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Abstract

When modeling with big data and high dimensional data, the ability to ex-

tract the most important information from the data set and avoid over�tting

is crucial. However, by using well developed sparse methods, we can construct

models that are less likely to over�t as they use only the most informative

part of the data. In this thesis, we are developing an algorithm which can

simultaneously achieve sample and feature selection when facing big data in

supervised learning. This parametric Bayesian regression learning method is

based on a well known Bayesian sparse learning method: the Relevance Vector

Machine (RVM). The deduction of the algorithm is inspired by, the probabilis-

tic feature selection and classi�cation vector machine (PFCVM), which is a

simultaneous sample and feature selective extension of the RVM classi�cation

model. Our resulting method is called the dimensionality reducing relevance

vector machine (DRVM), and it performs simultaneous feature and sample

selection in the regression case. The proposed model is sparse in terms of

choosing only the most important features and samples to explain the input

data, as well as being accurate in predictions.

Keywords Big Data · Dimensionality Reduction · High Dimensional Data · Kernel
basis function · Probabilistic Prediction · Sparse Bayesian Learning
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Notations

We are using N to denote the total number of observations in the data set, and P to denote

the total number of di�erent predictors, or variables, for each observation. Further, we are

denoting vectors with bold lower case letters, and matrices with bold capitals. The bold

matrix Φ of kernel basis functions K(), with one additional row of ones corresponding to

the weight w0, is of dimension N × (N + 1) and has the form

Φ =


1 K(x1,x1) K(x2,x1) · · · K(xN ,x1)

1 K(x1,x2) K(x2,x2) · · · K(xN ,x2)
...

...
...

. . .
...

1 K(x1,xN) K(x2,xN) · · · K(xN ,xN)

 . (0.1)

The vector of unknown weight parameters w is given by

w = (w0, w1, · · · , wN)>,

where each weight wi corresponds to vector number i of kernel basis functions, that is the

i'th row of the kernel basis function matrix Φ from (0.1), that is

φ(xi) =
(
1, K(x1,xi), K(x2,xi), · · · , K(xN ,xi)

)
.

The columns of the kernel matrix Φ in (0.1) will further be denoted by φj(x), and has

the form:

φj(x) =
(
K(xj,x1), K(xj,x2), · · · , K(xj,xN)

)>
,

for j in [1, N ]. The kernel function at position (i, j) is then

Φi,j = K(xi,xj)

for j in [1, N ]. To avoid confusion around the indexing and the �rst column of the kernel

basis function matrix Φ we will use j = 0 to denote this �rst column of ones. Thus, the

ix



corresponding column and functions are:

φ0(x) =
(
1, . . . , 1

)
,

Φi,0 = 1.

We are going to use the bold capital I to indicate the identity matrix, that is

I = diag(1, 1, · · · , 1),

and a bold 1 = (1, 1, · · · , 1) to denote a vector of ones. Further the index > will consis-

tently be used to denote the transpose of a vector or a matrix. By a bold lower case t

denoting the vector of observed response variables or targets:

t = (t1, t2, · · · , tN)>, (0.2)

and with

xi = (xi1, xi2, · · · , xiP ) (0.3)

being the input vector corresponding to the output ti, the observed data are given by the

data points {
(x1, t1), (x2, t2), · · · , (xN , tN)

}
. (0.4)

When the index MP is used, it is referring to the most probable values of the given

parameter.



Mathematical Formulas

This section covers mathematical formulas and results that will be used several times later

in the thesis.

Woodbury matrix identity.

The inverse of a rank-k matrix can be simpli�ed by rewriting it as (Higham, 2002, p. 258)

(
A+UCV

)−1
= A−1 −A−1U

(
C−1 + V A−1U

)−1
V A−1, (0.5)

for any matrices A, U , C and V of the right sizes. More speci�cally, A must be n× n,
U is n× k, C is k × k and V is k × n.

Determinant identity.

The determinant of a matrix equation of the given form can be rewritten using the identity

(Magnus and Neudecker, 2019, p. 201)

|X +AB| = |X||I +BX−1A|, (0.6)

for any matrices A, B, X, and the identity matrix I, of the right sizes.

Jacobi's formula.

The Jacobi's formula gives the derivative of a matrix determinant in terms of its adjugate

and its trace, that is (Magnus and Neudecker, 2019, p. 201)

d

dt
|A(t)| = trace

[
adjugate

(
A(t)

) dA(t)

dt

]

= |A(t)| trace
[
A−1(t)

dA(t)

dt

]
. (0.7)

Inverse of 2× 2 Block Matrices.

Let R be a 2× 2 block matrix given by

R =

[
A B

C D

]
,
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where A is a k ×m nonsingular matrix, B,C and D are, respectively, k × n, l×m and

l× n matrices. In addition, the matrix D −CA−1B must be invertible. In that case the

inverse R−1 is given by (Lu and Shiou, 2002, p. 120)

R−1 =

[
A−1 +A−1B

(
D −CA−1B

)−1
CA−1 −A−1B

(
D −CA−1B

)−1
−
(
D −CA−1B

)−1
CA−1

(
D −CA−1B

)−1
]
. (0.8)

The fundamental property of the Dirac delta function.

A Dirac delta function δ() has the fundamental property that (Oldham et al., 2010)∫ ∞
−∞

f(x)δ(x− a)dx = f(a). (0.9)



1 | Introduction

1.1 Background and Previous Research

Today, companies and other institutions are collecting enormous amounts of data, and

nothing suggests that this trend will slow down. Thus, the need to extract the most

important information from vast amounts of data has never been greater. This thesis will

concentrate on Sparse Bayesian supervised learning in analysis of big data. When talking

about big data, we are in this thesis referring to two speci�c situations: data that contains

high dimensional input variables, and data with large sample size. When facing so called

big data, model constructing by standard methods using the entire data set can be time

consuming and computationally expensive. In such situations we want to construct models

that can extract the most informative part of the data, and at the same time achieve high

predictive ability. Learning algorithms not using all the data in prediction, can be called

sparse learning, and they can be sparse in terms of variable selection and in terms of

sample size reduction. A well known example of sparse learning is the Support Vector

Machine (SVM) (Platt et al., 1999), which aims to select the most important samples

to a�ect the predictions. However, the SVM is a fully deterministic machine learning

method, and it is limited to the use of kernel functions that follows the Mercer's condition

(Smola et al., 1998). To overcome these limitations, Tipping (2001) suggested a sparse

Bayesian, and hence probabilistic, approach to the SVM, called the Relevance Vector

Machine (RVM). This method was using remarkably fewer basis function than the SVM

method while it also had several advantages, including the ability to give probabilistic

predictions, automatically estimate the nuisance parameters, and it was also able to use

arbitrary basis functions (Tipping, 2001). Still, the method su�ered from being slow in

the learning procedure and Tipping et al. (2003) followed up with a faster optimization

algorithm for the model, re�ered to as the Fast Relevance Vector Machine (FRVM).

These original RVM methods are sparse in terms of sample size and can be extended to

achieve sparsity in high dimensional data. Our paper will develop a method which can

achieve simultaneous sparsity in both sample and feature size. The resulting model is

called the Dimensionality Reducing Relevance Vector Machine (DRVM) and is a feature

selective extension of the original RVM in the regression case. The method is inspired by
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a similar simultaneous feature and sample selective extension of the classi�cation case of

RVM, developed by Jiang et al. (2019) which is called the Probabilistic Feature Selection

and Classi�cation Vector Machine (PFCVM). We will show that our method can more

accurately compared to the original RVM when data are multidimensional, as it is more

robust towards the noise variance than models using the entire data set.

We will in this chapter explain the sparse Bayesian framework in detail. Then, in

Chapter 2 we will look into the RVM and FRVM model by Tipping (2001) and Tipping

et al. (2003), before we are going to investigate the extension to the PFCVM model by

Jiang et al. (2019) in Chapter 3. In Chapter 4 we will develop the dimensionality reducing

extension in the regression case called DRVM. Further, we will do some simulational

experiments on the performance of the proposed DRVM model in Chapter 5, to see if the

model is choosing the parameters that for sure is a�ecting the model. Lastly, in Chapter

6, we will discuss our �ndings in the research and potential further research topics.

1.2 Sparse Modeling

When the sample size N in a dataset is too large, we can expect algorithms that are

using all the data to be slow and computationally expensive. Sparse methods will often

handle data with large sample size by choosing only the most important observations to

a�ect in the prediction, instead of using the whole original data set, and hence make

the processing less expensive. By using methods that are sparse in sample size, we can

overcome this problem, or at least make the models run faster and be less expensive in

the computations.

We can also use the term big data when data is high dimensional, meaning that the

number of input variables P is large compared to the number of observations N . As

postulated in the introductory part, modeling big data or high dimensional data with

simple methods using all the data, has several possible limitations. First, if the data are

su�ciently high dimensional, we can experience what is called the curse of dimensionality

(Bellman and Dreyfus, 1957), that is when the number of variables increases the number

of observations needed to avoid serious bias problem is increasing even more. Therefore,

the number of observations in the data at hand is often not su�ciently large when the

number of variables is large. In addition, if we are modeling with all variables, we can

experience over�tting and a model that is too complex and captures the random noise in

the data. To reduce or avoid these problems, we have to �t models that are performing

variable selection or dimensionality reduction. Such models aim to choose only the most

important features to a�ect the predicted output variable. Thus, using sparse methods,

can result in more parsimonious models with better generalization capacities.

In the next section, we will look into the sparse framework of the RVM models that is

2



sparse in terms of sample size reduction, while we will investigate the sparse framework

for RVM based models being sparse both in terms of feature selection and sample size

reduction in Section 3.2.

1.2.1 Sparse Sample Selective Framework

This thesis is an investigation within the framework of sparse supervised machine learning,

that aims at capturing the systematic information in the training data
{
xi, ti

}N
i=1

given

by Equation (0.2):(0.4), with the purpose of making accurate predictions for future values

t∗. This is frequently done by modeling the dependency between input vectors
{
xi
}N
i=1

and the corresponding outputs
{
ti
}N
i=1

, by de�ning a function y
(
xi
)
given by M basis

functions:

y
(
xi
)

= w0 +
M∑
l=1

wlφl
(
xi
)

= φ
(
xi
)
w. (1.1)

In Equation (1.1), w is the vector of unknown weight parameters to be estimated, and

in general supervised learning the basis function φ(xi) is a vector corresponding to the

input vector xi, given by

φ(xi) =
(
1, φ1(xi), φ2(xi), · · · , φM(xi)

)
.

However, in most cases of sparse learning, these basis functions φ(xi) are given by the

kernel or covariance functions K
(
x,xi

)
, that measures similarity between xi and the

other input vectors x. That is

φ
(
xi
)

=

(
1, K

(
x,xi

))

=

(
1,
(
K(x1,xi), K(x2,xi), · · · , K(xN ,xi)

))
,

(1.2)

where we can see that the number of elements in the basis function φ(xi) must be (N+1),

ant that we need to have M = N , which often is the case in sparse learning. The most

common kernel, and the one we will be using, is the Gaussian, also called a Radial Basis

Function (RBF). For i and j in [1, N ] the RBF kernel function is given by

K
(
xi,xj

)
= exp

{
− ϑ||xi − xj||2

}
, (1.3)

where ϑ is a non-negative free parameter (Vert et al., 2004, p. 63). By the model con-

structed above, the output is a linear combination of N, usually not linear basis functions,

which makes the output linear in the parameters w. This makes the model function in

Equation (1.1) relatively simple to work with. All summed up, our models will make
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predictions based on:

y
(
x;w

)
=

N∑
l=0

wlφl(x)

= wo +
N∑
l=1

wiK
(
x,xl

)
= Φw. (1.4)

From Equation (1.4), with the preferred kernel function, the modeling problem generally

is to estimate w as good as possible using the relevant known data. Thus, we can predict

for new unseen target values t∗, while the new input values are not yet known.

When estimating the weight parameters w in Equation (1.1) we are assuming that

the targets ti can be expressed by the true model y(xi) with an additional random noise

εi, that is

ti = y(xi) + εi.

The εi's are Gaussian zero-mean with variance σ2, such that

t|x,w, σ2 ∼ N
(
t|Φw, σ2

)
,

and hence the likelihood of the targets t is given by

p
(
t|w, σ2

)
=
(
2πσ2

)−N
2 exp

{
− 1

2σ2
||t−Φw||2

}
. (1.5)

This presence of noise makes the key challenge of the modeling to avoid over�tting, while

still capturing the systematic information in the data (Tipping, 2001). When �tting Equa-

tion (1.4) using methods that is sparse in sample size, some of the estimated weight values

will be zero. In that way the model is not using all the N observations in the data but is

rather choosing the most important ones when it comes to prediction. An e�cient way to

do this is by setting the weights that corresponds to the least in�uential basis functions

to zero, which also is controlling the complexity in the model and makes over�tting less

likely. If we model (1.4) using a method that performs variable selection, or dimensionality

reduction, the �tting procedure will hopefully choose only the most explanatory features

in the data. The method we are developing is sparse both in feature and sample size, and

will probably be selective in terms of choosing only the most important observations as

well as features to a�ect the model.
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1.2.2 Bayesian Modeling

If we try to estimate the parameters w and make predictions using all observations,

by (1.5), we can expect the model to be computationally expensive. If the data are

high dimensional, the risk of over�tting is high. A common way to reduce or avoid these

problems is to use a Bayesian framework, and place sparse priors on the weight parameters

w. Frequentist modeling handles uncertainty in the data in terms of noise and errors, but

from a Bayesian point of view, we would in addition aim to capture the uncertainty in the

models, and in the corresponding parameters. This is achieved by using prior intuitions

and treating parameters like random variables with their own distributions. In that way

we can learn more about the uncertainty in the predictions. All the methods considered

in this thesis are based on such a Bayesian framework, which makes the models sparse and

probabilistic. In the frequentist case we would have assumed a vector of true, unknown

deterministic parameters Ω to exist, and try to estimate them as good as possible based

on certain criteria. Using a Bayesian approach, we would not make the assumption of

a single true Ω, but rather try to �nd a distribution of the parameters (Tipping et al.,

2003).

The likelihood of observing the current data is de�ned as the probability p(t|Ω), where

Ω is the parameters we want to estimate. We will also specify a prior distribution for the

parameters, which represents our thoughts or expectations about the data before anything

is observed. It is denoted p(Ω). We can now use Bayes theorem

P (A|B) =
P (B|A)P (A)

P (B)
,

where A and B are random variables, to �nd the posterior distribution over the parame-

ters. This is given by

p(Ω|t) =
p(t|Ω)p(Ω)

p(t)
, (1.6)

which can be interpreted as

posterior =
likelihood× prior

marginal likelihood
,

and represents our beliefs about the data after collecting it. Using the framework estab-

lished, we can now predict for new data points t∗ using the predictive distribution

p(t∗|t) =

∫
p(t∗|Ω)p(Ω|t) dΩ,

given by the law of total probability (Tipping et al., 2003). As we are integrating out the

parameters Ω, this predictive distribution is determined purely by the observed data t,

and no further information is needed in the Bayesian framework. In addition, a Bayesian
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approach will estimate nuisance parameters, and is able to quantify uncertainty in the

predictions. The most important advantage of Bayesian learning is, in our setting, the

ability to extract a full posterior distribution instead of just returning a most probable

point estimate as a fully deterministic approach.

Brief Consideration of Sparseness in the Priors

Using the Bayesian framework above, we are able to train models with a great amount

of sparseness by using sparse priors as pre-assumption for the parameters. In this paper,

we will use a zero mean Gaussian prior on each weight wi given the hyperparameters αi,

that is

wi|αi ∼ N (wi|0, αi),

with a Gamma(a, b) hyperprior on αi. Now, we are going to show that this kind of

prior is sparse as it gives a marginal Student-t distribution (Tipping, 2001). With this

hierarchical prior, and by integrating out the αi's Tipping (2001) got:

p(wi) =

∫
p(wi|αi)p(αi) dαi

=

∫ √
αi
2π
e−

1
2
αiw

2
i
ba

Γ(a)
αa−1i e−bαi dαi.

By multiplying this with

(b+
w2
i

2
)a+

1
2

Γ(a+ 1
2
)

and writing the terms not including αi outside the integral, he got

=
baΓ(a+ 1

2
)

√
2πΓ(a)(b+

w2
i

2
)a+

1
2

∫
(b+

w2
i

2
)a+

1
2

Γ(a+ 1
2
)
α
(a+ 1

2
)−1

i e−αi(b+
1
2
w2
i ) dαi.

In the equation above, the terms in the integral gives the Gamma(a+ 1
2
, b+

w2
i

2
) distribution,

which integrates to one. Thus, he was left with

p(wi) =
baΓ(a+ 1

2
)

√
2πΓ(a)

(
b+

w2
i

2

)−(a+ 1
2

)
,

where Γ(·) is the gamma function. The equation above is the Student-t distribution,

and the complete marginal distribution over the weights w will hence be a product of

Student-t distributions. Using this Bayesian prior, the marginal distribution p(wi) over

the weights will have a Student-t distribution, that is sparse compared to a Gaussian

marginal distribution over wi as it is strongly peaked at zero. Using uniform hyperpriors

6



by �xing a = b = 0, as we will do later, one will get the improper prior p(wi) ∝ 1/|wi|
(Tipping, 2001). This is approximately the student-t distribution with degrees of freedom

close to zero, which is very sparse.
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2 | The Relevance Vector Machine

The Relevance Vector Machine (RVM) which we will look into in this chapter, is utilizing

a Bayesian learning framework to obtain probabilistic predictions that is sparse in terms of

sample size reduction. As each sample weight wi is related to one basis function φ(xi), we

will experience that some of the weights from Equation (1.4) will be in�nitely peaked at

zero, and hence pruned from the model together with their corresponding basis functions.

The remaining non-zero weights are the relevance vectors (Tipping, 2001).

2.1 Sparse Sample Selective Framework

In the Relevance Vector Machine, Tipping (2001) used a Bayesian framework. By as-

signing a sparse prior on the weight parameters wi, he achieved sparse solutions. That

is, each weight wi is assigned an individual zero-mean hierarchical Gaussian prior. He

argued that this made a smooth prior, as preferred to reduce th complexity in the model.

The hierarchical sparse prior on the weights w is thus the distribution

w|α ∼ N
(
w|0,A−1

)
, (2.1)

that is

p
(
w|α

)
= (2π)−

N+1
2 |A|

1
2 exp

{
− 1

2
w>Aw

}
. (2.2)

The bold lower case α and the bold capital A is respectively a N + 1 vector and a

(N + 1) × (N + 1) diagonal matrix of the hyperparameters αi corresponding to each

separate weight wi, that is:

α = (α0, α1, . . . , αN),

A = diag(α0, α1, . . . , αN).

In these equations, every element αi is the inverse variance of the weight parameter wi,

and measures its precision, and therefore also the power of the prior in Equation (2.1).

This individual assignment of Gaussian priors is a valuable detail of the RVM, as it gives

the model its sparse qualities. The sparseness of this prior distribution was illustrated
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in Section 1.2.2. Tipping (2001) then de�ned Gamma distributed hyperpriors on each

inverse variance αi of the hierarchical prior (2.1), and on the noise variance σ2, that is:

αi ∼ Gamma(αi|a, b),

σ−2 ∼ Gamma
(
σ−2|c, d

)
.

To make the hyperparameters αi and σ
2 uninformative he �xed all the hyper hyperpa-

rameters to be a = b = c = d = 10−4, which made the Gamma distributed hyperpriors

uniform in practice (Tipping, 2001).

2.2 Calculating Posteriors

From Equation (1.6), using the prior (2.1), and the likelihood of the targets in Equation

(1.5), he got the posterior distribution over the unknown parameters

p
(
w,α, σ2|t

)
=
p
(
t|w,α, σ2

)
p
(
w,α, σ2

)
p
(
t
) ,

and a predictive distribution of the form

p(t∗|t) =

∫
p
(
t∗|w,α, σ2

)
p
(
w,α, σ2|t

)
dw dα dσ2. (2.3)

In Equation (2.3) he had no problem calculating the likelihood p
(
t∗|w,α, σ2

)
. However,

it is not possible to compute the posterior distribution in the second term analytically, as

it is not possible to take the integral p(t) in the denominator (Tipping, 2001). Tipping

(2001) then proposed to decompose the posterior distribution as

p
(
w,α, σ2|t

)
= p
(
w|t,α, σ2

)
p
(
α, σ2|t

)
. (2.4)

In Equation (2.4) it is possible to calculate the posterior distribution over the weights

p
(
w|t,α, σ2

)
by the following relation:

p
(
w|t,α, σ2

)
=
p
(
t|w, σ2

)
p
(
w|α

)
p
(
t|α, σ2

) . (2.5)

Tipping (2001) showed that Equation (2.5) is Gaussian with covariance matrix and mean

vector given by

Σ =
(
σ−2Φ>Φ +A

)−1
, (2.6)

µ = σ−2ΣΦ>t. (2.7)
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That is, the posterior distribution over the weights is given by

w|t,α, σ2 ∼ N
(
w|µ,Σ

)
. (2.8)

In footnote number 5 at page 216 Tipping (2001) explained that the derivation of this

exact posterior distribution over the weights w can be done by �rst rewriting Equation

(2.5) as

p
(
w|t,α, σ2

)
p
(
t|α, σ2

)
= p
(
t|w, σ2

)
p
(
w|α

)
. (2.9)

By doing this and using the distribution in Equation (1.5) and (2.1), he was able to write

the right hand side of Equation (2.9) as

(
2πσ2

)−N
2 (2π)−

N+1
2 |A|

1
2 exp

{
− 1

2

[
σ−2||t−Φw||2 +w>Aw

]}
. (2.10)

From Equation (2.10) they expanded the exponential part to

exp

{
− 1

2

(
w − µ

)>
Σ−1

(
w − µ

)}
· exp

{
− 1

2
t>C−1t

}
,

(2.11)

where the covariance matrix corresponding to t is given by

C =
(
σ2I + ΦA−1Φ>

)
. (2.12)

The terms Σ and µ are the covariance matrix and the mean vector of the posterior

distribution over the weights w, given by Equation (2.6) and (2.7). This part of the

deduction is not described in detail by Tipping (2001), but to deduce Equation (2.11), we

have completed the square in the exponential of Equation (2.10) and used the Woodbury

identity to get the covariance matrix C in the second exponential of Equation (2.11). By

doing this, and using the relation

(σ2)−
N
2 |A|

1
2 = |Σ|−

1
2 |C|−

1
2 ,

we were able to split (2.10) into two distributions, one given by the random weight variable

w and the other by the random target variable t. By a similar deduction, Tipping

(2001)gave the resulting posterior distribution over the weights w by the distribution

p
(
w|t,α, σ2

)
= (2π)−

N+1
2 |Σ|−

1
2 exp

{
− 1

2
(w − µ)>Σ−1(w − µ)

}
.
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The remaining elements of Equation (2.10) and (2.11) constituted to the marginal likeli-

hood of the targets p
(
t|α, σ2

)
:

p
(
t|α, σ2

)
= (2π)−

N
2 |C|−

1
2 exp

{
− 1

2
t>(C)−1t

}
. (2.13)

Thus, Tipping (2001) got that the posterior distribution over the weights w were given

by Equation (2.8), and that the marginal likelihood over the targets t is

t|α, σ2 ∼ N
(
t|0,C

)
.

2.3 Optimization of the Parameters

Although one primarily wants the complete model to be calculated analytically, this is

not possible for the second part of Equation (2.4), and therefore Tipping (2001) was

forced to do some approximations. He found the most probable mode estimates αMP

and σ2
MP , using maximum likelihood estimation and was then re-estimating cyclically

until convergence, which we will look at in Section 2.3.1. However, as the optimization

algorithm of the original RVM model has shown to su�er from being computationally

slow in the maximization algorithm, Tipping et al. (2003) developed a faster optimization

algorithm based on a type-II maximization to handle this limitation. This method is

explained in Section 2.3.2.

No matter which method one is using, the estimates αMP and σ2
MP computed will

substitute for the hyperparameters α and σ2 in (2.6) and (2.7). Hence, the RVM modeling

turns into a search for the posterior mode estimates of the hyperparameters by maximizing

the posterior distribution p
(
α, σ2|t

)
. Tipping (2001) approximated this distribution by

p
(
α, σ2|t

)
=
p
(
t|α, σ2

)
p
(
α
)
p
(
σ2
)

p(t)

∝ p
(
t|α, σ2

)
,

as the denominator will be uninformative in terms of maximization with respect to α and

σ2, and as the uninformative hyperpriors p(α) and p(σ2) can be ignored. This means that

he was able to maximize p
(
α, σ2|t

)
by maximizing the marginal likelihood of the targets

t given by the distribution in Equation (2.13). By ignoring all terms not involving σ2 and

αi, using the relation

|C|−
1
2 = |Σ|

1
2 |A|

1
2 ,
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rewriting the exponential as

exp

{
− 1

2

(
σ−2t>t− µ>Σ−1µ

)}
,

and taking the logarithm, this is maximizing the two following log-likelihood functions:

L(α) =
1

2
ln |Σ|+ 1

2
ln |A|+ 1

2
µ>Σ−1µ, (2.14)

L(σ2) = −N
2

lnσ2 +
1

2
ln |Σ| − 1

2
(σ−2t>t− µ>Σ−1µ). (2.15)

2.3.1 Parameter Learning Using Maximum Likelihood and

Cyclical Re-Estimation

Tipping (2001) then di�erentiated the log likelihoods in Equation (2.14) and (2.15) with

respect to αi and σ2. Using some matrix algebra, and equating to zero, he got the

maximum iterative re-estimates:

αnew

i =
1− αiΣii

m2
i

, (2.16)

(
σ2
)new

=
||t−Φµ||2 + trace

[
ΣΦ>Φ

]
N

. (2.17)

To calculate these expressions, we are using Jacobi's formula from Equation (0.7). By

doing some simpli�cation on the trace term, adding and subtracting the expression σ2ΣA,

we get

trace
[
ΣΦ>Φ

]
= trace

[
σ2Σ

(
Φ>Φσ−2 +A

)
− σ2ΣA

]
= trace

[
σ2
(
I −AΣ

)]
= σ2

∑
i

1− αiΣii

= σ2
∑
i

γi,

where γi ≡ 1 − αiΣii and Σ is from Equation (2.6). The term γi can be interpreted

as a precision parameter, measuring how accurate the corresponding parameter wi is

determined (MacKay, 1992). If αi is large, it means that the corresponding weight wi will

be close to zero and not well determined by the data, in that case γi is re�ecting this by

being close to zero. On the other hand, if the weight wi is well determined by the data,
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γi will be larger. Using this de�nition of γi, where Σii is the i'th element on diagonal of

the covariance matrix Σ in Equation (2.6) with the present values of α and σ2, Tipping

(2001) simpli�ed the re-estimates:

αnew

i =
γi
µ2
i

,

(
σ2
)new

=
||t−Φµ||2

N −
∑

i γi
.

In these equations µi is the i'th element of the mean vector µ in Equation (2.7), which

means that the estimates are dependent on the previous αi, and hence that one cannot

�nd any closed form solution for these expressions. Tipping (2001) got the numerically

approximated values by re-estimating αnew

i and
(
σ2
)new

, and updating Σ and µ cyclically

until a reasonable convergence criteria was met.

During this re-estimation some of the αi-estimates will go to in�nity, which is resulting

in both the corresponding mean and variance of the posterior distribution over the weights,

given by Equation (2.6) and (2.7), being in�nitely small. When this happens, the weight

wi will be in�nitely peaked at zero, that is wi ≈ 0, and the associated basis function

is pruned from the model. The remaining non-zero weights are called relevance vectors.

This is the way the relevance vector machines by Tipping (2001) achieves sparsity.

2.3.2 Fast Type-II Maximum Likelihood Optimization

As the RVM by Tipping (2001) often is computationally slow in the marginal likelihood

maximization, Tipping et al. (2003) developed a faster optimization method for the RVM

model. Using this method, they only had to update one αi at each iteration instead of

the whole vector α, and they were able to do a incremental and cyclical addition, re-

estimation and deletion of basis function. Today, this is the most common version of the

RVM and the one that is mostly used. This is because it has all the advantages of the

original RVM while at the same time being faster. Hence, this extension of the RVM is

important, and we will give a detailed description of it in this section.

From the distribution in Equation (2.13) Tipping et al. (2003) took the logarithm and

got the log marginal likelihood

L(α) = −1

2

[
Nln(2π) + ln|C|+ t>C−1t

]
, (2.18)

where the term C is from Equation (2.12). They then decomposed C by separating the
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terms corresponding to αi from the others, that is

C = σ2I +
∑
m 6=i

α−1m φmφ
>
m + α−1i φiφ

>
i

= C−i + α−1i φiφ
>
i ,

where C−i is the matrix C with the elements corresponding to basis function number i

eliminated. By doing this, Tipping et al. (2003) where able to �nd expressions for C−1

and |C| by using the Woodbury and the determinant identities from Equation (0.5) and

0.6, respectively. The resulting expressions are:

C−1 = C−1−i −
C−1−iφiφ

>
i C

−1
−i

αi + φ>i C
−1
−iφi

,

|C| = |C−i||1 + α−1i φ
>
i C

−1
−iφi|.

With C−1 and |C| inserted into Equation (2.18), they rewrote the log marginal likelihood

like

L(α) =− 1

2

[
N ln(2π) + ln |C−i|+ t>C−1−i t

− lnαi + ln(αi + φ>i C
−1
−iφi)−

(φ>i C
−1
−i t)

2

αi + φ>i C
−1
−iφi

]

=L(α−i) +
1

2

[
lnαi − ln(αi + si) +

q2i
αi + si

]

=L(α−i) + `(αi),

where

si ≡ φ>i C−1−iφi and qi ≡ φ>i C−1−i t. (2.19)

The log marginal likelihood was then decomposed into two terms, the log marginal like-

lihood with αi eliminated, L(α−i), and the function `(αi), which is the only place the

term αi appears. This means that di�erentiating L(α) with respect to αi is the same as

di�erentiating `(αi), which obviously is less computationally expensive than working with

the whole matrix as Tipping (2001) did in the slower algorithm. Doing this di�erentiation
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and equating to zero Tipping et al. (2003) got an explicit solution for the αi estimate:

αi =


s2i

q2i−si
if q2i > si

∞ if q2i ≤ si

. (2.20)

When αi =∞ both the variance and the mean from Equation (2.6) and (2.7) goes to zero,

and the corresponding weight wi is in�nitely peaked at zero. Thus, observation number i

is pruned from the model. The important di�erence between the optimization algorithm

of Tipping (2001) and this faster one by Tipping et al. (2003) is that the latter one can

�nd explicit solutions to the maximization problem. To estimate σ2 Tipping et al. (2003)

still used the re-estimate from Equation (2.17).

Tipping et al. (2003) then suggested to update and keep the expressions

Sm = φ>mC
−1φm

= σ−2φ>mφm − (σ−2)2φ>mΦΣΦ>φm,

Qm = φ>mC
−1t

= σ−2φ>mt− (σ−2)2φ>mΦΣΦ>t,

(2.21)

as it is easier to work with than si and qi. To deduce the Equations in (2.21) they used

the Woodbury identity in Equation (0.5). Using the expressions in Equation (2.21) it

follows that

sm =
αmSm
αm − Sm

and qm =
αmQm

αm − Sm
,

where σ2
MP is updated sequentially together with αi, using the expression in Equation

(4.11).

2.4 Making Predictions

With the estimates de�ned as above it is now possible to predict for new targets t∗ using

the predictive distribution in Equation (2.3). With the posterior distribution over the

weights w given by a Gaussian distribution with covariance matrix Σ and mean vector µ

from Equation (2.6) and (2.7), conditioning on the values αMP and σ2
MP , the predictive

distribution is given by

p
(
t∗|t,αMP , σ

2
MP

)
=

∫
p
(
t∗|w, σ2

MP

)
p
(
w|t,αMP , σ

2
MP

)
dw,
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In this Equation, both distributions are Gaussian such that it is easily shown that also

the integral is Gaussian with

µ∗ = µ>φ(x∗),

σ2
∗ = σ2

MP + φ(x∗)
>Σφ(x∗).

This can be shown by completing the squares, integrating out the sample weights w and

doing some calculus. Thus, by using the RVM method Tipping (2001) got probabilistic

predictions based on

t∗|t,αMP , σ
2
MP ∼ N

(
t∗|µ∗, σ2

∗
)
. (2.22)

Hence, in RVM the predicted value of t∗ is given by the mean µ∗ with the associated

uncertainty σ2
∗. This predictive part of the method follows the same approach both for

the original RVM and the faster version, just with the parameter estimated by di�erent

procedures, which will be described in further detail below.

2.5 The Relevance Vector Algorithm

The above sections shows that it is possible to estimate the parameters in two di�erent

ways, one being faster than the other. The algorithms of these di�erent approaches on

�nding the estimates will be quite di�erent from each other, with the main di�erence

being if one considers the whole kernel basis function matrix or just one vector at a time.

The resulting procedures are similar, but still very di�erent from each other.

Algorithm 1 Relevance Vector Machine (RVM)

1: Initialize α and σ2 to some reasonable values
2: Compute Σ and µ
3: while convergence criteria is not met do
4: for all αi in α do

5: if αi > αThresh then

6: delete φi and αi
7: end if

8: end for

9: Update Σ, µ, α and σ2

10: end while

The algorithm of the Relevance Vector Machine by Tipping (2001) is iterative and

requires cyclically re-estimating α and σ2 until some convergence criteria on the total

change in estimates is met. In addition, a threshold on the αi-estimates is set, which

indicates that when αi > αThresh, the hyperparameter αi is assumed to be in�nitely large

and hence wi in�nitely peaked at zero. The algorithm will be as in Algorithm 1 (Tipping
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(2001), Fletcher (2010)), where a reasonable value of σ2 could simply be the variance in

the data or a scaling of the variance. Tipping et al. (2003) suggested to use var(t)/10 as

the initial value.

In the Fast Relevance Vector algorithm Tipping et al. (2003) started with an empty

kernel basis function matrix, and was then cyclically adding the relevant kernel basis

function vectors φi to the model. By continuously evaluating random φi's until some

convergence criteria was met, they added, deleted, and re-estimated the αi's and the

corresponding kernel functions.

Algorithm 2 Fast Relevance Vector Machine (FRVM)

1: Initialize σ2 to a reasonable value

2: Initialize αi with a single basis vector φi, by Equation (2.20):

αi =
||φi||2

||φ>i t||2/||φi||2 − σ2
.

All other αm are notionally set to in�nity

3: Compute Σ, µ, sm and qm

4: while convergence criteria is not met do

5: Choose a basis vector φi

6: Compute q2i − si
7: if q2i − si > 0 and αi <∞ then

8: Re-estimate αi

9: else if q2i − si > 0 and αi =∞ then

10: Add φi to the model

11: else if q2i − si ≤ 0 and αi <∞ then

12: Delete φi from the model (set αi =∞)

13: end if

14: Update Σ, µ, sm, qm and σ2

15: end while

The interpretation of the addition, deletion, and re-estimation procedure in Algorithm

2 is that q2i − si > 0 indicates that αi should be in the model. When q2i − si ≤ 0, the

hyperparameter αi should not be in the model. Together with αi < ∞ and αi = ∞
indicating if the given αi is in the model or not, Tipping et al. (2003) are adding, deleting

and re-estimating due to this combination. The initial value of αi is chosen speci�cally
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like given in the algorithm, because when C−1−i = σ2 Equation (2.20) gives

αi =
(σ−2)2||φi||4

(σ−2)2||φ>i t||2 − σ−2||φi||2

=
||φi||2

||φ>i t||2/||φi||2 − σ2
.

2.5.1 Update Formulas for E�ective Estimation

Tipping et al. (2003) gave expressions for e�ective calculations for the updated values in

the addition, re-estimation, and deletion procedure. However, it is not clear in the paper

how they deduced these expressions. In this section we are giving a deduction of the

update formulas for the FRVM method. The updated quantities are denoted with a tilde,

e.g. α̃ is the updated value of α. The indexes add, re and del are used to denote addition,

re-estimation and deletion, respectively. Further, they used the index i to denote a basis

function where the hyperparameter αi should be updated, and the index j to denote the

index within the given basis that corresponds to i.

Adding a new basis function

Adding basis function number i means that the updated kernel basis function matrix and

the new matrix of hyperparameters should respectively be of the form

Φ̃add = (Φ,φi) and Ãadd = diag(α, αi).

This means that the new covariance matrix will be

Σ̃add = (σ−2Φ̃
>
add

Φ̃add + Ãadd)−1

=

[
Σ−1 σ−2Φ>φi

σ−2φ>i Φ αi + σ−2φ>i φi

]−1
.

By using the inverse block matrix formula in Equation (0.8) to compute this invert, one

get

Σ̃add =

[
Σ + σ−4GiiΣΦ>φiφ

>
i ΦΣ −σ−2GiiΣΦ>φi

−σ−2Gii(ΣΦ>φi)
> Gii

]
,
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where Gii = (αi + Si)
−1. By inserting this and completing the calculations, the updated

mean vector by Tipping et al. (2003) is

µ̃
add

= σ−2Σ̃addΦ̃
>
add
t

=

[
µ− σ−2µiΣΦ>φi

mi

]
,

where mi = GiiQi. Further, the updated expressions for S̃m,add and Q̃m,add are given by

S̃m,add = φmBφm − φ>mBΦ̃addΣ̃addΦ̃
>
add
Bφm,

Q̃m,add = φmBt− φ>mBΦ̃addΣ̃addΦ̃
>
add
Bt.

By rewriting Φ̃addΣ̃addΦ̃
>
add

as

Φ̃addΣ̃addΦ̃
>
add

= ΦΣ̃add,1,1Φ
> + φiΣ̃add,2,1Φ

> + ΦΣ̃add,1,2 + φiΣ̃add,2,2φ
>
i φ
>
i ,

one gets the estimates (Tipping et al., 2003):

S̃m,add = Sm −Gii(σ
−2φ>mei)

2,

Q̃m,add = Qm −mi(σ
−2φ>mei).

In the equations above ei = φi− σ−2ΦΣΦ>φi. Lastly, the change in marginal likelihood

is straightforward calculated as (Tipping et al., 2003):

2∆Ladd = 2`

(
S2
i

Q2
i − Si

)

=
Q2
i − Si
Si

+ ln
Si
Q2
i

.

Re-estimating a basis function

When re-estimating αi, the kernel basis function matrix is unchanged, but the matrix of

hyperparameters α will be

Ãre = A+ 1j(α̃i − αi)1>j ,

where 1>j =
(
0, . . . , 1, . . . , 0

)
, with one at position j. Thus, using the Woodbury identity

in Equation (0.5), the update formulas for re-estimation of the new covariance matrix is
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of the form:

Σ̃re =
(
σ−2Φ>Φ + Ãre

)−1
=
(
Σ−1 + 1j(α̃i − αi)1>j

)−1
= Σ− κjΣjΣ

>
j . (2.23)

In Equation (2.23)

κj =
(
(α̃i − αi)−1 + Σjj

)−1
,

and Σj is the j'th column of the covariance matrix Σ. Using this expression, one gets the

update formulas for the mean vector µ:

µ̃
re

= σ−2Σ̃reΦ
>t

= µ− κjσ−2ΣjΣ
>
j Φ>t

= µ− κjµj.

Lastly, using the update formula from Equation (2.23), the corresponding formulas for

Sm, Qm and the likelihood is given by (Tipping et al., 2003):

S̃m,re = σ−2φ>mφ− (σ−2)2φmΦΣ̃reΦ
>φm

= Sm + κj(σ
−2Σ>j Φ>φm)2,

Q̃m,re = σ−2φ>mφ− (σ−2)2φmΦΣ̃reΦ
>t

= Qm + κjµj(σ
−2Σ>j Φ>φm),

2∇Lre = 2`(α̃−1i − α−1i )−1)

=
Q2
i

Si + (α̃−1i − α−1i )−1))
− ln

{
1 +

Si

(α̃−1i − α−1i )−1)

}
.

Deleting a basis function

When deleting a basis function, one must remove every element of the covariance matrix

that corresponds to the given basis function and hyperparameter. Based on Tipping et al.
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(2003) the updated covariance matrix is given by

Σ̃del = Σ− 1

Σjj

ΣjΣ
>
j .

Thus, the update formula for the mean vector µ is straight forward given by

µ̃
del

= σ−2Σ̃delΦ
>t

= µ− µj
Σjj

Σj.

The formulas corresponding to the update of Sm, Qm and 2∇L are easily shown to be

given by:

S̃m,del = σ−2φ>mφ− (σ−2)2φmΦΣ̃delΦ
>φm

= Sm +
1

Σjj

(σ−2Σ>j Φ>φm)2,

Q̃m,del = σ−2φ>mφ− (σ−2)2φmΦΣ̃delΦ
>t

= Qm +
µj
Σjj

(σ−2Σ>j Φ>φm),

2∇Ldel = 2`(−αi)

=
Q2
i

Si − αi
− ln

(
1− Si

αi

)
.

2.6 The Relevance Vector Classi�cation Machine

In this section, we will go into the RVM in the case of classi�cation where the likelihood

over the targets t is assumed to be Bernoulli distributed. We will look at the model for

a two class random variable, but it works similar for multi class variables.

2.6.1 Framework of RVM Classi�cation

When data are categorical, the RVM method for classi�cation can be used. In that case

the targets t are assumed to be Bernoulli distributed with

p(t|w) =
N∏
i=1

σtii {1− σi}1−ti where ti ε {0, 1}, (2.24)

22



and σ = σ(Φw) = σ(y) and σi = σ(φ(xi)w), with σ(·) being the logistic sigmoid link

function (Tipping, 2001):

σ(x) =
1

1 + e−x
.

It should be noted that this distribution does not depend on the noise-variance σ2, such

that one does not have to work with the noise-variance when doing classi�cation. With

this prior distribution, the posterior distribution over the sample weightsw can be written

as:

p(w|t,α) =
p(t|w)p(w|α)∫
p(t|w)p(w|α)dw

=
p(t|w)p(w|α)

p(t|α)
. (2.25)

The logarithm of Equation (2.25) with respect to the sample weights w gives

ln p(w|t,α) = ln p(t|w)p(w|α) (2.26)

=
N∑
i=1

ti ln [σ(φ(xi)w)] + (1− ti) ln [1− σ(φ(xi)w)] (2.27)

+
1

2
w>Aw + const.. (2.28)

In this situation, as the likelihood over the targets t are not Gaussian, it is not possible to

�nd analytical expressions for the posterior distribution over the sample weights w, and

one cannot integrate over these weights. Therefore, the theory of the Laplace approxima-

tion and the iterative reweighted least squares (IRLS) (Bishop, 2006) must be introduced,

which both will be used to approach this Bayesian treatment in the classi�cation case.

2.6.2 Laplace's Approximation

The Laplace approximation is about �nding a Gaussian approximation to a probability

distribution, which enable us to apply all the handy properties of the Gaussian distribution

to more complex distributions. We will explain the approximation using a single variable,

but it works in the same way for a multidimensional space of variables. We will go through

the general Laplace approximation, and further deduce the Laplace approximation to a

posterior distribution, as this is the version needed here.

Laplace's Approximation in General

The Laplace approximation will work for uni-modal functions that has most of its mass

concentrated in a small area of its domain, that is functions f(z) of the L2-class (Peng,
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2018), meaning that ∫ b

a

f(z)2dz <∞.

One can imagine a function that looks something like the one in Figure 2.1, where the

integral is approximated with a step function, that is∫ b

a

f(z)dz ≈ f(z0)ε,

where the term ε is a small value.

Figure 2.1: A function f(x) in solid and an example of a
step function approximation of the integral in stipulated.

This is the fundamental idea of the Laplace approximation, where a Gaussian distri-

bution is used instead of a step function. Thus, it is possible to approximate the integral∫ b

a

f(z)dz,

which is the equivalent of �nding∫ b

a

exp
{

ln f(z)
}
dz =

∫
exp
{
g(z)

}
dz,

where g(z) = ln f(z). From here, a Taylor expansion of g(z) around z0 gives∫ b

a

f(z)dz '
∫
exp
{
g(z0)−

A

2
(z − z0)2

}
dz, (2.29)

where

A = − d2

dz2
g(z)|z=z0 , (2.30)
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and the part corresponding to the �rst derivative of g(z) is zero. In Equation (2.29) z0 is

the z value at the mode of the function to be approximated, that is z0 satisfying:

df(z)

dz
|z=z0 = 0. (2.31)

Further, Equation (2.29) can be simpli�ed by using that g(z0) is a constant that can be

taken outside the integral:∫ b

a

f(z)dz ' f(z0)

∫ b

a

exp
{
− A

2
(z − z0)2

}
dz. (2.32)

In Equation (2.32) one can recognize the part inside the integral to be proportional to a

Gaussian distribution with mean z0 and covariance A−1. Thus, this can be rewritten as∫ b

a

f(z)dz ' f(z0)

√
2π

A

∫ b

a

N
(
z|z0, A−1

)
dz,

which when a = −∞ and b =∞ is simpli�ed to∫
f(z)dz ' f(z0)

√
2π

A
.

For a multidimensional variable z, this is equivalently given by:∫
f(z)dz ' f(z0)

√
2π|A|−

1
2 . (2.33)

Laplace's Approximation for Posterior Distribution

When using Laplace approximation to approximate a posterior distribution, one can as-

sume that the not Gaussian distribution p(z) is given by

p(z) =
1

C
f(z), (2.34)

where

C =

∫
f(z)dz

is the unknown normalization constant (Bishop, 2006). Next, one can approximate a

Gaussian distribution q(z) that is centered in the mode of the distribution that is to be

approximated. Therefore, the �rst thing to do, is to �nd the mode of the distribution.

That is the point satisfying Equation (2.31). By again using a Taylor expansion of g(z) =

ln f(z) around the mode z0, Bishop (2006) got

g(z) = ln f(z) ≈ lnf(z0)−
1

2
A(z − z0)2,
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where A is given by Equation (2.30), and the term corresponding to the �rst derivative

of f(z) disappear, because of the relation in Equation (2.31). The exponential of this

equation is then given by

f(z) ' f(z0) exp−A
2

(z − z0)2. (2.35)

That is the term corresponding to the approximation of f(z) in Equation (2.34). The next

step is to �nd the normalization constant C. For the normal distribution X ∼ N
(
µ, γ−1

)
one has that

p(x) =

√
γ

√
2π

exp−γ
2

(x− µ)2,

and as the integral over a normal distribution gives 1:

√
γ

√
2π

∫
exp−γ

2
(x− µ)2dx = 1,

⇓∫
exp−γ

2
(x− µ)2dx =

√
2π
√
γ
. (2.36)

By the result in Equation (2.36) and the approximation of f(z) in Equation (2.35), the

normalization constant C of f(z) is approximated by:

C =

∫
f(z)dz (2.37)

≈ f(z0)

∫
exp−A

2
(z − z0)2dz (2.38)

= f(z0)

√
2π

A
. (2.39)

Altogether, using the approximations of f(z) and C from Equation (2.35) and (2.12), this

gives the approximation

q(z) =
1

C
f(z) (2.40)

=

(
A√
2π

) 1
2

exp

{
− A

2
(z − z0)2

}
, (2.41)

that is

q(z) ∼ N
(
z|z0, A−1

)
, (2.42)
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where z0 is the mode of p(z) and A−1 is the inverse of the negative Hessian matrix. Thus,

the Laplace approximation to a Gaussian distribution of p(z) is given by Equation (2.42).

For a multidimensional variable z with distribution p(z), the approximation is given by

an equivalent derivation (Bishop, 2006):

q(z) ∼ N
(
z|z0,A

−1).
Thus, the Laplace approximation is approximating the not Gaussian distribution p(z)

by the Gaussian distribution q(z). In fact, if the distribution p(z) is Gaussian itself the

Laplace approximation q(z) is exact, as the Gaussian distribution p(z) ∼ N
(
z|µ, σ2

)
have the properties:

z0 = µ and A = σ−2.

2.6.3 Iterative Reweighted Least Squares

In some cases, it is not possible to �nd a closed-form solution to minimize the error. In

such cases, as the error function is concave, one can use the Newton-Raphson iterative

reweighted least squares (IRLS) (Bishop, 2006). The Newton-Raphson update formula to

minimize an error function E(w) is given by:

w(new) = w(old) −H−1∇E
(
w(old)

)
,

where H is the Hessian matrix. When using Laplace's approximation on RVM for re-

gression, the likelihood given by Equation (1.5) gives that the gradients of the posterior

distribution in Equation (2.9) with respect to the sample weights are given by:

∇L(w) = σ−2Φ>t−
(
σ−2Φ>Φ +A

)
w, (2.43)

∇∇L(w) = −
(
σ−2Φ>Φ +A

)
. (2.44)

Thus, the mean vector is given by Equation (2.7) and the Hessian matrix is given by the

negative inverse of Equation (2.6), which is as expected since the Laplace approximation

always is exact for a Gaussian distribution. The Newton-Raphson update formula is then

given by

w(new) = w(old) +
(
σ−2Φ>Φ +A

)−1{
σ−2Φ>t−

(
σ−2Φ>Φ +A

)
wold

}
(2.45)

= σ−2
(
σ−2Φ>Φ +A

)−1
Φ>t, (2.46)

that is equal to Equation (2.7) and is hence exact. As the quadratic likelihood gives a

constant Hessian matrix in terms of the sample weights w this is as expected (Bishop,
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2006). However, when the likelihood function is not quadratic, as in the RVM for classi-

�cation, the Laplace approximation based on the likelihood function in Equation (2.24)

and (2.26) are not exact. The gradient and Hessian are then given by (Bishop, 2006):

∇L(w) =
N∑
i=1

{ ti
σi
σi(1− σi)φ(xi)−

1− ti
1− σi

σi(1− σi)φ(xi)
}

= Φ>(t− σ)−Aw, (2.47)

∇∇L(w) =
N∑
i=1

{
− σi(1− σi)φ(xi)φ(xi)

> −A
}

= −
(
Φ>RΦ +A

)
, (2.48)

where

R = diag(σi(1− σi)). (2.49)

To deduce the equations above, the following property is used:

∂σi
∂wi

= σi(1− σi)φ(xi).

In this case, one can see that the Hessian matrix is dependent on the sample weights w,

and is therefore not exact. Anyhow, the logistic sigmoid function will always be between

zero and one: 0 < σi < 1. As the Hessian matrix H is positive de�nite, and the error

function is concave in terms of the sample weights w, it will have a unique minimum

(Bishop, 2006). Therefore, one can use the Newton-Raphson update formula given by:

wnew = wold − (Φ>RΦ−A)−1(Φ>(σ − t)−Aw).

As the update formula is dependent on the sample weights w, one must re-estimate until

a convergence criteria is met. This method is called iterative reweighted least squares

(IRLS) (Rubin, 1983).

2.6.4 Calculating Posteriors in RVM for Classi�cation

From Equation (2.25), one cannot take the integral as the distribution from Equation

(2.24) is not Gaussian. Tipping (2001) is therefore using a Laplace approximation to a

Gaussian distribution, explained in Section 2.6.3. Thus, one can approximate the posterior

distribution in Equation (2.26) by the Laplace approximation

p(w|t,α) ' N
(
w|wMP ,Σ

)
(2.50)
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with:

wMP = A−1Φ>(t− σ), (2.51)

Σ = (Φ>RΦ +A)−1. (2.52)

The term wMP is the solution when equating Equation (2.47) to zero, and Σ is the

negative inverse of Equation (2.48). As the mean and covariance in Equation (2.51) is

dependent on the sample weights w, one must use the IRLS method to �nd the mean

vector and covariance matrix at convergence by the Newton-Raphson update formula:

w(new) = w(old) + Σ∇L(w(old)). (2.53)

2.6.5 Parameter Learning in RVM for Classi�cation

The next problem Tipping (2001) had to face in the RVM classi�cation case was that he

were not able to integrate over the sample weights w to approach the marginal likelihood

over the targets t given by

p(t|α) =

∫
p(t|w)p(w|α)dw.

Using the result in Equation (2.33) and the fact that p(t|w)p(w|α) ∝ p(w|t,α) in terms

of w, the integral above can be approximated by

p(t|α) =

∫
p(t|w)p(w|α)dw (2.54)

' p(t|w∗)p(w∗|α)(2π)
µ
2 |Σ|

1
2 . (2.55)

Thus, by inserting the distribution in Equation (2.2) and (2.24) with the converged value

of wMP one gets the update formula equivalent of Equation (4.10) in the regression case,

that is

αnew

i =
γi

µ∗2MP,i

,

with γi ≡ 1− αiΣii, where wMP and Σ are given by the converged values from Equation

(2.51) and (2.52). The algorithm of RVM for classi�cation is identical to the one for

regression given by Algorithm 1 without having to deal with the noise-variance, and

instead there is a little more work at step 3 and 12. At these steps, where the mean and

covariance of the posterior distribution is calculated, one is using the IRLS method with

the Newton-steps speci�ed in Equation (2.53).
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2.6.6 The Predictive Distribution

When predicting for categorical data, the predictive distribution is obtained using a dif-

ferent approach than for regression. This is not explained in Tipping (2001), so we will

�ll in the details from Bishop (2006). By marginalizing with respect to the posterior

distribution p(w|t), the predictive distribution for class C1, given new input data x∗ is

p(C1|φ(x∗), t∗) =

∫
p(C1|φ,w)p(w|t)dw '

∫
σ(φ(x∗)w)q(w)dw, (2.56)

where q(w) is the Laplace approximation from Equation (2.50). By de�ning a = φ(x∗)w,

and using the fundamental property of the Dirac delta function in Equation (0.9), Bishop

(2006) got

σ(φ(x∗)w) =

∫
σ(a) δ(a− φ(x∗)w)da,

where δ(·) is the Dirac delta function (Dirac, 1958). Equation (2.56) can then be written

as

p(C1|φ(x∗), t∗) '
∫ ∫

δ(a− φ(x∗)w)σ(a) da q(w) dw (2.57)

=

∫
σ(a) p(a) da, (2.58)

where

p(a) =

∫
δ(a− φ(x∗)w) q(w) dw.

By looking closer at the distribution p(a), one can use the moments to �nd a Laplace

approximation. The �rst moment is given by

µa = E(a) =

∫
a dp(a) =

∫
a p(a) da =

∫ ∫
δ(a− φ(x∗)w) q(w) dw a da,

which by organizing with respect to a, this can be written as

µa =

∫ ∫
δ(a− φ(x∗)w) a da q(w) dw.

By the fundamental property of the Dirac delta function (Dirac, 1958) in Equation (0.9)

this is:

µa =

∫
a q(w) dw =

∫
φ(x∗)w q(w) dw.

Writing φ(x∗) outside the integral and observing that the remaining expression is the

de�nition of the mean value of q(w), this is:

µa = φ(x∗)wMP .
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In the same way, by writing φ(x∗) outside the integral and observing that the remaining

expression is the de�nition of the variance, one get:

σ2
a = var(a) =

∫
p(a){a2 − E(a)2}da

=

∫ ∫
δ(a− φ(x∗)w) da q(w) {φ(x∗)w)2 − (φ(x∗)wMP )2} dw

=

∫
q(w) {(φ(x∗)w)2 − (φ(x∗)wMP )2} dw

= φ(x∗)
>Σφ(x∗),

where wMP and Σ are given by Equation (2.51). Thus, using the Laplace approximation

of p(a), Equation (2.56) can be approximated by

p(C1|φ(x∗, t∗) =

∫
σ(a)p(a)da '

∫
σ(a)N (µa, σ

2
a)da.

Now, using the close similarity between the sigmoid function σ(a) and the probit function

ϕ(a) given by

ϕ(a) =

∫ a

−∞
N (ϑ|0, 1)dϑ,

Bishop (2006) is approximating σ(a) by a horizontal scaling of the probit function, that

is ϕ(λa). To obtain the best possible approximation, the value is chosen to be λ2 = π
8

(LI, 2017). Hence, by using that

p(C1|φ(x∗), t∗) '
∫
ϕ

(√
π

8
a

)
N (a|µa, σ2

a)da,

the predictive distribution for class C1 is given by

p(C1|φ(x∗), t∗) ' ϕ

 µa√
8
π

+ σ2
a

.
In practice, the estimate σ(w>φ) is used for the mean value to make predictions. There are

several examples of academic research where this estimate is used, like Tipping (2016) and

the code associated with Jiang et al. (2019), and it seems to be a common approximation

in Bayesian classi�cation.
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3 | Probabilistic Feature Selection and

Classi�cation Vector Machine

The RVM methods is sparse in sample size, but sometimes it is necessary to also have

models that are sparse in terms of the number of features a�ecting the model. Jiang et al.

(2019) developed such a method based on the probabilistic classi�cation vector machine

(PCVM) by Chen et al. (2009) that is similar to the RVM for classi�cation. Due to

the experiments by Jiang et al. (2019), their feature selective extension of the RVM for

classi�cation method is jointly selective in terms of both samples and features. In addition,

their method seemed to be more accurate in the predictions than other similar methods.

The next section will be a brief introduction to the PCVM method before the algorithm

proposed by Jiang et al. (2019) is derived. However, the theory of Chen et al. (2009) and

Jiang et al. (2019) is so far only derived for two class classi�cation problems. Chapter 4

will give a suggested extension in the RVM regression case by a simliar approach.

3.1 Probabilistic Classi�cation Vector Machines

The probabilistic classi�cation vector machines (PCVM) by Chen et al. (2009) is a mod-

i�cation of the RVM for classi�cation with the prior over the sample weights w changed

to a left-truncated Gaussian distribution:

p(w|α) =
N∏
i=1

Nt

(
wi|0, α−1i

)

= 2
N∏
i=1

N
(
wi|0, α−1i

)
1wi≥0(wi).

In the �rst line of the equation, Nt is denoting the left-truncated Gaussian distribution,

and 1wi≥0(wi) in the second line is an indicator function that is either 1 or 0. The weight

w0 is assigned a zero mean Gaussian distribution (Chen et al., 2009):

p(w0|α0) = N
(
w0|0, α−10

)
.
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Altogether, the prior distribution is

p(w|α) = 2N
(
w0|0, α−10

) N∏
i=1

N
(
wi|0, α−1i

)
1wi≥0(wi), (3.1)

which Chen et al. (2009) argued that made the �nal model more stable in prediction

than the original RVM for classi�cation, where a non-truncated zero mean Gaussian

distribution is used. Except this modi�cation of the prior, the sparse framework of the

PCVM model is identical to the original RVM for classi�cation.

3.2 Sparse Sample and Feature Selective Framework

In Section 1.2.1, we gave the theory behind the sparse framework with respect to the

sample size. In this section, we will give a description of the sparse framework in the

model developed by Jiang et al. (2019) which makes the models sparse both in terms

of feature selective strength and in the ability to do sample size reduction. Based on

the framework of the PCVM model, Jiang et al. (2019) extended the model to also be

simultaneously feature selective. The model they proposed is named the probabilistic

feature selection and classi�cation vector machine (PFCVM). To achieve sparsity in terms

of feature selection, the key principle for Jiang et al. (2019) was to de�ne a new vector of

feature weights, that is

ϑ = (ϑ1 · · ·ϑp)>, (3.2)

and a kernel basis function matrix Φϑ that depends on the values of the feature weights

ϑ. Their model was of the form

y = Φϑw. (3.3)

Further, they are modifying the free parameter ϑ in the RBF kernel given by Equation

(1.3) to be individual and possibly di�erent for each feature weight ϑk. Thus, the basis

function matrix from Equation (1.3) was modi�ed, such that each element (i, j) is of the

form:

Φϑ,ij = K(xi,xj)

= exp

{
−

P∑
k=1

ϑk
(
xik − xjk

)2}
.

(3.4)

The subscript ϑ is used several times, and it is always denoting that the feature weights

ϑ from Equation (3.2) is included in all the kernel functions that appears in the original

expression, like in Equation (3.4). Regarding the sparseness with respect to the features,

one can see from Equation (3.4) that if a feature weight ϑk is zero, the corresponding
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feature in element number k in all the input vectors given by Equation (0.3) does not

contribute to the sum in the kernel function. Hence, using an appropriate sparse prior

on the feature weights, one can avoid that an irrelevant feature ϑk will a�ect the predic-

tions. The likelihood over the targets t in the PFCVM model is given as in the RVM

for classi�cation case in Equation (2.24), but with the feature weights w included in the

kernel function matrix. For the prior distribution over the sample weights w and feature

weights ϑ Jiang et al. (2019) are using the left-truncated zero mean Gaussian distribution

from the PCVM method, derived in Equation (3.1). The same approach is used for the

prior distribution over the feature weights ϑ, and a left-truncated zero mean Gaussian

distribution is assigned:

p(ϑ|β) =
P∏
k=1

Nt(ϑk|0, β−1k )

= 2
P∏
k=1

N (ϑk|0, β−1k ) · 1ϑk>0(ϑk)

= 2 · (2π)−
p
2 |B|

1
2 exp

{
− 1

2
ϑ>Bϑ

}
· 1ϑk>0(ϑk), (3.5)

where each of the hyperparameters corresponding to

B = diag(β1, . . . , βp)
>

is gamma distributed. That is:

βi ∼ Gamma(βi|e, f). (3.6)

By using this prior on the feature weights ϑ, they are forcing the parameters to be positive,

as the free parameter in the RBF kernel function should not be negative (Krishnapuram

et al., 2004). Jiang et al. (2019) is then making the hyperparamer β uninformative by

�xing the hyper hyperparameters to be e = f = 10−4. This is similar to what Tipping

(2001) did in the original RVM case, and makes the hyperparameters behave like a uniform

distribution. By modifying the kernel basis functions like shown in Equation (3.3) and

using the sparse prior from Equation (3.5) on the feature weights ϑ, they were able to

create a learning procedure only choosing the most informative features to a�ect the

predictions. The Bayesian approach of Jiang et al. (2019) is similar to the one of Tipping

(2001) used in the RVM case, but where the posterior distribution also includes the feature

weights ϑ, and the hyperparameter β for these feature weights. The posterior distribution
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over the parameters is given by

p(w,ϑ,α,β|t) =
p(t|w,ϑ,α,β)p(w,ϑ,α,β)

p(t)
,

and the predictive distribution is

p(t∗|t) =

∫
p(t∗|w,ϑ,α,β)p(w,ϑ,α,β|t) dw dϑ dα dβ.

Further, the posterior distribution over all the unknown parameters in the decomposed

form, corresponding to Equation (2.4) in RVM, is given by

p(w,ϑ,α,β|t) = p(w,ϑ|α,β, t)p(α,β|t). (3.7)

Jiang et al. (2019) is further writing the simultaneous posterior distribution over the

sample weights w and the feature weights ϑ in the �rst term of Equation (3.7) as

p(w,ϑ|t,α,β) =
p(t|w,ϑ)p(w|α)p(ϑ|β)

p(t|α,β)
. (3.8)

With this framework established, Jiang et al. (2019) used a Laplace approximation to a

Gaussian distribution for the simultaneous posterior distribution over the weights w and

ϑ given by Equation (3.8), as it is not possible to calculate this distribution analytically.

3.3 Calculating Posteriors

Based on a similar approach as Tipping (2001), Jiang et al. (2019) �rst calculated the

simultaneous posterior distribution over both weights. As the likelihood over the targets t

is Bernoulli distributed, they were not able to �nd an analytical solution. Thus, they used

Laplace's approximation of the distribution in (3.8), as described in Section 2.6.2, with

respect to each of the weight parameters w (Mohsenzadeh et al. (2013), Mohsenzadeh

et al. (2016)). By �rst taking the logarithm of the joint posterior over the sample weights

w and the feature weights ϑ, given by Equation (3.8), Jiang et al. (2019) got

ln p(w,ϑ|t,α,β) = ln p(t|w,ϑ) + ln p(w|α)

+ ln p(ϑ|β)− ln p(t|α,β),
(3.9)

where p(t|w,ϑ), p(w|α) and p(ϑ|β) are given by Equation (2.24) with the feature weights

ϑ included, (3.1) and (3.5) respectively. Only considering the terms that involves ϑ, this
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is

L(ϑ) =
N∑
i=1

[
ti lnσi + (1− ti) ln (1− σi)

]
− 1

2
ϑ>Bϑ+

P∑
k=1

ln 1ϑk≥0(ϑk) + const.. (3.10)

It is not possible to take the derivative of the indicator function in Equation (2.24), and

Jiang et al. (2019) used a parameterized sigmoid approximation for the indicator function,

which they were able to di�erentiate. Figure 3.1 is illustrating how the sigmoid function

σ(cx) is a good approximation for the indicator function.

Figure 3.1: Comparison of the indicator function in black against the
sigmoid approximation σ(cx) in blue with di�erent scales c.

By di�erentiating the log posterior in Equation (3.10) with respect to ϑ, they got

∂L(ϑ)

∂ϑ
= −Bϑ+D>(t− σ) + kϑ,

where

kϑ =
(
λ(1− σ(λϑ1)), . . . , λ(1− σ(λϑP ))

)>
, (3.11)

andD = ∂(Φϑw)
∂ϑ

, with dimension N ×P . Using an RBF kernel function of the form (3.4),

each element of D is given by

Di,k =
∂(φϑ(xi)w)

∂ϑk

= −
N∑
j=1

wjφϑ(xi,xj)(xik − xjk)2,

(3.12)
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with φϑ(xi) from Equation (1.2), where the feature weights ϑ is included. By now

equating (4.5) to zero, Jiang et al. (2019) got by the Laplace approximation a vector of

mean values with respect to ϑ given by

ϑMP = B−1
(
D>(t− σ) + kϑ

)
. (3.13)

By taking the second derivative of (3.10), that is �nding the Hessian matrix, they got

∂2L(ϑ)

∂ϑ2 = −B −D>CD +E −Oϑ, (3.14)

where each element of the matrix E = ∂D>

∂ϑ
(t−Φϑw) is

Ei,k =
N∑
l=1

∂Dl,i

∂ϑk

[
tl − σ

(
φ(xl)w

)]

=
N∑
l=1

[
tl − σ

(
φ(xl)w

)] N∑
j=1

wjφϑ(xl,xj)(xli − xji)2(xlk − xjk)2).

(3.15)

The term Oϑ in Equation (3.14) is the second derivative of the sigmoid approximation

given by

Oϑ = diag
(
λ2σ(λϑ1)(1− σ(λϑ1)), . . . , λ

2σ(λϑP )(1− σ(λϑP ))
)
. (3.16)

The term C is

C = diag
(
(1− y1)y1, . . . , (1− yN)yN

)
.

The approximate covariance matrix with respect to ϑ is the negative inverse of the Hessian

matrix:

Σϑ =
(
B +D>CD −E +Oϑ

)−1
. (3.17)

To make later calculations easier they are simplifying the notation in both the mean vector

and covariance matrix in (4.6) and (4.7) by

ϑMP = B−1εϑ and Σϑ = (B +Hϑ)−1, (3.18)

where εϑ =
(
D>(t − σ) + kϑ

)
and Hϑ = D>CD − E +Oϑ are independent of ϑ. In

the same way, by only considering the terms of Equation (3.9) that includes the sample

weights w, Jiang et al. (2019) got

L(w) =
N∑
i=1

[
ti ln yσi + (1− ti) ln 1− σi

]
− 1

2
w>Aw +

N∑
i=1

ln 1wi≥0(wi) + const..
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By di�erentiating this once and twice with respect to w, one gets

∂L(w)

∂w
= −Aw + Φϑ

>(t− σ) + kw,

∂2L(w)

∂w2
= −A−Φϑ

>CΦϑ −Ow.

In these equations

kw =
(
0, λ(1− σ(λw1)), . . . , λ(1− σ(λwN))

)>
, (3.19)

and

Ow = diag
(
0, λ2σ(λw1)(1− σ(λw1)), . . . , λ

2σ(λwN)(1− σ(λwN))
)
. (3.20)

Hence, the mean and covariance of the Laplace approximation with respect to the sample

weights w is

Σw =
(
Φ>ϑCΦϑ +A+Ow

)−1
, (3.21)

wMP = A−1
(
Φ>ϑ(t− σ) + kw

)
, (3.22)

which can be simpli�ed to

wMP = A−1εw and Σw = (A+Hw)−1, (3.23)

where εw =
(
Φ>ϑ(t − σ) + kw) and Hw = Φ>ϑCΦϑ + Ow are independent of ϑ. All

together, the simultaneous posterior distribution over the sample and feature weights are

given by the Laplace approximated distribution of the form (Mohsenzadeh et al. (2016),

Jiang et al. (2019)):

p(w,ϑ|t,α,β) ≈ N (ϑMP ,Σ
ϑ) ·N (wMP ,Σ

w). (3.24)

As the simultaneous distribution in Equation (3.24) is not analytical they had to use the

IRLS method described in Section 2.6.3, which gives:

wnew = wold + Σw∇L(wold),

ϑnew = ϑold + Σϑ∇L(ϑold).
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3.4 Parameter Learning

As in the original RVM by Tipping et al. (2003) the problem of maximizing the poste-

rior distribution over all parameters boils down to maximizing the marginal likelihood

p(α,β|t) in the second expression of Equation (3.7). This term is not possible to calcu-

late analytically, and one must approximate it by �nding the most probable values of the

parameters αMP and βMP . Thus, Jiang et al. (2019) approximated this likelihood by

p(α,β|t) =
p(t|α,β, )p(α)p(β)

p(t)

∝ p(t|α,β),

as the denominator will be uninformative in terms of maximization with respect to α and

β, and as p(α) and p(β) are uniform in practice. By rewriting Equation (3.8), they got

the posterior distribution over the hyperparamaters

p(t|α,β) =
p(t|w,ϑ)p(w|α)p(ϑ|β)

p(w,ϑ|t,α,β)
.

Taking the logarithm, only considering the terms that involves α, gives the log posterior

over the hyperparameters

L(α) = ln p(w|α)− ln p(w,ϑ|t,α,β, σ2)

=
1

2
ln |A| − 1

2
w>Aw +

1

2
ln |Σw|

+
1

2
(w −wMP )>(Σw)−1(w −wMP ) + const..

In a similar manner, only considering the terms of Equation (4.9) that involves β, Jiang

et al. (2019) got

L(β) = ln p(ϑ|β)− ln p(w,ϑ|t,α,β, σ2)

=
1

2
ln |B| − 1

2
ϑ>Bϑ+

1

2
ln |Σϑ|

+
1

2
(ϑ− ϑMP )>(Σϑ)−1(ϑ− ϑMP ) + const..

(3.25)
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By using the simpli�cations from Equation (3.18) and (3.23) this is:

L(α) =
1

2
ln |A|+ 1

2
ln |Σw| −

1

2
w>
(
A− (A+Hw)

)
w

− ϑ>HϑϑMP +
1

2
ϑ>MPHϑϑMP +

1

2
ϑ>MPBϑMP

=
1

2
ln |A|+ 1

2
ln |Σw|+

1

2
εw
>A−1εw +

1

2
(wMP −w>)HwwMP (3.26)

and

L(β) =
1

2
ln |B|+ 1

2
ln |Σϑ| − 1

2
ϑ>
(
B − (B +Hϑ)

)
ϑ

− ϑ>HϑϑMP +
1

2
ϑ>MPHϑϑMP +

1

2
ϑ>MPBϑMP

=
1

2
ln |B|+ 1

2
ln |Σϑ|+

1

2
εϑ
>B−1εϑ +

1

2
(ϑMP − ϑ>)HϑϑMP (3.27)

In the deduction in the appendix of Jiang et al. (2019), the last term in Equation (3.27)

disappear, even though it is not clear why. In practice one often use a maximum a

posteriori (MAP), that is the mode of the posterior distribution, to estimate for the mean

ϑMP , and therefore one can use a heuristic argument about the last term behaving like a

constant. Thus, Equation(3.26) and (3.27) can be approximated by

L(α) =
1

2
ln |A|+ 1

2
ln |Σw|+

1

2
εw
>A−1εw

and

L(β) =
1

2
ln |B|+ 1

2
ln |Σϑ|+

1

2
εϑ
>B−1εϑ. (3.28)

By di�erentiating each of these equations and equating to zero they got

αnew

i =
γwi

(ww
i,MP )2

and βnewi =
γϑi

(ϑϑ
i,MP )2

, (3.29)

where γwi = 1− αiΣw,ii and γ
ϑ
i = 1− βiΣϑ,ii.

3.5 The Predictive Distribution and the Algorithm of

PFCVM

It is not clear in Jiang et al. (2019) how they are predicting for new input data. How-

ever, in theory the predictions should follow the same approach as described in Section

2.6.6. When predicting for categorical data, the distribution is obtained using a di�erent
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approach than used in the regression case. This is not explained in Jiang et al. (2019), so

we will apply the theory from Bishop (2006).

By marginalizing with respect to the posterior distribution p(w,ϑ|t,α,β) from Equa-

tion (3.24), the predictive distribution for class C1 is

p(C1|φϑ(x∗, t∗) =

∫
p(C1|φϑ(x∗),w)p(w,ϑ|t,α,β)dwdϑ

'
∫
σ
(
φϑ(x∗)w

)
N (ϑMP ,Σ

ϑ) ·N (wMP ,Σ
w)dwdϑ

=

∫
σ
(
φϑ(x∗)w

)
N (wMP ,Σ

w)dw,

where N (ϑMP ,Σ
ϑ) and N (wMP ,Σ

w) is the Laplace approximation given by Equation

(2.50), (3.13), (3.17), (3.22) and (3.21). By the same reasoning as in Section 2.6.6, we get

µa = φϑ(x∗)wMP and σ2
a = φϑ(x∗)

>Σwφϑ(x∗), (3.30)

where wMP and Σw is given by (3.21) and (3.22). Thus, the predictive distribution for

class C1 is given by

p(C1|φϑ(x∗), t∗) ' ϕ

 µa√
8
π

+ σ2
a

,
where µa and σ

2
a is from Equation (3.30).

Algorithm 3 Probabilistic Feature Selection and Classi�cation Vector Machine
(PFCVM)

1: Initialize α, β to some reasonable values
2: Compute Φϑ, Σϑ, ϑMP , Σw and wMP using IRLS method
3: while convergence criteria are not met do
4: for all αi in α do

5: if αi > αThresh then

6: delete φi and αi
7: end if

8: end for

9: for all βk in β do

10: if βk > βThresh then

11: delete feature number k and hence βi
12: end if

13: end for

14: Update Σϑ, Σw, ϑMP and wMP using IRLS method, α and β
15: end while
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This is the theoretical reasoning, but as described in Section 2.6.6 Jiang et al. (2019)

is using the estimate σ(φϑ(x∗)wMP ) to predict for new input data. Using the theory

deduced above, the algorithm of the PFCVM method is given by Algorithm 3 (Jiang

et al., 2019).
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4 | Dimensionality Reducing Relevance

Vector Machine for Regression

This chapter gives an extension of the RVM for regression by Tipping (2001), utilizing

the approach of Jiang et al. (2019) that is outlined in Chapter 3. The proposed method

is called the dimensionality reducing relevance vector machine (DRVM).

4.1 Sparse Sample and Feature Selective Framework

The sparse framework in the proposed DRVM model for feature selection in the RVM

for regression framework is similar to the one for classi�cation given in Section 3. The

main di�erence is due to the likelihood of the targets t being Gaussian, given by Equation

(2.2). In addition, we are using the original not-truncated zero mean Gaussian prior on

the distribution over the sample weights w, from Equation (1.5) with the independent

feature weights ϑ included in the kernel function matrix:

p(t|w,ϑ, σ2) = (2πσ2)−
N
2 exp

{
− 1

2σ2
||t−Φϑw||2

}
. (4.1)

The Bayesian approach in the dimensionality reducing RVM for regression must be

similar to the one used by Jiang et al. (2019), but where the noise-variance is included as

the likelihood of the targets t are Gaussian distributed. That is the posterior distribution

over all hyperparameters is given by

p(w,ϑ,α,β, σ2|t) =
p(t|w,ϑ,α,β, σ2)p(w,ϑ,α,β, σ2)

p(t)
,

with the predictive distribution

p(t∗|t) =

∫
p(t∗|w,ϑ,α,β, σ2)p(w,ϑ,α,β, σ2|t) dw dϑ dα dβ dσ2.

The decomposed posterior distribution, is given by

p(w,ϑ,α,β, σ2|t) = p(w,ϑ|α,β, σ2, t)p(α,β, σ2|t),
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and the simultaneous posterior distribution over the sample weights w and the feature

weights ϑ, is given by

p(w,ϑ|t,α,β, σ2) =
p(t|w,ϑ, σ2)p(w|α)p(ϑ|β)

p(t|α,β, σ2)
. (4.2)

4.2 Calculating Posteriors

From Equation (4.2), the log posterior distribution over the sample weights w and the

feature weights ϑ is given by

ln p(w,ϑ|t,α,β, σ2) = ln p(t|w,ϑ, σ2) + ln p(w|α)

+ ln p(ϑ|β)− ln p(t|α,β, σ2),
(4.3)

where p(t|w,ϑ, σ2), p(w|α) and p(ϑ|β) are given by Equation (4.1), (2.2) and (3.5)

respectively. Only considering the terms that involves ϑ, this is

L(ϑ) =− 1

2

[
σ−2||t−Φϑw||2 + ϑ>Bϑ

]
+

P∑
k=1

ln 1ϑk≥0(ϑk) + const.

= σ−2t>Φϑw −
1

2
σ−2w>Φ>ϑΦϑw −

1

2
ϑ>Bϑ+

P∑
k=1

ln 1ϑk≥0(ϑk) + const., (4.4)

As the posterior distribution over the feature weights ϑ depends on the indicator function,

the posterior distribution does not have an analytical solution. Thus, we are using the

Laplace approximation on each of the weight parameters, and the indicator function is

approximated by a sigmoid function as used in the PFCVM method by Jiang et al. (2019).

With respect to the feature weights ϑ, the �rst derivative is

∂L(ϑ)

∂ϑ
= −ϑB + σ−2D>(t−Φϑw) + kϑ, (4.5)

whereD is given by Equation (3.12) and kϑ is given by Equation (3.11). By now equating

(4.5) to zero, we get the mean vector:

ϑMP = B−1
(
σ−2D>(t−Φϑw) + kϑ

)
. (4.6)

The Hessian matrix of (4.4) is given by

∂2L(ϑ)

∂ϑ2 = −B − σ−2(D>D −E)−Oϑ,
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where each element of E is given by Equation (3.15) with φ(xl)w instead of the sigmoid

function σ
(
φ(xl)w

)
, and the term Oϑ is from Equation (3.16). Thus, the covariance

matrix with respect to ϑ is given by

Σϑ =
(
B + σ−2

[
D>D −E

]
+Oϑ

)−1
. (4.7)

Similarly, as Jiang et al. (2019), we are simplifying the expressions in Equation (4.6) and

(4.7). These simpli�cations are identical to Equation (3.18), but with:

εϑ =
(
σ−2D>(t−Φϑw) + kϑ

)
,

Hϑ = σ−2
[
D>D −E

]
+Oϑ.

In the same way, by only considering the terms of Equation (4.3) that includes the

sample weights w, the likelihood is given by

L(w) = −1

2

[
σ−2||t−Φϑw||2 +w>Aw

]
+ const..

Di�erentiating this once and twice with respect to the sample weights w gives:

Σw = (σ−2Φ>ϑΦϑ +A)−1,

µw = σ−2(Σw)−1Φ>ϑt.

In these equations Σw and µw is the mean vector and covariance matrix from the original

RVM, given by Equation (2.6) and (2.7), but where Φ is substituted with Φϑ. Thus,

the Laplace approximation with respect to w is exact, which is expected as both the

likelihood of the targets t and the prior over the sample weights w is Gaussian.

The Laplace approximation of the posterior distribution in Equation (4.3) is thus given

by

p(w,ϑ|t,α,β, σ2) ≈ N (ϑMP ,Σϑ) ·N (µw,Σw), (4.8)

where ϑMP and Σϑ is given by Equation (4.6) and (4.7). In contrast to the PFCVM

model, the last term in Equation (4.8) is exact. This, means that the mode with respect

to the sample weights w can be found analytically, while we have to use the IRLS method

to �nd the mode with respect to ϑ:

ϑ(new) = ϑ(old) + Σϑ∇L(ϑ(old)).
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4.3 Parameter Learning in DRVM

In a similar manner as Tipping (2001) and Jiang et al. (2019) we can maximize the

posterior distribution over all parameters by the approximation

p(α,β, σ2|t) =
p(t|α,β, σ2)p(α)p(β)

p(t)

∝ p(t|α,β, σ2).

By rewriting Equation (4.2), we get the posterior distribution over the hyperparamaters:

p(t|α,β, σ2) =
p(t|w,ϑ, σ2)p(w|α)p(ϑ|β)

p(w,ϑ|t,α,β, σ2)
(4.9)

The distribution from Equation (4.8) with respect to the sample weights w is identical to

the one in the original RVM by Tipping (2001) in Equation (2.8), just with the inclusion

of the individual feature weights ϑ. Thus, the update-formula for αi and σ
2 are given by

Equation (2.16) and (2.17) with the inclusion of the feature weights, that is

αnew

i =
γw,i
µ2
w,i

, (4.10)

(
σ2
)new

=
||t−Φϑµw||2

N −
∑

i γw,i
, (4.11)

where γw,i ≡ 1− αiΣw,ii. Further, the simultaneous posterior distribution from Equation

(4.8) with respect to the feature weights ϑ is identical to the one in the PFCVM method

by Jiang et al. (2019), in Equation (3.24) with mean vector and covariance matrix given

by the simpli�cation in Equation (3.18). Thus, we get the same update formula for βi as

in the PFCVM, given by the last part of Equation (3.29).
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4.4 Algorithm of the Sample and Feature Selective

Relevance Vector Based Model

The algorithm of the DRVM model given by Algorithm 4 is similar to the PFCVM model,

but were we have to use the Newton-Raphson update formula only when updating with

respect to the feature weights ϑ, as the Laplace approximation is exact with respect to

the sample weights w.

Algorithm 4 Dimensionality Reducing Relevance Vector Machine (DRVM)

1: Initialize α, β and σ2 to some reasonable values
2: Compute Φϑ, Σϑ, ϑMP , Σw and µw

3: while convergence criteria are not met do
4: for all αi in α do

5: if αi > αThresh then

6: delete φi and αi
7: end if

8: end for

9: for all βk in β do

10: if βk > βThresh then

11: delete feature number k and hence βk
12: end if

13: end for

14: Update Σw, µw, α, σ
2, Σϑ, ϑMP using IRLS method, β and Φϑ

15: end while

4.5 Making Predictions

By simultaneously iterating αi, βi and σ
2 until convergence to the most probable vectors

of values βMP and αMP , and σ
2
MP , we can predict for new target t∗. The approximated

predictive distribution is given by

p(t∗|t,αMP ,βMP , σ
2
MP ) =

∫
p(t∗|w,ϑ, σ2

MP )p(w,ϑ|t,αMP ,βMP , σ
2
MP ) dw dϑ

≈
∫
p(t∗|w,ϑ, σ2

MP )N (ϑMP ,Σϑ)N (µw,Σw) dw dϑ,

where we have used the relation in Equation (4.8). By integrating out the feature weights

ϑ, we are left with (Jiang et al., 2019)

p(t∗|t,αMP ,βMP , σ
2
MP ) ≈

∫
p(t∗|w,ϑ, σ2

MP )N (µw,Σw) dw.
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This equation is equivalent to the predictive distribution in the original RVM method

given by Equation (2.22). This means that we make prediction for future target variables

t∗ based on the feature selective algorithm in the previous section, by using the predictive

distribution from RVM, with the inclusion of the feature weights ϑ in the kernel basis

functions and with the other parameters estimated like described in this chapter. That is

t∗|t,αMP , σ
2
MP ∼ N (µ∗, σ

2
∗),

where

µ∗ = µw
>φϑ(x∗),

σ2
∗ = σ2

MP + φϑ(x∗)
>Σwφϑ(x∗).
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5 | Experimental Results

In this chapter, we will �rst do some illustrations of the suggested DRVM method com-

pared to the RVM by Tipping (2001), on simple synthetic data. Further, we are showing

results for the two methods on some benchmark data sets. The methods will be compared

both in terms of feature and sample selective strength, and in their ability to make accu-

rate predictions for future target values t. The DRVM method is sensitive with respect to

initial values, and with respect to the partitioning in test and training set. Therefore, we

have been using cross-validation (CV) on �ve di�erent partitions of the data sets to choose

the initial values. This is not an easy task as the model is slow in the learning procedure.

Further, we have been using the RVM method implemented in the R-package kernlab to

train the RVM by Tipping (2001). In this algorithm the initial RBF kernel parameter ϑ

is chosen by an estimation method that is dependent on the speci�c partitioning in test

and training data set. Thus, in the RVM method the initial RBF kernel parameter is

estimated individually for each di�erent training data set, while for the DRVM the initial

values are chosen on a more general level, using CV, and is equal for every partitioning in

training set for the same data set. This is a signi�cant di�erence between the RVM and

DRVM training procedure in these experiments.

5.1 Examples on One Dimensional Synthetic Input Data

In the following sections, we are doing experiments on synthetic data to see how the model

�ts for a known system and output function. We will �rst inspect how well the model �ts

on a simple one dimensional case, with and without noise. To illustrate support vector

regression, the sinc function is often used (Tipping, 2001), and we will make no exception.

The sinc function is given by

t =
sin(x)

x
+ ε,

where x is the input vector, and ε is the random noise vector. In both examples we are

using a training data set of 100 samples with only one feature equally spaced on [−10, 10].

In the �rst example, the output t is a sinc function of the single column without noise,

that is ε = (0, . . . , 0).
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Figure 5.1: Data generated from the sinc function without noise modeled with RVM and
DRVM. The predicted function from RVM is shown in green and the one from DRVM in
blue. The true functions in gray are hidden behind the predicted functions as the models
�ts perfectly. The true data points are marked with stars and the relevance vectors with
circles.

As we can see in Figure 5.1, both the RVM and DRVM model seems to �t the true

function perfectly for this one dimensional noise free data set. The di�erence in test error

between the two methods is negligible, and when it comes to the sparseness of the models,

both requires 15 relevance vectors, and is equally sparse in this case. In the next example,

we are adding random uniform noise in [−0.1, 0.1] (Tipping, 2001), to see if the model

is able to capture the form also when data are noisy. The error is calculated on 1000

samples of the true function without noise, and the average number of relevance vectors

(nRV) and the root-mean-square error (RMSE) for both methods are given in Table 5.1.

As expected, Figure 5.2 shows that when the targets t is built up by only one column,

the DRVM model in blue works similar as the original RVM model in green. Again,

the DRVM model is �tting the system in the output data very well and is slightly more

accurate than the original RVM method with an average RMSE of 0.017 against 0.023 for

the RVM. When it comes to the sparseness of the model, the RVM is on average choosing

10 relevance vectors while the DRVM model is on average choosing 9.

From these experiments on one dimensional input data, we can see that our proposed

DRVM model is capturing the form of the output function equally as good as the RVM

model. In addition, it seems to be equally as sparse, and the test error is in fact a tiny

bit better. This slight improvement in test error can be due to the di�erences in how

the initial value of the RBF kernel parameter ϑ is chosen. However, the strength of the

DRVM model is not due to the sample selective aspect. It is the feature selective strength

that makes the main di�erence between the RVM and the DRVM. To examine the feature

selective strength of the DRVM model we need to use multidimensional data sets, which

we will do in the next sections.

52



Figure 5.2: Data generated from the sinc function with uniform noise in [−0.1, 0.1]modeled
with RVM and DRVM. The predicted function from RVM is shown in green and the one
from DRVM in blue, while true functions is shown in gray. The true data points are marked
with stars and the relevance vectors with circles.

5.2 Comparisons on Benchmark Data Sets

In this section we are doing experiments on three di�erent benchmark data sets, to get

a more clear impression of how accurate and sparse our proposed models is when data

are multidimensional. We are still using CV to choose the best initial values for the

parameters. Table 5.1 below shows the average results in terms of root-mean-square

error (RMSE), number of chosen relevance vectors (nRV) and number of chosen relevance

features (nRF) over 100 repetitions of modeling in all of our experiments, where N is the

number of observations and P the number of features in the training data set. It will be

referred to this table several times during this section.

nRV nRF RMSE
Data set N P RVM DRVM RVM DRVM RVM DRVM

Sinc (Uniform noise) 100 1 10.1 9.2 1 1 0.023 0.017
Friedman # 1 240 10 28.4 18.0 10 7.0 1.60 1.14
Diabetes 221 10 20.1 3.3 10 7.3 61.24 55.54
Boston Housing 253 13 32.1 11.0 13 3.3 6.21 5.87

Table 5.1: Comparison of the average number of relevance vectors (nRV), relevance features
(nRF) and RMSE for the di�erent data sets and methods.

The Friedman # 1 Data

The Friedman # 1 data was �rst constructed by Friedman (1991) and is generated from

10 random uniform input variables in [0, 1]. The outputs are given by the function

(Gramacy, 2020):

y(x) = 10 sin(πx1x2) + 20

(
x3 −

1

2

)2

+ 10x4 + 5x5.
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Figure 5.3: Bar plot of the frequency of chosen features by DRVM on the Friedman #1
data over 100 repetitions to the left. The right side shows the average observed size of the
di�erent feature weights over these 100 repetitions. The data set is constructed such that
the latter �ve features are only noise, and we can see that in many of the repetitions they
are pruned from the model the model.

This output is dependent on the �ve �rst features, while feature six to ten are only noise

columns (Tipping (2001), Gramacy (2020)). The models in this experiment are trained

on 240 randomly generated samples of the data, with Gaussian noise of one standard

deviation added, and they are tested on 1000 randomly generated samples without noise.

The results are averaged over 100 repetitions. As the last �ve features are only noise

columns, we hope for the DRVM model to choose the �rst �ve features which are actually

a�ecting the output, while ignoring the last �ve. In addition, as the RVM model is

using all the features including the irrelevant ones, we expect the DRVM to predict more

accurately for new data than the original RVM method. The left side of Figure 5.3 shows

the frequency of chosen features over the 100 repetitions of modeling on the Friedman #

1 data. The left side of the �gure shows the average size of the di�erent features weights

in the vector ϑ, where the weight is counted as zero if the corresponding feature is not

chosen. As we can see from the �gure, the DRVM model is choosing the �ve �rst features

in 100% of the repetitions, while the latter �ve is chosen in approximately 35 − 40% of

the repetitions, which is what we hoped for the model to do. As shown in Table 5.1,

on average the DRVM model chose seven features to a�ect the predictions and �ve of

these must be those which are actually a�ecting the output, as all these are chosen in all

of the repetitions as shown in the �gure. This means that on this speci�c data set, the

DRVM model is always choosing he relevant features along with on average two additional

irrelevant features. Regarding the sparseness towards the samples, the DRVM model is

for the Friedman # 1 data choosing on average 18 relevance vectors, while the RVM model

is choosing 28, as shown in Table 5.1. In addition, the error measure on this data set is

on average 1.14 for the DRVM model against 1.60 for the RVM model. Thus, it seems

like the DRVM model is sparser than the RVM model both with respect to the samples

and features, while also being more accurate.
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Figure 5.4: Bar plot of the frequency of chosen features by DRVM on
the Diabetes data over 100 repetitions. Some of the features: sex, bmi,
map, hdl and ltg are chosen in almost 100 % of the repetitions, while
others: age, ldl and tch are chosen in less than 50 % of them.

The Diabetes Data

The Diabetes data is part of the lars library in R, and has 10 variables: age, sex, BMI,

blood pressure and six di�erent measurements of blood serum levels (Efron et al., 2004).

The data is based on 442 diabetes patients, together with measures of disease progression

one year after baseline. We want to estimate this progression. We are training on 50%

of data, and hence testing on the remaining 50%. The results are averaged over 100

repetitions. In Figure 5.4, we can see the frequency of how often the di�erent features are

chosen, and the summed up results are given in Table 5.1. As the frequency plot shows,

the model is consistently choosing the sex, bmi, map, hdl and ltg to be relevant features,

while age, tc, ldl, tch and glu seems to not be that important in this model. We can see

in the table that the DRVM model is on average choosing seven of the features to a�ect

the model, and it has an error measure on the test data of 55.5 against 61.2 for the RVM.

With the DRVM method choosing on average just above three vectors to contribute to

the predictions compared to the RVM model choosing 20 relevance vectors, the DRVM

is sparser both with respect to samples and features and at the same time being more

accurate.

The Boston Housing Data

The last data set we are using, is the Boston Housing data, that was �rst used by Harri-

son Jr and Rubinfeld (1978). The data set contains 506 observations of the median house

value from di�erent areas of Boston Mass together with 13 features, which are described

in Appendix A.3. The data set is divided into test and training set with 50 % in each.

The average result over 100 repetitions are shown in Table 5.1.

We can see on Figure 5.5 that the DRVM model is consistently choosing the feature nox,
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Figure 5.5: Bar plot of the frequency of chosen features by DRVM on
the Boston Housing data over 100 repetitions. Some of the features: chas,
nox and rm are chosen in over 60 % of the repetitions, while some of them
are not chosen at all.

that is the nitric oxide concentration in the area, which seems credible as the previous

research by Harrison Jr and Rubinfeld (1978) have found this feature to be a highly sig-

ni�cant feature. We can also see that on this data set the model is consistently pruning

six of the features in 100 % of the repetitions, which indicates that these features are

not signi�cantly informative. Further, the DRVM is again sparser than the RVM model

by choosing 11 relevance vectors against 32. The error measure is slightly improved by

using the dimensionality reducing extension in the DRVM method, and it is on average

predicting using 3.3 out of 13 features.

Altogether, we can see that on all these four data sets Sinc, Friedman # 1, Diabetes

and Boston Housing, the DRVM model is sparser both with respect to relevance vectors

and relevance features, while at the same time predicting more accurately. This is what

we aimed for with the model, as it is reasonable to think that the DRVM model will be

similar to the RVM when all features are signi�cant, while it should be both sparser and

more accurate when data includes irrelevant noise features.
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6 | Discussion

The aim of this project was to develop a feature selective regression model which at the

same time was sparse in sample size, to deal with data that is possibly both big and

high dimensional. As always in machine learning, it is not possible to �nd a single best

method that always works the best, regardless of di�erences in the input data. However,

methods may have characteristic properties which makes them work better for some kinds

of data. Due to our experiments, the DRVM model seems to be an improvement both

in accuracy and interpretability compared to the original RVM. Although, this may not

always be the case, our experiments is indicating that our method can make better and

sparser predictions on multidimensional data. If we take a closer look at the Sinc data

with uniform noise, we can see that the DRVM method on average is more accurate than

the RVM method. However, as the data set only contains one feature, we were expecting

that the methods would be approximately equally accurate. Most likely the slight increase

in accuracy of �t is due to the di�erences in how the RBF kernel parameter ϑ is chosen,

as described in the beginning of previous chapter. For one dimensional data it therefore

seems reasonable to conclude that the RVM and DRVM method is almost identical to

each other. When the number of features is larger, the DRVM seems to be at least as

accurate as the original RVM model, which is expected as some of the features may not

actually a�ect the output.

The key principle of our proposed model is modifying the kernel basis function by

using indivdual kernel parameters ϑk, and we have not discovered many papers which is

using this approach and we have not found anyone using it in the regression case of RVM.

Thus, our work stands out as innovative, and our new approach may be used for other

kernel based Bayesian learning methods in further research.

One of the limitations of the DRVM method is that it is slow in the learning procedure,

and at the same time sensitive with respect to initial values and the partitioning into

training and test data. Hence, training the model is often a cumbersome task.

It is also worth mentioning how the DRVM method stands with respect to inter-

pretability and parsimonity. Kernel-based methods are not always easy to interpret as

every element of the model matrix is a function of input data. However, by using sparse

and feature selective methods, like DRVM we are reducing the complexity and are pre-
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dicting using fewer features. This means that the resulting model by our algorithm is

more parsimonious and maybe a bit easier to interpret.

In many research papers, including those referred to in this thesis, the mathematical

deductions are not explained in detail. However, working with this research, we have

deduced all the mathematical expressions that are used. This has been time consuming

and not straight forward. Where it was not clear in the actual paper how the formulas were

deduced, we had to search for fundamental mathematical formulas and properties. We

also contacted some of the researchers to get a better understanding of the mathematics

and how to implement the model in MATLAB. Implementing the method was challenging

as well, as we had to �rst understand the implementation of both the original RVM and

the PFCVM model, notice all their di�erences and then write the code associated with

this method. Hence, there is work behind this thesis that is not shown in the paper. Still,

it has been challenging, educational and very interesting to work with this thesis.

Further Research

As this method is slow in the learning procedure, we will suggest for further research to

extend the FRVM method from Chapter 2.3.2 using a similar approach as in the PFCVM

and DRVM methods. We have in fact done some research on this and started to develop a

possible approach for both FRVM and for the Noise-Robust Fast Sparse Bayesian Learning

(BLS) method by Helgøy and Li (2019). Considerations about these extensions for the

faster methods are postulated in Appendix A.1. In addition, our method is only developed

with respect to the RBF kernel basis function. Extending this method so that other kernel

basis functions can be used could be interesting. Another research idea based on this work

could be to extend other kernel based Bayesian learning methods to be feature selective,

using the same approach and modi�cation of kernel parameters.
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A | Appendix

The appendix will be a brief introduction to some other methods that I have been working

with and some of the interesting things I have discovered during my research period. In

addition, it will show part of the code I used to experiment with the DRVM method.

A.1 Possible Feature Selective Extension of Fast Bayesian

Learning

As the DRVM method is slow in the learning procedure, I have started to look at the

possibility to extend the DRVM method from Section 4 to be fast in a similar manner

as Tipping et al. (2003) did, explained in Section 2.3.2. In addition, I have worked with

a noise-robust sparse Bayesian learning method by Helgøy and Li (2019) and how that

method can be extended to be simultaneously feature selective. I did not fully complete

any of these two methods, but I will give some details of what I have done and the

challenges I ran into.

A.1.1 Extension of the Fast Relevance Vector Machine

From the optimization equations in Section 4.3 and 3.4 it is possible to divide the expres-

sions into one part including the αi and βi and one part not including the actual index,

like Tipping et al. (2003) did for the FRVM method. As described in Section 4.3, the

marginal likelihood over the hyperparameters α corresponding to the sample weights w

is identical to the corresponding equation for the original RVM with the inclusion of the

feature weights ϑ in the kernel basis functions. Thus, the fast optimization with respect

to the sample weights w is equal to the one in FRVM, just with the feature weights ϑ

included. That is

αi =


s2ϑ,i

q2ϑ,i−sϑ,i
if q2ϑ,i > sϑ,i

∞ if q2ϑ,i ≤ sϑ,i
,

where sϑ,i and qϑ,i are given by Equation (2.19) where the individual feature weights are

included in the kernel basis functions. By the exact same arguments, we can also use the

same estimate for σ2 as in Equation (4.11), again with ϑ included in the kernel functions,
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that is

σ2 =
||t−ΦϑwMP ||2

N −
∑

i γ
w
i

.

Now looking for the estimate of βi, we get by using the estimates from Equation

(3.18), that the likelihood function of β from Equation (3.28) with the simpli�cation

from Equation (3.18) can be written as

L(β) =
1

2
ln |B| − 1

2
ln |B −Hϑ|+

1

2
εϑ
>B−1εϑ,

where Σϑ = (B −Hϑ)−1. We are rewriting the inverse of the covariance matrix Σϑ
−1

like

Σϑ
−1 = IBI +Hϑ

= Hϑ +
∑
m6=i

βm1m1>m + βi1i1
>
i

= Σϑ
−1
−i + βi1i1

>
i ,

where 1m =
(
0, . . . , 1, . . . , 0

)>
with 1 at position m. By now using the determinant

identity in Equation (0.6), we get

|Σϑ
−1| = | ln Σϑ

−1
−i ||I + βi1

>
i Σϑ−i1i|,

such that

ln |Σϑ
−1| = ln |Σϑ

−1
−i |+ ln |I + βi1

>
i Σϑ−i1i|.

Thus, using this rewrite, the log likelihood function above can be split into one term

including and one term not including βi, in the following manner:

L(β) =
1

2

∑
m 6=i

{
ln βm − ln |Σ−1ϑ,i|+

ε2m
βm

}
+ ln βi − ln (1 + βi1

>
i Σϑ,i1i) +

ε2i
βi

= L(β−1) + `(βi).

In the deduction above εϑ,m is the m'th diagonal element of the vector εϑ from Equation

(3.18). Thus, di�erentiating L(β) is equivalent to di�erentiating `(βi), and we get

∂L(β)

∂βi
=
∂`(βi)

∂βi
=

1

2

(
1

βi
− 1>i Σϑ,i1i

1 + βi1
>
i Σϑ,i1i

− ε2i
β2
i

)
,
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which by equating to zero gives

βi =
ε2i

1− ε2i1>i Σϑ,i1i
.

As we need the estimate to be positive de�ned and the numerator is always positive, we

need the denominator to also be positive. This is satis�ed when

ε2i1
>
i Σϑ,i1i < 1,

and the estimate for βi is:

βi =


ε2i

1−ε2i 1>i Σϑ,i1i
if ε2i1

>
i Σϑ,i1i < 1

∞ if ε2i1
>
i Σϑ,i1i ≥ 1

.

A.1.2 Extension of the Noise-Robust Fast Sparse Bayesian Learn-

ing Model

Based on the Fast Relevance Vector Machine (FRVM) by Tipping et al. (2003), and

inspired by the Fast Laplace (FLAP) model by Babacan et al. (2009), Helgøy and Li

(2019) developed a fast sparse Bayesian learning method which is also robust to the noise

variance. They utilized the hierarchical prior from the Bayesian Lasso model by Park and

Casella (2008) together with a fast type-II maximization algorithm as used by Tipping

et al. (2003). The procedure led to a model that is both sparser, more �exible and at the

same time stable when data is noisy. This model is referred to as the Noise-Robust Fast

Sparse Bayesian Learning (BLS) method. If we are able to construct a model based on

BLS that is simultaneously selective with respect to both samples and features, we may

get a Bayesian learning model that is both fast, sparse, feature selective and robust to the

noise variance. In this section, we will postulate some hypothesis and calculations about

how this can be done.

The BLS Method

This section will be a short illustration of the BLS method, and further details about the

development is to be �nd in Helgøy and Li (2019). In this method, a Laplacian prior

conditional on the noise variance is used:

p(w|σ2) =
N∏
i=1

√
λ

2
√
σ2
e
−
√
λ|wi|√
σ2 . (A.1)
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This prior is complicated to work with, and a scale mixture of normals is used:

√
λ

2
√
σ2
e
−
√
λ|wi|√
σ2 =

∫ ∞
0

1√
2πγiσ2

e
− w2

i
2γiσ

2

√
λ
2

2
e−
√
λ
2
γi

2 dwi. (A.2)

The parameters in (A.1) and (A.2) have the following hierarchical structure (Park and

Casella, 2008):

t|w, σ2 ∼ N
(
t|Φw, σ2

)
, (A.3)

w|γ, σ2 ∼ N
(
w|0,Λ

)
, Λ = diag

(
γ0σ

2, . . . , γNσ
2
)
, (A.4)

γ|λ ∼
N∏
i=0

Exp
(
γi|
λ

2

)
,

λ ∼ Gamma
(
λ|a, b

)
, (a, b > 0)

σ2 ∼ Gamma
(
σ2|c, d

)
. (c, d > 0)

By integrating out the hyperparameters in Equation (A.2), the prior distribution is re-

duced to the sparse prior in Equation (A.1). This hierarchical structure is even more

sparse than the student-t distribution that is used in the RVM and illustrated in Section

1.2.2 (Helgøy and Li, 2019).

Helgøy and Li (2019) got the posterior distribution

p(w,γ, λ, σ2|t) =
p(t|w,γ, λ, σ2)p(w,γ, σ2, λ)

p(t)
,

and the predictive distribution

p(t∗|t) =

∫
p(t∗|w,γ, λ, σ2)p(w,γ, λ, σ2|t) dw dγ dλ dσ2. (A.5)

As it is not possible to �nd the posterior distribution p(w,γ, λ, σ2|t) in Equation (A.5)

analytically, Helgøy and Li (2019) are using that

p(w|t,γ, λ, σ2) =
p(w,γ, λ, σ2|t)
p(γ, λ, σ2|t)

, (A.6)

and shows that the posterior distribution over the sample weights w is given by

w|t,γ, λ, σ2 ∼ N (w|µ,Σ),
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where:

µ = σ−2ΣΦ>t, (A.7)

Σ =
(
σ−2Φ>Φ + Λ−1

)−1
. (A.8)

The marginal likelihood over targets t is given by (Helgøy and Li, 2019)

t|γ, σ2, λ ∼ N (t|0,C),

where the covariance matrix C is:

C = (σ2IN + ΦΛΦ>). (A.9)

Helgøy and Li (2019) approximated the joint posterior distribution over all the parameters

by

p(γ, λ, σ2|t) =
p(t,γ, λ, σ2)

p(t)

∝ p(t,γ, λ, σ2), (A.10)

where (Helgøy and Li, 2019)

p(t,γ, λ, σ2) =

∫
p(t|w, σ2)p(w|γ)p(γ|λ)p(λ)p(σ2) dw

= p(t|γ, σ2, λ)p(γ|λ)p(λ)p(σ2)

= (2π)−
N
2 |C|−

1
2 exp

{
− 1

2
t>C−1t

}
p(γ|λ)p(λ)p(σ2). (A.11)

Helgøy and Li (2019) took the logarithm of (A.11), which gave

ln p(t,γ, σ2, λ) =− 1

2
log |C| − 1

2
t>C−1t+N log

λ

2
− λ

2

∑
i

γi

+ a log b− log Γ(a) + (a− 1) log λ− bλ

+ c log d− log Γ(c) + (c− 1) log σ2 − dσ2.

(A.12)
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Using a similar decomposition strategy as Tipping et al. (2003) they decomposed the

covariance matrix C as

C = σ2I +
∑
m 6=i

σ2γmφmφ
>
m + σ2γiφiφ

>
i

= C−1 + σ2γiφiφ
>
i ,

and calculated the expressions for C−1 and |C|:

C−1 = C−1−i −
C−1−iφiφ

>
i C

−1
−i

γ−1i σ−2 + φ>i C
−1
−iφi

, (A.13)

|C| = |C−i||1 + σ2γiφ
>
i C

−1
−iφi|. (A.14)

Helgøy and Li (2019) then got the log-likelihood function of γ as

L(γ) = L(γ−i) +
1

2

[
log

1

1 + σ2γiri
+

γiσ
2ν2i

1 + σ2γiri
− λγi

]
, (A.15)

where

ri ≡ φ>i C−1−iφi and νi ≡ φ>i C−1−i t. (A.16)

By these steps they split the log-likelihood of γ into one term including, and one term

excluding γi, that is `(γi) and L(γ−i) respectively. They are then di�erentiating L(γ)

with respect to γi, that is di�erentiating `(γi), giving:

dL(γ)

dγi
=
d`(γi)

dγi
= −1

2

[
− ri
σ−2 + γiri

+
ν2i σ

−2

(σ−2 + γiri)2
− λ

]
.

Equating this to zero and investigate the expression, they got the maximum likelihood

estimate for γi:

γi =


−ri(ri+2λσ−2)+ri

√
(ri+2λσ−2)2−4λσ−2(ri−ν2i )
2λr2i

if ν2i − ri > λσ−2

0 otherwise
. (A.17)

When some of the γi's are set to zero, the corresponding weights and input vectors are

pruned. To optimize other hyperparameters λ, a and b, Helgøy and Li (2019) di�erentiated

Equation (A.12) with respect to each of the parameters and equated to zero they got (Choi

and Wette, 1969):

λ =
2(N + a− 1)∑

i γi + 2b
,
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b =
a

λ
and ln a = lnλ− lnλ+ ψ(a).

As all these parameters are dependent on the others, Helgøy and Li (2019) simulated a

small sample of λ using Gibbs sampler as described in Park and Casella (2008) to get the

initial values for a and b. These estimates are again used to compute λ. In the same way

as Tipping et al. (2003), Helgøy and Li (2019) suggested that instead of updating ri and

νi in Equation (A.16), it is easier to �rst calculate the expressions (Helgøy and Li, 2019):

Ri = φ>i C
−1φi

= σ−2φ>i φi − σ−2φ>i φΣφ>φiσ
−2,

Ni = φ>i C
−1t,

= σ−2φ>i t− σ−2φ>i φΣφ>tσ−2.

The predictive distribution of the BLS model is given by

p(t∗|t,γMP , σ
2
MP ) =

∫
p(t∗|w,γMP , λMPσ

2
MP )p(w|t,γMP , λMP , σ

2
MP ) dw, (A.18)

which is (Helgøy and Li, 2019)

t∗|t,γMP , λMP , σ
2
MP ∼ N (µ∗, σ

2
∗), (A.19)

where

µ∗ = µ>φ(x∗), (A.20)

σ2
∗ = σ̂2 + φ(x∗)

>Σφ(x∗). (A.21)

The algorithm of the BLS method by Helgøy and Li (2019) is given in Algorithm 5, and

as in the RVM method by Tipping (2001), they �x σ2 in step one to a scaling of the

data variance. Further, with ři and ν̌i being ri and νi given by Equation (A.16) with σ−2

excluded, Helgøy and Li (2019) shows the following rewrite of the threshold criteria:

r2i − νi ≤ λσ−2,

(σ−2ři)
2 − σ−2ν̌i ≤ λσ−2,

σ−2ř2i − ν̌i ≤ λ.

The relation above, shows that when σ2 is increasing the more likely it is that γi will be
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Algorithm 5 Noise-Robust Fast Sparse Bayesian Learning Model (BLS)

1: Fix σ2 to a reasonable value
2: Initialize all γi = 0 and λ = 0
3: while convergence criteria are not met do
4: Choose a γi
5: if ν2i − ri > λσ−2 and γi = 0 then
6: Add γi to the model
7: else if ν2i − ri > λσ−2 and γi > 0 then
8: Re-estimate γi
9: else if ν2i − ri < λσ−2 and γi < 0 then
10: Prune observation i from the model (set γi = 0)
11: end if

12: Update Σ, µ, νi, ri, λ, a and b
13: end while

set to in�nity and hence that the basis function is pruned. This illustrates the robustness

in the model towards the noise variance, and thus how this model can reduce the risk of

over�tting when data is noisy.

Simultaneous Feature and Sample Selective BLS

In this feature selective method we are using the same kind of sparse framework as in the

DRVM model. That is de�ning feature weights, and kernel basis functions that includes

these new weights, given by Equation (3.2), (3.3) and (3.4). Using this framework the

posterior distribution over all unknown parameters is given by

p(w,ϑ,γ,β, λ, σ2|t) =
p(t|w,ϑ,γ,β, λ, σ2)p(w,ϑ,γ,β, λ, σ2)

p(t)
,

with the predictive distribution:

p(t∗|t) =

∫
p(t∗|w,ϑ,γ,β, λ, σ2)p(w,ϑ,γ,β, λ, σ2|t) dw dϑ dγ dβ dλ dσ2. (A.22)

We are then again decomposing in the same way as Tipping (2001), which gives

p(w,ϑ,γ,β, λ, σ2|t) = p(w,ϑ|t,γ,β, λ, σ2)p(γ,β, λ, σ2|t). (A.23)

From here we can �nd the simultaneous posterior distribution over the feature weights ϑ

and sample weights w by

p(w,ϑ|t,γ,β, λ, σ2) =
p(t|w,ϑ, σ2)p(w|γ, σ2)p(ϑ|β)

p(t|γ,β, λ, σ2)
. (A.24)
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In Equation (A.24) the likelihood of the targets is again similar to the RVM case with ker-

nel basis functions dependent on the feature weights ϑ, that is the Gaussian distribution

given by Equation (4.1). Further, the distribution over the sample weights w is identical

to the one in the original BLS model, given by Equation (A.4) and the distribution over

the feature weights is identical to the dimensionality reducing RVM method, given by

Equation (3.5) and (3.6), with the hyper hyperparameters �xed to be e = f = 10−4.

To �nd the simultaneous posterior distribution over the weights we are using the

same procedure as for the dimensionality reducing method based on the Relevance Vector

Machine, that is a Laplacian approximation. The �rst step is to take the logarithm of

Equation (A.24), giving

ln p(w,ϑ|t,γ,β, λ, σ2) = ln p(t|w,ϑ, σ2) + ln p(w|γ, σ2)

+ ln p(ϑ|β)− ln p(t|γ,β, λ, σ2).
(A.25)

Only considering the terms that is including the sample weights, we get the log posterior

with respect to the sample weights w given by

L(w) = ln p(t|w,ϑ, σ2) + ln p(w|γ, σ2)

= −1

2
σ−2||t−Φϑw||2 +w>Λ−1w. (A.26)

Equation (A.26) is the logarithm with respect to the sample weightsw in the BLS method,

given by the logarithm of Equation (A.6), just with the inclusion of individual feature

weights ϑ in the kernel basis functions. Thus, the maximization give the same result and

we have that (A.24) with respect to w is approximately

N (µw,Σw),

where µw and Σw is given by Equation (A.7) and (A.8) with ϑ included in every kernel

basis functions.

Considering only the terms of the likelihood function (A.25) that is including the

feature weights ϑ, we get the log posterior with respect to ϑ by

L(ϑ) = ln p(t|w,ϑ, σ2) + ln p(ϑ|β)

= −1

2
σ−2||t−Φϑw||2 + ϑ>B−1ϑ. (A.27)

Equation (A.27) is identical to the likelihood function of ϑ from Equation (4.4) of the

DRVM method, and we get the same Laplace approximation with respect to ϑ. All
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together, using Laplace's approximation, we get that

p(w,ϑ|t,γ,β, λ, σ2) ≈ N (ϑMP ,Σϑ) ·N (µw,Σw), (A.28)

where ϑMP , Σϑ, Σw and µw are given by Equation (4.6), (4.7), (A.8) and (A.7) respec-

tively, with the inclusion of ϑ in the kernel basis functions.

From Equation (A.23) we are not able to �nd the second term analytically, and we

are therefore approximating it using the simultaneous distribution over alle parameters,

as Helgøy and Li (2019) did in the original BLS method. That is the approximation

p(w,ϑ,γ,β, λ, σ2|t) =
p(w,ϑ, t,γ,β, λ, σ2)

p(t)

∝ p(w,ϑ, t,γ,β, λ, σ2),

as we can ignore the distribution of the targets t as the MAP-estimates of the other

hyperparameters will not depend on it. This simultaneous distribution can be decomposed

into

p(w,ϑ, t,γ,β, λ, σ2) =
p(t|w,ϑ, σ2)p(ϑ|β)p(w|γ, σ2)p(γ|λ)p(λ)p(σ2)

p(w,ϑ|t,γ,β, λ, σ2)
, (A.29)

and by taking the logarithm with respect to γ we get

L(γ) = ln p(w|γ, σ2) + ln p(γ|λ)− ln p(w,ϑ|t,γ,β, λ, σ2) (A.30)

= −1

2
ln |Λ|+ 1

2
ln |Σϑ| −

1

2
w>Λ−1w

+
1

2
(w − µϑ)>Σϑ

−1(w − µϑ)− λ

2

∑
i

γi.

Further we know the following relation from the deduction of the posterior distribution

over the sample weights in the original BLS method:

|Λ|−
1
2 |Σϑ|

1
2 = (σ2)−

N
2 |Cϑ|−

1
2 , (A.31)

with Cϑ being the matrix given by Equation (A.9) in the original BLS with the kernel

functions dependent on the feature weights ϑ. From the same equations we have that

w>Λ−1w − (w − µϑ)>Σϑ
−1(w − µϑ) = t>Cϑ

−1t− σ−2||t−Φϑw||2, (A.32)

where the only term on the left hand side that includes the sample weights w is the �rst

one. By inserting the relations given by Equation (A.31) and (A.32) into Equation (A.30),
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and only considering the terms that includes γ, we get

L(γ) = −1

2
ln |Cϑ| −

1

2
t>Cϑ

−1t− λ

2

∑
i

γi.

We recognize this equation as the log posterior distribution over the sample weights given

in the original BLS method, by the �rst line of Equation (A.12) and further by the

decomposed form in Equation (A.15). We just have to remember that the kernel basis

functions is dependent on the feature weights ϑ. Hence the maximum value of γi is given

by Equation (A.17) with the inclusion of ϑ in the kernel functions, that is:

γi =


−rϑ,i(rϑ,i+2λσ−2)+rϑ,i

√
(rϑi+2λσ−2)2−4λσ−2(rϑ,i−ν2ϑ,i)

2λr2ϑ,i+λσ
−2 if ν2ϑ,i − rϑ,i > λσ−2

0 otherwise
.

To �nd the estimate of the hyperparameter corresponding to the feature weights, we

have to take the logarithm of Equation (A.29) with respect to β. This is:

L(β) = ln p(ϑ|β)− ln p(w,ϑ|t,α,β, σ2),

which considered only with respect to the feature weights ϑ is the exact same expression

as we got in the RVM dimensionality reducing method when investigating with respect

to the sample weights ϑ, that is given by Equation (3.25). Hence the rest will follow the

same argumentation, and we get the estimate for βi by Equation (3.29).

The other hyperparameters will have the same estimates as in the original BLS model,

just with the inclusion of the feature weights ϑ in the kernel basis functions.

In a similar manner as for the predictive distribution in DRVM and FRVM, we get

the predictive distribution:

p(t∗|t) =

∫
p(t∗|w,ϑ,γMP ,βMP , λMP , σ̂

2)p(w,ϑ|t,γMP ,βMP , λMP , σ̂
2) dw dϑ.

By using the relation from Equation (A.28) we get that this distribution can be approxi-

mated by the integral

p(t∗|t) =

∫
p(t∗|w,ϑ,γMP ,βMP , λMP , σ̂

2)N (ϑMP ,Σϑ) ·N (µw,Σw) dw dϑ,

which by integrating out the feature weights gives

p(t∗|t) =

∫
p(t∗|w,ϑ,γMP ,βMP , λMP , σ̂

2)N (µw,Σw) dw.

The equation above is the predictive distribution from the original BLS method given
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by Equation (A.18), just with the inclusion of the feature weights ϑ in the kernel basis

functions. Thus, we can predict for new target variables in the dimensionality reducing

method using the predictive distribution from the earlier described BLS method. This

is given by Equation (A.19), (A.20) and (A.21), just with the inclusion of the separate

feature weights ϑ in the kernel basis functions, and the parameters estimated using the

approach in this chapter. That is

t∗|t,γMP , σ
2
MP ∼ N (µ∗, σ

2
∗),

with

µ∗ = µϑ
>φϑ(x∗),

σ2
∗ = σ̂2 + φϑ

>(x∗)Σϑφϑ(x∗).

A.1.3 Challenges with Establishing the Algorithms

After developing the theory behind the two methods, I had to stop working with them

to prioritize other topics. The next challenge is to �gure out how the algorithms of the

two methods should be. It is not straight forward to do the updating simultaneously and

iteratively with respect to both sample and feature weights when only considering one

hyperparameter at a time.

A.2 Code Snippets from the DRVM Learning

The following section shows part of the MATLAB-code for �tting the DRVM model,

which is highly inspired by Tipping (2016) and the code developed by the authors of

Jiang et al. (2019). Starting out with the code for updating the covariance matrix and

the mean vector with respect to the sample weights w:

PHI2 = PHI '*PHI;

Hessian = PHI2*invvar + A;

U = chol(Hessian);

Ui = inv(U);

SIGMA = Ui*Ui ';

w = invvar*SIGMA*PHI '*t;

Code for updating the hyperparameters α, and selecting the ones that are less than a

given threshold:

diagSig = sum(Ui.^2, 2);
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gamma = 1 - alpha(used).* diagSig;

alpha(used) = gamma ./ w(used).^2;

used = find(alpha < MAXIMUM);

w_nz = w(used);

alpha_nz = alpha(used);

Calculating the residual and updating the σ2 estimate:

y = PHI*w;

e = (t - y);

ED = e'*e;

var = ED/(ndata -sum(gamma));

invvar = var^(-1);

Code for checking the maximum change and stop updating w if satis�ed:

if i > 5 && max(abs(w_nz - w_old(used))) < MINIMUM

update_w = false;

if ~update_t; break; end

end

w_old = w;

Calculating the mean vector with respect to the feature weights ϑ:

PHI_used = ker(trainX , trainX(used , :), theta);

y = PHI_used*w + b;

e = t - y;

sigmoid_theta = sigmoid(theta , Lambda);

sigmoid_theta(sigmoid_theta < realmin) = realmin;

data_term = - 1/2* invvar *(e'*e);

regulariser = beta '*( theta .^2) /2;

Q_out = data_term + sum(log(sigmoid_theta));

Q = Q_out - regulariser;

Using Newton step to approximate the mean vector:

for j = 1:its

e = t - y;

D = Dfast(w, dist(:, used , :), PHI_used , Mused);

kB = Lambda *(1- sigmoid_theta);

g = -beta.*theta + invvar*D'*e + kB;
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% See if converged

if j >= 2 && norm(g)/Mused < GRAD_STOP

break

end

OB = diag(Lambda*Lambda *( sigmoid_theta .* (1-

sigmoid_theta)) + beta);

D2 = sum(D'.*D', 2);

Hessian = diag(OB) + invvar*D2;

Hessian = Hessian .^( -1);

delta_theta = g.* Hessian;

delta = 0.5;

while delta > 2^-10

theta_new = theta + delta*delta_theta;

PHI_used = ker(trainX , trainX(used ,:), theta_new);

y = PHI_used*w + b;

data_term_new = - 1/2* invvar *(e'*e);

regulariser = beta '*( theta_new .^2) /2;

sigmoid_theta = sigmoid(theta_new , Lambda);

sigmoid_theta(sigmoid_theta < realmin) = realmin;

Q_new = data_term_new - regulariser + sum(log(

sigmoid_theta));

if Q_new > Q

Q = Q_new;

Q_out = Q + regulariser;

theta = theta_new;

data_term = data_term_new;

delta = 0;

else

delta = delta /2;

end

end

if delta

break;

end

end
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Updating the hyperparameters β, selecting the ones that are smaller than a given thresh-

old and checking the maximal change:

gamma = 1-beta.* Hessian;

beta = gamma./theta .^2;

Ui = diag(sqrt(Hessian));

Q = Q/Mused;

Q_out = Q_out/Mused;

theta_used = find(beta < MAXIMUM);

theta_nz = theta(theta_used);

beta_nz = beta(theta_used);

if i > 5 && max(abs(theta_nz - theta_old(theta_used))) <

MINIMUM

update_t = false;

if ~update_w; break; end

end

theta_old = theta;

A.3 Explanation of the Boston Housing Features

This section gives a direct copy of Tipping (1996)s explanation of the features in the

Boston Housing data set used in the experimental part. The data set was �rst published

by Harrison Jr and Rubinfeld (1978), and includes the following features (Tipping, 1996):

crim per capita crime rate by town

zn proportion of residential land zoned for lots over 25000 sq.ft.

indus proportion of non-retail business acres per town

chas Charles River dummy variable (1 if tract bounds river; 0 otherwise)

nox nitric oxides concentration (parts per 10 million)

rm average number of rooms per dwelling

age proportion of owner-occupied units built prior to 1940

dis weighted distances to �ve Boston employment centres

rad index of accessibility to radial highways

tax full-value property-tax rate per 10, 000

ptratio pupil-teacher ratio by town

b 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town

lstat % lower status of the population

medv Median value of owner-occupied homes in 1000's
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