the first is extended by adopting a nonlinear τ, precisely
τ(θ) = 1+θ2. In Tables 6 and 7, we present the condition numbers and the required iteration counts
associated with each solving algorithm.

The introduction of a nonlinear τ(θ) increases the numbers of iterations required by each solver.
The L-scheme is linearly convergent while the Newton method is quadratically convergent. Fur-
thermore, the conclusions from Example 1 concerning the AA remain the same. In particular, we
observe only small reductions in the numbers of iterations required by the L-schemes. Once more,
this is justified by the optimal choice of the L parameters. We can observe that, for each time step,
only a few iterations are required; thus, no further acceleration is expected.

Monolithic NonLinS AltLinS
Newton Newton Newton

dx # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport
1/10 67 481.17 59 - 50 161.39 161.00 64 152.62 161.76
1/20 69 2.20e+03 57 - 50 656.26 636.33 66 644.98 644.99
1/40 70 1.10e+04 59 - 50 2.85e+03 2.53e+03 68 2.93e+03 2.53e+03

Newton (Anderson m = 1) Newton (AA m = mlin = 1) Newton (Anderson m = 1)
dx # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport

1/10 94 467.04 69 - 50 160.36 161.00 76 152.45 161.94
1/20 98 2.07e+03 68 - 50 636.14 636.33 76 642.25 638.40
1/40 100 9.85e+03 71 - 50 2.80e+03 2.53e+03 80 2.87e+03 2.53e+03

L-scheme L-scheme L-scheme
dx # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport

1/10 136 403.49 112 - 117 158.33 137.81 130 158.05 138.50
1/20 139 1.77e+03 120 - 116 644.85 544.34 136 651.07 545.85
1/40 144 8.34e+03 125 - 116 2.73e+03 2.16e+03 142 2.81e+03 2.16e+03

L-scheme (Anderson m = 1) L-scheme (AA m = mlin = 1) L-scheme (AA m = 1)
dx # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport

1/10 129 401.61 106 - 100 158.87 137.74 132 156.89 138.21
1/20 131 1.78e+03 113 - 100 644.63 543.86 134 647.35 545.18
1/40 137 8.44e+03 117 - 100 2.76e+03 2.16e+03 142 2.78e+03 2.16e+03

Table 6: Example 2: Total number of iterations and condition numbers for fixed
∆t = T/25, and different dx. Here, L1 = L2 = L3 = 0.1 and m = mlin = 1.

Monolithic NonLinS AltLinS
Newton Newton Newton

∆t # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport
T/25 67 481.17 59 - 50 161.39 161.00 64 152.62 161.76
T/50 107 256.90 102 - 50 95.40 89.26 102 95.08 89.80

T/100 193 159.33 184 - 100 73.42 47.70 184 72.37 47.91
Newton (AA m = 1) Newton (AA m = mlin = 1) Newton (AA m = 1)

∆t # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport
T/25 94 467.04 69 - 50 160.36 161.00 76 152.45 161.94
T/50 142 254.28 117 - 50 94.64 89.26 118 95.71 89.88

T/100 259 159.96 207 - 100 73.05 47.70 208 72.78 47.95
L-scheme L-scheme L-scheme

∆t # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport
T/25 136 403.49 112 - 117 157.86 137.81 130 158.05 138.50
T/50 220 211.60 185 - 201 98.63 75.62 220 97.80 75.86

T/100 433 125.49 356 - 400 65.18 40.16 446 65.24 40.28
L-scheme (AA m = 1) L-scheme (AA m = mlin = 1) L-scheme (AA m = 1)

∆t # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport
T/25 129 401.61 106 - 100 158.87 137.74 132 156.89 138.21
T/50 214 212.13 192 - 161 97.72 75.69 240 97.63 75.66

T/100 388 126.15 355 - 302 64.73 40.16 440 64.45 40.17

Table 7: Example 2: Total number of iterations and condition numbers for fixed
dx = 1/10, and different ∆t. Here L1 = L2 = L3 = 0.1, m = mlin = 1.
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As for the results presented in Tables 6 and 7, the numerical errors and EOC reported in Table
8 are similar to the ones from the first example.

e1 EOC e2 EOC e3

Ψ 0.0759 0.9688 0.0388 0.9913 0.0195
θ 0.0140 0.9556 0.0072 0.9830 0.0036
c 0.0084 1.5198 0.0029 1.3037 0.0012

Table 8: Example 2: Numerical error and estimated order of convergence (EOC) of the
discretization method.

In Figure 6, we report the residuals of the pressure, water content and concentration at the
final time step. The L-schemes are linearly convergent, and applying the AA does not result in
significant improvements. The convergence rates and number of iterations remain the same. Also
for the Newton solvers, since they are quadratically convergent, the AA cannot improve this aspect.
Table 9 presents the precise order of convergence of the different linearization schemes.

LS-Mono LS-Mono And. LS-NonLinS LS-NonLinS And. LS-AltLinS LS-AltLinS And.

Ψ 1.07 1.40 1.11 1.36 1.14 1.24
c 0.99 1.23 0.98 1.45 0.96 1.10
θ 1.03 1.15 0.97 1.25 0.93 0.98

New.-Mono New.-Mono And. New.-NonLinS New.-NonLinS And. New.-AltLinS New.-AltLinS And.

Ψ 1.61 1.58 1.97 1.69 2.15 2.14
c 2.68 1.47 1.98 1.54 1.98 1.83
θ 1.99 1.61 1.89 1.70 2.17 1.95

Table 9: Example 2: Estimated order of convergence for the different linearization
schemes.
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(a) Pressure residuals.
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(b) Water content residuals.
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(c) Concentration residuals.

Figure 6: Example 2: Residuals of each unknown at the final time step, for the different
schemes. Here, L1 = L2 = L3 = 0.1, m = mlin = 1, dx = 1/40, ∆t = T/25.

3.3. Example 3, γ = 1, δ = 5e − 3, τ(θ) = 0
With the same manufactured solutions, we now consider the case without dynamic effects

(τ(θ) = 0), but include hysteresis by choosing γ = 1 and δ = 5e − 3.
From the results in Tables 10 and 11, we notice that the Newton method, in all its formulations,

fails to converge. In Table 11, smaller time steps are taken, but no improvements are observable.
A further reduction of the time step could have resulted in converging Newton solvers but the
total numbers of iterations for the full simulation would have been larger than the ones required
by the L-schemes on fewer but larger time steps. In contrast, the L-schemes are more robust
and, even though requiring a higher number of iterations than previously, they converge. We take
L1 = L2 = L3 = L = 1, which appear to be the optimal choice in terms of numbers of iterations.
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The AA improves the convergence of the L-schemes. This is the first example of this study in
which the results obtained thanks to the AA are improved substantially. This is due to the presence
of the hysteresis, requiring a large L for the overall convergence, and thus the total numbers of
iterations is larger. On average, the monolithic L-scheme solver requires circa 18 iterations per
time step. For m = 1, the AA reduces the iterations by circa 50%. Different m values have been
tested but none of the ones investigated lead to the convergence of the Newton schemes. On all
tests, Newton has failed to converge, whereas the L-schemes converged and the AA yields further
improvement.

Monolithic NonLinS AltLinS
Newton Newton Newton

dx # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport
1/10 - - - - - - - -
1/20 - - - - - - - -
1/40 - - - - - - - -

L-scheme L-scheme L-scheme
dx # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport

1/10 448 409.16 210 - 441 484.83 69.22 450 361.76 69.34
1/20 456 1.65e+03 266 - 439 1.98e+03 259.35 452 1.46e+03 260.02
1/40 468 6.62e+03 276 - 438 7.74e+03 996.36 460 5.88e+03 999.13

L-scheme (AA m = 2) L-scheme (AA m = 2, mlin = 5) L-scheme (AA m = 1)
dx # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport

1/10 226 468.28 179 - 150 497.56 70.10 328 450.28 71.81
1/20 278 1.97e+03 187 - 141 2.03e+03 261.40 408 2.09e+03 269.72
1/40 303 8.24e+03 - - - 378 7.76e+03 967.29

Table 10: Example 3: Total number of iterations and condition numbers for fixed
∆t = T/25, and different dx. Here, L1 = L2 = L3 = 1, different m and mlin are taken into

account.

Monolithic NonLinS AltLinS
Newton Newton Newton

dx # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport
T/25 - - - - - - - -
T/50 - - - - - - - -
T/100 - - - - - - - -

L-scheme L-scheme L-scheme
cond. # cond. #

∆t # iterations condition # # iterations Flow Transport # iterations Flow Transport
T/25 448 409.16 210 - 441 484.83 69.22 450 361.76 69.34
T/50 836 363.15 513 - 846 422.16 35.96 838 332.02 36.03
T/100 1787 395.55 1261 - 1597 428.24 18.91 1764 363.40 19.07

L-scheme (AA m = 1) L-scheme (AA m = 2, mlin = 5) L-scheme (AA m = 1)
dx # iterations condition # # iterations cond. # Flow cond. # Transport # iterations cond. # Flow cond. # Transport

T/25 226 468.28 179 - 150 497.56 70.10 328 450.28 71.81
T/50 533 410.93 346 - 316 504.00 36.85 664 442.54 37.43
T/100 1217 467.07 861 - 944 (mlin = 1) 491.24 19.15 1842 473.32 19.75

Table 11: Example 3: Total number of iterations and condition numbers for fixed
dx = 1/10, and different ∆t. Here, L1 = L2 = L3 = 1, different m and mlin are taken into

account

Once more, we report the numerical errors and the estimated orders of convergence associated
with the discretization technique here implemented (TPFA). In Table 12, we present the values
obtained for the monolithic L-scheme. The EOC depends only on the discretization technique, not
the linearization scheme or solving algorithm.

In Figure 7, we report the residuals of pressure, water content and concentration, at the fi-
nal time step. The differences between the accelerated and non-accelerated schemes seem to be
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e1 EOC e2 EOC e3

Ψ 0.0308 1.0345 0.0150 0.9281 0.0085
θ 0.0350 1.2985 0.0142 1.0997 0.0066
c 0.0060 1.3202 0.0024 1.3000 0.0010

Table 12: Example 3: Numerical error and estimated order of convergence (EOC) of the
discretization method.

minimal at the final time step but we observe in Tables 10 and 11 that the total improvements
are actually substantial. The precise orders of convergence for the different solving algorithms
are reported in Table 13. The non-accelerated L-schemes have an order of convergence equal to
one, while the accelerated ones have slightly larger values. No result was reported for the Newton
schemes due to the lack of convergence.

LS-Mono LS-Mono And. LS-NonLinS LS-NonLinS And. LS-AltLinS LS-AltLinS And.

Ψ 1.14 1.33 1.00 1.19 1.00 1.81
c 1.00 1.32 1.00 1.51 0.99 1.52
θ 1.00 1.29 1.00 1.39 1.00 1.16

Table 13: Example 3: Estimated order of convergence for the different linearization
schemes.
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(a) Pressure residuals.
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(b) Water content residuals.

0 5 10 15 20 25

Iterations

-10

-8

-6

-4

-2

0

2

lo
g
(R

es
id

u
al

s)

Concentration residuals Ex 3

 L-Mono

 L-Mono And.

 L-NonLinS

 L-NonLinS And.

 L-AltS

 L-AltS And.

(c) Concentration residuals.

Figure 7: Example 3: residuals of each unknown at the final time step, for the different
schemes.

Here, L1 = L2 = L3 = 1, dx = 1/40, ∆t = T/25 and m , mlin.

3.4. Example 4, γ = 1, δ = 5e − 3, τ(θ) = 1 + θ2

Finally, we study a problem which includes both hysteresis and dynamic capillary effects. We
choose δ = 5e − 3, γ = 1 and τ(θ) = 1 + θ2. As for the previous examples, we report the
total numbers of iterations required by each algorithm, the condition numbers associated with the
linearized equations, the EOC of the discretization technique and the residual for each unknown.

In Tables 14 and 15, we present the total number of iterations required by each algorithm,
and the condition numbers associated with each system. As in the previous example, the New-
ton method fails to converge, while the L-scheme based solvers present no difficulties. The L
parameters are all set equal to 0.1. This leads to a faster convergence, when compared to the
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previous example, where larger values have been required for robustness. This is explained
by the fact that, since the dynamic effects are introduced (τ > 0), the solution is more regular
[Cao et al.-2015, Mikelic-2010].

We have tested different values of m on the Newton methods, but none ensured the convergence
of the schemes. As in the previous test cases, we have investigated smaller time steps, but the
Newton solvers has still failed to converge.

Regarding the results obtained thanks to the AA, we can notice some improvements which are
smaller than the ones observed for the previous test cases. Once more, this is due to the optimal
choice of the L parameters, ensuring that the L-scheme converges, on average, in 5 iterations per
time step. Therefore further improvements are not expected. Note that, compared to the first
example (Table 4), larger L values are used leading to larger numbers of iterations. This explains
why the AA with proper parameters m have improved the convergence behaviour of the L-scheme
there.

Monolithic NonLinS AltLinS
Newton Newton Newton

cond. # cond. #
dx # iterations condition # # iterations Flow Transport # iterations Flow Transport

1/10 - - - - - - - -
1/20 - - - - - - - -
1/40 - - - - - - - -

L-scheme L-scheme L-scheme
cond. # cond. #

dx # iterations condition # # iterations Flow Transport # iterations Flow Transport
1/10 152 290.13 128 - 122 208.09 162.46 251 206.24 174.77
1/20 160 768.54 137 - 121 558.01 621.77 259 486.23 598.01
1/40 165 3.04e+03 141 - 120 2.10e+03 2.35e+03 328 2.14e+03 2.4415e+03

L-scheme (AA m = 1) L-scheme (AA m = 2, mlin = 3) L-scheme (AA m = 2)
cond. # cond. #

dx # iterations condition # # iterations Flow Transport # iterations Flow Transport
1/10 139 288.40 112 - 85 212.29 165.24 152 198.15 166.47
1/20 144 752.41 117 - 89 550.05 630.43 162 522.01 636.00
1/40 149 3.04e+03 127 - 88 2.19e+03 2.39e+03 166 2.06e+03 2.40e+03

Table 14: Example 4: Total number of iterations and condition numbers for fixed
∆t = T/25, and different dx. Here, L1 = L2 = L3 = 0.1 and m , mlin.

Monolithic NonLinS AltLinS
Newton Newton Newton

cond. # cond. #
∆t # iterations condition # # iterations Flow Transport # iterations Flow Transport

T/25 - - - - - - - -
T/50 - - - - - - - -

T/100 - - - - - - - -
L-scheme L-scheme L-scheme

cond. # cond. #
∆t # iterations condition # # iterations Flow Transport # iterations Flow Transport

T/25 152 290.13 128 - 122 208.09 162.46 251 206.24 174.77
T/50 248 310.93 201 - 225 264.09 89.64 424 263.91 97.09

T/100 508 415.80 403- 405 403.31 47.53 768 403.81 52.72
L-scheme (AA m = 1) L-scheme (AA m = 2, mlin = 3) L-scheme (AA m = 2)

cond. # cond. #
∆t # iterations condition # # iterations Flow Transport # iterations Flow Transport

T/25 139 288.40 112 - 85 212.29 165.24 152 198.15 166.47
T/50 233 312.95 195 - 167 267.27 90.55 250 260.41 91.42

T/100 448 416.05 358 - 308 404.34 47.65 506 403.30 48.38

Table 15: Example 4: Total number of iterations and condition numbers for fixed
dx = 1/10, and different ∆t. Here L1 = L2 = L3 = 0.1 and m , mlin
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The numerical errors and the estimated orders of convergence of the discretization technique
(TPFA), presented in Table 16, are consistent with the ones from the previous test cases.

e1 EOC e2 EOC e3

Ψ 0.0759 0.9558 0.0391 0.8837 0.0212
θ 0.0138 0.9115 0.0073 0.9463 0.0038
c 0.0101 1.2531 0.0042 1.2655 0.0018

Table 16: Example 4: Numerical error and estimated order of convergence (EOC) of the
discretization method.

Finally, regarding the order of convergence of the different solving algorithms, Figure 8 presents
the residuals for each unknown, and Table 17 the precise orders computed averaging over iterations
at the final time step.

LS-Mono LS-Mono And. LS-NonLinS LS-NonLinS And. LS-AltLinS LS-AltLinS And.

Ψ 1.00 1.29 0.99 1.27 0.99 1.30
c 1.29 1.29 1.02 1.15 1.07 1.11
θ 1.00 1.16 1.00 1.35 1.00 1.20

Table 17: Example 4: Estimated order of convergence for the different linearization
schemes.
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(b) Water content residuals.
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(c) Concentration residuals.

Figure 8: Example 4: Residuals of each unknown at the final time step, for the different
schemes.

Here, L1 = L2 = L3 = 0.1, dx = 1/40, ∆t = T/25 and different m , mlin.

3.5. Physical example
As final numerical study, we investigate a test case that involves realistic parameters, but with-

out having a manufactured solution. The flow will be driven by the boundary conditions. The
domain Ω is the unit square and the final time is T = 4. The capillary pressure and conduc-
tivity expressions are given by the van Genuchten formulation [van Genuchten-1980], K(θ) =

θl
e

(
1 − (

1 − θ1/M
e

)M
)2

and pcap(θ, c) =
(
1 − b ln(c/a + 1)

)−1(−θ−1/M)1−M,
where θe = (θ − θr)/(θs − θr) is the effective water content, θs = 0.9, θr = 0.005, M = 2, l = 0.31,
a = 0.04 and b = 0.47. Furthermore, we take τ(θ) = 1 + θ2, and the hysteresis effects are included
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by setting γ = 1 and δ = 5e − 3, as in Example 4.
Dirichlet boundary conditions are imposed at the left side of the unit square

Ψ|x=0 = 1 +



0.5t if t < 1,
0.5 if 1 ≤ t < 2,
0.5(3 − t) if 2 ≤ t < 3,
−0.4 if 3 ≤ t ≤ 4,

c|x=0 = 2,

whereas, at the remaining sides, we consider homogeneous Neumann boundary conditions. The
discontinuity in time t = 3 makes solving the problem numerically even more complex. The initial
conditions are

θ0 = x, and c0 = 1.

All L parameters are set to 0.5. We have tested different values, but, L = 0.5 seems to give
the best results in terms of numbers of iterations. Furthermore, the results may be improved even
further by choosing different values for each parameter, L1, L2 and L3, but for ease of presentation
this has been omitted here.

In Tables 18 and 19, we report the total numbers of iterations and condition numbers associated
to each algorithm. We observe that, due to the higher nonlinearities of the conductivity K and
capillary pressure pcap involved, the results are different compared to the ones presented for the
previous examples.

Again, the Newton solvers have failed to converge and the systems associated with the lin-
earized equations are badly conditioned. Considering smaller time steps did not resolve this.

The L-schemes on the other hand converge, but require high numbers of iterations. We observe
a significant improvement thanks to the AA. The performance of the monolithic solver is for
example drastically improved, the iterations required are reduced by circa 50%. In case of finer
meshes, one needs to use a larger L, precisely L = 1. The AA can introduce some instabilities,
and thus a larger L may be required. Clearly, this leads to an increase in the number of iterations.
Such results are still better than the one obtained for smaller L without acceleration. Similar
observations can also be made for the splitting solvers. Even though larger L parameters may be
required, the accelerated schemes perform better then the non-accelerated ones. The nonlinear
splitting seems to be less stable than the alternate linear one. For a coarse mesh, we could use a
large m, m = 5, resulting in an extreme reduction in the numbers of iterations. For finer meshes,
m had to be set equal to 1, otherwise the schemes did not converge, and a larger L parameter was
required. The alternate linearized splitting seems to be more stable, as the L-scheme linearization
acts as stabilization term for both the nonlinearities and the decoupling. Unfortunately, for the first
time, the results are slower than for the nonlinear splitting. The main differences are observable
in the second table, Table 19. The mesh size is fixed, dx = 1/10, and the nonlinear solvers
converge even for m = 5. The large AA parameter m ensures a strong reduction in the numbers of
iterations. The alternate linearized splitting converges only for m = 1, anyhow the improvements
are remarkable.
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Monolithic NonLinS AltLinS
Newton Newton Newton

cond. # cond. #
dx # iterations condition # # iterations Flow Transport # iterations Flow Transport

1/10 - - - - - - - -
1/20 - - - - - - - -
1/40 - - - - - - - -

L-scheme L-scheme L-scheme
cond. # cond. #

dx # iterations condition # # iterations Flow Transport # iterations Flow Transport
1/10 899 702.16 1522 - 235 790.37 155.18 1490 623.78 155.10
1/20 930 3.58e+03 1515 - 240 3.32e+03 615.72 1428 2.54e+03 596.60
1/40 941 1.52e+04 1680 - 243 1.44e+04 2.46e+03 1548 1.24e+04 2.45e+03

L-scheme (AA m = 1) L-scheme (AA m = 5, mlin = 1) L-scheme (AA m = 1)
cond. # cond. #

dx # iterations condition # # iterations Flow Transport # iterations Flow Transport
1/10 480 1.37e+03 210 - 96 811.29 155.16 795 774.00 155.18
1/20 541 (L = 1) 5.27e+03 758 - 170 (m = 1, L = 1) 2.76e+03 395.74 532 2.72e+03 468.04
1/40 603 (L = 1) 2.29e+04 1214 - 261 (m = 1, L = 2) 8.84e+03 911.31 1798 (L2 = 2) 1.89e+04 2.46e+03

Table 18: Example 5: Total number of iterations and condition numbers for fixed
∆t = T/25, and different dx. Here, L1 = L2 = L3 = 0.5 and m , mlin.

Monolithic NonLinS AltLinS
Newton Newton Newton

cond. # cond. #
dx # iterations condition # # iterations Flow Transport # iterations Flow Transport

T/25 - - - - - - - -
T/50 - - - - - - - -

T/100 - - - - - - - -
L-scheme L-scheme L-scheme

cond. # cond. #
∆t # iterations condition # # iterations Flow Transport # iterations Flow Transport

T/25 899 702.16 1522 - 235 790.37 155.18 1490 623.78 155.10
T/50 2892 908.39 5218 - 450 747.79 84.75 4942 533.58 84.83

T/100 9809 707.12 18261 - 849 692.77 46.72 17406 485.71 46.84
L-scheme (AA m =1) L-scheme (AA m = 5, mlin = 1) L-scheme (AA m = 1)

cond. # cond. #
∆t # iterations condition # # iterations Flow Transport # iterations Flow Transport

T/25 480 1.37e+03 210 - 96 811.29 155.16 795 774.00 155.18
T/50 897 1.65e+03 517 - 214 618.31 53.28 1784 775.76 84.77

T/100 2106 1.04e+03 1354 - 424 576.54 28.62 4928 1.05e+03 46.73

Table 19: Example 5: Total number of iterations and condition numbers for fixed
dx = 1/20, and different ∆t. Here, L1 = L2 = L3 = 0.5 and m , mlin.

It is also interesting to notice that, for decreasing time steps, the number of L iterations per time
step is increasing. This is coherent with the theory. With the AA, this is mitigated; the average
number of iterations remains more stable.

In Table 20, we report the different m and mlin values investigated for the AA. We observe that
for the L-scheme Mono solver, the optimal choice, in terms of numbers of iterations is m = 1.
For the nonlinear splitting solver, only one value of mlin has been taken in consideration for the
coupling loop, precisely mlin = 1. This is justified by the fact that the majority of the iterations
have taken place in the inside loops, the nonlinearities of the equations are playing a larger role
than the coupling aspect.
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# it. m=0 # it. m=1 # it. m=2 # it. m=5
Mono L-scheme 899 480 775 –
NonLinS L-scheme 1522 - 325 (mlin=0) 322 - 118 (mlin=1) 232 - 96 (mlin=1) 210 - 96 (mlin=1)
AltLinS L-scheme 1490 795 – –
Newton-Mono – – – –

Table 20: Example 5: Numbers of iterations associated to different m and mlin values,
dx = 1/10 dt = T/25.
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(c) Concentration residuals.

Figure 9: Example 5: Residuals of each unknown at the final time step, monolithic
L-scheme. Here, L1 = L2 = L3 = 0.1, different m are tested, dx = 1/10, and ∆t = T/25.
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(c) Concentration residuals.

Figure 10: Example 5: Residuals of each unknown at the final time step, AltLinS
L-scheme. Here, L1 = L2 = L3 = 0.1, different m are tested, mlin = 1, dx = 1/40, and

∆t = T/25.

Finally, in the Figures 9, 10 and 11 we report the residuals at the final time step, for each
unknown and each algorithm, and for different values of m. The results are coherent with the ones
presented in the Tables 18 and 19. The monolithic solver shows a clear improvement thanks to
the AA, for both m = 1 and m = 2. For the alternate linearized splitting solver, the AA does not

30



0 2 4 6 8 10

Iterations

-10

-8

-6

-4

-2

0

2

lo
g

1
0

(R
es

id
u

al
s)

Pressure residuals NonLinS L-schemes Ex 6

 L-NonLinS

 L-NonLinS And. m=1

 L-NonLinS And. m=2

 L-NonLinS And. m=5

(a) Pressure residuals.

0 2 4 6 8 10

Iterations

-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
g
1
0
(R

es
id

u
al

s)

Theta residuals NonLinS L-schemes Ex 6

 L-NonLinS

 L-NonLinS And. m=1

 L-NonLinS And. m=2

 L-NonLinS And. m=5

(b) Water content residuals.
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(c) Concentration residuals.

Figure 11: Example 5: Residuals of each unknown at the final time step, NonLinS
L-scheme. Here, L1 = L2 = L3 = 0.1, different m are tested , dx = 1/40, and ∆t = T/25.

seem to produce any improvement, as the rates of convergence seem to be worse. The result does
not directly contradict the ones presented in the Tables 18 and 19; it simply states that, at the final
time step, the AA does not produce any improvement. On the full simulation, we could observe
a clear reduction in the numbers of iterations. For the nonlinear splitting, we can observe some
improvements but once more they are not as evident as for the monolithic solvers. We already
observed that both splitting solvers became unstable once the AA was applied, either requiring a
larger L or a smaller m.

Table 21 presents the precise rates of convergence of the different linearization schemes. Once
more we can observe as the AA improves the rates of convergence of the solvers based on the
L-scheme.

LS-Mono LS-Mono And. LS-NonLinS LS-NonLinS And. LS-AltLinS LS-AltLinS And.

Ψ 0.94 1.30 0.98 1.87 0.98 1.21
c 1.01 1.78 0.95 1.42 0.93 1.80
θ 0.95 1.34 0.99 1.35 0.95 1.02

Table 21: Example 5: Order of convergence of the linearization schemes.

4. Conclusions

We consider models for flow and reactive transport in a porous medium. Next, to account
for the influence of the solute concentration on the flow parameters, we incorporate effects like
dynamic capillary pressure and hysteresis. The problem results being fully coupled.

For solving the time discrete equations (9), obtained after applying the Euler implicit scheme,
we investigate different approaches: a monolithic solution algorithm and two splitting ones. Fur-
thermore, for solving the nonlinear problem, two linearizations are studied: the Newton method
and the L-scheme. The latter appears to be more stable than the former, which is more commonly
implemented.
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Finally, we have studied the effects of the Anderson acceleration. We observed that its im-
plementation is particularly simple and can result in significant improvements. There were cases
in which the differences between the accelerated and non-accelerated schemes were minimal, but
due to its simplicity and the possibility of the great reduction in the numbers of iterations, we
think it should always be tested. Particularly, one can either invest time in finding the optimal L
parameters or the best depth m for which the AA results in the fastest scheme. Often, finding the
most suitable m is simpler, and it can results in impressive improvements.
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Abstract

In this article, we present new random walk methods to solve flow and transport problems in saturated/unsaturated
porous media, including coupled flow and transport processes in soils, heterogeneous systems modeled through
random hydraulic conductivity and recharge fields, processes at the field and regional scales. The numerical
schemes are based on global random walk algorithms (GRW) which approximate the solution by moving large
numbers of computational particles on regular lattices according to specific random walk rules. To cope with the
nonlinearity and the degeneracy of the Richards equation and of the coupled system, we implemented the GRW
algorithms by employing linearization techniques similar to the L-scheme developed in finite element/volume ap-
proaches. The resulting GRW L-schemes converge with the number of iterations and provide numerical solutions
that are first-order accurate in time and second-order in space. A remarkable property of the flow and transport
GRW solutions is that they are practically free of numerical diffusion. The GRW solvers are validated by compar-
isons with mixed finite element and finite volume solvers in one- and two-dimensional benchmark problems. They
include Richards’ equation fully coupled with the advection-diffusion-reaction equation and capture the transition
from unsaturated to saturated flow regimes.

Keywords: Richards equation, Coupled flow and transport, Linearization, Iterative schemes, Global random walk
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1. Introduction

The accuracy and the robustness of the numerical schemes is the primary requirement for reliable and mean-
ingful results of the current efforts to improve the understanding of the complexity and interdependence of the flow
and transport processes in subsurface hydrology through numerical investigations. Numerical solvers for partial
differential equations modeling individual or coupled processes are often used as basic elements in the formulation
of the more complex problems of practical interest, such as parameter identification [14], hydraulic tomography
[6], Monte Carlo approaches for systems with randomly distributed parameters [22], or upscaling for mutiphase
flows in heterogeneous subsurface formations [12], among others.

A central issue in subsurface hydrology is the need of robust and computationally efficient numerical models
for partially saturated soil-groundwater systems. The transition between unsaturated and saturated zones is partic-
ularly challenging. In unsaturated flows the water content θ and the hydraulic conductivity K depend nonlinearly
on the pressure head ψ through material laws based on experiments, as far as ψ < 0. The evolution of ψ is governed
by the parabolic Richards’ equation which degenerates to a (generally) linear elliptic equation (i.e. the equation for
steady-state flow in aquifers) if ψ ≥ 0 [3]. Since the regions where degeneracy takes place depend on the evolution
of the pressure ψ in time and space, they are not known a priori. To cope with the nonlinearity and degeneracy of
the Richards’ equation, different linearization methods are needed, such as the Newton scheme [28, 12, 16], which
is second-order convergent but converges only locally (requires a starting point close enough to the solution) or
the more robust but only first-order convergent Picard, modified Picard, or L schemes [30, 23, 21, 26].

Explicit and implicit schemes proposed for nonlinear flows in unsaturated regime provide solutions with com-
parable accuracy but are generally ambiguous to compare in terms of computing time. Since they do not need
to solve systems of linear algebraic equations at every time step, explicit schemes are in principle faster [20] but
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their speed may be seriously affected by the need to use very small time steps [13, 1]. The time step in explicit
schemes is constraint by stability conditions [32] and has to be significantly reduced to ensure small local Péclet
number (Pé), defined with respect to the space step. Large (global) Pé characterizes advection-dominated trans-
port problems [4, 18]. In such cases, reducing the local Pé is a remedy to avoid the numerical diffusion and
the oscillatory behavior of the solution [24]. The criterion of small local Pé is also recommended for numerical
schemes solving the pressure equation in saturated flows [11] and, since Richards’ equation has the structure of
the advection-diffusion equation, the recommendation holds for the unsaturated flows as well.

Well known approaches to avoid the numerical diffusion are the particle tracking in continuous space and the
discrete random walk on lattices [33]. The accuracy of these schemes is determined by the number of computa-
tional particles undergoing random jumps in continuous space or on discrete lattices. In random walk schemes, the
increase of the computation time with the number of particles is simply avoided by randomly distributing the par-
ticles along the spatial directions with a global procedure, according to appropriate jump probabilities. In this way,
one obtains a global random walk (GRW) which performs the spreading of all the particles from a given site with
computational costs that are practically the same as for generating the jump of a single random walker in sequential
procedures [36]. In particular cases (e.g., when using biased jump probabilities to account for variable coefficients
or for advective displacements) the GRW algorithms are equivalent to explicit finite difference schemes with time
step size constrained by stability requirements. In unbiased GRW schemes for transport problems with variable
coefficients, which still satisfy stability conditions, no restrictions on the time step are needed to reduce the local
Pé number, which renders the approach particularly efficient in large scale simulations of transport in groundwater
(see [33] for details and examples).

The elliptic and parabolic equations governing the pressure head for flows in unsaturated/saturated porous
media are essentially diffusion equations with second order operator in Stratonovich form. They can be recast as
Fokker-Planck equations, with drift augmented by the row derivative of the coefficient tensor, and further solved
by random walk approaches [33]. An alternative approach starts with a staggered finite difference scheme, further
used to derive biased random walk rules governing the movement on a regular lattice of a system of computational
particles. The particle density at lattice sites provides a numerical approximation of the pressure head solution.
This approach has been already illustrated for flows in saturated porous media with heterogeneous hydraulic
conductivity [1, 34].

In this article, we present new GRW schemes for nonlinear and non-steady flows in soils which model the tran-
sition from unsaturated to saturated regime in a way consistent with the continuity of the constitutive relationships
θ(ψ) and K(ψ). Following [21, 26], the nonlinearity of the Richards equation is solved with an iterative procedure
similar to the L-scheme used in finite element/volume approaches. Numerical tests demonstrate the convergence
of the L-scheme for unsaturated/saturated flows. For fully saturated flow regime with constant water content θ and
time independent boundary conditions the GRW L-scheme is equivalent to a transient finite difference scheme.

Coupled flow and reactive transport problems for partially saturated soils rise new stability and consistency
issues and demand augmented computational resources. Our GRW approach in this case consists of coupling
the flow solver described above with existing GRW transport solvers [33] adapted for nonlinear problems, which
are implemented as L-schemes as well. The flow and transport solvers are coupled via an alternating splitting
procedure [15] which successively iterates the corresponding L-schemes until the convergence of the pressure
head and concentration solutions is reached, within the same tolerance, at every time step. Code verification tests
using analytical manufactured solutions are employed to verify the convergence of the iterations and the accuracy
of the splitting scheme.

The GRW scheme for one-dimensional solutions of the Richards equation, which captures the transition from
unsaturated to saturated flow regimes is validated by comparisons with solutions provided by Richy software,
based on the mixed finite element method (MFEM), with backward Euler discretization in time and Newton lin-
earization, developed at the Mathematics Department of the Friedrich-Alexander University of Erlangen-Nürnberg
[27, 28]. The two-dimensional GRW solutions are compared on benchmark problems with two-point flux approxi-
mation (TPFA) finite volume solvers using backward Euler discretization in time and L-scheme linearization [15].
The TPFA codes are implemented in MRST, the MATLAB Reservoir Simulation Toolbox [19].

The paper is organized as follows. Section 2 presents the GRW algorithm and the linearization approach
for one-dimensional flow problems. The one-dimensional solver is further validated through comparisons with
MFEM solutions in Section 2.2. Two dimensional GRW algorithms for fully coupled and decoupled flow and
transport problems are introduced in Section 3. Code verification tests and comparisons with TPFA solutions for
benchmark problems are presented in Section 4. Some examples of flow and transport solutions for groundwater
problems at the field and regional scale are presented in Section 5. The main conclusions of this work are finally
presented in Section 6. GRW codes implemented in Matlab for model problems considered in this article are
stored in the Git repository https://github.com/PMFlow/RichardsEquation.
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2. One-dimensional GRW solutions

2.1. One-dimensional GRW algorithm for unsaturated/saturated flow in soils

We consider the water flow in unsaturated/saturated porous media described by the one-dimensional Richards
equation [13, 27, 16] in the space-time domain [0, Lz] × [0,T ],

∂θ(ψ)
∂t
− ∂

∂z

[
K(θ(ψ))

∂

∂z
(ψ + z)

]
= 0, (1)

where ψ(z, t) is the pressure head expressed in length units, θ is the volumetric water content, K stands for the
hydraulic conductivity of the medium, and z is the height oriented positively upward. According to (1), the water
flux given by Darcy’s law is q = −K(θ(ψ)) ∂

∂z (ψ + z).
To design a GRW algorithm, we start with the staggered finite difference scheme with backward discretization

in time which approximates the solution of Eq. (1) at positions z = i∆z, i = 1, . . . , I, I = Lz/∆z, and time points
t = k∆t, k = 1, . . . ,T/∆t, according to

θ(ψi,k) − θ(ψi,k−1) =
∆t

∆z2

{[
K(ψi+1/2,k)(ψi+1,k − ψi,k) − K(ψi−1/2,k)(ψi,k − ψi−1,k)

]
+

(
K(ψi+1/2,k) − K(ψi−1/2,k)

)
∆z

}
.

(2)
To cope with the double nonlinearity due to the dependencies K(θ) and θ(ψ) we propose an explicit scheme

similar to the linearization approach known as “L-scheme”, originally developed for implicit methods [e.g. 23, 21,
26]. The approach consists of the addition of a stabilization term L(ψs+1

i,k −ψs
i,k), L = const, in the left-hand side of

(2) and of performing successive iterations s = 1, 2, . . . of the modified scheme until the discrete L2 norm of the
solution ψs

k = (ψs
i,k, . . . , ψ

s
I,k) verifies

‖ψs
k − ψs−1

k ‖ ≤ εa + εr‖ψs
k‖ (3)

for some given tolerances εa and εr. The adapted L-scheme reads

ψs+1
i,k =

[
1 − (rs

i+1/2,k + rs
i−1/2,k)

]
ψs

i,k+rs
i+1/2,kψ

s
i+1,k+rs

i−1/2,kψ
s
i−1,k+

(
rs

i+1/2,k − rs
i−1/2,k

)
∆z−

(
θ(ψs

i,k) − θ(ψi,k−1)
)
/L, (4)

where
rs

i±1/2,k = K(ψs
i±1/2,k)∆t/(L∆z2). (5)

For fixed time step k, the iterations start with the solution after the last iteration at the previous time k − 1,
ψ1

i,k = ψi,k−1, i = 1, . . . , I. Note that, unlike implicit L-schemes (e.g., [30, 23, 21]), the explicit scheme (4) uses
forward increments of ψ. In this way, the solution ψs+1

i,k is obtained from values of ψ and r evaluated at the previous
iteration, without solving systems of algebraic equations.

The solution ψs
i,,k is further represented by the distribution of N computational particles at the sites of the

one-dimensional lattice, ψs
i,k ≈ ns

i,ka/N , with a being a constant equal to a unit length, and the L-scheme (4)
becomes

ns+1
i,k =

[
1 −

(
rs

i+1/2,k + rs
i−1/2,k

)]
ns

i,k + rs
i+1/2,kns

i+1,k + rs
i−1/2,kns

i−1,k + bN f s∆tc , (6)

where the source term is defined as f s =
(
rs

i+1/2,k − rs
i−1/2,k

)
∆z −

[
θ(ns

i,k) − θ(ni,k−1

]
/L and b·c denotes the floor

function.
The physical dimension of the parameter L of the scheme is that of an inverse length unit to ensure that rs

i±1/2,k
defined by (5) are non-dimensional parameters, as needed in random walk approaches [36, 33]. By imposing
the constraint rs

i±1/2,k ≤ 1/2, the parameters rs
i±1/2,k can be thought of as biased jump probabilities. Hence, the

contributions to ns+1
i,k from neighboring sites i ± 1 summed up in (6) can be obtained with the GRW algorithm

which moves particles from sites j to neighboring sites i = j ∓ 1 according to the rule

ns
j,k = δns

j, j,k + δns
j−1, j,k + δns

j+1, j,k. (7)

For consistency with (6), the quantities δns in (7) have to satisfy in the mean [33, Sect. 3.3.4.1],

δns
j, j,k =

[
1 −

(
rs

j−1/2,k + rs
j+1/2,k

)]
ns

j,k, δns
j∓1/2, j,k = rs

j∓1/2,kns
j,k. (8)

The quantities δns are binomial random variables approximated by using the unaveraged relations (8) for the
mean, summing up the reminders of multiplication by r and of the floor function bN f s∆tc, and allocating one
particle to the lattice site where the sum reaches the unity.
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Remark 1. Consider the saturated regime, θ = const, with space-variable hydraulic conductivity K and a given
source term f . With the parameter L set to L = 1/a, after disregarding the time index k the scheme (6) solves the
following equation for the hydraulic head h = ψ + z,

1
a
∂h
∂s
− ∂

∂z

[
K
∂h
∂z

]
= f . (9)

For boundary conditions independent of s, the solution of Eq. (9) approaches a steady-state regime corresponding
to the saturated flow (see also [1, 34]). The modified GRW scheme (6) is equivalent to a convergent finite difference
scheme first order accurate in time and second order in space [35, Remark 1].

2.2. Validation of the one-dimensional GRW flow algorithm
The one-dimensional algorithm for flow in unsaturated/saturated soils is validated in the following by compar-

isons with MFEM solutions obtained with the Richy software [27, 28]. For this purpose, we solve one-dimensional
model-problems for the vertical infiltration of the water through both homogeneous and non-homogeneous soil
columns [31], previously used in [28] to assess the accuracy and the convergence of the MFEM solutions.

We consider the domain z ∈ [0, 2] and the boundary conditions specified by a constant pressure ψ(0, t) = ψ0 at
the bottom of the soil column and a constant water flux q0 at the top. Together, these constant conditions determine
the initial pressure distribution ψ(z, 0) as solution of the steady-state flow problem. For t > 0, the pressure ψ0 is
kept constant, at the bottom, and the water flux at the top of the column is increased linearly from q0 to q1 until
t ≤ t1 and is kept constant for t > t1.
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Figure 1: Time steps for Scenario (1) and Scenario (2).
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Figure 2: Pressure head solutions at t = 104 seconds computed
by GRW and MFEM codes.
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Figure 3: Water content solutions at t = 104 seconds computed
by GRW and MFEM codes.
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Figure 4: Water flux solutions at t = 104 seconds computed by
GRW and MFEM codes.

For the unsaturated regions (ψ < 0) we consider the constitutive relationships given by the simple exponential
model [10]

θ(ψ) = θres + (θsat − θres)eαψ, (10)

4



0 10 20 30 40 50 60 70
10-9

10-8

10-7

10-6

10-5

10-4

10-3

t=2000

t=4000

t=6000

t=8000

t=10000

Figure 5: Convergence of the L-scheme implementation of the
GRW flow solver in Scenario (1).
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Figure 6: Convergence of the L-scheme implementation of the
GRW flow solver in Scenario (2).

K(θ(ψ)) = Ksat
θ(ψ) − θres

θsat − θres
, (11)

where θ = θsat and K = Ksat denote the constant water content respectively the constant hydraulic conductivity in
the saturated regions (ψ ≥ 0) and θres is the residual water content. The more complex and physically sounded van
Genuchten-Mualem parameterization model will be used for two-dimensional problems in the following sections.

The flow problem for Eq. (1) with the parameterization (10-11) is solved in two Scenarios: (1) homogeneous
soil, with Ksat = 2.77 · 10−6, θres = 0.06, θsat = 0.36, α = 10, q0 = 2.77 · 10−7, q1 = 2.50 · 10−6, which are
representative for a sandy soil, and (2) non-homogeneous soil, with the same parameters as in Scenario (1), except
the saturated hydraulic conductivity, which takes two constant values, Ksat = 2.77 · 10−6 for z < 1 and 500Ksat for
z ≥ 1 (modeling, for instance, a column filled with sand and gravel). To capture the transition from unsaturated
to saturated regime, the pressure at the bottom boundary is fixed at ψ0 = 0.5. For the parameters of the one-
dimensional flow problems solved in this section we consider meters as length units and seconds as time units.
The simulations are conducted up to T = 104 (about 2.78 hours) and the intermediate time is taken as t1 = T/102.

We consider a uniform GRW lattice with ∆z = 10−2, equal to the length of the linear elements in the MFEM
solver. The GRW computations are initialized by multiplying the initial condition by N = 1024 particles. Since,
as shown by (11), the hydraulic conductivity varies in time, the length of the time step determined by (5) for the
maximum of K at every time iteration and by specifying a maximum rmax = 0.8 of the parameter ri±1/2,k may vary
in time (see Fig. 1). The parameter of the regularization term in the L-scheme is set to L = 1 for the computation
of the initial condition (solution of the stationary problem, i.e. for ∂θ/∂t = 0 in (1)) and to L = 2 for the solution
of the non-stationary problem. In both cases, the convergence criterion (3) is verified by choosing εa = 0 and a
relative tolerance εr = 10−9.

The comparison with the MFEM solutions presented in Figs. 2-4 shows a quite good accuracy of the GRW
solutions for pressure, water content, and water flux. The relative errors, computed with the aid of the L2 norms
by εψ = ‖ψGRW − ψMFEM‖/‖ψMFEM‖, and similarly for θ and q, are presented in Table 1.

Table 1: Error norms of the GRW solutions.

εψ εθ εq

Scenario (1) 1.81e-02 2.20e-02 3.50e-02
Scenario (2) 5.20e-03 2.35e-02 2.07e-02

The L-scheme converges with speeds depending on the problem. To solve the problem for the initial condition,
one needs 3.5 · 104 iterations in Scenario (1) and 6.5 · 106 iterations in Scenario (2). Instead, to solve the non-
stationary problem for a final time T = 104, one needs about 70 iterations in Scenario (1) and about 700 iterations
in Scenario (2) (see Fig. 5 and Fig. 6). The convergence of the iterative GRW L-scheme can be further investigated
through assessments of the computational order of convergence of the sequence of successive correction norms
‖ψs

k − ψs−1
k ‖ [8, 9]. Estimations provided in [35, Appendix A] indicate a linear convergence for Scenario (1) but

only a power law convergence ∼ s−1, which is slower than the linear convergence [9], for Scenario (2).
Supplementary tests done in Scenario (1) indicate the existence of a lower bound of the constant L which

ensures the convergence [35, Sect. 3]. It is found that increasing L above the value which ensures the convergence
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of the GRW L-scheme with a desired accuracy only results in increasing number of iterations and more computing
time. The parameter L has to be established experimentally by checking the convergence and, as highlighted by
the examples presented in Section 4 below, it depends on the complexity of the problem to be solved.

3. Two-dimensional GRW solutions

3.1. Two-dimensional GRW algorithm for flow in soils and aquifers
In two spatial dimensions the pressure head ψ(x, z, t) satisfies the equation

∂

∂t
θ(ψ) − ∇ · [K(θ(ψ)∇(ψ + z)

]
= 0. (12)

The two-dimensional GRW algorithm on regular staggered grids (∆x = ∆z) which approximates the solution
of (12) by computational particles, ψ ≈ na/N , is constructed similarly to (6-8). The solution at iteration s + 1 is
obtained by gathering particles from neighboring sites according to

ns+1
i, j,k =

[
1 −

(
rs

i+1/2, j,k + rs
i−1/2, j,k + rs

i, j+1/2,k + rs
i, j−1/2,k

)]
ns

i, j,k

+rs
i+1/2, j,kni+1, j,k + rs

i−1/2, j,kni−1, j,k

+rs
i, j+1/2,kni, j+1,k + rs

i, j−1/2,kni, j−1,k + bN f s∆tc , (13)

where the source term is defined as f s =
(
rs

i, j+1/2,k − rs
i, j−1/2,k

)
∆z −

[
θ(ns

i, j,k) − θ(ni, j,k−1)
]
/L. The two-dimensional

GRW rule which at time k moves particles from sites (l,m) to neighboring sites (l ∓ 1,m ∓ 1) reads as follows,

ns
l,m,k = δns

l,m|l,m,k + δns
l−1,m|l,m,k + δns

l+1,m|l,m,k + δns
l,m−1|l,m,k + δns

l,m+1|l,m,k. (14)

For consistency with (13), the numbers of particles δns verify in the mean

δns
l,m|l,m,k =

[
1 −

(
rs

l−1/2,m,k + rs
l+1/2,m,k + rs

l,m−1/2,k + rs
l,m+1/2,k

)]
ns

l,m,k

δns
l∓1,m|l,m,k = rs

l∓1/2,m,kns
l,m,k

δns
l,m∓1|l,m,k = rs

l,m∓1/2,kns
l,m,k. (15)

The parameters rs
l∓1/2,m,k and rs

l,m∓1/2,k, defined by relations similar to (5), are dimensionless positive real numbers.
They represent biased jump probabilities on the four allowed spatial directions of the GRW lattice and are con-
straint by the first relation (15) such that their sum be less or equal to one. A sufficient condition would be that
each of them verifies r ≤ 1/4.

The binomial random variables variables δn are approximated in the same way as in the one-dimensional case.
By giving up the particle indivisibility, one obtains deterministic GRW algorithms which represent the solution n
by real numbers and use the unaveraged relations (15) for the computation of the δn terms. In the following we
use this deterministic implementation of the GRW algorithm to compute flow solutions for unsaturated/saturated
porous media.

Remark 2. After disregarding the index k and letting L = 1/a, θ = const, the algorithm (13-15) becomes a
transient scheme to solve the equation governing flows in saturated porous media [1, 34] (see also Remark 1).

3.2. GRW algorithms for two-dimensional fully coupled flow and surfactant transport
Let the pressure ψ(x, z, t) and the concentration c(x, z, t) solve the equations of the following model of fully

coupled flow and surfactant transport in unsaturated/saturated porous media [17, 15],

∂

∂t
θ(ψ, c) − ∇ · [K(θ(ψ, c)∇(ψ + z)

]
= 0, (16)

∂

∂t
[
θ(ψ, c)c

] − ∇ · [D∇c − qc
]

= R(c), (17)

where q = −K(θ(ψ, c)∇(ψ + z) is the water flux (Darcy velocity) and R(c) is a nonlinear reaction term. Equa-
tions (16-17) are coupled in both directions through the nonlinear functions θ(ψ, c) and θ(ψ, c)c. The pressure
equation (16) is solved with the GRW L-scheme described in the previous subsection, with a slight modification
due to the dependence of θ on both ψ and c. New algorithms are needed instead to solve the coupled, nonlinear
transport equation (17).
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3.2.1. Biased GRW algorithm for transport problems
To derive a GRW algorithm for the transport equation, we start with a backward-time central-space finite

difference scheme for Eq. (17). Considering a diagonal diffusion tensor with constant components D1 and D2, and
denoting by U and V the components of the Darcy velocity along the horizontal axis x and the vertical axis z, by
∆t the time step, and by ∆x and ∆z the spatial steps, the scheme reads as

θ(ψi, j,k, ci, j,k)ci, j,k − θ(ψi, j,k−1, ci, j,k−1)ci, j,k−1 =

− ∆t
2∆x

(
Ui+1, j,kci+1, j,k − Ui−1, j,kci−1, j,k

)
− ∆t

2∆z

(
Vi, j+1,kci, j+1,k − Vi, j−1,kci, j−1,k

)

+
D1∆t
∆x2

(
ci+1, j,k − 2ci, j,k + ci−1, j,k

)
+

D2∆t
∆z2

(
ci, j+1,k − 2ci, j,k + ci, j−1,k

)
=

−
(

2D1∆t
∆x2 +

2D2∆t
∆z2

)
ci, j,k

+

(
D1∆t
∆x2 −

∆t
2∆x

Ui+1, j,k

)
ci+1, j,k +

(
D1∆t
∆x2 +

∆t
2∆x

Ui−1, j,k

)
ci−1, j,k

+

(
D2∆t
∆z2 −

∆t
2∆z

Vi, j+1,k

)
ci, j+1,k +

(
D2∆t
∆z2 +

∆t
2∆z

Vi, j−1,k

)
ci, j−1,k + R(ci, j,k). (18)

Next, similarly to the scheme for the flow equation, we add a regularization term L(cs+1
i, j,k − cs

i, j,k) in Eq. (18), define
the dimensional parameters

rx =
2D1∆t
L∆x2 , rz =

2D2∆t
L∆z2 , us

i±1, j,k =
∆t

L∆x
U s

i±1, j,k, vs
i, j±1,k =

∆t
L∆z

V s
i, j±1,k, (19)

approximate the concentration by the density of the number of computational particles, cs
i, j,k ≈ ns

i, j,k/N , and finally
we obtain

ns+1
i, j,k =

[
1 − (rx + rz)

]
ns

i, j,k

+
1
2

(
rx − us

i+1, j,k

)
ns

i+1, j,k +
1
2

(
rx + us

i−1, j,k

)
ns

i−1, j,k

+
1
2

(
rz − vs

i, j+1,k

)
ns

i, j+1,k +
1
2

(
rz + vs

i, j−1,k

)
ns

i, j−1,k + bNgs∆tc , (20)

where gs = R(ns
i, j,k)/L −

[
θ(ψs

i, j,k, n
s
i, j,k)ns

i, j,k − θ(ψi, j,k−1, ni, j,k−1)ni, j,k−1

]
/L, with ψ approximated by the distribution

of particles in the flow solver for Eq. (16). Note that the definition of the dimensionless numbers (19) implies that
the parameter L has to be a dimensionless number as well.

The contributions to ns+1
i, j,k in Eq. (20) are obtained with the biased global random walk algorithm (BGRW)

ns
l,m,k = δns

l,m|l,m,k + δns
l−1,m|l,m,k + δns

l+1,m|l,m,k + δns
l,m−1|l,m,k + δns

l,m+1|l,m,k, (21)

where, for consistency with the finite difference scheme (20), the quantities δn verify in the mean

δns
l,m|l,m,k =

[
1 − (rx + rz)

]
ns

i, j,k, δns
l±1,m|l,m,k =

1
2

(rx ∓ us
l,m,k)ns

l,m,k, δns
l,m±1|l,m,k =

1
2

(rz ∓ vs
l,m,k)ns

l,m,k. (22)

The binomial random variables δn used in the BGRW algorithm are approximated similarly to the algorithms
described in the previous sections, by summing up to unity reminders of multiplication and floor operations. A
deterministic BGRW algorithm can be obtained, similarly to the flow solver presented in Section 3.1 above, by
giving up the particle’s indivisibility and using the un-averaged relations (22). However, for the computations
presented in the next section, we use a randomized implementation of the BGRW algorithm.

As follows from (22), the BGRW algorithm is subject to the following restrictions

rx + rz ≤ 1,
∣∣∣us

l,m,k

∣∣∣ ≤ rx,
∣∣∣vs

l,m,k

∣∣∣ ≤ rz. (23)

Remark 3. The constraints (23) impose a limitation on the maximum allowable value of the local Péclet number.
Assume a constant flow velocity −V and a constant diffusion coefficient D. Then, according to (23) and (19), the
condition v ≤ r implies Pé = V∆z/D ≤ 2.
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Remark 4. Taking into account that the iterations start with ni, j,k−1, setting L = 1, θ = 1, and dropping the
superscripts s, the relation (20) becomes

ni, j,k =
[
1 − (rx + rz)

]
ni, j,k−1

+
1
2

(
rx − ui+1, j,k−1

)
ni+1, j,k−1 +

1
2

(
rx + ui−1, j,k−1

)
ni−1, j,k−1

+
1
2

(
rz − vi, j+1,k−1

)
ni, j+1,k−1 +

1
2

(
rz + vi, j−1,k−1

)
ni, j−1,k−1 +

⌊
NR(ni, j,k−1)∆t

⌋
. (24)

Relation (24), together with (21-23), define a BGRW algorithm for (decoupled) reactive transport described by
Eq. (17) with θ(ψ, c) = 1.

3.2.2. Unbiased GRW algorithm for transport problems
The unbiased GRW algorithm is obtained by globally moving groups of particles according to the rule

ns+1
i, j,k = δns

i+us
i, j,k , j+vs

i, j,k |i, j,k (25)

+ δns
i+us

i, j,k+d, j+vs
i, j,k |i, j,k + δns

i+us
i, j,k−d, j+vs

i, j,k |i, j,k

+ δns
i+us

i, j,k , j+vs
i, j,k+d|i, j,k + δns

i+us
i, j,k , j+vs

i, j,k−d|i, j,k + bNgs∆tc ,

where d is a constant amplitude of diffusion jumps and the dimensionless variables rx, rz, u and v are defined
similarly to (19) by

rx =
2D1∆t

L(d∆x)2 , rz =
2D2∆t

L(d∆z)2 , us
i, j,k =

⌊
∆t

L∆x
U s

i, j,k + 0.5
⌋
, vs

i, j,k =

⌊
∆t

L∆z
V s

i, j,k + 0.5
⌋
. (26)

The particles distribution is updated at every time step by

ns
l,m,k+1 = δns

l,m,k +
∑

i,l, j,m

δns
l,m|i, j,k. (27)

The averages over GRW runs of the terms from (25) are now related by

δns
i+us

i, j,k , j+vs
i, j,k |i, j,k =

[
1 − (rx + rz)

]
ns

i, j,k, δns
i+us

i, j,k±d, j+vs
i, j,k |i, j,k =

rx

2
ns

i, j,k, δns
i+us

i, j,k , j+vs
i, j,k±d|i, j,k =

rz

2
ns

i, j,k. (28)

Comparing with the BGRW relations (22), we remark that (26) defines unbiased jump probabilities rx/2 and ry/2
on the two spatial directions.

The unbiased GRW algorithm for decoupled transport is obtained by letting L = 1 and dropping the super-
scripts s (see also Remark 4).

The binomial random variables δn used in the unbiased GRW algorithm are approximated by the procedure
used for the flow solver and for the BGRW algorithm presented in the previous subsection. For fixed space steps,
the time step is chosen such that the dimensionless parameters us

i, j,k and vs
i, j,k take integer values larger than unity

which ensure the desired resolution of the velocity components [33, Sect. 3.3.2.1]. Further, the jumps’ amplitude
d is chosen such that the jump probabilities verify the constraint rx + rz ≤ 1, imposed by the first relation (28).

The unbiased GRW, as well as the BGRW algorithm introduced in Section 3.2.1 above, have been tailored to
solve problems with constant diffusion coefficients, as those considered in Sections 4.2 and 5.3 below. In case
of diagonal diffusion tensors with space-time variable coefficients D1 and D2, the algorithms for the transport
problem are straightforwardly obtained by assigning to rx and rz superscripts s and appropriate subscripts i, j, k.

4. Validation of the two-dimensional GRW algorithms

4.1. GRW flow solutions
For the beginning, we conduct verification tests of the GRW flow code by comparisons with an analytical

solution and compute numerical estimates of the order of convergence. The results are further compared with
those obtained by a TPFA code implemented in the MRST software [19, 15]. The two codes are tested by solving
a problem with manufactured solution previously considered in [25]. The domain is the unit square [0, 1] × [0, 1]
and the final time is T = 1. The manufactured solution for the pressure head ψm is given by

ψm(x, z, t) = −t x (x − 1) z (z − 1) − 1. (29)
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The water content θ and the conductivity K are expressed as

θ(ψ) =
1

1 − ψ, K(θ(ψ)) = ψ2. (30)

The analytical solution (29) defines the boundary and initial conditions and induces a source term f , computed
analytically from Eq. (12) with parameters given by the expressions (30).

We start the computations on a uniform mesh with ∆x = ∆z = 0.1 and halve the mesh size step three times
successively. The accuracy of the numerical solutions, at the final time t = T , is quantified by the L2 norm
εl = ‖ψ(l) − ψm‖, l = 1, . . . , 4, where l = 1 corresponds to the original mesh. The estimated order of convergence
(EOC) that describes the decrease of the error in logarithmic scale is computed according to

EOC = log
(
εl

εl+1

)
/ log(2), l = 1, . . . , 3. (31)

The computations with the TPFA code start with a time step ∆t = 0.1 which is also halved at each refinement
of the mesh. The parameters of the convergence indicator (3) are set to εa = 10−6 and εr = 0. Finally, the
linearization parameter L is set equal to 1/2 and the convergence of the L-scheme is achieved after circa 100
iterations per time step, independently of the mesh size.

In the GRW computations we use the same spatial refinement of the grid and tolerances εa and εr as above but,
according to (5), we have to use adaptive time steps ∆t = O(∆z1/2) (see discussion in Section 2.2). The convergence
criterion (3) is already fulfilled by the GRW L-scheme with parameter L = 1 for numbers of iterations increasing
from s = 2 to s = 5 as the space step decreases. The accuracy εl instead is strongly influenced by L. For L < 800
the εl values may increase with the refinement of the mesh, leading to negative EOC, that is, the GRW solution
does not converge to the exact solution ψm. However, it is found that the increase of εl is prevented by using a
sufficiently large parameter L.

The results presented in Table 2 indicate the convergence of order 1 in space for TPFA and of order 2 for the
GRW solutions. The higher order of convergence also leads to much smaller errors of the GRW code after the first
refinement of the mesh.

Table 2: Estimated order of convergence of the TPFA and GRW flow solvers.

ε1 EOC ε2 EOC ε3 EOC ε4

TPFA 8.45e-03 0.94 4.40e-03 0.97 2.25e-03 0.97 1.15e-03
GRW (L=800) 7.20e-03 2.24 1.52e-03 3.21 1.65e-04 0.50 1.17e-04
GRW (L=1000) 9.24e-03 2.22 1.99e-03 2.83 2.80e-04 1.66 8.84e-05
GRW (L=1200) 8.89e-03 2.23 1.90e-03 2.80 2.72e-04 2.14 6.16e-05

Further, we solve the benchmark problem from [21, Sect. 4.2], which describes the recharge of a groundwater
reservoir from a drainage trench in a two-dimensional geometry. The groundwater table is fixed by a Dirichlet
boundary condition on the right hand side. The drainage process is driven by a Dirichlet boundary condition
changing in time on the upper boundary of Ω.

The precise structure of the domain is defined by

Ω = (0, 2) × (0, 3),
ΓD1 = {(x, z) ∈ ∂Ω | x ∈ [0, 1] ∧ z = 3},
ΓD2 = {(x, z) ∈ ∂Ω | x = 2 ∧ z ∈ [0, 1]},
ΓD = ΓD1 ∪ ΓD2 ,

ΓN = ∂Ω \ ΓD.

The Dirichlet and Neumann boundary conditions on ΓD and ΓN , respectively, as well as the initial condition
consisting of hydrostatic equilibrium are specified as follows:

ψ(x, z, t) =



−2 + 2.2t/∆tD, on ΓD1 ,T ≤ ∆tD,

0.2, on ΓD1 ,T > ∆tD,

1 − z, on ΓD2 ,

− K(θ(ψ(x, z, t))∇(ψ(x, z, t) + z) · n = 0, on ΓN ,

ψ(x, z, 0) = 1 − z, on Ω,
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Figure 7: Convergence of the L-scheme implementation of the
GRW flow solver for the loam soil problem at three time levels
(in hours).
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Figure 8: Convergence of the L-scheme implementation of the
GRW flow solver for the clay soil problem at three time levels
(in days).

where n represents the outward pointing normal vector.
The relationships defining the water content θ(ψ) and the hydraulic conductivity K(θ(ψ)) are given by the van

Genuchten-Mualem model

θ(ψ) =


θres + (θsat − θres)

(
1

1+(−αψ)n

) n−1
n , ψ < 0

θsat, ψ ≥ 0,
(32)

K(θ(ψ)) =


KsatΘ(ψ)

1
2

[
1 −

(
1 − Θ(ψ)

n
n−1

) n−1
n
]2
, ψ < 0

Ksat, ψ ≥ 0,
(33)

where θres, θsat, and Ksat represent the same parameters as for the exponential model considered in Section 2.2,
Θ = (θ − θres)/(θsat − θres) is the normalized water content, and α and n are model parameters depending on the
soil type.

We consider here two sets of soil parameters, presented in Table 3, which correspond to a silt loam and a Beit
Netofa clay, respectively.

Table 3: Simulation parameters

Silt loam Beit Netofa clay
Vam Genuchten parameters:

θsat 0.396 0.446
θres 0.131 0
α 0.423 0.152
n 2.06 1.17

Ksat 4.96 · 10−2 8.2 · 10−4

Time parameters:
∆tD 1/16 1
∆t 1/48 1/3
T 3/16 3

The time unit is 1 day and spatial dimensions are given in meters. Furthermore, we consider a regular mesh
consisting of 651 nodes (i.e., ∆x = ∆z = 0.1).

By setting the stabilization parameters to L = 0.5 for loam and for L = 0.12 for clay, the convergence criterion
(3) with εa = εr = 5 · 10−6 is fulfilled after about 120 iterations of the GRW L-scheme, for both soil models
(Figs. 7 and 8). The results shown in Figs. 9 and 10 are as expected for this benchmark problem (see [28, 21]):
the drainage process in the clay soil is much slower, so that the pressure distribution after three days is similar to
that established in the loam soil after 4.5 hours.

The results obtained with the TPFA L-scheme, with L = 1 for both soil models, are used as reference to
compute the relative errors εψ, εθ, εqx , and εqz shown in Table 4. One remarks that εψ and εθ are close to the
corresponding errors for the one-dimensional case presented in Table 1, but εqx and εqz are one order of magnitude
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Figure 9: Pressure head solution at t = 4.5 hours obtained by
the GRW code for the benchmark problem of recharge from a
drainage trench through a silt loam soil.
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Figure 10: Pressure head solution at t = 3 days obtained by
the GRW code for the benchmark problem of recharge from a
drainage trench through a Beit Netofa clay soil.

larger than εq in shown in Table 1. A possible explanation could be the occurrence of the numerical diffusion
in the flow TPFA code (see discussion at the end of Section 4.2.3 below). The computational times of the GRW
code are 1 second and 1.6 seconds for loam and clay cases, respectively. The times of the TPFA runs, on the same
computer, are one order of magnitude larger, i.e., 25 seconds and 38 seconds, respectively.

Table 4: Comparison of GRW and TPFA solutions of the
flow benchmark problem.

εψ εθ εqx εqz

loam 5.73e-02 4.00e-03 2.30e-01 1.04e-01
clay 5.48e-02 6.71e-04 4.73e-01 1.14e-01

4.2. GRW/BGRW solutions for fully coupled flow and transport problems
4.2.1. Code verification tests

The code verification tests for coupled flow and transport problems are conducted similarly to those for the
flow solver presented in the previous subsection, by considering, along with the exact flow solution (29), the exact
solution for the concentration field given by

cm(x, z, t) = t x (x − 1) z (z − 1) + 1. (34)

After setting R = 0 and D = 1, the coupled system of equations (16-17) is solved in the unit square for a total time
T = 1, with source terms, initial conditions, and boundary conditions resulted from the exact solutions (29) and
(34) with a new parameterization given by

θ(ψ, c) =
1

1 − ψ − c/10
, K(θ(ψ)) = ψ2. (35)

The GRW flow-algorithm (13-15), with θ and K given by (35), is coupled with the BGRW transport-algorithm
(20-23) initialized with N = 1024 particles into an alternating splitting scheme [15]. The approach alternates
iterations of flow and transport solvers until the convergence criterion (3) with εa = 10−6 and εr = 0 is fulfilled
by the numerical solutions for both ψ and c. In order to highlight the approach to the convergence order 2, the
stabilization parameters of the flow and the transport solvers are set to Lp = Lc = 100. The GRW results presented
in Tables 5 and 6 are compared with results obtained with a TPFA solver applying the same alternating linearized
splitting procedure with parameters Lp = Lc = 1 which ensure the convergence of order 1.

The GRW flow solver approximates the Darcy velocity by centered differences only in the interior Ω of the
computational domain. Therefore, the velocity q|∂Ω, needed to compute the number of biased jumps from the
boundary ∂Ω in the BGRW relation (20) has to be provided in some way. The straightforward approach is to
compute the velocity by using an approximate forward finite difference discretization of Darcy’s law. Another
option is to extend on the boundary the velocity from the first neighboring interior site. Thanks to the manufactured
solution (29) on which the code verification test is based, we also have the exact velocity computed analytically.
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The latter allows accuracy assessments for the above approximations. We note that the GRW results for the
pressure solver obtained with analytical, approximate, and extend q|∂Ω are identical in the precision of three
significant digits (Table 5). For the concentration solutions (Table 6), we note the remarkably good performance
of approximate and extended q|∂Ω.

Table 5: Estimated order of convergence of the TPFA and GRW solvers: pressure solutions.

ε1 EOC ε2 EOC ε3 EOC ε4

TPFA 8.14e-03 0.93 4.27e-03 0.95 2.20e-03 0.97 1.12e-03
GRW 3.71e-03 2.02 9.18e-04 1.94 2.40e-04 1.45 8.78e-05

Table 6: Estimated order of convergence of the TPFA and GRW solvers: concentration solutions.

ε1 EOC ε2 EOC ε3 EOC ε4

TPFA 6.26e-03 0.83 3.52e-03 0.89 1.90e-03 0.91 1.01e-03
GRW (analytical q|∂Ω) 3.92e-03 2.00 9.78e-04 1.83 2.74e-04 1.05 1.32e-04

GRW (approximate q|∂Ω) 4.72e-03 1.99 1.19e-03 1.85 3.29e-04 1.17 1.46e-04
GRW (q|∂Ω from int(Ω)) 5.26e-03 2.00 1.31e-03 1.87 3.59e-04 1.23 1.53e-04

4.2.2. Estimates of numerical diffusion
The small errors shown in Table 6 indicate that the numerical diffusion in solving the transport step of the

coupled problem does not play a significant role. This is somewhat expected for the small Péclet numbers of order
Pé=10−2 encountered in these computations. But for the numerical setup of the benchmark problem presented in
Section 4.1 and realistic transport parameters Pé can be significantly larger than unity. Therefore we proceed to
estimate the numerical diffusion of the codes compared here by following the procedure used in [24].

Table 7: Estimation of numerical diffusion for
BGRW, GRW and TPFA codes.

∆x T/∆t Pé εDx εDz

BGRW
0.1 2 3.31 7.55e-02 2.60e-01
0.05 9 1.65 1.90e-16 1.48e-15
0.01 239 0.33 4.16e-16 1.02e-15

0.005 960 0.17 2.93e-15 3.63e-15

GRW
0.1 4 3.31 1.94e-16 6.14e-16
0.05 4 1.65 6.60e-17 8.05e-16
0.01 19 0.33 1.94e-16 4.79e-16

0.005 39 0.17 2.10e-15 8.92e-16

TPFA
0.1 5 3.31 9.16e-03 1.99e-01
0.05 10 1.65 4.69e-03 9.94e-02
0.01 50 0.33 9.58e-04 1.99e-02

0.005 100 0.17 5.38e-04 9.89e-03

We consider the analytical Gaussian solution c(x, z, t) of Eq. (17) with θ = 1, R = 0, and constant coefficients
D = 0.001 and V = −0.0331, corresponding to the Cauchy problem with a Dirac initial concentration pulse
located at the coordinates (1,2.1). The constant velocity V , oriented downwards along the z-axis, is the steady-
state solution of the benchmark flow problem from Section 4.1 with K = Ksat corresponding to the loam soil, initial
condition ψ(x, z, 0) = 1 − z/3, Dirichlet boundary conditions ψ(x, 0, t) = 1, ψ(x, 3, t) = 0, and no-flow Neumann
conditions on the vertical boundaries. The initial condition c(x, z, 0) is the same Gaussian function evaluated at
t = 1 and the final time is T = 3. For decreasing mesh sizes ∆x and Pé = V∆x/D, the number of time steps was
restricted by the requirement that the support of the numerical solution does not extend beyond the boundaries
∂Ω (to mimic diffusion in unbounded domains). The effective diffusion coefficients Dx and Dz are computed
from the spatial moments along the x- and z-directions of the numerical solution (see [24, Eqs. (38-41)]). The
numerical diffusion is estimated by relative errors εDx = |Dx − D|/D and εDz = |Dz − D|/D averaged over the time
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interval [0,T ]. Table 7 shows that while the TPFA results are strongly influenced by the mesh size, similarly to
the finite-volume results from [24], the unbiased GRW algorithm is practically unconditionally-free of numerical
diffusion. The BGRW algorithm is also free of numerical diffusion provided that Pé ≤ 2 (see also Remark 3). We
also note that ∆x = 0.05 defines the coarsest grid acceptable for solving the benchmark problem for coupled flow
and transport with BGRW and TPFA codes.

4.2.3. Fully coupled water flow and surfactant transport
In the following we solve the coupled flow and transport problem (16-17) by using the setup of the benchmark

flow problem problem from Section 4.1 completed by parameters and initial/boundary conditions modeling a
situation of coupled water flow and surfactant transport. The surfactant concentration in the domain Ω has a
stratified distribution described by the plane c(x, z, 0) = z/1.2. Further, the concentration is set to c = 1 on
the Dirichlet boundary ΓD1 and to c = 0 on ΓD2 , and no-flow Neumann conditions are imposed on the vertical
boundaries.

The flow and transport are coupled in both directions through the van Genuchten-Mualem parameterization
(32-33) with θ(ψ, c) = θ(γ(c)ψ), where γ(c) = 1/[1 − b ln(c/a + 1)] models the concentration-dependent surface
tension between water and air [17]. The constant parameters of γ(c) are set to a = 0.44 and b = 0.0046 [15].
To describe a more realistic heterogeneous soil, the saturated conductivity Ksat is modeled as a log-normal space
random function with a small variance σ2 = 0.5 and Gaussian correlation of correlation lengths λx = 0.1 m
and λz = 0.01 m in horizontal and vertical directions, respectively. The ln K field is generated by summing up
100 random periodic modes with the Kraichnan algorithm presented in [33, Appendix C.3.1.2]. The diffusion
coefficient is set to a constant value, D = 10−3 m/day, which is representative for soils and aquifers [24, 28, 33].
Following [15], the nonlinear reaction term is specified as R(c) = 10−3c/(1 + c). Instead of using a fixed number
of time steps, as in the flow benchmark presented in Section 4.1, now we fix the total time to T = 3 days, set the
intermediate time controlling the drainage process to ∆tD = T/3, and keep the original time steps ∆t which ensure
the appropriate resolution for contrasting fast and slow processes in loam and clay soils, respectively.

Preliminary tests showed that, in order to obtain an acceptable resolution of the velocity components in the
benchmark setup, the unbiased GRW requires extremely fine discretizations with ∆x = O(10−5). Therefore the
transport step is solved with the BGRW algorithm for the mesh size ∆x = 0.05 suggested by the above investiga-
tions on numerical diffusion. The velocity q|∂Ω on boundaries is approximated by forward finite differences.

The convergence of the flow and transport L-schemes using GRW algorithms requires relatively large lin-
earization parameters, Lp = Lc = 20, for loam soil, and Lp = Lc = 100 for clay soil models. These are two order
of magnitude larger than for the decoupled-flow benchmark presented in Section 4.1, probably due to the increased
complexity of the coupled problem. By setting the tolerances of the convergence criterion (3) to εa = εr = 5 · 10−6

the convergence is achieved after about 2000 iterations for the loam soil and about 14000 iterations for the clay
soil (see Figs. 11 - 14).

The results obtained by coupling the GRW-flow and BGRW-transport solvers are presented in Figs. 15-24.
The randomness of Ksat is especially felt by the pressure distribution in the more permeable loam soil (Fig. 15),
while in the clay soil the pressure remains almost stratified (Fig. 16). The same contrast is shown by the water
content, with almost saturated loam soil (Fig. 17) and partially stratified saturation in the clay soil (Fig. 18).
Since the Darcy velocity is proportional to the gradient of the random pressure, the heterogeneity of the advective
component of the transport process is mainly manifest in the final distribution of the concentration in the loam
and clay soils (compare Figs. 19 and Fig. 20). Significant differences between the loan and clay soils are also
illustrated by the spatial distribution of the velocity components (Figs. 21 - 24).

The results obtained with the GRW/BGRW flow and transport solvers are compared with those provided by a
TPFA code using Lp = Lc = 1, for both soils, and Lc = 2Lp. The convergence is achieved in reasonable computing
times of 263 seconds (loam) and 177 seconds (clay) only when using the Anderson acceleration procedure [2, 37,
7]. Note that the GRW times on the same computer are of the same order of magnitude (526 and 178, respectively),
without appealing to the acceleration procedure.

The errors for pressure, water content and velocity components shown in Table 8 are more or less similar to
those for the flow benchmark problem given in Table 4. The difference of one order of magnitude between the
εc values for the two soils can be traced back to the amount of numerical diffusion of the TPFA transport solver
(see Table 7). The estimated mean Péclet number for the loam soil, Pé ≈ 1.3, is much larger than the value
Pé ≈ 4 · 10−3 estimated for the clay soil and can partially explain the larger εc value in the first case. Since
the pressure equation is essentially an advection-diffusion equation with velocity given by the derivatives of the
coefficient K [e.g., 11, 34], the errors εqx and eqz , of order 10−1 also could be produced by numerical diffusion,
in the flow solver. In the setup of the benchmark problems, for both coupled flow and transport and decoupled
flow, we estimate a mean Péclet number Pé ≈ 0.9 for both loam and clay soil models (for comparison, in the one
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Figure 11: Convergence of the L-scheme implementation of the
GRW flow solver for the loam soil problem at three time levels
(in days).
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Figure 12: The same as in Fig. 11 for the clay soil problem.
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Figure 13: Convergence of the L-scheme implementation of the
GRW transport solver for the loam soil problem at three time
levels (in days).

0 2000 4000 6000 8000 10000 12000 14000
10-7

10-6

10-5

10-4

t=1

t=2

t=3

Figure 14: The same as in Fig. 13 for the clay soil problem.
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Figure 15: Pressure head solution ψ(x, z) at t = T for the bench-
mark problem of recharge from a drainage trench through a silt
loam soil coupled with advection-dispersion-reaction transport.
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Figure 16: The same as in Fig. 15 for a Beit Netofa clay soil.
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Figure 17: Water content solution θ(x, z) at t = T for the bench-
mark problem of recharge from a drainage trench through a silt
loam soil coupled with advection-dispersion-reaction transport.
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Figure 18: The same as in Fig. 17 for a Beit Netofa clay soil.
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Figure 19: Concentration solution c(x, z) at t = T for the bench-
mark problem of recharge from a drainage trench through a silt
loam soil coupled with advection-dispersion-reaction transport.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

Figure 20: The same as in Fig. 19 for a Beit Netofa clay soil.
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Figure 21: Horizontal water flux qx(x, z) at t = T for the bench-
mark problem of recharge from a drainage trench through a silt
loam soil coupled with advection-dispersion-reaction transport.
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Figure 22: The same as in Fig. 21 for a Beit Netofa clay soil.
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Figure 23: Vertical water flux qx(x, z) at t = T for the benchmark
problem of recharge from a drainage trench through a silt loam
soil coupled with advection-dispersion-reaction transport.
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Figure 24: The same as in Fig. 23 for a Beit Netofa clay soil.

Table 8: Comparison of GRW and TPFA solutions of the
coupled flow-transport benchmark problem.

εψ εc εθ εqx εqz

loam 2.89e-02 4.79e-01 7.25e-05 3.15e-01 2.18e-01
clay 5.95e-02 3.77e-02 7.61e-04 3.66e-01 5.36e-01

dimensional case with smaller εq, Pé was about 0.03 in Scenario 1 and 0.3 in Scenario 2). Since the flow and
transport solvers implemented in MRST basically use the same TPFA finite volume method, we may expect that
the flow solver produces a numerical diffusion comparable to that of the transport solver shown in Table 7.

A one-dimensional version of the benchmark problem for flow and surfactant transport can be readily obtained
and solved with one-dimensional GRW algorithms [35, Sect. 5.2.4]. Even though the lateral heterogeneity of
the two-dimensional benchmark is ignored, the main features are also revealed by the one-dimensional drainage
model: the discrepancy between fast-loam and slow-clay flow and transport processes, the same intervals of
variation of the solutions, and similar behavior on the vertical direction.

5. Two-dimensional GRW solutions for groundwater flow and transport at regional and field scales

For saturated aquifers (θ = const) Eq. (12) reduces to a linear equation solved by the steady state hydraulic
head solution in h(x, y), under time independent boundary conditions. As noted in Remark 2, the GRW L-scheme
(13-15) becomes, in this case, a transient scheme for the linear flow equation. In the following examples, we
consider flow problems formulated in two-dimensional domains, (x, y) ∈ [0, Lx]× [0, Ly], with Dirichlet boundary
conditions h(0, y) = H1 and h(Lx, y) = H2 and no-flow Neumann conditions on top and bottom boundaries. In the
saturated flow regime, the transport Eq. (17) is also linear and decoupled from the linear flow equation. Decoupled
transport problems can be solved by either biased- or unbiased-GRW algorithms (see Remark 4 and Section 3.2.2)
on the same lattice as that used to compute the flow velocity.

5.1. Flow in heterogeneous aquifers at regional scale

For the beginning, we follow the setup for regional scale used in [14] to compare approaches for inverse
modeling of groundwater flow. The domain and the boundary conditions are specified by Lx = 4900 m, Ly =

5000 m, H1 = 0 m, H2 = 5 m. The hydraulic conductivity K is a log-normally distributed random field defined
by the mean 〈K〉 = 12 · 10−4 m/s, the correlation length λ = 500 m, and the variance σ2 = 1 of the ln K-field.
The K-field is generated, as in Section 4.2.3 above, by summing 100 random periodic modes with the Kraichnan
algorithm. Besides the exponential correlation considered in [14], we also investigate the behavior of the flow
solution for Gaussian correlation of the ln K field with the same correlation length, as well as in case of the
smaller variance σ2 = 0.1, for both correlation models.

The two correlation models of the ln K-field are of the form C(r) = σ2 exp[−(r/λ)α], where r = (r2
x + r2

y )1/2 is
the spatial lag, the exponent α = 1 corresponds to the exponential model, and α = 2 to the Gaussian one. Since the
correlation functions depend on spatial variables through r/λ, the computation can be done for spatial dimensions

16



scaled by λ, that is, fields of dimensionless correlation length λ∗ = 1 and a domain [0, Lx/λ] × [0, Ly/λ]. The
results on the original grid are finally obtained after the multiplication by λ of the solution h(x, y) and of the spatial
coordinates.

The solutions h(x, y) of the stationary equation (12) corresponding to θ = const, for given realizations of the
K-field with σ2 = 0.1, are obtained under the initial condition h0(x, y), which is the plane defined by the Dirichlet
boundary conditions h(0, y) = 0 and h(Lx/λ, y) = H2/λ. With space steps set to ∆x = ∆y = 0.2 m, the steady state
is reached after about 4 · 105 iterations of the GRW solver. The relative errors of the solution h obtained with the
scaled geometry with respect to the solution of the unscaled problem are of the order 10−14, that is, close to the
machine precision [35, Sect. 6.1].

To estimate the order of convergence of the GRW scheme for this particular flow problem, we use manufac-
tured analytical solutions provided in the Git repository https://github.com/PMFlow/FlowBenchmark and, simi-
larly to estimations performed in Section 4.1, we compute the EOC according to (31) by successively halving the
space steps from ∆x = ∆y = 2 · 10−1 up to ∆x = ∆y = 2.5 · 10−2.

Table 9: Computational order of convergence of the GRW scheme estimated according to (31).

Correlation model σ2 ε1 EOC ε2 EOC ε3 EOC ε4

Exponential 0.1 1.35e+01 3.67 1.06e+00 1.86 2.92e-01 0.66 1.85e-01
1 1.80e+02 3.24 1.90e+01 2.09 4.47e+00 1.96 1.15e+00

Gaussian 0.1 7.37e-02 1.98 1.87e-02 1.63 6.03e-03 1.14 2.73e-03
1 1.31e-01 1.59 4.35e-02 1.51 1.53e-02 1.47 5.51e-03

Table 10: Computational order of convergence of the TPFA solver estimated according to (31).

Correlation model σ2 ε1 EOC ε2 EOC ε3 EOC ε4

Exponential 0.1 4.67e+00 1.71 1.43e+00 1.95 3.70e-01 0.48 2.65e-01
1 1.01e+02 2.23 2.14e+01 3.11 2.48e+00 0.41 1.86e+00

Gaussian 0.1 9.22e-02 2.00 2.30e-02 2.00 5.75e-03 2.00 1.44e-03
1 1.84e-01 2.00 4.61e-02 2.00 1.16e-02 2.00 2.89e-03

We note that the EOC approach presented here differers somewhat from that used in [1, 34]. The reference
solution is now the manufactured solution, instead of the solution on the finest grid, and the error norm is no
longer computed after the first iteration but after large numbers of iterations (from 105 to more than 107 ), when
the GRW solution approaches the stationarity. Due to the limited number of iterations, the solutions are not yet
strictly stationary and the order of convergence may be not accurately estimated in some cases. Therefore we also
use a TPFA flow solver to compute EOC values for the same scenarios.

The results presented in Tables 9 and 10 show significant differences between the two correlation models. For
Gaussian correlation the errors obtained with the two approaches are relatively small in all cases. Instead, for
exponential correlation, despite the strong EOC obtained after the first two refinements, the errors are extremely
large for σ2 = 1 and become smaller than one only for σ2 = 0.1, after the second refinement of the grid. These
results are consistent with those presented in [1], where similar benchmark problems were solved for a larger
range of parameters of the ln K field.

5.2. Flow in conditions of random recharge

We consider in the following a flow problem formulated for the same geometry and boundary conditions as in
the previous subsection, which has been used in [22] to design a new Monte Carlo approach for flow driven by
spatially distributed stochastic sources. Now the hydraulic conductivity is constant, K = 12 · 10−4 m/s, and the
groundwater recharge is described by a source term f in Eq. (12), modeled as a random space function of mean
〈 f 〉 = 362.912 mm/year, log-normally distributed with exponential correlation specified by different correlation
lengths and variances of the ln f field. Among different scenarios presented in[22], we consider for comparison
with the present computations only the case λ = 500 m and the variance σ2 = 1.

As in the previous subsection, we use the setup for the problem’s geometry scaled by λ, for which the random
recharge problem with σ2 = 1 is solved with relative errors of the order 10−15 [35, Sect. 6.2].

In a first validation test, we compare the GRW and TPFA solutions of the random recharge problem on the
computational domain scaled by λ = 500 m, for single-realizations of the random recharge with both exponential
and Gaussian correlation of the ln f field and two variances, σ2 = 0.1 and σ2 = 1. The absolute and relative
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differences, εa = ‖hGRW − hT PFA‖ and εr = ‖hGRW − hT PFA‖/‖hT PFA‖, presented in Table 11 indicate a good
agreement between the two approaches.

Table 11: Comparison of GRW and TPFA solutions of the
random recharge problem.

Correlation model σ2 εa εr

Exponential 0.1 63.44 5.97e-2
1 101.71 9.82e-2

Gaussian 0.1 84.12 8.72e-2
1 137.09 1.62e-2

Further, we perform statistical inferences of the mean and variance obtained from an ensemble of 100 Monte
Carlo simulations within the setup of [22] for random recharge term with exponential correlation and variance
σ2 = 1. The mean and the variance of the hydraulic head h are computed as averages over realizations of the ln f
field followed by spatial averages, with standard deviation estimated by spatial averaging. The results presented
in Table 12 show, again, that the GRW and TPFA results are in good statistical agreement.

Table 12: Statistical moments of the hydraulic head
(Monte Carlo and spatial averages).

mean variance
GRW 21.51±9.17 41.11±27.82
TPFA 19.74±7.84 32.09±21.33

Finally, we compare the mean and the variance estimated at the center of the computational domain by GRW
and TPFA simulations with the results presented in [22]. As seen in Table 13, the mean values compare quite well
but both the GRW and TPFA approaches overestimate the variance computed for the same parameters in [22, Fig.
6]. This discrepancy can be attributed either to the large errors expected for exponential correlation model (see
Tables 9 and 10) or to the statistical inhomogeneity of the Monte Carlo ensemble of 100 realizations indicated by
the large standard deviations shown in Table 12.

Table 13: Statistical moments of the hydraulic head
(MC averages at the center of the domain).

mean variance
GRW 31.67 65.14
TPFA 28.31 53.39

(Passeto et al., 2011) 31.05 40.08

5.3. Flow and advection-dispersion transport in aquifers

In the following we consider an incompressible flow in the domain [0, 20]× [0, 10], driven by Dirichlet bound-
ary conditions h(0, y) = 1 and h(20, y) = 0 and zero Neumann conditions on top and bottom boundaries. The
hydraulic conductivity is a random space function with mean 〈K〉 = 15 m/day, with Gaussian correlation of the
ln K field, correlation length λ = 1 m, and variance σ2 = 0.1, generated by summing 10 random modes with
the Kraichnan algorithm. An ensemble of velocity fields corresponding to 100 realizations of the K field is ob-
tained with the flow solver used in Section 5.1, for the resolution of the GRW lattice defined by space steps
∆x = ∆y = 0.1.

Further, Monte Carlo simulations of advection-diffusion are carried out using the velocity realizations and
the isotropic local dispersion coefficient D = 0.01 m2/day. The linear transport equation obtained by setting
θ = const in Eq. (17) is solved with the unbiased GRW algorithm described in Section 3.2.2 by using N = 1024

particles to represent the concentration. The final time T = 10 days is chosen such that the support of the
concentration does not reach the boundaries during the simulation. Hence, the Monte Carlo inferences can be
compared with results of linear theory which provides first-order approximations of dispersion coefficients for
small variances σ2 [5]. In turn, such linear approximations are accurately retrieved by averaging over ensembles
of particle tracking simulations of diffusion in realizations of velocity fields approximated to the first-order in σ2
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by a Kraichnan procedure [29]. Following this approach, to infer dispersion coefficients in linear approximation,
we use an ensemble of 104 realizations of Krainchan velocity fields, computed with 100 random modes by the
algorithm described in [33, Appendix C.3.2.2], and the unbiased GRW solver, with N = 1024 particles in each
realization. Longitudinal and transverse “ensemble” dispersion coefficients, Dx and Dy, are computed as half the
slope of the ensemble average of the second spatial moments of the concentration distribution, centered at the
ensemble average center of mass [5, 24, 29]. The results presented in Fig. 25 show a that, in spite of relatively
small ensemble of velocity realizations, the ensemble dispersion coefficients obtained with the 100 GRW solutions
of the full flow problem are quite close to the reference linear results.
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Figure 25: Dispersion coefficients estimated from GRW solu-
tions for 100 realizations of the isotropic hydraulic conductivity
K, with Gaussian correlated ln K field of variance σ2 = 0.1 and
correlation length λ = 1m, in the domain [0, 20] × [0, 10], com-
pared to first-order results (dots).
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Figure 26: Comparison of dispersion coefficients obtained by
GRW, TPFA, and first-order approximation (dots) fron an en-
semble of 100 realizations of the isotropic hydraulic conductiv-
ity K, with Gaussian correlated ln K field of variance σ2 = 0.1
and correlation length λ = 0.1m, in the domain [0, 2] × [0, 1].

The computation of the velocity realizations with the transient GRW flow solver requires 104 to 105 iterations
to fulfill the convergence criterion (3) with tolerances εa = εr = 5 · 10−7 and about 160 seconds per realization.
For the chosen discretization, ∆x = ∆y = 0.1, the unbiased GRW transport solver requires, according to (26),
a relatively rough time discretization of ∆t = 0.5. This leads to a total computation time of about 1.4 seconds
for the estimation of the dispersion coefficients by averaging over the 100 realizations of the statistical ensemble.
By comparison, the TPFA codes needs about 3.8 seconds to compute a velocity realization and about 13 seconds
for a single transport realization, by using the same spatial resolution and a time step ∆t = 0.05. But the TPFA
estimates of the dispersion coefficients deviate by more than one order of magnitude from the linear reference
solution. Since reducing the spatial steps and the local Pé to reduce the numerical diffusion dramatically increases
the computational burden for the TPFA codes, we solved a rescaled problem. So, to preserve the mean and the
spatial variability of the velocity field, we chose a smaller domain [0, 2]× [0.1], correlation length of the ln K field
λ = 0.1, and a new Dirichlet condition, h(0, y) = 0.1. Now, the TPFA codes require about 60 seconds to compute
one flow realization and about 3 hours for a transport realization, with ∆x = ∆y = 0.001 and ∆t = 0.0005. The
computation times for the GRW codes to solve the rescaled problem by using ∆x = ∆y = 0.01 and ∆t = 0.07 are
practically unchanged. Figure 26 shows that the GRW estimations of the dispersion coefficients are again close
to the linear approximation. Instead the TPFA results overestimate the linear approximation by 10% to 20%. The
deviations of the TPFA coefficients shown in Fig. 26 are comparable with the numerical diffusion (estimated for
constant velocity) in case of the longitudinal coefficient Dx but two orders of magnitude larger for the transverse
coefficient Dy [35, Table 17].

6. Conclusions

The GRW schemes for simulating flow in either unsaturated or saturated porous media are equivalent to finite-
difference schemes, in their deterministic implementation, or for sufficiently large numbers of particles in random-
ized implementations. The same, in case of BGRW solver for transport problems. Instead, the unbiased GRW
is a superposition of Euler schemes for Itô equation [33], which is no longer equivalent with a finite difference
scheme, unless the coefficients of the transport equation are constant. In simulations of reactive transport, GRW
algorithms can use huge numbers of computational particles, even as large as the number of molecules involved
in reactions, allowing simple and intuitive representations of the process.
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While unbiased GRW algorithms are mainly efficient in obtaining fast solutions for large-scale transport in
aquifers, BGRW solvers are appropriate for computing solutions of fully coupled flow and transport problems in
soil systems with fine variation of the parameters. The algorithms are implemented as iterative L-schemes which
linearize the Richards equation and describe the transition from unsaturated to saturated regime. The GRW/BGRW
solutions are first-order accurate in time and second-order accurate in space. For saturated regimes, the flow solver
becomes a transient scheme solving steady-state flows in aquifers.

Since the GRW algorithms are explicit schemes which do not need to solve systems of algebraic equations, they
are simpler and, in some cases, faster than finite element/volume schemes. The GRW L-schemes for non-steady
coupled problems for flow and transport in soils, as well as for transport simulations in saturated aquifers, are
indeed much faster than the TPFA codes used as reference in this study. However, the flow solutions for saturated
porous media in large domains (e.g. field or regional scale) require much larger computing time than classical
numerical schemes, due to the large number of iterations needed to achieve the convergence of the transitory
scheme used to compute steady-state solutions (see also a detailed analysis in [1]).

The obvious advantage of the GRW schemes is that they are practically free of numerical diffusion. This is
demonstrated by the results for decoupled transport presented in Table 7. But, as shown by the discussion at the
end of Section 4.2.3, the flow solvers also can be affected by numerical diffusion, which is difficult to isolate
from other errors occurring in coupled flow and transport problems. Such errors are avoided by GRW algorithms,
which prevent the occurrence of the numerical diffusion by using consistent definitions of the jump probabilities
as functions of the coefficients of the flow and transport equations.
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[8] Cătinaş, E., 2019. A survey on the high convergence orders and computational convergence orders of sequences. Appl. Math. Comput.,
343, 1–20. https://doi.org/10.1016/j.amc.2018.08.006

[9] Catinas, E., 2020. How many steps still left to x*?, SIAM Rev., to appear.
[10] Gardner, W.R., 1958. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water

table. Soil Sci., 85(4), 228–232. https://journals.lww.com/soilsci/toc/1958/04000
[11] Gotovac, H., Cvetković, V., Andričevicć, R., 2009. Adaptive Fup multi-resolution approach to flow and advective trans-

port in highly heterogeneous porous media: Methodology, accuracy and convergence. Adv. Water Resour. 32(6), 885–905.
https://doi.org/10.1016/j.advwatres.2009.02.013

[12] Hajibeygi, H., Olivares, M.B., HosseiniMehr, M., Pop, S., Wheeler, M., 2020. A benchmark study of the mul-
tiscale and homogenization methods for fully implicit multiphase flow simulations. Adv. Water Resour., 143, 103674.
https://doi.org/10.1016/j.advwatres.2020.103674

[13] Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P. J., Vachaud, G., 1977. A comparison of numerical simulation models for one-
dimensional infiltration 1. Soil. Sci. Soc. Am. J., 41(2), 285–294. https://doi.org/10.2136/sssaj1977.03615995004100020024x

[14] Hendricks Franssen, H.J., Alcolea, A., Riva, M., Bakr, M., Van der Wiel, N., Stauffer, F., Guadagnini, A., 2009. A comparison of seven
methods for the inverse modelling of groundwater flow. Application to the characterisation of well catchments. Adv. Water Resour.,
32(6), 851–872. https://doi.org/10.1016/j.advwatres.2009.02.011

[15] Illiano, D., Pop, I.S., Radu, F.A., 2020. Iterative schemes for surfactant transport in porous media. Comput. Geosci.
https://doi.org/10.1007/s10596-020-09949-2

20



[16] Knabner, P., Angermann, L., 2003. Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer, New York.
[17] Knabner, P., Bitterlich, S., Iza Teran, R., Prechtel, A., Schneid, E., (2003). Influence of Surfactants on Spreading of Contaminants
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