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Abstract

Shoaling of ocean waves is studied numerically using a low-dimensional non-
linear shoaling model coupled with Monte-Carlo simulations based on the statistical
description of ocean waves and wave spectra. It is found that while non-linearity
has a minor effect on the wave height, it has a major effect on the shape of the wave.
In fact, in shallow water, the instantaneous surface elevation can be described using
a Gram-Charlier distribution rather than a Gaussian distribution which is typical
of waves in deep water. The positivity conditions of the Gram-Charlier expansion
are enforced in a grid search to estimate the parameters of the distribution in a way
that ensure a positive-definite distribution. The results are in line with field studies
of coastal waves, such as the ARSLOE project [16]. An estimate of the wave spectra
in shallow water is also presented for non-linear shoaling waves and results showed
a slight shift in the peak frequency in favour of a lower frequency when considering
shallow water sea states.
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Notation

The following notations will be used throughout this thesis unless stated otherwise.

Underscored letters (η): Random variables
Bold letters (u): Vectors
∇: Gradient vector
O: Big O notation
δmn: Kronecker-delta function

Abbreviations

ODE - Ordinary differential equation
PDF - Probability density function
CDF - Cumulative distribution function
SWH - Significant wave height
GC - Gram-Charlier
MLE - Maximum likelihood estimation
MC - Monte Carlo
P-M - Pierson-Moskowitz
LHS - Left hand side
RHS - Right hand side
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Chapter 1

Introduction

1.1 Introduction

Various properties of wind-generated waves in coastal regions are significantly
different from those in deep water regions. The differences are largely due to the
influence of bathymetry, which is more pronounced in shallower water.

In general, deep water waves are considered a Gaussian random process with
only minor discrepancies between the observed and theoretical probability density
functions. The deviations from the Gaussian model are exhibited by that fact that
high crests are observed more frequently than deep troughs [13]. In shallow water,
these deviations are more pronounced due to the relative importance of non-linearity
in these waves. Indeed irregularities in bathymetry, changes in wave height and
wave steepness as the mean water depth decreases towards the shore affect wave
properties and their probability distribution as a result. The steepening process
near shore causes higher and sharper wave crests and shallower and flatter wave
troughs. Under such conditions, the Gaussian model under such conditions is no
longer sufficient for describing wave behaviour as it underestimates the higher values
and overestimates the lower values of the observed surface elevation. Hence, a non-
Gaussian probability density function has to be applied for representing shallow
water wave profiles [17].

Previous statistical analyses on the non-Gaussian characteristics of coastal waves
include the results of [16] and [17]. In these works, wave records were obtained at
a location along the CERC Field Research Facility at Duck North Carolina. These
wave records were taken during the growth stage of a storm in the ARSLOE project.
The results show that the skewness of the distribution modelling the free surface
elevation was the dominant parameter affecting the degree of deviation from the
Gaussian model. To account for the skewness, a non-Gaussian probability density
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function was used to more accurately represent the distribution of the free surface
elevation near the shore. The Gram-Charlier probability density function showed
good agreement with the histograms of the surface elevation obtained near the shore
in both studies.

While the studies mentioned above are based on measurements, the present study
embodies a numerical framework for estimating the coastal surface elevation dis-
tribution. As will be elaborated on later in this paper, the combination of linear
shoaling theory in deep water and non-linear cnoidal theory in shallow waters yields
good agreement with the experimental results found in the above studies. In partic-
ular, with the approach used in the present paper, the distribution of the free surface
elevation is also found to be non-Gaussian and well represented by a Gram-Charlier
series.

The wave spectra of non-linear waves in shallow water will also be investigated
in this thesis. Previous studies on the wave spectrum include those of [9] and
[19]. In the former, it was shown that the crest and trough distributions follow
the same Rayleigh distribution for a narrow spectrum if the free surface elevation
can be considered a random Gaussian process. In [9], new analytical wave crest
and trough distributions were derived to take into second-order effects of waves in
deep water. The results were an extension to the work of Boccotti and are valid for
the spectrum in deep water with frequencies of finite bandwidth. In this thesis, an
estimation of the wave spectra in shallow water for frequencies of finite bandwidth
will be presented. The free surface elevation in this case can no longer be considered
a random Gaussian process due to non-linear effects and thus, the presented spectra
is an estimate for waves approximated by the perturbed Gaussian distribution in
the form of a Gram-Charlier expansion.

1.2 Thesis outline

Chapter 2
We begin with some basic wave theory and the formulation of the linear wave prob-
lem in terms of the Euler equations along with its periodic solution. The energy
balance and wave height determination for linear shoaling processes is also presented.
We proceed by presenting the non-linear wave problem again in terms of the Euler
equations. The KdV equation, cnoidal wave solution and energy balance are also
presented.

Chapter 3
Here we present the random-phase/amplitude model and wave spectrum when con-
sidering linear deep water gravity waves. For non-linear shallow water waves, the
Gram-Charlier expansion is presented along with imposed conditions to ensure pos-
itivity.
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Chapter 4
Chapter 4 is given in the form of our submitted paper. We investigate the shoaling of
ocean waves numerically using a low-dimensional non-linear shoaling model coupled
with Monte-Carlo simulations based on the statistical description of ocean waves
and wave spectra.

Chapter 5
In Chapter 5 we carry out a zero-crossing analysis on real time series data and
investigate statistical properties of the free surface elevation in shallow water. This
is an extension to the experiments carried out in Case 1 of the submitted paper in
the form of a comparison against real data.
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Chapter 2

Wave theory

As mentioned in chapter 1, the study of deep water waves as they propagate
shorewards into shallower regions has become a problem of interest in different fields.
The degree to which wave height, as well as other properties, is affected during the
shoaling process is, among other things, of particular importance in for example the
maintenance of beaches and design of coastal structures [11].

2.1 Linear Theory

Linear wave theory is generally limited to small-slope, small amplitude surface
gravity waves. This implies that a/λ � 1 and a/h � 1, respectively [12]. Here, a
is the amplitude, λ is the wavelength and h is the depth. This section will comprise
of the formulation of the linear wave problem along with its solution and the theory
needed in order to obtain the wave height H of a shoaling wave.

2.1.1 Formulation of the linear wave problem

We begin by denoting the spatial coordinates of the two-dimensional position
vector x to be (x, z) in agreement with a Eulerian description. Here, the x-axis
is the direction of wave propagation and the z-axis points vertically. Then, the
corresponding components of the velocity vector u(x, t) are (u,w). Utilizing the
conservation of mass property and also assuming an incompressible fluid layer with
negligible changes in density leads to the well known continuity equation

∇ · u = 0. (2.1)

Moreover, assuming the fluid to be irrotational leads to the fluid vorticity (ω) being
zero, namely
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ω = ∇× u = 0 (2.2)

and the existence of a velocity potential φ(x, z, t) such that

u = ∇φ. (2.3)

In component form, this implies that

u =
∂φ

∂x
and w =

∂φ

∂z
. (2.4)

An elliptic partial differential equation called the Laplace equation is a direct result
of (2.1) and (2.3) and can be written mathematically as

∂2φ

∂x2
+
∂2φ

∂z2
= 0. (2.5)

By also considering conservation of momentum, the linearized Bernoulli equation
can be obtained and written as

∂φ

∂t
+
P

ρ
+ gz = 0 (2.6)

where P is the pressure, ρ is the water density and g is the gravitational acceleration.
For the full derivation of (2.6), see [12]. To solve (2.5), boundary conditions need to
be formulated. It is convenient to let f(x, z, t) = 0 describe the air-water interface
and z = η(x, t) denote the surface elevation from its undisturbed location z = 0.
The equation for the surface is then f(x, z, t) = z − η(x, t) = 0. Three boundary
conditions will now be formulated.

The first boundary condition is derived by noting that the bottom of the liquid
layer is an impermeable surface. This implies that the velocity normal to the layer
should be zero in a way that

w =
∂φ

∂z
= 0 at z = −h (2.7)

which is called the free slip boundary condition. At the free surface, particles near
the surface should not leave the surface. Mathematically, this requires the fluid
velocity normal to the surface be equal to the normal velocity of the surface itself:
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(n · u)z=η = n · us (2.8)

where us is the fluid velocity normal to the surface. Using the surface equation, the
surface normal n can be written as

n =
∇f
|∇f |

=

(
−∂η
∂x

ex + ez

)
1√

∂η
∂x

2
+ 1

(2.9)

and considering the velocity of the surface to be purely vertical gives

us =
∂η

∂t
ez. (2.10)

Multiplying (2.8) by |∇f | leads to

(
−u∂η

∂x
+ w

)
z=η

=
∂η

∂t
(2.11)

where u = uex + wez has been used. Utilizing (2.4) and rearranging (2.11) gives

(
∂φ

∂z

)
z=η

=
∂η

∂t
+
∂η

∂x

(
∂φ

∂x

)
z=η

(2.12)

and since we are limited to small-slope, small amplitude surface gravity waves, the
non-linear term in (2.12) can be neglected as ∂η

∂x
is sufficiently small in comparison.

The LHS can then be Taylor expanded around z = 0 as an approximation for small
slope waves:

(
∂φ

∂z

)
z=η

=

(
∂φ

∂z

)
z=0

+ η

(
∂2φ

∂z2

)
z=0

+ ... =
∂η

∂t
(2.13)

Neglecting the non-linear terms in a similar fashion leads to the linearized kinematic
boundary condition

∂φ

∂z
=
∂η

∂t
at z = 0. (2.14)

The third boundary conditions defines the water pressure to be equal to the atmo-
spheric pressure so that (P )z=η = 0, where P is the gauge pressure. Equation (2.6)
evaluated at z = η then reduces to
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(
∂φ

∂t

)
z=η

= −gη. (2.15)

Taylor expanding the first term in (2.15) in powers of η about η = 0 produces

(
∂φ

∂t

)
z=η

=

(
∂φ

∂t

)
z=0

+ η

(
∂2φ

∂t2

)
z=0

+ ... = −gη (2.16)

and neglecting the non-linear terms in the linear approximation as previously done
for the kinematic boundary condition gives

∂φ

∂t
= −gη at z = 0 (2.17)

which is the dynamic boundary condition. Equations (2.5), (2.7), (2.14) and (2.17)
define the linear problem and its solution will be given in the next subsection.

2.1.2 Periodic wave solution

We begin by assuming the surface elevation η takes the form of a simple sinusoidal
wave propagating in the positive x-direction

η(x, t) = acos(kx− ω(k)t) (2.18)

where k is the wave number and ω is the frequency. Equation (2.18) requires the
velocity potential, φ, to be sine dependent and so a sought after solution for φ is of
the form

φ(x, z, t) = f(z)sin(kx− ω(k)t). (2.19)

Determining the function f(z) involves using the method of ’separation of vari-
ables’ and will not be elaborated on here. For a detailed derivation, see [20]. The
function f(z) can be found from solving the differential equation

d2f(z)

dz2
− k2f(z) = 0 (2.20)

and utilizing the characteristic equation, its solution is of the form

8



f(z) = Aekz +Be−kz. (2.21)

Applying the boundary conditions, A and B can be determined and the function f
can be written as

f(z) =
aω(k)

k(1− e−2kh)
ekz +

aω(k)e−2kh

k(1− e−2kh)
. (2.22)

From this, the following solution for the velocity potential is found

φ(x, z, t) =
aω(k)

k

cosh(k(z + h))

sinh(kh)
sin(kx− ω(k)t) (2.23)

and the components of the velocity vector u can be readily determined:

u = aω(k)
cosh(k(z + h)

sinh(kh)
cos(kx− ω(k)t)

v = aω(k)
sinh(k(z + h)

sinh(kh)
sin(kx− ω(k)t).

(2.24)

Determining the function ω(k) is done by differentiating (2.3) with respect to t and
applying the dynamic boundary condition (2.17) so that

(
∂φ

∂t

)
z=0

= −aω(k)2

k

cosh(kh)

sinh(kh)
cos(kx− ω(k)t) = −agcos(kx− ω(k)t) (2.25)

which, when solved for ω(k), leads to the well known dispersion relation

ω(k) =
√
gktanh(kh) (2.26)

that describes the relation between the wave frequency ω and wave number k. The
phase speed is then

c =
ω

k
=

√
g

k
tanh(kh). (2.27)

In deep water, kh → ∞ s.t tanh(kh) → 1 and (2.27) becomes the deep water
approximation
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c =

√
g

k
(2.28)

In shallow water, kh � 1, so tanh(kh) ≈ kh and (2.27) becomes the shallow water
approximation

c =
√
gh. (2.29)

2.1.3 Wave shoaling

In linear shoaling processes, the speed of wave propagation decreases. A con-
sequence of this is the decrease in the kinetic energy of the wave. However, the
total energy of a wave consists of both kinetic energy and potential energy which is
conserved according to linear theory. A direct result of the decrease in the kinetic
energy is then an increase in potential energy, which is found to be directly propor-
tional to the wave height. This change in the wave height can be determined by
utilizing the conservative property of the energy flux during the shoaling process.
Consider first the energy per unit horizontal area

E =
1

λ

∫ λ

0

∫ 0

−h

[
ρ

2
|∇φ|2 + ρgz

]
dzdx (2.30)

and the group velocity cg

cg =
dω

dk
(2.31)

which is the velocity with which the overall envelope shape of the wave propagates.
Computing the integrals and substituting the velocity components (2.24) and dis-
persion relation (2.26) in (2.30) give the following expression for the total energy:

E =
1

8
ρgH2 (2.32)

while the group velocity cg can be written as

cg =
c

2

[
1 +

2kh

sinh(2kh)

]
(2.33)
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by differentiating the definition of the phase speed, (2.27). Conservation of the
energy flux Ecg then implies that the wave height H at a current depth is solely de-
termined by the wave height at a previous depth and the respective group velocities
at each depth. Namely,

H = H0

√
cg,0
cg

(2.34)

where the subscript ’0’ denotes the previous depth. To solve (2.34), the conservative
property of the period T can be used in combination with the dispersion relation
(2.26), leading to

2π

T
− gk tanh (kh) = 0 (2.35)

which is a non-linear equation that can be solved for k. This in turn allows for the
determination of H in (2.34).

2.2 Non-linear theory

When waves become too steep or the local depth becomes too shallow, the as-
sumptions of linear theory are no longer satisfied and a new, higher-order framework
is required. The Korteweg-de Vries equation is one example of such a framework and
has been used with its cnoidal solution to describe wave behaviour during shoaling
processes. Previous studies on the shoaling of non-linear waves are [18] and [24]
among others. However, in these studies the wave energy density and energy flux
are defined in terms of the linear framework. In the following, the non-linear wave
problem and its solutions will be presented in terms of the KdV equation as well as
an approximate energy balance which follows that given in [3].

2.2.1 Formulation of the non-linear wave problem

We begin, by again considering a 2-D system where (x, z) are chosen so that the
x-axis is the direction of wave propagation and the z-axis points vertically upwards.
The corresponding components of the velocity vector u(x, t) are then (u,w). Letting
P (x, z, t) be the pressure and g = (0,−g) be the gravitational force, the surface
water-wave problem can be given by the Euler equations

∇ · u = 0, (2.36)
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∂u

∂t
+ (u · ∇)u = −1

ρ
∇P − g (2.37)

By considering an incompressible and irrotational flow, the problem can be for-
mulated in terms of the Laplace equation (2.5) for a velocity potential φ as shown
in section 2.1. The boundary conditions to the problem are then the non-linearized
forms of (2.7), (2.14) and (2.17). The complete problem is now given by

∂2φ

∂x2
+
∂2φ

∂z2
= 0 at − h0 < z < η(x, t), (2.38)

∂φ

∂t
+

1

2

((
∂φ

∂x

)2

+

(
∂φ

∂z

)2
)

+ gη = 0 at z = η(x, t) (2.39)

∂η

∂t
+
∂φ

∂x

∂η

∂x
− ∂φ

∂z
= 0 at z = η(x, t) (2.40)

∂φ

∂z
= 0 at z = −h0 (2.41)

2.2.2 The KdV equation and cnoidal wave solutions

The Korteweg-de Vries (KdV) equation can be used to model weakly non-linear
and dispersive waves travelling in one direction and is given in dimensional variables
by

ηt + c0ηx +
3

2

c0

h0

ηηx +
c0h

2
0

6
ηxxx = 0 (2.42)

where c0 now denotes the shallow water approximation of the phase speed defined
in (2.29). For waves to be accurately represented by solutions of the KdV equation,
it is assumed the waves be of small amplitude and long wavelength relative to the

undisturbed depth of the fluid layer. This requires that β =
h20
λ

and α = a
h0

are small
parameters and α

β
= O(1). We begin by assuming the surface elevation η takes the

form

η(x, t) = f(ξ(x, t)) = f(x− ct) (2.43)

The KdV equation (2.42) then reduces to an ODE given by
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(
1− c

c0

)
f ′ +

3

2
ff ′ +

h2
0

6
f ′′′ = 0 (2.44)

Integrating (2.44), multiplying with f ′ and integrating again leads to

−h
2
0

3

(
df

dξ

)2

= F (f) = f 3 + 2

(
1− c

c0

)
f 2 + Af +B (2.45)

where A,B ∈ R are constants of integration. Several solutions to this problem exist
and a complete derivation can be found in [20]. Considering only real solutions
to the ODE, the function F can be written in terms of 3 distinct roots such that
f3 < f2 < f1 and

F (f) = (f − f1)(f − f2)(f − f3) (2.46)

Substitution into (2.45) leads to

df

dξ
= ±
√

3

h2
0

√
(f − f1)(f − f2)(f − f3). (2.47)

from which the implicit solution can be written as

∫ ξ

ξ1

dξ′ = ± h2
0√
3

=

∫ f(ξ)

f1

dz{
(z − f1)(z − f2)(z − f3)

} 1
2

(2.48)

Computing the integral and substituting z = f1 + (f2 − f1)sin2θ with the Jacobian
dz
dθ

= 2(f2 − f1)sinθcosθ gives the following expression for ξ

ξ = ξ1 ±
2h2

0√
3(f1 − f3)

∫ φ(ξ)

0

dθ{
1−msin2θ

} 1
2

(2.49)

where m = f1−f2
f1−f3 . The elliptic integral (2.49) has a known solution and satisfies the

relation

cosφ = cn

(
ξ − ξ1

√
3(f1 − f3)

2
;m

)
(2.50)

in a way that f can be given in terms of φ:
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f = f1 + (f2 − f1)sin2φ

= f1 + (f2 − f1)(1− cos2φ)

= f2 + (f1 − f2)cn2

(
ξ − ξ1

√
3(f1 − f3)

2

) (2.51)

where where cn is the Jacobian elliptic function that gives periodic waves for the
modulus m ∈ [0, 1). This expression comes from utilizing the transformation z =
f1 + (f2 − f1)sin2θ and some trigonometric identies. The wave speed c and wave
length λ can now be defined as

c = c0

(
1 +

f1 + f2 + f3

2h0

)
and λ = K(m)

√
16h3

0

3(f1 − f3)
(2.52)

where K(m) is the complete elliptic integral of the first kind. The KdV equation
(2.42) can now be given in terms of its stationary solution

η(x, t) = f2 + (f1 − f2)cn2

√3(f1 − f3)

4h3
0

(x− ct);m

 (2.53)

2.2.3 Energy balance

Recall that for waves to be accurately represented by solutions of the KdV equa-
tion it is assumed that α

β
= O(1). To ensure that the energy conservation is valid to

the same order as α and β we consider the following change of variables presented
in [11]:

x̃ =
x

λ
, z̃ =

z + h0

h0

, η̃ =
η

a
, t̃ =

c0t

λ
, φ̃ =

c0

gaλ
φ.

The KdV equation (2.42) in non-dimensional form is then

η̃t̃ + η̃x̃ +
3

2
αη̃η̃x̃ +

1

6
βη̃x̃x̃x̃ = O

(
α2, αβ, β2

)
(2.54)

and the corresponding non-dimensional potential velocity field is given by

φ̃x̃(x̃, z̃, t̃) = η̃ +
1

4
αη̃2 + β

(
1

3
− z̃2

2

)
η̃x̃x̃ +O

(
α2, αβ, β2

)
(2.55)
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φ̃z̃(x̃, z̃, t̃) = −βz̃η̃x̃ +O
(
αβ, β2

)
. (2.56)

By considering the Bernoulli equation within the fluid domain, the dynamic pressure
P ′ can be written as

P ′ = P − Patm + ρgz = −ρt −
ρ

2
|∇φ|2 (2.57)

or in non-dimensional variables by using the scaling P ′ = ρgaP̃ ′ as

P̃ ′ = η̃ +
1

2
β
(
z̃2 − 1

)
w̃x̃t̃ +O

(
αβ, β2

)
. (2.58)

The total energy balance can be written as

∂

∂t

∫ η

−h0

(
1

2
|∇φ|2 + g(z + h0)

)
dz +

∂

∂x

∫ η

−h0

(
1

2
|∇φ|2 + g(z + h0) + P

)
φxdz = 0

and by assuming the potential energy to be zero when there is no wave motion, the
expression above simplifies to

∂

∂t

(∫ η

−h0

1

2
|∇φ|2 dz +

∫ η

0

gzdz

)
+

∂

∂x

∫ η

−h0

(
1

2
|∇φ|2 + gz + P

)
φxdz = 0. (2.59)

Using non-dimensional variables and integrating with respect to z̃ gives

∂

∂t̃

(
α2η̃2 +

α3

4
η̃3 +

α2β

6
η̃η̃x̃x̃ +

α2β

6
η̃2
x̃

)
+
∂

∂x̃

(
α2η̃2 +

5

4
α3η̃3 +

α2β

2
η̃η̃x̃x̃

)
= O

(
α4, α3β, α2β2

)
.

Now, in order to be of the same order as α and β, the energy density E in non-
dimensional variables must be given by

Ẽ = α2η̃2 +
α3

4
η̃3 +

α2β

6
η̃η̃x̃x̃ +

α2β

6
η̃2
x̃ (2.60)

and thus, the energy flux is given by
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q̃E = α2η̃2 +
5

4
α3η̃3 +

α2β

2
η̃η̃x̃x̃. (2.61)

Transforming back to dimensional variables by using the scaling E = c2
0h0Ẽ and

qE = c3
0h0qẼ gives

E = c2
0

(
1

h0η2
+

1

4h2
0

η3 +
h0

6
ηηxx +

h0

6
η2
x

)
(2.62)

and

qE = c3
0

(
1

h0

η2 +
5

4h2
0

η3 +
h0

2
ηηxx

)
(2.63)

as found in [2].

2.2.4 Wave shoaling

The wave height of a shoaling wave can now be determined by imposing preserva-
tion of wave frequency, conservation of mass and conservation of energy [20]. Thus,
if the wave motion at a certain water depth hA is given, the wave height at water
depth h was found in [11] to be given by the following equations:

cA
λA

=
c

λ
,∫ T

0

qEA
dt =

∫ T

0

qEdt,∫ λ

0

ηAdx =

∫ λ

0

ηdx

(2.64)

Using the stationary solution of the KdV equation (2.53) with wave speed and
wavelength given in (2.52) and also utilizing the energy flux (2.63), a system of
three non-linear equations that can be solved for f1, f2 and f3 and the height of a
wave at depth h can be determined.
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Chapter 3

Statistical theory

Short-term statistical theory to characterize deep water gravity waves is largely
based on the assumption that the surface elevation is a stationary Gaussian process.
This assumption is usually accurate for wave records of duration between 15 and 30
minutes. In shallow, coastal waters this is however not always the case due to the
non-linear nature of the waves described in the previous chapter. This chapter will
provide some statistical preliminaries for linear waves before moving on to the more
complex, non-linear case.

3.1 Deep water waves

One of the most descriptive and important ways of characterizing the sea surface
is in terms of the wave spectrum. The aim is to describe the sea surface as a
stochastic process (see Appendix A) by characterizing all possible time records that
could have been made under the conditions of the actual time record [13]. First, an
introduction to the random-phase/amplitude model will be presented before moving
onto the wave spectrum approach of characterizing deep water waves.

3.1.1 The random-phase/amplitude model

Consider the surface elevation η as a function of time t at one location. Using
Fourier theory, the wave record can be reproduced by considering the surface eleva-
tion to be a sum of harmonic wave components and can therefore be approximated
mathematically in terms of its Fourier series as

η(t) =
N∑
i=1

aicos(2πfit+ αi) (3.1)
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where ai, fi and αi are the Fourier amplitude, frequency and phase respectively.

If we now consider the surface elevation, amplitude and phase as random variables
chosen for each realisation of the wave record, (3.1) becomes

η(t) =
N∑
i=1

aicos(2πfit+ αi) (3.2)

and is more formally known as the random-phase/amplitude model. Random vari-
ables are fully characterized by their respective probability density functions. Here,
the phase αi is uniformly distributed between 0 and 2π at each frequency so that

p(αi) =
1

2π
, 0 < αi ≤ 2π (3.3)

and the amplitude ai is Rayleigh distributed at each frequency:

p(ai) =
π

2

ai
µ2
i

exp

(
−πa

2
i

4µ2
i

)
(3.4)

where µi is the expected values of the amplitude µi = E{ai} (see Appendix A). A
large set of realizations of η(t) can then be constructed for a given amplitude spec-
trum by drawing a random amplitude ai and phase αi from their probability density
functions at each frequency and inserting into (3.2). This approach is generally ac-
curate when the problem is linear so that interactions between the wave components
are weak and can be neglected.

3.1.2 The wave spectrum

Since wave energy can be proven to be proportional to the variance in linear
wave theory [13], the variance provides a useful link between statistical and physical
properties. Therefore, it is often beneficial to consider the variance E{1

2
a2
i } rather

than the expectation of the amplitude E{ai} as in the random-phase/amplitude
model described above.

By distributing the variance of the surface elevation E{1
2
a2
i } over the frequency

interval ∆fi at frequency fi, we obtain the following definition of the variance density
spectrum:

S(fi) =
1

∆fi
E

{
1

2
a2
i

}
, ∀fi. (3.5)
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A continuous version of (3.5) is obtained by letting the width of the frequency
interval ∆fi approach zero and can be written mathematically as

S(f) = lim
∆f→0

1

∆f
E

{
1

2
a2

}
. (3.6)

The variance density spectrum given in (3.5) can be directly related to the scaling pa-
rameter σ of the Rayleigh distributed Fourier amplitudes and is shown in Appendix
A.

The Pierson-Moskowitz spectrum

The Pierson-Moskowitz (P-M) spectrum is a unidirectional spectrum describing
waves in fully developed seas and is often used in applications. The underlying
assumption is that waves reach a point of equilibrium with the wind if the wind
blows steadily over a large area for a sufficient period of time [21]. Now, the spectral
formulation for fully developed seas can be given by the following:

S(ω) =
A

ω5
exp

(
− B
ω4

)
(3.7)

where ω is the circular frequency and A and B are constants that can be defined as

A = 0.0081g2 and B = 0.74

(
g

U

)4

(3.8)

for the P-M spectrum, where U is the mean wind speed 19.5m above the sea surface
and g is the gravitational acceleration. It is often more convenient to consider the
significant wave height rather than the wind speed and the following relation for B
can be used in place of that in (3.8) [21]:

B =
4A

H2
s

. (3.9)

Figure 3.1 accordingly shows the Pierson-Moskowitz spectrum as a function of sig-
nificant wave height.
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Figure 3.1: Pierson-Moskowitz spectrum as a function of significant wave height Hs

.

3.2 Shallow water waves

Wind-generated waves in coastal regions have been observed to be significantly
different from those in deep water regions. The differences are largely due to the
effects of shoaling as deep water waves enter shallower water. Therefore, a non-
Gaussian probability density function has to be applied to represent shallow water
wave profiles. The Gram-Charlier series expansion is a popular approach when it
comes to the PDF estimation of wave profiles obtained in coastal regions [17]. The
approach is based on the orthogonality of Hermite polynomials with respect to the
normal distribution and will be treated in the following.
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3.2.1 The Gram-Charlier expansion

Consider first the normal PDF with arbitrary mean µ and variance σ2 given by

p(x;µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
=

1

σ
p

(
x− µ
σ

)
. (3.10)

For the standardized, zero mean, unit variance normal PDF, (3.10) reduces to

p(x) =
1√
2π

exp

(
−x

2

2

)
. (3.11)

The nth-order Hermite polynomial Hn(x) can then be written in terms of the deriva-
tives of (3.11) as follows:

Hn(x) = (−1)n
dnp

dxn
1

p(x)
. (3.12)

The polynomials are mutually orthogonal (see Appendix B) with respect to the
normal PDF so that

∫ ∞
−∞

Hm(x)Hn(x)p(x)dx = n!δmn. (3.13)

Now consider a random variable z with unknown PDF f(z). The unknown
function f(z) can be approximated in terms of Hermite polynomials, i.e.

f(z) = gn(z)p(z) =
∞∑
n=0

cnHn(z)p(z) (3.14)

where gn(z) =
∑∞

n=0 cnHn(z). To find these coefficients, we begin by multiplying
both sides of (3.14) by Hm(z) to get

f(z)Hm(z) =
∞∑
n=0

cnHm(z)Hn(z)p(z). (3.15)

Integrating from −∞ to ∞ and using the property of orthogonality from (3.13)
yields

21



∫ ∞
−∞

f(z)Hm(z)dz =

∫ ∞
−∞

∞∑
n=0

cnHm(z)Hn(z)p(z)dz = cnn! (3.16)

and rearranging to solve for cn leads to the final expression of

cn =
1

n!

∫ ∞
−∞

f(z)Hn(z)dz. (3.17)

Letting β1 and β2 be the skewness and kurtosis of (3.14), the values

c0 = 1, c1 = 0 = c2, c3 =

√
β1

3!
, c4 =

(β2 − 3)

4!
(3.18)

are the first 5 coefficients in (3.17), [7]. When z is standardized (zero mean and unit
variance), th 4th-order approximation of gn(z) is

g4(z) = 1 +
γ1

6
H3(z) +

γ2

24
H4(z) (3.19)

where γ1 =
√
β1 and γ2 = β2 − 3. This expression is more formally known as the

Gram-Charlier Type-A expansion. The Edgeworth expansion is another popular
representation [10] and is given by

g6(z) = 1 +
γ1

6
H3(z) +

γ2

24
H4(z) +

γ2
1

72
H6(z). (3.20)

Observe that the Edgeworth expansion requires one more Hermite polynomial while
keeping the number of parameters constant. Also, when γ1 = 0 = γ2, (3.14) reduces
to a standard normal distribution.

3.2.2 Positivity conditions of the GC Type A series

One of the major drawbacks of a polynomial approximation is that certain param-
eters can lead to negative values which is undesirable when considering probability
density functions. It is therefore necessary to define the conditions for which the
function f(z) is positive-definite.

In general, f(z) in (3.14) is positive-definite when

gn(z) =
∞∑
n=0

cnHn(z) ≥ 0 ,∀z. (3.21)
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By considering P = (c0, ..., cn) to be a point in n-dimensional space, (3.21) requires
that P lies on the same side as (0, ..., 0) of the hyperplane

∞∑
n=0

cnHn(z) = 0, ∀n

as described in [7]. This implies that for each z ∈ [−∞,∞], P should lie within the
envelope given parametrically by

∞∑
n=0

cnHn(z) = 0 =
∞∑
n=0

cnnHn−1(z) = 0 (3.22)

where (B.4) has been used in the above equality.

For the Gram-Charlier Type-A expansion, we begin by considering D to be the
region in the (γ1, γ2)-plane for which f(z) in (3.14) is positive definite. Mathemati-
cally, this entails that

g4(z) = 1 +
γ1

6
H3(z) +

γ2

24
H4(z) ≥ 0, ∀z. (3.23)

Furthermore, for each value of z the equation

g4(z) = 1 +
γ1

6
H3(z) +

γ2

24
H4(z) = 0 (3.24)

defines a hyperplane in (γ1, γ2)-space in the form of a 1-dimensional line. By also
considering the derivative of (3.24) given by

g′4(z) =
γ1

2
H2(z) +

γ2

6
H3(z) = 0, (3.25)

it is possible to determine the set of (γ1, γ2) as a function of z that satisfies D . The
set that satisfies (3.24) and (3.25) simultaneously is called the envelope of p4(z) [10].

Straightforward computations give

γ1(z) = −24
H3(z)

h(z)
and γ2(z) = 72

H2(z)

h(z)
, (3.26)

where (3.24) and (3.25) has been solved simultaneously for γ1 and γ2 and h(z) =
4H2

3 (z)− 3H2(z)H4(z).
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To determine the set (γ2, γ2), we begin by rewriting h(z) as h(z) = z6−3z4+9z2+9
(see Appendix B). Since h(z) ≥ 0 for all z, the signs of γ1 and γ2 depend solely on
H3(z) and H2(z), respectively. Now, H3(z) = z3 − 3z so γ1 ≥ 0 for z ∈ (−∞,−

√
3]

and z ∈ [0,
√

3]. Similarly, H2(z) = z2−1 so γ2 ≥ 0 for z ∈ (−∞,−1] and z ∈ [1,∞).

Figure 3.2: Global plot of the envelope of p4(z). The red lines define the boundary
of D .

Figure 3.2 presents the global envelope of p4(z). The curve AD1B represents the
region of the (γ1, γ2)-plane when z ∈ (−∞,−

√
3). For z ∈ [−

√
3, 0] and z ∈ [0,

√
3],

the curves BD3C and BD4C are obtained. Lastly, the curve AD2B represents the
region of the (γ1, γ2)-plane when z ∈ [

√
3,∞). It is now clear that f(z) ≥ 0 for all

z when both γ1 and γ2 are positive. For the kurtosis, this means that γ2 ∈ [0, 4].
The maximum skewness is obtained when

∣∣γ′1(z)
∣∣ =

∣∣z4 − 6z3 + 6z2 − 18z + 9
∣∣ = 0

and can be found numerically to be at the point (2.451, 1.051) in the (γ1, γ2)-plane.
This implies that γ1 ∈ [0, 1.051]. The region D is then the envelope obtained when
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γ1 ∈ [0, 1.051] and γ2 ∈ [0, 4] and is shown in Figure 3.2 where the red lines define
the boundary of D .

3.3 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a well known method used to estimate
the parameters of a statistical model. The procedure is based on maximizing what
is known as the likelihood function of the model.

Consider the random sample Z = (z1, z2, ..., zn) generated from the PDF f(zi;θ)
where θ is a k-dimensional parameter vector in the parameter space Ω. Then, the
joint probability density of the sample Z is

f(z1, z2, ..., zn;θ) = f(z1;θ) · f(z2;θ) · ... · f(zn;θ) =
n∏
i=1

f(zi;θ) (3.27)

If we view the joint PDF as a function of θ, (3.27) can be written as

L(θ; z1, z2, ..., zn) =
n∏
i=1

f(zi;θ) (3.28)

where L(θ) is the likelihood function. The goal of MLE is to find the values of the
model parameters that maximize the likelihood function (3.28) over the parameter
space Ω in a way that makes the observed data most probable. We can now define
the maximum likelihood estimator

θ̂ = argmax
θ∈Ω

L(θ) (3.29)

to be the parameter values that maximize L(θ). Candidates for the maximum
likelihood estimator are then all points θj such that

∂L

∂θj
= 0, j = 1, ..., k (3.30)

By taking the natural logarithm of the likelihood function, the product in the joint
density (3.27) can be written as a sum which is more convenient when differentiating.
The log-likelihood is then readily defined as
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l(θ;Z) = log

 n∏
i=1

L(θ;Z)

 =
n∑
i=1

logL(θ;Z) (3.31)

and candidates for the maximum likelihood estimator are now all points θj such that

∂l

∂θj
= 0, j = 1, ..., k (3.32)

The monotonic behaviour of the logarithm function ensures that the maximum of
l(θ)) occurs at the same values of θj as for L(θ) which is a desirable result of the
transformation.

3.4 Monte Carlo methods

Monte Carlo (MC) methods are a class of computational algorithms based on
repeated stochastic sampling. The underlying concept is to use randomness to solve
problems that might be deterministic in principle. Some typical uses of MC methods
are estimation, optimization and sampling as described in [8]. This thesis will focus
on the latter. MC sampling methods are entirely random in a way that all simulated
samples fall within the support of the distribution used. This is achieved by using
a pseudo-random number generator which is repeatedly called and returns a real
number in [0, 1]. The results are then used to generate a distribution of samples
that is an accurate representation of the desired probability distribution [1].

For this kind of technique to be effective in representing a random variable with
a given distribution, a sufficient number of iterations should be performed. When
the sample size is not sufficiently large, the problem of clustering can arise. This is
due to the samples tendency to take high probability values when a low number of
iterations is used, leaving values in the outer ranges of the distribution unrepresented.
Increasing the number of iterations ensures that a larger range of values is covered
belonging to both high and low probability occurrences. The effects of both high
and low probability outcomes are then accounted for in the simulation and the
representation of the desired probability distribution is more accurate.

Since random wave heights can be shown to follow a Rayleigh distribution in
deep water [14], one MC simulation results in one realization of the wave height
distribution at a specific position in time or space. Each run then yields different
results leading to an ensemble of realizations. This ensemble is then a set of plau-
sible realizations of the wave height distribution under the conditions of an actual
observation.
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Chapter 4

Wave Spectra in Shallow Water
Using Cnoidal Theory

In this chapter, our submitted paper is presented.
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Abstract
Shoaling of ocean waves is studied numerically using a low-dimensional non-

linear shoaling model coupled with Monte-Carlo simulations based on the statistical
description of ocean waves and wave spectra. It is found that while non-linearity
has a minor effect on the wave height, it has a major effect on the shape of the wave.
In fact, in shallow water, the instantaneous surface elevation can be described using
a Gram-Charlier distribution rather than a Gaussian distribution which is typical
of waves in deep water. The positivity conditions of the Gram-Charlier expansion
are enforced in a grid search to estimate the parameters of the distribution in a
way that ensure a positive-definite distribution and the results are in line with field
studies of coastal waves, such as the ARSLOE project [10].

Contents
1 Introduction 1

2 Wave theory 3

3 Statistical theory 6

4 Methodology 10

5 Case Studies and Analysis 14

6 Discussion and Further Work 28

1 Introduction
Various properties of wind-generated waves in coastal regions are significantly different

from those in deep water regions. The differences are largely due to the influence of

1



1 Introduction 2

bathymetry, which is more pronounced in shallower water.

In general, deep water waves are considered a Gaussian random process with only minor
discrepancies between the observed and theoretical probability density functions. The
deviations from the Gaussian model are exhibited by that fact that high crests are ob-
served more frequently than deep troughs [9]. In shallow water, these deviations are more
pronounced due to the relative importance of non-linearity in these waves. Indeed irreg-
ularities in bathymetry, changes in wave height and wave steepness as the mean water
depth decreases towards the shore affect wave properties and their probability distribu-
tion as a result. The steepening process near shore causes higher and sharper wave crests
and shallower and flatter wave troughs. Under such conditions, the Gaussian model under
such conditions is no longer sufficient for describing wave behaviour as it underestimates
the higher values and overestimates the lower values of the observed surface elevation.
Hence, a non-Gaussian probability density function has to be applied for representing
shallow water wave profiles [11].

Previous statistical analyses on the non-Gaussian characteristics of coastal waves in-
clude the results of [10] and [11]. In these works, wave records were obtained at a location
along the CERC Field Research Facility at Duck North Carolina. These wave records
were taken during the growth stage of a storm in the ARSLOE project. The results show
that the skewness of the distribution modelling the free surface elevation was the domi-
nant parameter affecting the degree of deviation from the Gaussian model. To account for
the skewness, a non-Gaussian probability density function was used to more accurately
represent the distribution of the free surface elevation near the shore. The Gram-Charlier
probability density function showed good agreement with the histograms of the surface
elevation obtained near the shore in both studies.

While the studies mentioned above are based on measurements, the first part of the
present study embodies a numerical framework for estimating the coastal surface elevation
distribution. As will be elaborated on later in this paper, the combination of linear
shoaling theory in deep water and non-linear cnoidal theory in shallow waters yields
good agreement with the experimental results found in the above studies. In particular,
with the approach used in the present paper, the distribution of the free surface elevation
is also found to be non-Gaussian and well represented by a Gram-Charlier series.

The second part of this paper concerns the wave spectra of non-linear waves in shallow
water. This may sound like a stretch since the superposition principle can not be applied
to non-linear waves. However, for the shoaling of long swells, the time scale of the
shoaling process may be short enough that non-linear interactions between the different
wave components can not play out completely. In particular, in the present study we are
concerned with the range of the shoaling curve between where the linear theory ceases
to be valid and waves begin to break as show in [14]. Previous studies on the wave
spectrum include those of [5] and [13]. In the former, it was shown that the crest and
trough distributions follow the same Rayleigh distribution for a narrow spectrum if the
free surface elevation can be considered a random Gaussian process. In [5], new analytical
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2 Wave theory 3

wave crest and trough distributions were derived to take into consideration second-order
effects for waves in deep water. The results were an extension to the work of Boccotti
and are valid for the spectrum in deep water with frequencies of finite bandwidth. In
the present study, an estimation of the wave spectra in shallow water for frequencies of
finite bandwidth is presented. The free surface elevation in this case can no longer be
considered a random Gaussian process due to non-linear effects and thus, the presented
spectra is an estimate for waves approximated by the perturbed Gaussian distribution in
the form of a Gram-Charlier expansion.

2 Wave theory
Waves convey mass, momentum and energy and in shoaling processes, wave energy is

generally conserved while wave momentum may vary. The linear theory of wave shoaling
imposes utilizes energy conservation to obtain the wave height of a shoaling wave. For the
nonlinear case, momentum and energy balances are described using the KdV equation
together with periodic cnoidal wave solutions.

Linear theory
Linear wave theory is generally limited to small-slope, small amplitude surface gravity

waves. This implies that a/λ� 1 and a/h� 1, respectively [8]. Here, a is the amplitude,
λ is the wavelength and h is the depth.

The solution to the linear problem is found by assuming the surface elevation η takes
the form of a simple sinusoidal wave propagating in the positive x-direction

η(x, t) = acos(kx− ω(k)t), (2.1)

where k is the wave number and ω is the circular frequency. The velocity potential is
given by

φ(x, z, t) = aω(k)

k

cosh(k(z + h))

sinh(kh) sin(kx− ω(k)t) (2.2)

and ω is given by the dispersion relation

ω(k) =
√
gk tanh kh. (2.3)

In linear shoaling processes, the speed of wave propagation decreases. A consequence
of this is the decrease in the kinetic energy of the wave. However, the total energy of a
wave consists of both kinetic energy and potential energy which is conserved according
to linear theory. A direct result of the decrease in the kinetic energy is then an increase
in potential energy which is found to be directly proportional to the wave height. This
change in the wave height can be determined by utilizing the conservative property of
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2 Wave theory 4

the energy flux during the shoaling process. Consider first the energy per unit horizontal
area

E =
1
λ

∫ λ

0

∫ 0

−h

[
ρ

2 |∇φ|
2 + ρgz

]
dzdx. (2.4)

Substituting the solution of the velocity potential (2.2), the dispersion relation (2.3) and
computing the integrals gives the following expression for the total energy:

E =
1
8ρgH

2. (2.5)

Now, the phase speed c is defined as c = ω
k =

√
g
k tanh kh and so the group velocity (the

velocity with which the overall envelope shape of the wave propagates) is

cg =
dω

dk
=
c

2

[
1 + 2kh

sinh(2kh)

]
(2.6)

Conservation of the energy flux Ecg then implies that the wave height H at a current
depth is solely determined by the wave height at a previous depth and the respective
group velocities at each depth. Namely,

H = H0

√
cg0
cg

(2.7)

where the subscript ’0’ denotes the previous depth [17]. To solve (2.7), the conservative
property of the period T can be used in combination with the dispersion relation (2.3),
leading to

2π
T
− gk tanh (kh) = 0 (2.8)

which is a non-linear equation that can be solved for k. This in turn allows for the
determination of H in (2.7).

Non-Linear theory
When waves become too steep or the local depth becomes too shallow, the assumptions

of linear theory are no longer satisfied and a new, higher-order framework is required. The
Korteweg-de Vries equation is one example of such a framework and has been used with its
cnoidal solution to describe wave behaviour during shoaling processes. Previous studies
on the shoaling of non-linear waves are [12] and [18] among others.

The Korteweg-de Vries (KdV) equation is a weakly non-linear dispersive model equa-
tion given in dimensional variables by

ηt + c0ηx +
3
2
c0
h0
ηηx +

c0h2
0

6 ηxxx = 0 (2.9)
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2 Wave theory 5

where c0 denotes the shallow water approximation of the phase speed and h0 denotes the
local water depth. The KdV equation has an exact travelling wave solution given by

η(x, t) = f2 + (f1 − f2)cn2




√√√√3(f1 − f3)

4h3
0

(x− ct);m


 . (2.10)

where f1 is the wave crest, f2 is the wave trough, m is the elliptic parameter, cn is the
Jacobian elliptic function and f3 = f1 − 1

m(f1 − f2). The wave speed c and wave length
λ can be defined as

c = c0

(
1 + f1 + f2 + f3

2h0

)
and λ = K(m)

√√√√ 16h3
0

3(f1 − f3)
(2.11)

where K(m) is the complete elliptic integral of the first kind. It has been shown in [3],
[2] and [1] that the energy balance in the KdV equation is given by

∂

∂t
E +

∂

∂x
qE = 0 (2.12)

to the second order, where

E = c20

(
1

h0η2 +
1

4h2
0
η3 +

h0
6 ηηxx +

h0
6 η

2
x

)
(2.13)

and
qE = c30

(
1
h0
η2 +

5
4h2

0
η3 +

h0
2 ηηxx

)
. (2.14)

The wave height of a shoaling wave can now be determined by imposing preservation
of wave frequency, conservation of mass and conservation of energy. Thus, if the wave
motion at a certain water depth hA is given, the wave height at water depth h was found
in [7] to be given by the following equations:

cA
λA

=
c

λ
,

∫ T

0
qEAdt =

∫ T

0
qEdt,

∫ λ

0
ηAdx =

∫ λ

0
ηdx.

(2.15)

Using the stationary solution of the KdV equation (2.10) with wave speed and wavelength
given in (2.11) and also utilizing the energy flux (2.14), a system of three non-linear
equations that can be solved for f1, f2 and f3 and the height of a wave at depth h can
be determined. For more details on the numerical procedure see [14].

The theory in this chapter is the foundation upon which the non-linear transfer function
presented in [15] is built upon for individual waves. When considering sea states consisting
of a wave spectrum, some statistical preliminaries are necessary and will be presented in
section 3. The applications of the non-linear transfer function in this case are then
presented accordingly in section 5.
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3 Statistical theory 6

3 Statistical theory
Short-term statistical theory to characterize deep water gravity waves is largely based

on the assumption that the surface elevation is a stationary Gaussian process. In shal-
low, coastal waters this is however not always the case due to the non-linear nature of
the waves described in the Introduction. Therefore, a non-Gaussian probability density
function has to be applied to represent shallow water wave profiles. The Gram-Charlier
series expansion is a popular approach for estimating the distribution of the free surface
elevation in coastal regions [11]. Another popular distribution is the Tayfun distribution
[19]. This section will provide some statistical preliminaries for deep and shallow water
as well as presenting the method of Maximum Likelihood Estimation (MLE).

The random-phase/amplitude model
The random-phase/amplitude model is generally accurate when the waves are not too

steep and are in sufficiently deep waters so that interactions between the wave components
are weak and can be neglected. We begin by considering the surface elevation η as
a function of time t at one location. Using Fourier theory, the wave record can be
reproduced by considering the surface elevation to be a sum of harmonic wave components
and can therefore be approximated mathematically in terms of its Fourier series as

η(t) =
N∑

i=1
aicos(2πfit+ αi) (3.1)

where ai, fi and αi are the amplitude, frequency and phase respectively and the under-
score indicates that they are random variables. Equation (3.1) is more formally known
as the random-phase/amplitude model. Random variables are fully characterized by their
respective probability density functions and here the phase αi is uniformly distributed
between 0 and 2π at each frequency so that

p(αi) =
1

2π , 0 < αi ≤ 2π. (3.2)

The amplitude ai is Rayleigh distributed at each frequency so that

p(ai) =
π

2
ai
µ2
i

exp

−πa

2
i

4µ2
i


 (3.3)

where µi is the expected values of the amplitude µi = E{ai} [9]. A large set of realizations
of η(t) can then be constructed for a given amplitude spectrum by drawing a random
amplitude ai and phase αi from their probability density functions at each frequency and
inserting into (3.1).

The wave spectrum
Since wave energy can be proven to be proportional to the variance in linear wave

theory [9], the variance provides a useful link between statistical and physical properties.
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3 Statistical theory 7

Therefore, it is often beneficial to consider the variance E{1
2a

2
i } rather than the expecta-

tion of the amplitude E{ai} as in the random-phase/amplitude model described above
[9].

By distributing the variance of the surface elevation E{1
2a

2
i } over the frequency interval

∆fi at frequency fi, we obtain the following definition of the variance density spectrum:

S(fi) =
1

∆fi
E

{
1
2a

2
i

}
, ∀fi. (3.4)

A continuous version of (3.4) is readily obtained by letting the width of the frequency
interval ∆fi approach zero and can be written mathematically as

S(f) = lim
∆f→0

1
∆f

E

{
1
2a

2
}

. (3.5)

Now, the random surface elevation η(t) given in (3.1) is the sum of a large number of
harmonic waves. The variance of a single harmonic wave with amplitude a is given by
η2 = 1

2a
2 so that the variance of the sum is given by summing the individual variance

contributions of each harmonic [9], i.e.

η2 = E{η2} =
N∑

i=1
E{1

2a
2
i } (3.6)

when the overbar indicates averaging and E{η} = 0. The variance density spectrum given
in (3.4) can be directly related to the scaling parameter σ of the Rayleigh distributed
Fourier amplitudes and is presented in Section 4.

The Pierson-Moskowitz spectrum

The Pierson-Moskowitz (P-M) spectrum is a unidirectional spectrum describing waves
in fully developed seas and is often used in applications. The underlying assumption is
that waves reach a point of equilibrium with the wind if the wind blows steadily over
a large area for a sufficient period of time [16]. Now, the spectral formulation for fully
developed seas can be given by the following:

Ŝ(ω) =
Ag2

ω5 exp−5
4

(
ω0
ω

)4
(3.7)

where ω = 2πf is the circular frequency in Hertz and A = 8.1 · 10−3.

The Gram-Charlier type-A expansion
When a random variable z has an unknown probability density function (PDF), the

unknown function f(z) can be approximated in terms of Hermite polynomials, i.e.

f(z) = gn(z)p(z) =
∞∑

n=0
cnHn(z)p(z) (3.8)

7



3 Statistical theory 8

where p(z) is the standardized (zero mean and unit variance) normal PDF and Hn(z) =

(−1)n d
np
dzn

1
p(z) is the nth-order Hermite polynomial. Letting β1 and β2 be the skewness

and kurtosis of (3.8), the values

c0 = 1, c1 = 0 = c2, c3 =

√
β1

3!
, c4 =

(β2 − 3)
4!

(3.9)

are the first 5 coefficients inside the sum [4]. When z is standardized (zero mean and unit
variance), a 4th-order approximation of gn(z) is then

g4(z) = 1 + γ1
6 H3(z) +

γ2
24H4(z) (3.10)

where γ1 =
√
β1 and γ2 = β2 − 3. This expression is more formally known as the Gram-

Charlier Type-A expansion. Note that when γ1 = 0 = γ2, (3.8) reduces to a standard
normal distribution.

Postivity conditions

One of the major drawbacks of a polynomial approximation is that certain parameters
can lead to negative values which is undesirable when considering probability density
functions [6]. It is therefore necessary to define the conditions for which the function
f(z) is positive-definite.

We begin by considering D to be the region in the (γ1, γ2)-plane for which f(z) in
(3.8) is positive definite. Mathematically, this entails that

g4(z) = 1 + γ1
6 H3(z) +

γ2
24H4(z) ≥ 0, ∀z. (3.11)

Now, the set (γ1, γ2) that satisfies

g4(z) = g′4(z) = 0 (3.12)

where g′4(z) = γ1
2 H2(z) +

γ2
6 H3(z) is called the envelope of p4(z) [6]. Straightforward

computations give

γ1(z) = −24H3(z)

h(z)
and γ2(z) = 72H2(z)

h(z)
, (3.13)

where (3.12) has been solved simultaneously for γ1 and γ2 and h(z) = 4H2
3 (z)−3H2(z)H4(z).

To determine the set (γ2, γ2), we begin by rewriting h(z) as h(z) = z6− 3z4 + 9z2 + 9.
Since h(z) ≥ 0 for all z, the signs of γ1 and γ2 depend solely on H3(z) and H2(z),
respectively. Now, H3(z) = z3 − 3z so γ1 ≥ 0 for z ∈ (−∞,−

√
3] and z ∈ [0,

√
3].

Similarly, H2(z) = z2 − 1 so γ2 ≥ 0 for z ∈ (−∞,−1] and z ∈ [1,∞).

8



3 Statistical theory 9

Figure 1: Global plot of the envelope of p4(z). The red lines define the boundary of D .

Figure 1 presents the global envelope of p4(z). The curve AD1B represents the region of
the (γ1, γ2)-plane when z ∈ (−∞,−

√
3). For z ∈ [−

√
3, 0] and z ∈ [0,

√
3], the curves

BD3C and BD4C are obtained. Lastly, the curve AD2B represents the region of the
(γ1, γ2)-plane when z ∈ [

√
3,∞). It is now clear that f(z) ≥ 0 for all z when both γ1

and γ2 are positive. For the kurtosis, this means that γ2 ∈ [0, 4]. The maximum skewness
is obtained when

∣∣∣γ′1(z)
∣∣∣ =

∣∣∣z4 − 6z3 + 6z2 − 18z + 9
∣∣∣ = 0 and can be found numerically

to be at the point (2.451, 1.051) in the (γ1, γ2)-plane. This implies that γ1 ∈ [0, 1.051].
The region D is then the envelope obtained when γ1 ∈ [0, 1.051] and γ2 ∈ [0, 4] and is
shown in Figure 1 where the red lines define the boundary of D .

Maximum likelihood estimation
Maximum likelihood estimation (MLE) is a well known method used to estimate the

parameters of a statistical model. The procedure is based on maximizing what is known
as the likelihood function of the model. Consider the random sample Z = (z1, z2, ..., zn)
generated from the PDF f(zi; θ) where θ is a k-dimensional parameter vector in the

9



4 Methodology 10

parameter space Ω. Then, the joint probability density of the sample Z is

f(z1, z2, ..., zn; θ) = f(z1; θ) · f(z2; θ) · ... · f(zn; θ) =
n∏

i=1
f(zi; θ) (3.14)

If we view the joint PDF as a function of θ, (3.14) can be written as

L(θ; z1, z2, ..., zn) =
n∏

i=1
f(zi; θ) (3.15)

where L(θ) is the likelihood function. The goal of MLE is to find the values of the model
parameters that maximize the likelihood function (3.15) over the parameter space Ω in
a way that makes the observed data most probable. We can now define the maximum
likelihood estimator

θ̂ = argmax
θ∈Ω

L(θ) (3.16)

to be the parameter values that maximize L(θ). Candidates for the maximum likelihood
estimator are then all points θj such that

∂L

∂θj
= 0, j = 1, ..., k (3.17)

By taking the natural logarithm of the likelihood function, the product in the joint
density (3.14) can be written as a sum which is more convenient when differentiating.
The log-likelihood is then readily defined as

l(θ;Z) = log



n∏

i=1
L(θ;Z)


 =

n∑

i=1
logL(θ;Z) (3.18)

and candidates for the maximum likelihood estimator are now all points θj such that

∂l

∂θj
= 0, j = 1, ..., k (3.19)

The monotonic behaviour of the logarithm function ensures that the maximum of l(θ))
occurs at the same values of θj as for L(θ) which is a desirable result of the transforma-
tion.

4 Methodology
Case 1: Sea states with waves of single frequency

The standard form of the Rayleigh probability density function of the random variable
z is given by

p(z) =
z

σ2 exp

− z2

2σ2


, z ≥ 0 (4.1)

10



4 Methodology 11

where σ is the scaling parameter of the distribution. Now, we begin by considering
singular frequency gravity waves in deep water that are Rayleigh distributed with their
probability density function given by

p(H) =
H

4m0
exp


− H2

8m0


 . (4.2)

From this, the relationship between the zeroth-order moment m0 and the scaling param-
eter σ of the Rayleigh distribution can be defined as σ = 2√m0. In deep water, the
following approximation of the significant wave height can be used [13]:

Hs ≈ 4√m0 (4.3)

so that m0 ≈ H2
s

16 and the scaling parameter σ of the Rayleigh distribution can be com-
puted.

Now, for a given sea state with significant wave height 1m ≤ Hs ≤ 3m and peak
period 8s ≤ Tp ≤ 12s, Rayleigh distributed wave heights were randomly sampled using σ
(∼ 500) from Monte Carlo simulations and stored in the matrix H. Each simulated value
of Hi in H then corresponds to one realization of the wave height under the conditions
of an actual observation. The non-linear transfer function implemented in [15] was then
readily applied to each realization with their corresponding frequency f = 1/T to acquire
the local wave heights, wave lengths, modulus m and root solutions f2 in shallow water
stored in the matrices H∗, λ∗, m and f2 respectively for later use.

To compute the surface elevation η in both deep and shallow water, the parameter m
was used as a switch. Using each mi to calculate K(mi) which is the complete elliptic
integral of first kind, the Jacobian elliptic function cn was computed for each mi. As
mentioned in section 2, m gives periodic waves for 0 ≤ m < 1. For the case m = 0, the
cnoidal solution given in (2.10) reduces to the linear solution given in (2.1). The surface
elevation of each individual wave was then computed at 100 uniformly spaced grid points
xi so that −λi2 ≤ xi ≤ λi

2 , using either the linear or non-linear solution depending on
the nature of the wave. The results were stored in the matrices η and η∗ for deep and
shallow water, respectively.

Once the surface elevation was computed, the parameter grid search described at the
end of this section was used to estimate the parameter vector θ of the surface elevation
distribution by the method of MLE as described in section 3 so that

θ̂ = argmax
θ∈Ω

L(θ) (4.4)

A statistical analysis of both the wave height and the surface elevation was then carried
out. First, the question of whether the wave heights are Rayleigh distributed in shallow
water was addressed by fitting a Rayleigh distribution to the data and hypothesis testing.
Similarly, to determine if the the deep water free surface elevation is in fact normally

11
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distributed, a Gaussian distribution was fit to the data by method of maximum likelihood
estimation along with visual inspections in the form of histograms and Q-Q plots. For
the free surface elevation in shallow water, the Gram-Charlier expansion is used in place
of the Gaussian distribution and a comparison was carried out.

Case 2: Sea states with waves of several frequencies
Now we begin by considering a wave spectrum defined in terms of its significant wave

height Hs and peak period Tp. The Pierson-Moksowitz spectrum dependent on Hs is
then computed using (3.7). Namely,

S(fi) =
H2
rms

8
∫
Ŝ(fi)dfi

Ŝ(fi) (4.5)

where Hrms is the root-mean-square wave height. The scaling parameters σi used to
simulate were then calculated using the relation

σi =
√
S(fi)∆fi. (4.6)

Each σi was then used to randomly sample Rayleigh distributed Fourier amplitudes (∼
100) at each frequency fi with Monte Carlo simulations. The result is the 100-by-100
matrix A where each column A∗,i represents 100 realizations of the random Fourier
amplitude ai at the frequency fi in deep water. Each column then has an expected value
given by E{ai} = σi

√
π
2 .

The non-linear transfer function ([15]) requires that the amplitudes given as the input
are the physical amplitudes rather than the Fourier amplitudes. To approximate the
physical amplitudes we propose the following scaling:

E{ãi} = κiE{ai} (4.7)

where κi is chosen to be
κi =

Hrms

E{ai}
=
Hrms

σi
√
π
2

, (4.8)

where E{ãi} is the expectation of the physical amplitudes. The transformed scaling
parameter to be simulated with is then given by

σ̃i =
E{ãi}√

π
2

=

√
2
π
κiE{ai} = κiσi. (4.9)

Using σ̃i to simulate with in the same manner as before results in the transformed matrix
Ã now consisting of the physical amplitudes at each frequency fi in deep water. Our
choice of κi ensures that each column of the transformed matrix Ã∗,i has an expected
value E{ãi} = Hrms in agreement with the significant wave height of the original deep

12
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water spectrum. The non-linear transfer function was then applied to each column Ã∗,i
along with its corresponding frequency fi to acquire the local amplitude of each harmonic
in shallow water and was stored in the matrix Ã∗. Each column of Ã∗ now represents
realizations of the physical amplitudes at each frequency fi in shallow water. Analogous
to the deep water case, the columns Ã∗∗,i each have an expected value given by E{ã∗i } =
σ̃∗i
√
π
2 where σ̃∗i is the scaling parameter of the Rayleigh distributed amplitudes in shallow

water and is estimated for each column by fitting a Rayleigh distribution to each Ã∗∗,i. The
scaling parameters belonging to the Rayleigh distributed Fourier amplitudes in shallow
water were then calculated using the relation given in (4.9) and rearranging. So,

σ∗i =
1
κi
σ̃∗i . (4.10)

The spectrum in shallow water S∗(fi) can now be approximated using (4.6) so that

S∗(fi) =
σ∗i

2

∆f
. (4.11)

Implementation of parameter grid search
A description of the methodology used in the parameter grid search will now be given.

First, we denote n as the number of possible values for γ1, γ2 and σ such that the total
number of grid points to search is n3.

Step 1: Standardize data

We begin by standardizing the surface elevation data so

zη = η− µη,

where zn is now the standardized surface elevation and µη is the surface elevation mean.

Step 2: Define grid

The grid vertices can be defined from the conditions imposed on γ1 and γ2 found in
section 3. We let γ1 and γ2 be the equally spaced n-by-1 column vectors where each
γ1,i ∈ [0, 1.051] and γ2,j ∈ [0, 4], respectively. Similarly, we let σ be the equally spaced
n-by-1 column vector centered around the sampling standard deviation so that each
σk ∈ [σzη − 2,σzη + 2].

Step 3: Define probability density and negative log-likelihood functions

The PDF function f(zη) and negative log-likelihood functions were defined in R as the

13



5 Case Studies and Analysis 14

following:

Algorithm 1: Unknown PDF f(zη) function
Input: Standardized surface elevation zη, parameter vector θ
Output: Values of PDF at each surface elevation point

1 f(zη) =
(
1 + γ1

6 H3(zη) +
γ2
24H4(zη)

)

 1
σ
√

2πe
− 1

2

(
zη
ση

)2



Algorithm 2: Negative log-likelihood function
Input: Standardized surface elevation zη, parameter vector θ
Output: Negative log-likelihood value of f(zη)

1 l = −
(∑ log f(zη)

)

Step 4: Parameter grid search

Then a grid search was implemented in R in the following way:

Algorithm 3: Parameter grid search
Input: Standardized surface elevation zη, initial parameter vector θ
Output: Updated parameter vector θ

1 for γ1,i do
2 for γ2,j do
3 for σk do
4 Calculate minimum of f(zη)
5 if minimum of f(zη) > 0 then
6 Compute negative log-likelihood l of f(zη) at that grid point
7 if l < l0 then

// l0 denotes the negative log-likelihood value from the previous
iteration

8 Parameter vector θ = [γ1,i, γ2,k,σk]
9 end

10 end
11 end
12 end
13 end

5 Case Studies and Analysis
In this section, the results obtained when implementing the methodology proposed in

section 4 for two different cases will be shown.
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5 Case Studies and Analysis 15

Case 1: Sea states with waves of single frequency
In all experiments the deep water depth is defined as 70m and the coastal depth as

5m. Experiments 1, 2 and 3 are carried out with a period of T = 8s,T = 10s and
T = 12s respectively and values of the significant wave height Hs,0 were chosen so that
Hs,0 ∈ [1, 2, 3]m in deep water. Tables 1, 2 and 3 show the estimated values of the
skewness (γ1) and kurtosis (γ2) in the Gram-Charlier type-A expansion given in (3.10)
as well as the standard deviation (σ) of the normal distribution p(z). The parameters
β1 and β2 are calculated given that γ1 =

√
β1 and γ2 = β2 − 3 as presented in section 3.

The parameter Hs,0 defines the significant wave height in deep water whereas Hs denotes
the shallow water significant wave height and is calculated for each experiment.

Experiment 1:

Table 1: Estimated values of γ1, γ2 and σ for simulated sea states with T = 8s.

Hs,0 Hs γ1 γ2 σ β1 β2
1m 1.05m 0.517 0.552 0.249 0.267 3.552
2m 2.05m 0.879 1.379 0.512 0.773 4.379
3m 3.18m 0.983 1.793 0.731 0.966 4.793

Figure 2 shows a Rayleigh distribution fit to histograms of the wave height at 70m and
5m depth, respectively for the case T = 8s and initial significant wave height Hs,0 = 1m.
In both subfigures, the Rayleigh distribution fits the data very well. A Kolmogorov-
Smirnov (K-S) test was also carried out to test the null hypothesis that the wave height
data in shallow water comes from a Rayleigh distribution. The p-value obtained for this
case was statistically significant (p = 0.7725) indicating that the null hypothesis can
not be rejected and we conclude that the wave heights in shallow water are Rayleigh
distributed. The same result was obtained for all 3 experiments and 9 cases, i.e. the
p-values obtained from the K-S test were all greater than the significance level (α) =
0.05. We therefore conclude that wave heights obtained at a depth of 5m can still be
considered Rayleigh distributed.

Figure 3 shows plots of each individual wave profile (∼ 500) over its respective wave
length λ. An increase in wave height and decrease in wavelength can be observed while
the frequency remains constant in each case. This is due to the group velocity changing
with water depth. A decrease in the group velocity is analogous to a decrease in the wave-
energy transport velocity and must be compensated for. Since wave energy is conserved, a
decrease in the kinetic energy leads accordingly to an increase in the potential energy and
thus an increase in wave height as described in section 2. Similar results were observed
in experiments 2 and 3.

Figure 5 presents Q-Q plots of the free surface elevation data in both deep and shallow
water. In all 3 cases, the surface elevation in deep water follows the normal line reasonably
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well with only small deviations at the end points. This indicates that the free surface
elevation in deep water has a ”thin-tailed” distribution. In these cases, the Q-Q plot of the
distribution has small or negligible deviations at the ends. Thus, the surface elevation
in deep water can still be classed as normally distributed. In shallow water however,
the deviations from the normal line are much greater. The degree of deviation is more
pronounced in the right end point than the left which indicates that the surface elevation
in shallow water follows a distribution that is positively skewed. Again, similar results
were obtained for experiments 2 and 3.

(a) Waveheight at 70m, Hs,0 = 1m (b) Wave height at 5m, Hs = 1.05m

Figure 2: Histograms of the wave height H at 70m and at 5m depth (after the non-linear
transfer function has been applied) for waves with T = 8s. A Rayleigh distribution has
been fit to the waves at both depths.
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(a) Surface elevation at 70m for Hs,0 = 1m (b) Surface elevation at 5m for Hs = 1.05m

(c) Surface elevation at 70m for Hs,0 = 2m (d) Surface elevation at 5m for Hs = 2.05m

(e) Surface elevation at 70m for Hs,0 = 3m (f) Surface elevation at 5m for Hs = 3.18m

Figure 3: Plots of surface elevation η at 70m and at 5m depth (after the non-linear
transfer function has been applied) for waves with T = 8s over each of their respective
wavelengths λ.
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(a) Surface elevation at 70m for Hs,0 = 1m (b) Surface elevation at 5m for Hs = 1.05m

(c) Surface elevation at 70m for Hs,0 = 2m (d) Surface elevation at 5m for Hs = 2.05m

(e) Surface elevation at 70m for Hs,0 = 3m (f) Surface elevation at 5m for Hs = 3.18m

Figure 4: Histograms of surface elevation η at 70m and at 5m depth (after the non-linear
transfer function has been applied) for waves with T = 8s. A Gaussian distribution
has been fit to the waves at 70m depth whereas both the Gaussian and Gram-Charlier
densities have been fit to the waves at 5m depth.
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(a) Q-Q plot of surface elevation at 70m for
Hs,0 = 1m

(b) Q-Q plot of surface elevation at 5m for Hs

= 1.05m

(c) Q-Q plot of surface elevation at 70m for
Hs,0 = 2m

(d) Q-Q plot of surface elevation at 5m for Hs

= 2.05m

(e) Q-Q plot of surface elevation at 70m for
Hs,0 = 3m

(f) Q-Q plot of surface elevation at 5m for Hs

= 3.18m

Figure 5: Q-Q plots of surface elevation η at 70m and 5m depth for waves with T = 8s.
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(a) γ1 = 0.517 and γ2 = 0.552 (b) γ1 = 0.879 and γ2 = 1.379

(c) γ1 = 0.983 and γ2 = 1.793

Figure 6: γ1, γ2 plane showing estimated parameters of the Gram-Charlier type-A expan-
sion for waves with T = 8s.

Experiment 2:

Table 2: Estimated values of γ1, γ2 and σ for simulated sea states with T = 10s.

Hs,0 Hs γ1 γ2 σ β1 β2
1m 1.17m 0.724 0.965 0.250 0.524 3.965
2m 2.46m 0.983 1.793 0.522 0.966 4.793
3m 3.68m 1.034 2.207 0.649 1.069 5.207
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(a) Surface elevation at 70m for Hs,0 = 1m (b) Surface elevation at 5m for Hs = 1.17m

(c) Surface elevation at 70m for Hs,0 = 2m (d) Surface elevation at 5m for Hs = 2.46m

(e) Surface elevation at 70m for Hs,0 = 3m (f) Surface elevation at 5m for Hs = 3.68m

Figure 7: Histograms of surface elevation η at 70m and at 5m depth (after the non-linear
transfer function has been applied) for waves with T = 10s. A Gaussian distribution
has been fit to the waves at 70m depth whereas both the Gaussian and Gram-Charlier
densities have been fit to the waves at 5m depth.
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5 Case Studies and Analysis 22

(a) γ1 = 0.724 and γ2 = 0.965 (b) γ1 = 0.983 and γ2 = 1.793

(c) γ1 = 1.034 and γ2 = 2.207

Figure 8: γ1, γ2 plane showing estimated parameters of the Gram-Charlier type-A expan-
sion for waves with T = 10s.

Experiment 3

Table 3: Estimated values of γ1, γ2 and σ for simulated sea states with T = 12s.

Hs,0 Hs γ1 γ2 σ β1 β2
1m 1.32m 0.983 1.793 0.328 0.966 4.793
2m 2.94m 1.034 2.207 0.527 1.069 5.207
3m 4.51m 1.034 2.621 0.753 1.069 5.621
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5 Case Studies and Analysis 23

(a) Surface elevation at 70m for Hs,0 = 1m (b) Surface elevation at 5m for Hs = 1.31m

(c) Surface elevation at 70m for Hs,0 = 2m (d) Surface elevation at 5m for Hs = 2.94m

(e) Surface elevation at 70m for Hs,0 = 3m (f) Surface elevation at 5m for Hs = 4.51m

Figure 9: Histograms of surface elevation at 70m and 5m depth for waves with T = 12s.
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(a) γ1 = 0.983 and γ2 = 1.793 (b) γ1 = 1.034 and γ2 = 2.207

(c) γ1 = 1.034 and γ2 = 2.621

Figure 10: γ1, γ2 plane showing estimated parameters of the Gram-Charlier type-A ex-
pansion for waves with T = 12s.

Figures 4, 7 and 9 show histograms of the free surface elevation. In each figure, subfigures
(a), (c) and (e) present the histogram with a Gaussian distribution fit to the data. Simi-
larly, subfigures (b), (d) and (f) present the histogram along with comparisons between
a Gaussian distribution and Gram-Charlier type-A distribution fit to the data. In all
3 experiments, the Gaussian distribution (solid line) fits the data well in deep water as
anticipated from the Q-Q plots in Figure 5. Regarding the surface elevation in shallow
water, the results vary depending on the significant wave height. As can be observed,
sea states with a smaller significant wave height are in general better approximated by a
Gram-Charlier type-A series. As the significant wave height increases, the surface eleva-
tion data becomes excessively skewed which can possibly be explained by the non-linearity
of the waves. Recall that the modulus m ∈ [0, 1) gives periodic waves. For m = 0, the
solution to the problem is given in terms of (2.1). When the non-linear terms are more
dominant however, the parameter m increases and causes a surface deformation in the
form of sharper crests and flatter troughs which can be seen in the histograms. In general,
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5 Case Studies and Analysis 25

the non-linear terms seem more dominant in the sea states with an original significant
wave height Hs,0 = 3m. Figure 11 presents the parameter γ2 as a function of γ1. As
we can see, some scatter can be observed when considering each pair of (γ1, γ2) values
corresponding to each experiment with a significant wave height Hs. In general however,
γ2 seems to increase with γ1. For all experiments considered here in Case 1, the wave
spectrum (the focus of Case 2) reduces to a delta-function at the frequency under consid-
eration. The results of Case 2 presented in the next subsection are then each an extension
to this situation where sea states consisting of several frequencies are investigated.

Figure 11: Parameter γ2 as a function of parameter γ1.

Case 2: Sea states with waves of several frequencies
In both experiments the deep water depth was again defined as 70m and the coastal

depth as 5m. Experiments 1 and 2 were carried out with significant wave heights Hs,0 =
1m and Hs,0 = 2m in deep water, respectively. In both cases, 100 uniformly distributed
frequencies fi were defined such that 0.05 Hz ≤ fi ≤ 0.2 Hz and ∆fi = 0.001. The results
of both experiments are presented below.
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5 Case Studies and Analysis 26

Experiment 1

(a) Amplitude spectrum at 70m, Hs,0 = 1m (b) Amplitude spectrum at 5m, Hs = 1.41m

Figure 12: The amplitude spectrum in deep vs. shallow water, i.e. the expected values
of the Fourier amplitudes as a function of frequency.

Figure 13: Comparison between P-M spectrum and estimated spectrum in deep water as
well as the estimated spectrum spectrum in shallow water for Hs,0 = 1m and Tp = 12s.
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5 Case Studies and Analysis 27

Experiment 2

(a) Amplitude spectrum at 70m, Hs,0 = 2m (b) Amplitude spectrum at 5m, Hs = 2.77m

Figure 14: The amplitude spectrum in deep vs. shallow water, i.e. the expected values
of the Fourier amplitudes as a function of frequency.

Figure 15: Comparison between P-M spectrum and estimated spectrum in deep water as
well as the estimated spectrum spectrum in shallow water for Hs,0 = 2m and Tp = 12s.
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6 Discussion and Further Work 28

Figures 12 and 14 show the computed amplitude spectrum in both deep and shallow
water for both of the experiments that were carried out, respectively. In both experi-
ments, the expected values of the amplitudes in shallow water E{a∗i } corresponding to
the lower frequencies (fi ∈ [0.065, 0.09]) were amplified to a greater extent than for those
corresponding to the higher frequencies. In experiment 1, the significant wave height in
shallow water was calculated to be Hs = 1.41m, whereas in experiment 2 a significant
wave height Hs = 2.77m was obtained.

Figures 13 and 15 show the initial P-M spectrum along with its estimate by the procedure
in section 4. The estimated and smoothed estimate of the spectrum in shallow water is
also presented. As can be seen in both figures the peak frequency T ∗p is slightly shifted to
a lower frequency in shallow water in both experiments. This indicates that waves with
lower frequencies have a greater contribution to the total variance η2 in shallow water
compared to that of deep water. From a physical perspective, this indicates that waves
with lower frequencies have a greater contribution to the total energy in shallow water
compared to that of deep water.

6 Discussion and Further Work
In the first part of this work, the non-Gaussian characteristics of the free surface ele-

vation in shallow water was investigated for sea states consisting of waves with a single
frequency. The wave heights obtained at 5m depth could still be considered Rayleigh dis-
tributed and the Gram-Charlier series fit the computed surface elevation data at 5m depth
to a satisfactory degree. However, the histograms of the surface elevation became exces-
sively skewed for the sea state considering an initial significant wave height Hs,0 = 3m
and period T = 12s. A natural extension to these experiments would be the investigation
of the limiting sea severity above which the Gram-Charlier series is no longer accurate in
describing the distribution of the free surface elevation in shallow waters. A comparison
between the Gram-Charlier series and the Tayfun distribution could then be carried out
to identify which distribution is most accurate depending on the sea severity. It was also
observed that the significant wave height did not change significantly after the non-linear
transfer function was applied to the wave height data, although the wave shape had a
noticeable change in the form of sharper crests and flatter troughs. Since the model used
in this work does not take into account wave breaking, further studies could involve the
investigation of a region between the linear region and region dominated by non-linear
effects where the waves haven’t yet reached breaking point but the significant wave height
of the sea state undergoes a noticeable change during the shoaling process.

In the second part of this paper, a scaling of the Fourier amplitudes was proposed to
approximate the physical amplitudes of waves belonging to the Pierson-Moskowitz spec-
trum in deep water. The wave spectrum in shallow water was then estimated using the
relation between S∗(fi) and the scaling parameter σ∗i of the Fourier amplitudes for 2
cases. A slight shift in the peak frequency was observed in both cases in favour of a lower
frequency than that of the peak frequency of the deep water spectrum. In practice, it
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could be more practical to use real time series data in both deep and shallow water as
a means of comparison. A Fourier analysis could be carried out on the deep water time
series to identify the Fourier amplitudes before using our proposed scaling to estimate
the physical amplitudes. The estimated physical amplitudes could then be used as the
input to the non-linear transfer function and thus, the shallow water spectrum estimate
can be computed from the output.
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Chapter 5

Time Series Analysis

In this chapter, a description of a zero-crossing analysis is presented before ap-
plying said analysis to real time series data and carrying out a statistical analysis
on par with the analysis carried out in Case 1 of our submitted paper in Chapter 4.

5.1 Zero-Crossing Analysis

In a time record, the surface elevation is the instantaneous elevation of the sea
surface at an arbitrary moment in time relative to a reference level [13]. Individual
waves can then be defined as the as profile of the surface elevation between two con-
secutive upward zero-crossings (when zero is the reference level under consideration).
Figure 5.1 shows a time record of the surface elevation with the arrows indicating
upward zero-crossings. The surface elevation profile between the 2 points marking
the upward zero-crossings is then accordingly one wave in the time series.

Approximating the surface elevation at a specific moment in time ti is then done by
first defining the height of the wave as the distance between the wave crest Hcrest

and wave trough Htrough so that

ai =
Hcrest,i −Htrough,i

2
. (5.1)

The surface elevation at time t is then given by

η(ti) = ai cos (2πfiti + αi) (5.2)

where fi can be found by computing the wave period Ti, i.e. the time between 2
consecutive upward zero-crossing points so that fi = 1/Ti.
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Figure 5.1: Time record of the surface elevation η(t) with upward zero-crossings.

5.1.1 Application in MATLAB

An overview of how the zero-crossing analysis was carried out is now shown by
the pseudo codes at the end of this chapter. First, the start and end points of the
analysis were defined in Algorithm 1 to ensure that the first and last wave in the time
series both undergo a full oscillation. Further, Algorithm 2 shows the determination
of upward and and downward zero-crossing as well as the wave crest and trough of
each wave in the time series. Each wave period Ti was then determined by calculating
the time difference between 2 consecutive upward zero-crossings. Figure 5.2 shows
the results of the application for the first 100 data points in the time series obtained
at WG.1 for resolution purposes.

5.2 Experiment and results

The data under investigation was obtained by measuring the water surface ele-
vation at 2 wave gauges and corresponds to wave gauge 1 and wave gauge 7 (WG.1
∼ WG.7) in the study carried out in [15]. The measurements at WG.1 and WG.7
are at water depths of 47cm and 15cm over a 1/20 plane beach, respectively. Figure
5.3 shows histograms of the measured surface elevation η at both gauges, where a
Guassian distribution has been fit to the data. As can be observed, the Gaussian
distribution fits the surface elevation data at 47cm (WG.1) better than that of WG.7
at 15cm.
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Figure 5.2: Results of application of upward-zero-crossing analysis on surface eleva-
tion time series at WG.1 in MATLAB.

(a) Histogram of measured surface elevation
at 47cm.

(b) Histogram of measured surface elevation
at 15cm

Figure 5.3: Histograms of surface elevation measurements fit with a Gaussian dis-
tribution at 47cm (WG.1) and 15cm (WG.7) depth, respectively.

The non-linear transfer function in [20] was then applied to the wave heights
obtained from the upward-zero-crossing analysis and the surface elevation was com-
puted in the same manner as described in section 4 of our submitted paper. Namely,
computing the surface elevation using either (2.18) or (2.53) depending on the na-
ture of the wave. The results are show in Figure 5.4. Subfigure (a) presents the
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histogram of the surface elevation with a Gaussian distribution fit to the data. Sim-
ilarly, subfigure (b) presents the histogram along with comparisons between a Gaus-
sian distribution and Gram-Charlier type-A distribution fit to the data. As can be
observed in subfigure (a), the Gaussian distribution (solid line) fits the data rea-
sonably well in at 47cm depth as can also be seen from the Q-Q plots in Figure
5.5. Regarding the surface elevation in shallow water, the parameter vector θ in
the Gram-Charlier expansion (see section 4 of submitted paper) was found to be
θ = [0.7105, 1.0526, 0.1]. Both histograms represent the original measured data rea-
sonably well, although some deviations are to be expected due to our assumption
that each wave is a single harmonic.

(a) Surface elevation η at 47cm. (b) Surface elevation η at 15cm.

Figure 5.4: Histograms of surface elevation η at 47cm and at 15cm depth (after the
non-linear transfer function has been applied) for waves of several frequencies. A
Gaussian distribution has been fit to the waves at 47cm depth whereas both the
Gaussian and Gram-Charlier densities have been fit to the waves at 15cm depth.

As mentioned, Figure 5.5 presents Q-Q plots of the free surface elevation data at
both gauge depths. The surface elevation at 47cm depth follows the normal line
reasonably well with only small deviations at the end points. This again indicates
that the free surface elevation in deep water has a ”thin-tailed” distribution. In
these cases, the Q-Q plot of the distribution has small or negligible deviations at
the ends. Thus, the surface elevation at 47cm depth can still be represented by a
Gaussian distribution to a satisfactory degree. At 15cm depth, the deviations from
the normal line are larger at the end points indicating a distribution at 15cm that is
more skewed. This extra skewness can be accounted for by using the Gram-Charlier
expansion to fit the data rather than a Gaussian distribution as shown in Figure
5.4.
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(a) Q-Q plot of surface elevation at 47cm. (b) Q-Q plot of surface elevation at 15cm.

Figure 5.5: Q-Q plots of surface elevation η at 47cm and 15cm depth.

5.3 Discussion and Further Work

In this chapter we presented the method of an upward zero-crossing analysis and
applied it to real time series data. The wave heights obtained were then used as
the input to the non-linear transfer function and the resulting histograms yielded
good agreement with the original measured surface elevation data. A Gram-Charlier
expansion was then fit to the surface elevation at WG.7 (15cm depth), taking into
account the skewing of the surface elevation data during the shoaling process and
the results were shown in Figure 5.4.

An extension to this work could be the Fourier analysis of the time series obtained at
both wave gauges to obtain the Fourier amplitudes. In this way, the wave spectra at
both depths could be computed and a comparison could be carried out to identify any
major differences like the downshifting/up-shifting of the wave energy, changes in
peak frequency etc. Since we only considered 2 gauges in this chapter, the analysis
considered here could be applied to data obtained at several of the other wave
gauges to see the range of depths for which the Gram-Charlier expansion is accurate
in representing the distribution of the free surface elevation. However, it should
be noted that at Gauge 8 and beyond, the wave experiments carried out in [15]
feature wave breaking. In principle, it would at least be possible to incorporate
wave breaking in the non-linear shoaling code using the approach detailed in [6] and
[4].

62



Algorithm 1: Upward zero-crossing starting points
Input: Surface elevation time series data η, sampling frequency fs
Output: Wave height and wave period data
if ηstart == 0 and ηstart+1 > 0 then

Denote first upward zero-crossing at this point in time, tstart
end
if ηstart == 0 and ηstart+1 < 0 then

for i = 1,...,end-1 do
if ηi < 0 and ηi+1 > 0 then

Denote first upward zero-crossing at this point in time, ti
end

end

end
if ηend == 0 and ηend−1 < 0 then

Denote last upward zero-crossing at this point in time, tend
end
if ηend == 0 and ηend−1 > 0 then

for i = end - 1,...,1 do
if ηi < 0 and ηi+1 > 0 then

Denote last upward zero-crossing at this point in time, ti
end

end

end

Algorithm 2: Upward zero-crossing
Input: Surface elevation time series data η, sampling frequency fs
Output: Wave height and wave period data
for i = index of first upward crossing point,..., index of last upward crossing point do

if ηi < 0 and ηi+1 > 0 then
Store values and index of upward zero-crossing point

end
if ηi > 0 and ηi+1 < 0 then

Store values and index of downward zero-crossing point
end

end
for i = indexes of upward crossing points do

if ηi > ηi−1 and ηi > ηi+1 and ηi > 0 then
Denote this point as the crest of the wave

end
if ηi < ηi−1 and ηi < ηi+1 and ηi < 0 then

Denote this point as the trough of the wave
end

end
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Appendix A

Random variables

A.1 Random variables

Random variables are defined to be any variable whose value cannot be predicted
and they are fully characterised by their PDF p(z). Consider a random variable z.
The probability of z acquiring a value between z and z + dz is given by

Pr{z < z ≤ z + dz} =

∫ z+dz

z

p(z)dz (A.1)

The probability of z taking on a value less than or equal to z is then defined using
its CDF P (z) and can be written mathematically as

P (z) = Pr{z ≤ z} =

∫ z

−∞
p(z)dz (A.2)

A.1.1 Estimation

Considering a set of sample values (an ensemble) of the random variable z and
the notation 〈.〉 denoting the ensemble average, the following holds for the mean
and standard deviation of z respectively:

µz ≈ 〈z〉 =
1

N

N∑
i=1

zi (A.3)

σ2
z ≈ 〈(z − 〈z〉)2〉 =

1

N

N∑
i=1

(zi − 〈z〉)2 =
1

N

N∑
i=1

〈zi〉2 − 〈z〉2 (A.4)
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A.1.2 Moments

The moments of a function are quantitative measures related to the shape of the
function’s graph. The nth-order moment, mn, of p(z) about a value c can be defined
as

mn =

∫ ∞
−∞

(z − c)np(z)dz. (A.5)

If c = 0, the nth moment is called a raw moment and a central moment if c = µ.
Then, the following statements can be made about the zeroth, first-, and second-
order moments:

The zeroth raw moment m0 of any PDF is 1 since

Pr{z ≤ ∞} = P (∞) =

∫ ∞
−∞

p(z)dz = 1

The first raw moment m1 is known as the mean or the expected value of z and can
be written as

m1 = µz = E{z} =

∫ ∞
−∞

zp(z)dz

The second central moment, m2, is the variance σ2 of z. It can be defined as

m2 = σ2
z = E{(z − µz)2} =

∫ ∞
−∞

(z − µz)2p(z)dz = E{z2} − µ2
z = m2 −m2

1

In addition to these definitions, the third- and fourth-order moments are used to
describe the skewness and kurtosis of a probability density function, respectively.

A.1.3 Relationship between the wave spectrum and scaling
parameter of Rayleigh distributed Fourier amplitudes

We begin by considering the standard form of the Rayleigh probability density
function of the random variable z is given by

p(z, σ) =
z

σ2
exp

(
− z2

2σ2

)
, z ≥ 0 (A.6)
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where σ is the scaling parameter of the distribution. Now, the probability distribu-
tion of a Rayleigh distributed Fourier amplitude at a specific frequency fi was given
in (3.4). Namely,

p(ai) =
π

2

ai
µ2
i

exp

(
−πa

2
i

4µ2
i

)
. (A.7)

The following expression for σ2
i is then easily determined as

σ2
i =

2µ2
i

π
. (A.8)

Now, the variance of ai is given by

Var(ai) =
4− π

2
σ2
i =

4− π
2

(
2µ2

i

π

)
= E{a2

i } − (E{ai})2. (A.9)

where (E{ai})2 and E{a2
i } are the first- and second raw moments, respectively.

Rearranging for the second raw moment gives

E{a2
i } = V ar(ai) + (E{ai})2 =

2µ2
i

π

(
4− π

2
+
π

2

)
=

4µ2
i

π
. (A.10)

Recall the variance density spectrum (3.5):

S(fi) =
1

∆fi
E

{
1

2
a2
i

}
, ∀fi. (A.11)

By substituting the expression for E{a2
i } and rearranging, the following for the scale

parameter σ holds:

4µ2
i

π
= 2S(fi)∆fi = 2σ2

i (A.12)

so,

σi =
√
S(fi)∆fi. (A.13)

69



A.2 Stochastic processes

A stochastic process is a family of random variables zti , where t is a parameter
running over a suitable index set t. Often, the index t corresponds to discrete units
of time so that the index set t is t = {0, 1, 2, ...} [22]. Then zt1 corresponds to z at
t = 0. It can also be convenient to write z(t1) or z1 to denote the same variable.

A fitting example of a stochastic process in one-dimension can be visualized by
considering wind-generated surface waves. Let the index t start at t = 0 and the
set of surface elevations η be observed at a location O over a period of time. The
random variable η at time t1 has a different value than η at t2 and η at t3 etc. since
the values are random. This set η(t1), η(t2), η(t3), ..., η(ti), is one realization of the
stochastic process and can be repeated to obtain several realizations.
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Appendix B

Hermite polynomials

Like other orthogonal polynomials, Hermite polynomials can be defined in several
different ways. Here, the following definition of the Probabilists’ Hermite polynomial
is considered and is given by

Hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 (B.1)

The first eleven Hermite polynomials can be found by straightforward computations
and are:

H0(x) = 1,

H1(x) = x,

H2(x) = x2 − 1,

H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x

H6(x) = x6 − 15x4 + 45x2 − 15,

H7(x) = x7 − 21x5 + 105x3 − 105x,

H8(x) = x8 − 28x6 + 210x4 − 430x2 + 105,

H9(x) = x9 − 36x7 + 378x5 − 1260x3 + 945x,

H10(x) = x10 − 45x8 + 630x6 − 3150x4 + 4725x2 − 945

(B.2)

In general,

Hn(x) = xn − n(n− 1)

1!
xn−2 +

n(n− 1)(n− 2)(n− 3)

2!
xn−4 −+... (B.3)
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Differentiating (B.3) gives

H ′n(x) = n

[
xn−1 − (n− 1)(n− 2)

1!
xn−3 +

(n− 1)(n− 2)(n− 3)(n− 4)

2!
xn−5 −+...

]

i.e. (B.1) obeys the differentiation rule

H ′n(x) = nHn−1(x). (B.4)

B.1 Orthogonality

In this section we will prove that Hermite polynomials form an orthogonal set
with respect to the weight function

w(x) = e−
x2

2 . (B.5)

We begin showing this by defining the Kronecker delta function

δmn =

{
0, m 6= n

1, m = n.
(B.6)

The n-th order polynomial is then orthogonal with respect to w(x) so that

∫ ∞
−∞

Hm(x)Hn(x)w(x)dx =
√

2πn!δmn (B.7)

Substituting (B.1) for Hn(x) gives

∫ ∞
−∞

Hm(x)Hn(x)w(x)dx = (−1)n
∫ ∞
−∞

Hm(x)
dne−

x2

2

dx2
dx

and integration by parts for m 6= n yields

(−1)n
∫ ∞
−∞

Hm(x)
dne−

x2

2

dx2
dx = (−1)n

Hm(x)
dn−1e−

x2

2

dxn−1

∣∣∣∣∣∣
∞

−∞

−
∫ ∞
−∞

H ′m(x)
dn−1e−

x2

2

dxn−1
dx

 .
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Observe that the first term after the equality is zero because e−
x2

2 and its derivatives
are zero at ±∞. Using (B.4) to rewrite the second term after the equality gives

(−1)n+1

∫ ∞
−∞

H ′m(x)
dn−1e−

x2

2

dxn−1
dx = m

∫ ∞
−∞

Hm−1(x)
dn−1e−

x2

2

dxn−1
dx.

Integrating by parts a second time yields

(−1)n+2m(m− 1)

∫ ∞
−∞

Hm−2(x)
dn−2

dxn−2
.e−

x2

2 dx

This implies that after integrating by parts m times we get

(−1)n+mm!

∫ ∞
−∞

H0(x)
dn−m

dxn−m
e−

x2

2 dx.

Recall from (B.2) that H0(x) = 1. Substituting and evaluating the integral leads to

(−1)n+mm!

1 · d
n−m−1

dxn−m−1
e−

x2

2

∣∣∣∣∣
∞

−∞

−
∫ ∞
−∞

0 · d
n−m−1

dxn−m−1
e−

−x2

2 dx

 = 0

For m = n we follow the same procedure and obtain

∫ ∞
−∞

(
Hn(x)

)2
e−

x2

2 dx = (−1)2nn!

∫ ∞
−∞

e−
x2

2 dx =
√

2πn!

and (B.7) is satisfied.
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