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Abstract 

Short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) is a mitochondrial enzyme involved 

in fatty acid β-oxidation and the regulation of β-cell insulin secretion. Its role in insulin 

secretion became apparent in 2001 when the first report linking SCHAD deficiency with 

congenital hyperinsulinism of infancy (CHI) was published. Since then research into the 

mechanism of SCHAD-CHI has led to the view that SCHAD serves a β-cell specific function 

and that the mechanism involves inhibition of glutamate dehydrogenase. In this thesis, we 

studied functional differences of pathogenic and non-pathogenic SCHAD missense variants, 

investigated the β-cell specificity of SCHAD deficiency in an animal model, and sought to 

identify novel interaction partners of the protein.  

In Paper 1, we found that missense SCHAD variants occurring in datasets from human 

populations mostly behaved like the wild type protein, whereas CHI-associated SCHAD 

variants had altered properties with regard to protein stability, enzymatic function and 

interaction with GDH. Four of the seven studied CHI variants showed reduced protein 

expression when expressed in HEK293 cells. The remaining three pathogenic variants had 

stable expression but reduced enzymatic activity and binding to GDH.  

In Paper II, we generated conditional SCHAD knockout mice and studied the cell-type specific 

effects of SCHAD deficiency in β-cells and hepatocytes. We noted that the SCHAD protein 

was highly expressed in pancreatic β- and -cells, but virtually absent from the α-cells. The 

mice harboring a β-cell-specific deficiency in SCHAD expression were hypoglycemic under 

various conditions, and their islets were sensitive to amino acid-stimulated insulin secretion. 

Analysis of the transcriptome of isolated SCHAD knockout islets identified global changes in 

expression of genes involved in metabolism and β-cell identity. Overall, this study strengthened 

the hypothesis that SCHAD serves a specific function in the β-cells and that β-cell SCHAD 

deficiency is sufficient to cause hypoglycemia. 

In Paper III, we sought to identify novel protein interactions partners of SCHAD by performing 

a yeast two-hybrid screen in a library from human islets of Langerhans. We identified keratin 

8 (K8) as a putative binding partner and found additional evidence of an interaction by co-

immunoprecipitation experiments. We also analyzed SCHAD expression in a K8 knockout 

mouse and K8 expression in the SCHAD knockout mouse. However, the lack of one potential 

interaction partner did not affect expression of the other, except when K8 knockout mice were 
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fed a ketogenic diet. The dietary challenge resulted in an upregulation of SCHAD in the 

pancreas of WT animals and this was blunted in the absence of K8. More experiments need to 

be carried out in order to explore the possible biological relevance of the proposed SCHAD-

K8 interaction. 

In summary, this thesis increased our knowledge on the impact of missense variants on SCHAD 

function and may therefore aid in the clinical evaluation of rare variants found in patients with 

phenotypes related to β-cell function. We developed a new mouse model for SCHAD-CHI, 

which highlighted the importance for SCHAD expression in the β-cell as well as the 

heterogeneous expression of the enzyme in islet cell populations. Lastly, we found evidence 

for a novel and surprising protein interaction of SCHAD with K8 that remains to be further 

validated. 
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1. Introduction 

1.1. The human and mouse pancreas  

The pancreas serves dual roles in the endocrine and digestive systems of vertebrates. The 

endocrine pancreas secretes hormones into the blood stream that regulate glucose homeostasis, 

and the exocrine pancreas produces and secretes digestive enzymes into the duodenum to aid 

digestion. 

The human pancreas is an organ of approximately 14 – 18 cm length, weighing between 50 to 

100 g. It is commonly divided into a head, body and tail region. The head of the pancreas 

aligns with the C-bend of the duodenum. The body stretches horizontally below the stomach 

and the tail is in contact with the spleen (Figure 1A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Anatomic comparison of the human and mouse pancreas. (A) The human pancreas stretches from 

the C-bend of the duodenum to the spleen and is usually divided into three regions: head, body, and tail. (B) The 

mouse pancreas is structurally less defined but can also be divided into three regions: the duodenal, splenic, and 

gastric lobes. Homology in pancreas structure between man and mouse is indicated by color. Ducts are 

represented as full black lines going through the pancreas. Adapted from (1).    
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The mouse pancreas has a more diffuse morphology but can still be divided into three major 

lobes. The duodenal lobe is analogous to the head of the human pancreas and lies embedded 

in the mesentery around the duodenum. The splenic lobe is the largest part of the mouse 

pancreas and equivalent to the body and tail of the human pancreas. The smallest part of the 

mouse pancreas, the gastric lobe, extends upwards from the splenic lobe attaches to the 

stomach. This part may be analogous to the pyramidal process, a structure seen in only 50% 

of human pancreata (Figure 1B) (1). 

1.1.1. The endocrine pancreas - islets of Langerhans  

The endocrine pancreas consists of micro-organs called islets of Langerhans that are 

embedded in the exocrine parenchyma. These islets constitute up to 15% of the pancreas 

volume in neonates but this fraction decreases to 2 – 3% in adults (2).  

The islets of Langerhans contain five distinct endocrine cell types that originate from a 

common progenitor cell expressing neurogenin 3 (Ngn3) (3): the glucagon-secreting α-cell, 

the insulin-secreting β-cell, the somatostatin (SST)-secreting δ-cell, the pancreatic 

polypeptide-secreting PP-cells and the ghrelin-secreting ε-cells. β-cells form the largest group 

of islet cells and contribute to 50-70% of islet cell mass in humans and 60-80% in mice. Alpha 

cells are the second most abundant cell type, comprising 20 – 40% of islet cells in humans and 

10 – 20% in mice, followed by δ-cells which contribute 5 – 10%. PP-cells form only around 

5% of islet cells, but the posterior head of the human pancreas contains a specific subset of 

islets that are enriched in PP-cells and low in α- and β-cells. ε-cells are the least frequent cell 

type comprising 1% of total islet cells.  

In the mouse, islets are mostly organized in rounded or oval structures, in which a cluster of 

β-cells is surrounded by a mantle of other islet cells (Figure 2A,B). Human islets are overall 

more complex in architecture and non-β-cells are frequently observed in the islet core (Figure 

2C,D). The islets are distributed heterogeneously throughout the pancreas. In humans the tail 

of the pancreas has the highest density of islets per unit volume. In the mouse, the gastric lobe 

contains the highest and the splenic lobe the lowest number of islets per unit of tissue volume 

(1). Pancreatic islets are strongly perfused (Figure 2B,D). Even though they comprise only 2-

3% of the pancreas tissue mass, they receive up to 20% of pancreatic blood supply originating 

from the splenic artery. Blood exits the islet through the splanchnic veins and ultimately drains  
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into the hepatic portal vein. Blood supply from the splenic artery ensures that islet cells receive 

systemic stimuli such as glucose and amino acids for hormone secretion (4). 

Besides from inputs via the blood supply, the islet receives stimuli from sympathetic, 

parasympathetic, and additionally in the mouse, cholinergic nerves (Figure 2B,D). Mouse 

islets are highly innervated, and the nerves make direct contact with the endocrine cells. In 

humans, innervation is less pronounced and the nerves make contact with smooth muscle cells 

instead of endocrine cells (4).   

1.1.2. The insulin-secreting pancreatic β-cell 

The β-cells are the best studied of the five islet cell types and, together with the less numerous 

α-cell, they play a central role in the regulation of glucose homeostasis. β-cells have a 

polygonal shape and contain about 10,000 granules that store insulin as Zn2-insulin6 crystals. 

These granules have an electron-dense core with clear edges and a surrounding electron-lucent 

ring on electron microscopy images of islets.   

Figure 2. Structure and composition of the mouse and human islet of Langerhans. (A) 

Immunohistochemistry of a mouse islet stained for insulin (red), glucagon (green) and somatostatin (blue). (B) 

Schematic of mouse islet composition showing β-cells (red), α-cells (green) and δ-cells (blue), innervation and 

blood supply. (C) Immunohistochemistry of a human islet. Colors are the same as in (A). (D) Schematic of 

human islet. Colors are the same as in (B). Scale bars in (A) and (C): 20 μm. Adapted from (4) 
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The main function of β-cells is the secretion of the hormone insulin in response to an increase 

in blood glucose levels. Insulin is encoded by the INS gene. The mRNA first yields 

preproinsulin which undergoes cleavage to proinsulin upon entry into the endoplasmic 

reticulum (ER). Proinsulin contains a carboxy-terminal A chain and an amino-terminal B chain 

separated by stretch of amino acids called the C-peptide. Once it arrives in the Golgi apparatus, 

proinsulin is packaged into secretory vesicles. Here, the C-peptide is excised from the 

precursor to yield mature insulin and free C-peptide (5).  

Insulin is secreted in response to neurotransmitters, incretins (e.g. glucagon-like-peptide 

(GLP-1), gastric inhibitory polypeptide (GIP)), and nutrients such as glucose and amino acids. 

The regulation of insulin secretion will be discussed in detail in Chapter 1.2. However, the 

main stimulus is hyperglycemia, and insulin’s major function is to reduce increased blood 

glucose levels to normoglycemic levels. This is achieved by stimulation of glucose uptake in 

muscle and adipose tissue, stimulation of glycogen synthesis, glycolysis, and conversion of 

pyruvate to Acetyl Co-A (for ATP production in the Krebs cycle or fatty acid synthesis). 

Insulin also inhibits glycogen breakdown and gluconeogenesis.  

Besides glucose metabolism, insulin also influences lipid metabolism and protein synthesis. 

In liver and adipose tissue, insulin stimulates fatty acid synthesis, inhibits fatty acid β-

oxidation, and increases formation and storage of triglycerides. It also stimulates cholesterol 

synthesis. Insulin affects gene expression throughout the body. Some examples include 

augmentation of liver glucokinase, fatty acid synthase and albumin, and adipose tissue 

pyruvate carboxylase expression (6). Lastly, β-cells interact with local islet cell populations 

through autocrine and paracrine mechanisms. Insulin regulates β-cell mass, insulin synthesis 

and β-cell calcium flux. Insulin, zinc ions and gamma-aminobutyric acid (GABA), which are 

co-secreted with insulin, reduce glucagon secretion from α-cells (7).  

1.1.3. Other islet cell types 

α-cell 

α-cells are located in the islet periphery surrounding the β-cell core. In humans, α-cells may 

also be found within the core, lining arterioles and capillaries (4). α-cells secrete glucagon, 

which together with insulin regulates blood glucose levels. Glucagon is produced by cleavage 

of preproglucagon by prohormone convertase 2. Other cell types such as the L-cells in the 
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gastrointestinal tract, also produce the preproglucagon but process the precursor protein to 

yield GLP-1 and other hormones (8).  

In many ways, glucagon functions opposite of insulin. The hormone stimulates hepatic 

glycogenolysis and gluconeogenesis during hypoglycaemic conditions to increase hepatic 

glucose release and achieve normoglycemia. Glucagon also stimulates lipolysis and increases 

energy expenditure. Within the islet, glucagon has paracrine functions to stimulate insulin and 

SST secretion (8,9).  

The regulation of glucagon secretion is not as well defined as insulin secretion from β-cells. 

Studies suggest that glucagon secretion is regulated by glucose and amino acid levels, as well 

as paracrine factors. During low glucose conditions, ATP-sensitive potassium channels (KATP-

channels) are activated to generate a membrane potential of 60 mV. This opens low voltage-

gated calcium channels, and subsequently sodium and high voltage calcium channels. The 

influx of calcium then induces the exocytosis of glucagon granules. During high glucose 

conditions, ATP production increases which results in closure of KATP channels and inhibits 

glucagon secretion. However, high glucose has been reported to potently stimulate glucagon 

secretion from isolated alpha cells, an effect that is absent in intact islets. In whole islets, 

glucagon secretion under high glucose conditions may be suppressed through paracrine action 

of insulin, SST, zinc ions and GABA (9,10). 

δ-cell 

δ-cells can also be found in the CNS and scattered throughout the gastrointestinal tract. In 

mouse islets, δ-cells mostly surround the core, with few cells being located in the islet center. 

In humans, δ-cells may be found scattered throughout the islet. δ-cells make tight contact with 

several α- and β-cells through neurite-like processes and negatively regulate insulin and 

glucagon secretion through secretion of SST and β- to δ-cell electrical coupling. β- and δ-cells 

share an immediate common progenitor and δ-cells have been reported to transdifferentiate 

into β-cells. Both cell types share common properties related to their secretory function such 

as the expression of glucokinase and KATP channel genes (ABCC8 and KCNJ11). Stimulants 

of SST secretion also include glucose, amino acids (leucine and arginine), neurotransmitters, 

hormones such as GABA, glucagon, GLP-1, ghrelin, urocortin 3, and possibly insulin. 

However, SST secretion is initiated at lower glucose levels than insulin secretion (3 vs. 6 mM 
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in the mouse) and contrary to α- and β-cells, δ-cell SST secretion is inhibited by palmitate. 

SST secretion is also inhibited by adrenaline and possibly by SST itself (11). 

PP-cell 

Most of the PP-cells are concentrated in the head of the pancreas. In mice, the majority of PP-

cells, like α- and δ-cells, are found surrounding the islet core. In human islets, PP-cells are 

located in close proximity to blood vessels. Some PP-cells can also be found scattered 

throughout the exocrine parenchyma of the pancreas. They postprandially secrete pancreatic 

polypeptide (PPY) in response to vagus and enteric nerve stimulation and increased levels of 

amino acids (arginine). PPY negatively regulates gastric emptying as well as intestinal 

mobility and inhibits α-cell glucagon secretion under hypoglycemic conditions (8). 

ε-cell 

ε-cells are the least abundant islet cell type in adults but make up to 10% of the islet cells mass 

in neonates. Like other non-β-cells, most ε-cells are located in the islet periphery of mouse 

islets. Some ε-cells may also be found in pancreatic ducts or scattered throughout the exocrine 

parenchyma (12). They, in concert with P/D1 cells in the gastric fundus, produce the “hunger 

hormone” ghrelin as response to fasting and as hunger levels rise. Ghrelin acts in the central 

nervous system as a signal to initiate food intake and plays widespread systemic roles in the 

regulation of glucose homeostasis, energy expenditure and body weight development (13). It 

also plays a local role within the islet, as a paracrine inhibitor of insulin secretion during 

fasting. Even though ε-cells make a minor contribution to islet mass, evidence suggests that 

they are a significant source of circulating ghrelin in humans (12).  

1.1.4. The exocrine pancreas 

The exocrine parenchyma constitutes about 90% of the pancreas volume and contains acinar, 

stellate, and ductal cells. Acinar cells are specialized cells that synthesize and secrete digestive 

enzymes which are transported to the intestine through a network of pancreatic ducts. Acinar 

cells are characterized by a highly basophilic cytoplasm, basally located nucleus, and apically 

located secretory granules. They are organized in small clusters called acini which surround a 

lumen that connects to intercalating ducts. These ducts drain into intralobular ducts and further 

into interlobular ducts which open into the pancreato-hepatic duct. Ductal cells aid in the 

transport of the digestive enzymes by secreting bicarbonate and water which mix with the 
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enzymes and form the pancreatic juice. The stellate cell is the least numerous cell type within 

the exocrine pancreas. These cells uphold pancreas structure by regulating the formation and 

degradation of extracellular matrix and are central players in fibrotic processes in pancreatic 

exocrine disease (14).  

Although the exocrine and endocrine pancreas generally have been treated as two separate 

organ compartments, there is now increasing evidence of endocrine-exocrine crosstalk and 

interdependence. Blood flow between the islets and exocrine tissue is interconnected allowing 

for paracrine regulation in either direction (15). Exocrine cells are exposed to high levels of 

islet hormones which serve as regulators of exocrine secretion (16). Moreover, the two 

compartments are not separated and are in intimate physical contact with each other. Peri-islet 

acinar cells in close contact with islet cells are morphologically and functionally different from 

the more distantly located tele-islet acinar cells. Evidence suggests crosstalk between islets 

and peri-islet acinar cells plays a role in islet expansion in diabetes (17). 

Due to the interconnectedness of the endocrine and exocrine pancreas it is not surprising that 

dysfunction in either compartment has implications for the other. Indeed, exocrine dysfunction 

as seen in conditions such as chronic pancreatitis, cystic fibrosis and maturity-onset diabetes 

of the young type 8 (MODY8), is a risk factor for endocrine dysfunction and type 3c diabetes 

(18). On the other hand, diabetes has been found to be a risk factor for and to exacerbate acute 

pancreatitis (19) and there are links between diabetes and pancreatic cancer (20). 

 

1.2. The regulation of insulin secretion 

1.2.1. Glucose-stimulated insulin secretion 

The postprandial rise in blood glucose levels is the most important physiological stimulus for 

insulin secretion (Figure 3). Glucose enters the β-cell via facilitated, insulin-independent 

transport. In humans, this is primarily mediated by the membrane protein solute carrier family 

2 member 1 (GLUT1) and to a lesser extent solute carrier family 2 member 3 (GLUT3). 

Rodents mainly utilize solute carrier family 2 member 2 (Glut2) (21). The difference in 

glucose transporter expression may explain the distinct set points of normoglycemia in human 

and mouse. Humans maintain their blood glucose levels around 90 mg/dl and mice around 140 
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mg/dL (22). GLUT1 and GLUT3 have lower Km for glucose transport than Glut2 (6 mM and 

1 mM vs. 11 mM), allowing for glucose transport at lower blood glucose levels (21). 

After glucose enters the β-cell, it is converted to glucose-6-phoshate by glucokinase (GK), the 

glucose sensor of the β-cell. GK belongs to the hexokinase superfamily and is expressed in the 

β-cell, liver, and brain (23). Like other hexokinases, it catalyzes the conversion of glucose to 

glucose 6-phosphate (G6P). However, contrary to other hexokinases, GK is not inhibited by 

its product (24). Furthermore, glucokinase remains in an inactive configuration during low 

glucose conditions and as glucose levels rise, the substrate stimulates the switch to its active 

state (25). These attributes ensure low G6P production when blood glucose levels are low and 

high G6P production as glucose levels rise.  

G6P subsequently serves as substrate for glycolysis and the TCA cycle, leading to a rise in 

ATP and a decrease in ADP levels. This change in β-cell energy status stimulates the closure 

of KATP-channels. When the β-cell is not stimulated, the KATP channel transports potassium 

ions out of the cell to maintain a resting potential. Closure of the KATP channel stops the export 

Figure 3. Insulin secretion in response to glucose and amino acids. Glucose enters the β-cell via facilitated 

transport through GLUT1 and GLUT3 (in the mouse Glut2). Glucokinase (GK) converts glucose to glucose-6-

phosphate (G6P). G6P metabolism results in ATP production from the TCA cycle, a rise in the ATP:ADP ratio 

and closure of ATP-sensitive potassium channels (KATP-channel). This in turn blocks the export of positively 

charged potassium ions (K+) and causes the loss of negative charge that triggers depolarization of the β-cell 

membrane. Voltage gated calcium channels (VGCC) then open to allow influx of calcium ions (Ca2+). Finally, 

the import of Ca2+ stimulates exocytosis of insulin granules. Amino acids enter the cell through cationic or sodium 

coupled amino acid transporters and enhance insulin secretion via evocation of a depolarization current and 

metabolism in the TCA cycle which may be stimulated by glutamate dehydrogenase (GDH) activity.  
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of the positively charged potassium ions, which in turn causes a loss of negative charge and 

subsequent depolarization of the β-cell plasma membrane (26). 

Membrane depolarization then stimulates the opening of voltage gated calcium channels 

(VGCC). Opening of VGCCs then allows for an influx of calcium ions which in turn trigger 

the fusion of the secretory granule with the plasma membrane in a process similar to 

neurotransmitter release (27).  

The fusion of insulin granules with the β-cell plasma membrane is mediated by the SNARE 

complex. The SNARE complex is composed of soluble N-ethylmaleimide-sensitive factor 

attachment protein (SNAP) receptor proteins (SNAREs) and Sec1/Munc18-like (SM) 

proteins. Important SNARE proteins of the SNARE complex are the plasma membrane bound 

synaptosomal-associated protein of 25 kDa (SNAP-25) and syntaxin-1, as well as Vesicle 

Associated Membrane Protein 2 (VAMP) that is integrated into the insulin granule membrane. 

Insulin granule exocytosis is initiated by binding of calcium to synaptotagmin proteins within 

the vesicle membrane which then interact with SNAREs to facilitate membrane fusion (26). 

Insulin release occurs in two phases. The β-cell contains ca. 10.000 mature insulin granules 

that are either pre-docked at the plasma membrane or stored deeper in the cell. First phase 

insulin secretion peaks between 3-5 minutes after stimulation and rapidly releases a small, pre-

docked subset of insulin granules through the mechanism described above. Insulin secretion 

in the second phase is slower (5 – 40 granules/min) but can be sustained for long periods of 

time until normoglycemia has been achieved (28). Interestingly, while first phase insulin 

secretion can be stimulated by non-nutrient stimuli such as KCl, second phase insulin secretion 

is dependent on nutrients such as glucose (29). 

1.2.2. Insulin secretion stimulated by other nutrients 

Amino acids and lipids modulate insulin secretion in the presence of glucose. Amino acids 

enter the β-cell through cationic amino acid transporters and sodium-coupled neutral amino 

acid transporters (Figure 3). They are capable of evoking mild depolarization currents either 

by providing a positive charge themselves (e.g. arginine and lysine) or by requiring co-

transport of positively charged sodium ions (e.g. alanine and glutamine). Uptake of these 

amino acids triggers depolarization in the presence of glucose, especially when glucose 

stimulation is mild and KATP-conductance is low (4). Additionally, alanine, glutamate, and 

glutamine serve as substrates for the TCA cycle. Their metabolism therefore increases the 
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ATP:ADP ratio to promote plasma membrane depolarization via closure of the KATP-channels 

(30). Glycine is co-secreted with insulin and serves as an autocrine potentiator of insulin 

secretion. It binds to ionotropic glycine receptors and triggers an influx of chloride ions which 

in turn leads to membrane depolarization (4). 

Leucine plays a unique role in the stimulation of insulin secretion. It is the only amino acid 

that is capable of initiating insulin release independent of glucose action. It can serve as 

substrate for metabolism and ATP production, but it also stimulates the production of ATP via 

the TCA cycle by allosteric activation of glutamate dehydrogenase (GDH) (4). 

Non-esterfied fatty acids acutely stimulate insulin secretion from isolated islets. Chronic 

incubation, on the other hand, negatively regulates insulin secretion. The mechanism 

underlying stimulation of insulin secretion by these fatty acids and its biological relevance are 

not fully elucidated. One suggested mechanism involves binding to free fatty acid receptor 1 

on the β-cell surface. This leads to an influx of calcium ions and depolarization of the plasma 

membrane, thereby potentiating glucose-stimulated insulin secretion (4).  

1.2.3. Paracrine regulation of insulin secretion by α- and δ-cells 

α-, β-, and δ-cells form a tight network that regulates hormone secretion via paracrine 

mechanisms (Figure 4). β-cells suppress glucagon secretion from α-cells via paracrine action 

of insulin and other secreted factors (serotonin (5-HT), GABA, zinc ions). Conversely, β-cells 

stimulate SST secretion from δ-cells primarily via urocortin-3, which is co-secreted with 

insulin (30).  

Glucagon derived from α-cells potentiates insulin secretion via binding to glucagon receptor 

(GCGR) and the related glucagon-like peptide receptor (GLP1R). Additionally, human α-cells 

secrete corticotropin-releasing hormone (CRH) and acetylcholine. Mouse α-cells neither 

secrete CRH (although mouse β-cells express the corresponding receptor), nor acetylcholine. 

Acetylcholine in mouse islets originates from parasympathetic neurons which make tight 

contact with endocrine cells (see Chapter 1.1.1). CRH and acetylcholine both potentiate insulin 

secretion directly by acting on β-cells via signaling through corticotropin-releasing hormone 

receptor 1 (CRHR1) and muscarinic acetylcholine receptor M3 (CHRM3), respectively. 

Additionally, acetylcholine inhibits SST secretion by binding to muscarinic acetylcholine 

receptor M3 (CHRM4) on δ-cells, thereby indirectly augmenting insulin secretion (30). 
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Finally, δ-cells provide tonic inhibition of insulin and glucagon release from α- and β-cells. 

They secrete SST in response to glucose in a manner similar to glucose-stimulated insulin 

secretion (see Chapter 1.1.2). SST signals through somatostatin receptors (SSTR). SST 

prevents excess secretion of insulin and may be responsible for low glucagon secretion at high 

glucose levels, thereby providing important regulatory input for both α- and β-cells (30). 

1.2.4. Other modulators of insulin secretion 

Maintenance of glucose homeostasis involves a network of highly specialized cell types not 

only in the pancreas, but also within organs such as the brain, gastrointestinal tract, liver, 

adipose tissue, and muscle. Appropriate insulin secretion therefore requires input from these 

tissues. 

Stimuli such as the smell or sight of food trigger the cephalic phase of insulin secretion that 

initiates insulin secretion before a meal. This mechanism is mediated by the autonomous 

nervous system via cholinergic and non-cholinergic stimulation and prepares the organism for 

food intake (31). Besides initiating insulin secretion, the autonomous nervous system 

modulates glucose-dependent insulin secretion. Pancreatic islets are highly innervated with 

Figure 4. Paracrine interaction between α-, β-, and δ-cells. α-cell and α-cell-derived factors are indicated in 

yellow, β-cell and β-cell-derived factors in blue and δ-cell and δ-cell-derived factors in green. During 

hyperglycemia, β-cells secrete insulin, serotonin (5-HT), GABA and zinc ions, all of which suppress glucagon 

secretion from α-cells. α-cells on the other hand augment glucose-dependent insulin secretion by secretion of 

glucagon, acetylcholine (Ach) and corticotropin-releasing hormone (CRH). δ-cells negatively regulate both α- 

and β-cells via secretion of somatostatin (SST). β-cells stimulate SST secretion from δ-cells in a negative 

feedback loop by co-secretion of urocortin-3 with insulin. Finally, α-cell-derived ACh inhibits SST release from 

δ-cells. Drawn after (30). 



12 

 

sympathetic and parasympathetic neurons (see Chapter 1.1.1), and neuron-derived factors, like 

norepinephrine and neuropeptide Y (NPY), are inhibitors while other neuropeptides such as 

pituitary adenylate cyclase-activating polypeptide and gastrin releasing peptide are stimulators 

of insulin secretion (26). 

Up to 50% of insulin secretion after a meal is attributable to the incretin effect mediated by 

GLP-1 and GIP.  These hormones are secreted in response to a mixed meal by gastrointestinal 

L- and K-cells, respectively. Both stimulate glucose-dependent insulin secretion by binding to 

their respective receptors on β-cells (GLP1R and GIPR). This initiates a signaling cascade that 

augments insulin secretion via increasing the insulin granule density at the plasma membrane, 

stimulating flux of calcium ions from internal stores into the cytoplasm, and modulating KATP-

channel and calcium channel activity. Besides influencing insulin, GLP-1 inhibits, and GIP 

enhances glucagon release from α-cells. The gut also secretes decretins which inhibit insulin 

release during a fast. One of these, neuromedin U, suppresses insulin release directly in β-cells 

by signaling through its receptor (NmUR1) and possibly through stimulation of SST secretion 

(26).  

Adipose tissue and muscle are highly regulated by insulin-dependent glucose uptake through 

GLUT4 and insulin signaling in general. In turn, adipocytes and myocytes secrete factors that 

modulate β-cell function underscoring the importance of inter-organ cross talk. Adipose tissue 

secretes the well-known hormones leptin and adiponectin that have opposite effects on insulin 

secretion. Leptin inhibits insulin secretion by reducing insulin gene expression and activation 

of KATP-channels. Adiponectin signaling, on the other hand, improves β-cell survival, insulin 

gene expression and secretion. Adipocytes and myocytes secrete interleukin 6 (IL-6), which 

influences insulin secretion indirectly via augmentation of glucagon secretion from α-cells and 

GLP-1 secretion from gastrointestinal L-cells (26).  

 

1.3. Congenital hyperinsulinism of infancy 

1.3.1. Definition and symptoms of CHI  

CHI designates a group of genetically different disorders that are characterized by non-ketotic 

hypoglycemia and inappropriately elevated insulin secretion. It is a rare, inherited condition 
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with an incidence of 1:30,000 in northern Europe (32). However, in areas with high level of 

consanguinity, the incidence can rise up to 1:2,500 (33). 

CHI is one of the most common causes of hypoglycemia in newborns and infants and poses a 

risk for the development of permanent brain damage. The condition is caused by mutations in 

genes that are involved in the regulation of insulin secretion and may manifest as a focal lesion 

or affect all β-cells within the pancreas. The symptoms range from mild to severe depending 

on the underlying mutation and form of CHI, making early diagnosis a necessity to prevent 

permanent neurological affection or even life-threatening hypoglycemia (34).  

The hypoglycemia of CHI is most often transient but can also be persistent. Depending on 

which gene is mutated, low blood sugar levels can be elicited by fasting, protein-rich meals or 

exercise, or a combination of some of these. Symptoms are mostly related to the hypoglycemia 

and may range from increase or loss of appetite, pallor, sweating, and heart palpitations to 

seizures, unconsciousness, coma, and even death. Some forms of CHI present with increased 

birthweight (34). Moreover, some CHI forms are characterized by specific physiological 

defects that may aid in their diagnosis. One example is the occurrence of hyperammonemia in 

patients with activating mutations in GLUD1 (35). 

Besides being the hallmark of CHI, hyperinsulinemic hypoglycemia can be part of syndromes 

presenting with several functional and congenital anomalies. These syndromes include 

overgrowth disorders such as Beckwith-Wiedemann (36) and Sotos (37) syndrome, or 

multisystem disorders such as Kabuki (38) and Turner (39) syndrome.  

1.3.2. Histological differentiation of CHI subtypes 

CHI can be classified histologically into three forms: diffuse, focal and atypical CHI. The 

majority of CHI cases (60%) belong to the diffuse form, which affects the function and 

morphology of all β-cells in the pancreas (34). Focal CHI usually occurs sporadically and is 

caused by inheritance of a paternal loss-of-function mutation in ABCC8 or KCNJ11 together 

with somatic loss of the maternal allele (see below). This leads to proliferation of the affected 

β-cells and increased insulin secretion from the developing focal lesion (40). Atypical CHI 

does not fit the histological criteria of diffuse or focal CHI. This form is characterized by 

heterogeneous populations of islets. Some islets appear hyperactive with β-cells that contain 

large nuclei and cytoplasm, distinctive of increased hormone production, while other islets 

appear small and quiescent (34,41). 
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1.3.3. Genetic causes of CHI 

Mutations in around 15 different genes have been reported to cause CHI (42), and the disease 

can be categorized in three groups based on the type of affected gene (Table 1; Figure 5). The 

first group is associated with mutations in channel and transporter proteins. This group, 

classically referred to as channelopathies, includes mutations in the genes that encode the 

subunits of the β-cell KATP channel, ABCC8 and KCNJ11. Other channel and transporter genes 

implicated in CHI that can be classified as channelopathies are CACNA1D, KCNQ1 and 

SLC16A1 (42). 

Table 1. Subgroups and molecular causes of CHI. D = autosomal dominant inheritance, R = autosomal 

recessive inheritance, IM = inactivating mutations, AM = activating mutations. 

 Gene Encoded protein Inheritance Mutation  

Channelopathies ABCC8 Sulfonylurea receptor-1 (SUR1) D/R  IM 

 KCNJ11 Inward rectifier K+ channel (Kir6.2)  D/R  IM 

 CACNA1D Voltage-dependent L-type calcium 

channel subunit alpha-1D (CACNA1D) 

Sporadic AM 

 KCNQ1 potassium voltage-gated channel 

subfamily KQT member 1 (KvLQT1) 

D IM 

 SLC16A1 Monocarboxylate transporter 1 (MCT1)  D AM 

Metabolopathies GCK Glucokinase (GCK)  D AM 

 GLUD1 Glutamate dehydrogenase (GDH)  D AM 

 HADH Short chain L-3-hydroxyaxyl-CoA 

dehydrogenase (SCHAD)  

R IM 

 HK1 Hexokinase (HK1)  D AM 

 PMM2 Phosphomannomutase 2 (PMM2) R IM 

 UCP2 Mitochondrial uncoupling protein 2 

(UCP2)  

D AM 

Transcriptionopathies HNF1A Hepatocyte nuclear factor 1 alpha (HNF-

1A)  

D IM 

 HNF4A Hepatocyte nuclear factor 4 alpha (HNF-

4A)  

D IM 

 FOXA2 Forkhead box A2 (FOXA2) Sporadic IM 

 

The second group are the metabolopathies. The regulation of insulin secretion depends on 

nutrient sensing and tight control of nutrient flux. Therefore, mutations that perturb the normal 

regulatory framework of β-cell metabolism may stimulate insulin secretion under 

inappropriate conditions such as hypoglycemia. The most well-established genes in this group 

are GCK, GLUD1 and HADH. Other members are HK1, PMM2 and UCP2. The HADH gene 

and its CHI-causing mutations are the main focus of this thesis and will be discussed in detail 

in Chapter 1.4. 
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The last and smallest group is characterized by mutations in transcription factors. Mutations 

in these genes affect β-cell metabolism due to altered transcriptional regulation. This group 

presently includes the HNF-1A, HNF-4A and FOXA2 genes (42). As mentioned above, for the 

first two CHI groups, the umbrella terms “channelopathy” and “metabolopathy” are used to 

describe unifying characteristics of their associated gene mutations and their influence on β-

cell biology. Since the common feature of the third CHI form is dysregulation caused by 

altered transcription factor activity, we propose to use the term “transcriptionopathy” to refer 

Figure 5. CHI-associated genes and their location in β-cell insulin secretion. Channelopathies are indicated 

in green, metabolopathies in blue and transcriptionopathies in yellow color. Channelopathies alter the transport 

of ions or metabolites across the β-cell plasma membrane. These are caused by mutations in the β-cell KATP 

channel subunits SUR1 and Kir6.2 L-type voltage-dependent Ca2+ channel (VGCC), the potassium voltage-

gated channel subfamily KQT member 1 subunit of an inwardly rectifying K+ channel (Kir7.1.) and 

inappropriate expression of monocarboxylate transporter 1 (MCT-1). Metabolopathies increase insulin secretion 

by altering β-cell metabolism. These are caused by mutations in glutamate dehydrogenase (GDH), glucokinase 

(GK), inappropriate expression of hexokinase 1 (HK1) and inactivating mutations of short-chain hydroxyacyl-

CoA dehydrogenase (SCHAD), uncoupling protein 2 (UCP-2) and phosphomannomutase 2 (PMM2). 

Transcriptionopathies includes transcription factors that regulate expression of genes important for β-cell 

metabolism. These genes are hepatocyte nuclear factor 1 and 4-alpha (HNF-1A, HNF-4A) and Forkhead box 

A2 (FOXA2). 

 



16 

 

to this subgroup. In the following subchapters, we will discuss the genetic etiology of CHI 

caused by channelopathies, metabolopathies, and transcriptionopathies. 

1.3.4. Channelopathies 

ABCC8/ KCNJ11 

The most common and often most severe form of CHI is caused by mutations of the β-cell 

KATP channel. The channel is a hetero-octamer formed by assembly of four subunits of 

sulfonylurea receptor-1 (SUR1) and four subunits of the inwardly rectifying potassium 

channel (KIR6.2) which are encoded by the genes ABCC8 and KCNJ11, respectively. The 

KATP channel plays a central role in the insulin secretion pathway (Figure 3) where it connects 

the energy state of the β-cell to insulin release by depolarization of the cell membrane, which 

subsequently activates voltage-gated calcium channels. Mutations in ABCC8 and KCNJ11 that 

perturb functional cell membrane expression of the KATP channel therefore lead to increased 

or continuous depolarization of the β-cell plasma membrane with subsequent stimulation of 

insulin release (42).  

Several types of these mutations in ABCC8 and KCNJ11 have been described:  

a) Recessive inactivating mutations that increase the turnover rate of SUR1 and KIR6.2, 

leading to complete absence of the KATP channel on the β-cell membrane in homozygous 

or compound heterozygous carriers (43). This is the most common subtype. 

b) Recessive mutations that disrupt trafficking of SUR1 and Kir6.2 (44).  

c) Recessive mutations that reduce KATP channel sensitivity to ADP, thereby allowing for 

ATP-mediated closure of the channel at lower ATP:ADP ratio (45). 

d) Dominant inactivating mutations leading to reduced function of the KATP channel. These 

mutations usually cause the mildest form of KATP channel-CHI and sometimes transition 

to a diabetic phenotype later in life (46). This is a very rare subtype. 

e) Focal CHI (described below) 

ABCC8 and less often KCNJ11 mutations also underlie the development of focal CHI. Focal 

CHI develops in response to multiple hits affecting the expression of KATP channel as well as 

multiple genes involved in cell proliferation. The first hit is paternal inheritance of a mutation 

in ABCC8 or KCNJ11 on chromosome 11. The second hit is somatic loss of the maternal 

region encompassing the KATP channel gene and multiple imprinted genes involved in cell 



17 

 

proliferation (CDKN1C, IGF-II and H19). The maternally expressed genes CDKN1C and H19 

are inhibitors of cell proliferation, while the paternally expressed IGF-II promotes cell growth. 

Loss of the maternal segment thus causes imbalance in the regulation of cell proliferation 

leading to focal hyperplasia. Lastly, duplication of the paternal segment of chromosome 11 

leads to isodisomy and homozygosity of the mutant KATP gene leading to dysregulated insulin 

secretion from the developing lesion (47).  

CACNA1D 

CACNA1D encodes the subunit alpha-1D of an L-type voltage-dependent Ca2+ channel 

(VGCC). Activating mutations in the gene are rare but have been described to force the 

channel into an open configuration at lower than normal membrane potential, leading to 

increased influx of Ca2+ ions and subsequent insulin secretion. Additionally, patients with 

activating mutations suffer from neuromuscular abnormalities, primary hyperaldosteronism, 

heart defects, and hypotonia (42,48). 

KCNQ1 

KCNQ1 encodes potassium voltage-gated channel subfamily KQT member 1 (Kir7.1), the 

pore-forming subunit of a potassium channel that mediates voltage-gated repolarization of the 

plasma membrane. KCNQ1 is expressed in cardiomyocytes, pancreatic β-cells, cells of the 

inner ear and in the gastrointestinal track. Loss-of-function mutations in KCNQ1 are associated 

with long QT syndrome, a group of conditions characterized by heart arrythmias caused by 

defective myocellular repolarization, syncope, deafness and sudden death (49). KCNQ1 is also 

expressed on β-cells and mutations have been linked to postprandial hyperinsulinemic 

hypoglycemia most likely due to prolonged depolarization of the β-cell membrane (50).  

SLC16A1 

SLC16A1 encodes the monocarboxylate transporter 1 (MCT-1), which transports pyruvate and 

lactate into cells. MCT-1 expression, and therefore pyruvate and lactate levels, are low in β-

cells. Normally, this prevents excessive ATP production and subsequent stimulation of insulin 

secretion during and after exercise, i.e. when blood levels of lactate are high. Dominant 

activating mutations in the promoter of SLC16A1 disrupt this regulation by causing 

overexpression of the transporter protein in the β-cells. This causes an excessive influx of the 

metabolites, especially after strenuous exercise, leading to inappropriately high insulin 
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secretion stimulated by pyruvate metabolism (42,51). This form of CHI has also been 

classified as exercise-induced hyperinsulinism. 

1.3.5. Metabolopathies 

GLUD1 

Dominant, activating mutations in GLUD1 cause the hyperinsulinism/hyperammonemia 

syndrome, the second most common form CHI (35). GLUD1 encodes the mitochondrial 

enzyme glutamate dehydrogenase (GDH) which is expressed at high levels in the pancreas, 

liver, kidney, and brain. The enzyme catalyzes the reversible conversion of glutamate to α-

ketoglutarate and ammonia using NAD+ or NADP+ as co-enzymes. GDH activity is modulated 

by allosteric inhibitors such as GTP and ATP and activators such as leucine and ADP (52). 

CHI-causing mutations in GLUD1 most commonly affect the sensitivity of GDH to its 

inhibitor GTP and lead to increased activity of the enzyme (53,54). In the β-cell, this is thought 

to lead to increased insulin secretion either through increased production of α-ketoglutarate 

which is then metabolized in the citric acid cycle to produce ATP or through increased 

production of glutamate which amplifies insulin secretion after uptake into insulin granules 

(55,56).  

The phenotype of GDH-CHI is usually milder compared with the disease caused by KATP 

mutations. Characteristic features are fasting-induced hypoglycemia and protein sensitivity 

due to the stimulatory effect of leucine on GDH activity. Besides the hyperinsulinism 

phenotype, a hallmark of GDH-CHI is hyperammonemia (usually asymptomatic) due to 

increased GDH activity in the kidney (57). This phenotype is unique amongst CHI conditions 

and may aid in the diagnosis of GDH-CHI. Some forms of GDH-CHI are also associated with 

epilepsy and developmental delay (35). 

GCK 

Glucokinase (GK), also known as hexokinase 4, is expressed by the GCK gene. As stated in 

Chapter 2.1, it functions as the β-cell glucose sensor by linking plasma glucose levels to ATP 

production to insulin release (23). Due to GK playing such a central role in the insulin secretion 

pathway, β-cells are highly sensitive to changes in its activity. Mutations that reduce GK 

activity cause chronic mildly elevated glucose (GCK-MODY or MODY2) (58). On the other 

hand, mutations that increase the affinity of the enzyme to glucose, mostly by altering its 
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allosteric activator domain, cause CHI. Here, glucokinase is active at lower than normal 

glucose concentrations, causing inappropriate insulin secretion (59).  

HK1 

Similar to GK, hexokinase 1 (HK1) belongs to the hexokinase superfamily and catalyzes the 

phosphorylation of glucose to G6P. Unlike GK, the affinity for glucose remains high in low 

glucose conditions for HK1. Therefore, expression of HK1 when glucose is scarce is 

disadvantageous in β-cells since it would allow for the stimulation of insulin secretion under 

unfavorable conditions. The β-cell thus has evolved to suppress expression of HK1 when 

glucose levels are low (60). Dominant mutations in the non-coding region of the HK1 gene 

may override the glucose-associated gene silencing at low glucose levels, allowing for 

inappropriate HK1 expression and stimulation of the insulin secretion pathway (61). 

PMM2 

Phosphomannomutase 2 is encoded by the PMM2 gene. It is involved in glycoprotein 

synthesis, thereby enhancing stability of its target proteins. Homozygous, recessive loss-of-

function mutations in PMM2 cause congenital disorder of glycosylation (CDG), a complex 

disorder of varying severity and with a wide spectrum of symptoms related to glycosylation 

defects (62). Some forms of this condition (CDG type 1b and less often CDG type 1a and 1d), 

have been linked to diazoxide-responsive hyperinsulinemic hypoglycemia. The exact 

mechanism behind CHI in patients with CDG is still unclear, and hypoglycemia in CGD type 

1a may also occur in the absence of hyperinsulinism (63). 

UCP2 

Inactivating mutations in UCP2 are associated with CHI of varying severity. UCP2 encodes 

mitochondrial uncoupling protein 2 (UCP-2), a member of the inner mitochondrial anion-

carrier family. The protein plays a role in uncoupling of oxidative phosphorylation from ATP 

production. Loss of UCP2 expression in β-cells leads to an increase in ATP production from 

glucose metabolism, followed by closure of KATP channels and subsequent insulin release (64). 
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1.3.6. “Transcriptionopathies” 

HNF1A and HNF4A 

Hepatocyte nuclear factor 1-alpha (HNF-1A) and hepatocyte nuclear factor 4-alpha (HNF-4A) 

are transcription factors of the nuclear receptor superfamily that control gene expression in 

several organs, including the liver and pancreatic islet (65). Amongst the regulated targets are 

genes involved in glucose-stimulated insulin secretion, such as KCNJ11 (66,67). 

Heterozygous inactivating mutations in HNF1A or HNF4A in humans can sometimes result in 

macrosomia and transient, mild and diazoxide-responsive CHI in newborns, although this 

phenotype always transforms into MODY3 and MODY1, respectively, later in life (66,68).   

FOXA2 

Forkhead box A2 (FOXA2) is a transcription factor involved in the development of endoderm-

derived tissues. In the pancreas, FOXA2 expression is necessary for normal organ 

development, due to its role in controlling PDX1 and other transcription factors that regulate 

differentiation of α- and β-cells (69,70). In the mouse, inactivating mutations in the Foxa2 

gene result in low numbers of α-cells and disproportionally large number of β-cells. 

Furthermore, FOXA2 also regulates expression of other CHI-associated genes, such as 

ABCC8, KCNJ11 and HADH (71) which are down-regulated in patients with mutant FOXA2 

(72). The clinical phenotype of patients with FOXA2 mutations has been described to include 

hyperinsulinemic hypoglycemia, congenital hypopituitarism, as well as craniofacial 

dysmorphism and developmental defects in the brain (pituitary, corpus callosum), liver, lung, 

gastrointestinal tract (72,73).  

1.3.7. Diagnosis and treatment of CHI 

Hypoglycemia with detectable plasma insulin and C-peptide is the hallmark of CHI. The exact 

definition of which level of plasma glucose is hypoglycemia has been widely debated, but the 

most common plasma glucose levels to define hypoglycemia are ≤ 50 mg/dL (2.8 mmol/L) or  

≤ 45 mg/dL (2.5 mmol/L). It is not unusual for insulin and C-peptide to be low or undetectable 

in neonates and infants, and the severity of hypoglycemia does not correlate with measured 

blood insulin levels (74,75). Moreover, transient hypoglycemia in neonates is very common, 

and the severity and persistence of hypoglycemia will alert the caring physician to suspect 

CHI. Other markers may aid in the diagnosis of CHI. These include reduced plasma levels of 
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fatty acids and ketone bodies during hypoglycemia, and an increased glucose infusion 

requirement to maintain normoglycemia (76).  

Hypoglycemia in neonates with CHI is often severe and puts the child at risk for irreversible 

brain damage. The first measure, therefore, is to stabilize blood glucose levels by 

administration of glucagon and glucose. Besides improving blood glucose levels, both 

measures aid in the diagnosis of CHI if they have the desired positive effect on the patient’s 

condition. An elevated glucose infusion requirement above around 10 mg/kg/min to maintain 

normoglycemia is indicative of hyperinsulinism (77). Glucagon raises blood glucose levels by 

stimulating hepatic glucose output. Conditions such as glycogen storage disease (GSD) affect 

glycogen metabolism and impair hepatic glucose output, leading to hypoglycemia and 

rendering glucagon ineffective (78). A spike in blood glucose levels after glucagon 

administration thus rules out GSD. It supports the diagnosis CHI and is effective for treating 

the hypoglycemia (77).  

Genetic screening can identify the mutant gene in the patient and family members who might 

be carriers. This facilitates the development of a treatment plan and helps reach a prognosis 

for the patient and possible future siblings. Some specific forms of CHI may also be identified 

due to phenotypical characteristics such as protein sensitivity and hyperammonemia in GDH-

CHI, protein sensitivity and increased levels of 3-hydroxybutyryl-carnitine in blood and 3-

hydroxyglutaric acid in urine in SCHAD-CHI, and exercise sensitivity in MCT1-CHI (42). 

Macrosomia is a common feature in CHI caused by mutations in genes such as HNF1A and 

HNF4A (79), as well as ABCC8 (80). This phenotype most likely reflects the growth-

promoting effects of increased insulin levels in utero and shortly after birth (81). However, 

macrosomia does not occur in all cases of CHI caused by mutations in these genes, and other 

forms of CHI, such as SCHAD-CHI (82), are not necessarily associated with increased 

birthweight. Thus, although macrosomia may aid in the diagnostic work-up of CHI, normal or 

low birthweight is not an exclusion criterion for this diagnosis.  

Once the diagnosis of CHI is established, it needs to be determined whether the patient is 

presenting with focal or diffuse CHI. Focal CHI can be detected by 18F-fluoro-L-

dihydroxyphenylalanine (F-DOPA) PET scanning. This is a highly sensitive and accurate 

method for visualization of focal lesions due to enhanced uptake of F-DOPA by overactive 

compared to healthy β-cells (34). Patients with focal CHI are often unresponsive to drug-

mediated suppression of insulin secretion. However, in these patients surgical resection of the 
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focal lesion is a viable option, leading to a cure for the condition in most patients (77). The 

most effective way to determine whether F-DOPA PET scanning should be investigated or 

not, is to make a genetic diagnosis. If homozygous or compound heterozygous mutations in 

ABCC8 or KCNJ11 are present, a diffuse CHI is present and a F-DOPA PET is not indicated. 

If a paternal heterozygous mutation in ABCC8 or KCNJ11 is present, a F-DOPA PET is 

indicated if the condition is severe (i.e. injection medical treatment is necessary to maintain 

stable glucose levels). If a maternal heterozygous mutation in ABCC8 or KCNJ11 is present, 

a focal lesion is less likely although many pediatricians will still order a F-DOPA PET to rule 

out a focal subtype. 

The long-term treatment of CHI depends on the underlying mutation and severity of the 

disease. It usually involves medical intervention aimed to lower insulin secretion. The first 

approach is administration of the oral drug diazoxide. Diazoxide is a KATP channel activator 

(“channel opener”) that binds to the SUR1 subunits of the β-cell KATP channel. Unfortunately, 

patients with mutations that affect the function or expression of SUR1 or Kir6.2 tend to be 

unresponsive to the drug. The next-in-line option for treatment of diazoxide unresponsive CHI 

are somatostatin analogues such as octreotide. These compounds inhibit insulin secretion by 

signaling through somatostatin receptors. Octreotide must be administered by injection, three 

times a day or via an insulin pump, due to the short half-life of the drug. Long-acting analogues 

are also available, which can be administered by an injection every 4-6 weeks. Other 

treatments that may be beneficial in the management of CHI are the immunosuppressant 

sirolimus and dietary changes. Continuous feeding with long-branched sugars is a crucial part 

of the treatment in addition to or without treatment with drugs. In addition, uncooked corn 

starch or ketogenic diet are sometimes used (34,83). 

Surgery may be a last resort treatment for severe, drug-unresponsive diffuse CHI. Here, more 

than 95% of the pancreas will be removed, dramatically reducing the number of β-cells. While 

this procedure may improve glycemic control in some patients, many patients still experience 

hypoglycemia, while nearly all develop diabetes during or after puberty. 

1.3.8. Mouse models of CHI 

CHI-causing mutations alter the function or expression of genes involved in the regulation of 

insulin secretion. Consequently, studying the mechanisms behind the defects caused by these 

mutations offers unique insights into β-cell biology in health and disease. Mouse models are 
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an invaluable tool in this process. Thus, several transgenic and knockout (KO) mice have been 

developed for different CHI subgroups (Table 2). Some of these models such as 

overexpression of Slc16a1 and whole-body KO of Hadh capture aspects of the human 

phenotype quite well. Like humans, mice with Slc16a1 overexpression develop exercise-

induced CHI and both humans and mice with disrupted HADH gene have elevated levels of 

plasma 3-hydroxybutyrylcarnitine and urinary 3-hydroxyglutarate (84,85).  

Partial loss of one of the KATP channel genes, Abcc8 or Kcnj11, accurately mimics the human 

phenotype of KATP channel mutations. In mice, this has been achieved by heterozygous KO of 

either gene, or β-cell-specific expression of dominant negative Kir6.2 (Kir6.2[AAA] or G132S 

point mutation). The full loss of either Abcc8 or Kcnj11 on the other hand does not cause a 

clear hyperinsulinism phenotype. Instead Abcc8 KO and Kcnj11 KO mice are characterized 

by impaired insulin secretion (86,87,96,97,88–95). 

It may be possible that some KATP-channel function is necessary for a hyperinsulinism 

phenotype. In many humans with ABCC8 or KCNJ11 mutations, residual KATP channel 

expression is observed (45,98). Heterozygous KO of Abcc8 or Kcnj11, and expression of 

Kir6.2[AAA] result in a reduction in KATP channel expression of ~60% and ~70%, 

respectively. Therefore, these mice might be a more accurate model for the human condition 

than the homozygous Abcc8 or Kcnj11 KO mice.  

Moreover, some patients with KATP-channel mutations eventually develop diabetes, a 

phenotype seen in mice with the G132S point mutation in Kcnj11 (71,72,80). These mice are 

hyperinsulinemic in youth but become diabetic in adulthood and may thus serve as a model 

for the study of the progression from KATP-channel-CHI to diabetes.  

For some forms of CHI, mouse models exist, but no hyperinsulinemic phenotype has been 

described. This includes KO and transgenic models of Kcnq1 and Hnf1a KO mice. Kcnq1 KO 

animals mirror the human phenotype of long QT syndrome. No hyperinsulinism, but a 

decrease in plasma insulin and glucose levels has been reported. However, these mice had 

been published before the association of Kcnq1 mutations with CHI was discovered (2001 and 

2009 vs. 2014) (50,100,101). Therefore, a hyperinsulinism phenotype may have been missed 

since no other hyperinsulinism markers (e.g. plasma fatty acid and ketone body levels) were 

investigated. 
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Mice harboring human long QT syndrome-causing point mutations in Kcnq1 have also been 

described (116,117). Again, no hyperinsulinism was reported, but the mutations (T312I, 

A341V, A341E, and V207M) also differed from the mutations found in patients with long QT 

syndrome and hyperinsulinism (H363N, R366W, R401P, and Q530X) (50). 

Two homozygous Hnf1a KO mice have been published. Both models have a complex 

phenotype including impaired growth, renal and liver abnormalities, and type 2 diabetes 

(110,111). One of the models, developed by Pontoglio et al. (110), was more severely impacted 

and showed increased mortality after weaning. The other model, developed by Lee et al. (111–

113), did not show increased mortality. Hyperinsulinism was not reported for either model. 

Pontoglio et al. did not report insulin levels for their mouse, while Lee et al. stated that their 

mice were diabetic starting at 2 weeks of age and at 5 weeks plasma insulin levels were reduced 

compared to heterozygote KO mice. Overall, these mice are unlikely to reproduce the 

phenotype of Hnf1a-CHI. Instead these mice are diabetic and harbor some defects associated 

with Hnf4a-CHI, such as renal Fanconi syndrome. These findings may be explained by species 

differences. Alternatively, patients with HNF1A mutations may have some residual HNF1A 

expression and the full KO, like the full KO of KATP genes, results in a different phenotype 

characterized primarily by diabetes instead of CHI.  

Lastly, many studies aimed to target expression of CHI-associated genes specifically in the 

pancreas or β-cells. For this endeavor Pdx-cre or Rip-cre transgenic mice have been used, 

respectively (118,119). However, we now know that these models introduced changes to the 

β-cell that could influence results significantly. These transgenic mice express Cre-

recombinase under the control of the Pdx or rat insulin promoter (Rip). The constructs used to 

generate these animals included the human growth hormone (hGH) minigene to enhance the 

expression of Cre-recombinase. It was assumed that the hGH would not be expressed. 

However, in 2014 Brouwers et al. not only reported evidence for hGH expression in β-cells of 

these transgenic mice, but also that the expression of hGH altered β-cell function (120). This 

included pregnancy-like changes to β-cell mass and impaired GSIS. Interestingly, Rip-cre was 

used to generate β-cell specific Hnf4a KO mice by two separate groups (66,67). These mice 

were meant to serve as a model for MODY1, a condition that often presents with CHI in youth 

and transitions to a diabetic phenotype later in life (68). Even though both groups succeeded in 

generating the KO, the phenotypes of their mice were strikingly different. Gupta et al. reported 

a CHI phenotype for their mouse line (66), while the mouse generated by Miura et al. showed 
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impaired GSIS (67). This disparity may be explained by different genetic background of the 

two mouse lines (CD1 vs. mixed 129 Svj and C57BL/6), which could affect the phenotype 

directly or via different susceptibility for hGH expression. The latter may explain the reduced 

GSIS observed by Miura et al. 

Fortunately, newer models for selective targeting of β-cells exist that do not include the hGH 

transgene. One such model is the Ins1-cre mouse model that uses the endogenous Ins1 promoter 

for expression of Cre-recombinase (121). While this model reduces expression of the Ins1 gene, 

insulin protein levels, insulin secretion and overall glucose homeostasis were not affected 

(121). This model therefore offers a more reliable approach for the study of β-cell function 

when beta-cell-specific KO of the gene in question is needed. 

Overall, more than twenty models for eleven types of CHI have been developed and described. 

While some have been more successful in replicating the human condition, others have resulted 

in unexpected challenges. Ultimately, these models have substantially increased our 

understanding of the regulation of insulin secretion and the development and progression of 

CHI.  

1.4. Short-Chain 3-Hydroxyacyl-CoA Dehydrogenase (SCHAD) 

1.4.1. SCHAD gene and protein 

Short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) is encoded by the hydroxyacyl-

CoA dehydrogenase (HADH) gene located on chromosome 4q22-26. This gene contains nine 

exons and several predicted transcripts that are produced by alternative splicing, most of which 

have not been characterized. The best characterized transcript (NM_005327.7) does not include 

exon 7 and thus expresses 8 of the 9 exons (Figure 6A). The transcript has a length of 1803 

base pairs. Translation produces a protein of 314 amino acids (aa) with a predicted molecular 

mass of ~34 kDa (Figure 6B).  

The 314 aa monomer comprises three domains (Figure 6B,C). The N-terminus contains a 

mitochondrial import signal (MIS) of 12 amino acids length that is cleaved upon entry into the 

mitochondrion resulting in the mature protein product of ~34 kDa molecular mass. The protein 

contains an N-terminal NAD+-binding domain spanning amino acids 12 – 201 connected via a 
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short and flexible linker region to a highly conserved C-terminal dimerization domain formed 

by residues 207 – 302 (122).  

 

 

 

 

 

 

 

 

 

SCHAD forms homodimers through hydrophobic interactions of α-helices within the C-

terminal dimerization domains of the interacting monomers (Figure 6D). Formation of the 

homodimer is crucial for protein stability (123). The enzyme catalyzes the penultimate step of 

the fatty acid β-oxidation pathway which encompasses the conversion of 3-hydroxyacyl-CoA 

to 3-ketoacyl-CoA using NAD+ as cofactor. The N-terminal NAD+-binding domain is 

responsible for these catalytic functions. It is structurally composed of a β-α-β fold and contains 

an active site with a highly conserved His-Glu pair which functions as the catalytic domain and 

is responsible for cofactor (NAD+) and substrate binding. Upon binding of NAD+, affinity of 

SCHAD to its substrate increases. Binding of substrate to the active site then leads to 

deprotonation of the substrate by the histidine residue which acquires a positive charge that is 

subsequently neutralized by the adjacent glutamate residue (124). 

Figure 6. SCHAD gene and protein structure. A Schematic representation of the coding exons of the HADH 

gene. Exons expressed in the transcript NM_005327.7 are indicated in yellow. Exon 7, which is not included in 

this transcript is indicated in purple. B Schematic representation of the SCHAD protein. The SCHAD monomer 

has a total length of 314 aa. The N-terminal contains a mitochondrial import signal (MIS, green), followed by an 

NAD+- binding domain (red) and a C-terminal dimerization domain (blue). C 3-dimensional model of SCHAD 

monomer. The MIS is indicated in green, NAD+-binding domain in red and dimerization domain in blue color. 

The short linker region connecting NAD+-binding with dimerization domain is indicated in grey. D 3D model of 

SCHAD homodimer. Individual monomers are indicated in black and grey color. 3-dimensional models were 

adapted from the SCHAD molecular model 3RQS obtained from the Protein Data Bank (PDB) using PyMol 

software. (http://www.rcsb.org/structure/3RQS). 
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1.4.2. The role of SCHAD in fatty acid β-oxidation 

Fatty acid β-oxidation is the part of fatty acid oxidation (FAO) that takes place in the 

mitochondria. It is the major catabolic pathway of fatty acids and the main source of energy 

for some organs (kidney, heart, skeletal muscle) as well as an important source of energy in 

low glucose conditions throughout the body (125).  

Long-chain fatty acids are imported into the mitochondria through the carnitine shuttle in the 

form of fatty acid acyl-CoA. Short- and medium-chain fatty acids enter the mitochondria 

through diffusion after which they are converted to fatty acid acyl-CoA (126). β-oxidation 

involves four enzymatic reactions that shorten fatty acid acyl-CoA by two carbon atoms to 

form acetyl-CoA which feeds into the TCA cycle for energy production or into ketogenesis for 

ketone body formation (Figure 7).  

 

 

 

 

 

 

 

 

 

 

Figure 7. The fatty acid β-oxidation pathway. Enzymes are indicated in red and co-factors in purple. Fatty acid 

β-oxidation is a four-step process carried out by different enzymes specialized for different lengths of acyl-CoA 

degradation intermediates. SCHAD, a 3-hydroxyacyl-CoA dehydrogenase, carries out the penultimate step, i.e. 

the conversion of short- and medium-chain 3-hydroxyacyl-CoA to 3-ketoacyl-CoA. This reaction also requires 

the reduction of the co-factor NAD+ to NADH. Drawn after (124). 
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In the first step, fatty acid acyl-CoA undergoes dehydrogenation to trans-2-enoyl-CoA by an 

acyl-CoA dehydrogenase. The acyl-CoA dehydrogenase in this reaction depends on the length 

of the fatty acid acyl-CoA molecule. Thus, the reaction is carried out by very-long chain 

(VLCAD), medium-chain (MCAD), or short-chain (SCAD) acyl-CoA dehydrogenase. Mice 

additionally rely on long-chain acyl CoA dehydrogenase (LCAD). The dehydrogenation of 

fatty acid acyl-CoA requires the reduction of FAD, which yields FADH2 and is subsequently 

used as substrate in the respiratory chain (125). 

The three last steps of β-oxidation are either carried out by mitochondrial trifunctional protein 

(MCP) located on the inner mitochondrial membrane or by separate enzymes within the 

mitochondrial matrix. MCP has affinity for long chain intermediates of fatty acid acyl-CoA 

while the other enzymes specialize on conversion of short- and medium- chain intermediates. 

Since SCHAD has affinity for short- and medium-chain intermediates, we will focus on 

degradation of these intermediates in the next paragraph.  

Following dehydrogenation of fatty acid acyl-CoA, trans-2-enoyl-CoA is hydrated to 3-

hydroxyacyl-CoA by the short-chain enoyl-COA hydratase, crotonase. 3-hydroxyacyl-CoA is 

subsequently dehydrogenated to 3-ketoacyl-CoA by SCHAD. This reaction requires the co-

factor NAD+ which is reduced to NADH and subsequently feeds into the respiratory chain. The 

last step in fatty acid β-oxidation is carried out by medium-chain β-ketoacyl-CoA thiolase, 

which cleaves 3-ketoacyl-CoA into acetyl-CoA and an acyl-CoA that has been shortened by 

two carbon atoms (N-2 acyl-COA). The shortened fatty acid acyl-CoA then re-enters in step 1 

of the β-oxidation pathway until the final cycle, where there are two acetyl-CoA produced 

(125). 

1.4.3. The discovery and phenotype of SCHAD-CHI 

SCHAD was first associated with CHI by Clayton et al in 2001 (127). The authors described a 

female patient from a non-consanguineous family who presented with diazoxide-responsive 

hypoketotic hypoglycemia. Surprisingly, the patient also had elevated plasma hydroxybutyryl-

carnitine levels that indicated a possible defect in fatty acid metabolism. Indeed, when the 

authors investigated the activity of FAO enzymes in fibroblasts of the patient and healthy 

controls, they found that activity of SCHAD was reduced to 35 – 40% of that of the control 

samples. This residual activity could be due to peroxisomal enzymes instead of reflecting 

residual SCHAD activity since further experiments showed a near lack of SCHAD protein 
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expression in fibroblasts of the patient. In line with this, enzyme activity was even further 

reduced when mitochondrial extracts were utilized for the assay. Finally, the authors identified 

a homozygous point mutation that changed a cytosine to thymine at position 773 in the HADH 

gene. This mutation results in the substitution of proline at position 258 with a leucine residue 

in the SCHAD protein transcript leading to SCHAD deficiency (127). 

The association of SCHAD deficiency with CHI was still unclear at this point but was 

confirmed by Molven et al. in 2004 (128). The authors described a consanguineous family 

(Figure 8) where the parents were double first cousins and four children had severe neonatal 

hypoglycemia as well as elevated plasma 3-hydroxybutyryl-carnitine and urinary 3-

hydroxyglutaric acid levels. The two eldest affected children died at four months of age due to 

hypoglycemia. The two younger affected children survived due to treatment involving frequent 

feeding, glucose administration, glucagon and eventually diazoxide therapy. The older of the 

surviving children developed mental retardation most likely due to hypoglycemic episodes in 

infancy.  

 

 

 

 

 

 

Since no mutations in known CHI-associated genes had been identified in this family, Molven 

et al. carried out a whole-genome scan with microsatellite markers searching for homozygous 

chromosomal segments. They identified a candidate region on 4q and revealed a deletion of 

six base pairs at the beginning of exon 5 of the HADH gene. The deletion disrupts a splice site 

and leads to omission of exon 5 causing the loss of approximately 30 aa in the final SCHAD 

Figure 8. Pedigree of the consanguineous family with severe SCHAD-CHI described by Molven et al. Filled 

and open symbols denote subjects with CHI and healthy family members, respectively. Subjects IV 1 and 2 are 

deceased. Subject IV 5 was a miscarriage. Four generations of the family are shown to indicate the status of the 

parents as double first cousins. Figure from (126).  
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protein product. SCHAD activity was subsequently shown to be reduced in fibroblasts from 

the two affected children compared to controls (128). 

These two reports linking SCHAD deficiency to CHI fully established HADH as a member of 

the metabolopathy subgroup of CHI genes. Today, at least 45 cases of SCHAD-CHI have been 

published (Table 3). 

Table 3. Published patients with CHI-causing mutations in HADH. Mutations that affect splice sites and 

introns are reported at DNA level. Mutations that affect exons are reported at the level of protein sequence. NA = 

no information available. Table extended from (82). All mutations are homozygous except the compound 

heterozygous cases no. 5, 20, 26, and 48. Case no. 5 presented with a Reye-like syndrome instead of CHI. 

Patient Gender Consanguinity  Ethnicity Onset Mutation Reference 

1 F No  Indian 4 moths P258L (127)  

2 M Yes  Pakistani 3 days IVS4-3DELCAGGTC (128) 

3 F Yes  Pakistani 1.5 h IVS4-3DELCAGGTC (128) 

4 M Yes  Pakistani 4 months IVS6-2A>G (129) 

5 F No  Caucasian 10 months D57G, Y226H (130) 

6 F Yes  Bangladeshi 4 months p.M188V (131) 

7 M Yes  Caucasian 2 months R236X (132) 

8 M Yes  Caucasian 8 months S196FfsX3 (133) 

9 F Yes  Caucasian 6 months S196FfsX3 (133) 

10 M NA  Caucasian 14 months S196FfsX3 (133) 

11 M No  Caucasian 7 months IVS2+1G>A (133) 

12 M Yes  Turkish 16 weeks K136E (134) 

13 M Yes  Turkish 16 weeks Q163X (134) 

14 M Yes  Turkish 2 weeks R236X (134) 

15 M Yes  Turkish 5 days R236X (134) 

16 F No  Turkish 1 week R236X (134) 

17 M Yes  Pakistani 2 days R236X (134) 

18 F No  Iranian 12 weeks R236X (134) 

19 F No  Iranian 1 day R236X (134) 

20 M No  Indian 26 weeks K95SfsX3, IVS6 + 

39C>G 

(134) 

21 M No  Indian 2 days Ex1deletion (134) 

22 M No  Indian 24 weeks Ex1deletion (134) 
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23 NA NA  NA NA G34R (135) 

24 NA NA  NA NA K95fs (135) 

25 NA NA  NA NA IVS8+39C>G (135) 

26 F NA  Chinese NA R10P, V30E (136) 

27 F No  Indian 12 weeks I184F (137) 

28 F No  Indian 16 weeks I184F (137) 

29 M Yes  Saudi 16 weeks IVS2-1G>A (138) 

30 F Yes  Saudi 12 weeks IVS2-1G>A (138) 

31 M Yes  Saudi 16 weeks IVS2-1G>A (138) 

32 F No  Turkish 4 weeks IVS2-1G>A (139) 

33 M Yes  Iranian 12 weeks IVS2-1G>A (140) 

34 F Yes  Iranian 1 year IVS2-1G>A (140) 

35 M Yes  Iranian 1 day IVS2-1G>A (140) 

36 F Yes  Iranian 4 days IVS2-1G>A (140) 

37 M Yes  Iranian 12 weeks IVS2-1G>A (140) 

38 M Yes  Iranian 6 weeks IVS2-1G>A (140) 

39 M Yes  Iranian 30 weeks IVS2-1G>A (140) 

40 F Yes  Iranian 1 day IVS2-1G>A (140) 

41 M Yes  Iranian 12 weeks IVS2-1G>A (140) 

42 M Yes  Iranian 12 weeks IVS2-1G>A (140) 

43 M Yes  Iranian 12 weeks IVS2-1G>A (140) 

44 M No  Caucasian NA G303S (141) 

45 M No  Indian 34 weeks T189fs (142) 

46 M Yes  Turkish Since birth I143N (143) 

47 F Yes  Turkish Since birth R236X (143) 

48 NA NA  Chinese 3 days c.419+1G>A + c.547-

1G>C  

(144) 

 

SCHAD-CHI requires deficiency of both alleles and follows autosomal recessive inheritance. 

The hallmarks of the condition have been established to include mild to severe diazoxide-

responsive hyperinsulinemic hypoglycemia, protein sensitivity (discussed in more detail in 

Chapter 1.4.4) and in most cases asymptomatic elevation of plasma 3-hydroxy-butyryl-

carnitine and urinary 3-hydroxyglutaric acid. The birth weights are generally normal, and there 
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is an absence of FAO-related features (e.g. liver defects or enlargement, cardiomyopathy, 

skeletal muscle defects) (82). 

1.4.4. Insights into the mechanism behind SCHAD-CHI 

As mentioned, SCHAD-deficient patients lack the classical phenotype of a FAO disorder, and 

neither 3-hydroxybutyryl-carnitine nor 3-hydroxyglutaric acid is capable of stimulating insulin 

secretion (145). Therefore, it was hypothesized that SCHAD may play a role in the regulation 

of insulin secretion that is separate from its role in FAO and that this function could be specific 

to the β-cell. Indeed, SCHAD expression in the pancreas is highest in β-cells (Figure 9), and 

its level in β-cells is disproportionally high compared to that of other FAO enzymes (146). 

Knockdown of SCHAD in insulinoma cells and isolated islets results in increased insulin 

secretion (145,147). Moreover, SCHAD mRNA expression in β-cells is regulated by FOXA2 

(71). As stated in Chapter 1.3.6, FOXA2 is another CHI-associated gene belonging to the 

transcriptionopathies. It is an important regulator of pancreas development and also regulates 

expression of the KATP channel genes (69,70,72).  

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Immunohistochemistry of SCHAD and insulin expression in a human islet of Langerhans. 

Antibodies against SCHAD (green) and insulin (red) were used. Nuclei were stained with DAPI (blue). Source: 

Anders Molven and Jiang Hu, Joslin Diabetes Center. 
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Pull-down experiments using recombinant SCHAD protein as bait and human mitochondrial 

extracts derived from liver tissue as prey resulted in the discovery of a protein interaction 

between SCHAD and GDH (148). Activating mutations in the GDH-encoding gene, GLUD1, 

cause hyperinsulinism/hyperammonemia syndrome (see Chapter 1.3.5). Therefore, it was 

proposed that SCHAD may work as an inhibitor of GDH. 

This was later confirmed by Li et al, who characterized the full body SCHAD knockout mouse 

(SCHADKO) (85). The animal model mirrors the human SCHAD-deficient phenotype of 

amino acid-sensitive, hyperinsulinemic hypoglycemia as well as the characteristic elevation in 

plasma and urinary fatty acid metabolites. Increased sensitivity to amino acids seems to be a 

hallmark of SCHAD-CHI (131) and is also characteristic for CHI caused by increased GDH 

activity. Indeed, Li et al. showed in experiments conducted on isolated islets that the amino 

acids leucine, glutamine and alanine are responsible for the spike in insulin secretion in 

SCHAD-CHI. This effect was dependent on the presence of leucine and greatly amplified by 

the other two amino acids. The three amino acids are related to GDH activity. Leucine is an 

allosteric activator of GDH, whereas oxidation of glutamine by glutaminase produces 

glutamate which serves as a substrate for GDH. Alanine can be utilized as substrate for the 

TCA cycle. The authors also confirmed the protein interaction between SCHAD and GDH, and 

they further showed that ablation of SCHAD protein increased islet GDH activity (85). 

Overall, Li et al. demonstrated that the SCHADKO mouse is a good model for the study of 

SCHAD-CHI. However, how lack of GDH inhibition by SCHAD stimulates insulin secretion 

is still not fully understood. GDH catalyzes the reversible conversion of glutamate + NAD+ (or 

NADP+) to α-ketoglutarate + NH3 + NADH. Both directions of this reaction have the potential 

to stimulate insulin secretion. α-ketoglutarate is used as substrate in the TCA cycle and its 

metabolism ultimately leads to a rise in the ATP:ADP ratio, which in turn stimulates insulin 

secretion through closure of KATP channels (55). Glutamate on the other hand can be taken up 

by insulin granules which then leads to amplification of insulin secretion (56). Glutamine 

oxidation to glutamate is increased in SCHADKO islets but administration of glutamine alone 

does not result in increased insulin secretion (85). This may suggest that glutamine is converted 

to glutamate for the conversion to α-ketoglutarate by GDH, instead of being taken up by insulin 

granules. However, other studies suggest that the specific β-cell environment favors the 

opposite reaction. Glucose stimulation increases the mitochondrial NADH:NAD+ ratio which 

favors the production of glutamate over the production of α-ketoglutarate by GDH (149). 
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Ultimately, either way could lead to increased insulin secretion, and it is possible that both 

mechanisms exist simultaneously (Figure 10). 

 

 

 

 

 

 

 

 

 

The above evidence confirms the hypothesis that SCHAD serves a second function outside of 

FAO, but the question remains whether this function is specific for the β-cell. Both SCHAD 

and GDH are ubiquitously expressed and some cases of SCHAD-CHI also report mild 

hyperammonemia, which poses the question whether liver or kidney defects may be involved 

in the pathophysiology (133). However, downregulation of SCHAD expression in rat 

insulinoma cells stimulates insulin secretion (145–147) and an islet transplantation study 

performed by Molven et al. suggests that the hypoglycemic phenotype of SCHAD deficiency 

is islet-autonomous (150). Molven et al. transplanted isolated islets from SCHADKO mice and 

controls under the kidney capsule of streptozotocin-diabetic mice. SCHADKO islets lowered 

the plasma glucose of recipient mice more potently than control islets. This suggests that 

SCHAD deficiency in the islet may be sufficient to cause hypoglycemia, but contribution of 

Figure 10. Proposed mechanism for regulation of GDH activity by SCHAD. GDH catalyzes the reversible 

conversion of glutamate to α-ketoglutarate and ammonia using NAD+ or NADP+ as cofactors. Its activity depends 

on stimulation by activators and inhibitors. In this proposed model, SCHAD is an inhibitor of GDH activity. 

SCHAD deficiency removes an inhibitory signal and increases GDH activity which leads to increased production 

of glutamate or α-ketoglutarate depending on the mitochondrial NADH:NAD+ ratio. This would then stimulate 

insulin secretion by increasing the β-cell ATP:ADP ratio through metabolism of α-ketoglutarate or by amplifying  

insulin secretion through uptake of glutamate into secretory granules.  
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different islet cell types and the influence of other tissues could not be studied by the 

transplantation approach. 

Besides the interaction with GDH, one study indicated that SCHAD may interact with several 

other proteins, possibly within tissue-specific metabolic super-complexes (151). Pull-down and 

yeast-2 hybrid studies showed that the enzyme interacts with other mitochondrial and possibly 

cytosolic enzymes involved in metabolism of carbohydrates, glutamate, and lipids, urea cycle 

and others. Thus, even though the evidence strongly suggests a link between SCHAD and GDH 

in the pathophysiology of CHI, other interactions and pathways may be involved (151). 

Another limitation is that no structure of the postulated SCHAD-GDH complex has been 

presented. 

In summary, the FAO enzyme SCHAD is fully implicated as member of the metabolopathy 

subgroup of CHI. So far, the data suggests that SCHAD serves two distinct functions, one in 

FAO and the other in β-cell insulin secretion, and that the latter is dependent on an interaction 

with GDH. Still, many questions concerning the mechanism behind SCHAD-CHI and the role 

of SCHAD within the β-cells remain unanswered.  
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2. Aims of the thesis 

Almost two decades ago, the fatty acid-degrading enzyme SCHAD was identified as a regulator 

of insulin secretion because mutations in the HADH gene were shown to cause CHI. The overall 

aim of the present study was to obtain a deeper understanding of how the SCHAD protein is 

implicated in regulation of insulin secretion. 

  

The specific aims of this thesis were as follows: 

1. To establish the necessary methodology and to perform a functional evaluation of 

human HADH missense variants 

2. To investigate the tissue specificity and phenotype of SCHAD deficiency in a 

conditional SCHAD KO mouse model 

3. To identify and characterize novel protein interaction partners of the human SCHAD 

protein 
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3. Summary of results 

Paper I 

Functional evaluation of sixteen SCHAD missense variants: Only amino acid substitutions 

causing congenital hyperinsulinism of infancy lead to loss-of-function phenotypes in vitro. 

Here we analyzed the stability, subcellular localization, enzymatic activity and GDH 

interaction of nine population variants of unknown significance, six previously published 

pathogenic variants and an unpublished pathogenic variant of the HADH gene. To this end, we 

developed tools for prokaryotic and eukaryotic expression and production of recombinant 

protein as well as a HEK293 SCHAD KO cell line for functional testing of variants in the 

absence of endogenous protein. 

All variants localized to the mitochondria when expressed in HEK293 SCHAD KO cells. 

Seven of the nine population variants behaved in a similar manner to wildtype (WT) SCHAD 

regarding all tested properties. The exceptions were a higher molecular weight as assessed by 

western blot for the variant p.Phe92Cys and somewhat increased enzyme activity of 

p.Met188Val. 

All CHI-causing variants differed from WT SCHAD in one or more respects. The variants 

p.Gly34Arg, p.Ile184Phe, p.Pro258Leu and p.Gly303Ser were expressed at significantly lower 

levels in HEK293 and SCHAD KO HEK293 cells. This is most likely due to abnormal folding 

followed by rapid degradation due to protein quality control since these variants could be 

expressed in a cell-free expression system devoid of functional quality control systems. 

Moreover, MG132-mediated blockage of the ubiquitin-proteasome system partially rescued 

protein expression of these variants in the HEK239 SCHAD KO cell line. 

Regarding enzyme activity, SCHAD WT displayed a Vmax of 181 ± 3 μmol/min/mg. The three 

pathogenic variants p.His170Arg, p.Pro258Leu and p.Gly303Ser, had almost no enzyme 

activity (< 10 μmol/min/mg). The variants p.Lys136Glu and p.Met188Val had significantly 

reduced enzyme activity (127 ± 8 μmol/min/mg and 132 ± 29 μmol/min/mg, respectively).  

Lastly, Co-IP experiments showed that three of the pathogenic variants with normal protein 

expression but reduced enzyme activity (p.Lys136Glu, p.His170Arg, and p.Met188Val) still 

interacted with GDH, albeit to a lower degree than WT SCHAD. 
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Overall, we showed that the tested population variants of unknown significance did not impair 

SCHAD protein function, while pathogenic variants affect protein stability, enzyme activity 

and GDH interaction to varying degrees. 

 

Paper II 

Amino acid-sensitive hypoglycemia caused by a specific deficiency of the metabolic enzyme 

SCHAD within pancreatic β-cells. 

The focus of Paper II was to investigate whether SCHAD-CHI has a phenotype that can be 

attributed to specific loss-of-function in the pancreatic β-cells. Selective removal of SCHAD 

expression from specified mouse tissues was achieved by using ES cells and the Cre-Lox 

recombination system to generate  Hadhlox/lox mice that harbored LoxP sites flanking exon 3 of 

the Hadh gene. These mice were then bred with Ins1-cre or Alb-cre mice to disrupt SCHAD 

expression in β-cells or hepatocytes, respectively. The KO was confirmed using PCR, western 

blot, and immunohistochemistry. Immunohistochemistry also demonstrated high expression of 

SCHAD in the δ-cells of the islets and an apparent absence of expression in the α-cells. 

Male and female mice were analyzed for bodyweight development and glucose homeostasis. 

Hepatocyte SCHAD KO (L-SKO) mice had no evident phenotype and were not further 

analyzed. β-cell SCHAD KO (β-SKO) mice, on the other hand, had reduced blood glucose 

levels in the random fed, 16-h fasted and refed state, and the rise in blood glucose 4 h after 

refeeding was blunted. This happened despite normal food intake during refeeding in male and 

increased food intake in female β-SKO mice. Insulin and C-peptide levels in all three 

conditions did not indicate hyperinsulinism. Male, but not female 10-week-old β-SKO mice, 

had significantly impaired glucose tolerance, but this difference disappeared when re-tested at 

30 weeks of age. 

Feeding male β-SKO mice a diet enriched in the amino acids alanine, glutamine, and leucine 

exacerbated the hypoglycemic phenotype and slightly impaired glucose tolerance. Again, 

insulin levels did not indicate hyperinsulinism. However, isolated islets derived from male β-

SKO mice displayed a marked increase in insulin secretion when stimulated with the above-

mentioned amino acids in the presence of 3.3 mM, but not 16.7 mM glucose. These amino 

acids had no additional effect in stimulating insulin secretion from control islets at either 
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glucose concentration. Female β-SKO islets displayed a similar increase in insulin secretion 

when stimulated with amino acid mixture at 3.3 mM glucose. In contrast to male β-SKO islets, 

incubation with 16.7 mM glucose elicited a reduced insulin secretion response from female 

islets that was rescued by addition of amino acid mixture. 

Analyzing the transcriptome of islets from 10-week-old male β-SKO mice revealed a global 

change in expression of genes involved in metabolism. Oxidative phosphorylation, amino acid, 

and protein metabolism were up-regulated, while lipid metabolism was down-regulated. 

Interestingly, the insulin secretion pathway was amongst the down-regulated pathways.  

Furthermore, RNAseq showed evidence for β-dedifferentiation as dedifferentiation markers, 

Aldh1a3, Aass, and others were amongst the top up-regulated genes accompanied by a decrease 

in expression of genes involved in β-cell maturation, survival, and cell adhesion. Lastly, gene 

expression of proteins involved in calcium signaling and transport suggested an increase in 

calcium binding and uptake. 

Overall, the data of Paper II demonstrated that ablation of SCHAD expression in the β-cells is 

sufficient to elicit an amino acid-sensitive, hypoglycemic phenotype akin to hypoglycemia seen 

in global SCHADKO mice and in SCHAD-deficient patients. KO of SCHAD in hepatocytes 

had no effect on glucose homeostasis and a role for the liver in SCHAD-CHI therefore seems 

unlikely.  

 

Paper III 

Searching for novel interaction partners of short-chain 3-hydroxyacyl-CoA dehydrogenase: A 

role for keratin 8? 

SCHAD has been shown to interact with a variety of proteins, and it has been speculated that 

it is part of tissue-specific metabolic super-complexes of proteins. Specific interactions within 

the islets of Langerhans have not been addressed so far. Given the high β-cell expression levels 

and SCHAD’s role in insulin regulation, we in Paper III aimed to identify novel SCHAD 

protein interactions that might be particularly relevant for its β-cell function. We therefore 

performed a yeast two-hybrid (Y2H) screen using a cDNA library from human islets.  
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By employing a bait consisting of SCHAD without its dimerization domain, we identified two 

proteins,  keratin 8 (K8) and cytospin-A (SPECC1L), with very high confidence. K8 was the 

by far dominating hit. An interaction of SCHAD with K8 could be confirmed using co-

immunoprecipitation approaches and was also supported by mass spectrometric analysis of co-

IP samples. 

SCHAD and K8 are confined to different subcellular compartments. SCHAD is transported to 

the mitochondria, while K8 is expressed in the cytosol. However, using a cytosolically 

expressed SCHAD variant (Δ1-12 SCHAD) as bait in SCHADKO HEK293 cells did not 

increase the amount of K8 in the co-IP fraction. In fact, we observed less interaction of K8 

with Δ1-12 SCHAD, indicating that the interaction may be confined to the mitochondrial 

matrix. 

K8 is a main keratin of the islet of Langerhans and with a potential role in the regulation of 

insulin secretion. We confirmed its presence in the endocrine pancreas by using 

immunohistochemistry on human and mouse tissue and by openly accessible single cell 

RNAseq data from the Tabula Muris database. Lastly, we performed a pilot study of SCHAD 

and K8 expression in their respective knockout mouse models. Absence of SCHAD expression 

did not affect K8 expression levels in whole pancreas but seemed to result in slight upregulation 

of K8 in islet preparations. Ablation of K8 expression alone had no overt effect on SCHAD 

expression in whole mouse pancreas and islets. However, when animals were fed a ketogenic 

diet, we observed significant upregulation of SCHAD in whole pancreas and this increase was 

blunted in animals lacking K8 expression.  

In conclusion, Paper III identified a possible physical interaction between SCHAD and K8. 

Whether this interaction occurs within the pancreatic β-cell and, if so, its biological relevance 

needs to be determined in follow-up studies. 
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4. General discussion 

4.1. Interpretation of HADH variants identified in a clinical setting 

Whole-exome and whole-genome sequencing are powerful tools for the identification of 

underlying germline mutations in patients and families. This also holds true for rare, heritable 

genetic conditions of glucose homeostasis such as MODY and CHI. Analyzing the plethora of 

raw genetic information, however, poses a significant challenge. “Wildtype” humans do not 

exist, and every person harbors an array of rare genetic variants of unknown significance, in 

particular missense mutations, that will be picked up in the genetic screening. Missense 

mutations may or may not alter the function of the protein and, in the latter case, may or may 

not be pathogenic. Predicting functional effects of these mutations using bioinformatics tools 

is still notoriously unreliable. Thus, physicians and molecular biologists will in many cases be 

left with the conclusion that the variant is a VUS, i.e. a variant of unknown significance. 

One example is a diabetes family recruited by the Norwegian MODY Registry and screened 

for pathogenic mutation at the Bergen Diabetes Research Center as part of the clinical workup 

some years ago (Figure 11). This multigenerational family includes several family members 

with diabetic phenotypes of varying severity. Whole-exome sequencing was performed on the 

seven available DNA samples from this family. Three family members were identified to be 

heterozygous for the known, pathogenic GCK mutation p.Ser453Leu. Thus, these patients were 

diagnosed with GCK-MODY (MODY2). The other four sequenced family members, who were 

previously diagnosed with either type I-like diabetes or impaired fasting glucose, did not harbor 

the GCK mutant but were found to be heterozygous for the rare HADH variant p.Pro215Thr. 

This HADH variant was absent in the family members with GCK mutations. 

At the time of screening, the effect of p.Pro215Thr on SCHAD protein function was unknown. 

Thus, it was unclear whether the observation of the variant in the diabetes family depicted 

below was a spurious finding or if it represented a novel implication for SCHAD in β-cell 

function. Notably, HADH has not been associated with diabetes. In fact, there is an indication 

from the literature that rare variants of HADH might have a protective effect with regard to this 

disease (152). Still, it was not unreasonable to consider that some amino acid substitutions 

could alter SCHAD protein function in ways that could impair insulin secretion and cause a 

diabetic phenotype. This would be analogous to the situation for other central β-cell genes such 
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as GCK, HNF1A, HNF4A and ABCC8 that can cause MODY or CHI depending on the type of 

mutation (68,153).  

 

 

 

 

 

 

 

 

 

 

In Paper I, we analyzed the protein products of 16 HADH missense variants for expression and 

function. This study also included p.Pro215Thr, which was examined for protein stability, 

intracellular localization and enzyme activity. Only the latter differed from that of the wildtype 

protein: the activity of p.Pro215Thr was slightly but significantly elevated. The effect on 

insulin secretion by increased β-cell SCHAD activity has so far not been investigated. 

However, since the p.Pro215Thr variant was present in the heterozygous state in the four 

affected family members, it was deemed unlikely that the very modest increase in enzyme 

activity could be linked to a diabetic phenotype. Based on the findings of Paper 1 and a carrier 

frequency of 0.00184 in the gnomAD database, we therefore concluded that the identification 

of the p.Pro215Thr variant was an unrelated, spurious finding and that the variant is likely 

benign. Thus, an underlying, genetic cause for the phenotype of the non-GCK mutation carriers 

of the family in Figure 11 has not yet been revealed.  

Figure 11. Multigenerational family with diabetes and impaired fasting blood glucose. Whole-exome 

sequencing was performed for the seven members for whom DNA was available (black dots). The color codes 

show their diagnoses before sequencing. Three members were found to carry the pathogenic GCK mutation 

p.Ser453Leu in the heterozygous state, leading to the conclusion that they have MODY2. In the four other 

sequenced members, GCK was normal. However, they were all heterozygous carriers of the rare HADH variant 

p.Pro215Thr. HADH was normal in the GCK mutation carriers.  
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Still, in future studies, overexpression of p.Pro215Thr in the presence or absence of 

endogenous wildtype SCHAD in β-cell models such as the lines INS-1E or EndoC-βH1 should 

be done. This might reveal if this variant has an insulin-reducing effect not seen for the CHI-

causing variants of the HADH gene. 

4.2. Heterogeneous expression of SCHAD in islet cell subtypes.  

In Paper II, we created conditional SCHAD KO mice and deleted SCHAD expression 

specifically from β-cells using Ins1-cre mice. As part of the validation of the KO, we performed 

immunohistochemistry on pancreas sections of β-SKO mice and controls. The absence of 

SCHAD immunostaining in β-cells confirmed the successful KO, and also highlighted the high 

expression level of SCHAD in δ-cells and the very low or virtually absent expression of 

SCHAD in α-cells. This heterogeneous expression pattern in islets was previously reported by 

Lawlor et al. (154) and  Martens et al. (155), and was further confirmed in Paper III by openly 

accessible single cell RNA sequencing data from Tabula Muris (156). 

The different levels of SCHAD expression may reflect a closer developmental relationship 

between β- and δ- cells as opposed to β- and α- cells. As stated in Chapter 1.1.1, the endocrine 

cells of the pancreas share a common progenitor in neurogenin 3-positive (Ngn+) cells. Ngn+ 

cells start to emerge at embryonic day 8.5 (E8.5) in mice. Here, Ngn3+ cells first give rise to 

α-cells at E9.5, followed by β-cells at E10.5, δ-cells at E14, and PP-cells at E18.5. In humans, 

endocrine cells develop between weeks 7 and 23 of gestation. Again, α-cells develop first 

during week 7, followed by the other endocrine cell types between week 8 and 10 of gestation 

(3). 

The factors that determine cell fate during development are not fully understood and have so 

far mostly been studied in the mouse. Part of the process is the timed expression of a complex 

network of transcription factors (Figure 12). Ngn3 regulates expression of many downstream 

transcription factors important for endocrine islet cell development, including neuronal 

differentiation 1 (NeuroD1), paired-box 6 (Pax6), ISL LIM homeobox 1 (Isl1), MAF BZIP 

transcription factor B (Mafb), NK2 homeobox 2 (Nkx2.2), and regulatory factor X6 (Rfx6). At 

E9.5, endocrine progenitors begin to express paired-box 4 (Pax4) and aristaless-related 

homeobox gene (Arx). These transcription factors are mutual inhibitors and are involved in the 

separation of the lineage into β/δ and α/PP cells. The former then gives rise to β-cells 

characterized by expression of insulin (Ins), MAF BZIP transcription factor A (Mafa), Pax4/6, 
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pancreatic and duodenal homeobox 1 (Pdx1), NK6 hHomeobox 1 (Nkx6.1), and Nkx2.2., as 

well as δ-cells characterized by expression of Sst. From the combined α/PP cells, α-cells arise, 

expressing glucagon (Gcg), Arx, Mafb, Rfx6, Nkx2.2, NeuroD1, and Pax6. PP-cells are 

characterized by expression of Ppy (157). Thus, α-cells develop earlier than β- and δ-cells, and 

β- and δ-cells share a common, immediate progenitor.  

 

Islet SCHAD expression rises during embryogenesis and peaks postnatally as islets mature 

(158). RNA sequencing data from Tabula Muris confirmed the high expression of SCHAD in 

β- and δ-cells and showed high expression of SCHAD in PP cells. SCHAD is also highly 

expressed in pancreatic ductal cells which diverge from common pancreatic progenitor cells 

before the emergence of the Ngn3+ endocrine progenitor cell. It is thus possible that SCHAD 

expression is specifically silenced in α-cells after α/PP cell development. The developmental 

stage when SCHAD expression is suppressed in α-cells and identity of the transcription factors 

Figure 12. Transcription factors involved in differentiation of Ngn+ cells into endocrine islet cell types. 

Hormones and transcription factors are indicated in bold and roman font, respectively. α-, β-, δ-, and PP-cells 

share a common neurogenin 3 (Ngn3)-expressing endocrine progenitor cell. Expression of the mutually inhibitory 

paired-box 4 (Pax4) or aristaless-related homeobox gene (Arx) drives the cells towards the β/δ or α/PP lineage. 

The former gives rise to mature insulin (Ins)-producing β-cells and somatostatin (Sst)-producing δ-cells while the 

latter diverges into glucagon (Gcg)-producing α-cells and pancreatic polypeptide (Ppy)-producing PP-cells. 

Drawn after  (155). 
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that are involved in the process are not yet known. Obviously, high expression of SCHAD is a 

characteristic of mature β-cells. Identification of the developmental processes that regulate 

expression of HADH would be beneficial for understanding islet endocrine cell differentiation 

that could have implications for the development of β-cell-like cells from induced pluripotent 

stem cells (iPSC).  

4.3. A role for SCHAD in amino acid sensing? 

As discussed previously, β- and δ-cells express high levels of SCHAD while expression in α-

cells is strikingly low. Besides reflecting similarities and differences in differentiation, the 

heterogeneous expression pattern suggests that it is of relevance for proper functioning of the 

different islet cell types. In particular, the striking differences between α- and β-cells is worth 

discussing.  

In Chapter 1, we reviewed insulin secretion from β-cells and briefly discussed glucagon 

secretion from α-cells. Both cell types are intricately regulated by nutrients, paracrine, 

autocrine, and nervous system factors. Besides glucose, amino acids are potent stimuli or 

enhancers of insulin and glucagon secretion. Many amino acids enhance glucose-stimulated 

insulin secretion in mature islets, but only leucine is capable of eliciting an insulin secretion 

response by itself (4).  

During embryogenesis, however, insulin secretion is differently regulated. Here, insulin 

secretion does not follow the rise and fall of blood glucose levels. Instead, insulin is 

continuously secreted and regulated by a steady supply of nutrients by the mother (159). A 

recent study showed that in utero, amino acids may play a larger role in stimulating insulin 

release than glucose (160). Glucose responsiveness, where insulin secretion in low-glucose 

conditions is suppressed and stimulated as glucose levels increase, develops shortly after birth 

when the newborn adapts from a constant supply of nutrients to an environment where nutrient 

levels change response to feeding and fasting. During this transition, β-cells mature to become 

primarily responsive to glucose whereas amino acids take on a secondary role (160).  

We speculate that SCHAD is part of the machinery involved in regulating the switch from pre- 

and postnatal β-cell metabolism due to its role in β-cell amino acid metabolism. SCHAD 

expression rises during embryogenesis but only reaches full expression levels in mature islets 

(158). The enzyme most notably regulates amino acid metabolism through inhibition of GDH 
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(85). Neither CHI-causing GDH nor SCHAD mutations are associated with an increased risk 

for macrosomia (82,161). Thus, it is unlikely that these mutations cause fetal hyperinsulinism 

and that increased insulin secretion may develop in the postnatal period as β-cells mature.  

However, our RNA sequencing data in Paper II suggests a general increase in amino acid and 

protein metabolism and a loss of β-cell identity in islets that lack β-cell SCHAD expression. 

Perhaps, SCHAD controls amino acid metabolism beyond the scope of GDH inhibition. It is 

proposed to associate with tissue-specific metabolic super-complexes (151), yet little is known 

about β-cell-specific interactive networks of SCHAD. Thus, it is possible that SCHAD 

regulates function and/or activity of other metabolic enzymes involved with amino acid 

metabolism. 

Lack of SCHAD expression could thus impair β-cell maturation and allow for the resurgence 

or continuance of some features of amino acid-stimulated insulin secretion seen in utero. In 

SCHAD-CHI patients, this may manifest as the increase in sensitivity to protein- and especially 

leucin-stimulated insulin secretion (162). It will be intriguing to reveal the full extent of 

SCHAD’s role in amino acid sensing and β-cell maturation.  

α-cells secrete glucagon, which in concert with insulin, tightly regulates glucose levels. 

However, α-cell function is also intimately intertwined with systemic amino acid metabolism. 

For example, α-cells secrete glucagon in response to amino acids such as arginine, alanine, and 

glutamine while being inhibited by isoleucine. Leucine stimulates glucagon secretion at 

physiologic levels; however, it becomes a negative regulator when leucine levels rise (163). 

Glucagon in turn regulates hepatic amino acid metabolism and disruption of hepatic glucagon 

signaling has widespread effects on α-cell function (164). 

Studies in KO mice and mice with acute interruption of glucagon signaling showed that 

absence of glucagon signaling in the liver results in hyperaminoacidemia due to altered liver 

amino acid catabolism (165,166). The elevated serum amino acids, primarily glutamine, 

stimulated α-cell hyperplasia and hyperglucagonemia. In contrast, β- and δ-cell numbers did 

not change in response to increased amino acid levels (164). Interestingly, α-cell hyperplasia 

is partially driven by upregulation of the sodium-coupled neutral amino acid transporter 

Slc38a5. Expression of this transporter is usually restricted to embryogenesis. Slc38a5 may 

thus be part of the machinery that drives α-cell differentiation and proliferation during 

development and may reflect the difference in nutrient supply during embryogenesis  

(167,168). Overall, these experiments identified a role for α-cells in amino acid sensing and a 
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specialized liver-α-cell axis that controls systemic amino acid metabolism and α-cell 

proliferation regulated by glutamine. Disruption of α-cell amino acid sensing could therefore 

have detrimental effects on α-cell function.  

Since α-cell hyperplasia is primarily driven by glutamine, GDH activity may be part of the 

mechanism connecting amino acid sensing to α-cell proliferation. As stated in Chapter 1.4.4 

glutamine serves as substrate for GDH after conversion to glutamate. Furthermore, GDH has 

previously been proposed to function as an amino acid sensor in autophagy due to its activity 

being partially coupled to leucine availability (169). α-cells express exceptionally low levels 

of SCHAD and thus lack this level of GDH inhibition. Perhaps, α-cells rely on GDH-mediated 

amino acid sensing to a higher degree than β- and δ-cells due to glutamine-mediated regulation 

of α-cell proliferation. SCHAD expression and SCHAD-mediated inhibition of GDH could 

therefore be detrimental for α-cell function and the liver-α-cell axis. Overexpression studies of 

SCHAD in α-cells could potentially elucidate the role of SCHAD in amino acid sensing and 

should be pursued in future experiments. 

4.4. Novel SCHAD interaction partners. A role for keratin 8? 

SCHAD protein interactions have been investigated in a variety of tissues such as liver, heart, 

skeletal muscle, brain, and kidney (151). Associations were then found with tissue-specific 

proteins and even with cytosolic proteins. The idea of Paper III of this thesis was to search for 

novel SCHAD protein interactions that might be specific for the islets of Langerhans. We 

performed a Y2H screening and identified K8 as a possible interaction partner of SCHAD. 

That there was no hit for GDH in this screening, might at first glance appear surprising since a 

previous study identified GDH in a similar experiment (151). However, the authors used a 

human placental cDNA library and a shorter SCHAD peptide spanning residues 75 – 119 as 

prey and bait, respectively. Thus, the discrepancy in Y2H results may indicate different 

availability of prey proteins depending on the studied tissue. Our results do not exclude that 

SCHAD interacts with GDH in the β-cell. Instead they may indicate that the interaction with 

K8 is sufficiently strong to mask interactions with GDH in our experimental set-up. This would 

be analogous to what happened in the first Y2H screen performed in Paper 1, where SCHAD 

dimerization dominated all other interactions in the β-cell cDNA library. 

In Paper III, we therefore decided to focus our studies regarding possible interactions of 

SCHAD on keratin K8 due to the overwhelming dominance of this interaction in the Y2H 
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screen. Moreover, a previous report on K8KO mice had demonstrated a role for K8 in β-cell 

function and glycemic control (170). Indeed, the K8KO mouse is, similar to the SCHADKO 

model, hypoglycemic. It has been hypothesized that the reason for this phenotype in the mice 

lacking K8 may be an increase in insulin action, glucose uptake, and hepatocyte glycogen 

storage (170,171) while hypoglycemia in SCHAD-deficient mice may be the consequence of 

increased β-cell sensitivity to amino acid-stimulated insulin secretion (85,150). However, 

K8KO mice show evidence for defects related to the insulin secretion pathway. β-cell 

ultrastructure, specifically insulin vesicle morphology and mitochondrial mobility, have been 

found abnormal, and GLUT2 is retained in the cytoplasm instead of in the β-cell membrane 

(170,172). Consequently, K8KO mice have impaired GSIS and are less sensitive to 

streptozotocin-induced β-cell damage. Amino acid-stimulated insulin secretion has not yet 

been studied in K8KO mice. Overall, both SCHAD and K8 are implicated in β-cell function 

and absence of either protein directly affects the insulin secretion pathway. Thus, the possibility 

exists that lack of an interaction between SCHAD and K8 is part of the defects seen in each 

mouse KO model. 
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5. Concluding remarks 

CHI is a rare, inherited condition characterized by inappropriately elevated insulin secretion, 

hypoglycemia, and associated health complications. It is caused by mutations in genes involved 

in the regulation of insulin secretion from pancreatic β-cells. Thus far, around fifteen genes 

have been identified to cause CHI through changes at the level of small molecule transport, 

nutrient metabolism and gene expression. Studying CHI-associated genes therefore offers a 

unique opportunity to investigate β-cell biology and has the potential for identification of 

therapeutic targets not only for CHI, but also for diabetes mellitus. 

In this thesis, I have examined the function and possible protein interactions of one such gene, 

HADH, which encodes the fatty acid oxidation enzyme SCHAD. In Paper I, we developed 

toolkits for the study of HADH missense variants and concluded that rare variants observed in 

the general population are not functionally affected. In Paper II, we investigated the tissue 

specificity of SCHAD-CHI using conditional SCHAD KO mice, demonstrating that it is 

primarily a β-cell disease. Finally, in Paper III, we aimed to identify novel islet-specific protein 

interaction partners of SCHAD. 

Overall, the work presented in this thesis offers new insights into rare HADH variants and their 

effects on the SCHAD protein, the functional importance of SCHAD expression in β-cells, and 

– potentially – its islet-specific interactions. Our studies may hopefully aid in future research 

unravelling precisely how SCHAD is implicated in the insulin secretion pathway and which 

role it plays in islet responses to amino acids. 
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6. Future perspectives 

The experimental systems for SCHAD functional studies developed in Paper I included 

eukaryotic and prokaryotic expression vectors, as well as a HEK293 SCHAD KO cell line for 

eukaryotic overexpression of the variants in the absence of endogenous SCHAD protein. In the 

paper, we studied a total of 16 missense variants, and the developed toolkit will facilitate 

studies of newly discovered missense variants. 

Future experiments would also benefit from the development of a SCHAD-deficient β-cell line 

(e.g. INS-1E (173) or EndoC-βH1 (174)) and transgenic β-cell lines expressing pathogenic 

variants of SCHAD under the control of the HADH promoter. Using β-cell lines would offer 

the possibility to study the effect of overexpression of pathogenic variants and the effect of 

increased SCHAD enzyme activity of the non-pathogenic P215T variant on insulin secretion 

in the absence of endogenous wildtype SCHAD. These cells would also enable the 

identification of protein interaction partners in the β-cell using co-immunoprecipitation with 

either overexpressed wildtype SCHAD or missense mutants as bait. The latter could be 

generated by targeted mutagenesis using CRISPR technology and would allow for more 

comprehensive analysis of the effect of pathogenic missense mutations as SCHAD variants 

would be expressed at natural levels. 

Since SCHAD-CHI is widely accepted to be caused by a lack of GDH inhibition by SCHAD 

(85), understanding the interaction of SCHAD with GDH is of utmost importance. The 

determination of the structure of the two proteins in complex would represent a major leap 

forward in understanding their mechanism of interaction. SCHAD is expressed at particularly 

high levels in β-cells compared to GDH or other FAO enzymes (146). Indeed, a SCHAD:GDH 

ratio of 3:1 is required for inhibitory action by SCHAD (85). Furthermore, SCHAD-CHI 

patients are sensitive to leucine, an allosteric activator of GDH (162). Whether SCHAD blocks 

GDH directly or prevents allosteric activation by leucine remains to be investigated. Using 

GDH enzyme activity assays in combination with recombinant SCHAD protein generated in 

Paper I, this inhibitory interaction could be modulated by addition of allosteric activators (e.g. 

leucine) or inhibitors (e.g. GTP). Lastly, using pull-down experiments we showed that the 

tested pathogenic missense variants with normal protein expression level (e.g. p.Lys136Glu, 

p.His170Arg, and p.Met188Val) interacted with GDH to a lower degree than wildtype SCHAD 
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protein. Using these mutant SCHAD proteins as inhibitors in a GDH activity assay could shed 

more light on their effect compared to wildtype SCHAD. 

In Paper II, we demonstrated that SCHAD deficiency limited to the insulin producing β-cell is 

sufficient to cause a hypoglycemic phenotype in β-SKO mice and that this phenotype can be 

exacerbated by feeding of a diet enriched in leucine, alanine, and glutamine. There are a number 

of experiments that await completion. Firstly, we did not detect overt hyperinsulinism in vivo. 

However, we only measured plasma insulin and C-peptide levels at the time of hypoglycemia. 

Insulin is not a reliable biomarker of hyperinsulinism and frequently does not show up as 

elevated in blood samples from CHI patients (74). To establish a hyperinsulinemic phenotype 

in β-SKO mice we could measure additional markers such as IGFBP-1, b-hydroxybutyrate, 

and free fatty acids. Secondly, RNA sequencing performed on islet samples of β-SKO mice 

and controls showed global changes in gene expression related to metabolism and β-cell 

identity. To confirm our findings, we will perform immunohistochemistry of selected hits on 

pancreas sections of control and β-SKO mice. Thirdly, we have also performed mass 

spectrometry analysis on plasma samples from mice fed an amino acid-enriched diet. The goal 

is to investigate whether the feeding of the diet increased metabolites related to leucine, alanine, 

and glutamine metabolism in circulation. We are currently working on finalizing the data 

analysis and are designing experiments for result validation. 

Due to the development of the Hadhflox/flox mouse, we now possess a tool to study the 

importance of SCHAD in any desired cell-type, provided that appropriate Cre-models exist to 

generate the conditional KO. Thus far, we have analyzed SCHAD KO in β-cells and 

hepatocytes. Future experiments should include the KO of SCHAD in δ-cells. δ-cells are of 

interest due to their regulatory role in hormone secretion in the islet of Langerhans. As stated 

in Chapter 1.1.3, SST secretion is similarly regulated as insulin secretion (11). Indeed, δ-cells 

express high levels of SCHAD (154) and thus SCHAD may play an important role in the SST 

secretory pathway. As of today, no models that allow for conditional KO of genes specifically 

in pancreatic δ-cells have been described. Until such a model is developed, the general 

SCHADKO mouse developed by Li et al. (85) could be used to investigate δ-cell function in 

the absence of SCHAD expression.  

Finally, in Paper III, we identified an interaction of SCHAD with K8 using a human islet of 

Langerhans library in a Y2H screening experiment. Islets of Langerhans also include other 

endocrine pancreas cells and while we performed a validating Co-IP experiment in HEK293 
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cells, we have not yet studied the postulated interaction in β-cell lines. Since both proteins are 

implicated in β-cell function and glycemic control is perturbed in KO mouse models of either 

protein, future research should focus on the possible implications of this interaction in the 

insulin secretion pathway. Here, β-cell lines such as the human EndoC-βH1 cells (174) will be 

instrumental. These cells could also be used to identify the suggested mitochondrial pool of 

K8/K18 using advanced imaging techniques and to study the effect of β-cell stress (e.g. 

palmitate-induced and oxidative stress) on K8 and SCHAD expression. 
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Abstract

Short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD), encoded by the

HADH gene, is a ubiquitously expressed mitochondrial enzyme involved in

fatty acid oxidation. This protein also plays a role in insulin secretion as reces-

sive HADH mutations cause congenital hyperinsulinism of infancy (CHI) via

loss of an inhibitory interaction with glutamate dehydrogenase (GDH). Here,

we present a functional evaluation of 16 SCHAD missense variants identified

either in CHI patients or by high-throughput sequencing projects in various

populations. To avoid interactions with endogenously produced SCHAD pro-

tein, we assessed protein stability, subcellular localization, and GDH interac-

tion in a SCHAD knockout HEK293 cell line constructed by CRISPR-Cas9

methodology. We also established methods for efficient SCHAD expression

and purification in E. coli, and tested enzymatic activity of the variants. Our

analyses showed that rare variants of unknown significance identified in

populations generally had similar properties as normal SCHAD. How-

ever, the CHI-associated variants p.Gly34Arg, p.Ile184Phe, p.Pro258Leu,

and p.Gly303Ser were unstable with low protein levels detectable when
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expressed in HEK293 cells. Moreover, CHI variants p.Lys136Glu, p.His170Arg,

and p.Met188Val presented normal protein levels but displayed clearly

impaired enzymatic activity in vitro, and their interaction with GDH

appeared reduced. Our results suggest that pathogenic missense variants of

SCHAD either make the protein target of a post-translational quality control

system or can impair the function of SCHAD without influencing its steady-

state protein level. We did not find any evidence that rare SCHAD missense

variants observed only in the general population and not in CHI patients are

functionally affected.

KEYWORD S

congenital hyperinsulinism of infancy, HADH, loss-of-function mutations, SCHAD, short-chain

3-hydroxyacyl-CoA dehydrogenase, variants of unknown significance

1 | INTRODUCTION

An increasing challenge of clinical medicine is how to han-
dle the wealth of information provided by high-throughput
genetic analyses. For a given patient, techniques such as
whole-exome and whole-genome sequencing may reveal
multiple, rare genetic variants that are of unknown signifi-
cance with regard to health implications.1 Predicting the
functional effect based on bioinformatics analyses alone is
still unreliable, particularly for missense mutations; that is,
when the genetic variant results in amino acid substitu-
tions at the protein level. This problem has, for example,
been illustrated by studies of HNF1A variants implicated in
monogenic diabetes.2

A concerted effort to functionally evaluate missense
variants of the HADH gene has so far not been
performed. This gene encodes short-chain 3-hydroxyacyl-
CoA dehydrogenase (SCHAD; EC 1.1.1.35), a mitochon-
drial protein expressed in all cells. It exerts a general
metabolic function by catalyzing the third step of
β-oxidation of short- and medium-chain fatty acids.3 In
addition, SCHAD has a specific role in glucose homeosta-
sis by inhibiting insulin secretion in the pancreatic
β-cells,4-7 most likely through an inhibitory effect on the
activity of another metabolic enzyme: glutamate dehy-
drogenase (GDH).8,9 Thus, a number of recessive muta-
tions in the HADH gene have been found to cause
congenital hyperinsulinism of infancy (CHI; OMIM #
609975).10-12 CHI is a disease characterized by inappro-
priately elevated plasma concentrations of insulin,
resulting in episodes of hypoglycemia that may become
life-threatening if not treated correctly.13,14

The gnomAD data set contains 155 HADH missense
variants, of which 154 are rare with an allele
frequency < 0.01.15 Only few of the SCHAD-CHI case
reports have examined protein expression and enzymatic

activity of the mutation in question.10,16,17 In addition, a
study of the C. elegans SCHAD protein experimentally
evaluated the structural and functional impact of two
amino acid substitutions in the conserved dimerization
interface of the protein.18

Here we have initiated a systematic assessment of
SCHAD amino acid substitutions by establishing a
toolkit of prokaryotic and eukaryotic expression vectors
for producing the protein variants as well as a SCHAD
knockout cell line for functional testing. We have
tested 16 naturally occurring missense variants for sta-
bility, subcellular localization, enzymatic activity and
GDH interaction. Overall, our data showed that
SCHAD variants reported in CHI patients display vari-
ous loss-of-function phenotypes, whereas functional
defects were not seen in any rare variant of the general
population.

2 | MATERIALS AND METHODS

2.1 | Plasmids

The complete coding sequence of the human HADH gene
(transcript variant 2, NCBI reference sequence
NM_005327.4) was synthesized (DNA 2.0) flanked by
sites for the restriction enzymes EcoRI and XhoI. For
eukaryotic SCHAD expression, the synthetic gene was
transferred to expression vector pcDNA3.1/V5-His B
(Invitrogen). The insert was cloned in-frame with the C-
terminal V5/His tag using EcoRI/XhoI and the Quick
Ligation Kit (NEB).

For prokaryotic expression, the synthetic gene served
as template to amplify HADH without the mitochondrial
import signal. Overhangs with BsmI and NcoI sites were
added in the 50-end and an Acc65I site in the 30-end. PCR
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primers were 50-CATCATCGTCTCCCATGGGATCC-
TCCTCGTCCAC-30 and 50-CATCATGGTACCATCA-
CTTGTATTTGTAAAATCCTTCTC-30. Phusion High-
Fidelity PCR polymerase (Thermo Fisher Scientific) was
used with annealing at 53.2�C for 20 seconds. The PCR
product was blunt-end-cloned into the vector pJet1.2
(CloneJET PCR Cloning Kit, Thermo Fisher Scientific).
Subsequently, the HADH insert of the pJet1.2 vector was
ligated to the pETM41-His/MBP expression vector in-
frame with an N-terminal 6His/Maltose Binding Protein
(MBP) tag (Quick Ligation Kit). Restriction enzymes
Acc65I/BsmBI were used for the insert and Acc65I/NcoI
for the vector.

Sixteen missense variants chosen from the gnomAD
data set15 (transcript ENST00000309522) and from CHI
case reports were introduced in the plasmids by using the
QuickChange II XL Site Directed Mutagenesis Kit
(Agilent). This kit was also used to delete the SCHAD
mitochondrial import signal (Δ2-12 construct). Primers
used to produce each variant are listed in Table S1.

The plasmid Plu-CMV-hGDH for over-expressing
human GDH was kindly provided by Dr Charles Stanley,
Philadelphia.

For propagation, all plasmids were heat shock-
transformed into One Shot TOP10 competent E. coli.
Plasmids were prepared by the QIAfilter Plasmid Midi
Kit (QIAGEN) and controlled by linearization/agarose
gel electrophoresis and Sanger sequencing.

Empty vector (EV) pcDNA3.1/V5-His B was used as
negative control in the expression studies. Theoretical
molecular masses were estimated using the ProtParam
tool on the ExPASy server.19 All sequence analyses for
site-directed mutagenesis and for CRISPR-Cas9 genome
editing (below) were performed by the SnapGene soft-
ware (GSL Biotech).

2.2 | Antibodies

To detect SCHAD protein by western blotting, different
polyclonal antibodies were used: rabbit anti-SCHAD
(Atlas Antibodies, HPA039588; GeneTex, GTX105167)
and goat anti-SCHAD (Novus Biologicals, NB100-77343).
A custom-made monoclonal mouse anti-SCHAD anti-
body (epitope QTEDILAKSK) from Abmart was
employed in some experiments. Mouse anti-V5
(R960-25), anti-mouse HRP conjugate (626520), anti-
rabbit HRP conjugate (656120), anti-mouse Alexa Fluor
488 conjugate (A-11017), and goat anti-GLUD1/2
(PA5-19267) were from Thermo Fisher Scientific. Rabbit
anti-β-tubulin (ab6046) and anti-β-catenin (ab32572)
were from Abcam. Mouse IgG2a (X0943) was
from DAKO.

2.3 | Establishment of a HEK293 SCHAD
knockout (KO) cell line by CRISPR-Cas9

The gRNAs 50-CACCGCACGGAACGCATGAACTGCC-
30 and 50-AAACGGCAGTTCATGCGTTCCGTGC-30,
targeting the sequence 50-CCAGGCAGTTCATGCG
TTCCGTG- 30 in the proximity of the HADH start codon
were designed via the website http://crispr.mit.edu. After
phosphorylation by T4 polynucleotide kinase, the gRNAs
were kept at 95�C for 5 minutes, annealed by decreasing
the temperature to 25�C (rate: 5�C/min), ligated into the
pSpCas9(BB)-2A-Puro (PX459 v.2) plasmid (Addgene)
using BbsI sites, and transformed into One Shot TOP10
competent E. coli. Plasmid preparations were sequenced
using the primer 50-GAGGGCCTATTTCCCATGATT-30.
Human embryonic kidney (HEK293) cells (Clontech)
were transfected for 48 hours using the calcium phos-
phate method. Cells carrying plasmid were then selected
using 3 μg/mL puromycin in the growth medium for
96 hours. Surviving cells were detached with trypsin, and
single cells were hand-picked and transferred to individ-
ual wells in a 96-well plate. HADH exon 1 was sequenced
in surviving clones using the primers 50-
TCAACGCTGGGACGTTACA-30 and 50-GTGAAAACT
CCCTGGTGTCG-30. Finally, SCHAD expression in the
generated cell lines was evaluated by western blotting.

2.4 | HEK293 cell culture, SCHAD-V5
plasmid expression, western blotting

HEK293 cells (WT and SCHAD KO) were cultured in
DMEM medium supplemented with 10% FBS (Gibco)
and PenStrep (Sigma-Aldrich), and maintained in 5%
CO2 at 37�C. Unless indicated otherwise, Lipofectamine
2000 (Thermo Fisher Scientific) was used for
transfection.

Treatment with the proteasome inhibitor MG132
(Sigma-Aldrich) was done 24 hours after transfection.
The culture medium was removed, and cells were incu-
bated with 5 μM MG132 or an equivalent volume of
DMSO in fresh medium for the specified amount of time.

To produce HEK293 whole-cell lysates, cells were
incubated in RIPA buffer (Thermo Fisher Scientific) and
centrifuged at 14 000g for 15 minutes at 4�C to obtain a
clear supernatant. Protein concentration was measured
using the Pierce BCA protein assay kit (Thermo Fisher
Scientific).

For western blotting, the samples were mixed with
loading buffer and reducing agent, heated at 70�C for
10 minutes and subjected to SDS-PAGE before transfer to
a PVDF membrane. The proteins of interest were
detected using specific antibodies and visualized by
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enhanced chemiluminescence using Amersham ECL
Prime Western Blotting detection reagent
(GE Healthcare) and a GBOX I Chemi XR5 imager
(Syngene).

2.5 | Cell-free expression of SCHAD-V5
plasmids

Cell-free expression of SCHAD variants was achieved by
incubating the pcDNA3.1-SCHAD-V5-His plasmids in
TNT T7 Quick Coupled Transcription/Translation master
mix (Promega). Each reaction was incubated for
90 minutes at 30�C, and 3 μL were analyzed by western
blotting.

2.6 | Immunostaining and microscopy

HEK293 SCHAD KO cells were grown on poly-L-
lysine coated glass coverslips. To label the mitochon-
dria, cells were incubated for 30 minutes in 200 nM
MitoTracker Red CMXRos (Invitrogen) diluted in pre-
warmed cell medium. Cells were fixed for 15 minutes
with 4% paraformaldehyde, permeabilized with 0.2%
Triton X-100 in PBS and blocked with 1% BSA,
22.5 mg/mL glycine, 0.1% Tween in PBS. To stain for
SCHAD-V5, the cells were incubated consecutively
with the anti-V5 and anti-mouse Alexa Fluor 488 con-
jugate antibodies. Each incubation was 1 hour at room
temperature, with three PBS washes of 5 minutes in
between. Coverslips were mounted in ProLong Gold
Antifade Reagent with DAPI (Cell Signaling Technol-
ogy). The confocal images were collected using a TCS
SP5 confocal microscope with a 63×/1.4NA HCX Plan-
Apochromat oil immersion objective, ~1.0 airy unit
pinhole aperture, and appropriate filter combinations
(Leica Microsystems). Images were acquired with
405 diode, argon and DPSS 561 lasers and processed
using the LAS AF software.

2.7 | MBP-SCHAD protein expression
and purification

MBP-SCHAD plasmids were transformed into BL-21
(DE3) E. coli cells (NEB) by the heat shock method. A
single colony was inoculated and grown in LB medium
with 1% glucose and 50 μg/mL kanamycin at 37�C. Pro-
tein expression was induced at OD600 = 0.6 by adding
0.1 mM IPTG. Bacteria were harvested after overnight
incubation at 22�C and sonicated in a pH 7.8 buffer
(50 mM NaH2PO4, 500 mM NaCl, 10 mM imidazole,

0.1 mM DTT, 10% glycerol) complemented with
EDTA-free protease inhibitors (Roche). Recombinant
SCHAD protein was purified by immobilized metal
affinity chromatography (IMAC) on a HisTrap HP
5-mL column (GE Healthcare) followed by size exclu-
sion chromatography (SEC) on a Superdex
200 16/60120-mL column (GE Healthcare). Buffers
(pH 7.8) were as follows: IMAC wash buffer (50 mM
NaH2PO4, 300 mM NaCl, 20 mM imidazole, 0.1 mM
DTT, 10% glycerol), IMAC elution buffer (= wash
buffer with 250 mM imidazole), SEC buffer (50 mM
NaH2PO4, 150 mM NaCl, 0.1 mM DTT, 10% glycerol).
Fractions were analyzed by SDS-PAGE and
Coomassie staining (SimplyBlue SafeStain, Invi-
trogen) and protein concentration was determined by
A280 measurements.

2.8 | Multiangle light scattering
measurements

The molecular mass of MBP-SCHAD was calculated by
SEC-MALS using a Superdex 200 HR 10/30 column
coupled to a light-scattering device. Bovine serum albu-
min (BSA) was used as standard.

2.9 | SCHAD enzymatic assay

The enzymatic reaction was started by adding 0.07 μg of
purified MBP-SCHAD protein to 1.0 mL 100 mM potas-
sium phosphate buffer (pH 7.0) containing 0.1 mM DTT,
0.3 mg/mL BSA (fatty acid-free) and saturating concen-
trations of acetoacetyl-CoA (50 μM) and NADH
(0.15 mM). Absorbance at 340 nm was measured every
minute for 5 minutes at 37�C.

2.10 | Co-immunoprecipitation (co-IP)

HEK 293 SCHAD KO cells seeded in 10-cm Petri dishes
were co-transfected with 2 μg Plu-CMV-hGDH and 6 μg
of pcDNA3.1-SCHAD-V5-His variants using the calcium
phosphate method. After 48 hours of transfection, cells
were washed with PBS, incubated for 10 minutes with
1 mM disuccinimidyl glutarate and quenched for
15 minutes with 50 mM Tris, pH 7.5. Immediately after,
co-IP was performed as follows (kit from Thermo Fisher
Scientific): 6 μg of antibody were coupled to 10 μL
AminoLink Plus Coupling resin, co-IP buffer was used
for cell lysis (500 μL/plate) and washing (×7), 450 μL of
cell lysate at 2.8 μg/μL were incubated for 1 hour with
the antibody-coupled-resin, and elution (×1) was by
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NuPAGE LDS Sample buffer (Thermo Fisher Scientific),
followed by western blotting.

2.11 | Statistical analysis

The software R20 with reshape221 and multcomp22 was
used. Plots were produced using the package ggplot2.23

To evaluate differences in the enzymatic activity of the
SCHAD variants, a one-way analysis of variance
(ANOVA) and a post-hoc Dunnett's test were used. To
evaluate differences in the amount of bound GDH, a one-
sample T-test was used.

3 | RESULTS

3.1 | Selection of SCHAD variants for
functional testing

To perform a systematic functional evaluation of SCHAD
protein variants, we chose 16 missense variants present
in human populations and CHI patients (Table 1). The
population variants were selected to be distributed
throughout the domains of SCHAD, and their positions
are illustrated in Figures 1A and S1A. Specifically, nine

variants were selected from the gnomAD data set,15 most
of them having an allele frequency in the range 0.0002 to
0.005 (Table 1). We also included p.Pro86Leu, which is
the most frequent SCHAD coding variant and the only
one with an allele frequency > 0.01.27 Additionally, seven
pathogenic variants found in CHI cases were included.
Of these, six have been described in case
reports10,16,17,24-26 whereas one, p.His170Arg, has been
identified in a CHI patient via our own clinical laboratory
service (unpublished).

To characterize functional aspects of these variants
in vitro, we introduced them by site-directed mutagenesis
into plasmids pcDNA3.1 (for expression in mammalian
cells as SCHAD-V5/His fusion protein) and
pETM41-His/MBP (for expression in E. coli as MBP-
SCHAD fusion protein).

3.2 | Expression of SCHAD missense
variants in HEK293 cells

SCHAD is a ubiquitous protein that occurs as homodimer
in its functional form.18,28 To avoid the interference that
dimerization with endogenous wildtype protein could
cause in cellular studies with exogenously expressed vari-
ants, we produced a HEK293 SCHAD KO cell line using

TABLE 1 Overview of HADH variants and the studied amino acid substitutions

Nucleotide changea Amino acid variantb Exon Reference SNP ID numberc Allele frequencyd Source

c.99C > G p.Ile33Met 1 rs74428123 0.00040 gnomAD

c.100G > C p.Gly34Arg 1 rs779135938 0.00001 24

c.171C > A p.Asp57Glu 2 rs137853102 0.00001 gnomAD

c.257C > T p.Pro86Leu 2 rs4956145 0.08480 gnomAD

c.275 T > G p.Phe92Cys 3 rs61735992 0.00568 gnomAD

c.406A > G p.Lys136Glu 3 rs1262186453 0.00003 25

c.456G > T p.Gln152His 4 rs1051519 0.00175 gnomAD

c.509A > G p.His170Arg 4 — — Unpublishede

c.550A > T p.Ile184Phe 5 — — 26

c.562A > G p.Met188Val 5 — — 16

c.614G > C p.Gly205Ala 5 rs144699575 0.00023 gnomAD

c.643C > A p.Pro215Thr 6 rs140413151 0.00184 gnomAD

c.662G > A p.Arg221His 6 rs76476980 0.00117 gnomAD

c.773C > T p.Pro258Leu 7 rs137853103 — 10

c.881A > G p.Asn294Ser 8 rs36030668 0.00235 gnomAD

c.907G > A p.Gly303Ser 8 rs201772964 0.00004 17

aAccording to NCBI reference sequence NM_005327.4.
bPredicted amino acid change. Notation according to NCBI reference sequence NP_005318.3.
cAccording to the Single Nucleotide Polymorphism Database (dbSNP) (https://www.ncbi.nlm.nih.gov).
dAccording to the gnomAD database (http://gnomad.broadinstitute.org).15
eUnpublished patient from own clinical laboratory service.
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CRISPR-Cas9 targeted genome editing. Disruption of
exon 1 of the HADH gene was verified through DNA
sequencing of selected colonies (Figure S2). Knockout at
the protein level was confirmed through western blotting
using different anti-SCHAD antibodies (Figure 1B). A
band of the expected molecular mass for SCHAD
(~34 kDa) was observed only for the lysates of HEK293
WT cells, and not for SCHAD KO cells.

We then tested expression of the SCHAD variants by
transiently transfecting the plasmids into HEK293
SCHAD KO cells. Figure 1C shows selected variants in
HEK293 SCHAD KO cells to summarize the most rele-
vant findings, whereas Figure S3 presents all 16 variants
expressed in both HEK293 WT and SCHAD KO cells.
Analysis of the cellular lysates by western blotting, using
an anti-V5 antibody (Figure 1C) or an anti-SCHAD anti-
body (Figure S3), revealed a band of the expected molec-
ular mass (~37 kDa) for the WT-V5/His fusion protein.
Most missense variants exhibited the same size and
expression levels as the WT protein. The five exceptions
were p.Gly34Arg, p.Phe92Cys, p.Ile184Phe, p.Pro258Leu,
and p.Gly303Ser. The p.Phe92Cys variant, found in the
gnomAD dataset, displayed slower electrophoretic mobil-
ity than the WT protein, but had the same expression
level. The four other variants, all CHI-associated, were

consistently expressed at reduced levels. This reduction
was more pronounced for p.Gly34Arg, p.Ile184Phe,
and p.Pro258Leu than for the p.Gly303Ser variant.
However, CHI variants p.Lys136Glu, p.His170Arg, and
p.Met188Val appeared similar to the WT protein and the
remaining population variants. All 16 variants yielded
the same expression pattern in normal HEK293 (WT) as
in the SCHAD KO cell line (Figure S3).

Next, we evaluated the expression and subcellular
localization of the variants by immunofluorescence of
transiently transfected KO cells. Figure 2 exemplifies
how variants exhibiting reduced protein levels in
Figure 1C, such as p.Pro258Leu and p.Gly303Ser, also
resulted in lower amounts of SCHAD-V5 when directly
visualized in the cells. Images of the other variants are
presented in Figure S4. For variants with lower protein
levels, we did not observe a uniform overall reduction in
SCHAD levels within the expressing cells. A few cells dis-
played a fluorescence pattern comparable to that of WT-
transfected cells, while most cells showed from very low
to undetectable SCHAD levels.

By confocal microscopy, we found that all variants
were correctly targeted to the mitochondria as shown by
co-localization of SCHAD-V5 with a mitochondrial-
specific stain (Figure S5).

FIGURE 1 Location of the studied missense variants in the SCHAD protein, construction of SCHAD-deficient HEK293 cells, and

expression of selected variants in these cells. A, SCHAD has three functional domains: the mitochondrial import signal (MIS; green), the

NAD-binding domain (blue) and the dimerization domain (yellow). Protein variants of unknown significance found in populations are in

black, while pathogenic variants found in CHI patients are displayed in red. Notation is according to the reference protein sequence

NP_005318.3. For simplicity, the prefix “p.” of the amino acid variants is not included in this and the other figures. B, Western blot of cell

lysates from HEK293 cells expressing (wildtype, WT) and not expressing (knockout, KO) SCHAD protein. Membranes were probed with two

different anti-SCHAD antibodies (#1, GeneTex; #2, Novus Biologicals). C, Western blot of whole-cell lysates of HEK293 SCHAD KO cells

transfected with the indicated variants. One μg of protein was loaded in each lane, and the SCHAD variants were detected with anti-V5

antibody. A representative image of three experiments is shown. An anti-β-tubulin antibody was used for monitoring the loading in B and

C. EV = empty vector
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3.3 | Translation and protein
degradation of SCHAD variants with
reduced protein levels

To further test expression of variants p.Gly34Arg,
p.Ile184Phe, p.Pro258Leu, and p.Gly303Ser, that is, those
displaying low protein levels in HEK293 cells, we used a
cell-free expression system. Equal amounts of the

plasmids were incubated with the cell-free expression
reaction mix followed by western blotting. In stark con-
trast to the results obtained with transfected cells, these
four variants now displayed similar protein levels to WT
SCHAD (Figure 3A). This confirmed that the plasmids
were fully functional with protein synthesis being as effi-
cient as from the WT plasmid. Moreover, this observation
hinted at the activity of a cellular quality control

FIGURE 2 Expression of selected

SCHAD variants in HEK293 SCHAD

KO cells as determined by

immunofluorescence. The cells were

transiently transfected with the

indicated V5-tagged SCHAD variants,

fixed 48 hours-post transfection, stained

using anti-V5 primary antibody and

fluorescent anti-mouse IgG secondary

antibody (green), and counterstained

with DAPI (blue). Images are

representative fields from two

experiments, each with two technical

replicates (×200). WT = wildtype,

EV = empty vector
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mechanism, not present in the cell-free expression system,
as explanation for the low variant levels in HEK293 cells.

To investigate whether the four variants were
degraded by the ubiquitin-proteasome system, we blocked
this pathway in transfected cells by using the proteasome
inhibitor MG132. Figure 3B demonstrates that the
variants p.Gly34Arg, p.Ile184Phe, and p.Pro258Leu
exhibited clearly increased protein levels after 24 hours of
MG132 treatment, suggesting that proteasomal degrada-
tion is of importance for their instability. There was also
a certain effect on the level of p.Gly303Ser, an increase
that was confirmed in two additional, independent
experiments.

3.4 | Enzymatic activity of purified
SCHAD variants

Although enzymatic activity of SCHAD can be measured
in cell and tissue lysates,3 we opted for using purified

protein due to the greater flexibility of the assay and full
control over the amount of SCHAD tested. Even though
we were able to express all variants in E. coli cells, the
purification efficiency differed considerably from variant
to variant (Figure S6 and data not shown). In fact, the
levels of p.Gly34Arg, p.Phe92Cys, and p.Ile184Phe were
undetectable at the end of the SEC purification step and
therefore no further work was performed on them. Nota-
bly, for all variants we employed a purification protocol
optimized for WT SCHAD. Thus, none of the conditions
were adjusted to the individual characteristics of any spe-
cific variant as an attempt to improve the yield.

We assessed the identity and purity of the samples by
SDS-PAGE, western blotting and Coomassie staining. For
all purified variants, a band around 75 kDa was detected
by anti-SCHAD (Figure 4A) and anti-His (data not
shown) antibodies. This agrees with the predicted molec-
ular mass of ~77 kDa for MBP-SCHAD. Coomassie
staining revealed a few additional, weak bands of higher
molecular mass and unknown identity in all cases

FIGURE 3 Expression of

unstable SCHAD variants in a

cell-free system and in HEK293

cells treated with a proteasome

inhibitor. A, Equal amounts of

the vectors expressing the

indicated variants were

incubated with the cell-free

expression master mix for

90 minutes. Three microliters of

each reaction were analyzed by

western blot using an anti-V5

antibody. WT = wildtype,

EV = empty vector. B, Twenty-

four hours after transfection

with the indicated variants,

HEK293 SCHAD KO cells were

treated with 5 μM MG132 or

only DMSO for the specified

times. To be able to visualize the

unstable variants, we loaded five

times the amount of whole-cell

lysate (5 μg) per well than
loaded in Figure 1C. The blots

were analyzed by anti-V5

antibody, whereas anti-β-tubulin
and anti-β-catenin antibodies

were used for monitoring the

loading and controlling the

efficiency of MG132 treatment,

respectively
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(Figure S7A). Some variants, most notably p.Ile33Met,
exhibited additional bands of lower molecular weight.

To test if recombinant MBP-SCHAD was purified in
the functional dimeric form, we estimated the molecular
mass of purified MBP-SCHAD WT by SEC-MALS
(Figure S7B). While the predicted monomeric molecular
mass was ~77 kDa, the calculated value by SEC-MALS
analysis was ~168 kDa. This indicated that MBP-SCHAD
WT was purified in the dimeric form. As the missense
variants all eluted at the same rate as WT SCHAD
(Figure S6), we expected them to be purified as
dimers, too.

Next, we assessed the enzymatic activity of the vari-
ants in saturating conditions of substrate and co-factor
(Vmax). MBP-SCHAD WT exhibited Vmax = 181
± 3 μmol/min/mg (Figure 4B). Variants found in patients
all showed reduced activity: p.His170Arg, p.Pro258Leu,

and p.Gly303Ser had severely reduced Vmax (<10 μmol/
min/mg), while p.Lys136Glu (127 ± 8 μmol/min/mg)
and p.Met188Val (132 ± 29 μmol/min/mg) displayed a
smaller, but still significant, reduction. Interestingly, the
population variant p.Pro215Thr had a slight increase in
enzymatic activity (211 ± 5 μmol/min/mg).

3.5 | Interaction of pathogenic SCHAD
variants with GDH

We were therefore left with principally two classes of
SCHAD pathogenic variants, one with severely reduced
cellular amounts of protein and another with impaired
enzymatic activity in the presence of normal protein
levels. The variants of the latter class might still have the
capacity to inhibit GDH, thereby carrying out normal

FIGURE 4 Purified recombinant

MBP-SCHAD variants from E. coli and

their enzymatic activity. A, Western blot

of all successfully purified variants.

Purified protein samples (0.3 μg) were
analyzed using the Abmart anti-SCHAD

antibody. B, The enzymatic activity of

the purified variants was tested on three

different days, each time with three

measurements. Each dot represents the

mean of a triplicate measurement and

the horizontal lines show the overall

mean. *P < .05, ***P < .001
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SCHAD function in insulin secretion. We therefore
evaluated the ability of the variants of the second class
(p.Lys136Glu, p.His170Arg, and p.Met188Val) to bind
GDH by using co-IP (Figures 5 and S8). We co-transfected
HEK293 SCHAD KO cells with GDH and the SCHAD
variant to be tested, and then treated the cells with a
crosslinking reagent before cell lysis and co-IP. This
ensured that we captured protein interactions within the
mitochondria. The set-up was validated by including a
SCHAD variant (Δ2-12) lacking the mitochondrial import
signal and therefore unable to locate with GDH inside the
mitochondria. The positive control (WT SCHAD) and all
negative controls (EV, Δ2-12, IgG) behaved as intended.
Somewhat unexpectedly, GDH was still able to co-IP with
the three pathogenic SCHAD variants (Figure 5A, B).
Nevertheless, the GDH levels were lower for the missense
variants than for WT SCHAD in eight of nine indepen-
dent Co-IPs tests performed (Figure 5C), although for
each variant the reduction did not quite reach statistical
significance when assessed separately.

4 | DISCUSSION

We here, for the first time, present a concerted functional
assessment of naturally occurring SCHAD missense vari-
ants. We have evaluated protein expression, intracellular
localization, enzymatic activity and GDH interaction. A
strength of our study is that we used a cell line devoid of
the SCHAD protein. Because this protein naturally forms
dimers,18,28 our approach allowed the functional testing
of SCHAD variants without the interference of endoge-
nous protein.

All tested SCHAD missense variants from verified
CHI patients displayed loss-of-function phenotypes. This
is in line with the other CHI mutations in the literature
being nonsense mutations, exon deletions or mutations
that affect the splicing machinery.11 Thus, pathogenic
HADH mutations are generally predicted to result in defi-
ciency of SCHAD protein. They are recessively inherited
in all reported pedigrees (eg, References 12 and 25). One
functional HADH allele therefore provides a level of
SCHAD protein function sufficient to avoid hypoglyce-
mic episodes, and dominant-negative mutations are yet
to be described.

We found altered properties for all seven CHI-
associated SCHAD variants examined. A few case
reports of missense mutations have investigated SCHAD
protein levels and/or enzyme activity in patient fibro-
blasts. Consistent with our findings, Clayton et al10 and
Vilarinho et al17 observed low protein levels for the vari-
ants p.Pro258Leu and p.Gly303Ser, respectively, whereas
Kapoor et al16 found decreased enzymatic activity for

p.Met188Val. However, while we noted a drastically
reduced Vmax for recombinantly expressed and purified
p.Gly303Ser, Vilarinho et al17 in patient fibroblasts

FIGURE 5 Co-immunoprecipitation of GDH with selected

SCHAD variants. A,B, HEK 293 SCHAD KO cells were co-

transfected with plasmids expressing GDH and selected SCHAD-V5

variants or with GDH and an empty plasmid vector (EV). The

SCHAD variant Δ2-12 lacked the mitochondrial import signal.

Forty-eight hours post transfection, cells were treated with a

crosslinking reagent before lysis. Cell lysates (450 μL) with equal

protein concentration (Input) were incubated with either V5 or IgG

antibodies coupled to agarose beads. The proteins bound to the

antibodies/beads (IP) were separated by SDS-PAGE, and SCHAD

(GeneTex antibody) and GDH were visualized by western

blotting. C, GDH and SCHAD western blot signals were quantified

for the variants and normalized to the WT sample. The dots

represent the calculated GDH/SCHAD ratio for each replicate with

the horizontal lines showing the mean for each variant. The dashed

line corresponds to the GDH/SCHAD ratio for the wildtype co-IP

reaction
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observed a Vmax comparable to the value of healthy
controls. Still, they noted that the enzymatic function
was affected by an increased Km for binding to the co-
factor NADH.

Our results suggest that SCHAD missense variants
causing CHI exhibit at least two types of loss-of-function
phenotypes. The first group, consisting of p.Gly34Arg,
p.Ile184Phe, p.Pro258Leu, and p.Gly303Ser, displays the
most common outcome for pathogenic missense muta-
tions; that is, a decrease of the protein's half-life leading
to lower amounts in the cell.29 This can be explained by
abnormal folding of the protein such that folding inter-
mediates and/or improperly folded proteins are degraded
through a protein-quality control system. Accordingly,
we readily achieved protein expression in a cell-free
eukaryotic system, and treatment with a proteasome
inhibitor stabilized the protein levels in HEK293 cells.
The small amounts of these variants still detectable by
western blot and immunofluorescence may represent a
fraction of the synthesized protein that managed to
obtain a folded state and escape degradation before
import to the mitochondria.30

A second loss-of-function phenotype was seen for CHI
variants p.Lys136Glu, p.His170Arg, and p.Met188Val.
Here, enzymatic activity of SCHAD was clearly impacted,
but without visible affection of steady-state protein levels.
It should be pointed out, though, that biophysical stress
(such as high temperature) might have demonstrated pro-
tein instability also in this group of missense variants.

Among all CHI variants studied, p.His170Arg was
the most atypical since it is the only one located
directly in the active site of the enzyme. The His170
residue is part of the catalytic His-Glu pair and func-
tions as a catalytic base, involved in proton abstraction
from the substrate.28 In the three-dimensional confor-
mation of SCHAD, p.Lys136 and p.Met188 are both
located on the surface of the NAD-binding domain,
opposite to the catalytic site (Figure S1B). Due to the
nature of these amino acids and their location, they
could be involved in some interaction or binding, criti-
cal for proper functioning of the protein. Notably, Xu
et al18 have demonstrated that mutations distant from
the catalytic site affect the enzymatic activity of
C. elegans SCHAD by decreasing the stability of the cat-
alytic intermediate formation. Considering that in the
context of insulin regulation, SCHAD acts by inhibiting
GDH,8 we tested this particular protein-protein interac-
tion, expecting that pathogenic variants with normal
steady-state protein levels would exhibit abolished
GDH binding. However, compared with WT SCHAD
we found only a partial reduction of the GDH interac-
tion. It is therefore not obvious how these three vari-
ants result in CHI.

Of the evaluated population variants, most had
properties like that of normal SCHAD. Intriguingly, the
p.Asp57Glu variant has been identified in a patient with
fulminant hepatic failure consistent with a metabolic
disorder involving defective fatty acid oxidation. The
patient was heterozygous for p.Asp57Glu, which
occurred together with the variant p.Ala40Thr.31 In fact,
a second variant in the Asp57 residue has been identi-
fied in a patient with Reye-like syndrome (p.Asp57Gly)
who was compound heterozygous, carrying another
unique variant, p.Tyr214His.32 Possibly, these variants
could affect the function of the SCHAD protein in fatty
acid oxidation but not in insulin secretion.

Among the population variants, p.Phe92Cys stood out
by consistently migrating with slower electrophoretic
mobility. Still, its protein level was as for WT SCHAD,
and we speculate that an extra post-translational modifi-
cation involving the Cys92 residue might cause the
apparent increase in molecular mass. As p.Phe92Cys was
the only population variant that could not be purified
after E. coli expression, we cannot rule out an effect on
enzymatic function. Still, with an allele frequency of
~0.006, this variant is the second most frequent SCHAD
amino acid substitution observed in populations, and we
consider it unlikely to have a pathogenic phenotype.

There is only one common variant (allele
frequency > 0.01) of the HADH gene that results in
change of protein sequence, namely p.Pro86Leu. When
expression levels and enzyme activity of p.Pro86Leu were
evaluated in fibroblasts of heterozygous carriers, proper-
ties comparable for non-carriers were found.27 Consider-
ing that around 0.7% of the population are predicted to
be homozygous for this SNP (based on allele frequency of
~0.085 according to the gnomAD database), it was inter-
esting to test the functional effects of this variant without
any interference of the WT protein. We observed no obvi-
ous difference regarding expression or enzymatic activity
when compared with normal SCHAD.

The phenotype of SCHAD deficiency is different from
that of other genetic disorders in which genes encoding
the enzymes of fatty acid oxidation are mutated. The pro-
tein has its highest expression level in the pancreatic
β-cells,5 and it is when the islet-specific function is
disrupted that hypoglycemia ensues.6 Notably, a recent
analysis of the genetic architecture of diabetes indicated a
small, protective effect of rare variants of the HADH gene
(Figure 2c in Reference 33), an effect that might be
explained by heterozygous carriers of rare HADH vari-
ants having increased capacity for insulin secretion. A
limitation of the present study is therefore that the amino
acid substitutions were not tested in cell lines that reflect
the β-cell environment, such as INS-1 or EndoC-βH1.
Hence, it is conceivable that a variant that in the present
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study appears normal with regard to SCHAD expression
and function, still could exhibit altered properties in β-cells.

Another limitation is that we included only one of the
four SCHAD variants found in patients who had no signs
of hyperinsulinism but presented with other metabolic
diseases (fulminant hepatic failure and Reye-like syn-
drome). Only the enzyme kinetics of these non-CHI vari-
ants have so far been investigated.31,32 It would have
been interesting to investigate their properties both indi-
vidually and in the combination that they appear in the
patients, comparing with the CHI-causing variants.
Finally, future studies should address whether the CHI
variants with normal protein levels are unable to inhibit
GDH despite being able to bind it, or whether these vari-
ants disturb other crucial interactions within the protein
super complex in which SCHAD is postulated to be
embedded.34 Investigations of how GDH kinetics and
protein complex formation are impacted by the normally
expressed variants may be needed to fully clarify the
mechanism of GDH activation in SCHAD-CHI.

Nevertheless, we have established a set of useful tools
for functional testing of SCHAD protein variants. This
toolkit includes a human cell line devoid of endogenous
SCHAD expression as well as a series of eukaryotic/pro-
karyotic expression plasmids with missense variants dis-
tributed over the two major protein domains. We found
no evidence that rare SCHAD amino acid substitutions
not seen in CHI patients exhibited impaired function.
This information will be of value when interpreting
HADH genetic variants revealed by high-throughput
sequencing projects and in clinical testing.
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Supplementary Figure 1 

 

 

Supplementary Figure 1. Location of the studied missense variants in the 3D representation of 

the SCHAD protein structure. The three functional domains are colored in one of the sub-units of 

the SCHAD dimer: the mitochondrial import signal in green, the NAD-binding domain in blue and the 

dimerization domain in yellow. The second subunit is colored in grey. (A) Representation showing 

secondary structure elements and the location of the altered amino acids in the studied variants 

(variants of unknown significance in black and pathogenic variants in red). (B) Surface representation 

of the same structure from two different angles, showing that the amino acids Lys136 and Met188 are 

exposed on the surface, while His170 is buried in the catalytic site. Image of PDB ID 3RQS (Kuzin et 

al. 2011) created with Chimera (Pettersen et al. 2004). 

References: 

Kuzin A, Su M, Seetharaman J, et al (2011) Northeast Structural Genomics Consortium Target HR487. doi: 10.2210/pdb3RQS/pdb 

Pettersen EF, Goddard TD, Huang CC, et al (2004) UCSF Chimera - A visualization system for exploratory research and analysis. J 
Comput Chem 25:1605–1612 



Supplementary Figure 2 

 

 

 

 

Supplementary Figure 2. Confirmation of CRISPR-Cas9-mediated disruption of SCHAD 

expression in HEK293 cells. DNA sequencing revealed an insertion early in the exon 1 coding 

sequence (the nucleotide A highlighted by a red square) in the HADH gene. Wildtype DNA and protein 

sequence are shown on top of the panel. 

  



Supplementary Figure 3 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 3. Expression of all studied SCHAD variants in HEK293 wild type (WT) 

and SCHAD knockout (KO) cells. Western blots of whole-cell lysates from HEK293 WT and 

SCHAD KO cells transfected with the indicated variants are shown. One g of protein was loaded in 

each lane. SCHAD was detected with anti-SCHAD (Atlas) and anti-V5 antibodies, the latter being 

specific for exogenous SCHAD. An anti-β-tubulin antibody was used for monitoring the loading. Note 

that endogenous SCHAD is present only in the WT cells (band around 34 kDa). 

  



Supplementary Figure 4 

 



Supplementary Figure 4. Expression of SCHAD variants in HEK293 SCHAD KO cells as 

determined by immunofluorescence. The variants are those not shown in Figure 3. The cells were 

transiently transfected with the indicated SCHAD variants (V5-tagged), fixed 48 hours post-

transfection, stained using anti-V5 primary antibody and fluorescent anti-mouse IgG secondary 

antibody (green), and counterstained with DAPI (blue). Images are representative fields from two 

experiments, each with two technical replicates (x200). 

  



Supplementary Figure 5 

 

Supplementary Figure 5. Intracellular localization of SCHAD variants in HEK293 SCHAD KO 

cells. Cells were transiently transfected with the indicated SCHAD variants (V5-tagged). Forty-eight 

hours post-transfection the cells were incubated with a mitochondrial stain (MitoTracker, red), fixed, 

stained using anti-V5 primary antibody and fluorescent anti-mouse IgG secondary antibody (green), 

and counterstained with DAPI (blue). Images show representative cells from two experiments, each 

with two technical replicates. (x1000). EV= empty vector.  
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Supplementary Figure 6. Size exclusion chromatography (SEC) elution profiles of purified 

SCHAD variants. Each protein variant was expressed in E. coli BL21 (DE3) cells and purified by 

immobilized metal affinity chromatography. All protein from the first purification step was further 

processed by SEC in a Superdex 200 16/60 column. In every graph, the red line corresponds to the 

elution profile of the named variant compared to the profile of the WT protein (black line). Dimeric 

MBP-SCHAD eluted in the volume between 80-90 ml (arrow). The second peak (after 90 ml) 

corresponded to other proteins of lower molecular mass as analyzed by SDS-PAGE and western blot 

(data not shown). Although the absorbance values where MBP-SCHAD is expected to elute, are very 

low for the first three variants (p.Ile33Met, p.Asp57Glu and p.Pro86Leu), we were able to detect the 

protein by SDS-PAGE and to recover a sufficient amount for the enzymatic assays. We could not 

detect or recover any protein after the final purification step for the p.Gly34Arg, p.Phe92Cys and 

p.Ile184Phe variants (data not shown). Each purification profile is one representative image from 2-3 

purification attempts. 



Supplementary Figure 7 

 

Supplementary  Figure 7.  Purification  of  recombinant  MBP-SCHAD variants from E. coli. 

(A) All successfully purified SCHAD variants (0.5 g) were analyzed by SDS-PAGE and Coomassie 

staining. (B) Molecular mass calculation based on SEC-MALS analysis for MBP-SCHAD WT. The 

red line represents the refractive index trace from an in-line Superdex 200 HR 10/30 column. The 

black line corresponds to the molecular mass distribution as determined by MALS with an estimated 

molecular mass value of  168 kDa (predicted value is ~ 154 kDa). 
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Supplementary Figure 8. Full images of western blot membranes presented in main Figure 5. 

(A) Wildtype SCHAD protein (WT), variant p.Lys136Glu, a SCHAD variant lacking the 

mitochondrial import signal (Δ2-12), and empty plasmid vector (EV). (B) WT SCHAD and variants 

p.His170Arg, p.Met186Val and Δ2-12. HEK 293 SCHAD KO cells were co-transfected with plasmids 

expressing GDH and the selected V5-tagged SCHAD variant. Forty-eight hours after transfection, cells 

were treated with a crosslinking reagent before lysis. Cell lysates (450 µl) with equal protein 

concentration (Input) were incubated with either V5 or IgG antibodies coupled to agarose beads. The 

proteins bound to the antibodies/beads (IP) were separated by SDS-PAGE, and SCHAD (GeneTex 

antibody) and GDH were visualized by western blot. Representative images of three experiments with 

each variant are shown. 
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Supplementary Table 1. Primers used to introduce the studied variants in the HADH sequence 

by site-directed mutagenesis. Primers were designed according to manufacturer instructions using 

the QuickChange primer design program (https://www.agilent.com/store/primerDesignProgram.jsp). 

 

 

 

Nucleotide 

change 

Amino acid 

variant 

Sequences of mutagenesis primers 

c.99C>G p.Ile33Met F: 5'-gcacgtgacggtcatgggcggcgg-3' 

R:5'-ccgccgcccatgaccgtcacgtgc-3' 

c.100G>C p.Gly34Arg F: 5'- cagcccgccgcggatgaccgtca-3'  

R: 5'-tgacggtcatccgcggcgggctg-3' 

c.171C>A p.Asp57Glu F: 5'-acagtagtgttggtagaacagacagaggacatcct-3' 

R: 5'-aggatgtcctctgtctgttctaccaacactactgt-3' 

c.257C>T p.Pro86Leu F: 5'-gaagtttgcagaaaaccttaaggccggcgatgaa-3' 

R: 5'-ttcatcgccggccttaaggttttctgcaaacttc-3' 

c.275T>G p.Phe92Cys F: 5'-ccctaaggccggcgatgaatgtgtggagaaga-3' 

R: 5'-tcttctccacacattcatcgccggccttaggg-3' 

c.406A>G p.Lys136Glu F: 5'-tatgttcagcagcaaactcgtccagccttttgaagag-3'  

R: 5'-cttctccagtcttcttgctgaacttgttctctgctac-3' 

c.456G>T p.Gln152His F: 5'-cattagctatgcttgtaatatgcaaggaggaagtgttgc-3' 

R: 5'-gcaacacttcctccttgcatattacaagcatagctaatg-3' 

c.509A>G p.His170Arg F: 5'-cgattcgctggcctccgtttcttcaacccagtg-3' 

R: 5'-cactgggttgaagaaacggaggccagcgaatcg-3' 

c.550A>T p. Ile184Phe F: 5'-ctggtcattggtgttttaaagacctccacaagtttcatg-3' 

R: 5'-catgaaacttgtggaggtctttaaaacaccaatgaccag-3' 

c.562A>G p.Met188Val F: 5'-cttctggctggtcactggtgttttaatgacctcc-3' 

R: 5'-ggaggtcattaaaacaccagtgaccagccagaag-3' 

c.614G>C p.Gly205Ala F: 5'-actttagcaaagccctagcaaagcatcctgtttcttg-3' 

R: 5'-caagaaacaggatgctttgctagggctttgctaaagt-3' 

c.643C>A p.Pro215Thr F:5'-ggttcacaataaacccagtagtgtccttgcaagaaac-3' 

R:5'-gtttcttgcaaggacactactgggtttattgtgaacc-3' 

c.662G>A p.Arg221His F: 5'-tgggtttattgtgaaccacctcctggttccatacc-3' 

R: 5'-ggtatggaaccaggaggtggttcacaataaaccca-3' 

c.773C>T p.Pro258Leu F: 5'-cggttaccccatgggcctatttgagcttctagatt-3' 

R: 5'-aatctagaagctcaaataggcccatggggtaaccg-3' 

c.881A>G p.Asn294Ser F: 5'-gctaccagcttacttaaggatgggctgggctg-3' 

R: 5'-cagcccagcccatccttaagtaagctggtagc-3' 

c.907G>A p.Gly303Ser F: 5'-gtagcagagaacaagttcagcaagaagactggagaag-3' 

R: 5'-cttctccagtcttcttgctgaacttgttctctgctac-3' 

c.Δ4-36 p.Δ2-12 F: 5'-gtggaattccaccatgtcctcctcgtccaccg-3' 

R: 5'-cggtggacgaggaggacatggtggaattccac-3' 
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