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2. Abstract 

Background:  

This thesis examines the performance of different left ventricular (LV) leads and in 

particular a novel bipolar LV lead with a side helix for active fixation. Cardiac 

resynchronization therapy (CRT) provides improved cardiac performance and clinical 

outcome in heart failure patients with wide QRS complex. Placement of the LV lead 

in a segment remote from the region with latest mechanical activation or in a segment 

with myocardial scar is associated with high risk for non-response. The ability to 

reach the desired position, the rate of lead dislodgements, occurrence of phrenic nerve 

stimulation (PNS) and clinical outcome are affected by properties of the LV leads.  

Methods and results:  

In the first paper (Paper I) we presented the results from a prospective non-

randomized trial of 106 patient who received a CRT-device with a novel active 

fixation bipolar LV lead. The primary objectives were to assess the lead implant 

success, the degree of LV lead concordance to the pre-decided target location, 

procedure times and perioperative adverse events. The secondary objectives were to 

evaluate the long-term performance concerning lead stability, long-term pacing 

capture thresholds (PCT), occurrence of PNS and need for repositioning of the lead. 

In 103 patients, the active fixation LV lead Attain Stability model 20066/4796, 

(Medtronic, Minneapolis, MN, USA) was implanted. We showed that this novel lead 

allowed placement of the lead over a wide range of vein anatomies. The average LV 

PCT at implant was low (1.04±0.6 V), remained stable at follow-up (0.92±0.5V) and 

no late dislodgements were observed. Moreover, the lead was placed in an LV 

segment concordant to the segment with latest mechanical activation in 73 % of the 

patients and in an adjacent segment in 24 % of the patients. 

 

In a subsequent trial that is the basis for Paper II and Paper III, the objective was to 

compare the active fixation LV lead and a quadripolar passive fixation LV lead. A 

randomized and blinded trial, that included 63 patients scheduled for CRT device 

implantation, was performed and the patients were followed up for 12 months. The 
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latest contracting LV segment was identified as target segment by radial strain 

speckle-tracking echocardiography. In Paper II, we compared the electrical 

performance and the ability to achieve a stable proximal position in a coronary vein 

located concordant to the target segment. The success rate in reaching the target 

location was not significantly different between the two LV leads (p=0.69). Upon 

implantation, the quadripolar lead demonstrated a lower PCT than the bipolar lead 

(0.77±0.2V vs 1.09±0.48V, p= 0.02), but at follow-up, there was no difference. There 

were no differences in the LV lead implant times or radiation doses. The active 

fixation did not facilitate a higher grade of concordance to the target LV segment nor 

a more proximal position of the stimulating electrode. In the third article we 

compared the clinical outcome in terms of improvement of cardiac performance 

assessed by echocardiography. At follow-up, the reduction of LV end-systolic 

volume, and LV reverse remodeling responder rate, defined as LV end-systolic 

volume reduction >15 % was 77 % in the active fixation group and 84 % in the 

quadripolar group, which was not significantly different. (p=0.51). From baseline to 6 

months follows-up the LV ejection fraction (LVEF) improved significantly in both 

groups, and more in the quadripolar group, but at 12 months follows-up the LVEF did 

not differ between the two groups. There were no significant differences between the 

two groups in changes in NYHA functional class or score in Minnesota Living with 

Heart Failure Questionnaire. The occurrence of PNS was 19 % in the active fixation 

group versus 10 % in the quadripolar group (p=0.30) and was resolved in all cases by 

reprogramming the device. All patients were alive at 12 months follow-up. There was 

no device infection. 

 

Conclusion:  

This thesis demonstrates that a novel active fixation bipolar LV lead may be placed 

over wide range of vein anatomies. We were not able to prove superiority over 

quadripolar passive fixation LV leads in terms of electrophysiologic parameters, 

ability to reach target segment or clinical outcome. 
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4. Abbreviations 

ACEI  angiotensin-converting enzyme inhibitor 

ARB  angiotensin receptor blocker  

CMR  cardiovascular magnetic resonance 

CRT   cardiac resynchronization therapy 

ECG  electrocardiogram  

ESC  European Society of Cardiology 

HFmrEF heart failure with mid-range ejection fraction 

HFpEF heart failure with preserved ejection fraction 

HFrEF  heart failure with reduced ejection fraction  

ICD  implantable cardioverter defibrillator  

LAO   left anterior oblique 

LBBB  left bundle branch block 

LV  left ventricle 

LVEDd left ventricle end-diastolic diameter 

LVEF  left ventricular ejection fraction 

LVESV left ventricle end-systolic volume 

MLHFQ Minnesota Living with Heart Failure Questionnaire  

MRA  mineralocorticoid receptor antagonist 

NYHA New York Heart Association 

PNS  phrenic nerve stimulation 

Q-LV  time delay from QRS onset to left ventricular lead sensed signal 

RA  right atrium 

RV  right ventricle 

RAO  right anterior oblique 

STE  speckle tracing echocardiography 

ST-RS speckle tracking radial strain 
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5. Introduction 

 

5.1 Heart failure 

Heart failure is the clinical syndrome caused by impairment of the heart to load or 

eject blood. It is characterized by dyspnoea and fatigue. The prevalence is about 2 % 

of the entire population and due to an ageing population, the prevalence of heart 

failure has not decreased in recent decades.(1-3) Despite considerable advances in 

medical and operative treatments, the morbidity, mortality, and hospitalization rates 

in heart failure remain high.(3, 4) For patients hospitalized for heart failure, about 

20 % will die within a year of admission and five years mortality is about 50 %.(5) 

The quality of life is considerable reduced by heart failure. Risk factors as age, 

coronary heart disease, male sex, hypertension and diabetes mellitus all add risk for 

developing heart failure.  

 

The left ventricular ejection fraction (LVEF), assessed by echocardiography divides 

heart failure patients into groups with preserved ejection fraction (HFpEF), heart 

failure with mid-range ejection fraction (HFmrEF) and heart failure with reduced 

ejection fraction (HFrEF). About 50 % of the patients have preserved left ventricular 

ejection fraction and for these patients there is little evidence for prognostic benefit 

from specific heart failure medication or implantable devices as cardiac 

resynchronization therapy (CRT). In the present studies we included patients that 

despite optimal medical treatment had symptomatic HFrEF.  

 

 

Drug treatment for chronic heart failure is extensive. Angiotensin-converting enzyme 

inhibitors (ACEIs) are recommended as first-line therapy, independent of clinical 

symptoms, and are shown to reduce all-cause mortality, clinical symptoms and 

hospitalizations.(6) An angiotensin receptor blocker (ARB) is an alternative agent if 

ACEI is not tolerated.(7) Similarly, added to ACEIs, betablockers and 
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mineralocorticoid receptor antagonists (MRAs) improve survival, heart failure 

symptoms and can restore the systolic function.(8, 9) In the last decade, replacement 

of ACEI with angiotensin receptor-neprilysin inhibitor (ARNI) is shown to improve 

prognosis and to reduce heart failure hospitalization. ARNI treatment is 

recommended when patients remain symptomatic despite therapy with ACEI (or 

ARB), betablocker and MRA.(10, 11) The patients included in the present studies 

were considered optimal treated before CRT device implantation.  

 

Left bundle branch block (LBBB) occurs in about 20 % of patients with advanced 

heart failure requiring hospitalization.(12) The electrical delays and regional 

mechanical contraction delays caused by the LBBB lead to an asynchronous 

contraction pattern that has detrimental effect on systolic performance. Mortality is 

strongly related to the presense of LBBB and the QRS width.(13) However, the 

negative prognostic impact of LBBB seems to be caused by the degree of left 

ventricular dysfunction and the amount of comorbidity and less by the LBBB 

itself.(12, 14)  

5.2 Cardiac resynchronization therapy 

Cardiac resynchronization therapy has been an option in advanced treatment of 

severe heart failure since the late 1990s.(15-17) The treatment is now an essential part 

of treatment for HFrEF with electrical dyssynchrony. The first implantation of a CRT 

device in Norway took place at Department of Heart Disease, Haukeland University 

Hospital in 1999.(17) Since then, the CRT implantation rate has increased 

significantly at our department, along with clinical research and several scientific 

publications including PhD theses. (18-26) 

 

The efficacy of reducing morbidity, hospitalizations and all-cause mortality in 

patients with wide QRS complexes and depressed left ventricle (LV) systolic function 

is proven in several large randomized clinical trials of CRT.(27-30) A consistent 

improvement in quality of life, exercise capacity and NYHA functional class is also 
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confirmed.(31-33) In the CARE-HF trial, which included patients in NYHA 

functional class III and IV, the mortality was reduced by 36 %.(28) In MIRACLE 

trial 68 % of the patients had improvement of 1 NYHA functional classes.(27) 

Meta-analyses have shown benefits for CRT upon various patient characteristics.(34, 

35) In this treatment, a conventional transvenous pacemaker lead or an implantable 

cardioverter defibrillator (ICD) lead is inserted and attached to the endocardium in 

the right ventricle (RV). A second pacing lead is placed in the right atrium (RA) to 

achieve AV-synchronous ventricular pacing at a programmed AV-delay shorter than 

the spontaneous AV-delay. The LV lead is implanted by a transvenous approach. The 

coronary sinus is cannulated by a guide catheter, guided by fluoroscopy. An occlusive 

contrast venogram reveals the anatomy of the coronary sinus tributaries. In a 30-40° 

left anterior oblique (LAO) view the LV wall is divided along the short axis into 

segments; anterior, anterolateral, lateral, posterolateral and posterior. Based on the 

present anatomy and the preoperative assessment of mechanical interventricular 

delays and LV scarring, the implanter chooses which side branch to target the LV 

lead into. Venogram in a 30° right anterior oblique (RAO) view permits segmentation 

into the basal, the mid and the apical long-axis position. The lead is inserted over a 

wire, customarily supported by subselective catheters, to a position that is acceptable 

in terms of low pacing capture threshold (PCT) and absence of phrenic nerve 

stimulation (PNS) (Figure 1).  

 

The intended mechanisms of CRT are to restore intraventricular LV synchrony 

between the interventricular septum and the latest activated LV segments, as well as 

obtaining interventricular (V-V) synchronous contraction of LV and RV. Heart 

failure patients with bundle branch block often have delayed AV-nodal conduction, 

and shortening of the AV-delay by CRT can improve LV preload and cardiac 

function.(36) Functional mitral regurgitation is commonly found in severe heart 

failure with bundle branch block, and resynchronization of papillary muscle 

contraction and reduction of LV dimension by CRT reduce the mitral regurgitation in 

a considerable portion of patients.(37, 38)  
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There are several challenges with the CRT device implantation procedures and most 

of them are related to the LV lead. For some patients, the LV PCT may be high, or 

may increase after the implantation, which may cause early battery depletion. 

Occurrence of PNS, due to proximity of the stimulating electrode of the LV lead to 

the phrenic nerve, has been reported in about 1of 4 pasients receiving an LV lead.(39, 

40) This problem may be resolved by reprogramming of the device by changing 

pacing vector or lowering the output in the majority of cases. However, in some 

patients, PNS may necessitate operative intervention with revision or replacement of 

the LV lead. For an absolute minority of the patients, a surgical approach with LV 

epicardial lead implantation through a left lateral minithoracotomy is a solution.(41) 

 

 

  

 

 

 

 
 

Figure 1. Chest X-rays in posteroanterior view. A) A CRT-D device with a lead in the right 

atrium (RA), an ICD lead in right ventricle (RV) and an active fixation left ventricular lead 

in a lateral branch from coronary sinus (LV). B) CRT-P device with a conventional pacing 

lead in the right ventricle (RV) and a quadripolar passive fixation left ventricle lead in a 

posterolateral branch from coronary sinus.  

A B 

RA 

RV 

LV 
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5.3 Criteria for patient selection in CRT 

Proper patient selection is crucial in CRT. The treatment is only proven and 

recommended for patitents that have symptomatic heart failure despite optimal 

medical therapy. CRT should be offered to all patients that may have good change of 

beneficial clinical response based on scientific practice guidelines. For patients with 

no scientific indication for CRT, the device can deteriorate LV function and clinical 

symptoms. Even when CRT is given according to the current practice guidelines, 

approximately 30 % of patients do not benefit clinically, and even some of them may 

be negative responders and deteriorate.(42) Patients with female gender, non-

ischemic etiology and wide QRS complexes are more often clinical responders and 

have more improvement in echocardiographic response.(34) The European Society of 

Cardiology (ESC) updated in 2016 the heart failure treatment guidelines and the 

indication for CRT as compared to the 2013 ESC guidelines.(10) CRT is 

recommended in symptomatic heart failure (NYHA functional class II-IV), LV 

ejection fraction ≤ 35 % and QRS prolongation. (Table 1) Patients with atrial 

fibrillation are more often non-responders, and CRT is indicated only if a strategy for 

high rate of bi-ventricular capture is ensured.  

Table 1 Indications for CRT in patients with heart failure on optimal medical 

treatmen according to ESC heart failure practice guidelines. (10) 

 Class Level 

 

Patients in sinus rhythm, LVEF ≤ 35 % and symptomatic heart failure 

 

  

 

 
LBBB, QRS duration 150 ms I A 

 

 

LBBB, QRS duration 130-149 ms I B 

 

 
Non-LBBB, QRS duration 150 ms 1Ia B 

 Non-LBBB, QRS duration 130-149 IIb B 

Patients with atrial fibrillation and LVEF ≤ 35 %   

 QRS > 130 ms and NYHA III-IV IIa B 

Patients with HFrEF requiring pacemaker or ICD due to AV block I A 

Patients with QRS < 130 ms III A 
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5.4 Left ventricular pacing leads 

Transvenous LV lead placement is the standard approach for LV pacing in CRT. 

Over the last 2 decades, the LV leads have evolved from unipolar to bipolar and 

further, to quadripolar models. Compared to unipolar and bipolar leads, quadripolar 

leads provide more available pacing vectors. More pacing vectors allow more 

opportunities to achieve an acceptable PCT and avoidance of PNS. Multipolar leads 

may also promote a more optimal position of the stimulating electrode. In the early 

trial of CRT, the failure rate for LV lead placement was 8-15 %.(27, 28, 30) More 

advanced LV lead delivery systems and the change from bipolar to quadripolar leads 

have reduced the complication rate and have enhanced the implant success.(43) 

Quadripolar leads are now considered superior to passive fixation bipolar LV leads 

due to a lower rate of PNS, fewer lead dislocations and there is evidence for a better 

clinical response.(44-46) When active fixation of endocardial leads was introduced in 

the right atrium and in non-apical right-ventricular sites, the dislodgement rate 

diminished significantly, without impeding transvenous lead extraction. The fixation 

mechanism for LV lead is traditionally passive. The preshaped leads are advanced 

and wedged distally within target branch of coronary veins. Larger dimension and 

increased stiffness of the lead body enhance stability and improve PCT, but on the 

other hand, impair trackability along tortuous coronary veins. An active fixation lead 

equipped with deployable lobes, Attain Starfix (Medtronic Inc., Minneapolis, USA), 

demonstrated superb stability performance, but the fixation mechanism makes lead 

extractions very difficult.(47) Conventional pacing leads with end-helix fixation 

mechanism designed for endocardial implantation have been implanted in coronary 

veins, but this entails a high risk of peroperative bleeding and there are limited 

experience with transvenous lead extraction of this leads.(48) Stenting of a coronary 

sinus branch with bare metal stents deposited proximal to the proximal electrode to 

prevent LV lead dislocation has also been reported.(49) This method involves a risk 

of damage to the insulation that covers the LV lead, and like all this experimental 

fixation methods, there will be a future risk of difficult lead extraction procedures. 

The novel fixation mechanism with a side helix in the Attain Stability lead 
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(Medtronic Inc., Minneapolis, USA) may be a solution for this problem as the side-

helix will uncoil in response to realative low retraction force, similar to that applied 

in extraction of passive fixation LV leads. 

 

 

5.5  Targeted LV lead placement 

Non-optimal position of the LV lead is an important reason for inferior response to 

CRT, and is, in contrast to patient-related factors, potentially correctable.(50)  

Presence of LV electrical dyssynchrony is mandatory for a CRT indication in heart 

failure patients, however, the LV electrical and the mechanical activation delay in 

heart failure patients may not always covariate. The optimal placement of the LV lead 

concerning the LV segment seems to be individual.(51, 52) The goal of CRT is to 

improve the LV mechanical synchrony, and much research has been focused on 

methods for defining the latest activated LV segment for targeting the LV lead to a 

coronary vein concordant to this LV segment. Placement of the LV lead in a segment 

without transmural scar and concordant to the latest mechanically activated segment 

has shown superior response as compared to empiric LV lead placement in 

randomized clinical trials.(53-55) Echocardiographic methods, including speckle 

tracking derived strain imaging and tissue Doppler strain imaging are used to define 

target segment for placement of the LV lead. Information from speckle tracking 

echocardiography (STE) systolic strain as well as Cardiovascular Magnetic 

Resonance modalities and nuclear myocardial perfusion imaging may guide the 

implanters in avoiding areas of scarred myocardium. Additionally, the clinical 

response to CRT seems to be inferior when the LV lead stimulates from the apical 

LV segment.(56) Another approach is intraoperative mapping of the LV electrical 

activation to guide the LV lead placement to the latest electrically activated LV 

segment.(57) 
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5.6 Evaluation of clinical response  

CRT is a highly efficient therapy for heart failure on top of optimal medical therapy. 

It improves exercise capacity and quality of life in addition to reducing heart failure 

hospitalizations and overall mortality. However, the clinical response to CRT is 

difficult to predict. The challenge is that about 30 % of the patients do not respond 

favourably to this therapy.(42) The response rate is high when clinical symptoms are 

assessed, but lower when outcome analyses or strictly echocardiographic 

measurements are used for evaluation.(58) The symptomatic improvements do not 

correlate strongly with echocardiographic improvements.(59) The level of LV revers 

remodelling, defined as a reduction in LV end-systolic volume (LVESV)  15 % at 

6 months after implantation, is widely used as a definition of echocardiographic 

response and is shown to predict long term prognosis.(60-62) 
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6. Aims of the thesis 

1. To investigate a novel active fixation LV lead in terms of: 

a. Implant success 

b. Concordance of LV placement with echocardiographic assessment of 

latest mechanical activation 

c. Procedure times, radiation dosage and electrical performance 

d. Complications  

e. Follow-up results; Stability, PCT and occurrence of PNS 

 

2. To compare the active fixation LV lead with standard passive quadripolar LV 

leads with respect to: 

a. Lead placement 

b. Electrical performance 

c. Clinical outcome 
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7. Material and methods 

 
 

7.1 Patient populations 

The studies were conducted at Haukeland University Hospital, Bergen, Norway and 

Department of Clinical Science, University of Bergen, Norway. All the implantation 

and the follow-up consultations were done at Haukeland University Hospital. The 

hospital is a regional hospital for Western Norway.  

 

7.1.1 Paper I 

This study was a single-centre, prospective, non-randomized clinical trial. The 

inclusion period was from December 2013 to January 2015. Out of 156 patients 

implanted with CRT devices in this period, 106 non-consecutive patients (68 %) were 

included. All patients with challenging coronary venous anatomy assessed from 

intraoperative venography, all patients with previously implanted LV leads in need of 

revision and all patients with a recently failed implant attempt were included. The 

implantations were performed by three experienced implanters. The study was 

conducted in accordance with the regulations of the Regional Ethics Committee. All 

patients met standard criteria for CRT implantation, according to 2013 ESC 

Guidelines on cardiac pacing and CRT.  

 

Echocardiography with 2D speckle tracking radial strain (ST-RS) measurement was 

performed prior to the procedure for all de novo implantations when bundle branch 

block was present (n=71). The segment with latest mechanical activation was 

evaluated from greyscale LV-short axis images at basal-mid LV region. Segments 

with a radial strain below 10 %, indicating a high scar burden, were excluded. The 

LV leads were targeted to coronary vein concordant to the preoperative decided target 

segment.  
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In patients scheduled for upgrade procedures and with paced-only QRS complexes 

(n=18), in patients with normal QRS duration implanted before AV node ablation to 

achieve rate control in atrial fibrillation (n=7), and in those with a high-grade AV 

block and reduced LV function (n=10), the LV leads were placed in a lateral or 

posterolateral branch of the coronary sinus not guided by STE. The primary 

objectives were to assess the lead implant success, the degree of LV lead concordance 

to the pre-decided target location, procedure time and perioperative adverse events. 

The secondary objectives were to evaluate the long-term performance concerning 

lead stability, long-term PCT, occurrence of PNS and need for repositioning of the 

lead. 

 

7.1.2 Paper II-III 

 

In Paper II and III, the results from a prospective, randomized and patient-blinded 

trial are presented. The objective was to compare the active fixation LV lead and a 

quadripolar passive fixation LV lead. From February 2016 until November 2017, 62 

consecutive patients were enrolled in the trial. Inclusion criteria were symptomatic 

heart failure in NYHA functional class II or III or ambulatory class IV, LBBB with a 

QRS duration ≥120 ms or non-LBBB with a QRS duration ≥150 ms as well as LVEF 

≤35 % measured by echocardiography. The regional committee for medical and 

health research ethics approved the study (Reference 2015/1507), and written 

informed consent was obtained from all patients. The study was registrated in 

ClinicalTrials.gov, NCT04632472. The mean age of the study population was 7211 

years, and 27 % were females. The mean LVEF was 25.76 %, and the mean QRS 

duration was 163±19 ms. The average NYHA functional class was 2.7 in both patient 

groups and 95 % had LBBB. 
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The patients were randomized to receive either the Attain Stability active fixation 

bipolar lead or a quadripolar passive fixation LV lead. The LV lead was targeted to 

the basal LV segment in a vein concordant to the LV segment with latest mechanical 

contraction decided by preoperative ST-RS echocardiography. A five-segment LV 

model was used. An echocardiographic examination was done prior to implantation 

and repeated at 6- and 12-months follow-up. Clinical evaluation and 

electrophysiological measurements telemetered from the devices by a dedicated 

programmer were performed at the 2-, 6- and 12-month follow-up at the outpatient 

clinic. 

 

7.2 Echocardiographic imaging 

 

Echocardiographic examinations, including 2D ST-RS, measurements were 

performed prior to the implantation procedures. The GE Vivid E9 echo machine 

(Vingmed Ultrasound, Horten, Norway) was used for all measurements and all 

images were stored and processed offline (Echo PAC 202 GE Medical System, 

Horten, Norway). The echocardiographic examinations were repeated at follow-up 

after 6 and 12 months of CRT. The echocardiographic analyses were done blinded to 

type of LV lead. The LV volumes were calculated from apical four- and two-chamber 

images and the modified Simpson´s rule were used for calculation of LVEF.(63) The 

LV end-diastolic dimension (LVEDd) was measured from parasternal long axis view. 

For each of the parameters, at least 3 consecutive cine loops of gray scale images 

were analyzed, and a mean value computed. 

 

7.3 Speckle tracking imaging 

Speckle tracking echocardiography calculates strain by tracking speckles in grey 

scale B-mode images. The speckles in myocardium are created as interference 

patterns and acoustic reflections from scatter of the ultrasound beam by the tissue. As 

the patterns are random, each region of the myocardium has a unique speckle pattern. 
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The speckles are identified and tracked frame-by-frame by the STE software. From 

this data, the software automatically assesses deformation in different directions and 

generates strain and strain rate curves.(64) The STE is an angle independent strain 

method. Myocardial shortening is defined as negative strain values. Myocardial 

lengthening and thickening, as normally seen during contraction in parasternal short-

axis view, will give positive strain and strain rates. ST-RS echocardiography enables 

evaluation of segmental myocardial contraction.  

 

In the current studies we used ST-RS echocardiography as a preoperative method to 

define the LV segment with latest mechanical activation. This was done in order to 

intraoperatively target the LV lead to a coronary vein positioned concordant to that 

segment. ST-RS echocardiography from 2D images in a mid-LV parasternal short-

axis view with a frame rate ≥ 70 Hz were recorded. The start of the contraction was 

defined by the onset of Q-wave on the surface electrocardiogram (ECG) 

simultaneously recorded. The region of interest (ROI) was manually defined for each 

contraction and included the endocardial and epicardial borders. The program divides 

the echocardiographic images into 6 equal color-coded LV segments and time-strain 

curves were generated for the different LV segments; septal, anteroseptal, anterior, 

lateral, posterior and inferior (Figure 2). From these curves, the LV segmental 

contraction and intraventricular LV dyssynchrony could be assessed.(26) The LV 

segments with a strain rate < 10 % were excluded because this finding was 

considered to indicate a high level of transmural scarring.(65, 66) The time-delay 

from the anteroseptal segment to the posterior segment was defined as the antero-

septal (AS-P) delay. The times from Q-wave onset on the electrocardiogram to the 

maximal radial strain in the anterior, lateral and posterior LV segments were 

calculated as an average of 5 representative consecutive cardiac cycles. The latest 

contracting LV segment of these 3 segments could then be defined. If the latest 

contraction of two of these LV segments was separated by ≤ 10 ms, the LV segment 

located between them was assigned the latest one. Based on this model, 5 LV 

segments could be determined as the segment with latest contraction; the anterior, the 

anterolateral, the lateral, the posterolateral or the posterior segment. The LV segments 
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next to the target segment were classified as adjacent LV segments, and other 

segments were classified as remote LV segments.(26) 

 

 

Figure 1 Echocardiographic imaging in parasternal short-axis view. The left ventricle (LV) is 

divided into 6 equal colour coded segments. The right-hand picture demonstrates radial strain time 

curves. The septal LV segment (yellow dots and line) has early mechanical activation. The lateral LV 

segment (green) and the posterior LV segment (purple) demonstrate late and almost simultaneous 

timed mechanical activation which is significantly delayed compared to that of the anterior segment 

(blue). Since the mechanical activation of the lateral and the posterior LV segment are separated by 

less than 10 ms, the posterolateral segment between them is selected as target LV segment for 

placement of the LV lead (10). AVC=aortic valve closure 

 

 

Cardiovascular magnetic resonance late gadolinium enhancement, nuclear 

scintigraphy and STE studies have demonstrated that myocardial scarring in the 

proximity of the stimulating LV electrode leads to a suboptimal response to CRT.(66-

68) A cut-off value of < 10 % for ST-RS was chosen based on trials demonstrating 

lower CRT response rate when ST-RS below 9.8 % (66) and is also used in other 

trials for targeted LV lead placement.(26, 53, 54) 
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7.4 LV lead characteristics  

The active fixation lead is a soft polyurethane insulated bipolar lead (Attain Stability 

model 20066/4796, Medtronic Inc., Minneapolis, MN, USA). The lead body is 3.9 

French (Fr) proximal and 3.4 Fr distal (figure 3). The electrode separation is 21 mm 

and both electrodes are steroid eluting. Proximal to the ring electrode is a small 

exposed side helix that enables fixation of the lead to the vein wall by rotating the 

lead body clockwise. A stop at the base of the helix prevents over-torqueing and 

entrapment of the venous wall tissue. Longitudinal movements of the lead without 

rotation do not engage the screw. The lead can be loosened by rotating the lead body 

counterclockwise if repositioning is needed. The helix is also constructed to loosen 

from the vein wall by uncoiling the helix with increasing retraction force during a 

lead extraction procedure. 

 
Figure 3 A) The 4Fr dual-electrode lead with distal angled shape has an exposed side helix for 

active fixation located proximal to the proximal electrode. The surface area of both the proximal 

electrode and tip electrode is 5.8 mm2. The electrode separation is 21.0 mm and both electrodes are 

steroid eluting. (B) Demonstrates a close-up view of the exposed side helix. 

 
 

 

 

In Paper II and III we compared the active fixation LV lead with a quadripolar lead. 

We used the quadripolar lead Attain Performa (Medtronic Inc., Minneapolis, MN, 

USA), which is a polyurethane insulated lead with a proximal diameter of 5.3 Fr and 

a distal diameter 3.9 Fr. (Figure 4) All four electrodes are steroid eluting. The 
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operators were free to choose from three different shapes: a dual bend lead, an S-

curved lead and a straight lead with small tines. The dual bend lead was used in 19 

patients (63 %), the S-shaped in 10 of the patients (33 %) and the straight lead in one 

patient (3 %).  

 
 

Figure 4 The quadripolar leads: An S-shaped lead, a straight lead with tines and a dual bend lead. 

The distances between the electrodes are 21 mm (LV1-LV2), 1.3 mm (LV2-LV3) and 21 mm (LV3-

LV4). The maximum lead body diameter is 5.3 Fr. 

 

 

 

7.5 CRT implantation procedure 

The CRT implantation procedures were in the first trial (Paper I) performed by three 

experienced implanters and in the last trial (Paper II and III) by two implanters. All 

procedures were done under local anaesthesia. For venous access, the cephalic vein 

cut-down technique, the axillary vein puncture or subclavian puncture were used 

according to the operators´ preferences. Fluoroscopic imaging was performed in 

anteroposterior, LAO 30-40 view and RAO 30 view (figure 5,6 and 7).  
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Figure 5. Right anterior oblique fluoroscopic views of two patients with an active fixation 

bipolar lead (A + B) and passive fixation quadripolar lead (C+D). On the coronary sinus 

(CS) venograms (A+C) the arrows indicate the target veins in lateral side branches from CS. 

The target vein is located in the target left ventricular segment determined from speckle 

tracking echocardiography. B: The final lead placement of an active fixation bipolar lead. 

The helix (H) is fixated proximal in the vein. The proximal electrode (PE) is located in a 

basal third left ventricular long-axis position and is used as the stimulating cathodal 

electrode. The distal electrode (DE) is in the mid third left ventricular long-axis segment. 

The high voltage right ventricular defibrillator lead (DL) is located close to the apex of the 

right ventricle. D: The final lead placement of a quadripolar lead. The distal end (LV1) is 

wedged into a small side branch. The proximal electrode (LV4) is used as the stimulating 

cathodal electrode. 

 

The RA lead was placed in the RA appendage. The RV lead was by default placed in 

the apex of the RV as a standard and only in cases with unacceptable 

electrophysiological measurements the lead was moved to another location, 

preferably to a mid-septum location.  
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For LV lead implantation, the coronary sinus was cannulated by a guide catheter 

guided by fluoroscopy in anteroposterior and LAO views. Occlusive contrast 

venograms were recorded in a 30-40° LAO view and in a 30° RAO view. A selective 

venogram in a 30° RAO view was performed for the accurate measurement of the LV 

long-axis distance, which was divided into three equal segments: basal, middle and 

apical. From the venogram in the LAO view, the LV was divided into 5 equal 

segments that corresponded to the 5 segmental divisions (anterior, anterolateral, 

lateral, posterolateral and posterior) acquired in the preoperative ST-RS 

echocardiographic assessments. The rationale for this, is that the LAO fluoroscopic 

image approximates to the short-axis parasternal echocardiographic view. 

Considerable effort was made to achieve an LV lead position in a vein located in the 

target segment with the latest mechanical contraction. If there was no available vein 

in that segment, a vein located as close as possible was selected for lead placement. 

(Figure 5). 

 

Figure 6. Coronary sinus venogram from a study patient in left anterior oblique 

(LAO) view showing the short axis segmental division. An active fixation bipolar lead 

is implanted in the lateral LV segment.  
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The LV leads were delivered using the over-the wire technique, a sub-selection 

catheter was used when required. A long-axis position for the stimulating electrode as 

close as possible to the coronary sinus entry was preferred. The measurements of 

PCT and the occurrence of PNS were recorded before fixation of the active fixation 

leads. For the active fixation lead, a J-shaped stylet was inserted to apply a lateral 

force on the helix towards the vein wall. The lead was then fixated to the vein wall by 

clockwise rotation. The lead fixation was verified by pushing and pulling the lead 

during observation of longitudinal movement using fluoroscopic imaging. If 

repositioning of the lead was required, counterclockwise rotation was performed to 

release the lead helix from the vein wall. The final PCT, R-wave, pacing impedance, 

and electrical delays (Q-LVsense, RVsense-LVsense and RVpace-LVsense) were 

recorded from a pacemaker system analyzer (Model 2090, Medtronic, Minneapolis. 

MN, USA) before removing the supporting catheters.  

 

The leads were connected to a CRT-defibrillator (CRT-D) or a CRT-pacemaker 

(CRT-P) generator. In the trial presented in Paper I we used generators form 3 

different vendors according to our routines. Fifty-two % of the patients received a 

CRT-D and 48 % a CRT-P. In the studies presented in Paper II and III a CRT-D 

(Medtronic, Minneapolis, MN, USA) was implanted in 66 % of the patients and a 

CRT-P (Abbot, Lake Bluff IL, USA) in 34 % of the patients.  

 

 

 

 

7.6 Lead position and vein size assessment 

The final position of the LV lead was in all studies determined by off-line evaluation 

of stored fluoroscopic images from the CRT implant procedure. The lead was 

classified as either anterior, anterolateral, lateral, posterolateral or posterior in the 

LAO view. The LV lead placements were categorized as concordant when the 
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location of the stimulating electrode was in target segment, adjacent when within 1 

segment or remote when located ≥2 segments from the target segment. The long-axis 

lead position was decided from the RAO view by measuring the distances from 

coronary sinus to the programmed active LV electrode, to the proximal electrode and 

to the distal electrode (figure 7). The distance from CS to the programmed active 

electrode calculated as percentage of the total distance from CS to LV apex was also 

recorded to account for individual differences in absolute LV long-axis dimension. 

Finally, we recorded the vein size diameter at the different electrode locations and at 

the helix of the active fixation LV lead. 

 

 

 

 

 

 

 

 

Figure 7. Coronary sinus venogram from a study patient. The right anterior oblique (RAO) view allows 

long-axis segmentation of the LV into the basal, the midventricular (Mid) and apical region.CS = 

coronary sinus 
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7.7 Device programming 

For patients in the trial presented in Paper I, the devices were programmed according 

to guidelines and the department's routines. The devices for patients in the trial 

presented in Paper II and III were programmed as follows: Atrioventricular (AV) and 

interventricular delays were adjusted by an automatic algorithm (adaptive CRT, 

Medtronic, Minnesota Inc, MN, USA) for patients with a CRT-D generator. For 

patients with both normal AV delay and right bundle conduction, the device 

algorithm selected single LV pacing synchronized to the intrinsic RV conduction. 

The CRT-P devices (all from Abbot, Lake Bluff IL, USA) were programmed without 

any LV off-set, and the sensed-AV-time was programmed to 120 ms. Pacing mode 

was DDD, lower rate of 50 pulses per minute for those with no sinus node 

dysfunction. The selected pacing configurations for the active fixation bipolar leads 

were true bipolar, integrated bipolar LV-tip to RV-coil/RV-ring or LV-ring to RV-

coil/RV-ring. For the quadripolar leads, the preferred configuration was bipolar L3-

L2, integrated bipolar LV1 to the RV coil/RV ring, LV3 to the RV coil/RV ring or 

LV4 to the RV coil/RV ring. A limited number of configurations for the quadripolar 

leads was necessary for an accurate assessment of the location of the stimulating 

electrode in the LV long-axis view.  

 

 

7.8 Electrophysiological measurements 

In the studies presented in Paper II and III, the PCTs, R-waves and LV lead 

impedances were measured at baseline and at the 2-, 6- and 12-month follow-up 

periods. The occurrence of PNS and the PNS thresholds were recorded at 

implantation and at follow-up. The PCTs and impedance measurements acquired 

from the device postoperatively and not the measurements from the pacemaker 

system analyzer were used as baseline in the statistical analyses. The LV R-wave was 

measured by the pacemaker system analyzer. The RVsense-LVsense was determined 
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perioperatively after fixation of the LV lead. RVs-LVs was measured as the interlead 

sensed time-delay (ms) between the bipolar sensed signal from the RV lead to the 

electrode chosen as the active electrode on the LV lead. Similarly, the RVpaced-

LVsense time delay (ms) was measured from the paced RV signal to the sensed LV 

signal. The Q-LV was measured from the onset of Q wave on the surface ECG to the 

sensed signal on the active electrode on the LV lead.  

7.9 Perioperative registrations 

The total procedure time (skin to skin), the LV lead implant time, the fluoroscopy 

time, the fluoroscopy doses, the number of veins attempted, and number of fixations 

attempts for the active fixation lead were recorded. The LV lead implant time was 

measured from the start of LV lead insertion and included advancement of the lead to 

the target site, fixation attempts, repositioning to other locations, electrophysiological 

measurements, and removal of supporting catheters. 

 

7.10 Statistical methods 

 

Statistical analyses were performed using IBM SPSS Statistics for Windows, version 

24.0 (IBM Corp., Armonk, NY, USA). To evaluate the normality of continuous 

variables, we used histograms and Q-Q plots. Continuous variables are expressed as 

the mean ± the standard deviation. Categorical variables are presented as frequencies 

and percentages. Groups were compared by using paired-sample t-tests and 

independent-sample t-tests for continuous variables. Pearson’s chi squared test was 

used for ordinal categorical variables, and the Fisher’s exact test was used for 

nominal categorical variables. A p-value of ≤ 0.05 was considered statistically 

significant. In the studies in paper II and III, the data were analyzed according to the 

intention-to treat principle. For sample size calculation in Paper III, we estimated a 

30 % absolute difference in response rate. Powered at 80 % and with a 1-sided alpha 

value of 0.05, assuming no loss at follow-up, 56 patients were required for the 
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analyses. For sample size calculation for Paper II, descriptive data from the study 

presented in paper I were used to predict values and standard deviations. A 20 % 

difference in the proportion of concordant LV lead placement, fluoroscopic distances, 

lead impedance measurements and PCTs were estimated. Powered at 80 %, with a 2-

sided alpha value of 0.05 to detect differences, 26, 50, 66, 82 patients were required 

for the different analyses, respectively. The study was not powered to detect 

significant differences in infrequent events as lead dislocations. Univariate and 

multivariate linear regression analyses were performed to estimate the eventual effect 

on reverse remodelling, defined as a  15 % change in end-systolic volume at the 6-

month follow-up. 

 

 



 35 

8. Summary of results 

8.1 Paper I 

Active fixation of a thin transvenous left-ventricular lead by a side helix 

facilitates targeted and stable placement in cardiac resynchronization therapy 

 

In the prospective non-randomized single-center study, 106 patients scheduled for 

CRT-device implantation were included. The primary objectives were to assess the 

lead implant success, the degree of LV lead concordance to a pre-decided target 

location, procedure time and perioperative adverse events for a novel transvenous LV 

lead with an active side helix fixation. The secondary objectives were to evaluate the 

long-term performance concerning lead stability, long-term PCT, occurrence of PNS 

and need for repositioning of the lead.   

In 103 of the 106 patients, the active fixation LV lead was implanted. The LV leads 

were implanted over a wide range of vein anatomies. In the three patients with 

unsuccessful active fixation LV lead implantation, a stiffer passive fixation lead was 

implanted. The LV leads were targeted to a location in a pre-decided LV target 

segment based on preoperative ST-RS echocardiography. A position concordant to 

the target LV segment was achieved in 73 % of the patients and a position in a 

segment adjacent to the target segment in 24 %. Thus, in only 3 % (n=2) of the 

patients the final lead position was in a remote segment. Two patients had early lead 

dislodgement (< 24 hours), no late dislodgements were observed. One patient was 

reoperated after 11 months, due to PNS. Two patients had their leads and device 

explanted due to a pocket infection after 26 days and 141 days, respectively. A new 

device with the same LV was reimplanted after appropriate antibiotic treatment. 

 

 

The mean number of fixation attempts was 1.3 per patient, and the LV lead was 

fixated in the first rotation attempt in 79 % of the patients. The lead was repositioned 

in 26 % of the patients. The average vein size was 6.7±1.5 Fr at the lead tip and 

7.6±1.2 at the helix. No correlation was found between the number of rotating 
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attempts and the vein size at helix or vein size at lead tip, nor between vein sizes and 

number of lead repositioning. 

 

The total procedure time was 98±38 min, LV lead implant time was 17±15 min and 

the fluoroscopy time 20±14 min. The average LV PCT at implant was 1.04±0.6 V. At 

latest follow-up of average 7.1 months (1 months to 15 months), the average PCT 

remained low and stable at 0.92±0.5 V (n = 95). 

 

8.2 Paper II 

 

Performance of an active fixation bipolar left ventricular lead versus passive 

fixation quadripolar leads in cardiac resynchronization therapy, a randomized 

trial 

 

We included 62 patients who were randomly assigned to receive either an active 

fixation bipolar lead or a quadripolar passive fixation LV lead. The electrical 

performance, perioperative measurements and the ability to achieve a stable proximal 

position in a coronary vein located concordant to target segment were compared.  

 

Initial successful implantation was obtained in 31 patients (100 %) and 30 patients 

(97 %) in the active fixation bipolar group and the quadripolar group, respectively. In 

3 patients, LV lead dislodgement occurred, all in the active fixation group. There 

were no differences in total procedure time (77±22 minutes vs 76±21 minutes, 

p=0.82), LV lead implantation time (13±11 minutes vs 12±12 minutes, p=0.75), or 

fluoroscopy doses (329±236 vs 319±426, p=0.85).  

 

A position in a concordant or adjacent LV segment, was achieved in the majority of 

the patients (87 % vs 83 %) with no statistically significant differences between the 

patient groups (p=0.69). The proximal electrode of the quadripolar LV lead was 

closer to the coronary sinus than that of the active fixation LV lead (19±15 mm vs 

32±10 mm, p=0.00). However, there were no differences in the proximity of the 
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stimulating electrode to the coronary sinus, neither in absolute values (51±9 mm vs 

53±13 mm p=0.51), nor in distance as a percentage of the distance from the CS to the 

apex (36±11 % vs 33±12 % p=0.26). The vein diameter at the location of the active 

electrode was comparable (7.3±3 French vs 8.3±3 French, p=0.20). The PCTs 

recorded at implantation and at the 2-, 6- and 12-month FU are shown in figure 8. 

 

 

 

Figure 8 Pacing capture threshold (PCT) at the final selected pacing configurations for the 

quadripolar passive fixation lead (blue) and for the bipolar active fixation lead (green). The 

error bars indicate the 95 % confidence intervals. The PCT was significantly lower (p=0.02) 

at implantation but not at follow-up. 

 

 

A PCT < 2.5 V/0.4 ms at implantation was achieved in 100 % of patients in both 

groups. At the 12-month follow-up, a PCT < 2.5 V/0.4 ms was recorded for 93 % of 

patients in both groups. The PCT for the proximal electrode was significantly higher 

for the quadripolar lead than that of the active fixation lead (2.83V versus 1.31 V, 

p=0.003). The LV lead pacing impedances were significantly higher for the active 
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fixation LV leads compared to the quadripolar leads at implantation (539±159 Ohm 

vs 414±94 Ohm, p=0.00) and follow-up (at 12 months follow-up 545±143 Ohm vs 

433±97 Ohm, p=0.04). The measurements reflecting electrical dyssynchony did not 

differ: Q-LVsense 155±30 ms vs 154±35 ms (p=0.88), RVsense- LVsense 101±26 

ms vs 97±36 ms (p=0.67) and RVpace- LVsense 142±27 ms vs 143±31 (p=0.94).  

 

 

8.3 Paper III 

Clinical outcome of cardiac resynchronization therapy in patients randomized to 

an active fixation bipolar left ventricular lead versus a passive quadripolar lead 

 

In this study we compared the clinical outcome of CRT in 62 patients receiving a 

bipolar LV lead with a side helix for active fixation to the outcome in patients 

receiving a quadripolar LV lead with passive fixation. The LV leads were targeted to 

the basal LV segment in a vein concordant to the LV segment with the latest 

mechanical contraction chosen on the basis of preoperative radial strain 

echocardiography and the patient population was identical to to that in Paper II.  

 

At the 6-month follow-up, the reduction in LV end-systolic volume was significant 

(mean reduction 35 ml, p<0.001), but the difference between the patients with active 

fixation leads and patients with quadripolar leads was not significant (p=0.47; Table 

2) A reduction in the end-systolic volume ≥15 % at the 6-month follow-up was found 

in 77 % and 84 % of the patients with active fixation leads and quadripolar leads, 

respectively (p=0.51). 
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Table 2 Echocardiographic response 
 

Active fixation lead 

(n=31) 

Quadripolar lead 

(n=30) 
P-

value 
LV end-systolic volume reduction from baseline to the 

6-month FU (%) 
21.816 24.714 0.47 

Responder patients with LV end-systolic volume 

reduction > 15 % from baseline to the 6-month FU  

24 (77) 25 (83) 0.51 

LV end-diastolic volume reduction from baseline to 

the 6-month FU (%) 
14.922 14.616 0.95 

LV ejection fraction at the 6-month FU (%) 32.67 36.8±6 0.01 

LV ejection fraction at the 12-month FU (%) 35.69.7 36.77.1 0.64 

LV end-diastolic diameter at baseline (mm) 64.47.7 62.77.6 0.39 

LV end-diastolic diameter reduction from baseline to 

the 6-month FU (mm) 
5.24.8 3.86.2 0.34 

FU=follow-up; LV = left ventricle 

 

Both groups of patients experienced a significant improvement in NYHA functional 

status from baseline to follow-up, but with no significant differences between the 

groups. Quality of life assessment according to the Minnesota Living with Heart 

Failure Questionnaire (MLHFQ) demonstrated significant improvement at follow-up 

in both groups of patients, but with no significant differences between the two patient 

groups (Table 3). 

 

Table 3 Quality of life assessment 

 
 Active fixation group 

(n=31) 

Quadripolar group  

(N=30) 

p-value* 

 

NYHA functional class 

 

   

 

 

Baseline 2.7±0.6 2.7±0.5 0.87 

 

 

6-month follow-up 1.8±0.7 2.0±0.6 0.24 

 

 

12-month follow-up 1.9±0.7 1.8±0.5 0.79 

Improvement ≥1 class from baseline to the 

6-month follow-up (n (%)) 

 

24 (77) 

 

19 (63) 

 

0.29                      

MLFHQ    

 Baseline 3720 4121 0.49 

 6-month follow-up 2015 2714 0.11 

 12-month follow-up 2215 2317 0.76 

MLHFQ=Minnesota Living with Heart Failure Questionnaire; NYHA= New York Heart Association. 
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Six patients (19 %) in the patient group with active fixation leads experienced PNS 

during the study period, compared with only 3 patients (10 %) in the quadripolar 

group (p=0.47). All cases of PNS were resolved by reprogramming the devices. 

There was no device infection, and all patients were alive at the 12-month follow-up. 

 

Concordant LV lead position, the final LV segment, QRS duration, Q-LV delay, RV 

to LV interlead sensed delay and RV-paced to LV-sensed delay did not predict 

significant LV reverse remodelling inn univariate and multivariate linear regression 

analyses.  
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9. Discussion 

This thesis shows that the active fixation bipolar LV lead with a side helix represents 

an alternative to standard passive fixation LV leads. The thesis adds the following to 

current knowledge: 1) The level of implant success is high and targeted placement is 

feasible 2) The implantation procedure is safe 3) The occurrence of late lead 

dislodgements is low. 4) The active fixation mechanism does not extend the 

implantation time or cause more radiation. 5) The clinical outcome of CRT in terms 

of improvements of symptoms and LV reverse remodelling measured by 

echocardiography are equal for the active fixation bipolar lead and passive fixation 

quadripolar lead.  

 

9.1 Study design 

The first study (Paper I) was a prospective, non-randomized clinical trial. The 

prospective, rather than a retrospective, design allowed high accuracy of data 

collection. We had no loss to follow-up. An evaluation of implant success would 

have been problematic with a retrospective design. The active fixation LV lead was 

novel and not tested in a larger population at the time of patient inclusion. No control 

group was tested in this study and therefor it was not possible to decide if the lead is 

superior compared to other LV leads. A design without control group was chosen to 

include as many patients as possible over a short time as our center is not a high-

volume center. Including patients consecutively strengthens the study and reduces the 

risk of selection bias. The patients were not included consecutively. There were 

shorter brakes in the inclusions due to lack of operators who were familiar with the 

new LV lead and/or the study protocol. However, 106 out of 156 patients receiving a 

CRT device in that period were included, and further, all cases judged to represent 

potensially challenging procedures were included in the trial.  

 

In the subsequent studies presented in Papers II and III a randomized and patient-

blinded design was selected for proper comparison of the novel active fixation bipolar 
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LV leads to passive fixation quadripolar LV leads. In recent years, quadripolar LV 

leads have become the preferred LV leads for most operators due to better stability 

and easier avoidance of area with high PCT or PNS. In addition, the leads provide 

more reprogramming possibilities postoperatively. Consequently, the quadripolar 

passive fixation lead was chosen for the control group and not a bipolar passive 

fixation lead.  

9.2 Study population 

In the study presented in paper I, all patients scheduled for implantation of an LV 

lead were eligible for inclusion. That included patients with systolic heart failure and 

acute AV-block, upgrade procedures and biventricular pacemaker ahead of AV-node 

ablation. This trial did not evaluate the clinical response to CRT, but exclusively 

evaluated the handling, performance and safety of the lead. When comparing the lead 

with another lead and also evaluating the clinical response of CRT in the next study 

(paper II and III), a much more uniform patient population was required. Therefore, 

we included only patients with symptomatic systolic heart failure, intrinsic rhythm 

and wide QRS. The recommendations of the ESC guidelines were followed strictly. 

The patient population was comparable with other clinical CRT trial, but the mean 

age was higher than in most large trials. The mean age in our study was 72±11 years, 

and 26 % were > 80 years old. In comparison, COMPANION, CARE-HF and 

MADIT-CRT had an average age of 65-67 years, and in these early large CRT trials 

only a small portion of the patients were octogenarians.(28-30) There is evidence 

supporting that elderly patients have an equal improvements as younger patients in 

symptomatic and echocardiographic response with similar procedural complication 

rates.(69, 70) The vast majority of our patients had LBBB (94 %) and 76 % of the 

patients had QRS width > 150 ms, both characteristics are related to high probability 

of favourable clinical response to CRT.(71, 72)  
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9.3 Position of the LV lead 

In our trials ST-RS echocardiography was used to define the LV segment with latest 

mechanical activation and the LV lead was targeted to that segment. However, there 

are different approaches to define the most optimal position for the LV lead, and 

there are still conflicting data and unclear recommendations in current guidelines for 

which method to use. Traditionally, the LV lead is placed empirically in a lateral, 

posterlateral or posterior coronary vein with no preprocedural or intraprocedural 

evaluation of LV regional mechanical or electrical delay to guide lead placement. As 

opposed to this conventional anatomical LV lead placement, targeted LV lead 

placement means that the LV lead will be aimed to the latest activated LV segment. 

This may be defined as the LV segment with latest mechanical activation or the 

segment with latest electrical activation. Finally, an approach that secures LV lead 

location away from transmural myocardial scars is recommended. 

9.3.1 Empirical LV lead placement 

In the multicentre studies that initially approved the advantage of CRT, there were no 

guidelines for placement the LV lead. Some studies have shown that an anterior 

versus non-anterior LV lead position was independently associated with an increased 

likelihood of non-response to CRT.(73, 74) However, in the COMPANION trial the 

mortality benefit in CRT-D patients was found to be indifferent to LV lead 

position.(75) In the MADIT-CRT trial the lateral/posterior location and the anterior 

locations were similarly associated with risk of heart failure or death, although 

posterior/lateral LV leads showed the greatest improvement in LV reverse 

remodelling.(76) The best LV pacing site seems to be individual and in an acute 

hemodynamic trial it is found to be in another position than a lateral position in a 

considerable part of the patients.(51, 52) According to the analyses of randomized 

trials, such as MADIT-CRT and REVERSE there are strong evidences for avoiding 

an apical LV position, as LV pacing from an apical site is associated with less 

favourable outcomes and high risk of PNS.(56, 77, 78) Due to this knowledge, our 

studies evaluated the ability of the leads to attain a long-axis-position as far as 

possible from the LV apex. It was found that the novel active fixation lead and 



 44 

standard passive fixation quadripolar leads had equal success rate for proximal long-

axis placement with acceptable electrophysiological measurements.  

 

9.3.2 Latest mechanical activation 

Targeting the latest mechanically activated, non-scarred, LV segment have 

demonstrated superior response compared with empirical LV lead placement. It is 

still questionable which method is best for detecting the last activated LV segment. In 

our studies ST-RS echocardiography was used as a preoperative method to define the 

LV segment with latest mechanical activation. Our centre has used this method as a 

routine for several years, and published data showing that patients achieving an LV 

lead position concordant with the target segment guided by ST-RS echocardiography 

demonstrate favorable improvement in reverse remodelling.(25) The same method 

has been used in randomized trials, showing superior response compared with 

empirical LV lead placement.(53-55). Several other echocardiographic methods have 

been tested in order to identify mechanical dyssynchrony. M-mode, pulsed Doppler 

and tissue Doppler have shown mixed results and low reproducibility.(79) 

Occurrence of septal flash and apical rocking are shown to predict response and also 

mortality.(80) Correspondingly, systolic stretch index in the septum and lateral wall 

and left ventricular work asymmetry are as well identified as good predictors for 

response.(81-83) However, these methods have so far not been widely established for 

guiding of the optimal position for the LV lead. Cardiovascular Magnetic Resonance 

(CMR) imaging gives accurate information about location and degree of myocardial 

scar, and preprocedural imaging for guiding subsequent LV lead placement has 

proven to be beneficial (67). However, the precise translation of data from CMR view 

to routine fluoroscopic imaging view is demanding.(84) Both CMR and myocardial 

perfusion imaging are costly, time-consuming and may require involvement of other 

medical specialties. Speckle tracking echocardiography has emerged as a robust 

method to assess the segmental myocardial deformation. The method is less angel 

dependent than tissue Doppler in assessment of strain, although high-resolution 

image quality is mandatory as well as offline image processing. The ST-RS 

echocardiography may also be combined with cardiac computed tomography 
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venography and nuclear myocardial perfusion imaging.(55) The preoperative 

examination using ST-RS echocardiography is time consuming, but feasible. In all 

patients attending our studies (Paper I, II and III) preoperative ST-RS 

echocardiographic examinations were done in our department without practical 

difficulties. In the first study (Paper I) the image quality was not acceptable for one 

patient (out of 71 patients), so in that case, the lateral segment was selected as the 

target segment. For the 62 patients in paper II and III, the image quality was judged 

as acceptable for all patients. Due to few patients with target LV segment in the strict 

anterior and strict posterior segment, the anterior and anterolateral groups were 

merged together in the presentations in Paper I. The target position was determined to 

be in a lateral segment in 61 %, a posterior/posterolateral segment in 28 % and 

anterior/anterolateral segment in 10 % of the patients. A concordant LV lead position 

was achieved in 73 % of the patients. In the subsequent study (Papers 2 and 3), the 

data are presented in a five-segment model. The locations of the targeted LV 

segments were anterior (10 %), anterolateral (11 %), lateral (44 %), posterolateral 

(30 %) and posterior (5 %). When using a model with more segments, it is more 

challenging to reach the target segment. The final LV lead position was defined as 

being in a remote segment (not target segment, neither an adjacent segment) in only 

15 % of the patient, with no differences with respect to lead type (p=0.69). The trend 

was that the quadripolar leads more often were placed in the concordant segment 

(63 % vs 39 %, p= 0.06), and equivalently the active fixation leads were more often 

placed in a segment adjacent to the target segment (48 % vs 20 %, p=0.02). The study 

did not prove that the thinner active fixation bipolar lead more often could be placed 

in a concordant position than the passive fixation thicker quadripolar lead. In the 

randomized TARGET and STARTER trials, both the LV leads that were concordant 

or in an adjacent segment demonstrated significantly better clinical outcomes than in 

patients with remote lead placement.(53, 54, 85-87) This suggests that it is clinically 

most important to avoid a remote placement of the LV lead rather than to reach a 

small sweet LV spot.  
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9.3.3 Latest electrical activation 

Wide QRS complexes are a surrogate for long ventricular electrical delays and 

narrowing of the QRS width during CRT are related with better clinical outcome.(88) 

Further, pacing the LV in a region with late electrical activation are associated with 

favorable clinical outcome and LV reverse remodelling.(89, 90) A long inter-lead 

electrical delay (RVsense-LVsense) is also associated with favorable CRT response, 

even when the LV leads were targeted to the latest mechanical activated segment (24, 

91-93). In our trials the Q-LV delay was measured as well as the RVsense-LVsense 

delay and the RVpace-LVsense delay. Univariate and multivariate linear regression 

analyses were done to estimate the potential effect of Q-LV delay, RVsense-LVsense 

delay and RVpaced-LVsensed delay on LV reverse remodelling. Reverse remodelling 

was defined as a  15 % change in end-systolic volume at the 6-month follow-up. 

None of the tested parameters predicted statistically significant LV reverse 

remodelling. An explanation for this may be the small sample size studied.  

 

9.3.4 Assessment of LV scarring 

LV transmural myocardial scarring is associated with lack of clinical response to 

CRT, and placement in an area with viable mycardium improves response.(67, 94, 

95) Late gadolinium enhancement CMR is regared as the gold standard for 

assessment of myocardial scar, but also nuclear imaging are commonly utilized and 

unlike CMR, nuclear imaging has no contraindication in the cases with implanted 

CMR-non-conditional electrical devices. Both CMR and nuclear imaging are 

resource demanding. In our studies, we used low-amplitude ST-RS echocardiography 

as a surrogate measure of myocardial scar to prevent LV lead location in an area with 

transmural scarring. This method is used in other randomized trials for targeted LV 

lead placement (26, 53, 54). It does not cause extra radiation to the patients and 

severe kidney failure is not a contraindication. A strong negative correlation is 

confirmed between maximal ST-RS values and demonstration of transmural scare 

tissue by CMR imaging.(96) The sensitivity of radial strain < 10 % for identifying a 

segment with transmural scar has been calculated to 77 %.(97) In the patient 
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population presented in Paper II and III, 10 out of 62 patients (16 %) had ≥1 segment 

with radial strain less than 10 %. For 8 of those 10 patients, the low-strain segments 

were not the latest activated segments, therefore, excluding low segment with low 

strain resulted in selection of an alternate target segment for the LV lead in only two 

patients. 

 

9.4 Electrical performance of the active fixation lead 

In the study presented in Paper I the average PCT at implantation was 

1.04±0.6V@0.58±0.2 ms. At latest follow-up of average 7.1 months the PCT was 

0.92±0.5 V. In the study presented in Paper II, the average PCT for the active fixation 

group was very similar (1.09±0.48@0.4ms). Low PCT is essential to reduce the 

chance of loss of LV pacing capture, appearance of PNS and for extending the 

service time of the implanted device. As important as a low average PCT is 

avoidance of cases with high PCT. In the second study (Paper II) a PCT < 2.5 V/0.4 

ms at implantation was achieved in 100 % of patients, and a PCT < 2.5 V/0.4 ms was 

recorded for 93 % of the patients in both groups at 12-month FU. In this study the 

main objective was a clinical comparison of the novel active fixation lead and passive 

fixation quadripolar leads (Medtronic Attain Performa family of leads). The 

performance of the quadripolar Attain Performa leads were investigated in a large 

clinical trail, and showed that the average PCT was very similar to that found in 

Paper II.(98, 99) We hypothesized that the novel active fixation lead should improve 

the PCT compared to standard passive fixation quadripolar leads, as the helix may 

provide more pressure of the pacing electrodes toward the vein wall and myocardium. 

At baseline, on the contrary, the PCT was lower for quadripolar lead (0.77±0.25 vs 

1.09±0.48, p=0.02) and at follow-up the PCT was similar. Furthermore, the pacing 

impedance was significantly higher (approximately 20 %) in the active fixation group 

than in the quadripolar group and that may cause a moderate increase in battery 

longevity compared to devices with quadripolar LV leads. These findings are 

consistent with retrospective comparative studies that found that active fixation 

bipolar lead was noninferior to quadripolar leads.(100, 101) Use of quadripolar leads 
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have reduced the problem with PNS compared to bipolar leads, and a concern was 

potentially more occurrence of PNS in patients with the novel bipolar active fiation 

lead. In the randomized study (Paper II) more cases (6 vs 3, p=0.31) with occurrence 

of PNS were found in the bipolar lead group compared to the quadripolar lead group, 

but in all cases in both groups, the PNS was resolved by reprogramming the devices. 

Incessant PNS is strongly correlated to pacing distally in the LV long-axis segment, 

and therefore it was strongly endeavored for a proximal LV lead position in the 

studies. In the study presented in Paper I, one patient with a passive fixation LV lead 

implanted 11 months ago, experienced unacceptable PNS at very low output. The 

lead was replaced by an active fixation bipolar lead with a more proximal position in 

the same coronary vein. However, the PNS symptoms reappeared and 39 days later 

the lead was explanted and replaced by a quadripolar LV lead. In that case, the 

patient would have benefit from a quadripolar lead from the beginning. 

9.5 Fixation methods for left ventricular leads 

The rate of LV lead dislodgement has declined in recent past due to change from 

uni/bipolar lead to quadripolar lead, new LV lead designs and developments in the 

implantation tools.(43) Today, the implanters may choose from a variety of passive 

fixation LV leads with different shape, stiffness, thickness, electrode location and 

length. The active fixation mechanism was developed to prevent LV lead 

dislodgement. The idea is that the thin and flexible active fixation LV lead, made in 

just one variant, can be maneuvered in many different and challenging coronary vein 

anatomies to be fixated in the desired location by its side-helix and with reduced risk 

of dislodgement. This should eliminate the need of wedging the tip electrode to a 

distal and undesired location in the coronary vein, in order to reduce the risk of lead 

dislodgement. The study in paper I confirmed that the implantation procedure is safe 

and that the lead may be targeted into a wide ranch of vein anatomies and with 

electrical performance comparable to that of traditional passive fixation leads. Out of 

106 patients, a stable position was not achieved in 3 patients, and two patients had 

LV lead dislodgement the following hours after implantation. No late LV lead 
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dislodgement was observed at follow-up. In the subsequent study (Paper II), we 

experienced three dislodgement, and one was discovered after the patient left the 

hospital. In comparison, there was no dislodgement in the control group with the 

passive fixation quadripolar lead. The study was not powered to show differences in the 

rate of lead dislodgment, but it shows that the principle of active fixation for LV lead 

does not eliminate the problem with lead dislodgement. In the Italian multicenter 

study that included 261 patients with active fixation bipolar leads, a dislocation rate 

of 1.43/100 patients was reported.(100) A quadripolar active fixation lead was not 

available when we performed our studies, but has later become an option. The Attain 

Stability Quad Clinical Study reports about a 0.7 % dislodgment rate that is certainly 

lower than in trials with passive fixation leads.(102) Apparently, the advantage of 

being quadripolar balances much of the advantages of the active fixation. An 

important issue in the randomized trial was to assess whether use of the fixation 

mechanism extended the LV lead implant times or was associated with higher 

radiation doses. No significant differences were found in these parameters when 

comparing the active fixation lead with the quadripolar leads.  

 

There is a concern about the extractability of active fixation LV lead. The active 

fixation LV lead Attain Starfix (Medtronic Inc., Minneapolis, USA) was equipped 

with deployable lobes and lead extraction procedures have been particularly 

challenging.(103, 104) Contrary to side lobes of the lead, the side-fixation screw in 

Attain Stability is constructed to uncoil in response to retraction force above a certain 

limit. There is a theoretical assumption that the lead may be extracted with forces 

similar to that applied for passive fixation leads. In the study presented in paper I, we 

explanted four leads, after being in situ for 3 days, 26 days, 39 days, and 141 days 

without difficulties or complications. So far, only case-reports about lead extraction 

of more chronically implanted leads in humans are published.(105) Thus the data on 

extraction safety are limited and this must be taken into account when choosing an 

active fixation LV lead. 
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9.6 Clinical outcome 

In the study presented in Paper III, we evaluated the clinical response to CRT and 

compared the outcome for patient with implanted active fixation bipolar leads and 

patients with quadripolar passive fixation leads. For quality of life assessment, we 

used MLHFQ which is one of the most widely used health-related quality of life 

questionnaires for patients with heart failure.(106, 107) For the entire group, the 

MLHFQ demonstrated significant improvement (39 points at baseline and 22 points 

at 12-month follow-up), but there were no significant differences between the two 

patient groups (22 vs 23 points, p=0.76). Correspondingly, the improvement in 

NYHA functional class was considerable with average NYHA function class 2.7 at 

baseline for all patients, 1.9 at 6-month FU, and 1.8 at 12-month follow-up, but with 

no significant differences between two patient groups (p=0.79). Improvement of ≥1 

NYHA functional class from baseline to the 6-month FU was achieved in 77 % of the 

patients with active fixation leads and 63 % of the patients with quadripolar leads 

(p=0.29). The improvement in functional class is similar or better to what has been 

found in other CRT trials.(108) A limitation in our study is that the person that 

assessed the NYHA functional class was not blinded to which treatment group the 

patients belonged to.  

 

9.7 Echocardiographic response 

In the study reported in paper III, we compared the echocardiographic response to 

CRT for the active fixation leads and passive fixation quadripolar leads. The use of 

active fixation bipolar leads was not associated with improved echocardiographic 

response compared to regular passive fixation quadripolar leads. Measurement of LV 

volumes at baseline and at 6 months FU demonstrated a significant reduction in 

LVESV (mean reduction 35 ml, p<0,001). However, the difference between the 

patients with active fixation leads and patients with quadripolar leads was not 

significant (p=0.47). LV reverse remodeling, defined as a reduction in the LVESV 

≥15 % at the 6-month follow-up, was obtained in 77 % and 84 % of the patients with 
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active fixation leads and quadripolar leads, respectively (p=0.51). Further, there were 

no significant differences between the two patient groups for changes in LV end-

diastolic volume or LVEDd from baseline to the 6-month follow-up. The LVEF 

improved more in the quadriopolar group as compared to the active fixation group at 

6-months follow-up, but this difference was not significant at 12-month follow-up. 

Assuming that the constructural features of the LV lead may have an impact on the 

echocardiographic response, this should be enhanced by attaining a more 

advantageous position of the stimulating electrode. We hypothesized that the thinner 

lead body of the active fixation lead to a greater extent would facilitate lead 

placement in the target LV segment and thus optimize LV resynchronization. 

However, the study (Paper II) did not show any significant differences regarding the 

degree of reaching the target lead placement, so the finding of similar 

echocardiographic and clinical response in the two patient groups was not 

unexpected.  
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10. Limitation 

The studies presented in this thesis are single-centre studies with a limited number of 

included patients. All procedures were performed by a small number of implanters. 

The extension of the validity of these results to other centres and implanters is 

uncertain. A longer observation period could have augmented the clinical benefit and 

the diversity of the lead types could be better distinguished. Long-term safety of the 

active fixation lead and the extractability of chronically implanted active fixation 

leads in humans are so far not reported. A wide range of quadripolar leads are 

available for the implanters of CRT devices. The quadripolar leads used in the control 

group were from the same manufacturer, and thus the results could have been 

different if comparison with other types of quadripolar leads had been studied.  
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11. Conclusion 

1. The bipolar active fixation LV lead allows placement in targeted coronary vein 

segments over a wide range of vein anatomies with a low complication rate, 

satisfactory intraoperative handling and electrophysological performance.  

 
2. Comparing the active fixation LV lead and standard passive fixation 

quadripolar LV lead demonstrated: 

a. Placement of the LV lead concordant to the segment with latest 

mechanical activation based on preoperative ST-RS echocardiography 

is achievable in an equal proportion of patients.  
b. The active fixation lead does not extend the implantation procedure 

time or elevates the radiation doses.  

c. The active fixation lead does not facilitate a more proximal position of 

the active electrode 

d. The clinical and echocardiographic response are similar. A similar high 
proportion of patients demonstrates reverse LV remodelling.  
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12. Futher perspective 

 

The present thesis investigated an active fixation bipolar LV lead and the impact of 

LV lead types on the clinical efficacy of CRT. There have been numerous technical 

innovations in the delivery systems and LV lead designs in the last decades. A 

quadripolar active fixation LV lead is now available. This method and other design 

innovations may promote further decline in rate of lead dislodgement and unsuccesful 

implantation. Despite the heterogeneity of quadripolar LV leads, there will still be 

patients with short target veins, not suitable for leads with long distances between the 

electrodes, and in such patients, bipolar leads may still be preffered. Imaging 

modalities for proper patient selection and achieving optimal targeted LV lead 

position are constantly evolving. In the future, new multimodality techniques for 

defining target LV segment and assessing LV scarring may be found superior 

compared to standard ST-RS echocardiography.  

 

Biventricular pacing with leads in coronary veins is challenged by new methods for 

resynchronization. Techiques for endocardial LV pacing may be developed to 

overcome the issues of thromboembolism and the increased risk during lead 

extraction. His-bundle pacing is now a promising supplement to biventricular 

pacing.(109-111) However, there are concerns about long term PCT and sensing of 

low amplitude R-waves.(112) Left bundle branch area pacing by implantation of a 

lead deep in the right ventricle basal septum to capture the left bundle branch can also 

be an alternate method to biventricular pacing or His-bundle pacing.(113) However, 

stimulation of the LV by suitable leads in coronary vein tributary is a proven and 

effective treatment that may still be the preferred method for achieving safe CRT for 

many years to come.  
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1  | INTRODUC TION

Cardiac resynchronization therapy (CRT) reduces heart failure 
symptoms and improves clinical outcomes in selected patients with 

broad QRS complex.1,2 This treatment has proven beneficial, with a 
reduction in the mortality and hospitalization rates when combined 
with medical therapy. However, a significant fraction of patients do 
not experience improvements in symptoms or cardiac function.3 A 
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Abstract
Background: Usage of active fixation bipolar left ventricular (LV) leads represents an 
alternative approach to the more commonly used passive fixation quadripolar leads 
in cardiac resynchronization therapy (CRT). We compared a bipolar LV lead with a 
side screw for active fixation and passive fixation quadripolar LV leads.
Methods: Sixty-two patients were before CRT implantations randomly allocated to 
receive a bipolar (n = 31) or quadripolar (n = 31) LV leads. Speckle-tracking radial 
strain echocardiography was used to define the LV segment with latest mechanical 
activation as the target LV segment. The electrophysiological measurements and the 
capability to obtain a proximal position in a coronary vein placed over the target seg-
ment were assessed.
Results: Upon implantation, the quadripolar lead demonstrated a lower pacing cap-
ture threshold than the bipolar lead, but at follow-up, there was no difference. There 
were no differences in the LV lead implant times or radiation doses. The success rate 
in reaching the target location was not significantly different between the two LV 
leads.
Conclusions: The pacing capture thresholds were low, with no significant difference 
between active fixation bipolar leads and quadripolar leads. Active fixation leads did 
not promote a more proximal location of the stimulating electrode or a higher grade 
of concordance to the target segment than passive fixation leads.
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nonoptimal position of the left ventricular (LV) lead is a major reason 
for an inferior response to CRT.4,5 Placement of the LV lead in a seg-
ment remote from the region with the latest mechanical activation 
or in a segment with a myocardial scar predicts a high risk for non-
response. Echocardiographic speckle-tracking two-dimensional (2D) 
radial strain imaging has the ability to identify the LV segment with 
the latest mechanical activation. LV lead implantation guided by this 
robust echocardiographic method has been shown to augment the 
clinical outcomes of CRT compared with those of unguided LV lead 
placement.6,7 The optimal location for LV pacing may be different 
from the best position for lead stability and may be compromised to 
achieve a stable lead position with a low risk of lead dislodgement. 
Available quadripolar LV leads provide multiple options of different 
pacing vector and are particularly useful for eliminating postopera-
tive phrenic nerve stimulation (PNS) by reprogramming lead config-
uration.8,9 Active fixation mechanisms of LV leads facilitate stable 
lead positions in a wide range of venous anatomies.10 The aim of the 
current study was to compare a bipolar LV lead with a side helix for 
active fixation and a quadripolar LV lead with passive fixation re-
garding the electrophysiological performance, the stability, and the 
ability to reach the target position.

2  | METHODS

2.1 | Study design

In this prospective, randomized, single-center trial, patients with 
symptomatic heart failure and an indication for CRT implantation in 
accordance with current guidelines were included. The study was 
approved by the regional committee for medical and health research 
ethics (Reference 2015/1507), and all patients gave their written in-
formed consent. The patients were blinded and randomly assigned 
to receive either an active fixation lead or a quadripolar passive fix-
ation lead. For patients randomized to receive a quadripolar lead, 
the operators were free to choose between three different shapes. 
Prior to randomization, the patients were stratified into two cohorts 
based on whether they received a CRT device either with a defibril-
lator (CRT-D) or without a defibrillator (CRT-P). The decision of im-
planting a CRT-D or a CRT-P was done individually based on etiology 
of the heart failure and the patient's comorbidity.

2.2 | Patient population

Between February 2016 and November 2017, 62 patients were in-
cluded and randomized. The inclusion criteria, which were based on 
current guidelines, were symptomatic heart failure; New York Heart 
Association (NYHA) functional class II or III or ambulant class IV; LV 
ejection fraction ≤35%; and left bundle branch block (LBBB) with a 
QRS duration ≥120 ms or non-LBBB with a QRS duration ≥150 ms The 
baseline clinical characteristics and comorbidities of the patients are 
described in Table 1. No significant differences were found between 

the two patient groups with respect to sex, QRS duration, LV ejection 
fraction, NYHA functional class, medication, and comorbidities. The 
average NYHA functional class was 2.7 in both patient groups.

2.3 | Echocardiographic imaging

The LV ejection fraction was measured by echocardiography using 
the biplane modified Simpson's method (GE Vivid E9, Vingmed 
Ultrasound, Horten, Norway). Transthoracic echocardiography 
with 2D speckle-tracking radial strain (ST-RS) measurements of the 
LV was performed prior to the implantation procedures. All images 
were processed offline (EchoPac 202 GE Medical System, Horten, 
Norway). Intraventricular LV dyssynchrony was determinated using 
ST-RS echocardiography from 2D images in a mid-LV parasternal 
short-axis view with a frame rate ≥50 Hz. Time-strain curves were 
computed for the different LV segments. Left ventricular segments 
with a strain rate <10% were excluded because this finding was 
considered to indicate a high level of transmural scarring.11,12 The 
time from Q-wave onset on the electrocardiogram to the maximal 
radial strain in the anterior, lateral, and posterior LV segments was 

TA B L E  1  Baseline characteristics

Active fixated 
lead
(n = 31)

Quadripolar 
lead
(n = 30)

P-
value

Female sex, n (%) 11 (35) 6 (20) .18

Age, years 71.5 ± 13 72.2 ± 10 .82

Left ventricular 
ejection fraction, %

24.4 ± 6 27.0 ± 5 .07

Left bundle branch 
block, n (%)

29 (94) 29 (94) .58

QRS duration, ms 165 ± 19 162 ± 18 .56

PR time, ms 193 ± 32 191 ± 29 .79

NYHA II, n (%) 11 (35) 11 (37) .93

NYHA III or IV, n (%) 20 (65) 19 (63) .93

Ischemic 
cardiomyopathy, 
n (%)

17 (55) 20 (67) .35

Hypertension, n (%) 16 (52) 15 (50) .90

Diabetes, n (%) 5 (16) 9 (30) .20

Permanent atrial 
fibrillation, n (%)

4 (13) 6 (20) .46

Paroxysmal atrial 
fibrillation, n (%)

7 (23) 10 (33) .36

Smoker, n (%) 2 (6) 4 (13) .38

ACE inhibitors, n (%) 31 (100) 30 (100) 1.00

Betablockers, n (%) 29 (94) 30 (100) .16

Aldosterone 
inhibitors, n (%)

11 (35) 12 (40) .72

Diuretics, n (%) 17 (55) 19 (63) .51

CRT-D, n (%) 20 (65) 20 (67) .86
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calculated as an average of five consecutive cardiac cycles. The lat-
est contracting LV segments were identified for the anterior, lateral, 
and posterior LV segments. If the latest contraction of two of the 
LV segments was separated by ≤10 ms, the LV segment located 
between them was assigned the latest one. Based on this model, 5 
LV segments were defined; thus, the target LV segment for LV lead 
placement could be identified as the anterior, anterolateral, lateral, 
posterolateral, or posterior segment. The LV segments next to the 
target segment were classified as adjacent LV segments, and other 
segments were classified as remote LV segments.13

2.4 | Cardiac resynchronization therapy device 
implantation

The devices were implanted under local anesthesia. The right atrial 
(RA) lead was fixated in the appendage of the right atrium, and the 
right ventricular (RV) lead in the apex of the right ventricle. Occlusive 
contrast venography was performed in a 30-40° left anterior 
oblique (LAO) view and in a 30° right anterior oblique (RAO) view 
once the coronary sinus (CS) was cannulated. A selective venogram 
in a 30° RAO view was performed for the accurate measurement of 
the LV long-axis distance, which was divided into three equal seg-
ments: basal, middle, and apical (Figure 1). From the venogram in the 
LAO view, the left ventricle was divided into five equal segments 
(Figure 1) that corresponded to the five segmental divisions acquired 
in the preoperative ST-RS echocardiographic measurement. Thus, 
the target segment for the LV pacing lead was also located on the 
venogram in the LAO view. Substantial effort was made to achieve 
an LV lead position in a vein located in the target segment with the 
latest contraction. If there was no available vein in that segment, a 
vein located as close as possible was selected for lead placement.

The LV leads were delivered using the over-the-wire technique 
with standard coronary sinus cannulation catheters and a subselection 
catheter when required. As basal as possible of an LV long-axis posi-
tion for the stimulating electrode was preferred. The measurements 
of the pacing capture threshold (PCT) and the occurrence of phrenic 
nerve stimulation (PNS) were recorded. For the active fixation lead, a 
J-shaped stylet was inserted to press the helix toward the vessel wall. 
The lead was then fastened by clockwise rotation. The lead fixation 
was verified by pushing and pulling the lead during observation of lead 

movement using fluoroscopic imaging. If repositioning of the lead was 
needed, counterclockwise rotation was performed to free the lead 
helix from the vein wall. The R-wave, pacing impedance, and electri-
cal delays as well as the Q-LVsense, RVsense-LVsense, and RVpace-
LVsense were recorded from a pacemaker system analyzer (Model 
2090, Medtronic, Minneapolis. MN, USA) before removing the cathe-
ters. The leads were connected to a CRT-D or a CRT-P generator. The 
devices used were CRT defibrillators (CRT-D, Medtronic, Minneapolis, 
MN, USA) in 66% of the patients and CRT pacemakers (CRT-P, Abbot, 
Lake Bluff IL, USA) in 34% of the patients.

2.5 | Lead characteristics

The active fixation lead was a soft bipolar steroid-eluting lead (Attain 
Stability model 20066/4796, Medtronic Inc, Minneapolis, MN, 
USA). The lead body was 3.9 French (Fr) proximal and 3.4 Fr distal 

F I G U R E  1  Location and number of selected stimulating 
electrodes in different left ventricular segments in the active 
fixation lead group and in the quadripolar lead group

F I G U R E  2  Right anterior oblique fluoroscopic views of two 
patients with an active fixation bipolar lead (A + B) and passive 
fixation quadripolar lead (C + D). On the coronary sinus (CS) 
venograms (A + C) the arrows indicate the target veins in lateral 
side branches from CS. The target vein is located in the target 
left ventricular segment determined from speckle tracking 
echocardiography. B: The final lead placement of an active fixation 
bipolar lead. The helix (H) is fixated proximal in the vein. The 
proximal electrode (PE) is located in a basal third left ventricular 
long-axis position, and is used as the stimulating cathodal electrode. 
The distal electrode (DE) is in the mid third left ventricular long-axis 
segment. The high voltage right ventricular defibrillator lead (DL) 
is located close to the apex of the right ventricle. D: The final lead 
placement of a quadripolar lead. The distal end (LV1) is wedged 
into a small side branch. The proximal electrode (LV4) is used as 
the stimulating cathodal electrode
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(Figures 2 and 3). The electrode separation was 21 mm. Proximal to 
the ring electrode was a side screw. Longitudinal movements of the 
lead without torqueing did not engage the screw. The screw was also 
designed to elongate along the length of the lead body and to detach 
it from the vein wall when the traction force was increased to ap-
proximately 0.11 kilograms. The quadripolar leads (Figures 2 and 3), 
which were attained from the same vendor, had a diameter of 5.3 Fr 
proximal and 3.9 Fr distal. A dual bend lead, an S-shaped lead and a 
straight lead with tines were available. The dual bend lead was used 
in 19 patients (63%), the S-shaped lead in 10 of the patients (33%) 
and the straight lead in one patient (3%).

2.6 | Programming the device

Atrioventricular (AV) and interventricular adjustments were based 
on an automatic algorithm (adaptive CRT, Medtronic, Minnesota Inc, 
MN, USA) for patients with a CRT-D generator. The CRT-P devices 
were programmed without any LV off-set, and the sensed-AV-time 
was programmed to 120 ms The pacing modus was DDD, lower rate 
of 50 pulses per minute for those with no sinus node dysfunction. The 
active fixation bipolar leads were configured as bipolar, LV tip to RV-
coil/RV ring or LV ring to RV coil/RV ring. For the quadripolar leads, 
the preferred configuration was bipolar L3-L2, integrated bipolar LV1 
to the RV coil/RV ring, LV3 to the RV coil/RV ring, or LV4 to the RV 
coil/RV ring. A limited number of configurations for the quadripolar 
lead were selected for an accurate assessment of the location of the 
stimulating electrode in the LV long-axis view. The final LV lead posi-
tion was evaluated. The PCT, R-wave, and LV lead impedance were 
measured at the 2-, 6- and 12 month follow-up (FU) periods.

2.7 | Statistical analysis

Analyses were conducted according to the intention-to-treat con-
cept. Statistical analysis was performed by IBM SPSS Statistics for 

Windows, version 24.0 (IBM Corp., Armonk, NY, USA). Continuous 
variables are presented as the mean ± SD. Categorical variables are 
shown as frequencies and percentages. Differences were determined 
using Student's t-tests for continuous variables, the chi-square test 
for ordinal variables, or Fisher'exact test for categorical variables. We 
used histograms and Q-Q plots to evaluate the normality of the con-
tinuous variables. A P-value of < .05 was considered statistically signif-
icant. For sample size calculation, a 20% difference in the proportion 
of concordant LV lead placement, fluoroscopic distances, lead imped-
ance measurements, and PCTs were estimated. Descriptive data from 
a previous active fixation lead study (10) were used to predict values 
and standard deviations. Powered at 80%, with a two-sided alpha 
value of 0.05 to detect differences, about 60 patients were required 
for the different analyses. The study was not powered to compute sig-
nificant differences in infrequent events as lead dislocations.

3  | RESULTS

Initial successful implantation was obtained in 31 patients (100%) 
and 30 patients (97%) in the active fixation bipolar group and the 
quadripolar group, respectively. In 1 patient, the quadripolar lead 
dislodged repeatedly during implantation, and this could not be 
avoided by switching to the bipolar active fixation lead. Finally, an 
alternate thicker bipolar LV lead was implanted successfully. In three 
patients, LV lead dislodgement occurred, all in the active fixation 
group. For two of these three patients, the LV lead dislodged some 
hours after implantation, and the third instance of dislocation was 
recognized after 2 months. In all three patients, the same lead was 
repositioned successfully to the same coronary vein. We compared 
the size of target veins (Table 2). There was no difference in vein size 
at the active electrode or at the distal electrode. The average vein 
dimension at the proximal electrode was larger at the qauadripolar 
lead, corresponding with a more proximal position. During FU, there 
were no additional instances of reoperation, and there were no cases 
of device infection. All patients were alive the 12 month FU. Table 2 
summarizes the characteristics of the 62 implantation procedures. 
The locations of the targeted LV segments were anterior (10%), an-
terolateral (11%), lateral (44%), posterolateral (30%), and posterior 
(5%). The distribution of the locations of the selected stimulating 
electrodes for each LV lead is shown in Figure 1. The target LV lead 
placement, which was defined as a position in a concordant or adja-
cent LV segment, was achieved in the majority of the patients with 
no statistically significant differences between the patient groups 
(Table 3). For both LV lead groups, the selected active electrodes 
were stimulating the LV from a position close to the distal part of the 
basal segments in majority of the patients. The proximal electrode of 
the quadripolar LV lead was closer to the CS than that of the active 
fixation LV lead. However, there was no statistically significant dif-
ference between the active fixation group and the quadripolar group 
concerning the proximity of the stimulating electrode to the coro-
nary sinus, neither in absolute values nor in distance as a percentage 
of the distance from the CS to the apex.

F I G U R E  3  A, The bipolar lead with distal angled shape has an 
exposed side screw for fixation located 15 mm proximal to the 
proximal electrode. The electrode separation is 21.0 mm. The 
maximum lead body diameter is 3.9 Fr. B, Demonstrates a close 
range view of the exposed side screw. C, The quadripolar leads: An 
S-shaped lead, a straight lead with tines and a dual bend lead. The 
distances between the electrodes are 21 mm (LV1-LV2), 1.3 mm 
(LV2-LV3), and 21 mm (LV3-LV4). The maximum lead body diameter is 
5.3 Fr A + B: Photo by the author. C: Photo from the manufacturer

(A)

(B)
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The electrical performance was recorded at implantation and at 
the 2-, 6- and 12 month FU periods (Table 4). For the final selected 
pacing configurations, the mean PCT for the active fixation lead was 
higher at implantation but was not significantly different at FU. A 
PCT < 2.5 V/0.4 ms at implantation was achieved in 100% of patients 

in both groups. At the 12 month FU, a PCT < 2.5 V/0.4 ms was re-
corded for 93% of patients in both groups. The PCT for the proximal 
electrode was significantly higher for the quadripolar lead than for the 
active fixation lead (2.83 V vs 1.31 V; P = .003). For the quadripolar 
lead, the PCT at the proximal electrode was ≥ 3.5 V for 10 patients 
(33%); however, for the active fixation lead, the PCT was ≥ 3.5 V only 
for two patients (6%). At the 12 month FU, nine patients (16%) had 

Active fixated lead
(n = 31)

Quadripolar lead
(n = 30) P-value

Number of veins attempted, 
n

1.1 ± 0.52 1.29 ± 0.40 .26

Number of fixation attempts, 
n

1.7 ± 1.5 Not relevant

Total LV lead implantation 
time, min

13.2 ± 11 12.2 ± 12 .75

Total procedure time, min 77 ± 22 76 ± 21 .82

Fluoroscopy time, min 15 ± 7 15 ± 10 .68

Fluoroscopy doses, mGY 
(mGym2)

329 ± 236 
(3.0 ± 2.1)

319 ± 426 (3.2 ± 4.3) .91 (0.85)

Note: Total LV lead implantation time was measured from the start of LV lead insertion and 
included advancement of the lead to the target site, fixation attempts, repositioning to other 
locations, electrophysiological measurements, and removal of supporting catheters.

TA B L E  2  Characteristics of the 
implantation procedures

TA B L E  3  Left ventricular lead positions

Active fixated 
lead (n = 31)

Quadripolar 
lead (n = 30)

P 
value

Lead in the 
concordant segment, 
n (%)

12 (39) 19 (63) .06

Lead in an adjacent 
segment, n (%)

15 (48) 6 (20) .02

Lead in a concordant 
or adjacent segment, 
n (%)

27 (87) 25 (83) .69

Lead in a remote 
segment n (%)

4 (13) 5 (17) .69

Distance from CS to 
proximal electrode, 
mm

32 ± 10 19 ± 15 .00

Distance from CS to 
distal electrode, mm

51 ± 9 53 ± 13 .51

Distance from CS to 
active electrode, mm

38 ± 10 35 ± 13 .36

Distance from CS 
to active electrode 
as percentage of 
distance from CS to 
apex, %

36 ± 11 33 ± 12 .26

Vein size at proximal 
electrode, Fr

8.1 ± 3.0 10.8 ± 6.2 .04

Vein size at distal 
electrode, Fr

6.2 ± 2.7 5.3 ± 2.3 .20

Vein size at active 
electrode, Fr

7.3 ± 2.9 8.3 ± 3.2 .20

Abbreviation: CS, coronary sinus.

TA B L E  4  Electrical performance at the selected configurations

Active fixated 
lead
(n = 31)

Quadripolar lead
(n = 30)

P-
value

PCT at 
implantation, 
V@0.4 ms

1.09 ± 0.48 0.77 ± 0.25 .02

PCT at the 2 month 
FU, V@0.4 ms

1.23 ± 0.77 1.00 ± 0.62 .21

PCT at the 6 month 
FU, V@0.4 ms

1.16 ± 0.76 1.02 ± 0.74 .46

PCT at the 
12 month FU, 
V@0.4 ms

1.23 ± 0.75 1.03 ± 0.86 .35

LV lead impedance 
at implantation, 
Ohm

539 ± 159 414 ± 94 .00

LV lead impedance 
at 6 months

561 ± 156 443 ± 96 .01

LV lead impedance 
at 12 months

545 ± 142 433 ± 97 .04

R wave, mV 17 ± 8 13 ± 8 .03

Q-LV sense, ms 155 ± 30 154 ± 35 .88

RVsense- LVsense, 
ms

101 ± 26 97 ± 36 .67

RVpace- LVsense, 
ms

142 ± 27 143 ± 31 .94

Abbreviations: PCT, pacing capture threshold; FU, follow-up; LV, left 
ventricle; RV, right ventricle; Q-LV sense, interval from QRS onset to 
first peak of the LV electrogram.
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at one time or another after discharge from the hospital experienced 
some kind of discomfort from PNS. Six of those patients (19%) were 
in the active fixation group, and three (10%) were in the quadripolar 
group. In all cases, the PNS was resolved by reprogramming the device.

4  | DISCUSSION

Implanters of CRT devices are concerned about the acute and chronic 
lead stability. Much effort has been devoted to developing leads that 
provide stability and a low PCT, but that have preserved trackability 
along tortuous veins. LV leads have evolved from unipolar to bipo-
lar and, further, to quadripolar models. Compared to bipolar leads, 
quadripolar leads provide more available pacing vectors and less 
PNS. Quadripolar leads have been associated with better clinical re-
sponse and lower mortality, based on retrospective analyses.9,14 In 
these trials, the LV leads were placed empirical and not targeted, and 
the final LV lead positions were not assessed. Consequently, it is not 
possible to conclude if the clinical superiority of quadripolar lead is 
a consequence of being quadripolar with multiple options for pacing 
configurations, or if it is because of implantation issues and the final 
position of the active electrode. According to the subgroup analyses 
of randomized trials, such as MADIT-CRT and REVERSE, LV pacing 
from an apical site is associated with less favorable outcomes and 
high PNS.4,15 However, operators may be tempted to sacrifice a non-
apical position to achieve a stable position and low PCT by wedging 
the lead in a small apical branch. The optimal long-axis LV lead posi-
tion is debatable, and the future may show that the optimal long axis 
position occurs on an individual basis. A nonrandomized multicenter 
trial that compared active fixation LV leads with quadripolar LV leads 
reported noninferior clinical outcomes for the active fixation leads.16 
Our trial is the only randomized clinical trial comparing active fixa-
tion LV leads with quadripolar LV leads. At implantation, the PCT 
was lower in the quadripolar group than in the active fixation group, 
but the difference decreased later, and there were no significant dif-
ferences at the 6- and 12 month FUs. The pacing impedance was 
significantly higher (approximately 20%) in the active fixation group 
than in the quadripolar group and may lead to a moderate increase 
in battery longevity compared to devices with quadripolar LV leads.

Our hypothesis was that in large veins, an active fixation bipolar 
LV lead will enable a more proximal position of the stimulating elec-
trode compared to a quadripolar lead. We aimed to achieve a position 
of the stimulating LV lead electrode as far from the apex as possible. 
Nevertheless, we did not find any significant difference between 
the two types of LV leads concerning the proximity of the ultimately 
selected stimulating electrode to the coronary sinus. Thus, the active 
fixation lead did not promote a more basal placement of the stimu-
lating electrode. An explanation for this may be that in many cases of 
quadripolar leads, it was possible to wedge the lead tip in an early side 
branch to stabilize the stimulation electrode in a basal LV segment. 
Furthermore, the electrically inactive helix of the active fixation bipo-
lar lead was placed proximal to the proximal electrode, thus prohibiting 
placement of the proximal electrodes in the vein close to the coronary 

sinus. The PCT for the proximal electrode was significantly higher for 
the quadripolar lead than for the active fixation lead (2.84 vs 1.42 V). 
This may be because of the lower amount of pressure toward the wall 
for the passive leads than for the active fixation leads in the proximal 
vein segment. On the contrary, the PCTs for the distal electrodes were 
lower for the quadripolar leads at implantation. An explanation for this 
may be that the S-shape or dual bend shape and the larger body diame-
ter of the quadripolar lead may cause more tension toward the vein wall 
than that of the distal end of the active fixation lead. Quadripolar leads 
with active fixation were not available when the current trial was per-
formed, but later, a quadripolar active fixation lead with a similar helix 
for fixation was approved (Medtronic lead model 4798). In this quad-
ripolar version, the fixation mechanism is located between electrodes 3 
and 4, which may potentially improve the lead stability and reduce the 
PCT for the most proximal electrodes, even in large coronary veins. The 
LV lead dislodgement rate is low in recent trials with quadripolar leads, 
and in the Performa Trial, a dislodgement rate of 1.4% was reported.17 
In the current trial, which was not powered to show differences in the 
rate of lead dislodgement, there were no dislodgements of the quad-
ripolar leads; however, in the active fixation group, two postoperative 
dislodgments and one late dislodgment occurred. These three patients 
were retrospectively evaluated. One patient had a large-diameter coro-
nary vein (16.5 Fr at the point of helix fixation) and needed four fixation 
attempts at the primary operation. The other 2 patients with LV lead 
dislodgement showed no unusual vein-anatomy and only one fixation 
attempt was needed initially. The present trial did not prove that adding 
an active fixation mechanism to bipolar lead makes them more stable 
than passive fixation quadripolar leads. The new location of the fixation 
helix between electrodes 3 and 4 in the Medtronic lead model 4798 may 
potentially further augment the stability of the active fixation lead.18 
There is an obvious concern about the extractability of active fixation 
LV lead. Unlike the leads with side lobes of the lead, the Attain Stability 
is fixated with a side helix constructed to uncoil in response to retractive 
force. However, the data on extraction safety are limited and this must 
be taken into account when choosing an LV lead.

In this randomized trial, comparing an active fixation bipolar lead 
and quadripolar passive fixation leads, no important differences in 
implantation variables or long-term electrical performance were 
found. Furthermore, there were no differences in the ability to 
reach a proximal concordant or adjacent LV segment for targeted 
LV stimulation.

4.1 | Study limitations

The study was a single-center study with a relatively small sample 
size. Therefore, the extension of the validity of these results to 
other centers and implanters is not possible. The clinical findings, as 
changes in NYHA classification or echocardiographic response, were 
not compared in the present study.
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