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Abstract 6 

Earthquake monitoring in Myanmar has improved in recent years due to an increased number 7 

of seismic stations. This provides a good quality dataset to derive a minimum 1D velocity model 8 

and local magnitude (ML) scale for the Myanmar region, which will improve the earthquake 9 

location and magnitude estimates in this region. We combined and reprocessed earthquake 10 

catalogs from the Department of Meteorology and Hydrology of Myanmar (DMH) and the 11 

International Seismological Centre (ISC). Additional waveform data from various sources were 12 

processed as well. A total of 419 earthquakes were selected based on azimuthal gap, minimum 13 

number of stations and RMS travel-time residual. A set of initial seismic velocity models were 14 

derived from various seismic velocity models. These models were randomly perturbed and used 15 

as initial models in a coupled hypocenter and 1D seismic velocity inversion procedure. We 16 

compared the average mean travel-time residuals from the initial and inverted models. The best 17 

final model showed an improvement of location standard errors compared to the old model. 18 

Furthermore, the local magnitude scale inversion for the Myanmar region was performed using 19 

194 earthquakes that have a minimum of two amplitude observations. The following ML scale 20 

was obtained: 21 

𝑀𝐿 = log 𝐴 (𝑛𝑚) + 1.485 ∗ log 𝑅 (𝑘𝑚) + 0.00118 ∗ 𝑅(𝑘𝑚) − 2.77 + 𝑆 22 

  This scale is valid for hypocentral distance up to 1000 km and magnitudes up to ML=6.2.   23 

Manuscript Click here to
access/download;Manuscript;final_manuscript.docx

https://www.editorialmanager.com/srl/download.aspx?id=181743&guid=584c65b6-727f-44e1-ae34-b16dafe15923&scheme=1
https://www.editorialmanager.com/srl/download.aspx?id=181743&guid=584c65b6-727f-44e1-ae34-b16dafe15923&scheme=1


   
 
 

2 
 
 

Introduction 24 

Myanmar falls into an active tectonic region situated between the Himalaya mountain belt and 25 

Sumatra-Andaman subduction zone. The earthquakes in the country are monitored by the 26 

Myanmar National Seismic Network which is operated by Department of Meteorology and 27 

Hydrology (DMH). The current earthquake location procedure is conducted using a preliminary 28 

1D seismic velocity model.  29 

It is still common to use 1D velocity models for routine earthquake location (e.g., Midzi et al. 30 

2010; Husen et al. 2011), although it appears inappropriate in relatively complex tectonic region 31 

like Myanmar. There are several local 1D velocity models available in the surrounding region, 32 

e.g., Northeast India (Mukhopadhyay et al. 1997) and Bay of Bengal (Rao et al., 2015). Several 33 

regional 3D seismic velocity models for the surrounding regions have also been developed (e.g., 34 

Li et al. 2008; Pesicek et al. 2008; Pesicek et al. 2010), however, these models have very few 35 

stations in Myanmar and are larger scale tomography models that have low resolution at depth 36 

shallower than 50 km for Myanmar region. There is, therefore, a need to derive a regional 1D 37 

seismic velocity model for Myanmar in order to improve the earthquake location accuracy.  38 

Currently, DMH adopted the local magnitude (ML) scale from Southern California (Hutton and 39 

Boore, 1987). The appropriate ML scale for Myanmar will be useful to give a better estimate of 40 

the earthquake size and provide a better input for seismic hazard analysis.  41 

In this study, we aim to develop a minimum 1D seismic velocity model for the Myanmar region 42 

by inverting a set of travel-time data for earthquakes in Myanmar and the surrounding regions. 43 

We selected different initial models from global velocity models and other studies from the 44 

Myanmar and the surrounding areas, and then we applied random perturbation to these initial 45 

models. A simultaneous inversion of 1D velocity and hypocenters was conducted using a set of 46 
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initial models. Furthermore, we also aim to develop an ML scale for the Myanmar region. The 47 

amplitude data from the vertical component of 15 stations were inverted to obtained the ML 48 

distance correction term for Myanmar.  49 

Tectonic and Seismicity in Myanmar 50 

The convergence between the Indian and Burma plates created the Indo-Burman range (IBR) 51 

in the western part of Myanmar. The subducted Indian plate beneath this region is shown by 52 

the intermediate-depth seismicity down to about 150 km depth (see Figure 1) and the slab is 53 

clearly imaged by several teleseismic and regional seismic travel-time tomography studies with 54 

high P-wave velocity anomaly (e.g., Li et al. 2008; Pesicek et al. 2008; Pesicek et al. 2010; 55 

Raoof et al. 2017). The large scale regional and teleseismic tomography studies from Li et al. 56 

(2008) and Pesicek et al. (2008) show that the subducting Indian slab penetrates down to the 57 

mantle transition zone and then deflects around this depth to the east beneath Myanmar. A 58 

smaller scale seismic tomography illuminates the slab discontinuity between 50 to 100 km 59 

depth beneath the northern IBR (Raoof et al., 2017). Hurukawa et al. (2012) showed that the 60 

strike of the subducted Indian slab is changing from north-northeast direction in the North to 61 

south-southeast in the South and the slab dip becomes steeper around the depth of ~50 to ~80 62 

km.  63 

The Sagaing fault, a major dextral strike-slip fault situated in the central part of the country 64 

(Figure 1), is a result of the highly oblique motion of the Indian plate relative to the Burma plate 65 

where the movement on the Sagaing Fault is about 18 mm/year (Socquet et al., 2006). The 66 

Sagaing fault represents the boundary between the Burma Plate and the Sunda Plate (e.g., Le 67 

Dain et al. 1984; Ni et al. 1989). Several other active strike-slip faults are present in the Shan 68 

region of eastern Myanmar as a result of the extrusion-rotation of the northern part of the Sunda 69 
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block (Wang et al., 2014). The principal tectonics in the Myanmar region, as well as 70 

earthquakes and stations used in this study, are shown in Figure 1. 71 

Before the 20th century, there were several records of historical earthquakes in Myanmar, e.g., 72 

the 1762 Arakan earthquake (Cummins, 2007; Gupta and Gahalaut, 2009). A number of shallow 73 

earthquakes related to the strike-slip faults across the country have caused damage (see also 74 

Aung (2017) for complete list). Hurukawa and Maung (2011) analyzed six M ≥ 7.0 earthquakes 75 

that occurred around the Sagaing fault for the period between 1930 and 1956.  76 

In recent years, shallow earthquakes have caused significant damage, e.g., the 2011 Mw=6.8 77 

Tarlay earthquake in eastern Myanmar and the 2012 Mw=6.8  Shwebo earthquake in central 78 

Myanmar (Tun et al., 2014; Wang et al., 2014) (See Figure 1 for the location of the 79 

earthquakes). Some intermediate depth earthquakes also caused damage, especially around the 80 

IBR. Previous studies suggested that these earthquakes are a result of fault reactivation within 81 

the subducted slab (e.g., Kundu and Gahalaut 2012). In July 1975, an Mw(GCMT)=7.0 82 

intermediate-depth earthquake (GCMT centroid depth = 95.7 km) struck central Myanmar, and 83 

caused severe damage to the old town of Bagan. In August 2016, an intra-slab Mw(GCMT)=6.8 84 

(depth = 90 km) earthquake which also occurred at intermediate depth, occurred about 45 km 85 

south of the 1975 event  (Shiddiqi et al., 2018) (See Figure 1). This earthquake has also caused 86 

a minor damage in the old Bagan (Zaw et al., 2017). 87 

Seismic Monitoring in Myanmar 88 

The earthquake monitoring in Myanmar dates back to 1963. The installation of the first analog 89 

seismographs was conducted in 1976 in Yangon and 1977 in Mandalay (Thiam et al., 2017). 90 

The historic overview of seismic monitoring in Myanmar and the installation of five broadband 91 

stations by the U.S. Geological Survey and DMH were explained by Thiam et al. (2017). DMH 92 
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is currently (January 2019) running 19 broadband seismic stations and 10 strong-motion 93 

stations that are collocated with some of the broadband stations. DMH is also using real-time 94 

data from broadband stations from the neighboring countries. For the real-time monitoring, 95 

DMH uses both the SeisComP3 (http://www.seiscomp3.org/; Weber et al. 2007) and Antelope 96 

software, while SEISAN (Havskov and Ottemoller, 1999; Ottemöller et al., 2018) is used for 97 

interactive processing. SEISAN is configured to read continuous data from the SeisComP3 98 

archive and to transfer event data into the database for further interactive processing.  99 

Until 2013, DMH was mostly relying on the processing of analog seismograms. However, with 100 

the operation of digital stations there was a need to integrate data from different sources and to 101 

operate a common processing platform. To achieve this, DMH received technical and scientific 102 

support from the University of Bergen, Norway, under a project coordinated by the Asian 103 

Disaster Preparedness Center (ADPC) with funding from the Norwegian Ministry of Foreign 104 

Affairs. Between 2013 and 2017, various training activities were conducted in Myanmar and 105 

Norway including courses, workshops and research visits. The focus of the activities was hands-106 

on training to solve practical problems within basic seismology, earthquake data processing, 107 

seismic hazard analysis, and instrumentation. SEISAN was adopted at DMH as the interactive 108 

processing tool to combine the various data sets and to store the processed data in a single event 109 

database.  110 

Data  111 

The DMH started to build an earthquake catalogue from 2014. The quality and completeness 112 

of this catalogue has been improving with the installation of new stations. We combined the 113 

DMH catalog with the Bulletin from the International Seismological Centre (ISC) for the region 114 

from January 2012 to April 2018. Furthermore, we re-picked the P- and S-wave arrivals with 115 

http://www.seiscomp3.org/
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consistency from waveform data that are available from DMH, Incorporated Research 116 

Institutions for Seismology (IRIS), and the Observatories and Research Facilities for European 117 

Seismology (ORFEUS) European Integrated Data Archive (EIDA). We used data from 118 

permanent stations from the Myanmar National Seismic Network (MM), GEOFON Network 119 

(GE), Thai Seismic Monitoring Network (TM), National Seismic Network of India (IN), 120 

Bhutan Seismic Network (K5), China National Seismic Network, (CB), New China Digital 121 

Seismograph Network (IC), and Regional Integrated Multi-Hazard Early Warning System 122 

(RM). We also used the temporary networks, GANSSER broadband seismic experiment in 123 

Bhutan (XA) (Swiss Seismological Service (SED) at ETH Zurich, 2013) (six stations) and 124 

PIRE: Life on a tectonically active delta in Bangladesh (Z6) (one station). In total, this amounts 125 

to 76 stations in Myanmar and neighboring countries. 126 

The data processing was conducted using the SEISAN software (Havskov and Ottemoller, 127 

1999). The picked arrival times were combined with the reported arrival times from the ISC 128 

catalog. We also picked the maximum amplitude (in nanometers) of the S- or Lg waves of the 129 

simulated Wood-Anderson seismograms to obtain the local magnitudes of the earthquakes. We 130 

measured the zero-to-peak amplitude on the vertical components as that is the routine practice 131 

at DMH. To determine earthquake location and local magnitude, we used the HYPOCENTER 132 

program (Lienert et al., 1986; Lienert and Havskov, 1995). Initially, we used the ak135 velocity 133 

model for continental structure (Kennett et al., 1995) to perform the earthquake travel-time 134 

calculations. We removed the P- and S-arrival time data that have travel-time residuals greater 135 

than 2.0 seconds and 3.0 seconds, respectively, and then located the earthquakes again with 136 

cleaned the P- and S-arrival times. 137 

To ensure the quality of earthquake location, we selected the earthquakes based on several 138 

criteria: 1) the earthquake is recorded by a minimum of eight stations, 2) the RMS travel-time 139 



   
 
 

7 
 
 

residuals are less than 2.0 seconds, 3) the maximum azimuthal gap is 170o. We selected 419 140 

earthquakes that passed the criteria for further analysis. In total, the dataset consisted of 5163 141 

P-wave arrivals and 3583 S-wave arrivals. The ray-paths of the events mostly cover the entire 142 

Myanmar except for the southwest region since it lacks both stations and earthquakes (Figure 143 

2.a and 2.b). 144 

1D velocity model  145 

The minimum 1D seismic velocity was inverted for simultaneously with hypocenter locations 146 

and station corrections by using the VELEST program (Ellsworth, 1978; Kissling et al., 1994).  147 

The seismic travel-time problem is a non-linear problem of seismic velocity model along the 148 

ray-path and the earthquake locations (Kissling et al., 1994). The quality of the 1D velocity 149 

model solution depends on earthquake location quality. This problem is referred to as coupled 150 

hypocenter-velocity problem, where the 1D velocity model is solved simultaneously with 151 

hypocenter locations (Kissling et al., 1994). The inversion is linearized to solve the problem in 152 

a least square sense. It is essential to assign an appropriate number of layers and their 153 

thicknesses since VELEST does not invert for these. Hence, the appropriate initial seismic 154 

velocity model and high quality P- and S-arrival time dataset are essential input.  155 

 Initial velocity models 156 

In the absence of a specific velocity model for earthquake location in Myanmar, we built 157 

starting models based on various global models: Crust 1.0 (Laske et al., 2012) and the ak135 158 

velocity model (Kennett et al., 1995). We constructed an initial 1D velocity model Crust1.0 159 

(referred to as MC1.0) by averaging the Vp and Vs for each layer and layer thicknesses for the 160 

study region. Below the Moho, velocities are not defined in Crust1.0 and we extracted values 161 

from ak135. The ak135 velocity model is also used as an initial model. 162 
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Wang et al. (2018) developed a 3D S-wave velocity model using a temporary network 163 

concentrated in the Central Myanmar and other temporary and permanent networks in the 164 

surrounding regions. They applied a joint inversion of receiver functions, surface wave 165 

dispersion measurements and H/V amplitude ratio of Rayleigh waves combined with velocities 166 

from Crust1.0 (referred to as Myanmar-Hybrid1 (MH1)) (Wang et al., 2018). We calculated 167 

the average velocity for each layer of MH1 to create an initial 1D S-wave velocity model and 168 

combine it with 1D P-wave velocity model from Crust1.0. In addition, a 1D model from 169 

Northeast India from Raoof (et al. 2017) which was inverted using the VELEST program is 170 

also  adopted (will be referred to as NEI Model). The NEI model was derived from local and 171 

regional data mostly from Northeast India and the surrounding regions including the Himalaya 172 

region, IBR region and northern Thailand. This model comprises a larger area than our study 173 

and there were only few arrival-time data from stations inside Myanmar. Mantle velocities from 174 

ak135 were combined with MH1 and NEI models. For each model, we constructed a model 175 

with a sedimentary layer (low velocity layer as the first layer) and a model without a 176 

sedimentary layer. The list of all initial velocity models used in this study is shown in Table 1 177 

and the initial models are plotted in Figure S1. 178 

Inverting for a 1D velocity model in a complex tectonic region like Myanmar is not an easy 179 

task, since there is huge variability in crustal thicknesses where the recent study from Wang et 180 

al. (2018) shows that the average crustal thickness around central Myanmar is around 30 km, 181 

and increases up to 35 km toward eastern Myanmar and IBR. In the northern part of Myanmar 182 

toward Tibet and Northeast India, the crustal thickness increases up to more than 50 km (Singh 183 

et al., 2017). We obtained average crustal thickness of 37.5 km from MH1 model and 35 km 184 

from Crust1.0 model. However, Singh et al. (2017) showed the crustal thickness estimation 185 
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from a receiver functions study in India and the surrounding region differs about up to 10 km 186 

compared to Crust1.0 model.  187 

Inversion for velocity model 188 

Since the layer thicknesses are not inverted, first we tested the layer thicknesses by dividing the 189 

crust into 5 km layers and added two 5 km thick layers below the expected Moho to test the 190 

Moho depth as suggested by Kissling et al. (1995). The velocities for these layers are 191 

interpolated from the original models, and the velocities increase with depth. To improve 192 

earthquake location, in every first iteration the hypocenters were relocated, and in every second 193 

iteration the velocity model inversion is conducted simultaneously with hypocenter relocation. 194 

This process is repeated for 20 iterations. Finally, the layers with similar velocities are merged. 195 

Based on this analysis, we determined the average crustal thicknesses for Myanmar in MH1 196 

and MH1_sed model at 42.5 km and for other models, the crustal thickness is 45 km.  We tested 197 

sedimentary thickness of of 2, 5, and 10 km for the models with the sedimentary layers. 198 

We conducted a random initial model test to find our best velocity model. This was done by 199 

creating 500 perturbations for each model by randomly modifying each Vp and Vs in every 200 

layer within the range of ± 10 %, and we keep the Vp/Vs ratio within the range of 1.6 to 1.9. 201 

Each initial model is then inverted using VELEST. We adopted damping parameters suggested 202 

by Kissling et al. (1994), i.e. origin time damping = 0.01, hypocenter damping = 0.01, depth 203 

damping = 0.01, velocity damping = 1.0, and station correction damping = 1.0. The maximum 204 

number of iteration was set to 20.  205 

We only accepted the inverted models with the lowest 10% of travel-time RMS residuals for 206 

each set of initial models. The final velocity models are obtained by averaging the accepted 207 

models. The distribution of inversion results for each model will give an indication of the 208 
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inversion robustness. The results for all models are shown in Figure 3. This test showed that 209 

the initial models with sedimentary layer produced a relatively high uncertainty especially in 210 

the crust.  211 

Our next step was to refine the station corrections by using the final velocity models from the 212 

first step and set a higher damping value for the velocity model (Husen et al., 2011). In this 213 

case, the velocity model will not change significantly while the inversion updates the station 214 

corrections and hypocenters. Following Husen et al. (2011), we set a damping of 10.0 for the 215 

velocity model. The NPW station, located in Nay Pyi Taw (Figure 8.a) was used as reference 216 

station for station corrections, because it is located roughly in the center of the study area, and 217 

is operated during most of the period.   218 

To assess the quality of the inversion result, we located the events with HYPOCENTER using 219 

the new velocity models along with the station corrections. Then, we compared the RMS travel-220 

time residuals for each velocity model. The relocated events using models with sedimentary 221 

layers produced higher mean travel-time residual than the initial locations (Table 2). Based on 222 

the average weighted RMS travel-time residuals, the new 1D velocity model from ak135 and 223 

NEI gave the lowest values (Figure 4, Table 3). In the Discussion, we look at the estimation of 224 

the standard errors of hypocenter locations using these models. Furthermore, VELEST only 225 

uses the first arriving P- and S-waves, while in earthquake monitoring at DMH, the analysts 226 

also use other crustal phases to locate shallow earthquakes, e.g., Pn, Pg, Sn, and Sg. In the 227 

Discussion, we also show that when using these crustal phases for shallow earthquake location, 228 

the result using the new velocity model improves the earthquake locations. 229 

 230 

 231 
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Local magnitude inversion 232 

Currently, DMH is using the Southern California local magnitude scale (Hutton and Boore, 233 

1987). This may be a reasonable starting point as both areas are tectonically active. The tectonic 234 

settings are still quite different and it is important to test whether the Southern California scale 235 

may be appropriate, or if it is necessary to replace with a new scale derived for Myanmar that 236 

would provide better estimation of earthquake magnitude.  237 

The local magnitude scale (ML) was first introduced by Richter (1935) to estimate the size of 238 

earthquakes by measuring the maximum amplitude from the horizontal component seismogram 239 

recorded by the Wood-Anderson (WA) seismograph.  This method is still widely used for local 240 

earthquake monitoring because of its simplicity and widespread use. Since this magnitude scale 241 

was introduced using the WA seismograph, today’s digital seismogram is transformed into the 242 

equivalent of the WA recording with a period of 0.8 s and a damping factor of 0.8 (Havskov 243 

and Ottemöller, 2010; Ottemöller and Sargeant, 2013).   244 

Richter (1935) introduced the ML as   245 

𝑀𝐿 = log 𝐴 − log 𝐴0 + 𝑆       (1) 246 

in which A is the amplitude from the WA seismograph in mm, -log A0 is the epicentral distance 247 

dependent correction term, and S is the station correction. Bakun and Joyner (1984) later 248 

developed the ML scale for Central California and introduced the correction term as 249 

− log 𝐴0 = 𝑎 log (
𝑅

100
 𝑘𝑚) + 𝑏(𝑅 − 100 𝑘𝑚) + 3.0       (2) 250 

where 𝑎 and 𝑏 are the parameters that depend on geometrical spreading and attenuation, 251 

respectively. R is the hypocentral distance in kilometers. Hutton and Boore (1987) obtained the 252 

constants a = 1.11 and b = 0.00189 for Southern California.  253 
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Inserting equation (2) into (1), and converting the WA peak amplitude in mm into peak 254 

amplitude in nanometers with unit gain instead of 2080 for original WA instrument, ML scale 255 

for Southern California is,  256 

𝑀𝐿 = log 𝐴 (nm) + 1.110 log 𝑅 (km) + 0.00189𝑅 − 2.09       (3) 257 

where the constants a and b from Hutton & Boore (1987) are used (IASPEI, 2013). Since 258 

different tectonic and geological conditions yield different attenuation, it is important to use the 259 

appropriate correction terms to obtain the appropriate ML. In order to obtain the ML scale for 260 

Myanmar region, we use the following equation 261 

𝑀𝐿 = log 𝐴 (nm) + 𝑎 log(𝑅) (km) + 𝑏𝑅 + 𝐶 + 𝑆       (4) 262 

We invert for ML, a, b, the base level C, and S using the singular value decomposition method. 263 

This inversion follows the method described in Ottemöller and Sargeant (2013) and is 264 

implemented in the MAG2 program in the SEISAN package (Havskov and Ottemoller, 1999; 265 

Ottemöller et al., 2018).   266 

Inversion and Result 267 

We used the earthquake catalog from January 2014 to April 2018 with the updated locations 268 

obtained in this work and selected only the stations that are used by DMH for real-time 269 

earthquake monitoring. The events that are used for this inversion have a minimum of two 270 

amplitude readings. We only used earthquakes that were shallower than 50 km. The total 271 

number of earthquakes is 194 which are recorded by a total of 15 stations. The number of S- 272 

and Lg-waves maximum amplitudes is 891. The ray-path coverage of the events used for the 273 

ML inversion is shown in Figure 2.c.  274 
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The distribution of data with respect to distance and the old ML is shown in Figure 6. We used 275 

the amplitudes with hypocentral distance less than 1000 km, while most of the hypocentral 276 

distances are within 100 to 400 km. The magnitude range is from ML=1.0 to ML=6.2.  The 277 

tectonic settings of the East and Central and the West region of Myanmar are different. 278 

Earthquakes in the East and Central regions occur in the crust, while in western Myanmar or 279 

the IBR region, earthquakes occur from shallow crustal depth down to intermediate depth. 280 

However, our objective at this stage is to obtain a single magnitude scale for the whole region. 281 

We obtained the following ML scale for Myanmar:  282 

𝑀𝐿 = log 𝐴 + 1.485 ∗ log 𝑅 + 0.00118 ∗ 𝑅 − 2.77 + 𝑆      (5) 283 

Furthermore, we also conducted another inversion where a and b values are fixed to the 284 

Southern California scale, and only invert for the station corrections. We compared the residuals 285 

of ML obtained by using the Southern California scale without and with the stations corrections, 286 

the new ML for Myanmar with station corrections (Figure 6). Both the ML scale for Southern 287 

California and Myanmar with station corrections have much lower residuals compared to the 288 

Southern California scale without stations corrections, which suggests that local site variations 289 

significantly affect the maximum amplitudes.  290 

 291 

 292 

 293 

 294 

 295 

 296 
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Discussions  297 

Minimum velocity model and earthquake location tests 298 

To improve earthquake location in Myanmar, we inverted for a 1D velocity model using a 299 

catalog based on DMH and ISC data. We tested the inversion using different initial velocity 300 

models. The results from initial models with sedimentary layer gave the highest residuals. This 301 

is probably due to the difference of sedimentary thickness in the Myanmar region. The random 302 

initial models test showed that the velocity models with sedimentary layer produced quite large 303 

uncertainties especially for the velocities in the crust (Figure 4). Therefore, we decided not to 304 

use the velocity model with a sedimentary layer and sedimentary thickness in Myanmar can be 305 

accommodated by using station corrections.  306 

After testing different initial models, the ak135, and NEI models produce the best results. Since 307 

these two models produced similar residuals, we estimated the standard errors of these models 308 

using bootstrap resampling analysis for 276 events recorded by at least 10 stations. We did the 309 

bootstrap analysis by adding random Gaussian noise with a standard error of 1.0 second to the 310 

arrival times in the earthquake catalog and then located the earthquakes using the initial and 311 

new models, and at every run, 10% of the data are excluded from the inversion. This process 312 

was repeated 200 times. Then, we calculated the horizontal and vertical standard errors of each 313 

event for these models (Figure 7). The lowest horizontal and depth standard errors were 314 

produced by the locations obtained using the final model from NEI. Therefore, we chose the 315 

final model from NEI as the best model and will be referred to as Myanmar Minimum 1D 316 

Velocity model (MM_1D) (Figure 5).  317 

The low standard errors for the hypocenters located using the MM_1D model can be attributed 318 

to unevenly distributed earthquakes and stations throughout the study region. The majority of 319 



   
 
 

15 
 
 

the earthquakes are located around the IBR, and many of the stations are also located around 320 

IBR and Northeast India region. This condition may explain the tendency of the MM_1D model 321 

to produce the smallest hypocentral standard errors compared to other models. On the other 322 

hand, the MH1 model was mostly derived using temporary stations mainly distributed in 323 

Central Myanmar, where there are only few earthquakes in our dataset. Figure 3 shows that the 324 

velocity models below the Moho tend to converge into smaller velocity range which indicates 325 

smaller velocity uncertainties. The earthquakes with depth below the Moho (45 km) make up 326 

53% of the data set and are located mostly beneath the IBR. We can assume that the P- and S-327 

waves travel through similar heterogeneities. As for the crustal part, the huge crustal thickness 328 

and velocity variations, and unevenly distributed crustal earthquakes can make velocities in the 329 

crustal layers difficult to resolve. Hence, our result produces higher uncertainty for the crustal 330 

models.   331 

The station corrections for P-wave travel-times  are shown in Figure 8.a and the station 332 

corrections for P-waves and S-waves are shown in Figure S2. The station corrections depict the 333 

difference between observed and calculated travel-times, where positive and negative values 334 

correspond to late and early observed arrival times, respectively (e.g., Wright, 2008; Midzi et 335 

al., 2010). Most of the stations in the center of the study area have relatively small residuals 336 

except MDY, which has a station correction of -0.98 seconds. MDY is located on hard-rock 337 

(Thiam et al., 2017), which make this station tend to have faster observed travel-time. There 338 

are other stations that have relatively large station corrections (>1 second), however we do not 339 

have any information about station site condition. Stations around the IBR have positive station 340 

corrections which can be attributed to the local site conditions or lateral velocity anomaly 341 

beneath this region. Since most of the earthquakes recorded by these stations are from the 342 

subducted slab, the upgoing seismic waves probably encounter low velocity anomaly beneath 343 
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the IBR. A seismic tomography by Raoof et al. (2017) showed the existence of a low Vp 344 

anomaly beneath the IBR region down to ~ 40 km, which was interpreted as sediment  345 

metamorphosis at greater depth. There are also several stations in the east which have quite 346 

large travel time corrections (> 1.5 seconds). We suspect, that there are due to some 347 

misidentified phases included from the ISC catalog. Most of the earthquakes that were recorded 348 

by these stations are shallow earthquakes at regional distances, and in some cases the first 349 

arriving Pn phases are not easily picked, and sometimes Pg phases are identified as the first 350 

arriving phases. 351 

We conducted a test to see whether the new model can produce relatively good hypocenter 352 

locations of events which have more relaxed constraints (e.g., fewer number of stations and 353 

larger azimuthal gap). We also tested if the location solutions improve when additional regional 354 

phases are used (e.g., Pg and Sg) in addition to the first arriving P- and S-waves, especially for 355 

the small shallow earthquakes where there is no station within a radius of 100 km. 356 

For the first test, we compared the hypocenter solutions using the initial velocity model (ak135) 357 

and the final velocity model along with the station corrections. A total of 649 earthquakes were 358 

selected by using relaxed criteria, i.e., minimum number of stations: seven stations, maximum 359 

azimuthal gap: 200o, and RMS travel-time residuals≤ 3.5 seconds. The hypocenter locations 360 

using the initial velocity model (ak135) and the MM_1D model will be referred to as old 361 

hypocenters and new hypocenters, respectively. To estimate the standard errors of the old and 362 

final hypocenters, we also did the bootstrap resampling test. The 95th percentile (P95) of final 363 

horizontal standard errors is slightly reduced compared to the old locations where the P95  for 364 

final hypocenter is 5.11 km while it is 6.21 km for the old locations. The vertical standard errors 365 

for final locations are significantly reduced, where the P95 for final hypocenters is 13.73 km and 366 
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for the old hypocenters is 20.05 km. The cross-section plot of the old and final locations is 367 

shown in the supplementary material (Figure S3). 368 

In the second test, we compared the mainshock and aftershocks of the Mw(USGS)=6.0 Phyu 369 

earthquake at 10 km depth that struck the southern region of Myanmar on 11 January 2018  . 370 

The mechanism of this event was oblique thrust. This earthquake occurred about 20 km from 371 

the Sagaing fault. DMH reported that the event was followed by more than 50 aftershocks at 372 

shallow depths. The closest stations are the NPW and YGN stations, both about 160 km from 373 

the epicenter (see Figure 8a). In order to reduce the depth uncertainty especially for the smaller 374 

events, we picked the crustal phases, e.g., Pg and Sg. We selected 28 earthquakes recorded by 375 

a minimum of five stations and with an azimuthal gap < 210o. We then located the events using 376 

the HYPOCENTER program using two velocity models, i.e., the initial velocity model (ak135) 377 

and the MM_1D velocity model along with the station corrections (Figure 9). 378 

Most of the initial locations have depth less than 10 km, where some of the depths are close to 379 

zero due to the layer boundary resulting in minimum RMS error. The initial epicenter 380 

distribution shows an east-west trend, however, there is no clear pattern in the cross-section 381 

view. On the other hand, the new locations show a pattern with the dip around 40o to 50o, which 382 

is quite consistent with the focal mechanism of the mainshock (Figure 9). The mainshock depth 383 

using the final model is 10.4 km. We also plotted horizontal location uncertainty by using error 384 

ellipses obtained from the inversion as well as the vertical uncertainty. Both of the horizontal 385 

and vertical uncertainties of the final locations are reduced significantly compared to the old 386 

location uncertainties (Figure 9). 387 

 388 

 389 
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ML amplitude-distance curve for Myanmar and ML-mb(ISC) comparison 390 

The ML scale for Myanmar is obtained using the new seismic network data in Myanmar and the 391 

surrounding regions. Based on the dataset, this scale is valid for ML up to 6.2 and distance up 392 

to 1000 km. We compared the ML distance correction term (𝑎 ∗ log 𝑅 + 𝑏 ∗ 𝑅 + 𝑐) obtained in 393 

this study with the correction terms for other regions, i.e. Southern California (Hutton and 394 

Boore, 1987), Central California (Bakun and Joyner, 1984), Eastern U.S. (Kim, 1998), and 395 

Norway (Alsaker et al., 1991) (Figure 10). The ML distance correction term for Myanmar for 396 

the distance up to about 100 km is smaller than the Southern California scale. However, this is 397 

based only on about 60 observations. For distances greater than 100 km up to 400 km, where 398 

we have the most observations, the correction is slightly higher than the Southern California 399 

scale. As for the distances greater than 500 km the correction term become increasingly lower 400 

as the distance increases.  401 

The residuals of ML are significantly reduced if the new ML scale is used together with station 402 

corrections (Figure 8.b). The sedimentary thickness is one of the factors that affects ground 403 

motion, even though we used the vertical components for amplitude reading, some variations 404 

are still expected. The amplitude used in the ML scale introduced by Richter (1935) are 405 

measured on the horizontal components, however the common routine practice at DMH is to 406 

use the vertical components. Therefore, we decided to only measure the amplitudes on the 407 

vertical components. The Mandalay (MDY) and Myitkyina (MYI) stations have relatively large 408 

positive station corrections which suggests that the amplitudes on these stations are much lower 409 

than expected. As mentioned before, Thiam et al. (2017) reported that the MDY station is 410 

located on hard-rock and has low site amplification. As for the MYI station, we do not have 411 

any information about the site condition.  412 
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Even though the new ML scale for Myanmar and the Southern California scale with station 413 

corrections produced similar residuals, the ML values can be different. The a and b value are 414 

also different which reflects the different crustal conditions between Myanmar and Southern 415 

California. In most cases, the differences between these two magnitudes are mostly about ±0.1 416 

magnitude units (m.u.), but the differences can reach up -0.2 m.u. (Figure S4). Therefore we 417 

suggest the usage of the new ML  scale instead of the Southern California scale for Myanmar 418 

region.  419 

Since the new ML scale for Myanmar was derived for shallow earthquakes, we tested the ML 420 

calculation for deeper earthquakes, which are mostly intra-slab earthquakes (deeper than 50 421 

km). Despite having larger residuals than shallow earthquakes, the residuals for ML of deeper 422 

events are still within an acceptable range (Figure S6). Therefore, we suggest that for routine 423 

location procedure in Myanmar, the new ML scale can be used for deeper earthquakes. 424 

The new ML scale for Myanmar is compared with the teleseismic body-wave magnitude mb 425 

reported in the ISC bulletin. 73 events in our dataset are reported in the reviewed ISC catalog 426 

for the period between January 2014 to August 2016. A linear orthogonal regression between 427 

ML and mb (ISC) for 73 common events is mb (ISC) = 1.08 ML – 0.18 with scatter of 0.23 m.u.  428 

The regression indicates that the two magnitudes converge at magnitude 2.25, but mb (ISC) is 429 

greater than ML at large magnitudes (see Figure S6). The mean of ML for 73 events is 4.25±0.63, 430 

whereas corresponding mean of mb (ISC) is 4.43±0.68, and hence mb is about 0.18 m.u. greater 431 

than ML (Figure S5).     432 

 433 

 434 

 435 
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Conclusions 436 

We have demonstrated that the new seismic velocity model and local magnitude scale along 437 

with the station corrections produced better locations and local magnitude estimates than what 438 

was obtained with current models. The MM_1D produces more accurate hypocenter solutions 439 

compared with other models tested in this study. When locating shallow earthquakes by using 440 

different crustal phases (Pn, Pg, Sg, and Sn), the use of the MM_1D model reduced the depth 441 

uncertainties of shallow earthquakes. The new ML scale in Myanmar together with the station 442 

corrections produces lower residuals than the Southern California scale.  443 

Further improvement is possible in the future, since Myanmar is a complex tectonic region 444 

where strong lateral variation exist, specific 1D velocity models and probably specific ML scale 445 

can be developed for the different regions in Myanmar. As the Myanmar Seismic Network and 446 

the earthquakes database grow, there will be a good enough dataset to derive such models in 447 

the future. 448 

 449 

Data and Resources 450 

The local catalog data used in this study were provided by the Department of Meteorology and 451 

Hydrology of Myanmar. Additional data were downloaded from The International 452 

Seismological Centre (http://www.isc.ac.uk/, last accessed July 2018). Waveform data were 453 

obtained from Department of Meteorology and Hydrology of Myanmar, Incorporated Research 454 

Institutions for Seismology (IRIS), and the Observatories and Research Facilities for European 455 

Seismology (ORFEUS) European Integrated Data Archive (EIDA). The Obspy python package 456 

(Beyreuther et al., 2010) was used to obtained some of the waveform data. Some of the figures 457 

were created using the Generic Mapping Tools (www.soest.hawaii.edu/gmt, last accessed 458 

http://www.isc.ac.uk/
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December  2017; Wessel et al. 2013). The topography data of EOTOPO.1 Global Relief model 459 

was used in Figure 1 and was obtained from https://www.ngdc.noaa.gov/mgg/global/ (last 460 

accessed September 2018). The ITRF2008 (Altamimi et al., 2012) velocity vector in Figure 1 461 

was obtained from UNAVCO Plate Motion Calculator 462 

(https://www.unavco.org/software/geodetic-utilities/plate-motion-calculator/plate-motion-463 

calculator.html, last accessed May 2019). The topography data of Shuttle Radar Topography 464 

Mission (SRTM) 1 Arc-Second Global model was used in Figure 9. The SRTM model is 465 

available from the U.S. Geological Survey and was downloaded via 466 

https://earthexplorer.usgs.gov/ (last accessed, September 2018). 467 
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Figure Captions: 

Figure 1. The distribution of earthquakes used in this study (circles colored according to the 

depths). Seismic stations (triangles) used in this study: 1. Seismic stations used in real-time 

seismic monitoring by Department of Meteorology and Hydrology of Myanmar (blue), 2. Other 

seismic stations that waveforms are available to this study (gray), 3. Seismic stations only with 

travel-time data only (black). Damaging earthquakes mentioned in the text are shown as black 

stars labelled with the year of occurrence. Active faults in Myanmar and the surrounding 

regions are depicted by black lines. The slip direction of Sagaing fault is shown by red arrows. 

Velocity vector is ITRF 2008 (Altamimi et al. 2012) velocity of Indian plate relative to Eurasian 

plate. The insert map is the area of study (black rectangle) in larger scale map. 

Figure 2. a. The P-waves ray-path coverage of 419 earthquakes (circles) used in 1D seismic 

velocity inversion, b. The S-waves ray-path coverage. c. The ray-path coverage of 194 

earthquakes used in ML scale inversion (MAG2). d.  Data distribution with respect of the 

Southern California ML scale (Hutton and Boore 1987) and distance. 

Figure 3. An example of the inversion step using the NEI model: a. The initial model with 5 km 

layer thicknesses in the crust and 10 km thickness in the mantle, b. The refined initial model 

which is obtained by inverting the initial model and combine the layers with similar velocities, 

c) the initial models for the random initial test, d. the result of random initial test where all 

inverted models are depicted by gray lines, and the accepted models are depicted by black lines. 

Figure 4. The accepted results from the random initial test. The final velocity models are 

depicted with black lines, and all the accepted results from random test are shown as gray lines. 

a. The result for models without sedimentary layers, b. The result for models with sedimentary 

layers. 

Figure 5. a. The plot of Vp and Vs versus depth of final model (MM_1D). b. The histogram 

that shows the depth distribution of the events used in the inversion. 

Figure 6. ML residuals with respect of distances (left) and ML residuals vs number of 

observations (right): for Southern California scale (Hutton and Boore 1987) without station 

corrections (a) and with station corrections (b), and ML derived in this study with station 

corrections (c). 

Figure 7. a. Histogram of horizontal location standard error for the initial and the final from 

ak135 and NEI velocity models. The 95th percentile (P95) of each models is also shown on the 

upper right of the figures. b. Histogram of vertical location standard error for the initial and the 

final velocity models.  

Figure 8. a. P-wave travel-time corrections obtained from VELEST. The reference station 

(NPW) is depicted with a gray diamond. b. ML station corrections. The stations discussed in the 

text are labelled. 

Figure 9. a. The hypocenters distribution (with epicentral error ellipses) of the 11 January 2018 

Phyu earthquake and its aftershocks located using the initial model (ak135). The focal 

mechanism is the solution from Global CMT.  The east-west cross-section view is shown at the 

bottom. The vertical bars are proportional with the depth error of the events. Thick black line 
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is the topographic projection. b. the hypocenters distribution located using the final (MM_1D) 

velocity model. 

Figure 10. Comparison of ML correction term for unit of displacement in nanometers from this 

study and other regions. Below the curves, histogram of number of data used at different 

hypocentral distances is also shown. 

Table Captions 

Table 1. The list of initial 1D velocity models used in this study. 

Table 2. The comparison of initial and final models mean residuals. 

Table 3. Final Velocity model.  
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Tables 

 

No Velocity Model Source Comments 

1 ak135 ak135 Without Sedimentary 

layer 

2 ak135sed ak135 With Sedimentary layer 

3 MC1.0 Crust1.0 and ak135 Without Sedimentary 

layer 

4 MC1.0sed Crust1.0 and ak135 With Sedimentary layer 

5 NEI 1D model from Raoof et al. (2017) and ak135 Without Sedimentary 

layer 

6 NEIsed 1D model from Raoof et al. (2017) and ak135 With Sedimentary layer 

7 MH1 Myanmar Hybrid model v1 (Wang et al., 2018), Crust1.0 

and ak135 

Without Sedimentary 

layer 

8 MH1sed Myanmar Hybrid model v1 (Wang et al., 2018), Crust1.0 

and ak135 

With Sedimentary layer 

 

Table 1. The list of initial 1D velocity models used in this study. 

 

No Velocity Model Initial mean residual (s) Final mean residual (s) 

1 ak135 1.286 1.085 

2 ak135sed 1.272 1.519 

3 MC1.0 1.269 1.244 

4 MC1.0sed 1.246 1.386 

5 NEI 1.255 1.084 

6 NEIsed 1.289 1.647 

7 MH1 1.307 1.200 

8 MH1sed 1.3 1.278 

 

 

Table 2. The comparison of initial and final models mean residuals. 
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Top layer depth (km) Vp (km/s) Vs (km/s) 

above 0 5.58 3.31 

15 6.10 3.32 

25 6.62 3.83 

45 8.07 4.65 

65 8.19 4.66 

80 8.19 4.70 

120 8.53 4.72 

165 8.70 4.83 

 

Table 3. Final Velocity model.  
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a) New location using MM_1D model
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