This is a post-peer-review, pre-copyedit version of an article published in Journal of Solution Chemistry. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10953-019-00856-4

Volumetric Properties of the Nucleosides Adenosine, Cytidine, and Uridine in Aqueous Solution at $T=(288.15$ and 313.15) K and $\boldsymbol{p}=(\mathbf{1 0}$ to 100) $\mathbf{M P a}$

Gavin R. Hedwig ${ }^{1 \cdot}$ Geoffrey B. Jameson ${ }^{1}$. Harald Høiland ${ }^{\mathbf{2}}$

${ }^{1}$ Institute of Fundamental Sciences-Chemistry, Massey University, Private Bag 11 222, Palmerston North, New Zealand
${ }^{2}$ Department of Chemistry, University of Bergen, N-5020 Bergen, Norway

Corresponding author: G. R. Hedwig, e-mail: g.hedwig@xtra.co.nz

Abstract

Speeds of sound have been measured for aqueous solutions of the nucleosides adenosine, cytidine, and uridine at the temperatures $T=(288.15$ and 313.15$) \mathrm{K}$ and at the pressures $p=(10,20,40,60,80$, and 100$) \mathrm{MPa}$. Using the methods described in our previous work, the partial molar volumes at infinite dilution, V_{2}^{0}, the partial molar isentropic compressions at infinite dilution, $K_{S, 2}^{0}$, and the partial molar isothermal compressions at infinite dilution, $K_{T, 2}^{\mathrm{o}}\left\{K_{T, 2}^{\mathrm{o}}=-\left(\partial V_{2}^{\mathrm{o}} / \partial p\right)_{T}\right\}$, for the nucleosides were derived from the speed of sound data at elevated pressures. The thermodynamic properties V_{2}^{0} and $K_{T, 2}^{0}$ were combined with those determined previously for $T=298.15 \mathrm{~K}$ to create 3D surfaces that display the pressure and temperature dependences of these properties. The purine nucleoside adenosine displays distinctly different trends in these properties from those of the pyrimidine nucleosides cytidine and uridine. A semi-empirical model was used to rationalize the $K_{T, 2}^{\mathrm{o}}$ results in terms of likely changes in hydration as a function of temperature and pressure.

Keywords Speed of sound • Partial molar volume • Partial molar isothermal compression • High pressure • Nucleosides • Aqueous solution

1 Introduction

One hypothesis for how life may have first emerged from an abiotic world proposes that RNA was the earliest form of both a genetic and catalytic biopolymer [1-3]. This hypothesis, which is commonly referred to as the "RNA world", was first proposed three decades ago [4] and still remains popular today [5,6]. The primordial conditions of temperature, pressure, and pH under which the polymer RNA could be formed from its basic building blocks such as the nucleicacid bases, nucleosides and nucleotides are far from established [7-9]. It is useful, therefore, to determine the conditions of temperature and pressure under which RNA and its constituent molecules are both physically and chemically stable so that the boundary conditions necessary for an RNA world to prevail can be defined.

The volumetric properties as a function of pressure for RNA and its constituents are paramount for mapping the physical stabilities of these molecules over the (p, T) landscape. In our previous work [10,11], the partial molar volumes at infinite dilution, V_{2}^{0}, and the partial molar isothermal compressions at infinite dilution, $K_{T, 2}^{\mathrm{o}}\left\{K_{T, 2}^{\mathrm{o}}=-\left(\partial V_{2}^{0} / \partial p\right)_{T\}}\right.$, were obtained for the nucleosides adenosine, cytidine, and uridine over the pressure range $p=(10$ to 120$) \mathrm{MPa}$, and for guanosine over the range $p=(10$ to 100$) \mathrm{MPa}$. Both studies were conducted at the single isotherm $T=298.15 \mathrm{~K}$. In order to construct a functional (p, T) stability map, volumetric data are required for a range of temperatures. As an initial contribution to this objective, we report herein speed of sound measurements at the temperatures $T=(288.15$ and 313.15$) \mathrm{K}$ and at the pressures $p=(10,20,40,60,80$, and 100$) \mathrm{MPa}$ for aqueous solutions of the nucleosides adenosine, cytidine, and uridine. Using the methods described previously [10-12], these sound speeds were analysed to obtain the volumetric properties, V_{2}^{0}, the partial molar isentropic compressions at infinite dilution, $K_{S, 2}^{0}$, and $K_{T, 2}^{0}$.

2 Experimental

2.1 Materials

The samples of adenosine, cytidine, and uridine were from the same batches of material used in a previous study [13]. Details of the purification and characterization of these samples, and a summary Table that gives the source, purification method, and mass fraction purity for each nucleoside have been reported elsewhere [13].

The water used to prepare solutions and as the reference solvent was purified by reverse osmosis and deionization using an Ondeo Purite Select water purification system, and thoroughly degassed just prior to use. All solutions were prepared by mass using a Mettler Toledo AX205 analytical balance with a readability of 0.01 mg . Corrections were made for the effect of air buoyancy using densities for the crystalline nucleosides taken from the literature $[14,15]$. The uncertainties for the solution molalities were $<2 \times 10^{-5} \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$.

2.2 Apparatus and Methods

The instrument used for the sound speed measurements at high pressures was designed and constructed at the University of Bergen. Details of the apparatus and operational procedures used have been described previously [12]. The operating temperatures $T=288.15 \mathrm{~K}$ and $T=$ 313.15 K were stable to $\pm 0.001 \mathrm{~K}$ and $\pm 0.002 \mathrm{~K}$, respectively, and the pressure was adjustable to within $\pm 0.15 \mathrm{MPa}$ of any nominal value [12]. The estimated uncertainty for a measured sound speed was $\pm 0.03 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

3 Results

3.1 Thermodynamic Formalism

The derivation of the relationship for the calculation of solution densities from speed of sound measurements at high pressures is summarized as follows. The difference between the
isothermal compressibility, $\kappa_{T}\left\{\kappa_{T}=-(\partial V / \partial p)_{T} / V\right\}$, and the isentropic compressibility, $\kappa_{S}\left\{\kappa_{S}\right.$ $=-(\partial V / \partial p) s / V\}$, which is usually represented by the symbol $\delta[16,17]$, can be written in the form [16-18]:

$$
\begin{equation*}
\delta=\kappa_{T}-\kappa_{S}=\left(T \alpha^{2} V\right) / C_{p}=\left(T \alpha^{2}\right) / \sigma \tag{1}
\end{equation*}
$$

where C_{p} is the isobaric heat capacity, σ is the heat capacity per unit volume, and α is the isobaric expansibility [16], which is defined by the equation:

$$
\begin{equation*}
\alpha=(\partial V / \partial T)_{p} / V \tag{2}
\end{equation*}
$$

Since the difference between C_{p} and the isochoric heat capacity, C_{v}, is given by [18]:

$$
\begin{equation*}
C_{p}-C_{v}=\left(T \alpha^{2} V\right) / \kappa_{T} \tag{3}
\end{equation*}
$$

it follows from Eqs. 1 and 3 that the ratio of C_{p} to C_{v}, which is often expressed using the symbol γ, is given by:

$$
\begin{equation*}
\gamma=C_{P} / C_{v}=\kappa_{T} / \kappa_{S} \tag{4}
\end{equation*}
$$

Isentropic compressibilities of fluids are conveniently evaluated from speed of sound measurements. In the absence of sound dispersion, the isentropic compressibility is related to the speed of sound, u, by the Newton-Laplace equation [19]:

$$
\begin{equation*}
\kappa_{S}=1 /\left(u^{2} \rho\right) \tag{5}
\end{equation*}
$$

where ρ is the density of the fluid. Combining the isothermal compressibility recast in terms of density, $\left\{\kappa_{T}=(\partial \rho / \partial p)_{T} / \rho\right\}$, with Eqs. 4 and 5 leads to the equation:

$$
\begin{equation*}
(\partial \rho / \partial p)_{T}=\gamma / u^{2} \tag{6}
\end{equation*}
$$

Integration of Eq. 6 at constant temperature between the limits of $p=0.1 \mathrm{MPa}$ and a pressure p gives the expression:

$$
\begin{equation*}
\rho(p)-\rho(p=0.1)=\int_{p=0.1}^{p}\left(\gamma / u^{2}\right) d p \tag{7}
\end{equation*}
$$

This relationship provides a route for the evaluation of volumetric properties at high pressures. If the quantities ρ, γ, and u are known for a system at $p=0.1 \mathrm{MPa}$, and if the pressure dependence of the quantity $\left(\gamma / u^{2}\right)$ can be determined, then the density ρ at any pressure $p, \rho(p)$ can be obtained using Eq. 7.

3.2 Thermodynamic Quantities at $\boldsymbol{p}=0.1 \mathrm{MPa}$

Values of γ for aqueous solutions of the nucleosides at $p=0.1 \mathrm{MPa}$ were obtained using the following expression derived by combining Eqs. 1 and 4:

$$
\begin{equation*}
\gamma=\left(\kappa_{S}+\alpha^{2} T / \sigma\right) / \kappa_{S} \tag{8}
\end{equation*}
$$

In a recent paper [20], speeds of sound and specific heat capacities, c_{p}, were reported for aqueous solutions of adenosine, cytidine, and uridine at $T=(288.15$ and 313.15$) \mathrm{K}$ and at ambient pressure. The c_{p} results were analysed using a power series in molality, m, of the generic form:

$$
\begin{equation*}
y=\mathrm{y}_{1}{ }^{*}+a_{1}\left(m / m^{0}\right)+a_{2}\left(m / m^{0}\right)^{2} \tag{9}
\end{equation*}
$$

where a_{1} and a_{2} are the fitted coefficients, $m^{0}=1.0 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$, and $\mathrm{y}_{1}{ }^{*}$ is the respective property for pure water $\left(c_{p, 1}^{*}=(4.1855\right.$ and 4.1783$) \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~g}^{-1}$ at $T=(288.15$ and 313.15$) \mathrm{K}$, respectively [21]). Values for the coefficients a_{1} and a_{2} together with their estimated uncertainties are given in Table 1. The a_{1} coefficient for adenosine at $T=288.15 \mathrm{~K}$ was obtained using the linear form of Eq. 9 because the value obtained initially for the a_{2} coefficient was statistically insignificant. Included in Table 1 are the a_{1} and a_{2} coefficients obtained previously [10] from analyses using

Eq. 9 of density data reported [22] for solutions of the three nucleosides at four temperatures. Solution densities calculated using Eq. 9 were combined with the reported speed of sound data [20] to obtain isentropic compressibilities for aqueous solutions of the nucleosides at $T=$ (288.15 and 313.15) K. These κ_{S} results were in turn analysed using Eq. 9 , with $\kappa_{\mathcal{S}, 1}^{*}=(4.65762$ $\times 10^{-10}$ and $\left.4.31178 \times 10^{-10}\right) \mathrm{Pa}^{-1}$ at $T=(288.15$ and 313.15$) \mathrm{K}$, respectively, [23] to give the a_{1} and a_{2} coefficients shown in Table 1. For adenosine, the values for a_{2} were not statistically significant; the a_{1} values were evaluated using the linear form of Eq. 9. Values of c_{p} and κ_{S} (calculated using Eq. 9) for aqueous solutions of the nucleosides at $p=0.1 \mathrm{MPa}$ and at the molalities and temperatures used in this work are given in Table 2. Also included in Table 2 are solution densities calculated using Eq. 9 and sound speeds calculated from the κ_{S} and ρ values using Eq. 5 .

The isobaric expansibilities, α, for the various solutions at $T=(288.15$ and 313.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ were calculated using Eq. 2 transformed as:

$$
\begin{equation*}
\alpha=-(\partial \rho / \partial T)_{p} / \rho \tag{10}
\end{equation*}
$$

Solution densities for the molalities used in this study were calculated using Eq. 9 and the a_{1} and a_{2} coefficients at the four temperatures given in Table 1. The values of ρ_{1}^{*} for water used in the calculations were the same as those used in our previous work, viz. $\rho_{1}^{*}=(999.101,997.047$, 995.650, and 992.219$) \mathrm{kg} \cdot \mathrm{m}^{-3}$ at $T=(288.15,298.15,303.15$, and 313.15$) \mathrm{K}$, respectively [$10,22,24]$. For each solution the equation:

$$
\begin{equation*}
\rho-\rho_{\mathrm{l}}^{*}=b_{0}+b_{1}\left(T-T_{\mathrm{m}}\right)+b_{2}\left(T-T_{\mathrm{m}}\right)^{2} \tag{11}
\end{equation*}
$$

was fitted to the density data, where T_{m} is the mid-point temperature of the range used ($T_{\mathrm{m}}=$ 300.65 K), and $b_{\mathrm{i}}, \mathrm{i}=0-2$, are the fitted coefficients. Differentiation of Eq. 11 with respect to temperature at constant pressure leads to:

$$
\begin{equation*}
(\partial \rho / \partial T)_{p}=\left(\partial \rho_{\mathrm{l}}^{*} / \partial T\right)_{p}+\mathrm{b}_{1}+2 \mathrm{~b}_{2}\left(T-T_{\mathrm{m}}\right) \tag{12}
\end{equation*}
$$

The derivatives $(\partial \rho / \partial T)_{p}$ obtained using Eq. 12 , with $\left(\partial \rho_{1}^{*} / \partial T\right)_{p}$ taken as $-150.73 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{-}$ ${ }^{3} \cdot \mathrm{~K}^{-1}$ at $T=288.15 \mathrm{~K}$ and $-382.30 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~K}^{-1}$ at $T=313.15 \mathrm{~K}[25]$, were used to calculate the isobaric expansibilities using Eq. 10. These α values and their uncertainties, which were assessed by the application of propagation of errors methods [26] to Eq. 12, are given in Table 2.

The heat capacities per unit volume, which were obtained by simple multiplication of c_{p} by ρ, were combined with the values of α and κ_{S} to obtain using Eq. 8 the values of γ given in Table 2. The uncertainties for γ given in Table 2 were estimated by the application of propagation of errors methods to Eq. 8.

3.3 Solution Densities at High Pressures

The rigorous application of Eq. 7 to obtain from measured sound speeds the solution densities at high pressures is not possible because the pressure dependence of γ is not known. However, solution densities at high pressures can be estimated using Eq. 7, given some suitable assumption about the pressure dependence of γ. Since the solutions used in this work are relatively dilute, a reasonable assumption that can be made is that the difference between the γ values for a given solution at any two pressures is approximately the same as that for the pure solvent, i.e.:

$$
\begin{equation*}
\gamma(p)-\gamma(p=0.1 \mathrm{MPa}) \approx \gamma_{\mathrm{H} 2 \mathrm{O}}(p)-\gamma_{\mathrm{H} 2 \mathrm{O}}(p=0.1 \mathrm{MPa}), \tag{13}
\end{equation*}
$$

where $\gamma(p)$ and $\gamma_{\mathrm{H} 2 \mathrm{O}}(p)$ represent, respectively, the γ values for the solution and pure water at the pressure p given in parentheses. The values for $\gamma_{12 \mathrm{o}}(p)$ over the range $p=(0.1$ to 100$) \mathrm{MPa}$ were evaluated using the literature data given in Table 3. For consistency with our previous
work [10,12,27], the sound speeds were calculated using the equation reported by Chen and Millero [28]. It is worth reiterating [29] that the sound speeds for water at the nominal temperature of 300 K calculated using the equation reported by Chen and Millero differ from those in the comprehensive article by Wagner and Pruss [30] by less than 0.01% at pressures up to 20 MPa and by less than 0.03% at the higher pressures used in this study. The densities and isothermal compressibilities, $\kappa_{T, 1,}^{*}$, for water were obtained using the equation of state given by Chen et al. [31]. The isentropic compressibilities and the γ_{120} values given in Table 3 were calculated using Eqs. 5 and 4, respectively. Evidence presented in previous work [12] suggests that the underlying assumption upon which Eq. 13 is based is indeed reasonable, at least for dilute solutions and at moderate pressures.

The measured sound speeds for aqueous solutions of the nucleosides at $T=(288.15$ and 313.15) K and $p=(10.0$ to 100.0$) \mathrm{MPa}$ are given in supporting information Table 4. Following previous work [11,29], the quantity $\left(\gamma / u^{2}-\gamma_{1} / u_{1}^{2}\right)$ for each solution was analysed by weighted least-squares using a second-order polynomial of the form:

$$
\begin{equation*}
\gamma / u^{2}-\gamma_{1} / \mathbf{u}_{1}^{2}=c_{0}+c_{1}(p-0.1)+c_{2}(p-0.1)^{2} \tag{14}
\end{equation*}
$$

where $\gamma_{1} / \mathrm{u}_{1}{ }^{2}$ is the quantity for the pure solvent and $c_{\mathrm{i}}, \mathrm{i}=0-2$, are the fitted coefficients. The weighting factor for each value of $\left(\gamma / u^{2}-\gamma_{1} / u_{1}{ }^{2}\right)$ was taken as $1 /\left(\delta\left(\gamma / u^{2}\right)\right)^{2}$, where $\delta\left(\gamma / u^{2}\right)$ is the uncertainty for the quantity γ / u^{2}. In estimating the uncertainty for γ, no account was taken of the contribution from the right hand side of Eq. 13. In other words, the estimated errors are relative to those for water. The polynomial coefficients, $c_{i}, i=0-2$, and their standard deviations obtained from the least-squares analyses are given in supporting information Table S1. For several solutions of adenosine, three solutions of cytidine, and one solution of uridine all at T $=313.15 \mathrm{~K}$, the values obtained for c_{2} were not statistically significant. In these cases, the linear form of Eq. 14 was used in the analyses.

The densities for solutions of the nucleosides at $p=(10$ to 100$)$ MPa were obtained by integration between the limits of $p=0.1 \mathrm{MPa}$ and a pressure p of the expression that follows from combining Eqns. 6 and 14, viz.:

$$
\begin{equation*}
(\partial \rho / \partial p)_{T}-\left(\partial \rho_{1}^{*} / \partial p\right)_{T}=c_{0}+c_{1}(p-0.1)+c_{2}(p-0.1)^{2} \tag{15}
\end{equation*}
$$

The results obtained are given in supporting information Table S2. Included in Table S2 are the estimated uncertainties for the solution densities, which were obtained by the application of propagation of errors to Eq. 15 . At the pressures $p=(10$ to 60$) \mathrm{MPa}$, the uncertainty for the density at $p=0.1 \mathrm{MPa}\left(3.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}\right)$ is the predominant contributor to the estimated uncertainty for the calculated solution density. At $p=(80$ and 100$) \mathrm{MPa}$, small contributions arise for some solutions from the estimated uncertainties for the c_{i} coefficients of Eq. 15 .

3.4 Apparent and Partial Molar Volumes at High Pressures

The apparent molar volumes, V_{ϕ}, of the nucleosides in aqueous solution at $T=(288.15$ and 313.15) K and $p=(10$ to 100$) \mathrm{MPa}$ were calculated from the solution densities given in Table S2 using the equation:

$$
\begin{equation*}
V_{\phi}=\left(M_{2} / \rho\right)-\left(\rho-\rho_{1}^{*}\right) /\left(m \rho \rho_{1}^{*}\right) \tag{16}
\end{equation*}
$$

Where M_{2} is the solute molar mass and the other symbols used are as defined vide supra. The values used for ρ_{1}^{*} at the various pressures are those given in Table 3. The V_{ϕ} results, together with their uncertainties estimated using the procedures described previously [32], are given in supporting information Table S 3 . At each pressure, the molality dependence of V_{ϕ} was analysed using the linear equation:

$$
\begin{equation*}
V_{\phi}=V_{2}^{\mathrm{o}}+S_{\mathrm{v}} m \tag{17}
\end{equation*}
$$

where V_{2}^{0} is the partial molar volume of the solute at infinite dilution and S_{v} is the experimental slope. The V_{2}^{0} and S_{v} values, together with their standard errors obtained from weighted leastsquares analyses of the V_{ϕ} data, are given in Table 5 . The inverse squares of the uncertainties of the apparent molar volumes were used as the weighting factors. The molality range accessible for the sparingly soluble adenosine is too narrow for reliable values of V_{2}^{o} and S_{v} to be obtained using Eq. 17. The V_{2}^{0} values given in Table 5 are the means of the V_{ϕ} data and the uncertainties are the standard deviations. For cytidine and uridine at $T=288.15 \mathrm{~K}$ and $p=100$ MPa , the values of S_{v} obtained from the least-squares analysis were not statistically significant. The V_{2}^{0} values reported in Table 5 are the means of the V_{ϕ} data and the uncertainties given are the standard deviations. For completeness, the V_{2}^{0} and S_{v} results for the nucleosides at $p=0.1$ MPa that were obtained in previous work [22] are included in Table 5.

3.5 Apparent and Partial Molar Isentropic and Isothermal Compressions at High Pressures

The isentropic compressions, κ_{S}, for solutions of the nucleosides at $T=(288.15$ and 313.15$) \mathrm{K}$ and over the range $p=(10$ to 100$)$ MPa were calculated using Eq. 5 and the speeds of sound and solution densities given in Table 4 and supporting information Table S2, respectively. These κ_{S} values were used to calculate the apparent molar isentropic compressions, $K_{S, \phi}$, which are defined by the relation $[16,33]$:

$$
\begin{equation*}
K_{S, \phi}=\left(M_{2} \kappa_{S} / \rho\right)-\left(\kappa_{S, 1}^{*} \rho-\kappa_{S} \rho_{1}^{*}\right) /\left(m \rho \rho_{1}^{*}\right) \tag{18}
\end{equation*}
$$

The values used for the densities and isentropic compressibilities of water at the various pressures are those given in Table 3. The $K_{S, \phi}$ results obtained are given in supporting information Table S4. Included in Table S4 are the uncertainties for the $K_{S, \phi}$ values which were estimated by the application of propagation of errors to Eqs. 5 and 18, but with the exclusion
of contributions from the thermodynamic properties of the solvent. The uncertainty for u was taken as $\pm 0.03 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and the uncertainties used for the solution densities are those given in Table S2.

For dilute solutions of nonelectrolytes, the molality dependence of $K_{S, \phi}$ can usually be represented by the simple linear equation [34-36]:

$$
\begin{equation*}
K_{S, \phi}=K_{S, 2}^{0}+S_{k(S)} m \tag{19}
\end{equation*}
$$

where $K_{S, 2}^{0}$ is the partial molar isentropic compression of the solute at infinite dilution and $S_{k(S)}$ is the experimental slope. Values of $K_{S, 2}^{0}$ and $S_{k(S)}$ and their standard deviations obtained from weighted least-squares analyses of the apparent molar isentropic compressions using Eq. 19 are given in Table 6. The weighting factors used were the inverse squares of the uncertainties of the apparent molar isentropic compressions. The $K_{S, 2}^{\mathrm{o}}$ values for adenosine given in Table 6 are actually the means of the $K_{S, \phi}$ data because, as outlined in section 3.4, analyses using Eq. 19 are unreliable when the accessible molality range is too narrow. Since the $S_{k(S)}$ values obtained for cytidine at $T=313.15 \mathrm{~K}$ and $p=(10$ to 100$) \mathrm{MPa}$, and for uridine at $T=313.15$ K and $p=20 \mathrm{MPa}$ were not statistically significant, the $K_{S, 2}^{0}$ values given in Table 6 are the means of the $K_{S, \phi}$ data and the uncertainties given are the standard deviations. Included in Table 6 are the $K_{S, 2}^{0}$ and $S_{k(S)}$ values for the nucleosides at $T=(288.15$ and 313.15$) \mathrm{K}$ and $p=0.1$ MPa that were reported recently [20].

The apparent molar isothermal compressions, $K_{T, \phi}$, for the nucleosides at $T=(288.15$ and 313.15) K and pressures over the range $p=(10$ to 100$) \mathrm{MPa}$ were calculated using the isothermal equivalent of Eq. 18 , i.e. with $K_{S, \phi}, \kappa_{S}$, and $\kappa_{S, 1}^{*}$ replaced by $K_{T, \phi}, \kappa_{T}$, and $\kappa_{T, 1}^{*}$, respectively. The κ_{T} values were obtained from the κ_{S} and γ data using Eqs. 4 and 13. The $\kappa_{T, 1}^{*}$ values used in the calculations are given in Table 3. The $K_{T, \phi}$ results, along with their
uncertainties estimated using propagation-of-errors methods applied to Eqs. 4 and 18, are given in the supporting information Table S5. At each pressure, the molality dependence of $K_{T, \phi}$ was analysed by weighted least-squares using the isothermal equivalent of Eq. 19 with the inverse squares of the uncertainties of the apparent molar isothermal compressions as the weighting factors. The partial molar isothermal compressions at infinite dilution, $K_{T, 2}^{\mathrm{o}}$, the $S_{k(T)}$ values, and the standard errors obtained from the least-squares analyses are given in Table 6. The $K_{T, 2}^{0}$ values for adenosine given in Table 5 are actually the means of the $K_{T, \phi}$ data, as described above for $K_{S, 2}^{\mathrm{o}}$. For cytidine at $T=313.15 \mathrm{~K}$ and $p=60 \mathrm{MPa}$, and for uridine at $T=313.15 \mathrm{~K}$ and $p=$ $(10,20$, and 40$) \mathrm{MPa}$, analyses using the isothermal equivalent of Eq. 19 gave values for $S_{k(T)}$ that were not statistically significant. The $K_{T, 2}^{0}$ values and their estimated uncertainties given in Table 6 are, respectively, the means of the $K_{T, \phi}$ data and the standard deviations. Included in Table 6 are the $K_{T, 2}^{0}$ results for the nucleosides at $p=0.1 \mathrm{MPa}$ reported previously [20].

4 Discussion

It is convenient to combine the results obtained herein with those for $T=298.15 \mathrm{~K}$ obtained previously [10] and hence use 3D diagrams to display the pressure and temperature dependences of the partial molar volumes and the partial molar isothermal compressions at infinite dilution for the three nucleosides. The V_{2}^{0} and $K_{T, 2}^{0}$ values for adenosine over the pressure and temperature ranges $p=(0.1$ to 100$) \mathrm{MPa}$ and $T=(288.15$ to 313.15$) \mathrm{K}$ are displayed in Figs. 1a and 1b, respectively. At the temperatures $T=\left(313.15\right.$ and 298.15) K, V_{2}^{0} decreases with increasing pressure as a consequence of the positive values for $K_{T, 2}^{0}$ at these temperatures, as indicated in Fig. 1b. The positive $K_{T, 2}^{0}$ values for $T=298.15 \mathrm{~K}$ are smaller than those for $T=313.15 \mathrm{~K}$, hence the trend in V_{2}^{o} with pressure at $T=298.15 \mathrm{~K}$ is less marked. At
$T=288.15 \mathrm{~K}$, the values of $K_{T, 2}^{\mathrm{o}}$ are negative which means that V_{2}^{o} now increases with increasing pressure.

The temperature and pressure dependences of V_{2}^{0} and $K_{T, 2}^{0}$ for cytidine are shown in Fig. 2. At $T=313.15 \mathrm{~K}$, there is a small decrease in the value of V_{2}^{o} with increasing pressure $\left(K_{T, 2}^{\mathrm{o}}\right.$ values are small and positive) whereas at $T=298.15 \mathrm{~K}$ there is a small increase in V_{2}^{0} with increasing pressure up to $p=80 \mathrm{MPa}$ because the values of $K_{T, 2}^{0}$ are negative. The value of $K_{T, 2}^{0}$ at $T=298.15 \mathrm{~K}$ actually changes sign at about $p=90 \mathrm{MPa}$ [10] so the value of V_{2}^{o} is essentially constant at the higher pressures used in this study (see Table 5). At $T=288.15 \mathrm{~K}$ the increase in V_{2}^{0} with increasing pressure is more distinct because of the larger negative values for $K_{T, 2}^{0}$.

Figs. 3 a and 3 b show the temperature and pressure dependences of V_{2}^{0} and $K_{T, 2}^{\mathrm{o}}$ for uridine, respectively. The T and p dependences of V_{2}^{0} are qualitatively similar to those for cytidine. At the highest temperature, V_{2}^{0} decreases as the pressure increases because the values of $K_{T, 2}^{0}$ are positive. The changes in V_{2}^{o} at $T=298.15 \mathrm{~K}$ with increasing pressure are small and since the value of $K_{T, 2}^{0}$ changes sign at about $p=75 \mathrm{MPa}$, a maximum in the value of V_{2}^{0} occurs for the pressure $p=80 \mathrm{MPa}$ [10]. At the lowest temperature the value of V_{2}^{o} now increases with increasing pressure because the values of $K_{T, 2}^{0}$ are negative.

Various semi-empirical models are often used to rationalize the volumetric properties of small organic solutes in aqueous solution [37-39]. In previous work [10,20,27], we used a model [37] that involves an interpretation of hydration effects based on the relationship:

$$
\begin{equation*}
V_{2}^{\mathrm{o}}=V_{\mathrm{int}}+n_{\mathrm{h}} \cdot\left(V_{\mathrm{h}}-V_{1}^{*}\right) \tag{20}
\end{equation*}
$$

where $V_{\text {int }}$ is the intrinsic volume of the solute molecule, and V_{h} and V_{1}^{*} are, respectively, the partial molar volumes of water in the hydration shell of the solute and in the bulk solvent. The
value of the 'hydration number', n_{h}, is determined largely by the number of water molecules in the first hydration shell. Assuming that the value of n_{h} does not vary significantly with pressure, at least for moderate pressure changes, then differentiating Eq. 20 with respect to pressure at constant temperature gives:

$$
\begin{equation*}
K_{T, 2}^{\mathrm{o}}=-\left(\partial V_{2}^{\mathrm{o}} / \partial p\right)_{T}=-\left(\partial V_{\mathrm{int}} / \partial p\right)_{T}+n_{\mathrm{h}} \cdot\left(K_{\mathrm{h}}-K_{1}^{*}\right) \tag{21}
\end{equation*}
$$

where $K_{\mathrm{h}}\left\{K_{\mathrm{h}}=-\left(\partial V_{\mathrm{h}} / \partial p\right)_{T}\right\}$ is the partial molar isothermal compression of water in the hydration shell of the solute and $K_{1}^{*}\left\{K_{1}^{*}=-\left(\partial V_{1}^{*} / \partial p\right)_{T}\right\}$ is the partial molar isothermal compression of water in the bulk solvent. For solutes of low molar mass, the pressure dependence of the intrinsic volume can be neglected, at least to a first approximation, because it essentially involves the compression of covalent bonds [37,40]. Hence, Eq. 21 reduces to:

$$
\begin{equation*}
K_{T, 2}^{\mathrm{o}}=n_{\mathrm{h}} \cdot\left(K_{\mathrm{h}}-K_{1}^{*}\right) \tag{22}
\end{equation*}
$$

It follows from this expression that a negative value of $K_{T, 2}^{0}$ for a solute in aqueous solution indicates that the water molecules in the hydration shell are, on average, less compressible that those in the bulk solvent. Conversely, positive values for $K_{T, 2}^{0}$ arise if the water molecules in the hydration shell of a solute are more compressible than those in the bulk solvent.

As shown in Fig. 1b and Table 6, the $K_{T, 2}^{0}$ values for adenosine at $T=288.15 \mathrm{~K}$ are negative and increase from around $-10 \times 10^{-15} \mathrm{~m}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~Pa}^{-1}$ at the lower pressures to $-0.1 \times$ $10^{-15} \mathrm{~m}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~Pa}^{-1}$ at $p=100 \mathrm{MPa}$. These negative values imply that the water of hydration for adenosine at $T=288.15 \mathrm{~K}$ is less compressible than bulk water. From the trend in $K_{T, 2}^{0}$ with pressure, it is apparent that at a pressure slightly above $p=100 \mathrm{MPa}$ the value of $K_{T, 2}^{0}$ will become zero. At this particular pressure, the water molecules in the hydration shell are essentially the same as those in the bulk solvent, as least with regard to isothermal compression.

At the temperatures $T=(298.15$ and 313.15$) \mathrm{K}$ the $K_{T, 2}^{\mathrm{o}}$ values for adenosine are positive, which implies that the water molecules in the hydration shell are now more compressible than those in the bulk solvent. Interestingly, for $T=313.15 \mathrm{~K}$ the values of $K_{T, 2}^{0}$ are more or less independent of pressure. This suggests that the value of K_{h} changes with pressure at approximately the same rate as for K_{1}^{*} (from the data in Table 3, the values for K_{1}^{*} at $T=313.15$ K are $(8.03$ and 6.11$) \times 10^{-15} \mathrm{~m}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~Pa}^{-1}$ at $p=(0.10$ and 100$) \mathrm{MPa}$, respectively $)$.

Nucleosides are composed of just two major structural units, the base moiety and the ribose group. Results from previous studies of nucleosides and their bases [41,42] suggest that intrainteractions between the base and ribose units of a nucleoside in aqueous solution are minimal. Consequently, if volumetric data were available for a compound that models, for example, the ribose group of a nucleoside it would be possible to rationalize the $K_{T, 2}^{0}$ results obtained herein in terms of the group contributions. In earlier work [43], we derived from literature data a $K_{T, 2}^{\mathrm{o}}$ value for D-ribose at $T=298.15 \mathrm{~K}$ and $p=0.1 \mathrm{MPa}\left(K_{T, 2}^{0}=-\left(7.4_{2} \pm 0.4\right) \times 10^{-15} \mathrm{~m}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~Pa}^{-}\right.$ ${ }^{1}$). More recently, $K_{T, 2}^{0}$ data for D-ribose have become available over the pressure range used in this work, but only at the temperature $T=298.15 \mathrm{~K}$. Although D-ribose is not a perfect model for the ribose unit of a nucleoside, it is reasonable to assume that at least the signs for $K_{T, 2}^{0}$, and the trends with pressure, ought to be similar for both D-ribose and the ribose moiety of a nucleoside. The $K_{T, 2}^{0}$ values for D-ribose at $p=(20,60,100) \mathrm{MPa}$ are $(-7.78,-3.91,-0.32) \times$ $10^{-15} \mathrm{~m}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~Pa}^{-1}$, respectively (H. Høiland, unpublished results). Since the values of $K_{T, 2}^{\mathrm{o}}$ for adenosine at these pressures and $T=298.15 \mathrm{~K}$ are all positive [10], the contribution to $K_{T, 2}^{0}$ from the base moiety of adenosine must be positive. Presumably these positive values arise because the "structure-breaking" nature of the planar purine ring is not sufficiently compensated by hydrogen bonding between solvent water molecules and the polar functional groups on the purine ring.

Fig. 2 b shows that at each of the three temperatures, the $K_{T, 2}^{\mathrm{o}}$ values for cytidine become more positive as the pressure increases, and at any given pressure $K_{T, 2}^{0}$ becomes more positive as the temperature increases. The close proximity of the polar functional groups on the pyrimidine ring for cytidine allows for co-operative hydrogen bonding with water molecules. This type of interaction is expected to make a significant negative contribution to K_{h} and hence to $K_{T, 2}^{\mathrm{o}}$ [38]. The negative values observed for $K_{T, 2}^{\mathrm{o}}$ at low temperatures and pressures are indeed consistent with a contribution from such hydrogen bonding. As the temperature increases, the hydrogen bonding networks within the hydration shell should become more flexible, and as such more compressible, i.e. K_{h} would become more positive. The trends in $K_{T, 2}^{0}$ with temperature displayed in Fig. 2 b support this view.

The polar functional groups on the pyrimidine ring of uridine are, like cytidine, oriented such that co-operative hydrogen bonding with solvent water molecules is possible. The trends in $K_{T, 2}^{0}$ with temperature and pressure shown in Fig. 3b are indeed similar to those for cytidine, with one exception. Interestingly, the values of $K_{T, 2}^{0}$ at $T=313.15 \mathrm{~K}$ are essentially independent of pressure over the range used in this work. As noted above for adenosine, this implies that at this temperature the value of K_{h} changes with pressure at approximately the same rate as for $K_{1}{ }^{*}$.

In conclusion, this paper is the last of a series $[10,11,20,27]$ in which our focus has been to determine reliable volumetric properties of the four constituent building blocks of RNA, adenosine, cytidine, uridine, and guanosine at high pressures and several temperatures. These volumetric properties are, through the thermodynamic relation $(\partial G / \partial p)_{T}=V$, essential for mapping the physical stability of these solutes over the $(p-T)$ landscape.

Acknowledgements We thank Einar Hogseth for his technical expertise in the design and maintenance of the speed of sound equipment for measurements at high pressures. Two of us (G.R.H. and G.B.J.) are grateful for financial assistance from the Marsden Fund (Contract No. 09-MAU-140).

References

1. Dworkin, J.P., Lazcano, A., Miller, S.L.: The roads to and from the RNA world. J. Theor. Biol. 222, 127-134 (2003)
2. Bartel, D.P., Unrau, P.J.: Constructing an RNA world. Trends Cell Biol. 9, M9-M13 (1999)
3. Cech, T.R.: The RNA worlds in context. Cold Spring Harb. Perspect. Biol. 4, a006742 (2012)
4. Gilbert, W.: Origin of Life: the RNA World. Nature 319, 618 (1986)
5. Higgs, P.G., Lehman, N.: The RNA world: molecular cooperation at the origins of life. Nature Reviews Genetics 16, 7-17 (2105)
6. Sankaran, N. The RNA world at 30. J. Mol. Evol. 83, 169-175 (2016)
7. Levy, M., Miller, S.L.: The stability of the RNA bases: Implications for the origin of life. Proc. Natl. Acad. Sci. USA 95, 7933-7938 (1998)
8. Moulton, V., Gardner, P.P., Pointon, R.F., Creamer, L.K., Jameson, G.B., Penny, D.: RNA folding argues against a hot-start origin of life. J. Mol. Evol. 51, 416-421 (2000)
9. Bada, J.L.: How life began on Earth: a status report. Earth Planet. Sci. Lett. 226, 1-15 (2004)
10. Hedwig, G.R., Høgseth, E., Høiland, H.: Volumetric properties of the nucleosides adenosine, cytidine, and uridine in aqueous solution at $T=298.15 \mathrm{~K}$ and $p=(10$ to 120 MPa). J. Chem. Thermodyn. 61, 117-125 (2013)
11. Hedwig, G.R., Jameson, G.B., Høiland, H.: Volumetric properties at high pressures of the nucleosides inosine, 2^{\prime} 'deoxyinosine, and 2^{\prime} 'deoxyguanosine and the volumetric
properties of guanosine derived using group additivity methods. J. Chem. Eng. Data 59, 3593-3604 (2014)
12. Hedwig, G.R., Høgseth, E., Høiland, H.: Volumetric properties of the glycyl group of proteins in aqueous solution at high pressures. Phys. Chem. Chem. Phys. 10, 884-897 (2008)
13. Hedwig, G.R., Jameson, G.B.: Volumetric interaction coefficients for some nucleosides in aqueous solution at $T=298.15 \mathrm{~K}$. J. Chem. Thermodyn. 59, 188-194 (2013)
14. Tewari, Y.B., Klein, R., Vaudin, M.D., Goldberg, R.N.: Saturation molalities and standard molar enthalpies of solution of adenosine(cr), guanosine $\cdot 2 \mathrm{H}_{2} \mathrm{O}$ (cr), inosine(cr), and xanthsine $\cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{cr})$ in $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$. J. Chem. Thermodyn. 35, 1681-1702 (2003)
15. Tewari, Y.B., Gery, P.D., Vaudin, M.D., Mighell, A.D., Klein, R., Goldberg, R.N.: Saturation molalities and standard molar enthalpies of solution of cytidine(cr), hypoxanthine(cr), thymidine(cr), thymine(cr), uridine(cr), and xanthine(cr) in $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$. J. Chem. Thermodyn. 36, 645-658 (2004)
16. Blandamer, M.J., Davis, M.I., Douhéret, G., Reis, J.C.R.: Apparent molar isentropic compressions and expansions of solutions. Chem. Soc. Rev. 30, 8-15 (2001)
17. Desnoyers, J.E., Philip, P.R.: Isothermal compressibilities of aqueous solutions of tetraalkylammonium bromides. Can. J. Chem. 50, 1094-1096 (1972)
18. McGlashan, M.L.: Chemical Thermodynamics. Academic Press, London (1979) p. 90
19. Povey, M.J.W.: Ultrasonic Techniques for Fluids Characterization. Academic Press, London (1997) p. 26
20. Hedwig, G.R., Høiland, H.: The partial molar isothermal compressions of the nucleosides adenosine, cytidine, and uridine in aqueous solution at $T=(288.15$ and 313.15$) \mathrm{K}$. J. Solution Chem. 46, 849-861 (2017)
21. Stimson, H.F.: Heat units and temperature scales for calorimetry. Am. J. Phys. 23, 614622 (1955)
22. Dyke, B.D., Hedwig, G.R.: The partial molar volumes at $T=(288.15$ to 313.15$) \mathrm{K}$, and the partial molar heat capacities and expansions at $T=298.15 \mathrm{~K}$ of cytidine, uridine, and adenosine in aqueous solution. J. Chem. Thermodyn. 40, 957-965 (2008)
23. Del Grosso, V.A., Mader, C.W.: Speed of sound in pure water. J. Acoust. Soc. Am. 52, 1442-1446 (1972)
24. Kell, G.S.: Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66-69 (1967)
25. Kell, G.S.: Density, thermal expansivity, and compressibility of liquid water from 0 to $150^{\circ} \mathrm{C}$: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20, 97-105 (1975)
26. Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGrawHill, New York (1969)
27. Hedwig, G.R., Jameson, G.B., Høiland, H.: Volumetric properties of the nucleoside thymidine in aqueous solution at $T=298.15 \mathrm{~K}$ and $p=(10$ to 100$) \mathrm{MPa}$. J. Solution Chem. 43, 804-820 (2014)
28. Chen, C.-T., Millero, F.J.: Reevaluation of Wilson's sound-speed measurements for pure water. J. Acoust. Soc. Am. 60, 1270-1273 (1976)
29. Hedwig, G.R., Høiland, H.: Thermodynamic properties of peptide solutions 20. Partial molar volumes and isothermal compressions for some tripeptides of sequence gly-X-gly ($\mathrm{X}=\mathrm{gly}$, ala, leu, asn, thr, and tyr) in aqueous solution at $T=298.15 \mathrm{~K}$ and $p=(10-120)$ MPa. J. Chem. Thermodyn. 99, 30-39 (2016)
30. Wagner, W., Pruss, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387-535 (2002)
31. Chen, C.-T., Fine, R.A., Millero, F.J.: The equation of state of pure water determined from sound speeds. J. Chem. Phys. 66, 2142-2144 (1977)
32. Hedwig, G.R.: Thermodynamic properties of peptide solutions 3. Partial molar volumes and partial molar heat capacities of some tripeptides in aqueous solution. J. Solution Chem. 17, 383-397 (1988)
33. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions. Chapter 8, 3rd edn. Reinhold, New York (1958)
34. Hedwig, G.R., Høiland, H.: Thermodynamic properties of peptide solutions: 7. Partial molar isentropic pressure coefficients of some dipeptides in aqueous solution. J. Solution Chem. 20, 1113-1127 (1991)
35. Lo Surdo, A., Shin, C., Millero, F.J.: The apparent molal volume and adiabatic compressibility of some organic solutes in water at $25^{\circ} \mathrm{C}$. J. Chem. Eng. Data 23, 197-201 (1978)
36. Sakurai, M., Nakamura, K., Nitta, K., Takenaka, N.: Sound velocities and apparent molar adiabatic compressions of alcohols in dilute aqueous solutions. J. Chem. Eng. Data 40, 301-310 (1995)
37. Chalikian, T.V., Sarvazyan, A.P., Funck, T., Breslauer, K.J.: Partial molar volumes, expansibilities, and compressibilities of oligoglycines in aqueous solutions at $18-55^{\circ} \mathrm{C}$. Biopolymers 34, 541-553 (1994)
38. Kharakoz, D.P.: Volumetric properties of proteins and their analogues in diluted water solutions. 2. Partial adiabatic compressibilities of amino acids at 15-70 ${ }^{\circ} \mathrm{C}$. J. Phys. Chem. 95, 5634-5642 (1991)
39. Millero, F.J., Lo Surdo, A., Shin, C.: The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at $25^{\circ} \mathrm{C}$. J. Phys. Chem. 82, 784-792 (1978)
40. Taulier, N., Chalikian, T.V.: Compressibility of protein transitions. Biochim. Biophys. Acta 1595, 48-70 (2002).
41. Lee, A., Chalikian, T.V.: Volumetric characterization of the hydration properties of heterocyclic bases and nucleosides. Biophys. Chem. 92, 209-227 (2001)
42. Buckin, V.A., Kankiya, B.I., Kazaryan, R.L.: Hydration of nucleosides in dilute aqueous solutions. Ultrasonic velocity and density measurements. Biophys. Chem. 34, 211-223 (1989)
43. Hedwig, G.R., Høiland, H.: Partial molar isentropic and isothermal compressions of the nucleosides adenosine, cytidine, and uridine in aqueous solution at 298.15 K. J. Chem. Eng. Data 56, 2266-2272 (2011)

Table 1 Coefficients of Eq. 9 used to calculate solution densities, specific heat capacities, and isentropic compressibilities for aqueous solutions of adenosine, cytidine, and uridine at $p=0.1 \mathrm{MPa}$.

T (K)	$\rho\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)^{\mathrm{a}}$		$c_{p}\left(\mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~g}^{-1}\right)$		$\kappa_{S}\left(\mathrm{~Pa}^{-1}\right)$	
	a_{1}	a_{2}	a_{1}	a_{2}	$10^{11} a_{1}$	$10^{11} a_{2}$
Adenosine						
288.15	98.68 (0.3) ${ }^{\text {c }}$	-54.8 (17)	-0.616_{9} (0.0017)	b	$\begin{aligned} & -9.253_{4} \\ & (0.007) \end{aligned}$	b
298.15	95.81 (0.06)					
303.15	94.90 (0.04)					
313.15	93.18 (0.05)		$\begin{aligned} & -0.62_{2} \\ & \left(0.02_{4}\right) \end{aligned}$	2.88 (1.2)	$\begin{aligned} & -6.772_{7} \\ & (0.005) \end{aligned}$	b
Cytidine						
288.15	91.43 (0.02)	$\begin{aligned} & -15.4_{3} \\ & (0.18) \end{aligned}$	$\begin{aligned} & -0.620_{4} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.22_{1} \\ & \left(0.04_{0}\right) \end{aligned}$	$\begin{aligned} & -9.5688 \\ & (0.008) \end{aligned}$	$\begin{aligned} & 2.32_{5} \\ & \left(0.06_{7}\right) \end{aligned}$
298.15	89.50 (0.02)	$\begin{aligned} & -13.49 \\ & \left(0.1_{2}\right) \end{aligned}$				
303.15	88.72 (0.02)	$\begin{aligned} & -13.0_{7} \\ & \left(0.1_{9}\right) \end{aligned}$				
313.15	87.48 (0.03)	$\begin{aligned} & -12.6_{7} \\ & (0.24) \end{aligned}$	$\begin{aligned} & -0.552_{2} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.23_{7} \\ & \left(0.03_{8}\right) \end{aligned}$	$\begin{aligned} & -7.208_{7} \\ & (0.005) \end{aligned}$	$\begin{aligned} & 1.47_{2} \\ & \left(0.05_{0}\right) \end{aligned}$
Uridine						
288.15	93.44 (0.03)	$\begin{aligned} & -15.4_{9} \\ & \left(0.2_{2}\right) \end{aligned}$	$\begin{aligned} & -0.639_{9} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.29_{9} \\ & \left(0.05_{3}\right) \end{aligned}$	$\begin{aligned} & -9.2687 \\ & (0.005) \end{aligned}$	$\begin{aligned} & 2.86_{8} \\ & \left(0.05_{9}\right) \end{aligned}$
298.15	91.62 (0.02)	$\begin{aligned} & -15.1_{3} \\ & \left(0.1_{2}\right) \end{aligned}$				
303.15	90.87 (0.02)	$\begin{aligned} & -14.8_{3} \\ & \left(0.1_{3}\right) \end{aligned}$				

313.15	$89.35(0.02)$	-13.4_{2}	-0.557_{5}	0.18_{1}	-6.728_{5}	1.33_{2}
	(0.20)	(0.002)	$\left(0.02_{5}\right)$	(0.004)	$\left(0.03_{7}\right)$	

${ }^{a}$ Ref. [10]
${ }^{\mathrm{b}}$ See text
${ }^{\mathrm{c}}$ Standard uncertainties are in parentheses

Table 2 Calculated values of isentropic compressibility, density, speed of sound, specific heat capacity, α and γ for aqueous solutions of adenosine, cytidine, and uridine at $T=(288.15$ and 313.15) K and $p=0.1 \mathrm{MPa}$.

$\begin{aligned} & m \\ & \left(\mathrm{~mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$	$\begin{aligned} & 10^{10} \kappa s^{\mathrm{a}} \\ & \left(\mathrm{~Pa}^{-1}\right) \end{aligned}$	$\begin{aligned} & \rho^{\mathrm{b}} \\ & \left(\mathrm{~kg} \cdot \mathrm{~m}^{-3}\right) \end{aligned}$	$\begin{aligned} & u^{\mathrm{c}} \\ & \left(\mathrm{~m} \cdot \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & c_{p}{ }^{\mathrm{d}} \\ & \left(\mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~g}^{-1}\right) \end{aligned}$	$\begin{aligned} & 10^{6} \alpha \\ & \left(\mathrm{~K}^{-1}\right) \end{aligned}$	$\gamma^{\text {e }}$
Adenosine, $T=288.15 \mathrm{~K}$						
0.01993	4.63918	1001.046	1467.41_{4}	4.17321	154.187 ${ }_{7}(0.069)$	$1.003535(3)$
0.01957	4.63951	1001.011	1467.38_{7}	4.17343	$154.17_{4}\left(0.05_{8}\right)$	$1.003534(3)$
0.01944	4.63963	1000.998	1467.377	4.17351	154.169 (0.054)	1.003533(3)
0.01929	4.63977	1000.984	1467.366	4.17360	$154.16_{3}\left(0.05_{0}\right)$	1.003533(2)
0.01904	4.64000	1000.960	1467.34_{7}	4.17376	$154.15_{2}\left(0.04_{3}\right)$	1.003532(2)
0.01873	4.64029	1000.930	1467.323	4.17395	$154.13_{7}\left(0.03_{5}\right)$	1.003531(2)
0.01846	4.64053	1000.904	1467.30_{3}	4.17411	$154.12_{4}\left(0.02_{8}\right)$	1.003530 (1)
Adenosine, $T=313.15 \mathrm{~K}$						
0.01984	4.29833	994.068	1529.826	4.16709	$388.00_{6}(0.066)$	$1.026478(9)$
0.01973	4.29841	994.057	1529.82_{1}	4.16714	$387.98{ }_{6}\left(0.06_{2}\right)$	$1.026474(9)$
0.01951	4.29856	994.037	1529.810	4.16725	$387.94{ }_{5}\left(0.05_{7}\right)$	1.026468(8)
0.01936	4.29865	994.023	1529.803	4.16733	387.918 (0.052)	1.026463(7)
0.01919	4.29877	994.007	1529.79_{5}	4.16742	387.887 (0.047)	1.026458(7)
0.01896	4.29893	993.986	1529.783	4.16753	$387.84_{5}\left(0.04_{1}\right)$	1.026451(6)
0.01870	4.29910	993.961	1529.77_{1}	4.16767	$387.79_{8}\left(0.03_{4}\right)$	$1.026444(5)$
0.01848	4.29925	993.941	1529.76_{0}	4.16778	$387.75{ }_{8}\left(0.02_{8}\right)$	1.026437(4)
Cytidine, $T=288.15 \mathrm{~K}$						
0.09058	4.57284	1007.257	1473.455	4.13111	167.085(0.02 ${ }_{1}$)	1.004228(1)
0.08214	4.58059	1006.507	1472.757	4.13603	165.746(0.008)	1.004151(1)
0.07292	4.58908	1005.686	1471.99_{4}	4.14144	164.244(0.003)	1.004067(1)
0.06285	4.59839	1004.787	1471.16	4.14738	$162.557\left(0.01_{3}\right)$	$1.003974(1)$

0.05387	4.60674	1003.982	1470.41_{6}	4.15272	$161.00_{9}\left(0.01_{9}\right)$	$1.003889(1)$
0.04435	4.61563	1003.126	1469.62_{5}	4.15842	$159.32_{3}\left(0.02_{2}\right)$	$1.003799(1)$
0.03651	4.62299	1002.418	1468.97_{3}	4.16315	$157.90_{0}\left(0.02_{3}\right)$	$1.003724(1)$
0.02857	4.63047	1001.701	1468.31_{3}	4.16796	$156.42_{9}\left(0.02_{2}\right)$	$1.003647(1)$

Cytidine, $T=313.15 \mathrm{~K}$

0.092038	4.24667	1000.163	1534.40_{7}	4.12948	$391.64_{1}\left(0.02_{4}\right)$	$1.027385(4)$
0.082652	4.25319	999.363	1533.84_{3}	4.13428	$390.981(0.009)$	$1.027241(2)$
0.072497	4.26028	998.494	1533.23_{3}	4.13951	$390.270(0.004)$	$1.027086(2)$
0.063041	4.26691	997.683	1532.66_{4}	4.14443	$389.61_{1}\left(0.01_{3}\right)$	$1.026943(2)$
0.053942	4.27331	996.901	1532.11_{6}	4.14920	$388.98_{0}\left(0.01_{9}\right)$	$1.026806(3)$
0.044977	4.27964	996.128	1531.57_{7}	4.15394	$388.36_{1}\left(0.02_{2}\right)$	$1.026671(4)$
0.035446	4.28640	995.304	1531.00_{2}	4.15902	$387.70_{6}\left(0.02_{3}\right)$	$1.026529(4)$
0.027241	4.29224	994.593	1530.50_{7}	4.16343	$387.14_{5}\left(0.02_{1}\right)$	$1.026407(3)$

Uridine, $T=288.15 \mathrm{~K}$

0.09524	4.57194	1007.860	1473.1_{9}	4.12726	$167.3_{8}\left(0.6_{6}\right)$	$1.00425(3)$
0.08466	4.58120	1006.900	1472.37_{0}	4.13346	$165.5_{5}\left(0.6_{0}\right)$	$1.00414(3)$
0.07501	4.58970	1006.023	1471.64_{7}	4.13918	$163.89\left(0.5_{4}\right)$	$1.00405(3)$
0.06473	4.59882	1005.084	1470.87_{4}	4.14533	$162.1_{1}\left(0.4_{8}\right)$	$1.00395(2)$
0.05522	4.60731	1004.213	1470.15_{5}	4.15108	$160.4_{6}\left(0.4_{1}\right)$	$1.00386(2)$
0.04138	4.61976	1002.941	1469.10_{5}	4.15953	$158.0_{6}\left(0.3_{2}\right)$	$1.00374(2)$
0.03782	4.62297	1002.612	1468.83_{4}	4.16173	$157.4_{4}\left(0.2_{9}\right)$	$1.00370(1)$
0.02942	4.63060	1001.837	1468.19_{3}	4.16693	$155.9_{9}\left(0.2_{3}\right)$	$1.00363(1)$

Uridine, $T=313.15 \mathrm{~K}$

0.09524	4.24890	1000.607	1533.66_{4}	4.12684	$393.6_{8}(0.66)$	$1.02766(9)$
0.08191	4.25755	999.447	1532.99_{3}	4.13385	$392.69(0.59)$	$1.02745(8)$

0.07492	4.26211	998.838	1532.64_{1}	4.13754	$392.1_{5}(0.54)$	$1.02734(8)$
0.06499	4.26860	997.969	1532.14_{1}	4.14283	$391.3_{5}(0.48)$	$1.02718(7)$
0.05449	4.27550	997.047	1531.61_{1}	4.14846	$390.4_{8}(0.41)$	$1.02700(6)$
0.04992	4.27851	996.646	1531.38_{1}	4.15092	$390.0_{8}(0.38)$	$1.02692(5)$
0.04094	4.28445	995.854	1530.92_{8}	4.15578	$389.28_{8}(0.32)$	$1.02676(4)$
0.03745	4.28676	995.546	1530.75_{2}	4.15767	$388.97(0.29)$	$1.02670(4)$

${ }^{a}$ The uncertainties for κ_{S} are typically $6.3-6.5 \times 10^{-15} \mathrm{~Pa}^{-1}$ for $T=288.15 \mathrm{~K}$ and $5.7-5.8 \times 10^{-}$
${ }^{15} \mathrm{~Pa}^{-1}$ for $T=313.15 \mathrm{~K}$
${ }^{\mathrm{b}}$ The uncertainty for ρ is $\pm 3.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$
${ }^{\mathrm{c}}$ The uncertainty for u is $\pm 0.01 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
${ }^{\mathrm{d}}$ The uncertainties for c_{p} are typically $2 \times 10^{-4} \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~g}^{-1}$
${ }^{\mathrm{e}}$ The digit in parentheses is the uncertainty in the last digit of γ

Table 3 Values of sound speed, density, isentropic and isothermal compressibility, and γ for water at $T=(288.15$ and 313.15$) \mathrm{K}$ and at $p=(0.1$ to 100$) \mathrm{MPa}$

$$
\begin{array}{llllll}
p(\mathrm{MPa}) & \mathrm{u}^{\mathrm{a}}\left(\mathrm{~m} \cdot \mathrm{~s}^{-1}\right) & \rho_{\mathrm{l}}^{* \mathrm{~b}}\left(\mathrm{~kg} \cdot \mathrm{~m}^{-3}\right) & 10^{10} \kappa_{S}^{*}, 1\left(\mathrm{~Pa}^{-1}\right) & \left.10^{10} \kappa_{T, 1}^{*}, \mathrm{~Pa}^{-1}\right) & \gamma_{\mathrm{H} 2 \mathrm{O}}
\end{array}
$$

$$
T=288.15 \mathrm{~K}
$$

0.1	1465.931	999.101	4.65762	4.67330	1.00337
10.0	1482.118	1003.673	4.53568	4.55467	1.00419
20.0	1498.654	1008.196	4.41624	4.43943	1.00525
40.0	1532.174	1016.964	4.18869	4.22186	1.00792
60.0	1566.112	1025.378	3.97622	4.02004	1.01102
80.0	1600.251	1033.459	3.77860	3.83245	1.01425
100.0	1634.372	1041.227	3.59545	3.65781	1.01735

$T=313.15 \mathrm{~K}$

0.1	1528.863	992.219	4.31178	4.42400	1.02603
10.0	1546.122	996.515	4.19787	4.31239	1.02728
20.0	1563.384	1000.768	4.08823	4.20480	1.02851
40.0	1597.435	1009.013	3.88380	4.00391	1.03093
60.0	1630.930	1016.936	3.69688	3.82029	1.03338
80.0	1663.958	1024.561	3.52515	3.65206	1.03600
100.0	1696.607	1031.911	3.36663	3.49768	1.03893

${ }^{\text {a }}$ Calculated using the equation given in reference [28]
${ }^{\mathrm{b}}$ Calculated using the equation of state given in reference [31]

Table 4 Sound speeds for aqueous solutions of adenosine, cytidine, and uridine at $T=(288.15$ and 313.15$) \mathrm{K}$ and at $p=(10.0$ to 100.0$) \mathrm{MPa}$

$m /\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right)$	$u^{\mathrm{a}} /\left(\mathrm{m} \cdot \mathrm{s}^{-1}\right)$					
	p / MPa					
	10.0	20.0	40.0	60.0	80.0	100.0
Adenosine, $T=288.15 \mathrm{~K}$						
0.01993	1483.67	1500.23	1533.75	1567.72	1601.84	1635.93
0.01957	1483.65	1500.20	1533.74	1567.68	1601.82	1635.92
0.01944		1500.20	1533.72	1567.68	1601.82	1635.90
0.01929	1483.64	1500.20	1533.73	1567.68	1601.81	1635.89
0.01904	1483.60	1500.12	1533.66	1567.62	1601.77	1635.85
0.01873	1483.57	1500.13	1533.66	1567.60	1601.72	1635.82
0.01846	1483.53	1500.09	1533.62	1567.56	1601.70	1635.79
Adenosine, $T=313.15 \mathrm{~K}$						
0.01984		1564.34	1598.43	1631.95	1664.97	1697.62
0.01973	1547.08	1564.37	1598.44	1631.94	1664.97	1697.62
0.01951	1547.05	1564.38	1598.47	1631.94	1664.95	1697.61
0.01936	1547.06	1564.34	1598.42	1631.90	1664.93	1697.60
0.01919		1564.36	1598.42	1631.91	1664.94	1697.60
0.01896		1564.36	1598.44	1631.90	1664.96	1697.59
0.01870	1547.03	1564.33	1598.45	1631.89	1664.92	1697.54
0.01848		1564.29	1598.39	1631.89	1664.93	1697.56
Cytidine, $T=288.15 \mathrm{~K}$						
0.09058	1489.83	1506.41	1539.98	1573.89	1607.92	1641.90
0.08214	1489.11	1505.72	1539.25	1573.17	1607.21	1641.22
0.07292	1488.37	1504.97	1538.49	1572.41	1606.46	1640.48

0.06285	1487.54	1504.10	1537.64	1571.56	1605.64	1639.65
0.05387	1486.81	1503.34	1536.91	1570.80	1604.89	1638.93
0.04435	1485.95	1502.51	1536.04	1569.97	1604.05	1638.11
0.03651	1485.28	1501.85	1535.38	1569.31	1603.41	1637.47
0.02857	1484.61	1501.16	1534.69	1568.64	1602.72	1636.80
Cytidine, $T=313.15 \mathrm{~K}$						
0.09204	1551.70	1569.02	1603.12	1636.64	1669.60	1702.22
0.08265	1551.22	1568.49	1602.56	1636.10	1669.04	1701.64
0.07250	1550.57	1567.89	1601.92	1635.43	1668.44	1701.04
0.06304	1550.00	1567.30	1601.31	1634.90	1667.88	1700.47
0.05394	1549.38	1566.67	1600.79	1634.25	1667.23	1699.86
0.04498	1548.86	1566.15	1600.22	1633.72	1666.72	1699.34
0.03545	1548.28	1565.56	1599.62	1633.12	1666.13	1698.76
0.02724	1547.79	1565.06	1599.11	1632.63	1665.64	1698.29
Uridine, $T=288.15 \mathrm{~K}$						
0.09524	1489.46	1506.10	1539.70	1573.60	1607.68	1641.67
0.08466	1488.67	1505.27	1538.88	1572.79	1606.90	1640.89
0.09524	1551.04	1568.39	1602.46	1635.99	1669.05	1701.61
0.07501	1487.95	1504.53	1538.15	1572.04	1606.13	1640.14
0.06473	1487.19	1503.76	1537.34	1571.25	1605.36	1639.40
0.05522	1486.45	1503.02	1536.60	1570.54	1604.61	1638.66
0.04138	1485.36	1501.93	1535.49	1569.42	1603.53	1637.60
0.03782	1485.06	1501.68	1535.21	1569.15	1603.24	1637.32
0.02942	1484.44	1501.00	1534.55	1568.46	1602.59	1636.66
0						
0.15 K						
0						
0						

0.08191	1550.36	1567.71	1601.76	1635.30	1668.34	1700.93
0.07492	1549.99	1567.30	1601.41	1634.94	1667.95	1700.55
0.06499		1566.82	1600.91	1634.42	1667.45	1700.09
0.05449	1549.03	1566.34	1600.43	1633.92	1666.98	1699.60
0.04992	1548.69	1565.96	1600.03	1633.62	1666.62	1699.26
0.04094	1548.29	1565.56	1599.66	1633.20	1666.21	1698.86
0.03745		1565.33	1599.43	1632.97	1665.98	1698.61

${ }^{\mathrm{a}}$ The estimated uncertainty of u is $\pm 0.03 \mathrm{~m} \cdot \mathrm{~s}^{-1}$

Table 5 Partial molar volumes at infinite dilution and the S_{v} values for adenosine, cytidine, and uridine at $T=(288.15$ and 313.15$) \mathrm{K}$ and at $p=(0.1$ to 100$) \mathrm{MPa}$

p (MPa)	$V_{2}^{\mathrm{o}}\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$S_{\mathrm{v}}\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1}\right)$	$V_{2}^{\mathrm{o}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$S_{\mathrm{v}}\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1}\right)$
Adenosine	$T=288.15 \mathrm{~K}$		$T=313.15 \mathrm{~K}$	
0.1	$169.2{ }_{6}(0.13)^{\text {a,b }}$		$174.42(0.17)^{\text {b }}$	
10	169.46 (0.03)	c	174.19 (0.02)	c
20	169.54 (0.03)	c	174.07 (0.02)	c
40	169.71 (0.04)	c	173.70 (0.02)	c
60	169.84 (0.05)	c	173.38 (0.03)	c
80	169.92 (0.06)	c	173.04 (0.03)	c
100	169.94 (0.07)	c	172.72 (0.04)	c
Cytidine				
0.1	151.82 (0.03) ${ }^{\text {b }}$	2.1 (0.2) ${ }^{\text {b }}$	$156.25(0.03)^{\text {b }}$	-0.5 (0.2) ${ }^{\text {b }}$
10	152.031 (0.009)	1.84 (0.13)	156.241 (0.008)	$-0.58\left(0.1_{1}\right)$
20	152.216 (0.009)	1.75 (0.13)	156.253 (0.008)	-0.85 (0.10)
40	152.58 (0.01)	1.29 (0.14)	156.18 (0.01)	$-0.7{ }_{7}\left(0.1_{5}\right)$
60	152.88 (0.01)	0.84 (0.17)	156.11 (0.01)	-0.89 (0.17)
80	153.12 (0.01)	0.42 (0.19)	156.01 (0.02)	-0.99 (0.20)
100	153.29 (0.02)	c	155.90 (0.02)	-1.20 (0.24)
Uridine				
0.1	$150.58(0.09)^{\text {b }}$		155.30 (0.02) b	0.4 (0.2) ${ }^{\text {b }}$
10	150.983 (0.008)	1.55 (0.11)	155.29 (0.01)	$-0.21\left(0.1_{3}\right)$
20	151.142 (0.009)	1.43 (0.12)	155.24 (0.01)	-0.35 (0.15)
40	151.452 (0.009)	0.97 (0.12)	155.07 (0.02)	-0.24 (0.22)
60	151.71 (0.01)	0.54 (0.13)	154.92 (0.02)	-0.36 (0.30)
80	151.91 (0.01)	0.17 (0.15)	154.76 (0.03)	$-0.52_{2}(0.39)$

${ }^{\text {a }}$ Standard uncertainties are in parentheses
${ }^{\mathrm{b}}$ Ref. [22]
${ }^{c}$ See text

Table 6 Partial molar isentropic and isothermal compressions at infinite dilution and the $S_{k(S)}$ and $S k_{(T)}$ values for adenosine, cytidine, and uridine $T=(288.15$ and 313.15$) \mathrm{K}$ and at $p=(0.1$ to 100) MPa

(MPa)	$\begin{aligned} & 10^{15} K_{S, 2}^{\mathrm{o}} \\ & \left(\mathrm{~m}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~Pa}^{-1}\right) \end{aligned}$	$\begin{aligned} & 10^{15} S_{k(S)} \\ & \left(\mathrm{m}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-2} \cdot \mathrm{~Pa}^{-1}\right) \end{aligned}$	$\begin{aligned} & 10^{15} K_{T, 2}^{0} \\ & \left(\mathrm{~m}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~Pa}^{-1}\right) \end{aligned}$	$\begin{aligned} & 10^{15} S_{k(T)} \\ & \left(\mathrm{m}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-2} \cdot \mathrm{~Pa}^{-1}\right) \end{aligned}$
Adenosine, $T=288.15 \mathrm{~K}$				
0.1	$-14.05(0.26)^{\text {a,b }}$	c	$-9.85(0.26)^{\text {a }}$	d
10.0	-14.42 (0.41)	c	-10.62 (0.46)	c
20.0	-13.29 (0.59)	c	-9.60 (0.62)	c
40.0	-10.47 (0.53)	c	$-7.00_{0}(0.56)$	c
60.0	-8.09 (0.48)	c	-4.85 (0.53)	c
80.0	-5.71 (0.39)	c	-2.66 (0.43)	c
100.0	-3.02 (0.28)	c	$-0.103\left(0.3_{3}\right)$	c

Adenosine, $T=313.15 \mathrm{~K}$

0.1	$6.7_{8}\left(0.1_{7}\right)^{\mathrm{a}}$	c	$17.0_{6}\left(0.2_{1}\right)^{\mathrm{a}}$	d
10.0	$7.4_{4}\left(0.2_{0}\right)$	c	$17.1_{4}\left(0.2_{4}\right)$	c
20.0	$7.0_{4}\left(0.5_{8}\right)$	c	$16.4_{3}\left(0.6_{1}\right)$	c
40.0	$7.1_{0}\left(0.6_{6}\right)$	c	$15.9_{8}\left(0.7_{2}\right)$	c
60.0	$8.2_{2}\left(0.2_{4}\right)$	c	$16.6_{7}\left(0.2_{8}\right)$	c
80.0	$8.8_{4}\left(0.3_{3}\right)$	c	$16.9_{0}\left(0.3_{9}\right)$	c
100.0	$9.4_{1}\left(0.2_{3}\right)$	c	$17.1_{1}\left(0.2_{4}\right)$	c

Cytidine, $T=288.15 \mathrm{~K}$

0.1	$-25.09(0.08)^{\mathrm{a}}$	$10.3_{2}(0.73)^{\mathrm{a}}$	$-20.56_{9}\left(0.09_{2}\right)^{\mathrm{a}}$	d
10.0	$-25.9_{0}\left(0.2_{8}\right)$	$29.0(3.8)$	$-21.5_{4}\left(0.2_{8}\right)$	$26.8(3.8)$
20.0	$-23.9_{3}\left(0.1_{4}\right)$	$25.0(1.9)$	$-19.7_{1}\left(0.1_{4}\right)$	$22.8(1.9)$

40.0	$-20.2_{0}\left(0.2_{1}\right)$	$22.3(2.8)$	$-16.2_{7}\left(0.2_{1}\right)$	$20.3(2.9)$
60.0	$-16.7_{0}\left(0.1_{1}\right)$	$20.5(1.5)$	$-13.0_{3}\left(0.1_{2}\right)$	$18.7(1.6)$
80.0	$-13.24\left(0.1_{2}\right)$	$18.1(1.7)$	$-9.8_{0}\left(0.1_{3}\right)$	$16.5(1.7)$
100.0	$-10.08(0.07)$	$15.6(1.0)$	$-6.824\left(0.07_{4}\right)$	$14.1(1.0)$

Cytidine, $T=313.15 \mathrm{~K}$

0.1	$-5.34(0.05)^{\mathrm{a}}$	$4.0_{1}\left(0.4_{9}\right)^{\mathrm{a}}$	$0.9_{7}\left(0.1_{2}\right)^{\mathrm{a}}$	d
10.0	$-4.4_{2}\left(0.2_{6}\right)$	c	$1.1_{5}\left(0.4_{4}\right)$	$6.3(5.8)$
20.0	$-3.6_{5}\left(0.2_{2}\right)$	c	$1.7_{5}\left(0.3_{7}\right)$	$6.3(4.9)$
40.0	$-1.9_{6}\left(0.1_{2}\right)$	c	$3.2_{2}\left(0.1_{7}\right)$	$5.2(2.3)$
60.0	$-0.6_{28}\left(0.1_{9}\right)$	c	$4.6_{0}\left(0.2_{1}\right)$	c
80.0	$0.9_{33}\left(0.1_{9}\right)$	c	$5.6_{5}\left(0.2_{8}\right)$	$4.9(3.7)$
100.0	$2.2_{1}\left(0.1_{7}\right)$	c	$6.7_{8}\left(0.1_{8}\right)$	$4.2(2.4)$

Uridine, $T=288.15 \mathrm{~K}$

0.1	$-22.55(0.05)^{\mathrm{a}}$	$16.1_{4}\left(0.6_{0}\right)^{\mathrm{a}}$	$-18.3_{8}\left(0.5_{0}\right)^{\mathrm{a}}$	d
10.0	$-21.8_{3}\left(0.2_{4}\right)$	$20.2(3.1)$	$-17.9_{9}\left(0.2_{4}\right)$	$22.3(3.2)$
20.0	$-20.5_{4}\left(0.1_{6}\right)$	$20.9(2.1)$	$-16.9_{0}\left(0.1_{6}\right)$	$24.0(2.1)$
40.0	$-17.41(0.09)$	$17.4(1.1)$	$-13.978\left(0.08_{4}\right)$	$19.8(1.1)$
60.0	$-14.3_{0}\left(0.1_{4}\right)$	$17.8(1.8)$	$-11.1_{0}\left(0.1_{5}\right)$	$20.0(2.0)$
80.0	$-11.0_{6}\left(0.1_{3}\right)$	$12.3(1.7)$	$-8.0_{6}\left(0.1_{2}\right)$	$14.5(1.6)$
100.0	$-8.3_{5}\left(0.1_{2}\right)$	$12.3(1.5)$	$-5.5_{0}\left(0.1_{1}\right)$	$14.4(1.5)$

Uridine, $T=313.15 \mathrm{~K}$

0.1	$-0.89(0.03)^{\mathrm{a}}$	$3.58(0.35)^{\mathrm{a}}$	$7.0_{1}(1.4)^{\mathrm{a}}$	d
10.0	$-1.6_{0}\left(0.5_{6}\right)$	$13.4(7.1)$	$6.6_{9}\left(0.4_{1}\right)$	c
20.0	$-0.2_{1}\left(0.4_{2}\right)$	c	$7.0_{1}\left(0.4_{3}\right)$	c

40.0	$0.2_{0}\left(0.5_{1}\right)$	$11.2(6.7)$	$7.7_{5}\left(0.4_{2}\right)$	c
60.0	$0.7_{8}\left(0.2_{3}\right)$	$16.3(3.1)$	$7.5_{2}\left(0.2_{5}\right)$	$12.2(3.7)$
80.0	$2.2_{1}\left(0.3_{6}\right)$	$10.5(4.8)$	$8.6_{8}\left(0.3_{7}\right)$	$6.1(5.4)$
100.0	$3.0_{2}\left(0.3_{2}\right)$	$14.3(4.2)$	$9.2_{2}\left(0.3_{4}\right)$	$9.9(5.0)$

${ }^{\text {a }}$ Reference [20]
${ }^{\mathrm{b}}$ Standard uncertainties are in parentheses
${ }^{c}$ See text
${ }^{\mathrm{d}}$ The $S_{k(T)}$ value is not available because $K_{T, 2}^{0}$ was evaluated directly from $K_{S, 2}^{0}$. See reference [20]

Table S1 Coefficients of Eq. 14 for aqueous solutions of the nucleosides at $T=(288.15$ and 313.15$) \mathrm{K}$

$m\left(\mathrm{~mol} \cdot \mathrm{~kg}^{-1}\right)$	$10^{9} c_{0}\left(\mathrm{~m}^{-2} \cdot \mathrm{~s}^{2} \cdot \mathrm{MPa}^{-1}\right)$	$10^{12} c_{1}\left(\mathrm{~m}^{-2} \cdot \mathrm{~s}^{2} \cdot \mathrm{MPa}^{-2}\right)$	$10^{14} c_{2}\left(\mathrm{~m}^{-2} \cdot \mathrm{~s}^{2} \cdot \mathrm{MPa}^{-3}\right)$
Adenosine, $T=288.15 \mathrm{~K}$			
0.01993	$-0.8788\left(0.008_{2}\right)^{\text {b }}$	$1.0_{2}(0.40)$	1.14 (0.37)
0.01957	$-0.867\left(0.01_{1}\right)$	1.13 (0.51)	$1.0_{0}(0.48)$
0.01944	$-0.851\left(0.01_{0}\right)$	0.73 (0.45)	$1.3{ }_{1}\left(0.4_{1}\right)$
0.01929	$-0.85{ }_{4}\left(0.01_{1}\right)$	0.60 (0.52)	1.53 (0.49)
0.01904	$-0.835_{1}\left(0.009_{5}\right)$	1.38 (0.46)	0.69 (0.43)
0.01873	$-0.824_{0}\left(0.008_{7}\right)$	1.14 (0.42)	0.99 (0.40)
0.01846	$-0.806_{5}\left(0.006_{2}\right)$	$1.4_{1}\left(0.3_{0}\right)$	0.68 (0.28)
Adenosine, $T=313.15 \mathrm{~K}$			
0.01984	$-0.3570\left(0.005_{0}\right)$	$0.822^{(0.077)}$	a
0.01973	$-0.354_{8}\left(0.003_{7}\right)$	0.47 (0.18$)$	0.34 (0.17)
0.01951	-0.363 (0.010)	0.86 (0.16)	a
0.01936	$-0.352_{1}\left(0.003_{6}\right)$	$0.842(0.058)$	a
0.01919	$-0.3582\left(0.004_{7}\right)$	0.860 (0.071)	a
0.01896	$-0.361_{2}(0.0088)$	0.85 (0.13)	a
0.01870	$-0.35_{4}\left(0.01_{1}\right)$	0.91 (0.18)	a
0.01848	$-0.335_{2}\left(0.005_{0}\right)$	0.29 (0.22)	0.42 (0.12)
Cytidine, $T=288.15 \mathrm{~K}$			
0.09058	$-4.400_{0}(0.023)$	9.39 (1.1)	3.04 (1.0)
0.08214	$-3.99_{6}\left(0.02_{4}\right)$	8.68 (1.2)	2.61 (1.1)

0.07292	$-3.56_{2}\left(0.02_{7}\right)$	$7.40\left(1_{1.3}\right)$	$2.6_{5}(1.2)$
0.06285	$-3.07_{8}\left(0.02_{6}\right)$	$6.0_{9}\left(1_{2}\right)$	$2.5_{8}(1.2)$
0.05387	$-2.65_{1}\left(0.02_{8}\right)$	$5.0_{8}(1.4)$	$2.3_{4}\left(1_{3}\right)$
0.04435	$-2.17_{7}\left(0.01_{9}\right)$	$4.2_{7}\left(0.8_{9}\right)$	$1.8_{1}\left(0.8_{4}\right)$
0.03651	$-1.79_{6}\left(0.01_{7}\right)$	$3.1_{9}\left(0.8_{2}\right)$	$1.7_{8}\left(0.7_{8}\right)$
0.02857	$-1.41_{0}\left(0.01_{6}\right)$	$2.3_{3}\left(0.7_{5}\right)$	$1.5_{7}\left(0.7_{1}\right)$

Cytidine, $T=313.15 \mathrm{~K}$

0.09204	$-2.589_{3}\left(0.007_{4}\right)$	$6.2_{6}\left(0.3_{6}\right)$	$0.6_{3}\left(0.3_{4}\right)$
0.08265	$-2.34_{8}\left(0.01_{4}\right)$	$5.4_{1}\left(0.6_{5}\right)$	$1.0_{0}\left(0.6_{2}\right)$
0.07250	$-2.071_{9}\left(0.008_{8}\right)$	$5.5_{8}\left(0.1_{4}\right)$	a
0.06304	$-1.80_{7}\left(0.01_{3}\right)$	$4.7_{8}\left(0.2_{1}\right)$	a
0.05394	$-1.526_{2}\left(0.009_{8}\right)$	$3.7_{1}\left(0.4_{8}\right)$	$0.4_{9}\left(0.4_{5}\right)$
0.04498	$-1.280_{4}\left(0.001_{7}\right)$	$3.07_{4}\left(0.08_{3}\right)$	$0.38_{0}\left(0.07_{8}\right)$
0.03545	$-1.012_{2}\left(0.002_{4}\right)$	$2.5_{6}\left(0.1_{1}\right)$	$0.1_{7}\left(0.1_{1}\right)$
0.02724	$-0.783_{4}\left(0.003_{1}\right)$	$2.01_{3}\left(0.04_{9}\right)$	a

Uridine, $T=288.15 \mathrm{~K}$

0.09524	$-4.18_{6}\left(0.01_{6}\right)$	$8.4_{1}\left(0.7_{9}\right)$	$3.0_{1}\left(0.7_{5}\right)$
0.08466	$-3.73_{4}\left(0.01_{2}\right)$	$7.3_{9}\left(0.5_{8}\right)$	$2.6_{6}\left(0.5_{5}\right)$
0.07501	$-3.32_{3}\left(0.01_{4}\right)$	$6.4_{7}\left(0.6_{6}\right)$	$2.6_{2}\left(0.6_{3}\right)$
0.06473	$-2.88_{7}\left(0.01_{5}\right)$	$5.8_{4}\left(0.7_{2}\right)$	$1.9_{5}\left(0.6_{8}\right)$
0.05522	$-2.46_{9}\left(0.01_{2}\right)$	$4.4_{6}\left(0.5_{9}\right)$	$2.2_{6}\left(0.5_{6}\right)$
0.04138	$-1.856_{5}\left(0.008_{3}\right)$	$3.5_{7}\left(0.4_{0}\right)$	$1.4_{0}\left(0.3_{8}\right)$
0.03782	$-1.69_{7}\left(0.01_{1}\right)$	$2.9_{4}\left(0.5_{5}\right)$	$1.6_{6}\left(0.5_{2}\right)$
0.02942	$-1.329_{5}\left(0.009_{0}\right)$	$2.5_{2}\left(0.4_{3}\right)$	$1.0_{8}\left(0.4_{1}\right)$

Uridine, $T=313.15 \mathrm{~K}$

0.09524	$-2.06_{7}\left(0.01_{4}\right)$	$3.4_{9}\left(0.7_{1}\right)$	$1.6_{3}\left(0.6_{8}\right)$
0.08191	$-1.77_{6}\left(0.01_{5}\right)$	$2.9_{0}\left(0.7_{4}\right)$	$1.5_{0}\left(0.7_{0}\right)$
0.07492	$-1.614_{1}\left(0.007_{0}\right)$	$2.4_{8}\left(0.3_{5}\right)$	$1.5_{4}\left(0.3_{3}\right)$
0.06499	$-1.40_{0}\left(0.01_{5}\right)$	$1.9_{5}\left(0.6_{8}\right)$	$1.3_{1}\left(0.6_{3}\right)$
0.05449	$-1.21_{6}\left(0.01_{9}\right)$	$2.6_{9}\left(0.3_{1}\right)$	a
0.04992	$-1.06_{2}\left(0.01_{0}\right)$	$1.8_{9}\left(0.5_{0}\right)$	$0.5_{6}\left(0.4_{8}\right)$
0.04094	$-0.88_{5}\left(0.01_{1}\right)$	$0.7_{6}\left(0.5_{4}\right)$	$1.1_{1}\left(0.5_{1}\right)$
0.03745	$-0.792_{1}\left(0.006_{1}\right)$	$0.7_{5}\left(0.2_{7}\right)$	$1.0_{0}\left(0.2_{5}\right)$

${ }^{a}$ See text
${ }^{\mathrm{b}}$ Standard uncertainties are in parentheses

Table S2 Calculated densities for aqueous solutions of the nucleosides at $T=(288.15$ and 313.15) K and at $p=(10.0$ to 100.0$) \mathrm{MPa}$

$m\left(\mathrm{~mol} \cdot \mathrm{~kg}^{-1}\right)$	$\rho^{\text {a }}\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$					
	p (MPa)					
	10.0	20.0	40.0	60.0	80.0	100.0
Adenosine, $T=288.15 \mathrm{~K}$						
0.01993	1005.609	1010.124	1018.875	1027.273(3)	1035.339(3)	1043.093(4)
0.01957	1005.574	1010.089	1018.841	1027.239(3)	1035.305(4)	1043.060(4)
0.01944	1005.562	1010.077	1018.828	1027.226(3)	1035.292(4)	1043.047(4)
0.01929	1005.548	1010.063	1018.814	1027.212(3)	1035.278(4)	1043.033(4)
0.01904	1005.524	1010.039	1018.791	1027.190(3)	1035.257(4)	1043.012(4)
0.01873	1005.494	1010.009	1018.761	1027.160(3)	1035.227(3)	1042.983(4)
0.01846	1005.468	1009.984	1018.736	1027.136(3)	1035.203(3)	1042.959(4)
Adenosine, $T=313.15 \mathrm{~K}$						
0.01984	998.361	1002.610	1010.849	1018.765(3)	1026.384(3)	1033.728(3)
0.01973	998.350	1002.599	1010.838	1018.754(3)	1026.373(3)	1033.717(3)
0.01951	998.330	1002.579	1010.817	1018.734(3)	1026.353(3)	1033.697(3)
0.01936	998.316	1002.565	1010.804	1018.721(3)	1026.340(3)	1033.684(3)
0.01919	998.300	1002.549	1010.788	1018.704(3)	1026.323(3)	1033.667(3)
0.01896	998.279	1002.528	1010.766	1018.683(3)	1026.302(3)	1033.646(3)
0.01870	998.254	1002.503	1010.742	1018.659(3)	1026.278(3)	1033.622(3)
0.01848	998.234	1002.483	1010.722	1018.639(3)	1026.258(3)	1033.602(3)
Cytidine, $T=288.15 \mathrm{~K}$						
0.09058	1011.785	1016.266	1024.952	1033.289(4)	1041.298(5)	1049.000(8)

0.08214	1011.040	1015.525	1024.218	1032.562(4)	1040.578(5)	1048.286(8)
0.07292	1010.223	1014.712	1023.414	1031.765(4)	1039.787(6)	1047.502(9)
0.06285	1009.329	1013.822	1022.533	1030.892(4)	1038.923(6)	1046.645(8)
0.05387	1008.528	1013.026	1021.744	1030.111(4)	1038.148(6)	1045.876(9)
0.04435	1007.677	1012.179	1020.906	1029.282(4)	1037.327(5)	1045.062(6)
0.03651	1006.972	1011.478	1020.212	1028.594(4)	1036.646(4)	1044.387(6)
0.02857	1006.259	1010.769	1019.510	1027.899(3)	1035.956(4)	1043.703(6)
Cytidine, $T=313.15 \mathrm{~K}$						
0.09204	1004.434	1008.661	1016.859	1024.737(3)	1032.319(3)	1039.629(4)
0.08265	1003.636	1007.866	1016.068	1023.950(3)	1031.536(4)	1038.850(5)
0.07250	1002.770	1007.002	1015.210	1023.097(3)	1030.688(3)	1038.007(3)
0.06304	1001.962	1006.196	1014.409	1022.300(3)	1029.896(3)	1037.218(3)
0.05394	1001.182	1005.420	1013.637	1021.534(3)	1029.134(4)	1036.460(4)
0.04498	1000.412	1004.652	1012.874	1020.774(3)	1028.378(3)	1035.708(3)
0.03545	999.590	1003.833	1012.060	1019.965(3)	1027.574(3)	1034.908(3)
0.02724	998.882	1003.126	1011.358	1019.267(3)	1026.879(3)	1034.216(3)
Uridine, $T=288.15 \mathrm{~K}$						
0.09524	1012.391	1016.874	1025.564	1033.904(4)	1041.915(4)	1049.620(6)
0.08466	1011.435	1015.923	1024.621	1032.969(3)	1040.988(4)	1048.699(5)
0.07501	1010.562	1015.054	1023.759	1032.114(3)	1040.141(4)	1047.858(5)
0.06473	1009.628	1014.123	1022.837	1031.200(3)	1039.233(4)	1046.957(5)
0.05522	1008.761	1013.260	1021.982	1030.352(3)	1038.392(4)	1046.122(5)
0.04138	1007.495	1012.000	1020.733	1029.114(3)	1037.164(3)	1044.904(4)
0.03782	1007.167	1011.674	1020.410	1028.794(3)	1036.847(4)	1044.589(5)
0.02942	1006.396	1010.906	1019.649	1028.040(3)	1036.099(4)	1043.847(4)

Uridine, $T=313.15 \mathrm{~K}$

0.09524	1004.883	1009.115	1017.322	$1025.208(3)$	$1032.798(4)$	$1040.115(5)$
0.08191	1003.726	1007.961	1016.173	$1024.064(3)$	$1031.659(4)$	$1038.981(6)$
0.07492	1003.118	1007.355	1015.570	$1023.464(3)$	$1031.062(3)$	$1038.386(4)$
0.06499		1006.490	1014.709	$1022.607(3)$	$1030.208(4)$	$1037.535(5)$
0.05449	1001.331	1005.572	1013.795	$1021.696(3)$	$1029.300(4)$	$1036.631(4)$
0.04992	1000.932	1005.174	1013.399	$1021.303(3)$	$1028.910(4)$	$1036.243(4)$
0.04094	1000.142	1004.385	1012.614	$1020.520(3)$	$1028.130(4)$	$1035.465(5)$
0.03745		1004.079	1012.309	$1020.218(3)$	$1027.829(3)$	$1035.166(3)$

${ }^{\text {a }}$ The estimated uncertainty of ρ for $p=10.0$ to 40.0 MPa is $3 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$. For $p=60.0$ to 100.0 MPa , each number in parentheses is the uncertainty in the last digit, or last two digits, of ρ

Table S3 Apparent molar volumes for aqueous solutions of the nucleosides at $T=(288.15$ and 313.15$) \mathrm{K}$ and at $p=(10.0$ to 120.0$) \mathrm{MPa}$

$\begin{aligned} & m / \\ & \left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$	$V_{\phi}{ }^{\text {a }}\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$					
	p / MPa					
	10.0	20.0	40.0	60.0	80.0	100.0
Adenosine, $T=288.15 \mathrm{~K}$						
0.01993	169.47(15)	169.55(15)	169.73(15)	169.86(15)	169.95(16)	169.97(18)
0.01957	169.48(15)	169.56(15)	169.74(15)	169.87(16)	169.96(17)	169.99(21)
0.01944	169.49(15)	169.56(15)	169.74(15)	169.88(16)	169.97(17)	169.99(20)
0.01929	169.47(16)	169.55(15)	169.74(15)	169.89(16)	169.98(18)	170.01(21)
0.01904	169.43(16)	169.51(16)	169.67(16)	169.79(16)	169.87(17)	169.88(20)
0.01873	169.42(16)	169.50(16)	169.67(16)	169.79(16)	169.87(17)	169.88(20)
0.01846	169.43(16)	169.50(16)	169.66(16)	169.78(16)	169.84(16)	169.85(18)
Adenosine, $T=313.15 \mathrm{~K}$						
0.01984	174.16(15)	174.03(15)	173.66(15)	173.32(15)	172.98(15)	172.66(15)
0.01973	174.20(15)	174.07(15)	173.70(15)	173.38(15)	173.04(15)	172.72(16)
0.01951	174.18(16)	174.05(15)	173.69(15)	173.36(15)	173.03(15)	172.71(16)
0.01936	174.20(16)	174.07(16)	173.70(15)	173.37(15)	173.03(15)	172.70(15)
0.01919	174.20(16)	174.08(16)	173.71(15)	173.38(15)	173.05(15)	172.73(15)
0.01896	174.19(16)	174.07(16)	173.71(16)	173.39(15)	173.07(16)	172.76(16)
0.01870	174.22(16)	174.10(16)	173.74(16)	173.41(15)	173.08(16)	172.76(17)
0.01848	174.19(16)	174.07(16)	173.71(16)	173.39(15)	173.06(16)	172.75 (17)
Cytidine, $T=288.15 \mathrm{~K}$						
0.09058	152.20(3)	152.38(3)	152.70(4)	152.96(4)	153.16 (6)	153.30(8)

0.08214	152.18(4)	152.35(4)	152.68(4)	152.94(5)	153.14(6)	153.28(9)
0.07292	152.16(4)	152.34(4)	152.67(4)	152.94(6)	153.15(8)	153.2(11)
0.06285	152.14(5)	152.32(5)	152.66(5)	152.93(6)	153.14(9)	153.29(12)
0.05387	152.13(6)	152.31(6)	152.65(6)	152.93(8)	153.15(11)	153.30(15)
0.04435	152.11(7)	152.29(7)	152.63(7)	152.90(8)	153.12(10)	153.27(13)
0.03651	152.11(8)	152.29(8)	152.64(8)	152.92(9)	153.15(11)	153.30(15)
0.02857	152.08(10)	152.26(10)	152.61(10)	152.90(12)	153.13(14)	153.28(18)
Cytidine, $T=313.15 \mathrm{~K}$						
0.09204	156.19(3)	156.17(3)	156.10(3)	156.02(3)	155.91(4)	155.78(4)
0.08265	156.19(4)	156.18(4)	156.12(4)	156.04(4)	155.93(5)	155.80(6)
0.07250	156.21(4)	156.20(4)	156.13(4)	156.05(4)	155.94(4)	155.82(4)
0.06304	156.21(5)	156.21(5)	156.14(5)	156.06(5)	155.96(5)	155.84(5)
0.05394	156.21(6)	156.20(6)	156.13(6)	156.05(6)	155.94(6)	155.81(7)
0.04498	156.21(7)	156.21(7)	156.14(7)	156.06(7)	155.96(6)	155.84(6)
0.03545	156.22(9)	156.22(9)	156.15(8)	156.07(8)	155.96(8)	155.85(8)
0.02724	156.21(11)	156.22(11)	156.15(11)	156.08(11)	155.98(11)	155.87(10)
Uridine, $T=288.15 \mathrm{~K}$						
0.09524	151.13(3)	151.28(3)	151.54(3)	151.76(4)	151.92(4)	152.03(6)
0.08466	151.12(4)	151.27(4)	151.54(4)	151.75(4)	151.92(4)	152.03(5)
0.07501	151.10(4)	151.25(4)	151.52(4)	151.74(4)	151.91(5)	152.02(6)
0.06473	151.09(5)	151.24(5)	151.52(5)	151.75(5)	151.92(6)	152.04(8)
0.05522	151.07(5)	151.22(5)	151.51(5)	151.74(6)	151.92(6)	152.04(8)
0.04138	151.04(7)	151.19(7)	151.48(7)	151.72(7)	151.90(8)	152.02(9)
0.03782	151.05(8)	151.21(8)	151.50(8)	151.74(8)	151.93(9)	152.04(11)
0.02942	151.02(10)	151.17(10)	151.47(10)	151.71(10)	151.90(11)	152.02(13)

Uridine, $T=313.15 \mathrm{~K}$						
0.09524	$155.27(3)$	$155.21(3)$	$155.05(3)$	$154.89(3)$	$154.71(4)$	$154.52(5)$
0.08191	$155.28(4)$	$155.21(4)$	$155.06(4)$	$154.89(4)$	$154.72(5)$	$154.53(6)$
0.07492	$155.27(4)$	$155.21(4)$	$155.05(4)$	$154.88(4)$	$154.71(4)$	$154.52(5)$
0.06499		$155.21(5)$	$155.05(5)$	$154.89(5)$	$154.72(6)$	$154.54(8)$
0.05449	$155.29(6)$	$155.23(6)$	$155.08(6)$	$154.93(6)$	$154.76(6)$	$154.59(7)$
0.04992	$155.27(6)$	$155.21(6)$	$155.04(6)$	$154.88(6)$	$154.70(7)$	$154.51(8)$
0.04094	$155.28(7)$	$155.23(7)$	$155.07(7)$	$154.93(8)$	$154.76(9)$	$154.59(10)$
0.03745		$155.22(8)$	$155.05(8)$	$154.90(8)$	$154.72(8)$	$154.54(9)$

[^0]Table S4 Apparent molar isentropic compressions for aqueous solutions of the nucleosides at $T=(288.15$ and 313.15) K and at $p=(10.0$ to 100.0$) \mathrm{MPa}$

m$\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right)$	$K_{S, \phi^{\text {a }}}\left(\mathrm{m}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~Pa}^{-1}\right)$					
	$p(\mathrm{MPa})$					
	10.0	20.0	40.0	60.0	80.0	100.0
Adenosine, $T=288.15 \mathrm{~K}$						
0.01993	$-14.36(0.92)$	$-13.33(0.88)$	$-10.43(0.81)$	$-8.44_{1}(0.75)$	$-5.77(0.69)$	-3.15(0.64)
0.01957	$-14.77(0.94)$	-13.40 (0.90)	$-10.86(0.83)$	$-8.00_{3}(0.76)$	-5.96 (0.71)	$-3.33_{3}(0.65)$
0.01944		-13.66 (0.91)	$-10.67(0.83)$	-8.40 (0.77)	$-6.05(0.71)$	-3.21(0.66)
0.01929	-14.90 (0.95)	$-14.14(0.91)$	$-11.16(0.84)$	$-8.77(0.77)$	$-6.13(0.72)$	-3.17(0.67)
0.01904	$-14.52(0.97)$	-12.33 (0.93)	$-9.81(0.85)$	-7.82(0.78)	-5.69(0.73)	-2.88 (0.67)
0.01873	$-14.27(0.98)$	-13.40 (0.94)	$-10.6{ }_{1}(0.87)$	-7.86 (0.80)	$-5.23(0.74)$	-2.86 (0.68)
0.01846	$-13.74(0.99)$	$-12.77(0.95)$	$-9.74(0.88)$	$-7.34(0.81)$	$-5.15(0.75)$	$-2.53(0.69)$
Adenosine, $T=313.15 \mathrm{~K}$						
0.01984		7.94 (0.80)	7.89 (0.73)	8.16(0.68)	9.04(0.63)	9.53 (0.59)
0.01973	7.41 (0.83)	$7.15(0.80)$	7.51 (0.74)	8.26(0.68)	8.83(0.63)	$9.45(0.59)$
0.01951	7.73 (0.84)	$6.41(0.81)$	$6.50(0.75)$	$8.05(0.69)$	$9.05(0.64)$	$9.38(0.60)$
0.01936	$7.28(0.85)$	$7.45(0.81)$	7.56(0.75)	8.73 (0.70)	9.28 (0.65)	9.40 (0.60)
0.01919		$6.59(0.82)$	7.46(0.76)	8.30 (0.70)	8.94(0.65)	$9.18(0.61)$
0.01896		$6.37(0.83)$	6.53 (0.77)	8.21 (0.71)	$8.25(0.66)$	$9.17(0.61)$
0.01870	$7.35(0.88)$	6.83 (0.84)	6.01 (0.78)	8.14(0.72)	8.84(0.67)	$9.87(0.62)$
0.01848		7.54 (0.85)	7.34 (0.79)	7.90 (0.73)	8.46(0.68)	9.30 (0.63)
Cytidine, $T=288.15 \mathrm{~K}$						

0.09058	-23.30(0.20)	-21.62(0.19)	$-18.23(0.18)$	$-14.89(0.16)$	-11.63 (0.15)	-8.67(0.14)
0.08214	-23.40(0.22)	$-21.87(0.21)$	-18.26 (0.20)	-14.96 (0.18)	-11.70(0.17)	$-8.78(0.16)$
0.07292	-23.78 (0.25)	$-22.25(0.24)$	$-18.58(0.22)$	$-15.19(0.20)$	-11.90(0.19)	-8.96 (0.18)
0.06285	-24.22(0.30)	$-22.37(0.28)$	-18.82(0.26)	$-15.43(0.24)$	$-12.17(0.22)$	$-9.07(0.21)$
0.05387	-24.70(0.34)	-22.62(0.33)	$-19.29(0.30)$	$-15.58(0.28)$	-12.40 (0.26)	$-9.35(0.25)$
0.04435	$-24.35(0.41)$	-22.62(0.40)	-18.99 (0.36)	-15.69 (0.34)	-12.26 (0.31)	$-9.31_{1}(0.29)$
0.03651	-24.54(0.50)	-23.08 (0.48)	$-19.33_{1}(0.44)$	$-15.91(0.41)$	$-12.62(0.38)$	$-9.48(0.35)$
0.02857	-25.09(0.64)	$-23.19(0.62)$	$-19.57(0.57)$	$-16.41(0.52)$	-12.70(0.48)	-9.66(0.45)

0.09204	$-4.1_{2}(0.18)$	$-3.4_{2}(0.17)$	$-1.8_{9}(0.16)$	$-0.53_{9}(0.15)$	$1.0_{5}(0.14)$	$2.2_{5}(0.13)$
0.08265	$-4.6_{7}(0.20)$	$-3.7_{2}(0.19)$	$-2.0_{1}(0.18)$	$-0.75_{1}(0.16)$	$0.95_{3}(0.15)$	$2.2_{8}(0.14)$
0.07250	$-4.5_{6}(0.23)$	$-3.9_{0}(0.22)$	$-1.9_{9}(0.20)$	$-0.54_{1}(0.19)$	$0.81_{4}(0.17)$	$2.1_{8}(0.16)$
0.06304	$-4.6_{7}(0.26)$	$-3.9_{6}(0.25)$	$-1.7_{8}(0.23)$	$-0.98_{4}(0.21)$	$0.67_{2}(0.20)$	$2.1_{4}(0.18)$
0.05394	$-4.0_{7}(0.30)$	$-3.3_{2}(0.29)$	$-2.1_{5}(0.27)$	$-0.39_{0}(0.25)$	$1.2_{6}(0.23)$	$2.4_{2}(0.22)$
0.04498	$-4.3_{2}(0.36)$	$-3.6_{0}(0.35)$	$-2.0_{4}(0.32)$	$-0.55_{7}(0.30)$	$0.94_{0}(0.28)$	$2.2_{9}(0.26)$
0.03545	$-4.3_{0}(0.46)$	$-3.5_{8}(0.44)$	$-1.9_{6}(0.40)$	$-0.52_{9}(0.38)$	$1.0_{4}(0.35)$	$2.2_{8}(0.33)$
0.02724	$-4.6_{9}(0.60)$	$-3.6_{9}(0.58)$	$-1.8_{6}(0.53)$	$-0.72_{9}(0.49)$	$0.74_{0}(0.46)$	$1.8_{4}(0.43)$

Uridine, $T=288.15 \mathrm{~K}$

0.09524	-19.85(0.19)	-18.64(0.18)	$-15.74(0.17)$	$-12.61(0.16)$	-9.84(0.14)	-7.16(0.14)
0.08466	-20.09(0.22)	-18.70(0.21)	-15.90(0.19)	$-12.79(0.18)$	$-10.14(0.16)$	$-7.35(0.15)$
0.07501	-20.35(0.24)	-18.86(0.23)	$-16.1{ }_{6}(0.21)$	-12.93 (0.20)	$-10.07(0.18)$	-7.34(0.17)
0.06473	-20.74(0.28)	-19.17(0.27)	$-16.26(0.25)$	$-13.14(0.23)$	$-10.32(0.21)$	$-7.67(0.20)$
0.05522	-20.88(0.33)	-19.39(0.32)	$-16.53(0.29)$	$-13.51(0.27)$	$-10.35(0.25)$	$-7.65(0.23)$
0.04138	-20.85(0.44)	-19.59(0.42)	$-16.62(0.39)$	$-13.52(0.36)$	$-10.55(0.33)$	$-7.92(0.31)$

0.03782	$-20.6_{0}(0.48)$	$-20.0_{2}(0.46)$	$-16_{6}(0.43)$	$-13_{1} 7_{1}(0.39)$	$-10.5_{0}(0.36)$	$-7.7_{9}(0.34)$
0.02942	$-21_{4}(0.62)$	$-20.0_{1}(0.60)$	$-16_{6} 9_{6}(0.55)$	$-13.4_{3}(0.51)$	$-10.8_{1}(0.47)$	$-7.8_{7}(0.43)$
Uridine, $T=313.15 \mathrm{~K}$						
0.09524	$-0.3_{67}(0.17)$	$-0.0_{44}(0.16)$	$1.2_{6}(0.15)$	$2.2_{7}(0.14)$	$3.1_{4}(0.13)$	$4.3_{2}(0.12)$
0.08191	$-0.4_{92}(0.20)$	$-0.2_{13}(0.19)$	$1.1_{9}(0.18)$	$2.1_{6}(0.16)$	$3.0_{9}(0.15)$	$4.2_{4}(0.14)$
0.07492	$-0.4_{58}(0.22)$	$0.0_{28}(0.21)$	$1.0_{7}(0.19)$	$2.0_{6}(0.18)$	$3.1_{9}(0.17)$	$4.2_{5}(0.16)$
0.06499		$-0.3_{18}(0.24)$	$0.8_{11}(0.22)$	$1.9_{4}(0.21)$	$2.9_{5}(0.19)$	$3.8_{7}(0.18)$
0.05449	$-1.3_{9}(0.30)$	$-1.0_{3}(0.29)$	$0.1_{28}(0.27)$	$1.4_{0}(0.25)$	$2.2_{5}(0.23)$	$3.4_{2}(0.21)$
0.04992	$-0.3_{73}(0.33)$	$0.3_{02}(0.32)$	$1.4_{8}(0.29)$	$1.8_{2}(0.27)$	$3.0_{7}(0.25)$	$4.0_{3}(0.23)$
0.04094	$-1.2_{4}(0.40)$	$-0.5_{07}(0.38)$	$0.4_{29}(0.35)$	$1.1_{4}(0.33)$	$2.4_{3}(0.31)$	$3.3_{0}(0.29)$
0.03745		$0.0_{96}(0.42)$	$0.9_{30}(0.39)$	$1.5_{1}(0.36)$	$2.7_{9}(0.33)$	$3.8_{9}(0.31)$

[^1]Table S5 Apparent molar isothermal compressions for aqueous solutions of the nucleosides at $T=(288.15$ and 313.15$) \mathrm{K}$ and at $p=(10.0$ to 100.0$) \mathrm{MPa}$

$\begin{aligned} & m \\ & \left(\mathrm{~mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$	$K_{T, \phi^{\text {a }}}\left(\mathrm{m}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~Pa}^{-1}\right)$					
	p (MPa)					
	10.0	20.0	40.0	60.0	80.0	100.0
Adenosine, $T=288.15 \mathrm{~K}$						
0.01993	-10.66 (0.93)	$-9.73(0.89)$	-7.05(0.82)	-5.26 (0.76)	$-2.80(0.71)$	$-0.3_{15}(0.66)$
0.01957	$-11.0_{1}(0.94)$	-9.75(0.91)	-7.44 (0.84)	-4.83(0.77)	$-2.95(0.72)$	-0.460(0.67)
0.01944		$-10.0_{0}(0.91)$	-7.24(0.84)	-5.19(0.78)	$-3.02(0.72)$	$-0.3_{20}(0.67)$
0.01929	-11.11(0.96)	-10.46 (0.92)	-7.71(0.85)	-5.5s(0.78)	$-3.09(0.73)$	$-0.271(0.68)$
0.01904	-10.70(0.97)	-8.61(0.93)	-6.32(0.86)	-4.56(0.79)	$-2.62(0.74)$	$0.059(0.69)$
0.01873	-10.40 (0.99)	-9.65(0.95)	-7.09(0.87)	-4.56(0.81)	$-2.12(0.75)$	$0.11_{11}(0.70)$
0.01846	-9.83 (1.00)	$-8.98(0.96)$	-6.18(0.89)	-4.01(0.82)	$-2.01(0.76)$	$0.473(0.70)$
Adenosine, $T=313.15 \mathrm{~K}$						
0.01984		17.46(0.84)	16.89(0.78)	16.70(0.72)	17.19(0.67)	17.31(0.63)
0.01973	17.18(0.88)	16.62(0.84)	16.47(0.78)	$16.78(0.72)$	16.96(0.67)	17.21(0.63)
0.01951	17.47 (0.88)	15.83 (0.85)	15.40 (0.78)	$16.53(0.73)$	17.16(0.68)	17.12(0.63)
0.01936	$16.98(0.89)$	16.87(0.85)	16.48 (0.79)	17.22(0.73)	17.38 (0.68)	17.11(0.64)
0.01919		15.96(0.86)	$16.35(0.79)$	16.75(0.74)	17.01(0.69)	16.87(0.64)
0.01896		15.70 (0.86)	$15.35(0.80)$	16.63 (0.74)	16.26(0.69)	16.83(0.65)
0.01870	16.95(0.91)	16.14(0.87)	14.77(0.81)	16.51(0.75)	16.84(0.70)	17.53(0.65)
0.01848		16.83 (0.88)	$16.1_{1}(0.82)$	$16.24(0.76)$	16.41 (0.71)	16.90(0.66)
Cytidine, $T=288.15 \mathrm{~K}$						
0.09058	$-19.13(0.20)$	-17.60(0.19)	$-14.48(0.18)$	$-11.38(0.17)$	$-8.34(0.16)$	-5.5s(0.15)

0.08214	$-19.2_{1}(0.22)$	$-17_{2} 8_{2}(0.21)$	$-14_{49}(0.20)$	$-11.4_{4}(0.18)$	$-8.3_{9}(0.17)$	$-5.6_{5}(0.16)$
0.07292	$-19.5_{7}(0.25)$	$-18.1_{9}(0.24)$	$-14.7_{8}(0.22)$	$-11.6_{5}(0.21)$	$-8.5_{8}(0.19)$	$-5.8_{1}(0.19)$
0.06285	$-19.9_{9}(0.29)$	$-18.2_{8}(0.28)$	$-15.0_{1}(0.26)$	$-11.8_{7}(0.24)$	$-8.8_{3}(0.23)$	$-5.9_{0}(0.21)$
0.05387	$-20.4_{5}(0.34)$	$-18.5_{1}(0.33)$	$-15.4_{7}(0.30)$	$-12.0_{1}(0.28)$	$-9.0_{5}(0.26)$	$-6.1_{7}(0.25)$
0.04435	$-20.0_{8}(0.42)$	$-18.4_{9}(0.40)$	$-15.1_{4}(0.37)$	$-12.1_{0}(0.34)$	$-8.8_{9}(0.32)$	$-6.1_{1}(0.30)$
0.03651	$-20.2_{5}(0.50)$	$-18.9_{4}(0.48)$	$-15.4_{5}(0.45)$	$-12.3_{0}(0.41)$	$-9.2_{4}(0.39)$	$-6.2_{8}(0.36)$
0.02857	$-20.8_{0}(0.65)$	$-19.0_{3}(0.62)$	$-15.6_{9}(0.57)$	$-12.8_{0}(0.53)$	$-9.3_{1}(0.49)$	$-6.4_{5}(0.46)$

Cytidine, $T=313.15 \mathrm{~K}$

0.09204	$1.9_{8}(0.18)$	$2.5_{0}(0.18)$	$3.7_{3}(0.16)$	$4.8_{1}(0.15)$	$6.1_{7}(0.14)$	$7.1_{5}(0.13)$
0.08265	$1.3_{9}(0.20)$	$2.1_{7}(0.20)$	$3.5_{8}(0.18)$	$4.5_{6}(0.17)$	$6.0_{5}(0.16)$	$7.1_{6}(0.15)$
0.07250	$1.4_{7}(0.23)$	$1.9_{6}(0.22)$	$3.5_{7}(0.21)$	$4.7_{5}(0.19)$	$5.8_{7}(0.18)$	$7.0_{4}(0.17)$
0.06304	$1.3_{2}(0.27)$	$1.8_{6}(0.26)$	$3.7_{6}(0.24)$	$4.2_{6}(0.22)$	$5.7_{0}(0.20)$	$6.9_{6}(0.19)$
0.05394	$1.9_{0}(0.31)$	$2.4_{8}(0.30)$	$3.3_{4}(0.28)$	$4.8_{4}(0.26)$	$6.2_{8}(0.24)$	$7.2_{3}(0.23)$
0.04498	$1.5_{9}(0.38)$	$2.1_{5}(0.36)$	$3.4_{0}(0.33)$	$4.6_{3}(0.31)$	$5.9_{1}(0.29)$	$7.0_{5}(0.27)$
0.03545	$1.5_{5}(0.48)$	$2.1_{1}(0.46)$	$3.4_{2}(0.42)$	$4.6_{0}(0.39)$	$5.9_{5}(0.37)$	$6.9_{8}(0.34)$
0.02724	$1.0_{6}(0.62)$	$1.9_{0}(0.60)$	$3.4_{6}(0.55)$	$4.3_{2}(0.51)$	$5.5_{8}(0.48)$	$6.4_{6}(0.44)$

Uridine, $T=288.15 \mathrm{~K}$

0.09524	$-15.7_{9}(0.25)$	$-14.7_{2}(0.24)$	$-12.0_{9}(0.22)$	$-9.1_{8}(0.21)$	$-6.6_{2}(0.20)$	$-4.1_{1}(0.18)$
0.08466	$-16_{6}(0.27)$	$-14.8_{0}(0.26)$	$-12.2_{7}(0.24)$	$-9.3_{9}(0.22)$	$-6.9_{5}(0.21)$	$-4.3_{2}(0.20)$
0.07501	$-16.3_{5}(0.29)$	$-14.9_{9}(0.28)$	$-12.5_{5}(0.26)$	$-9.5_{5}(0.24)$	$-6.9_{0}(0.23)$	$-4.3_{3}(0.21)$
0.06473	$-16.7_{7}(0.33)$	$-15.3_{3}(0.31)$	$-12.6_{8}(0.29)$	$-9.7_{9}(0.27)$	$-7.1_{8}(0.25)$	$-4.6_{9}(0.24)$
0.05522	$-16.9_{3}(0.37)$	$-15.5_{7}(0.36)$	$-12.9_{8}(0.33)$	$-10.1_{9}(0.31)$	$-7.2_{3}(0.29)$	$-4.6_{9}(0.27)$
0.04138	$-16.9_{4}(0.47)$	$-15.8_{0}(0.46)$	$-13.0_{9}(0.42)$	$-10.2_{3}(0.39)$	$-7.4_{5}(0.36)$	$-4.9_{9}(0.34)$
0.03782	$-16.7_{0}(0.51)$	$-16.2_{5}(0.49)$	$-13.1_{2}(0.46)$	$-10.4_{3}(0.42)$	$-7.4_{1}(0.39)$	$-4.8_{6}(0.37)$

$0.02942-17.3_{7}(0.65) \quad-16.2_{6}(0.62) \quad-13.4_{6}(0.57) \quad-10.1_{7}(0.53) \quad-7.7_{5}(0.49) \quad-4.9_{6}(0.46)$
Uridine, $T=313.15 \mathrm{~K}$

0.09524	6.85 (0.45)	6.97(0.43)	7.91 (0.41)	8.59 (0.38)	$9.17(0.36)$	$10.1{ }_{0}(0.34)$
0.08191	6.83 (0.47)	6.89(0.45)	7.92 (0.43)	8.56 (0.40)	9.20 (0.38)	10.09 (0.36)
0.07492	6.91 (0.48)	7.19 (0.47)	$7.85(0.44)$	8.51 (0.41)	9.34 (0.39)	10.13 (0.37)
0.06499		6.90(0.49)	7.65 (0.46)	8.44(0.43)	$9.15(0.41)$	9.79 (0.38)
0.05449	6.09 (0.54)	6.23 (0.52)	7.00 (0.49)	7.93 (0.46)	8.47 (0.43)	$9.37(0.41)$
0.04992	7.16 (0.56)	7.62 (0.54)	8.43 (0.50)	$8.39(0.47)$	9.34 (0.45)	10.03(0.42)
0.04094	6.31 (0.61)	6.83 (0.59)	$7.37(0.55)$	7.72 (0.52)	8.72 (0.49)	$9.29(0.46)$
0.03745		7.46 (0.62)	7.89 (0.58)	8.11 (0.54)	9.09 (0.50)	$9.92(0.48)$

${ }^{a}$ Estimated uncertainties are in parentheses

Fig 1
(a)

Fig 2
(a)

Fig 3

(D)

(b)

Figure Captions

Fig. 1 Volumetric properties as a function of temperature and pressure for adenosine at infinite dilution. a Partial molar volume. b Partial molar isothermal compression.

Fig. 2 Volumetric properties as a function of temperature and pressure for cytidine at infinite dilution. a Partial molar volume. b Partial molar isothermal compression.

Fig. 3 Volumetric properties as a function of temperature and pressure for uridine at infinite dilution. a Partial molar volume. b Partial molar isothermal compression.

[^0]: ${ }^{\text {a }}$ Each number in parentheses is the uncertainty in the last digit, or last two digits, of V_{ϕ}

[^1]: ${ }^{a}$ Estimated uncertainties are in parentheses

