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ABSTRACT: A general-purpose software package, termed DE Novo OPTimization of 

In/organic Molecules (DENOPTIM), for de novo design and virtual screening of functional 

molecules is described. Molecules of any element and kind, including metastable species and 

transition states, are handled as chemical objects that go beyond valence-rules representations. 

Synthetic accessibility of the generated molecules is ensured via detailed control of the kinds of 

bonds that are allowed to form in the automated molecular building process. DENOPTIM 

contains a combinatorial explorer, for screening, and a genetic algorithm for global optimization 

of user-defined properties. Estimates of these properties may be obtained, to form the fitness 

function (figure of merit or scoring function), from external molecular modeling programs via 

shell scripts. Examples of a range of different fitness functions and DENOPTIM applications, 

including an easy-to-do test case, are described. DENOPTIM is available as Open Source from 

https://github.com/denoptim-project/DENOPTIM. 
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INTRODUCTION 

Computational-driven design and discovery of molecules and materials with desired properties 

has been a long-sought goal that is, little by little, being realized by spectacular improvements in 

both computational hardware and algorithms for molecular and materials modeling and 

prediction. In drug discovery, for instance, a primary goal is the identification of ligands with 

high binding affinity and selectivity for the protein receptor, and this identification is accelerated 

by a range of computerized methods.1 Although there is a similar need for functional non-drug 

compounds and materials to help achieving sustainable energy and chemical manufacturing, the 

discovery of these compounds have to a greater extent relied on chemical intuition and 

serendipity. However, this trend is changing, and modern computational methods, some 

augmented by artificial intelligence (AI),2-3 are increasingly being used in the screening of 

compounds and materials with desired properties.4-5  

However, such screenings cannot, due to the vastness of chemical space, involve all possible 

molecules. Instead, structures may be designed in an inverse fashion from the intended 

properties,6 or the chemical space may be traversed more efficiently, favoring higher-scoring 

structures. The latter is the idea behind de novo design, which is a standard tool in drug design:7 

Molecules are built, automatically, by assembling building blocks (atoms or fragments).8 Next, 

the fitness, or scoring function, of each candidate is calculated and this information is used to 

traverse the chemical space via global optimization. To ensure that each such candidate is 

sufficiently realistic, the building blocks may be assembled to synthetically accessible molecules 

using retrosynthetic- and reaction-based approaches9-11 or by applying explicit connection rules 

for bond formation.12-13  
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Most of the existing de novo methods have been developed for the assembly of organic, drug-

like compounds,14-15 and constructing reasonable non-drug like molecules is, in general, more 

challenging due to the variety of elements and their different chemical reactivities and 

geometrical preferences. This is especially true for transition-metal (TM) compounds, and the 

automatic building and screening of inorganic compounds in general and TM compounds in 

particular requires specifically adapted methods.16-19 To illustrate, HostDesigner is a tool aimed 

at designing metal ion binding sites and other host-guest systems,19 MolSimplify is a toolkit for 

screening of inorganic molecules and intermolecular complexes,16 and an evolutionary algorithm 

(EA) has recently been developed for the design of porous organic cages and other 

supramolecules.20  

Broad and general applicability to all kinds of molecules and design problems is the main goal 

behind our development of an EA-based de novo design method. A prototype of this method 

reproduced the known relative performance among ruthenium-based olefin metathesis 

catalysts,21 but produced many exotic and synthetically inaccessible molecules in addition to 

low-quality starting structures (for fitness evaluation). This software has since been completely 

rewritten and equipped with routines to handle synthetic accessibility,22 assembly of 3D 

fragments directly into 3D molecules of high quality,23 and the closure and rupture of cyclic 

structures (as in metal chelates).24 The resulting program, baptized DE Novo OPTimization of 

In/organic Molecules (DENOPTIM), has been applied to a variety of design problems, and 

predicted the first de novo designed inorganic molecule experimentally verified to reflect the 

intended property.25 DENOPTIM is available as Open Source software from 

https://github.com/denoptim-project.  

 
METHODS 
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Software Design 

DENOPTIM consists of a series of modules, each associated with a specific set of 

functionalities. Input parameters are defined in the main interface to DENOPTIM, an ASCII file 

(termed Parameters in Figure 1) containing keywords that may or may not require the 

specification of a value (syntax: keyword=value). This ASCII file also defines the locations of 

further input files, such as the list of fragments, the connection rules, and the Fitness Provider 

(see Figure 1). The latter is an external BASH script that is called by a fitness evaluation routine 

and which defines the figure of merit of each candidate molecule. The output from DENOPTIM 

is an organized series of SDF files, each containing a candidate molecule, its Cartesian 

coordinates, connectivity, and associated data fields such as the fitness, SMILES/InCHi encoding 

and other properties that the user may choose to include via the Fitness Provider. Handling of 

molecular structures is facilitated by routines from the Chemistry Development Kit (CDK),26 

with additional support for some input/output operations from Apache libraries.27 DENOPTIM is 

written in Java, allowing for execution on a variety of operating systems and computer 

architectures. 
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Figure 1: Relation between the main DENOPTIM modules (DenoptimGA and 

FragSpaceExplorer), the input parameters file, and the Fitness Provider. 

 
Representation of chemical objects 
 

In cheminformatics, molecules are typically represented as graphs.28 DENOPTIM represents a 

chemical object as a graph, G = (T,Fc), resulting from a spanning tree (T), which is a collection 

of vertices (i.e., building blocks/molecular fragments) and edges (i.e., connections between pairs 

of fragments), and a collection of fundamental cycles (Fc) corresponding to chords between 

vertices of the spanning tree. A particular feature of DENOPTIM is that edges may represent 

either any kind of bond or any spatial relationship between the fragments involved. This allows 

handling of any molecular and supramolecular entities. For use in DENOPTIM, molecular 

fragments are generated by the fragmentation of compounds taken from databases (e.g., 
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ChEMBL29 and crystal structure databases)30 or computational studies. Each fragment is 

characterized by its chemical constitution (i.e., the atoms, bonds, and charges) and a set of 

attachment points (APs) that define how (i.e., formal bond order and geometry) and where (i.e., 

from which atoms/pseudo-atoms) the fragment can form connections. DENOPTIM comes with 

an accessory tool for generation of fragments (https://github.com/denoptim-

project/GM3DFragmenter) particularly suited (e.g., allowing for multihapto bonding) for 

organometallic chemistry, but fragments may also be generated by other tools, such as RDKit31 

and eMolFrag.32  

DENOPTIM fragments, while all being formatted equally, have four different uses:  

• Scaffolds are the roots of the tree-like molecular structures.  

• Standard fragments are used to expand or modify molecules but not to start new ones.  

• Ring-closing placeholders serve to saturate APs that may set up chords to form multi-

fragment rings. 

• Capping groups are fragments with only one AP that are used to saturate open 

valences. 

DENOPTIM currently supports two strategies for handling APs: In the valence-based 

approach, each AP is one of the user-defined free valences of a given atom. Combination of APs 

are controlled only by the number of open valences on the atoms. In the class-based approach, 

each AP is annotated with a label (a string) specifying the so-called AP class (APClass).22 The 

AP classes are typically used to encode information about the connected chemical environment 

during fragmentation of existing molecules. Combination of APs is controlled by a user-defined 

APClass compatibility matrix. Hence, valence rules do not apply, and atypical molecules and 

supramolecules can be formed. 
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Fragments may contain cycles, but since such cycles are intra-vertex, they do not result in a 

cyclic graph G. However, chains of vertices (i.e., cyclic or acyclic fragments) can form new, 

multi-fragment rings when chords are defined accordingly in the graph G.24 This formalism 

allows for definition of any type of ring, as well as on-the-fly ring formation and rupture during 

design studies. 

 

Molecular Assembly  

Fragments are attached layer-by-layer on a scaffold generating a tree-like structure. 

DENOPTIM detects APs that are related by high topological similarity (same APClass, AP 

source element, type and number of nearest-neighbor atoms) and performs the same action on all 

such symmetry-related APs. The user, in addition to controlling the probability of symmetric 

operations, may introduce or prevent this symmetry by using identical or different AP classes for 

otherwise topologically identical APs.  

Synthetic accessibility is controlled by a set of pre-defined connection rules, specified in the 

above-mentioned APClass compatibility matrix. Similar compatibility rules also apply to the 

ring-closure placeholders, between which chords may be added to the spanning tree to form 

cycles. After definition of the rings, the class-based building scheme finalizes a molecule by 

appending a capping fragment with a single AP of a matching class (as defined by the 

compatibility matrix) to each of the free APs and replacing unused ring-closure placeholders. 

Finally, a unique identifier, such as an InCHi key or a custom identifier, is assigned to each 

completed molecule to allow enumeration and removal of duplicates. 

 
Fitness Evaluation  
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DENOPTIM handles the calculation of fitness, or figure of merit. A fitness, or scoring, 

function may, for instance, be a calculated measure of the activation energy of a candidate 

catalyst21 or the spin instability of a candidate spin-crossover compound; see the Application 

Examples section below and the Supporting Information (SI).24 A single fitness evaluation may 

involve several computational chemistry tasks and individual calculations, such as a 

conformational search followed by geometry optimization, refinement and property calculations 

of several of the identified conformers. To ensure generality and flexibility with respect to the 

nature of the fitness, DENOPTIM calls an external BASH script, here referred to as the Fitness 

Provider, in which the user defines the details of the fitness calculation. Thus, any kind of fitness 

evaluations, ranging from estimates based on machine learning to density functional theory 

calculations, is supported. Each Fitness Provider job is entered in the task list and monitored for 

completion. Once completed, the Fitness Provider reports the fitness value in a dedicated data 

field (“<FITNESS>”) in the SDF file. Alternatively, a failed fitness evaluation will be indicated 

by the “<MOL_ERROR>” field.  

Finally, DENOPTIM currently only supports a single fitness value. Cases in which the fitness 

reflects different properties must be resolved by summarizing the different fitness components 

into a single number.33  

 

Evolutionary Optimization 

The DenoptimGA module contains a genetic algorithm for global optimization of molecules. 

An initial population of candidates is evolved using crossover and mutation to modify existing 

molecular graphs. Mutation replaces a vertex vi and all vertices that can be reached from vi by a 

directed path in the spanning tree (i.e., the sub-branches of vi) either by deletion (i.e., no vertex) 
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or by a different vertex and its sub-branches. The crossover operation swaps such branches 

between the graphs of two parent molecules.  

A third operator, growth, extends the graph by another fragment. In order to prevent molecules 

from growing infinitely, this extension is associated with a probability 𝑝 of addition to level L of 

the spanning-tree, controlled by the parameters λ, σ1, and σ2:  

• EXP_DIFF: 	𝑝 = 1 − !"#!"#

!$#!"#
 

• TANH:   𝑝 = 1 − 𝑡𝑎𝑛ℎ(𝜆𝐿). 

• SIGMA:  𝑝 = 1 − !
!$#%&'"($(*"(%),

.  

Additional constraints, such as a maximum number of atoms, rotatable bonds, and molecular 

weight, can be introduced to filter the candidates prior to their fitness evaluation. 

Finally, fitness calculations may be expedited on multiprocessor platforms via two multi-

threading schemes. In the first such scheme, fitness calculations for a group of candidates are 

submitted in parallel. No new fitness task is submitted until all the tasks of the previous group 

are completed. A second scheme, termed asynchronous mode, reduces the waiting time by 

continuous submission so that new fitness tasks may be launched as soon as idle CPUs are 

available.  

 

Fragment Space Explorer 

The FragSpaceExplorer module allows for systematic exploration of the chemical space, and 

iterates over all fragment combinations that can be obtained from a given set of starting points 

(fragments or graphs) and a given fragment space. Only one fragment is appended to each AP, 

thus each root is decorated by fragments one layer at a time. The graphs that represent finished 
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entities are then submitted to fitness evaluation following the asynchronous parallelization mode. 

Next, the graphs belonging to level L are used as roots when creating the graphs of level L+1.  

 

APPLICATION EXAMPLES 

Examples where DENOPTIM or earlier versions of the software have been used in de novo 

molecular design are described briefly in the following. More detailed descriptions, including 

graphical illustrations, are available in the SI.  

Olefin metathesis catalysts. In its first implementation, lacking control of synthetic 

accessibility,22 advanced 3D features,23 and handling of rings,24 the genetic algorithm still 

reproduced the historical transition from the first-generation, phosphine-based Grubbs-type 

olefin metathesis catalysts to the more active second-generation, N-heterocyclic carbene-based 

catalysts.21 The catalytic activity was reflected in the fitness via a quantitative structure–activity 

(QSAR) model that correlated semi-empirically calculated properties of the catalytically active 

ruthenium complex with the barrier height of the reaction. Each fitness calculation thus consisted 

of a semi-empirical (PM6) geometry optimization.  

Metal-free dyes for dye-sensitized solar cells.34 DENOPTIM was used to design 

phenothiazine dyes for dye-sensitized solar cells.35 The power conversion efficiencies (PCEs) of 

the candidate dyes were estimated by a linear quantitative structure–property relationship 

(QSPR) model built from over 100 known phenothiazines. Several dyes with efficiencies greater 

than 9% could be identified, a close to 2% increase with respect to the experimentally 

determined PCEs of the best metal-free sensitizers reported at the time. Similarly, improved 

coumarin dyes have been designed using DENOPTIM in conjunction with a fitness function 



 

 11 

based on a QSPR model fitted to the product of the current and voltage observed for 49 

molecules.36  

Polymers with high refractive index. Optical applications require polymers with high 

refractive index (nD > 1.70), good thermal stability, and solubility in selected solvents. 

Accordingly, designing such polymers requires simultaneous optimization of multiple properties. 

New monomers were designed using the refractive index as the primary figure of merit, while 

machine-learning (ML) estimates of the temperature of glass transition (Tg) and thermal 

decomposition (Td) were used to exclude candidates. Subsequent solubility-based filtering led to 

candidate monomers matching several complementary properties.37 

Solvents for CO2 capture. To identify alternatives to traditional aqueous amine solutions for 

CO2 capture, DENOPTIM was used to propose new imidazole-based compounds.38 The extent to 

which these solvents are efficient in CO2 capture to a large extent is determined by their basicity. 

Thus, the acid dissociation constant (pKa), estimated by a QSPR model, was used as fitness. 

More than 8000 unique imidazole derivatives were obtained, and candidates with a QSPR-

predicted pKa > 9 were further filtered for other important properties, such as density, viscosity, 

vapor pressure, and biodegradability.  

Tuning of excitation energies. DENOPTIM has been used to fine-tune azobenzene excitation 

energies.39 The absorption maximum of each candidate was estimated using time-dependent 

density functional theory (TD-DFT) and used as fitness function. Starting from 300 known 

azobenzenes (lmax 318-575 nm), DENOPTIM identified novel compounds with a predicted lmax 

higher than 600 nm. 

Iron spin crossover (SCO) compounds. Using a fitness function consisting of ligand field 

molecular mechanics (LFMM)40-41 calculated energies of high- and low-spin [FeII]2+ complexes, 
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chelating amine ligands were designed to promote spin instability for such complexes.24 The 

most promising candidate ligand, 1,1,1-tris(aminomethyl)ethane (TAME), though commercially 

available, had never been tested for this property. In a subsequent experimental follow-up, the 

chloride salt of the [Fe(TAME)2]2+ complex was confirmed to possess the predicted spin-

crossover property.42 To our knowledge, this is the first de novo designed non-drug compound 

experimentally confirmed to reflect the intended, in silico optimized property. 

Test Case: Ligand Design in Organometallic Complexes. In addition to the above-

described, already published applications, a test case was designed to assess the performance of 

DENOPTIM’s genetic algorithm. In practical molecular design, the size of the chemical space 

precludes the screening of all possible solutions to find the optimum. Instead, near-optimal 

solutions may be identified using global-optimization methods such as genetic algorithms. The 

performance of a genetic algorithm can be evaluated as the speedup associated with identifying 

high-fitness candidates relative to brute-force screening to arrive at the optimal candidate.43 

Thus, we have compared the genetic algorithm (the DenoptimGA module) implemented in 

DENOPTIM with the brute-force method (the DenoptimRND module, not shown in Figure 1). 

The test case does not address a specific research challenge, but illustrates how DENOPTIM 

may be used to design organometallic complexes. In particular, the test case illustrates the 

handling of a fitness function dominated by electronic properties, which are often more 

challenging to evaluate than shape and steric properties. More precisely, as described in more 

detail in the SI, we set out to design square-planar complexes trans-Pt(X)2(L)(CO) with weak 

C-O bonds. Since the strength of the C-O bond is determined by the electronic properties of 

trans-Pt(X)2(L), we used the C-O bond distance as fitness while exploring ligand sets [X,L] built 

from a selection of four anionic ligands (X) and about a thousand de novo generated dative 
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ligands (L). As Figure 2 shows, random selection (brute force) takes much longer to reach high 

fitness values than the genetic algorithm.  

 
Figure 2: Average mean fitness from ten independent replicas of evolutionary experiments 

where new candidates were generated either using DenoptimGA (probability of crossover, pxover, 

and probability of mutation, pmut), or by random selection from the full list of candidates 

(DenoptimRND). 

 
Conclusions 

DENOPTIM is a software package for de novo design and virtual screening of functional 

molecules of any kind. Handling of organic, inorganic and organometallic molecules as well as 

metastable species and transition states is achieved via chemical objects that go beyond standard 

valence-rules representation, with the synthetic accessibility controlled by a compatibility matrix 

determining what kinds of bonds are allowed to form. The fitness evaluation is also flexible, and 

is easily extended to use any kind of fitness function from external programs. DENOPTIM has 



 

 14 

been used in a range of different design problems involving organic, inorganic and 

organometallic compounds. Moreover, a test case demonstrates the superior performance of the 

genetic algorithm over brute-force screening. DENOPTIM is distributed under the GNU Affero 

GPL v3 license and is available as Open Source software from https://github.com/denoptim-

project/DENOPTIM. 
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