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Abstract

Rock physics modelling and inversion is indispensable in reservoir characterization and

beyond. Microstractural models can be implemented to explain the measured real field

visco-elastic properties of both carbonates and other porous media. This work present

both synthetic and real data inversion, and aims to evaluates microstructural visco-elastic

models for carbonates, and further implement simulated annealing (SA) in rock physics

and investigate.

On account of that, visco-elastic generalized Xu-White model is been employed, for for-

ward modelling, in which different perturbations in the microstructural parameters has

been performed. This have been effectively employed to obtain the ultimate match with

the real data, presented in this thesis. Dynamic version of the T-matrix that use a

Lippmann-Schwinger type of integral and consistent with the Brown–Korringa relation,

has been employed to count for the frequency-dependent effects of the fully saturated

communicating, inclusion of, cavities. The swift variant of SA called Very Fast Simulated

Annealing (VFSA) is been used to minimize the data mismatch.

The forward modelling results corresponding to different perturbations in the microstruc-

tural parameters can lead to optimum understanding of the behaviour of the microstruc-

tural models. Since VFSA coefficients must be selected in a proper way, upper and lower

pounds of the microstructural initial model has been selected, to optimally perform the

synthetic inversion models. Several models has been evaluated and their ability to explain

the measured velocity and attenuations of P- and S-waves at sonic and ultrasonic frequen-

cies. Model error test (ME) and uncertainty estimation, has been investigated to obtain

the optimal understanding of the complexity, associated with carbonates. After all, only

the real data inversion of the Portland top, using four different pore-types, showed the

power of VFSA in the rock physics inversion, and that it can provide quite good match

to real data.
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Chapter 1

Introduction

1.1 Carbonates and Related Porous Media

Carbonate rocks form an approximately 50% of the World hydrocarbon-bearing reser-

voirs (Li et al., 2018). Typical carbonates properties exhibit highly varying stiffness,

complexity, and heterogeneity in their primary storage space (Agersborg et al., 2009;

Eberli et al., 2003). The complexity and heterogeneity of carbonates follow naturally

from the rapid and pervasive diagenetic alterations, complex forming, and depositional

environment (Adam et al., 2009; Eberli et al., 2003). The combined effect of depositional

lithology, in carbonates, and several post-depositional processes leads to a special veloc-

ity distribution, hence, controls the velocity (Eberli et al., 2003). Seismic attenuation

give complementary information about the rock, e.g. sedimentary rocks, more specifically

about their microstructural properties (Assefa et al., 1999).

Carbonates differ from siliciclastics by often having similar constituents, hence, yet need

to be well studied (Agersborg et al., 2009). The effect of pore structure and texture, in

carbonates found to be nearly identical with the porosity effect when it comes to acoustic

velocity control (Eberli et al., 2003). According to the experimental data of (McCann

and Sothcott, 2009), attenuation of acoustic waves, namely P- and S-waves in carbonates

(limestones) can vary significantly with frequency, which is a result of the presence of

discontinuities or disruptions in the matrix, either in the form of cracks or different scales

of porosity (McCann and Sothcott, 2009) or generally due to the dependency on the de-

tails of the microstructures (Jakobsen et al., 2021). Thus, the complexity of carbonates

leads to extra effort to be correctly recovered, when dealing with the acoustic signature;
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for example, the complex properties in carbonates make the seismic responses and reser-

voir characterization more challenging than in siliciclastic rocks (Agersborg et al., 2009;

Jakobsen et al., 2019; Li et al., 2018; Saberi, 2010).

Unlike siliciclastics in pure carbonates, the effective stiffnesses are affected by the concen-

tration of the compliance and primarily controlled by porosities, mineralogy, pore types

and the rock’s fluid content (Agersborg et al., 2009). The squirt flow ,the flow at the

pore-scale, between communicating cavities of different shapes and orientation is consid-

ered to be the main mechanism of wave-induced fluid flow in the carbonates and related

porous media, studied in this thesis. When dealing with the squirt flow dominant systems,

the inclusion-based approach is more attractive, since it give adequate results (Jakobsen

and Chapman, 2009). Therefore, in this thesis, inclusion-based approach using the rock

physics t-matrix, consistent with the principle of fluid mass conservation (Jakobsen et al.,

2003b), is been implemented.

Agersborg et al. (2009) studied the velocity variation of carbonates considering the dual

porosity and wave-induced fluid flow. They presented efficient manually adjusted visco-

elastic models for carbonates, using different pore scales. The work done by Jakobsen

et al. (2021) gives an excellent understanding to estimate the microstructural parameters

for complex media. They have discussed and presented a new experimental results, mainly

the acoustic signature of the carbonate microstructure, pore-types, and rock constitutes,

using three limestone samples.Jakobsen et al. (2021) conceder the local, squirt, flow to

be the main mechanism for wave-induced fluid flow. Pore types of carbonate rocks can

be roughly classified into intercrystalline, interparticle, intraparticle, moldic, vug, and

fractures (Agersborg et al., 2009; Eberli et al., 2003).

1.2 Sonic and Ultrasonic Measurements on Carbon-

ates

1.2.1 Sample Description

The descriptions of the sample, used in this thesis, are compiled from McCann and Soth-

cott (2009), and Jakobsen et al. (2021). The sample called Portland limestone (top). The

Portland Limestone is of upper Jurassic age. Figure 1.1 (a) and (b) illustrates an scan-

ning electron micro-photograph (SEM) of the Portland limestone sample, at two different

scales, 100 µm and 10 µm, respectively. SEM micro-photograph is used to determine the

mineralogy, porosity, permeability and the distribution of the pore types of the mineral

(Assefa et al., 1999). SEM give both low-and high-resolution images. The sample is com-

posed of pure calcium carbonate, which has porosity, φ0, of 21.2 %, permeability of 586
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mD, grain density of 2679 kg/m3, dry density of 2111 kg/m3, and saturated density of

2297 kg/m3. The sample is an Oolitic porous grain-stone with large inter-granular pores

and blocky calcite cement between the ooids. The ooids are rounded to sub-rounded,

250-750 m in diameter. The ooids are formed of microspar crystals, 1-10 m in diameter,

and they have large internal microporosity.

Figure 1.1: SEM of the Portland limestone sample, the sample is an Oolitic porous
grain-stone with large inter-granular pores and blocky calcite cement between the ooids.
The ooids are rounded to sub-rounded, 250 – 750 m in diameter. a) Lower power of the
sample, at the scale of 100 µm, showing the matrix made of ooids, large inter-granular
pores and the local cement and b) Close up of the sample, at the scale of 10 µm, showing
the ooids made of microspar with abundant porosity (Jakobsen et al., 2021).

1.2.2 Velocity and Attenuation Measurements

The measurements of the velocities and attenuations of P- and S- waves of the Portland

limestone (top) was performed by McCann and Sothcott (1992, 2009), however, a review of

the measurement system, the different methods has been performed, and a description of

the different equipment is given in this section, since it is very important to understand the

measurement system to perform a meaningful numerical experiments later, on this work,

in Chapters 2 and 3. The sample used by McCann and Sothcott (1992, 2009), to measure

the P- and S-wave properties, is 5 cm in diameter, the P- and S-wave attribute were

determined at differential pressures up to 65 MPa. Torsional, or shear, and extensional

modes of oscillation of each sample were measured over a frequency range of approximately
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3 kHz to 30 kHz.

The Resonant-bar Method

The torsional, identical to a shear wave propagating in an infinite medium, and extensional

modes of oscillation Portland limestone have been measured at sonic frequencies, using a

resonant bar apparatus, see Figure 1.2 (McCann and Sothcott, 2009). In their measure-

ment, they first, constructed and calibrated the equipments. The sample was jacketed

in a thin (0.13 mm) copper sheet (O’Hara, 1985), since it allows making the measure-

ments at reservoir temperatures and has negligible intrinsic absorption, opposed to other

methods like heat-shrink sleeving or epoxy coating (McCann and Sothcott, 2009). Then,

they used a resonant bar to measure right cylinders of rock, about 30 cm long by 2.54

cm diameter. The arrangement of the apparatus, used in the measurements, is identical

to the one used by O’Hara (1985). However, McCann and Sothcott (2009) used a shorter

sample than the one used by O’Hara (1985) which was 38 cm. The reason behind that

is that the shorter sample increases the possibility of obtaining material from reservoir

cores (McCann and Sothcott, 2009). A pore-fluid pipe was soldered into the copper, and

the fluid-saturated cylinder was mounted inside a pressure vessel with helium gas, which

operates as pressuring medium, providing a maximum confining pressure of 70 MPa.

Figure 1.2: The resonant bar apparatus: a) Pressure apparatus used to subject the
samples to elevated temperatures and hydrostatic confining pressure and to regulate the
sample pore fluid pressure. b) Block diagram of electronic apparatus used for resonant
rod measurements.(need reference)
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Pulse-echo Method

McCann and Sothcott (1992, 2009) used the pulse-echo method, demonstrated in Figure

1.3, which uses an ultrasonic apparatus for the measurement at the ultrasonic frequencies

(McCann and Sothcott, 1992).

Figure 1.3: The pulse-echo method: a) Schematic diagram of the pulse-echo (reflection)
method for measuring attenuation. b) Examples of P and S-wave pulse traces, where TR
denotes sample-top reflection, BR denotes sample-bottom reflection, SMR denotes sample
multiple reflection, and BMR denotes buffer multiple reflection (Assefa et al., 1999).

The shear and extensional velocities of the rock sample, Vs,E, where E denotes an extensional-

mode resonance, were determined from the frequencies of resonance, fs,E,n, of order n:

Vs,E = 2fs,E,n
L

n
, (1.1)

where L is isotropic rod length of the sample, and n is an odd integer.

The shear and extensional attenuations of the sample, 1000/Qs,E, were determined from

the logarithmic decrements of successive free vibrations of the sample in the absence of

the driving signal. The torsional mode velocity and attenuation require only correction

for the effects of the copper jacket, Eqs. 1.5 and 1.6. The extensional mode velocity

and attenuation were corrected for the radial component in the rod at the higher order

harmonics, for the acoustic radiation from the side and the ends of the rod, and for the
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effects of the copper jacket. Poison’s ratio, ν, of the sample were calculated from

ν = −2VS2 + VE
VS2 ∗ 2

. (1.2)

The compressional wave velocity, VP and attenuation, 1000/Qp, were calculated using the

average of these ratios, from the resonant-bar data as follows:

Vp = Vs

√
(2− 2ν)

(1− 2ν)
, (1.3)

and
1000

Qp

=
(1 + ν)1000/QE − (2ν)21000/Qs − 1

(1− ν)(1− 2ν)
, (1.4)

where 1000/QE and 1000/Qs are the extensional and torsional attenuation, respectively.

The measured velocities, and attenuations, were corrected for the effects of the copper

jacket on the sample, the copper jacket corrected torsional or extensional velocity and

attenuation (Vr and 1000/Qr) are given by ((McCann and Sothcott, 2009))

Vr
2 =

Vm
2 × (mr +mj)

mr

−
Cj × vj
mr

, (1.5)

and

1000/Qr =
1000/Qm× Vm2 ×mr +mj

Vr
2 ×mr

, (1.6)

respectively, where Vm is the measured torsional or extensional velocity of the sample,

1000/Qm is the measured torsional or extensional attenuation of the sample, mr is the

mass of the rock and mj is the mass of the copper jacket, Cj is the torsional elastic

modulus (49.8 GPa) or the extensional elastic modulus (129 GPa) of the copper jacket,

and vj is the volume of the copper jacket. The results of these measurements are shown

in Figure 1.4, and organised in Table 1.1.

Noise Investigation and Uncertainty

The real data measurements contaminates often with some noises, which causes uncertain-

ties to the data been measured. Geophysical data, as well, may be affected significantly

by the uncertainty due to the relationships between reservoir parameters and geophysi-

cal attributes being non-linear and non-unique (?). Thus, in inversion of synthetic data

presented in this work, the estimation of the uncertainty is take to be consistent with the

uncertainties estimation of the real data measurements, presented here in this section. For

the uncertainty estimation, this work is Following McCann and Sothcott (2009) and the
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uncertainty presented in an old version of (Jakobsen et al., 2021). First, they found the

S-wave velocities and attenuations of the limestones to be reliable with uncertainties of

±0.003 and ±1, respectively, for the data measured at the ultrasonic frequency. McCann

and Sothcott (2009) showed in their work that, at the sonic frequency, the S-wave veloci-

ties and attenuations of the limestones, are also reliable with uncertainties of ±0.003 and

±1, respectively, while the P-wave velocities and attenuations are reliable with uncertain-

ties of ±0.003 and ±1, respectively. Furthermore, their estimate of the uncertainties of

the sonic frequency P-wave velocities and attenuations are ±0.01 and ±3, respectively.

Table 1.1: Measured visco-elastic attributes of the Portland limestone (top) at sonic and
ultrasonic frequencies.

Measured Sonic frequency [Hz] Ultrasonic frequency [Hz]

properties 3328 9914 16647 23290 30003 850000

V p[m/s] 4292 4200 4231 4227 4237 4269

V s[m/s] 2203 2188 2204 2202 2207 2202

1000/Qp 1 4 8 14 16 42

1000/Qs 5 6 6 7 7 50

1.3 Microstructural Visco-elastic Models

The clayey sandstones model quite similar to that of ?, can safely be treated as visco-

elastic composites based on a model representing the clay phase in the form of isolated

inclusions, within a load–bearing matrix of quartz (Jakobsen and Hudson, 2003; Jakobsen

et al., 2003b). Agersborg et al. (2009) in their modelling of dual porosity, considered both

the effective and elastic properties of aragonite, calcite and dolomite, making up the

primary two scales of the porosity in the model they have used, namely, the micro and

the meso scale. In this work, a microstructural visco-elastic models are presented. The

discussed microstructures are, primarily: The aspect ratios, i, porosities φi, the squirt flow

time, τi, for the inversion of real data Xp and Xs has been employed, which represent

the perturbations in the P and S-wave velocities of the solid matrix, respectively. Xp

and Xs are taken relative to calcite, which is the dominant mineral for these limestones

(Jakobsen et al., 2021). Following Jakobsen et al. (2003b), and Agersborg et al. (2009),

τi for water is taken as 0−7. For the pore system, first, a relatively simple models, with
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Figure 1.4: Measured data of the Portland limestone (top) sample at sonic and ultra
sonic frequencies as in table 1.1: (a) P-wave velocity (red triangle) and S-wave veloc-
ity (blue squares),(b) P-wave attenuation (red triangle) and S-wave attenuation (blue
squares). The errorbars, red (p-wave), blue (S-wave) represent the probability distribu-
tion, with the middle data value in the middle of it.

only consist of two or three pore-types are employed. The models with different sets of

communicating cavities, has the following assumption: The pores in the model system of

two pore-types are connected to each other with α1 = 0.15 and α2 = 0.05, see Figure 1.5

(a). The complexity of the model in (a) has been increased, by adding a flatter compliant

(α3 = 0.001) to the model in (a), see Figure 1.5 (b), again, the pores are connected to

each other, in (c) a new sets of compliant pore is added (pore type 4), pore[U+0638]type

4 are connected to each other (with dashed lines), however, isolated with respect to

pore[U+0638]types 1-3. While pore-types 1-3 are connected to each other, but isolated

with respect to pore type 4. For the modelling a visco-elastic generalized Xu-White clayey

sand model (Xu and White, 1995) is used to understand the acoustic spectra of carbonate

being studied.

Wave-induced fluid flow, discussed in Chapter 2, can occur at the scale of the acoustic

wave-length, global flow, which is presented by Darcy’s flow (Biot, 1956a,b), or at the

scale of the microstructure, known as local flow or squirt flow (Gurevich et al., 2010;

Jakobsen et al., 2003b). Biot (1956a,b) considered the phenomenon of the global flow and

its effects on the overall wave characteristic, which is an important phenomenon, however

it fails to interpret the high amount of attenuation, which associated with expermental
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real data of the rock, which are assumed to be homogeneous on the macroscopic scale and

fully saturated with fluid (Jakobsen et al., 2003b). Wave-induced fluid flow, known as the

visco-elastic effects, is an important mechanism for acoustic attenuation and dispersion,

discussed in Chapter 2 Section 2.2. Figure 1.6 illustrates the mechanism of squirt flow,

in which the fluid flow, from the compliant soft pores to the more rounded stiffer pores.

To demonstrate this phenomenon, a velocity-model of cracked porous medium, with two

pores, is assumed (Figure 1.6 (a). However, for the sake of calculations simplicity, a veloc-

ity constant medium is been assumed, while a two layer model is assumed to demonstrate

the velocity variations. Figure 1.6 (b) demonstrates a synthetic seismic wave propagation,

generated by solving the acoustic wave equation, Using Finite Differences method(FD).

Then, by zooming in at a time t, while the time harmonic seismic wave, propagated from

a shot point, is passing on the RVE (Figure 1.6 (c) at any point in the model, in this

example represented by point p(x,y), a fluid-pressure relaxation will take place, causing

special fluid-pressure distribution. One may note that this work do not exclusively discuss

the steps of FD implementation. And that is because this method has only been employed

to generate synthetic wave propagation, concerning the demonstration of the squirt flow

mechanism, however, the such method is defined to be out of the scope of this thesis.

1.4 Rock Physics Modelling and Inversion

Most attempts to match real rock acoustic data using theoretical models are based on

forward modelling, sensitivity analysis and manual inversion. However, a unique fea-

ture of this master project is that a formal nonlinear rock physics inversion is been per-

formed based on the minimization of a data mismatch function using simulated annealing

(SA), proposed by Kirkpatrick et al. (1983). Reservoir engineers, on their first concern,

would not be very interested for example in the acoustic impedance or the analysis of

the waveform, the idea to improve and efficiently apply methods that explicitly give the

microstructural parameters of the rocks, such as porosity, saturation, fluid pressure and

permeability, will save time for engineers and help with ultimate production process. Fur-

thermore, one of the advantages of SA is, that it provide good estimation of the misfit, and

has the a criteria of finite probability of jumping out of local minima, and, simultaneously,

settle into the global minimum, an illustration of SA optimization is shown in Figure 1.7,

(Sen and Stoffa, 2013). SA has been often preferred, when it comes to the uncertainty

characterization, comparing to other methods, such as genetic algorithms, GA. In this

thesis, an instantaneous variant of SA, called VFSA, has been employed. VFSA makes

such tasks this applicable and help on finding the best-fitting microstrutural parameter

with a relatively short time. Both SA and VFSA, do not require a good choice of the

starting model (Jakobsen et al., 2021; Sen and Stoffa, 2013). Experimentalist’s experi-

ence is extremely needed, when it comes to VFSA coefficients selection, as this selection
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Figure 1.5: Sketched illustration of the models with different sets of communicating
cavities: a) the pores are connected to each other (α1 = 0.15 and α2 = 0.05), b) the
complexity of this model has been increased, by adding a flatter compliant (α3 = 0.001)
to the model in (a), again, the pores are connected to each other, c) a new sets of compliant
pore is added (pore type 4), pore type 4 are connected to each other (with dashed lines),
however, isolated with respect to pore types 1-3. While pore types 1-3 are connected to
each other, but isolated with respect to pore type 4.

is essential to obtain the optimal result using SA (Izumotani and Onozuka, 2013).

The reservoir system is dynamic, due to the production processes, and possibly before

production process taking place, due to cementation and dissolution processes, as in

carbonates (Eberli et al., 2003). Implementing this unique combination may give an

adequate results to be used in connecting reservoir characterization and monitoring to

the seismic modelling system.
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Figure 1.6: Wave induced fluid flow (squirt flow) caused by a seismic wave propagation,
using a model of two layers: a) two layer velocity model b) acoustic wave propagation
from a shot point (red star), for the sake of simplicity constant density was assumed c)
a representative volume element, used as the effective homogeneous medium d) the real
heterogeneous medium (micro scale) of the model at time t, demonstrating the squirt flow
mechanism, in which the fluid flow from the compliant soft pores (pore type 2) to the
more rounded stiffer pores (pore type 1).

Figure 1.7: Simulate annealing minimization and its criteria of finite probability of
jumping out of local minima, and, simultaneously, settle into the global minimum.
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1.5 Applications to Seismic Reservoir Characteriza-

tion

Seismic reservoir characterization and monitoring continuously improve by taking advan-

tages of the powerful results of Rock Physics Inversion (RPI). A better understanding of

the reservoir characterization can be obtained by studying both velocities and attenuation

(Adam et al., 2009). Rock physics has generally developed a good understanding of the

mechanism of the acoustic attenuation (Jakobsen et al., 2021). Rock physics consider a

vital linkage between seismic data, which gives us the acoustic properties of rocks, and

reservoir engineering that needs real parameters such as permeability, fluid type, and sat-

uration, which is the main focus of rock physics. The acoustic properties is been studied

by geoscientists using a combination of experimental and theoretical methods (Jakobsen

et al., 2019). Seismic velocities varies with respect to rock densities, pore structure, fluid

content, and confining pressure, affecting cracks (Eberli et al., 2003). Geoscientists have

done relatively more work on understanding the acoustic properties of sandstones, in ad-

dition to the complexity of the porosity of rocks with cracks and fractures. There is an

essential need for a better understanding of the acoustic properties of rocks featured with

more complex media, such as carbonates, as it has been referred to by Siqueira et al.

(2017). In addition to the relatively few studies that have been made to carbonate rocks,

it is found to be characterized by dual-porosity and more complicated micro-structures

and parameters than sandstones (Agersborg et al., 2009).

1.6 Main goals, Scope of the work, and Outline

1.6.1 Main Goals and Motivation

The main objectives of this thesis are to:

� Develop a microstructural visco-elastic model that can explain the measured velocity

and attenuations of P- and S-waves at sonic and ultrasonic frequencies.

� Give a thorough review of the work by Jakobsen et al. (2021), on account of they

managed to obtain a good match between theory and experiment, by using a rel-

atively complicated model with four different pore types, an important task was

to investigate the possibility to obtain a satisfactory match between theory and

experiment by using a simpler model with only two and three different pore-types.

� Show that forward modelling results corresponding to different perturbations in the

microstructural parameters can lead to an optimum understanding of the behaviour
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of the microstructural models, and effectively employ that to obtain the ultimate

match with the real data, presented in this thesis.

Furthermore, it is aimed to investigate the performance of the VFSA inversion algorithm

of synthetic velocity and attenuation data. In this way, one can learn more about the

relative importance of model errors and the effects of noise. Study how uncertainties in

defining reservoir parameters can influence the inverse solutions.

Ultimately, having in mine the relevancy of visco-elastic modelling of the complex porous

media, it is intended to suit the rock physics modelling and inversion for optimum pro-

duction and reservoir caricaturization monitoring applications.

1.6.2 Scope of the Work and Limitations

In order for this work to be generalized and for the microstructural visco-elastic model

to be considered as reliable model for carbonate rocks, one may need to compare with

results of other porous media, e.g. sandstones. However, the lack of corresponding real

experimental data limited the numerical experiments to carbonate rocks only.

Local effect of fluid flow, squirt flow, due to the propagation of body waves, in visco-

elastic porous media, is studied in this thesis. Although the squirt fluid flow is found to

be dominant in the complex media, the global flow can not simply be ignored. Therefore,

the numerical results can not be used as a generalization for all cases of fluid flow.

1.6.3 Thesis Outline

A review of the data measured by Professor Clive McCann and lab technician Jerremy

Sothcott is presented in this chapter, Chapter 1, these measured velocity and attenuation

at sonic and ultrasonic are been used in this thesis. Furthermore, this chapter provide the

reader with a precedent research on the topics of model for carbonates and visco-elastic

porous media.

In Chapter 2, a sensitivity modelling for the microstructural visco-elastic models has been

presented. This will be useful for the real data inversion, using VFSA, where the upper

and lower bounds for an initial microstructural model parameter need to be defined.

Furthermore, the effect of fluid substitution is been discussed.

Chapter 3 presents rock physic inversion of both real and theoretically predicted data,

using VFSA.

Finally, in addition to the quite satisfactory discussion have been presented during the

numerical results of Chapter 2 and 3 , an exclusive detailed discussions and the mean

13



finding of this work is presented in Chapter 4.

Appendix A provides an evaluation of the G-tensor while Appendix B presents discussion

on the orientation averaging being used in this thesis.
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Chapter 2

Rock Physics Modelling

2.1 T-matrix Approach to Effective Stiffnesses

The T-matrix approach in rock physics-based modelling and inversion, give a sufficient

results, because of its flexibility and consistency in the rocks visco-elastic behaviour citep-

jakobsen2003acoustic. Many physical significances and advantages of the T-matrix ap-

proach had been addressed lately by many scientist. For example, it can drive an exact

solution for the stiffness tensor in Eq. 2.2 (Jakobsen et al., 2003a), which is a key in eval-

uating different porous media (e.g. anisotrpic, elastic, and visco-elastic). The efficiency

of the t-matrix lies on the fact that it can use a Lippmann-Schwinger type of integral,

as well as it adds to the work the modern highly iterative methods of physics, something

make it a very important approach in the inclusion models (Jakobsen et al., 2003a).

In visco-elastic media, stress is a convolution of the (time-domain) effective stiffness and

strain tensors. Since convolution in the time-domain is equal to multiplication in the

frequency-domain, the strain (response), ε̄, is still proportional to the applied stress, σ̄,

Hence, the relationship between stress and strain, is the same as Hook’s law for the elastic

media, given by (Guéguen and Palciauskas, 1994)

σ̄ = M∗ε̄, (2.1)

where M∗ is the effective elastic moduli, the only difference is that the effective elas-

tic moduli, M∗, of the visco-elastic media, known as the effective stiffness tensor, C∗,

becomes frequency-dependent and complex-valued (?)jakobsen2003t). The non-local av-

eraged stress tensor, σ, of a statistically homogeneous visc-oelastic material is given by
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(Auld, 1990; Guéguen and Palciauskas, 1994; Jakobsen et al., 2003a)

σ̄ = C∗ : ε̄, (2.2)

where C∗ is the effective stiffness tensor of the visco-elastic media. The statistically

homogeneous medium refers to a heterogeneous medium on the small scale (grain or

micro-scale) but appears homogeneous as a whole, macro-scale. Then, the sufficiently

large subregion of that material is statistically identical to the whole specimen (Guéguen

and Palciauskas, 1994; Jakobsen et al., 2003a), which means that the physical response is

described by the average properties of the representative volume element (RVE), which

are the effective properties for this type of media (Guéguen and Palciauskas, 1994). The

stiffness tensor C∗ in Eq. 2.2 above, for both the elastic and visco-elastic media, is given

by (Jakobsen et al., 2003a,b), Eq. 2.3. In this case the medium have non-zero attenuation

and dispersion, as a result the stiffness tensor becomes frequency-dependent and complex-

valued (Agersborg et al., 2007; Jakobsen et al., 2003b). For the visco-elastic model, used

in this thesis, a frequency-dependent effect of wave-induced fluid flow is considered. Thus,

parameters related to the fluid and its ability to flow, such as fluid density and viscosity,

need to be taken into consideration (Jakobsen and Hudson, 2003; Jakobsen et al., 2003b).

The attenuation, expressed as 1000/Q, is one of the key factors when dealing with visco-

elastic models, which is the loss per wavelength or, in other words, the energy loss of the

seismic wave, that is because the attenuation becomes significant with frequency in fluid-

saturated rocks (Jakobsen et al., 2021). The propagation of visco-elastic waves in rock-like

composites implies a dynamic situation, which must be consistent with the quasi-static

considerations.

In this work, an isotropic model is assumed, by taking the orientation average, discussed

in Appendix B, of the randomly oriented communicating cavities, and all inclusions are

assumed to be cavities. Considering a model of a homogeneous matrix material embedded

with inclusions of the same scale, Jakobsen et al. (2003a,b) developed an instrumental

theory of the visco-elastic effective medium. They divided the model into families having

the same concentrations, shapes and orientations. It is not necessary that the inclusion is

a matrix, but it can also be cavities (e.g., pores, compliant pores, and cracks). , labelled

r = 1, 2, ..., N. Hence, C∗ is given by (Jakobsen et al., 2003a)

C∗ = C(0) +
N∑
r=1

φrt̄
(r) :

(
I−Gd :

N∑
s=1

φst̄
(s)

)−1
, (2.3)

where I is the identity for the fourth-rank tensors, assuming φr to be the volume concen-
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tration for the inclusion of type r, t̄(r) represents the orientation averaged t-matrix for

a single communicating cavity of type r. Gd is a fourth-rank tensor, which is given by

the modified green’s function for strain integrated over a characteristic ellipsoid, which

describes the random spatial distribution of cavities as given by Jakobsen et al. (2003a).

The G-tensor evaluation of the isotropic matrix material containing spheroidal inclusions

with semiaxes a
(r)
1 =a

(r)
2 =a(r)r and a

(r)
3 =br, is presented in Appendix ??.

In Eq. 2.3 above, C(0) is the fourth-rank stiffness tensor of the homogeneous matrix

material, using Kelvin notation, which adds a weight of 2, to the lower right corner

(Dellinger et al., 1998). given by

C(0) =



C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0

2C44 0 0

2C44 0

2C44


, (2.4)

where c12 = c11 − 2c44.

respectively. The t-matrix for a single cavity of type r, which is isolated concerning

wave-induced fluid flow, is given by (Jakobsen et al., 2003a,b)

t̄(r) = (C(r) −C(0)) : [I4 −G(r) : (C(r) −C(0))]−1 (2.5)

where C(r) is the stiffness tensor for the single cavity and G(r) is a fourth-rank tensor that

depends only on the aspect ratio of the single cavity and C(0).

2.2 Visco-elastic Effects due to Squirt Flow

Pore pressure communication and wave induced fluid flow can play significant roles on the

effective stiffness of complex porous media (Agersborg et al., 2009). The compliant, soft

cracks with very small αi in the models discussed in this study, edges open into the more

round shaped stiff pore and they form a disk-shaped gap between the neighbouring grains

(Gurevich et al., 2010). Following Jakobsen et al. (2021), the squirt flow is considered the

primary mechanism for the wave-induced fluid flow. In complex media, the squirt flow

often dominating the global flow (Agersborg et al., 2009, 2008). The effect of global flow
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becomes negligible when the fluid viscosity, the porosity and/or permeability of the specific

complex media is very small, which is the case for many carbonate rocks, (Agersborg et al.,

2008; Klimentos and McCann, 1990). The wave-induced fluid follow, squirt flow, appears

to have the major cause of attenuation of the seismic waves passing fluid saturated rocks

(Gurevich et al., 2010). The saturated cavities, pores and cracks, are considered to be

communicating with respect to fluid flow. This type of cavities, discussed and studied by

Gurevich et al. (2010); Jakobsen (2004); Jakobsen and Chapman (2009); Jakobsen et al.

(2003a,b) are assumed to be cavities that allow the exchange of fluid mass caused by the

wave-induced fluid flow. The t-matrix of a fully saturated communicating cavity is given

by Jakobsen et al. (2003b)

t̄(r) = t̄
(r)
d +

ΘZ̄(r) + iωτrkfX̄
(r)

1 + iωτrγ
(r)

, (2.6)

where t̄
(r)
d is the t-matrix of the dry cavities of type r, Θ and γ(r) are physically related with

the average wave-induced pore fluid pressure and the frequency location of the maximum

attenuation peak, respectively, both γ(r), and the fourth-rank tensors X(r), and Z(r) in

Equation 2.6 are given by (Jakobsen et al., 2003b)

γ(r) = 1 + kf (K
(r)
d − S

(0))uuvv, (2.7)

X(r) = t̄
(r)
d : S(0) : (I2 ⊗ I2) : S(0) : t̄

(r)
d , (2.8)

and

Z(r) = t
(r)
d : S(0) : (I2 ⊗ I2) : S(0) :

(∑
s

φst
(s)
d

1 + iωγ(s)τs

)
, (2.9)

respectively, where K
(r)
d denotes the k-matrix of type r, for the dry and can be found from

the superposition of results from two different, gedanken, experiments (Jakobsen et al.,

2003b), I2 in Equations 2.8 and 2.9 above is the identity for second-rank tensors, and the

symbol ⊗ denotes the dyadic tensor product, and Θ is given by (Jakobsen et al., 2021)

Θ = kf

(∑
s

φsγ
(s)

1 + iωγ(s)τs

)
, (2.10)
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where kf is the bulk modulus of the fluid, given by

Cf =



κf κf κf 0 0 0

κf κf 0 0 0

κf 0 0 0

0 0 0

0 0

0


. (2.11)

The P- and S-wave velocity and attenuation, for the assumed to be isotropic media, is

given by (Jakobsen et al., 2003b)

VP =

[
<
(
c∗11
ρ∗

)− 1
2

]−1
, (2.12)

VS =

[
<
(
c∗44
2ρ∗

)− 1
2

]−1
, (2.13)

QP =
< (c∗11)

Im (c∗11)
, (2.14)

and

QS =
< (c∗44)

Im (c∗44)
, (2.15)

respectively, where < denotes the real part, and Im denotes the imaginary part.
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Algorithm 1: Pseudo code used for the rock physics modelling, based on a theoretically

predicted visco-elastic Xu-White model, at sonic and ultrasonic frequencies similar to real

experiments, presented in Table 1.1. The orientation averaging (iso-average) should be

taken into account, when computing the tensors involved. Equations from Sections 2.1

and 2.2 should be implemented for the computation of the parameters, which this code

requires.

Compute frequency-independent quantities of the visco-elastic model.

for i = 1, 2, ..., Nf do
frequency-independent quantities.

Calculate the t-matrix, t
(r)
d , of the dry cavities of type r by Eq. (2.6).

Determine the fourth-rank effective stiffness tensor, C∗, from Eq. (2.3).

VPc =
√

c
∗
11

ρ
∗

VSc =
√

c
∗
44

2ρ
∗

SPr = <
[

1
VPc

]
SSr = <

[
1

VSc

]
V

(i)
P obs = 1

SPr

V
(i)
S obs = 1

SSr

Q
(i)
P obs = 1000× Im[V2

Pc]
<[V2

Pc]

Q
(i)
S obs = 1000× Im[V2

Sc]
<[V2

Sc]

end for

2.2.1 Fluid Substitution

Fluid substitution is one of the key factor in reservoir monitoring and time-laps seismic

inversion. The Gassmann’s equation can be used to estimate fluid substitution in the

real rock if the Voigt & Reuss or Hashin-Shtrikman are employed to compute the effective

stiffness, due to heterogeneous. When the fluids are not assumed to be equally distributed,

one may need to apply the patchy saturation model, compiled with Gassmann’s equation

to consider fluid substitution. However, the those methods are considered to be outside of

the scope of this thesis. Following (Agersborg et al., 2009) and using the key parameter

tau, the visco-elastic t-matrix has been employed to perform the fluid substitution. The

relaxation time constant τ is assumed to be an empirical constant and is suggested to be

dependent on the scale of the pores and cracks, and the properties of the fluid (Jakobsen

et al., 2003b). The constant τi for each fluid under the assumption of this work, the squirt
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flow to be the main cause behind the evident attenuation, is give by

τi = Ecηi, (2.16)

Where Ec denote an empirical constant. Assuming a fluid with τf1 , and ηf1 is been

substituted with another fluid, τf2 , and ηf2 , the new τ parameter, τ2, is given, from Eq.

2.16, by (Agersborg et al., 2009)

τf2 = τf1
ηf2
ηf1

. (2.17)

Batzle and Wang (1992) give pore fluids properties at temperature of 80 ◦C and a pore

pressure of 40 MPa, the oil properties under these condition is as follow: density, ρoil,= 854

kg/m3 and viscosity, ηoil,= 6.4 cP.

2.3 Numerical Results and Discussion

2.3.1 Models with Two Different Pore-Types

In this modelling part, a sensitivity study is presented, using synthetic data of velocity

and attenuation data for P- and S-waves at sonic and ultrasonic frequencies. These

experiments are made similar to real experiments of the inversion of real data in Chapter

3, using a visco-elastic t-matrix model. This study will be used effectively in the studying

and for better understanding of such complex rock, being studied in this thesis. The

sensitivity study is curried out for models of two stets of pores and three sets of pores,

respectively, using the procedures described on Algorithm 1.

This sensitivity study will primary focus in the either increasing or decreasing of the ve-

locity and attenuation spectra due to perturbing the model microstructural parameters.

In other words, the changes on compressional and shear wave velocities, Vp, Vs, and

attenuations, Qp, and Qs, spectra, respectively, as a result of changes in the microstruc-

tural parameters, mainly the pore shapes aspect ratios (αi), their corresponding volume

concentrations (φi), and squirt flow constants (τi). First, the well known Xu-White (Xu

and White, 1995), with α1 = 0.15 and α2 = 0.05 is used. The model is assumed to

be fully water saturated (τi = 10−7), see Figure 2.1. Then, some other models were

produced by both negative and positive perturbation of the microstructural parameters.

Xu-White model is consider to be the reference model, other models are compared to.

The maximum and minimum perturbations of αi and φi, in this study, are 50 percent.

While for τi, the maximum perturbation is 10−6 and the minimum perturbation is 10−8,

By the maximum and minimum here, it is meant the highest increase, upper pound, and

the lowest decrease, lower pound, respectively. The model parameters will be perturbed

using this two pounds, which are consistent with the inversion part in 3 . In all cases,
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the microstructural parameters are firstly perturbed. Secondly, more perturbation in the

same direction is performed. Finally, the minimum or the maximum perturbation, of

that specific direction, been taken. Several numerical experiments have been performed

to study the sensitivity of the model to the change of all the microstructural parameters

mentioned previously. The perturbation is often on every parameter at a time to examine

the effect of that particular parameter. However , the perturbation of two parameters

together is sometimes performed.

Effects of aspect ratios and porosities

First, a negative perturbation on the aspect ratio of the soft pores (α2) is done, while

the more rounded sands aspect ratio (α1) kept as it is. Some changes on the paths

of the curves is obtained, namely some decreases on Vp and Vs and increases on their

corresponding attenuations, see Figure 2.2. At lower aspect ratio of the clay, α2, which

is the minimum perturbation in this study, it gives further more decrease in Vp and Vs

and increase in their corresponding Qp and Qs. The changes is in the same direction

of the previous experiment. Keeping in mind that the increases in Qp are significant

comparing to the increases in Qs, see Figure 2.3. Next, a positive perturbation of the

aspect ratio α2, is carried out by increasing its value. this gives some increases in Vp and

Vs with corresponding decrease in their attenuations, see Figure 2.4. However. Finally,

the maximum perturbation of α2, is taken. The result is shown in Figure 2.5, it is true

that it gives an opposite changes. However the changes this time is relatively not very

significant.

Next, the change of the more rounded sands aspect ratio α1 is examined while the aspect

ratio α2 is kept fixed. First, a negative perturbation of α1 is done, A significant decreases

on both Vp and Vs, specially more on Vp, have been obtained. The increases on Qp,

however, are not very significant, while Qs shows a significant increases, see Figure 2.6.

At the minimum perturbation of α1, a very significant changes in the same direction have

been obtained, still the decreases are specially more noticeable on Vp compared to Vs,

while the increases on Qp are less compared to Qs, which shows a significant increases see

Figure 2.7. Next is a positive perturbation of α1, some changes on the opposite direction

is been recorded, nevertheless a significant increases on both Vp and Vs, specially more

on Vp. The decreases on Qp, however, is not very significant, while Qs shows a significant

decreases compared to Qp, see Figure 2.8. At the maximum perturbation of α1, a very

significant changes is obtained. Still, the increases are especially more on Vp compared

to Vs. Simultaneously, the increases in Qp are less compared to Qs, as shown in Figure

2.9.

When it comes to porosity (φi), it is only φ2 that will be perturbed. The negative per-

22



turbation on φ2 gives an increases on Vp and Vs with corresponding decreases on their

attenuations, see Figure 2.10. Figure 2.11 illustrates the minimum perturbation on φ2.

While a positive perturbation on (φ2) gives some decreases on Vp and Vs, with cor-

responding increases on their attenuations, see Figure 2.12. Figure 2.13 illustrates the

maximum perturbation on φ2.

Effects of squirt flow times τi

The squirt flow parameter, τi, seems to be a very uncertain and quit complicated param-

eter to understand. However, it has a big effect on the acoustic properties of the rock.

Therefore, the perturbation of τi is done in a wider interval (minimum to maximum).

Since the perturbation on τi cause the peaks shift, either toward high frequency or to the

lower frequency, on the other hand, the velocity spectra, being studied in this thesis, shows

no significant effect when changing on τi, there will be focus on the attenuations only. It

is interesting to see, by only perturbing on τi values, a significant moves on the position

of the peaks of the attenuation spectra. Furthermore some changes on their shapes. The

maxima display, sometimes, either an increase or a decrease. The peaks of the attenua-

tion spectra in all cases move either to the right (higher frequency) or to the left (lower

frequency). Generally a negative perturbation on τi, no mater if it was a perturbation

on τ1 and τ2 together, or on each one of them at a time, shifts the peaks to the higher

frequency. On the other hand, a positive perturbation of τi makes the peaks shift to the

lower frequency. A negative perturbation of both τ1 and τ2 gives a clear shift of the peaks

of both Qp and Qs to the higher frequency and cause some slight increase on the peak

of Qp, from 11.35 (at the reference Xu-White model) to 11.38 with slightly decreasing

on the peak of Qs from 17.1232 (at the reference Xu-White model) to 17.085, see Figure

2.14. The next step is the minimum perturbation of τ1 and τ2, which result in a more

notable changes in the same direction, see Figure 2.15. Then, a positive perturbation of

both τ1 and τ2 is taken. An apparent shift of the peaks to the opposite direction, has been

obtained, and the Qp peak increased upto 11.40, while Qs peak decreased to 17.050, see

Figure 2.16. For higher changes in the same direction, see the maximum perturbation,

shown in Figure 2.17. In the coming experiments, change on each of τ1 and τ2 at a time

is done. A negative perturbation of τ1 makes the peaks shift to the higher frequency,

and causes an apparent decrease on both Qp and Qs to 9.01 and 15.53, respectively, see

Figure 2.18. It is noticeable that Qp is more affected by the decrease of τ1 in terms of

the reduction of the values and missing its peaks sharpness. In Figure 2.19 the changes

become more evident at the minimum perturbation and Qp spectrum begins to have two

peaks instead of one. Then, a positive perturbation of τ1 makes the peaks shifts to the

lower frequency, and cause a decrease in both Qp and Qs to 10.74 and 16.55, respectively,
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as shown in Figure 2.20. For more noticeable change, see the maximum perturbation in

Figure 2.21. However this time the changes are not as clear as changes towards the higher

frequency. Finally, both negative and positive perturbations on τ2 have been taken. The

negative perturbation on τ2 makes the peaks shift to the lower frequency, and cause some

decrease on Qp and Qs, see Figure 2.22. In Figure 2.23, the changes become more clear at

the minimum perturbation while the positive perturbation of τ2 makes the peaks shift to

the higher frequency, see Figure 2.24, the effects of the maximum perturbation on τ2 are

shown in Figure 2.25. Again, it is noticeable that Qp is more affected by the changes on τ2

than the equivalent change on τ1 in reducing the values and missing its peak sharpness; in

addition to that, the Qp spectra begins to shape two peaks instead of one, which become

more evident at the maximum perturbation of τ2. However, the effects of changes on τ2

are in general much less than the effects of the equivalent changes on τ1.

2.3.2 Fluid Substitution of Model with Two Pore-Type

To substitute water with oil, in the models discussed in Sections 2.3.1. 2.17 above, and

the properties given by Batzle and Wang (1992) has been employed, the effect of fluid

substitution has been determined. Figure 2.31 shows the effect of fluid substitution in

the model of two pore types. The model to compare with is the fluid saturated visco-

elastic model in Figure 2.1. The affects of pore-fluid substitution, in which the water has

been substituted with oil, are noticeable on the attenuation more than the velocity, the

attenuation peaks moved to the lower frequency.

2.3.3 Models with Three Pore-Types

The complexity of the model in the previous experiments has been increased by adding

more flatter cracks with aspect ration of α3 = 0.001 as showen in Figure 1.5. Since the

other parameters are studied well on the previous subsection, this subsection’s focus is

more on the flat cracks effects, namely cracks with α3 = 0.001, and its corresponding

porosity φ3. Using the result of the previous modelling of two pore types, and since the

effects of φ3 in this study appear to be not very big, the change on it has been done

accordingly with the change of α3. The minimum and maximum perturbation on α3 is

again 50 percent. First, a negative perturbation on α3, accordingly on φ3, has been taken.

The result is relativity small decrease in Vp and Vs and increase in their corresponding

attenuations comparing with the reference Model 2.26, see Figure 2.27. At lower α3, which

is the minimum perturbation in this study, a further decrease in Vp and Vs and increase

in their corresponding Qp and Qs is obtained. The changes are in the same direction of

the previous experiment. Again, one can notice that the increases in Qp are significant

comparing to the increase in Qs, see Figure 2.28. Next is a positive perturbation of
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α3, the results show slight increase in Vp and Vs with decrease in their corresponding

attenuations, see Figure 2.29. Then, the maximum perturbation of α2 is taken and the

results are shown in Figure 2.30. however, the changes this time are not very significant.

2.3.4 Fluid Substitution of Model with Three Pore-Type

To substitute water with oil, in the models discussed in Section 2.3.3, again, Eq. 2.17

above and the properties given by Batzle and Wang (1992) has been employed, the effect

of pore-fluid substitution has been investigated. Figure 2.32 shows the effect of fluid

substitution in the model of three pore-types. The reference model in this case is show in

Figure 2.26. Again, the affects of the substitution of water with oil in the model with three

communicating sets of pores, are noticeable on the attenuation more than the velocity,

the attenuation peaks moved toward the lower frequency.

2.4 Concluding Remarks

From the numerical experiment performed in Section 2.3, one can conclude that, in com-

plex porous media such as carbonates and related porous media, even if porosity is con-

stant, the variations in pore type can cause variable velocity (Agersborg et al., 2009;

Eberli et al., 2003). The microstructural models with both two and three pore-types

are employed as less complex and moderate complex visco-elastic generalized Xu-White

models, respectively. These microstructural visco-elastic model, give usable indications

to the behaviour that a complex medium can take, when constituting of several pore-type

than the usual case for siliciclastics. The previous experiments in Section 2.3, show that

the perturbation on τi makes the peaks shift, either toward high frequency or to the lower

frequency, this is noticeable clearly on the attenuation. The fact that, the attenuation

spectra is more sensitive to the perturbation on τi, is very interesting and encourages one

to give more care to the attenuation. These are very useful indications, since the ultimate

goal of this modelling is to build a good understanding of the visco-elastic behaviour of

carbonates. From the numerical experiments were done in this work, it is clear that the

attenuation varies with the change on the model parameters, this is discussed more deeply

in the numerical results and discussion section in Chapter 2.
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Figure 2.1: Theoretical predictions of the velocity and attenuation spectra of a rock
model with two types of pores, versus synthetic data. This is the reference model (Xu-
White model), and it is water saturated. The model parameters are: [α1 = 0.15, α2 =
0.05, φ2 = 0.00556, τ1 = τ2 = 1× 10−7 s].
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Figure 2.2: The effect of a negative perturbation of α2 on the velocity and attenuation
spectra of a rock model with two types of pores, using Xu and White model as a reference
model, with model parameters of: [α1 = 0.15,α2 = 0.0375, φ2 = 0.0056, τ1 = τ2 = 1×10−7

s].
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Figure 2.3: The minimum perturbation of α2, and how it affects the velocity and at-
tenuation spectra of a rock model with two types of pores, using Xu and White model
as a reference model, with model parameters of [α1 = 0.15,α2 = 0.025, φ2 = 0.00556,
τ1 = τ2 = 1× 10−7 s].
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Figure 2.4: The effect of a positive perturbation of α2 on the velocity and attenuation
spectra of a rock model with two types of pores, using Xu and White model as a reference
model, with model parameters of [α1 = 0.15,α2 = 0.0625, φ2 = 0.00556, τ1 = τ2 = 1×10−7

s].
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Figure 2.5: The maximum perturbation of α2, and how it affects the velocity and
attenuation spectra of a rock model with two types of pores, using Xu and White model
as a reference model, with model parameters of [α1 = 0.15,α2 = 0.075, φ2 = 0.00556,
τ1 = τ2 = 1× 10−7 s].
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Figure 2.6: The effect of a negative perturbation of α1 on the velocity and attenuation
spectra of a rock model with two types of pores, using Xu and White model as a reference
model, with model parameters of [α1 = 0.1125,α2 = 0.05, φ2 = 0.00556, τ1 = τ2 = 1×10−7

s].
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Figure 2.7: The minimum perturbation of α1, and how it affects the velocity and at-
tenuation spectra of a rock model with two types of pores, using Xu and White model
as a reference model, with model parameters of [α1 = 0.075,α2 = 0.05, φ2 = 0.00556,
τ1 = τ2 = 1× 10−7 s].
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Figure 2.8: The effect of a positive perturbation of α1 on the velocity and attenuation
spectra of a rock model with two types of pores, using Xu and White model as a reference
model, with model parameters of [α1 = 0.1875,α2 = 0.05, φ2 = 0.00556, τ1 = τ2 = 1×10−7

s].
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Figure 2.9: The maximum perturbation of α1, and how it affects the velocity and
attenuation spectra of a rock model with two types of pores, using Xu and White model
as a reference model, with model parameters of [α1 = 0.225,α2 = 0.05, φ2 = 0.00556,
τ1 = τ2 = 1× 10−7 s].
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Figure 2.10: The effect of a negative perturbation of φ2 on the velocity and attenuation
spectra of a rock model with two types of pores, using Xu and White model as a reference
model, with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.00417, τ1 = τ2 = 1× 10−7

s].
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Figure 2.11: The minimum perturbation of φ2 on the velocity and attenuation spectra
of a rock model with two types of pores, using Xu and White model as a reference model,
with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.00278, τ1 = τ2 = 1× 10−7 s].
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Figure 2.12: Illustration of the effect of a positive perturbation of φ2 on the velocity
and attenuation spectra of a rock model with two types of pores, using Xu and White
model as a reference model, with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.00696,
τ1 = τ2 = 1× 10−7 s].
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Figure 2.13: Illustration of the effect of the maximum perturbation of φ2 on the velocity
and attenuation spectra of a rock model with two types of pores, using Xu and White
model as a reference model, with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.0075,
τ1 = τ2 = 1× 10−7 s].
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Figure 2.14: The effect of a negative perturbation of both τ1 and τ2 on the velocity and
attenuation spectra of a rock model with two types of pores, using Xu and White model
as a reference model, with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.00556, τ1 =
τ2 = 0.3× 10−7 s].
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Figure 2.15: The minimum perturbation of τ1 and τ2, and how it affect the velocity
and attenuation spectra of a rock model with two types of pores, using Xu and White
model as a reference model, with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.00556,
τ1 = 1× 10−8 s, τ2 = 1× 10−8 s].
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Figure 2.16: Illustration of the effect of a positive perturbation of τ1 and τ2 on the
velocity and attenuation spectra of a rock model with two types of pores, using Xu and
White model as a reference model, with model parameters of [α1 = 0.15,α2 = 0.05,
φ2 = 0.00556, τ1 = τ2 = 3× 10−7 s].
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Figure 2.17: Illustration of the effect of the maximum perturbation of τ1 and τ2 on
the velocity and attenuation spectra of a rock model with two types of pores, using Xu
and White model as a reference model, with model parameters of [α1 = 0.15,α2 = 0.05,
φ2 = 0.00556, τ1 = 1× 10−6s , τ2 = 1× 10−6 s].
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Figure 2.18: The effect of a negative perturbation of τ1 on the velocity and attenuation
spectra of a rock model with two types of pores, using Xu and White model as a reference
model, with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.00556, τ1 = 0.3 × 10−7 s,
τ2 = 1× 10−7 s].
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Figure 2.19: The minimum perturbation of τ1, and how it affects the velocity and
attenuation spectra of a rock model with two types of pores, using Xu and White model
as a reference model, with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.00556,
τ1 = 1× 10−8 s, τ2 = 1× 10−7 s].
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Figure 2.20: The effect of a positive perturbation of τ1 on the velocity and attenuation
spectra of a rock model with two types of pores, using Xu and White model as a reference
model, with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.00556, τ1 = 3 × 10−7 s ,
τ2 = 1× 10−7 s].
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Figure 2.21: The maximum perturbation of τ1, and how it affects the velocity and
attenuation spectra of a rock model with two types of pores, using Xu and White model
as a reference model, with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.00556,
τ1 = 1× 10−6s , τ2 = 1× 10−7 s].
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Figure 2.22: Illustration of the effect of a negative perturbation of τ2 on the velocity
and attenuation spectra of a rock model with two types of pores, using Xu and White
model as a reference model, with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.00556,
τ1 = 1× 10−7 s, τ2 = 0.3× 10−7 s].
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Figure 2.23: Illustration of the effect of the minimum perturbation of τ2 on the velocity
and attenuation spectra of a rock model with two types of pores, using Xu and White
model as a reference model, with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.00556,
τ1 = 1× 10−7 s, τ2 = 1× 10−8 s].
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Figure 2.24: The effect of a positive perturbation of τ2 on the velocity and attenuation
spectra of a rock model with two types of pores, using Xu and White model as a reference
model, with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.00556, τ1 = 1 × 10−7 s,
τ2 = 3× 10−7 s].
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Figure 2.25: The maximum perturbation of τ2, and how it affects the velocity and
attenuation spectra of a rock model with two types of pores, using Xu and White model
as a reference model, with model parameters of [α1 = 0.15,α2 = 0.05, φ2 = 0.00556,
τ1 = 1× 10−7 s, τ2 = 1× 10−6 s].
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Figure 2.26: Theoretical predictions of the velocity and attenuation spectra of a water
saturated rock model with three types of pores, this is the reference model, which the vico-
elastic generalized Xu and White model [α1 = 0.15, α2 = 0.05, α3 = 0.001 φ2 = 0.00556,
φ3 = α3/10, τ1 = τ2 = τ3 = 1× 10−7 s].
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Figure 2.27: The effect of a negative perturbation of α3 on the velocity and attenuation
spectra of a rock model with three types of pores, using more complex Xu and White
model, with model parameters of [α1 = 0.15, α2 = 0.05, α3 = 0.00075 φ2 = 0.00556,
φ3 = α3/10, τ1 = τ2 = τ3 = 1× 10−7 s].
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Figure 2.28: The effect of the minimum negative perturbation of α3 on the velocity and
attenuation spectra of a rock model with three types of pores, using more complex Xu and
White model, with model parameters of [α1 = 0.15, α2 = 0.05, α3 = 0.0005 φ2 = 0.00556,
φ3 = α3/10, τ1 = τ2 = τ3 = 1× 10−7 s].
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Figure 2.29: The effect of a positive perturbation of α3 on the velocity and attenuation
spectra of a rock model with three types of pores, using more complex Xu and White
model, with model parameters of [α1 = 0.15, α2 = 0.05, α3 = 0.00125 φ2 = 0.00556,
φ3 = α3/10, τ1 = τ2 = τ3 = 1× 10−7 s].
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Figure 2.30: The maximum positive perturbation of α3, and how it affects the velocity
and attenuation spectra of a rock model with three types of pores, using more complex
Xu and White model, with model parameters of [α1 = 0.15, α2 = 0.05, α3 = 0.0015
φ2 = 0.00556, φ3 = α3/10, τ1 = τ2 = τ3 = 1× 10−7 s].
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Figure 2.31: Pore-fluid substitution effects, when substituting water with oil for the
model of two pore types. The reference model in the water saturated visco-elastic model
shown in Figure 2.1.
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Figure 2.32: Fluid substitution effects, when substituting water with oil for the model
of three pore types. The reference model in the water saturated visco-elastic model shown
in Figure 2.26.
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Chapter 3

Rock Physics Inversion

3.1 The Non-linear Inverse Problem

The goal of inversion in general is to find models that explain observations. Thus, model-

based inversion, as introduced in Section ??, aims to deduce model parameters by itera-

tively fitting observations with theoretical predictions from trial models (Sen and Stoffa,

2013). Inversion has been used to provide unique and powerful results of estimating

physical models from data in geophysics and rock physics, such as in seismic tomogra-

phy, reservoir characterization, and monitoring. As the seismic velocities carry beneficial

information of the underground that can be inverted. One can produce a map of mi-

crostructures properties out of the corresponding acoustic properties (Jakobsen et al.,

2021), which helps for studying the underground. Using parameter estimation and in-

verse problem, engineers and scientists regularly link physical parameters characterizing

a model, m, with a set of data, d, (Aster et al., 2018). The data can be predicted the-

oretically (model-based inversion) or collected by some observation (inverse problems).

For problems where the data is often a function of time and/or space, or a collection of

discrete observations, and the model parameters and data are vectors, we can use a non-

linear system of algebraic equation (G) to get the following non-linear functional relation

(Aster et al., 2018):

G(m) = d. (3.1)

By making use of the non-linear inverse equation above, Eq. 3.1, the model parameters

are related to both the theoretically calculated, discussed in Section ??, and observed data

as discussed in Section 3.4, hence, a non-linear rock physics inversions, using a microstruc-

tural visco-elastic models, are curried out. The inversion is done for the calculated and
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observed velocity and attenuation with respect to the microstructural parameters (i.e. αi,

φi, and τi).

Eq. 3.2 assumed to be the vector of data, d, measured at N different frequencies for a

set of complex porous media. The sets of communicating cavities (pores and cracks) are

considered to be the inclusion of the complex porous media being studied, are divided into

families of communicating cavities, labelled by r = 1,..., Nc, then the model parameters

assumed to be m and organised in Eq. 3.3. A cost function E(m), which calculates the

data mismatch, using both L1-norm and L2-norm, is used as in Eq. 3.4.

d = [V 1
p , ..., V

N
p , V

1
s , ..., V

N
s , Q

1
p, ..., Q

N
p , ..., Q

1
s, ...Q

N
s ]T . (3.2)

m = [α1, .., α(Nc)
, .., φ1, .., φ(Nc)

, τ1, .., τ(Nc)
, Xp, Xs]

T , (3.3)

and

E(m) =
||W (d−G(m))||1

||d||1
, (3.4)

where ||..||1 denotes the L1-norm, and W denotes the diagonal weight matrix.

Although several works have shown no significant difference in the results between the

misfit of the L1-norm and the L2-norm in Eq. 3.4 above, (Izumotani and Onozuka, 2013),

some scientist prefer to use the L1-norm, since it is known to be more robust concerning

data outliers, than the L2-norm (Tarantola, 2005). However, the L1-norm may sometimes

treat the sparse ultrasonic data like outliers. For this reason, some others may prefer to

use the L2-norm (Jakobsen et al., 2021). Thus, it seems, both the L1 and the L2 norm can

be used based on difference considerations and assumptions, in this thesis, both the L1-

norm and the L2-norm is employed. The L1-norm is used in the synthetic data inversion,

Section 3.3 inversynthetic, while both L1 and L2 norm are employed in the real data

inversion, Section 3.4, and the results are compared. More discussion and the comparison

between results from the L1-norm and L2-norm are presented in Section 3.4.

3.2 Optimization by Simulated Annealing

Global optimization algorithms give a solution to non-linear problems. Based on the

work of Metropolis et al. (1953), Kirkpatrick et al. (1983) proposed one of the beneficial

global optimization methods, called Simulated Annealing (SA), which is analogous to

the natural process of crystal annealing (Izumotani and Onozuka, 2013). Since the work

of Kirkpatrick et al. (1983), Metropolis algorithm with annealing has been applied in a

different applications of optimization problems (Sen and Stoffa, 2013). Nevertheless, SA

has been generalized and implemented, successfully, in many geophysical and non-linear
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rock physics inverse problem (Izumotani and Onozuka, 2013; Kirkpatrick et al., 1983).

Searching for the best-fitting model parameters is one of the central goals of geophysical

inversion (Sen and Stoffa, 2013). SA works by searching an optimal minimum value of

a the cost function, shown in Eq. 3.4, where m is the model vector. Following Sen and

Stoffa (2013), and assuming that the starting model is mk with energy E(mk), making a

small perturbation to mk leads to a new model mk+1, which is given by

mk+1 = mk +4mk. (3.5)

The new energy is now E(mk+1), assuming the difference in the energy between the to

states is 4E, the new state generated by Metropolis et al. (1953) is given by

4 E = E(mk+1)− E(mk). (3.6)

Based on the value of 4E, the decision of whether the new state is accepted or not can

be made. The new state is accepted without any condition if 4E = 0, while if 4E > 0

it will be accepted with the probability

P = exp

(
−4E

T

)
, (3.7)

where T is the temperature. This accepting criteria is known as the Metropolis criterion.

SA unlike the other greedy local optimization methods (e.g. iterative linear methods),

has a finite probability of jumping out of local minima (Sen and Stoffa, 2013). One of the

advantages of SA is that the cost function can be multi-variant, which is usually a function

of a large number of variables, and does not require a good initial model (Jakobsen et al.,

2021; Sen and Stoffa, 2013). The algorithm of simulated annealing is not only very simple

but also its implementation is straightforward. However, to obtain the optimal result,

and not settle for the second best, the coefficients, the minimum and the maximum of the

search window, which are used in the equations of the cooling schedule, Eqs. 3.9, 3.11,

and 3.12 must be carefully selected and examined (Izumotani and Onozuka, 2013). For

this work, an algorithm called very fast simulated annealing (VFSA ), proposed by Ingber

(1989, 1993), will be adopted, a swift variant of the SA method. By taking advantage

of the previously presented best-fitting search function, Eq. 3.4, VFSA, explained more

detailed in Algorithms 2, has been implemented to find the global minima, which are the

inverted model vector components.

In all variants of SA method, similar to the physical process of annealing, the goal is to

minimize an energy function, which depends on a cooling scheme, they only differs in the

way of the randomly perturbation of that temperature cooling scheme, Eq. 3.12 and the

model parameters (Jakobsen et al., 2021). For the VFSA algorithm, employed in this
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thesis, a temperature-dependent Cauchy distribution, Eq. 3.9, has been applied as the

temperature cooling system. Starting with a random model at a high temperature. Then,

at annealing step (iteration) k the model m will be mk. Ingber’s algorithm for VFSA is

give by (Sen and Stoffa, 2013)

mmin ≤mk ≤mmax, (3.8)

where mmin and mmax are the minimum and maximum values of the model parameter

m, respectively. Then, at iteration k + 1 the model parameter value will be perturbed,

using the temperature-dependent Cauchy distribution given by (Jakobsen et al., 2021)

mk+1 = mk + y(mmax −mmin), (3.9)

where mk+1 is the new candidate model at the k + 1 iteration, and can be perturbed,

again, by

mmin ≤mk+1 ≤mmax, (3.10)

when the perturbation function yk given by (Ingber, 1989)

yk = sgn(u− 0.5)T k
[(

1 +
1

T k

)|2u−1|
− 1

]
, (3.11)

where sgn is the signum function, u is a uniform random in the interval [0, 1], and T k is

the temperature at the kth iteration and it is the cooling scheme by which the temperature

is controlled and reduced. For the distribution used in this thesis, the global minimum

can be statistically obtained using the following cooling scheme (Ingber, 1989):

T k = T (0)exp(−ac), (3.12)

where T (0) is the initial temperature and the parameter c determines how fast the temper-

ature is decreasing concerning the number of iterations,a , which is equal to the number of

accepted models. Moreover, it is used to control the temperature scheme and help to tune

the algorithm for specific problems (Jakobsen et al., 2021; Sen and Stoffa, 2013). VFSA

provide quit good results, starting from a random place in the search area. Compiled

with an exponential cooling, one can use the temperature-dependent Cauchy-distribution

scheme for VFSA. Then, as the temperature cools, the unique Cauchy-like distribution

condenses the perturbation amplitude. all these features give VFSA the ability to attain

the global minimum very fast compared with the traditional SA (Jakobsen et al., 2021).
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Algorithm 2: Pseudo code of the VFSA method for real data inversion, s, a, and S de-

notes sampling, the number of the accepted models, and the step been taken, respectively.

This Pseudo code is mainly inspired by (Jakobsen et al., 2021).

m(i) = m(0)

T (i) = T (0)

s = a = 0

while T (i) > Tminand s < smax do

s = s+ 1

while u < Nu do

4m(i)= ModifiedCauchyDistribution(m(i),T (i))

S = m(i) +4m(i)

if E(S) < E(m(i)) then

m(i) = Step

a = a+ 1

else

u = random(0, 1)

if u < e−(E(S)−E(x))/T then

m(i) = S

a = a+ 1

end if

end if

T k = T0e
−c∗a

end while

end while

3.3 Inversion of Synthetic Data

This section presents a theoretical inversion of the visco-elastic properties, namely P- and

S-wave velocity and attenuation spectra of a complex porous media. The aim is to compare

the results from the manually adjusted modelling, presented in Chapter 2, and results

from VFSA. The dynamic version of the T-matrix approach to effective visco-elastic

properties of complex porous media allow for the modelling of squirt flow in complex pore

systems characterized by different relaxation times (Jakobsen et al., 2021). To perform the

inversion, initially, a microstructural true model, which account for the model parameters

based on the visco-elastic generalized Xu-White model, have been computed. Then, an
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initial model of the model parameters, was adjusted, including the squirt flow time, to

obtain the model’s best much. The Matlab code is been modified to allow first for choosing

whether to use the, theoretically predicted, synthetic data or, the observed, real data. As

the VFSA Algorithm, which presented in Algorithm 2, being used can give the global

minimum values are searched for, the models with different pore systems, introduced in

Chapter 2, can be evaluated with respect to their ability to explain the behaviour of

carbonate rocks. A secondary goal is to investigate the possibility of introducing a an

elegant microstructural visco-elastic model that can be successfully used for carbonate

and complex porous media.

3.3.1 Inversion using Two Pore-type

In the coming inversion work, the upper and lower pound is as follows: The maximum

and minimum perturbations of αi and φi, in this study, are 50 percent. While for τi, the

maximum perturbation is 10−6 and the minimum perturbation is 10−8. The error bars is

used to represent the probability distribution, with the median value in the center of it.

This upper and lower pounds are always taken, in this work, if not otherwise stated.

Figure 3.1 shows the true model being used in the numerical experiments while the initial

model is shown in Figure 3.2, the only different between this model and the reference

model in the forward modelling, Chapter 2, is that this model is introduce with the error

bars. For both the true, inisial, and best-fitting model parameters been obtained see Table

3.1. A great deal has been obtained from the two pore-types model’s inversion employing

VFSA, as shown in Figure 3.3. However, an slight over-prediction of the S-wave attenu-

ation can be noticed. Figure 3.4 shows the behaviour of the cost function, based on the

cooling scheme, presented in Section 3.2, and the number of iterations that VFSA needed

to find the best-fitting parameters. Typically VFSA techniques, after the first numerical

experiment is been curried out, can be mentioned briefly as follows: Since the VFSA

perturbs the model parameters. Thus, for obtaining the optimal result, using VFSA, it is

quite worthy to perform the specific numerical experiment several times for each model.

VFSA does not have high computational cost, by computational cost, it is meant that

computational time or computational resources. The computational resources might be

the random access memory (RAM) and/or the central processing unit (CPU). The time

VFSA require is approximately 5 to 20 minutes, depending mostly on the L-norm being

used. These features give the opportunity to, effortlessly, repeat the experiments. Ulti-

mately, The lower and upper bound must be selected carefully.

Due to the non-linearity, the derived rock physics models are often uncertain (?). Thus,

in this section the effects of noise are presented, to estimate how our derived models
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Table 3.1: Model parameters of the true model, initial model, and the inverted model
based on the inversion of the model with tow different pore-types.

Microstructures True model Initial model Inverted model

α1 0.1500 0.2100 0.1496

α2 0.0500 0.0260 0.0542

φ2 0.00556 0.00220 0.00540

τ1[s] 1× 10−7 1.1× 10−8 1.69× 10−7

τ2[s] 1× 10−7 0.7× 10−6 1.68× 10−7

been affected by the noise. The noise levels here, are considered to be consistent with

the uncertainties of real data measurements, presented in Section 1.2.2. In this synthetic

inversion, the uncertainty of the P-wave attenuations was reduced from ±3 to ±2, since

it will not have a big effect in the synthetic computations. Figure 3.5 shows the result for

the inversion of model with noise. The model is of two sets of pores, using the same initial

model, used in the noiseless model, shown in Figure 3.2. The best-fitting parameters and

the other model parameters being used are in Table 3.2. From the results one can notice

that noise effect is relatively little.

Table 3.2: Model parameters for both the true model, the initial model, and the inverted
model of two pore-types with noise levels, consistent with the uncertainties of the real
data measurement.

Microstructures True model Initial model Inverted model

α1 0.1500 0.2100 0.1488

α2 0.0500 0.0260 0.0488

φ2 0.00556 0.00220 0.00551

τ1[s] 1× 10−7 1.1× 10−8 2.35× 10−7

τ2[s] 1× 10−7 0.7× 10−6 0.76× 10−7

Model Error evaluation

Computer measurement and modelling work is often done in simplified way, because of the

limitations may occur or come to pass, while the models in real life is more complicated.

An inversion of three sets of pores using model with two sets of pores is performed, to
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estimate the model error (ME). In inversion, one can estimate the model error, based on

numerical experiments, which primarily meant to explain the challenging that scientists

phase as a result of inversion based on simplified model. In this task I inverted a model

of three pore-types using model with only two types of pores, 3.1. The inverted model

parameters are viewed in Table 3.3. The inversion result, as shown in Table 3.3 and Figure

3.9, appears to be unreliable and away from the true model as shown in Figure 3.7.
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Table 3.3: Model parameters for, the true model, the initial model, and the inverted
model, for data of three pore-types, inverted with model of two sets of pores.

Microstructures True model Initial model Inverted Model

α1 0.1500 0.2100 0.1307

α2 0.0500 0.0260 0.0282

α3 0.0010 – –

φ2 0.0250 0.0022 0.0081

φ3 0.0001 – –

τ1[s] 1.00× 10−7 1.10× 10−8 1.34× 10−7

τ2[s] 1.00× 10−7 0.70× 10−6 1.78× 10−7

τ3[s] 1.00× 10−7 – –

3.3.2 Inversion using Three Pore-type

As the model error has been introduced in the previous discussion, further an inversion

of the model with three pore-types, is presented here. This time using the correct true

model in Figure 3.7. By the correct true model here, it meant the true model with an

equivalent pore-types. the initial model is shown in Figure 3.8. Figure 3.11 illustrates

the inverted model, the differences are evident between the two inversions, namely the

inversion of three sets of pores inverted by only two sets of pores and the other one that

is inverted by the data with the equivalent pore-types. The model parameters are in

Table 3.4 below. Again a very good much has been obtained, however, VFSA inversion

over-predict the real data of the attenuation spectra a bit.

Then, an inversion for three pore-types with some uncertainties, is performed. The model,

in this task, consist of three sets of pores, with the same noise levels provided in Section

1.2.2, is performed. An estimation to uncertainties effects is been provided in Figure 3.13.

The model parameters are in table 3.5 below.

3.4 Inversion of Real Data

3.4.1 Inversion using Two Different Pore-Type

The same methodology in the synthetic data inversion is followed here, in the real data

inversion. First, an inversion with two sets of pores is performed, using Algorithm 2.
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Table 3.4: Model parameters for, true model, initial model, and inverted model for the
model with three pore types.

Microstructures True model Initial model Inverted Model

α1 0.1500 0.2200 0.1499

α2 0.0500 0.0260 0.0494

α3 0.0010 0.0015 0.0014

φ2 0.02500 0.01220 0.02480

φ3 0.000100 0.00140 0.00014

τ1[s] 1× 10−7 2.01× 10−7 1.07× 10−7

τ2[s] 1× 10−7 3.01× 10−7 1.07× 10−7

τ3[s] 1× 10−7 4.01× 10−7 1.07× 10−7

Table 3.5: Model parameters of true model, initial model, and inverted model for the
model with three pore types after adding some noises, consistent with uncertainties of the
real data measurements.

Microstructures True model Initial model Inverted Model

α1 0.1500 0.2200 0.1463

α2 0.0500 0.0260 0.0549

α3 0.0010 0.0015 0.0009

φ2 0.0250 0.0122 0.0239

φ3 0.0001 0.0014 0.0001

τ1[s] 1× 10−7 2.01× 10−7 1.03× 10−7

τ2[s] 1× 10−7 3.01× 10−7 1.03× 10−7

τ3[s] 1× 10−7 4.01× 10−7 1.03× 10−7

The numerical experiments give, as expected, a week much in general, see Figure 3.15.

However, one can notice that it give a good match at the ultrasonic frequency, for the

S-wave attenuation. The model parameters are organized in Table 3.6. Figure 3.16 show

the behaviour of the objective function and of the temperature cooling. To recover for the

low value of the S-wave attenuation, an adjustment of the initial model parameters, and

on one of the calcite perturbations parameters, namely on Xs has been made. The results

now seems to be better and the S-wave attenuation (at the ultrasonic frequency) got raised
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to the expected position, as shown in Figure 3.17. Figure 3.18 shows the behaviour of the

objective function and of the temperature cooling scheme.

Table 3.6: Model parameters of the initial model and the inverted model, based on the
inverted model of the real data. The model is of two pore-types.

Microstructures Initial model Inverted model

α1 0.15000 0.19600

α2 0.0500 0.07100

φ2 0.00556 0.00008

Xp 1 1.36

Xs 1 1.11

τ1[s] 1× 10−7 6.72× 10−8

τ2[s] 1× 10−7 1.31× 10−7

Table 3.7: Model parameters of the initial model and the inverted modelbased on the
inverted model of the real data. The model is of three pore-types.

Microstructures Initial model Inverted model

α1 0.0750 0.1120

α2 0.0350 0.0523

φ2 0.0350 0.0241

Xp 1.000 1.157

Xs 1.000 1.106

τ1[s] 1× 10−7 8.70× 10−8

τ2[s] 1× 10−7 1.01× 10−7

Several experiment have carried out, for the model of two pore-types, using real data.

After all, the results obtained by the inversion are somewhat far from the observed data,

and need a lot of improvement.

3.4.2 Inversion using Three Different Pore-Type

An inversion for a model with three pore-types, shown in Figure 3.19) gives a better much

specially at the sonic frequency (more noticeable on the attenuation spectra), however,

at the ultrasonic frequency the attenuations need to be increased. The addition of the
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third sets of pores gives a bit of improvement, but still it is not that satisfactory. To

recover the low value of the P-wave and S-wave attenuation at the ultrasonic frequency, an

adjustments of the initial model parameters and the calcite perturbations parameters have

been made. There are some improvement on the attenuations spectra at the ultrasonic

frequency, see Figure 3.20. Figure 3.21 shows the behaviour of the objective function

and of the temperature cooling scheme. Again, several experiment have been curried out,

using different upper and lower pounds. However, it seems still quite tricky to obtain a

good balance on the model parameters, even when a model with three different pore-types

is been used. Contrary to the conventional modelling of sandstone rocks and the media

with less complexity, it is of important to have some innovated tricks when dealing with

carbonates. By employing, among other things, the analyses and modelling discussion,

Chapter 2 and discussions from Chapters 1, such as how the fluid-pressure relaxation can

affect the acoustic behaviour of a complex media. Some cracks with low aspect ratios

are already forming some shapes of channels to connect the more toroidal pores together,

however adding more compliant would give a closer to the real complex media, featured

by more complexity required by nature (Jakobsen et al., 2003a). The compliant pores

seems to have a big role on the visco-elastic properties of the rock physic model, more

specifically on the attenuation spectra; their edges opens into the more round shaped stiff

pore and they form a disk-shaped gap between the neighbouring grains (Gurevich et al.,

2010).

3.4.3 Inversion using Four Different Pore-Type

From the result and discussion in the previous Section, it seems very necessary for obtain-

ing the optimum match, a model with four different sets of pores has been introduced,

Figure 1.5 (c), by adding a compliant sets that is increase the interconnections of the

system and gives the system a texture that close to the complex porous media, namely

limestone and related porous media.In the inversion with four different pore-tyes, a new

inversion alternatives has been investigated. This is to curry out an inversion of only

attenuation. Then, the model with four different pore types has been inverted for only

attenuation, as shown in Figure 3.22 the inversion for only attenuation cause give some

miss much, it is clear that the velocity is been effected more. Trying to get a better much

on the velocity can be on the cost of worse much on the attenuation.

Next, is to compare between results from L1-norm and results from L2-norm. First, an

inversion using L1-norm in the case of model with four pore-types, has been performed, the

result is shown in Figure 3.24. The Vs attenuation gives a good match at the ultrasonic

frequency, but, it under-predicts the observed data a bit at sonic frequency. However,

the Vp attenuation has shown a big miss-match at the ultra sonic frequency, while it
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under-predicts the observed data highly at sonic frequency. Ultimately, a quite good

much have been obtained by inversion of both velocity and attenuation, using L2-norm,

see Figure 3.26. However, VFSA slightly over-predict the measured P-wave velocity at

the ultrasonic frequency and the S-wave velocity at the sonic frequency. The best-fitting

model parameters are in table 3.10. Figure 3.27 shows the behaviour of the objective

function and of the temperature cooling.

Table 3.8: Best-fitting model parameters for the inverted model in comparison with
initial model for the model with three different pore types.

Microstructures Initial model Inverted Model

α1 0.1500 0.2130

α2 0.0500 0.0710

α3 0.0010 0.0003

φ2 0.00250 0.00009

φ3 0.00250 0.00001

Xp 1.00 1.32

Xs 1.00 1.01

τ1[s] 1× 10−8 9.57× 10−7

τ2[s] 1× 10−8 5.16× 10−7

τ3[s] 1× 10−7 1.3× 10−7

71



Table 3.9: Best-fitting model parameters for the inverted model in comparison with the
initial model for the model with three different pore types.

Microstructures Initial model Inverted Model

α1 0.09500 0.11230

α2 0.04500 0.05390

α3 0.00045 0.00037

φ2 0.022500 0.000900

φ3 0.000225 0.000014

Xp 1.000 1.460

Xs 0.900 0.981

τ1[s] 1× 10−8 8.57× 10−7

τ2[s] 1× 10−8 5.26× 10−7

τ3[s] 1× 10−7 1× 10−7

Table 3.10: Model parameters for the initial model, and inverted model for the model
with four different pore types.

Microstructures Initial model Inverted Model

α1 0.1500 0.2160

α2 0.0500 0.0252

α3 0.0010 0.0014

α4 0.0010 0.0013

φ2 0.0250 0.0050

φ3 0.00050 0.00008

φ4 0.00050 0.00099

Xp 1.00 1.19

Xs 1.00 0.89

τ1[s] 1× 10−8 5.63× 10−8

τ2[s] 1× 10−8 6.14× 10−8

τ3[s] 1× 10−7 9.57× 10−8

τ4[s] 1× 10−7 1.4× 10−8
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Figure 3.1: The true model of two pore-types with, and without noise. Synthetic data
are plotted as dots in the middle of the errorbars, red (p-wave), blue (S-wave). The
errorbars, red (p-wave), blue (S-wave) represent the probability distribution, with the
median data value in the middle of it. Using the model parameters in Table 3.1.
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Figure 3.2: Illustration of the initial model used in the data inversion by VFSA. Syn-
thetic data are plotted as dots in the middle of the error bars, red (p-wave), blue (S-wave).
The errorbars, red (p-wave), blue (S-wave) represent the probability distribution, with the
median data value in the middle of it. For the model parameters see Table 3.1.
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Figure 3.3: The inverted model by VFSA, for model of two pore types. Synthetic data
are plotted as dots in the middle of the errorbars, red (p-wave), blue (S-wave). The
errorbars, red (p-wave), blue (S-wave) represent the probability distribution, with the
median data value in the middle of it. The true model is in Figure 3.1, and the initial
model is in Figure 3.2, for the model parameters see Table 3.1.
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Figure 3.4: Illustration of the number of iterations and the behaviour of the objective
function, and cooling process (temperature curve) for the model in Figure 3.3 above.
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Figure 3.5: Inverted of the model with noise, for the same model in Figure 3.3. Synthetic
data are plotted as dots in the middle of the error bars, red (p-wave), blue (S-wave). The
errorbars, red (p-wave), blue (S-wave) represent the probability distribution, with the
middle data value (data without noise) in the center of it. Here, noise realization is
shown by the black and magenta dotes for the P-wave and S-wave spectra, respectively,
for the model parameters see Table 3.2.
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Figure 3.6: Illustration of the number of iterations and the behaviour of the objective
function, and cooling process (temperature curve) for the model in Figure 3.5 above.
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Figure 3.7: True model, the model is with three sets of pores. The errorbars, red (p-
wave), blue (S-wave) represent the probability distribution, with the middle data value
in the middle of it. Synthetic data are plotted as dots in the middle of the errorbars, red
(p-wave), blue (S-wave). The model parameters are in Table 3.3.
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Figure 3.8: The initial model for the model with three sets of pores. Synthetic data are
plotted as dots in the middle of the errorbars, red (p-wave), blue (S-wave). A comparison
between synthetic data (data with errorbars) and theoretical predictions of the velocity
and attenuation spectra of a rock model with three sets of pores. Model parameters are
in Table 3.3.
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Figure 3.9: The model error estimation, when the three pore-types model inverted by
model with two-pores. Synthetic data are plotted as dots in the middle of the errorbars,
red (p-wave), blue (S-wave). The errorbars, red (p-wave), blue (S-wave) represent the
probability distribution, with the median data value in the middle of it. The true model
and initial model are in Figure 3.7, and Figure 3.8, respectively. The model parameters
are in Table 3.3.
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Figure 3.10: Illustration of the number of iterations needed by VFSA, the behaviour of
the objective function, and cooling process (temperature curve)for the model in Figure
3.9 above.
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Figure 3.11: The inverted model, for model of three pore types. Using the same true
model in figure 3.9. Synthetic data are plotted as dots in the middle of the errorbars,
red (p-wave), blue (S-wave). The errorbars, red (p-wave), blue (S-wave) represent the
probability distribution, with the median data value in the middle of it. The theoretical
predictions of both models are based on a microstructural visco-elastic model of com-
municating cavities with different pore shapes and scales, using the model parameters in
Table 3.4.
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Figure 3.12: Illustration of the number of iterations needed by VFSA, the behaviour of
the objective function, and cooling process (temperature curve) for the model in Figure
3.11 above.
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Figure 3.13: The inverted model with noise added, for the three sets of pores inverted
with three sets of pores. Synthetic data are plotted as dots in the middle of the errorbars,
red (p-wave), blue (S-wave). The errorbars, red (p-wave), blue (S-wave) represent the
probability distribution, with the median data value (data without noise) in the middle of
it. Noise realization is shown by the blue and red dots for the P-wave and S-wave spectra,
respectively, for the model parameters see Table 3.5.
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Figure 3.14: Illustration of the number of iterations needed by VFSA, the behaviour of
the objective function, and cooling process (temperature curve) for the model in Figure
3.13 above.
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Figure 3.15: The real data inversion for the model of two sets of pores. Synthetic data
are plotted as dots in the middle of the errorbars, red (p-wave), blue (S-wave). The
errorbars, red (p-wave), blue (S-wave) represent the probability distribution, with the
median data value in the middle of it. for the model parameters see Table 3.6.
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Figure 3.16: The number of iterations needed by VFSA, the behaviour of the cost
function, and cooling process (temperature curve) for the model in Figure 3.15 above.
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Figure 3.17: The real data inversion for the model of two sets of pores. Synthetic
data are plotted as dots in the middle of the errorbars, red (p-wave), blue (S-wave).
The errorbars, red (p-wave), blue (S-wave) represent the probability distribution, with
the median data value in the middle of it. For the initial model and the best-fitting
parameters been obtained see Table 3.7.
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Figure 3.18: Illustration of the number of iterations needed by VFSA, the behaviour of
the objective function, and cooling process (temperature curve) for the model in Figure
3.17 above.
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Figure 3.19: The inverted model of three sets of pores. Synthetic data are plotted as
dots in the middle of the errorbars, red (p-wave), blue (S-wave). The errorbars, red (p-
wave), blue (S-wave) represent the probability distribution, with the median data value
in the middle of it. for the model parameters see Table 3.8.

91



Figure 3.20: The inverted model of three sets of pores. Synthetic data are plotted as
dots in the middle of the errorbars, red (p-wave), blue (S-wave). The errorbars, red (p-
wave), blue (S-wave) represent the probability distribution, with the median data value
in the middle of it, for the model parameters see Table 3.9.
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Figure 3.21: Illustration of the number of iterations needed by VFSA, the behaviour of
the objective function, and cooling process (temperature curve) for the model in Figure
3.20 above.
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Figure 3.22: Inversion for only attenuation of the Portland limestone (top), using four
different sets of pores. Synthetic data are plotted as dots in the middle of the errorbars,
red (p-wave), blue (S-wave). The errorbars, red (observed p-wave), blue (observed S-
wave), represent the probability distribution, with the median data value in the middle
of it, for the model parameters see Table 3.10.
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Figure 3.23: Illustration of the number of iterations needed by VFSA, the behaviour of
the objective function, and cooling process (temperature curve) for the model in Figure
3.22 above.
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Figure 3.24: The L1-norm inverted model for the Portland limestone (top). using four
different sets of pores. Synthetic data are plotted as dots in the middle of the errorbars,
red (p-wave), blue (S-wave). The errorbars, red (observed p-wave), blue (observed S-
wave), represent the probability distribution, with the middle data value in the middle of
it, for the model parameters see Table 3.10.
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Figure 3.25: Illustration of the number of iterations needed by VFSA, the behaviour of
the objective function, and cooling process (temperature curve) for the model in Figure
3.24 above.
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Figure 3.26: The L2-norm inverted model for the Portland limestone (top). using four
different sets of pores. Synthetic data are plotted as dots in the middle of the errorbars,
red (p-wave), blue (S-wave). The errorbars, red (observed p-wave), blue (observed S-
wave), represent the probability distribution, with the middle data value in the middle of
it, for the model parameters see Table 3.10.

98



0 50 100 150 200
10

-4

10
-2

10
0

T

0 50 100 150 200

k

10
-5

10
0

E

Figure 3.27: Illustration of the number of iterations needed by VFSA, the behaviour of
the objective function, and cooling process (temperature curve) for the model in Figure
3.23 above.
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Chapter 4

Discussion, Conclusions and

Suggestions for Future Work

4.1 Discussion

The main goal of this thesis was to develop a microstructural visco-elastic model that can

explain the measured velocity and attenuations of P- and S-waves at sonic and ultrasonic

frequencies. An important task was to investigate if it could be possible to obtain a

satisfactory match between theory and experiment by using a simpler model with two and

three different pore-types. The effect of visco-elastic and microstructural parameters on

the measured seismic velocities as well as their effect on the attenuation of the propagating

seismic waves, especially carbonate rocks, has been discused. Throughout this thesis,

the theoretical background for visco-elastic model and mechanism of squirt fluid flow,

has been explained. Furthermore a beneficial and important sensitivity study, of the

microstructural parameters is presented. This sensitivity study and the results from the

modelling in Chapter 2, has been effectively employed in later synthetic and real data

experiments discussions, in Chapter 3.

Several numerical experiment have been carried out, first, inversion of the theoretically

predicted data for the model of two pore-type was performed , Section 3.3.1. Next,

for the model with three pore-types, 3.3.2. The results from the synthetic inversion, in

Section ?? show sufficiently match with theoritecally predicted data. For example, the

results of the model with two pore-types, organized in Table 3.1, and Figure 3.3 show an

adequate match to the true model, shown in Figure 3.1, opposed to inversion of the real

data in Section 3.4.1, nevertheless VFSA shows the ability to give the best-fitting model

parameters, which are much closer to the true model than the initial model. VFSA has

shown the ability to invert the model with three pore-type in a reliable way. Since the
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synthetic inversion give a good match it was clear to test the models and evaluate them

with different noise. In the process of finding the optimal match between the theoretical

predictions and experimental measurements, applying VFSA, using the visco-elastic T-

matrix approach, a non-linear RPI to the microstructural parameters is performed, this

time with noise , an elegant inversion and best fitting parameters of the microstructures

has been obtained. From the inversion of model with noise, shown in Figure 3.5 and the

best-fitting parameters in Table 3.2, one can notice that noise effect is relatively little.

Nevertheless, the ME estimation, as has been shown in Figure 3.9, give an important

understanding of the unreliability of the simplified models can be extracted. The result

has been obtained shows the inconsistency and how big the error can become when using

such very simplified model in the inverse problems, it could, typically, when the models

from sandstone have been used for carbonates and the related complex media.

Next, real data inversion was performed, starting with model of two different-type, then

with three. As a conclusion, one can note that the results obtained by the real data

inversion, for models with two, shown in Figure 3.15, and three , shown in Figure 3.19,

pore-types, are somewhat far from the observed data, and need a lot of improvement.

Looking at the results from L1- norm, shown in Figure 3.24, L2-norm, shown in Figure

??, and The best-fitting model parameters shown in Table 3.10. The Vs attenuation

gives a good match at the ultrasonic frequency, ignoring for a moment the slight under-

prediction of observed data at sonic frequency. However, the Vp attenuation has shown

a big miss-match at the ultra sonic frequency, while it under-predicts the observed data

highly at sonic frequency. The L2-norm give much preferable results that L1-norm, using

with coefficients have been selected in this work. Ultimately, a quite good much have

been obtained by inversion of both velocity and attenuation, using L2-norm,. However,

VFSA slightly over-predict the measured P-wave velocity at the ultrasonic frequency and

the S-wave velocity at the sonic frequency.

4.2 Conclusions

To obtain the optimum developing microstructural models for carbonates, several tech-

niques both by synthetic inversion and real data inversion, has been presented. During

synthetic inversion, methods, such as ME evaluation and uncertainty estimation, has been

investigated to obtain the optimal understanding of the complexity associated with car-

bonates, more specifically with the limestone (top) sample, which have been studied in

this work. The result has been obtained by ME estimation could be used in the evaluation

of inconsistency, and how significant the error can become when using such very simplified

model in the inverse problems.
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From comparison between result of L1-norm and L2-norm, it can be concluded that The

L2-norm gives much preferable results that L1-norm, using with coefficients have been

selected in this work.

An evaluation of the microstructural models with two and three pore-types have been

presented, the match to the real data increases with the increase in the pore-type, in

other word, the model with three pore-types gives in general beter match to the real data

than the model with two pore-types. After all, the ultimate goal to obtain reliable match

to the real data could not be acheived, in the work has been perform.

The real data inversion of the Portland top, using four different pore-types, shown in

Figure ??, showed the ability of VFSA to give a sufficient rock physics inversion result,

that explain the real data, nevertheless, that it can provide us with a quit good much of

the real data model.

4.3 Suggestions for Future Work

Following Jakobsen et al. (2021), in this thesis the effects of global flow is ignored and only

the effects of squirt flow is modelled. It is somewhat not very clear if the global flow effects

can simply be negligible in the rock sample considered in this work. However, the effects

of global flow assumed to be negligable, mainly because the global flow estimation in the

visco-elastic T-matrix approach, used in this thesis, is not complete and reliable (Jakobsen

and Chapman, 2009; Jakobsen et al., 2021). Since the fluid substitution is presented in this

work, the ide of inverting while fluid substitution is taking place(inversion with the wrong

fluid), could have been benifecial. An inversion with the wrong fluid was performed in

some of the experiments, carred out, however the results was not included, mainly because

of the time limit of doing enough number of experiments. In addition to the fact that the

implementation of such inversion, may requires some new assumption or selection of other

types of coefficients, or it requre some modifications on the VFSA algorithm, currently

being used. After all, this could not be possibly done, in this thesis. To an ultimate

understanding of the implications of these kind of inversion, future research could be

address it properly. Some other suggestions for future research, could be to address the

following:

� The effects of global flow relative to the squirt flow, for the the visco- elastic complex

porous media, more specifically carbonates.

� Effect of stress and pore fluid pressure
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� Applications of calibrated microstructural visco-elastic models within the context

of seismic reservoir characterization and/or monitoring

� The microstructural visco-elastic models and the inversion algorithm can be ex-

tended to anisotropic visco-elastic media.
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Appendices
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A The G-tensor

Assuming a reference compliance (1/C(0)) tensor of S(0), the G-tensor of phase r, G(r)

is given by (Jakobsen and Chapman, 2009; Jakobsen and Johansen, 2005; Torquato and

Haslach Jr, 2002)

G(r) = −S(r) : S(0), (A.1)

where S(r) is the compliance Eshelby tensor of the ellipsoid. For the isotropic matrix

material containing spheroidal inclusions with semiaxes a
(r)
1 =a

(r)
2 =a(r)r and a

(r)
3 =br and

whose symmetry axis is aligned in the x3-direction, the elliptical integrals can be evaluated

analytically (Jakobsen et al., 2003a; Jakobsen and Johansen, 2005), and the components

of compliance tensor, S
(r)
ijkl, are given by (Jakobsen and Johansen, 2005; Torquato and

Haslach Jr, 2002)

S
(r)
1111 = S

(r)
2222 =

3

8(1− ν)

a2r

α2
r − 1

+
1

4(1− ν)
×
[
1− 2ν − 9

4(α2
r − 1)

]
q, (A.2)

S
(r)
3333 =

1

2(1− ν)

{
1− 2ν +

3α2
r − 1

α2
r − 1

−
[
1− 2ν − 3α2

r

a2r − 1

]
q

}
, (A.3)

S
(r)
1122 = S

(r)
1122 =

1

4(1− ν)

{
α2
r

2(α2
r − 1)

−
[
1− 2ν − 3

4(α2
r − 1)

]
q

}
, (A.4)

S
(r)
1133 = S

(r)
2233 =

1

2(1− ν)

{
−α2

r

α2
r − 1

− 0.5

[
(1− 2ν)− 3α2

r

α2
r − 1

]
q

}
, (A.5)

S
(r)
3311 = S

(r)
3322 =

1

2(1− ν)

{
2ν − 1− 1

α2
r − 1

−
[
1− 2ν − 3

2(α2
r − 1)

]
q

}
, (A.6)

S
(r)
1212 =

1

4(1− ν)

{
α2
r

2(α2
r − 1)

+

[
1− 2ν − 3

4(α2
r − 1)

]
q

}
, (A.7)

S
(r)
1313 = S

(r)
2323 =

1

4(1− ν)

{
1− 2ν − α2

r + 1

α2
r − 1

− 0.5

[
1− 2ν − 3(α2

r − 1)

a2r − 1

]
q

}
, (A.8)

where ν denotes the Poisson ratio of the matrix, given by (Guéguen and Palciauskas,

1994)

ν =
3k − 2µ

2(3k + µ)
, (A.9)

where k and µ are the bulk and shear moduli, respectively, of the isotropic matrix, and
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αr = br/ar is the aspect ratio of the rth spheroid, and the constant q is given by

q =
αr

(1− α2
r)

3/2

[
cos−1αr − αr(1− α2

r)
1/2)
]
, (A.10)

When αr ≤ 1. For spheres (αr = 1, q = 2/3) the above equations can be simplified to

give the compliance tensor as (Jakobsen and Johansen, 2005)

S
(r)
ijkl =

5ν − 1

15(1− ν)
δijδkl +

4− 5ν

15(1− ν)
(δikδjl + δilδjk), (A.11)

where δij denotes the Kronecker-delta, defined by

δij =


0, if i 6= j

1, if i = j

 . (A.12)

In the case of typical flat compliant Hudson-crack (defined with αr −→ 0 and q −→ 0),

then the only non-zero components of the compliance tensors are given by (Jakobsen and

Johansen, 2005)

S
(r)
3333 = 1, (A.13)

S
(r)
3311 = S

(r)
3322 =

ν

1− ν
, (A.14)

S
(r)
1313 = S

(r)
2323 = 0.5. (A.15)

B Orientation averaging

In this thesis an isotropic model is assumed, by taking the orientation average of the ran-

domly oriented communicating cavities and the quasi continuous limit is considered, since

it can provide an adequate theoretical platform when dealing with real rocks characterized

by a discrete spectrum of cavity aspect ratios(Jakobsen et al., 2003b). Following Jakob-

sen et al. (2003b), a continuous spectrum of cavity orientations but a discrete spectrum

of cavity aspect ratios or shape factors is assumed to perform the orientation averaging.

The population of cavities is re-divided into new sets of cavities, each set labelled by

i=1, ...,I and characterized by an orientation distribution function Oi(Ω), common aspect

ratio αi, and porosity φi, with all these assumptions been given the following formulas is

introduced

N∑
r=1

v(r)A(r) −→
I∑
i=1

φ(i)A(i) (B.1)
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Ā(i) =

∫
dΩO(Ω)A(a(i),Ω), (B.2)

where Ā(i) is the orientation average of A(a(i),Ω), A(r) is a tensorial quantity (depends

on the orientation/shape index r), Ω symbolizes the three Euler angles that determine the

orientation of the cavity relative to the crystallographic axes of the material with reference

stiffness tensor C(0). Jakobsen et al. (2003b) give some formulas for orientation averaging

in the special case of a vertical transversely isotropic medium, which are relevant for

isotropic media. For details about implementing the formulas above for the general case

with arbitrary orientation distribution functions, see Jakobsen et al. (2003b).
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