
This document is the unedited Author’s version of a Submitted Work that was subsequently 
accepted for publication in Journal of Chemical Information and Modeling, copyright © 
American Chemical Society after peer review. To access the final edited and published work 
see 10.1021/acs.jcim.9b00376  



FAME 3: Predicting the Sites of Metabolism 

in Synthetic Compounds and Natural Products 

for Phase 1 and Phase 2 Metabolic Enzymes 

Martin Šícho,1,2 Conrad Stork,1 Angelica Mazzolari,3 Christina de Bruyn Kops,1 Alessandro 

Pedretti,3 Bernard Testa,4 Giulio Vistoli,3 Daniel Svozil,2 and Johannes Kirchmair1,5,6* 

1 Universität Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Department 

of Informatics, Center for Bioinformatics, 20146 Hamburg, Germany 

2 University of Chemistry and Technology Prague, Faculty of Chemical Technology, Department 

of Informatics and Chemistry, CZ-OPENSCREEN: National Infrastructure for Chemical 

Biology, 166 28 Prague 6, Czech Republic 

3 Università degli Studi di Milano, Facoltà di Scienze del Farmaco, Dipartimento di Scienze 

Farmaceutiche “Pietro Pratesi”, I- 20133 Milan, Italy 

4 Emeritus Professor, University of Lausanne, 1015 Lausanne, Switzerland 

5 University of Bergen, Department of Chemistry, N-5020 Bergen, Norway 

6 University of Bergen, Computational Biology Unit (CBU), N-5020 Bergen, Norway 

*J. Kirchmair. E-mail: kirchmair@zbh.uni-hamburg.de. Tel.: +49 40 42838 7303. 

  



ABSTRACT 

In this work we present the third generation of FAst MEtabolizer (FAME 3), a collection of extra 

trees classifiers for the prediction of sites of metabolism (SoMs) in small molecules such as 

drugs, drug-like compounds, natural products, agrochemicals and cosmetics. FAME 3 was 

derived from the MetaQSAR database (Pedretti, A.; Mazzolari, A.; Vistoli, G.; Testa, B. 

MetaQSAR: An Integrated Database Engine to Manage and Analyze Metabolic Data. J. Med. 

Chem. 2018, 61, 1019–1030), a recently published data resource on xenobiotic metabolism that 

contains more than 2,100 substrates annotated with more than 6,300 experimentally confirmed 

SoMs related to redox reactions, hydrolysis and other non-redox reactions, and conjugation 

reactions. In tests with holdout data, FAME 3 models reached competitive performance, with 

Matthews correlation coefficients (MCCs) ranging from 0.50 for a global model covering 

phase 1 and phase 2 metabolism, to 0.75 for a focused model for phase 2 metabolism. A model 

focused on cytochrome P450 metabolism yielded an MCC of 0.57. Results from case studies 

with several synthetic compounds, natural products and natural product derivatives demonstrate 

the agreement between model predictions and literature data even for molecules with structural 

patterns clearly distinct from those present in the training data. The applicability domains of the 

individual models were estimated by a new, atom-based distance measure ("FAMEscore") that is 

based on a nearest neighbor search in the space of atom environments. FAME 3 is available via a 

public web service at https://nerdd.zbh.uni-hamburg.de/ and as a self-contained Java software 

package, free for academic and non-commercial research. 



INTRODUCTION 

Detailed understanding of the metabolic fate of small molecules is essential to the development 

of safe and efficacious drugs, cosmetics and agrochemicals. A wide range of advanced in vitro 

and in vivo methods are at our disposal today. Paired with powerful analytical methods, they 

allow the determination of small-molecule metabolism at an unprecedented level of detail but 

remain resource-demanding.1 At the same time, increasingly mature in silico methods for the 

prediction of (i) the interaction of xenobiotics with metabolic enzymes, (ii) atom positions in 

small molecules liable to metabolism (i.e. sites of metabolism; SoMs) and (iii) the molecular 

structures of likely metabolites are becoming available.1–4  

Machine learning approaches have shown high potential in modeling the increasingly large and 

complex sets of measured data on xenobiotic metabolism.5 One of the best-explored categories 

of models in this context is predictors of SoMs, several of which are accessible as free web 

services or software packages. The most prominent examples of free tools for SoM prediction 

include SMARTCyp,6,7 XenoSite,8 SOMP9 and FAME.10,11 

Most SoM predictors are limited to cytochrome P450 (CYP) mediated metabolism, which is 

related to the important role of CYPs in xenobiotic metabolism but also to the fact that 

substantially more measured data are available for this family of metabolizing enzymes than to 

any other.12 In recent years, specialized predictors of SoMs related to biotransformations 

catalyzed by uridine 5'-diphospho-glucuronosyltransferases (UGTs) have been reported. These 

have been integrated, for example, into SOMP9 and XenoSite.13 A machine learning model for 

the prediction of SoMs related to redox, conjugation and further types of metabolic reactions is 

MetScore.14 MetScore has undergone thorough validation and yields a high prediction accuracy. 



However, the model has not been released for use by the scientific community. A second SoM 

predictor covering a broad range of phase 1 and phase 2 enzymes is FAME. The predictor is 

trained on the Metabolite Database,15 which has recently been discontinued. FAME is based on a 

random forest approach that relies on just seven simple descriptors to encode essential atom 

properties such as electronegativity, atom type or its steric accessibility from the perspective of 

the enzyme’s reaction center. The successor of FAME, FAME 2,11 utilizes circular descriptors 

that include atom type information as well as numerical values for partial charges, hybridization 

states, atom accessibility and other features of the encoded atom and its neighbors. Additionally, 

in FAME 2 the random forest algorithm has been replaced by an extremely randomized trees 

algorithm. Together, these enhancements produced more descriptive, accurate and robust 

models, which allowed for a substantial reduction of required training instances and, hence, for 

the use of smaller-sized, non-commercial data sets. Specifically, FAME was trained on more 

than 20,000 molecules with computationally annotated SoMs whereas FAME 2 was trained on a 

revised version16 of the manually curated Zaretzki data set consisting of 678 compounds.8 

However, as a result of the scarcity of the publicly available data, FAME 2 is limited to CYP-

mediated metabolism only. Besides the quantity of the data and the limitation to CYPs, two 

further important differences must be observed. First, for the large training set of FAME, SoMs 

were assigned by an automated approach based on the structural differences observed between 

the parent compound and its known metabolites, whereas in the case of FAME 2, the SoMs were 

manually assigned by experts. This is a qualitative difference, because mechanistic SoMs can 

only be predicted with a few methods, including FAME 2. 

Here, we present FAME 3, which aims to address three major constraints shared by most SoM 

predictors: (i) the limited coverage of metabolizing enzymes and reactions, (ii) the absence of 



means to estimate prediction accuracy for individual atoms and (iii) the limited accessibility for 

the use of the models by the scientific community. FAME 3 is trained on a new, comprehensive 

data set of drug-like molecules annotated with expert-curated SoMs, originating from the 

MetaQSAR database.17 Compared to FAME 2, FAME 3 enables the prediction of SoMs not only 

for CYP-mediated metabolism but also for other types of phase 1 metabolism and for phase 2 

metabolism. In addition, FAME 3 features a new method for the estimation of the reliability of 

predictions for individual atom positions of query molecules. FAME 3 is available via a public 

web service at https://nerdd.zbh.uni-hamburg.de/ and as a stand-alone software package free of 

charge for academic and non-commercial research. 

METHODS 

Data Sources and Preprocessing 

MetaQSAR served as the data source for model development. It is a manually compiled resource 

of published measured data on xenobiotic metabolism, including expert-curated SoMs and 

reaction annotations for discovery compounds and drugs. The version of the database used in this 

work18 contains 2,314 compounds with annotated SoMs that were compiled from articles 

published in Chemical Research in Toxicology (2004-2012), Xenobiotica (2004-2012) and Drug 

Metabolism and Disposition (2004-2015). The reactions covered in MetaQSAR are divided into 

three main reaction classes: redox reactions (3,458 reactions), hydrolysis and other non-redox 

reactions (640 reactions), and conjugation reactions (1,302 reactions). While the first two main 

reaction classes are associated with enzymes taking part in phase 1 metabolism, the third group 

consists of reactions specific to phase 2 enzymes. This allows the separation of phase 1 and 

phase 2 reactions during modeling. The individual reaction classes are further divided into 



reaction subclasses (Tables S1, S2 and S3), which enables training of models focused on 

individual well-represented biotransformations. Only compounds meeting all of the following 

criteria were considered for model building and testing (the numbers in brackets report the 

numbers of molecules not meeting the respective criterion): 

● Has at least one experimentally confirmed SoM annotated (32) 

● Has a molecular weight between 100 and 1000 Da (79) 

● Does not consist of element types other than C, N, S, O, H, F, Cl, Br, I, P, B, Si (20) 

● Can be successfully parsed and descriptors successfully calculated by the Chemistry 

Development Kit (CDK)19,20 framework (16) 

Therefore, the preprocessed data set ("FAME 3 data set") consisted of 2,167 compounds in total. 

Regarding the annotation of SoMs, the following special cases are considered: If a metabolic 

transformation relates to a bond rather than a single atom, the participating atoms are considered 

individually, and both are labeled as SoMs in the training data. This is to provide the model with 

more information on the participating atoms, which can each be subjected to different effects of 

the corresponding atomic environment. Overall this should render a more complete picture about 

the effects determining the reactivity of the bond, but also, and perhaps more importantly, 

indicate which atoms react together when they are connected by a particular bond type. It is also 

possible that more than one reaction subclass or enzyme is assigned to a single atom. In such 

cases, the atom is considered as a valid SoM if at least one reaction class or enzyme known for 

that atom is relevant for the model being built. 



Descriptors 

Calculation of Descriptors and Atom Type Fingerprints 

Circular atom descriptors combined with atom type fingerprints ("circCDK+ATF") were 

calculated with CDK as reported in ref 11. However, rather than exploring the “circCDK + ATF” 

descriptors of up to only six layers, as we did for FAME 2,11 in this study, we explored 

descriptors with up to ten layers. This allowed to gain a better understanding of the impact of 

higher descriptor complexity on model performance and come up with a precise approach for the 

definition of the applicability domain.  

FAME fingerprint 

A new circular, atom-based binary fingerprint (“FAME fingerprint”) was generated by assigning 

a 32-bit string to every combination of a Sybyl atom type and topological distance (bond depth) 

from a given atom (Figure 1). The first n bits in this 32-bit string are switched to “1” if the atom 

has n neighbors of a particular atom type in the given topological distance. The bit string length 

was chosen taking into consideration the maximum number of atoms of the same type and 

topological distance observed in molecules of potential interest to small-molecule drug 

discovery. This means that for the given topological distance, a particular atom type can be 

present in the molecule up to 32 times (which should cover even rare, large and complex 

structures). The final atom fingerprint is created by concatenating the list of all 32-bit strings 

sorted by atom type and distance. Overall, there were 23 distinct atom types in the training set 

and, thus, the largest fingerprint generated for environments up to the bond depth of 10 (i.e. 11 

layers) had a total of 8096 bits (resulting from 23 atom types × 32 bits describing the atom 

neighborhood × 11 layers). 



 

Figure 1: Illustration of the binarization scheme underlying the FAME fingerprint. An example is 

given for the oxygen atom in tamoxifen and the third layer (bond depth, !) of the binary 

fingerprint. The oxygen atom has two aromatic carbon atoms (Sybyl atom type C.ar) in a 

distance of three bonds. Therefore, the first two bits are turned on in the 32-bit string that 

represents the C.ar type residing in a distance of three bonds from the encoded atom. Similarly, 

only the first bit is turned on for the 32-bit string associated with the sp3 hybridized nitrogen 

(Sybyl atom type N.3) in the same distance. No bits are turned on in the 32-bit string associated 

with atom types that are not present 3 bonds away from the oxygen atom (such as the sp3 

hybridized carbon shown in this example). All of the generated 32-bit strings are then 

concatenated to form the FAME fingerprint. 



Model Building 

Model construction and related data analysis tasks were implemented using scikit-learn.21 Prior 

to any model development, 80% of the molecules of the individual preprocessed data sets were 

dedicated for model training (training sets) and 20% for testing (test sets; holdout data) by a 

random split of the original data set. All molecules were checked for topologically symmetric 

atoms as described in ref 11. 

Extremely randomized trees were already successfully utilized in FAME 2 development and 

were also used in the present study. However, in this study the number of trees was reduced from 

500 to 250. Also, the decision threshold was set to a fixed value of 0.4 (this threshold value was 

found to work best for almost all models in FAME 211). Because the value of the class_weight 

parameter (which enables different class balancing strategies within the extra trees model) was 

found to have little effect on model performance, the value of this parameter was also kept fixed 

in FAME 3 rather than optimized as in FAME 2.11 During the optimization of the 

"circCDK+ATF" models of FAME 2, the most commonly chosen value for the class_weight 

parameter was “balanced_subsample”. Thus, we decided to use this setting for all FAME 3 

models. As in FAME 2,11 the max_features and max_features_ANOVA parameters were 

optimized during cross-validation, although the size of the parameter grid was slightly reduced 

(Table 1). While max_features is a parameter of the extra trees classifier (it is the maximum 

number of available features to consider when searching for the optimum split), 

max_features_ANOVA affects a data preprocessing step which is useful in removing irrelevant 

features and, thus, reducing computation complexity and removing potential sources of noise 

from the data set (see ref 11 for details of the feature selection step). 



Table 1: Overview of Model Hyperparameters and Their Values Optimized During Grid 

Search. 

Parameter Explored values 

max_features 0.3, 0.6, 0.9 

max_features_ANOVA 200, 400 

Measures for the Evaluation of Model Performance 

Model performance was assessed by the Matthews correlation coefficient (MCC), the area under 

the receiver operating characteristic curve (AUC), and the Top-" metric. The MCC is a balanced 

measure that takes into account the proportion of all classes in the confusion matrix. It is 

generally considered one of the best measures of performance of binary classifiers and hence has 

been used in this study as the primary metric for performance assessment. The AUC quantifies 

the ability of a model to correctly rank SoMs and non-SoMs based on the probabilities given by 

the ensemble approach. Related to the AUC measure, the Top-" metric denotes the percentage of 

molecules for which at least one known SoM is listed among the " highest-ranked atom positions 

in a molecule (again, the ranking is based on probabilities given by the ensemble approach). In 

the context of SoM prediction, the most commonly applied value for " is 2 (which was also used 

in this study).  

FAMEscore Atom-based Distance Measure 

FAMEscore is an atom-based distance measure. It is calculated with a "-nearest neighbor 

approach that determines the distance of a query atom (defined as Tanimoto coefficient 

calculated on the FAME fingerprint) to a defined number of nearest atoms in the training set 

(Eq 1): 



 

#$%&'()*+ = 1 − ∑ "!"
!#$
#  (Eq 1) 

 

Here, " corresponds to the number of nearest neighbors and was set to 3 for our experiments. 

!$is the Tanimoto distance between the i-th nearest neighbor and the query atom. Therefore, the 

closer this metric is to 1, the more examples of similar atoms are present in the training data. 

RESULTS & DISCUSSION 

Data Analysis 

The preprocessed data set derived from MetaQSAR ("FAME 3 data set"; see Methods for 

details) consists of a total of 2,167 substrates annotated with 6,307 experimentally confirmed 

SoMs (Table 2, "FAME 3 P1+P2 data set"). Among these, 1,106 compounds are CYP substrates 

annotated with 3,517 SoMs (Table 2, "FAME 3 CYPs subset"). Compared to the Zaretzki data 

set (678 substrates annotated with 1,672 SoMs), which was used to develop FAME 2, the 

MetaQSAR database contains nearly twice as many CYP substrates and covers more CYP-

related SoMs, suggesting that the CYP-related SoM data utilized by FAME 3 are more complete. 

In addition, the FAME 3 data set contains 622 substrates annotated with 1,551 SoM records 

related to phase 1 metabolism mediated by enzymes other than CYPs, and 784 substrates 

annotated with 1,239 SoMs related to phase 2 metabolism (Table 2, "FAME 3 P2 subset"). 

Natural products remain the most productive resource of inspiration for the development of new 

small-molecule drugs.22–24 In order to understand the extent to which MetaQSAR covers 

synthetic compounds and natural products, we employed NP-Scout, a random forest-based 

classifier developed by some of us.25 According to NP-Scout, 58% of the substrates included in 



the data set are predicted to be of synthetic origin (i.e. they are assigned a probability of less than 

0.5 of belonging to the class of natural products; Figure 2). For 22% of all compounds, a 

minimum probability of 0.9 for a compound to belong to the class of natural products was 

calculated. Overall, this indicates a solid representation of natural products by the FAME 3 data 

set.  

Table 2: Comparison of the FAME 3 and the Zaretzki Data Sets.a 

 

No. of 

substrates No. of atoms 

No. of 

SoMs 

SoMs per 

molecule SoM %b 

FAME 3 P1+P2 data 

set 2,167 49,045 6,307 2.91 12.9% 

FAME 3 CYPs 

subset 1,106 25,581 3,517 3.18 13.8% 

FAME 3 P1 subset 1,728 40,192 5,068 2.93 12.6% 

FAME 3 P2 subset 784 16,462 1,239 1.58 7.5% 

Zaretzki et al. 678 15,233 1,672 2.47 11.0% 

a All values refer to the preprocessed FAME 3 data set and a revised version16 of the Zaretzki 

data set.8 

b Percentage of heavy atoms annotated as SoMs. 

 



 

Figure 2: Natural product (NP) class probability distribution in the FAME 3 P1+P2 data set, 

calculated with NP-Scout. 

 

A further important indicator of the relevance of a data set for modeling is its diversity with 

respect to the covered atom environments. In order to describe and compare the diversity of atom 

environments in the FAME 3 and Zaretzki data sets, we developed a new circular, atom-based 

binary fingerprint ("FAME fingerprint"; see Methods for details) that we used as input for 

principal component analysis (PCA). In the score plot in Figure 3 it can be observed that the 

atom environments covered by the Zaretzki et al. data set are essentially a subset of those 

covered by the FAME 3 data set. In many areas the density of information is higher for the 

FAME 3 data set, providing better statistical support in particular of reactions that are less 

frequently observed or that occur in atom environments that are less common. It is therefore 



expected that models derived from the FAME 3 data set will benefit from the more complete and 

fine-graded picture of metabolism with respect to accuracy and domain of applicability. 

 

Figure 3: PCA score plot depicting atom neighborhoods in the MetaQSAR database and the 

revised version of the Zaretzki data set. The plot was generated by projection of the FAME 

fingerprints (maximum bond depth 6; length 5152 bits) generated for all atoms in both data sets 

onto a plane defined by the first two principal components (PC1 and PC2). For the sake of clarity 

only a random 10% sample of projected points from each data set is depicted. Note that the 

proportion of variance explained by the two principal components (reported in parentheses with 



the axis labels) is low. For this reason, the plot should be considered only as a coarse 

representation of the diversity of the two data sets. 

Model Building 

Models were built on 80% of the molecules of the individual preprocessed data sets; 20% of the 

molecules (selected by random split) were held back for testing (Table 3). The machine learning 

approach was adopted from that of FAME 2.11 It is based on the extra trees classifier algorithm 

using a combination of the circular representation of 15 basic 2D CDK descriptors with circular 

atom-type fingerprints as inputs (“circCDK + ATF”). Previously, this combination of machine 

learning algorithms and descriptors resulted in the overall best-performing models.11  

Table 3: Training and Test Set Sizes for All FAME 3 Models. 

Model 

Molecules 

(training set) 

Molecules 

(test set) 

Atoms 

(training set) 

Atoms  

(test set) 

P1+P2 1733 434 39131 9914 

CYP 884 222 20520 5061 

P1 1382 346 32313 7879 

P2 627 157 12986 3476 

P1+P2 100+ 1104 277 25786 6491 

CYP 100+ 763 191 17807 4487 

P1 100+ 872 219 20636 5335 

P2 100+ 460 116 9891 2427 

 



Four different types of extremely randomized trees models were developed:  

● “P1+P2 model”: Model covering both metabolic phases 

● "CYP model": Model covering CYP-mediated metabolic reactions 

● "P1 model": Model covering phase 1 metabolic reactions (both CYP and non-CYP) 

● “P2 model”: Model covering phase 2 metabolic reactions  

In addition, we also constructed models that cover only reaction subclasses represented by at 

least 100 SoM annotations in the training set. This will allow to determine the impact of the 

quantity of data available for model building on model accuracy. Typical examples of well-

represented reaction subclasses are oxidation reactions of aryl compounds to epoxides, phenols 

and other metabolites, or O-glucuronidation reactions of alcohols. We refer to these reaction 

subclass-restricted models as the “P1+P2 100+ model”, “CYP 100+ model”, “P1 100+ model” 

and “P2 100+ model”. The “P1+P2 100+ model” covers 18 out of 93 reaction subclasses 

(Tables S1 and S3), the “CYP 100+ model” 5 out of 44 (Table S2), the “P1 100+ model” 13 out 

of 62 (Table S1), and the “P2 100+ model” 5 out of 31 (Table S3). The low number of reaction 

subclasses covered by at least 100 SoM annotations shows that data on xenobiotic metabolism 

are still sparse and, thus, represent a bottleneck in the development of in silico models. 

Parameter Optimization 

A cross-validated grid search was conducted to identify optimum parameters (see Methods for 

details). The differences in performance observed across the searched parameter grid were 

minor, but some trends emerged, nonetheless. For example, the optimal value of the 

max_features_ANOVA parameter, affecting a data preprocessing step useful in removing 

irrelevant features, was usually 200 for models relying on descriptors with lower bond depth 

(mostly for bond depth 1) and 400 for models based on descriptors with higher bond depth 



(Table S4). This behavior is expected since by branching out further from an atom the model 

may find more useful patterns that utilize a much wider variety of descriptors. The most 

commonly selected values for the max_features parameter were 0.6 and 0.9, but no clear 

relationship was observed between the value of this parameter and the bond depth. 

Internal Evaluation of the Models by Cross-Validation 

Model performance was assessed by the MCC, AUC and Top-" metric (see Methods for details). 

Depending on the fingerprint bond depth, the 10-fold cross-validation MCCs of the ”P1+P2 

model” were between 0.49 and 0.51, whereas AUC values were around 0.89 and the Top-2 

success rate around 82% (Figure 4A and Table S5). The “CYP model” showed similar 

performance, with MCCs ranging from 0.47 to 0.52 and AUC and Top-2 success rate values 

around 0.89 and 82%, respectively (Figure 4C and Table S6). The MCCs for the “P1 model” 

ranged from 0.50 to 0.53, while AUC values were around 0.90 and Top-2 success rates around 

82% (Figure 4E and Table S7). In contrast, the dedicated “P2 model” yielded even higher 

predictive power, reflected by MCCs between 0.70 and 0.72, AUC values around 0.97, and Top-

2 success rates around 90% (Figure 4G and Table S8). The higher predictive performance of 

phase 2 models as compared to phase 1 models is consistent with previous reports10,14 and can be 

attributed to the characteristics of phase 2 reactions, which are in general more specific with 

respect to the atom environments at which they occur. 

In our previous study,11 we showed that the explicit encoding of atom neighborhoods improves 

model performance. However, improvements beyond the bond depth of 2 were minor in most 

cases. Similar behavior was also observed in this study (see the curve progression in Figure 4). 

Interestingly, no substantial increase in performance was observed for models trained and tested 

only on well-represented reaction subclasses (i.e. reaction subclasses represented by at least 100 



SoMs in the training data). The MCCs for these models were higher by a maximum of only 0.05 

than for the models trained and tested on all reaction subclasses represented by the training data 

(Figure 4B, D, F, H and Tables S9 to S12). From this we conclude that the number of 

annotations per reaction class has only a minor effect on model performance. There likely are 

other factors at play such as individual enzymes' substrate selectivity and catalytic mechanisms 

and the structural diversity of the training data available per reaction class. A slightly stronger 

uptrend in model performance with increasing bond depth was observed for models with reaction 

subclass restriction as compared to those models without restriction. Models of neither type 

showed any substantial improvements in performance when going beyond a bond depth of 5. For 

this reason, we chose this bond depth as the optimum descriptor complexity, and the 

“circCDK+ATF” models of bond depth 5 were used for performance experiments on the holdout 

data (see Evaluation of the Final Models on Test Sets).  



 



Figure 4: Dependence of the internal model performance of FAME 3 on the bond depth. Internal 

performance of FAME 3 models was evaluated by 10-fold cross-validation and all FAME 3 

models were built using the "circCDK+ATF" descriptor set. The performance is given as MCC, 

AUC and Top-2 success rates (in this figure reported as fractions rather than percentages) 

averaged over 10 cross-validation runs. (A) “P1+P2 model”, (B) "P1+P2 100+ model", (C) 

"CYP model", (D) "CYP 100+ model", (E) "P1 model", (F) "P1 100+ model", (G) "P2 model" 

and (H) "P2 100+ model". 

Comparison of Model Performance to Established Models 
Direct comparison of the performance of FAME 3 with that of FAME 2 is only possible to a 

limited extent because of the different scopes of the two methods (in particular, FAME 2 is 

limited to CYP metabolism). Therefore, we compared the selected FAME 3 “CYP model” 

(based on the "circCDK+ATF" descriptor set with a bond depth of 5) to the equivalent FAME 2 

model (identical descriptor set and bond depth). During cross-validation, the FAME 3 model 

obtained an average MCC of 0.52 whereas the FAME 2 reached an average MCC of 0.57. We 

attribute the slightly lower MCC obtained by FAME 3 to the higher diversity of the FAME 3 

data set (with respect to the diversity of atom environments; see the PCA score plot Figure 3). 

Direct comparison of the performance of FAME 3 with that of MetScore, a leading SoM 

predictor capable of handling both phase 1 and phase 2 reactions, must also be considered with 

caution. The training sets of both models differ substantially with respect to coverage and the 

annotation approach. The cross-validation MCC average of the FAME 3 “P1+P2 model” with a 

bond depth of 5 was 0.51, which is comparable to the MCC of 0.53 obtained by the MetScore 

phase 1 and phase 2 composite model for the MetScore calibration data set.14 Cross-validation 

MCC values for the phase 1-specific models suggest that FAME 3 performs slightly weaker than 



the corresponding MetScore model (MCC 0.53 versus 0.61). We believe that this could be 

attributed to the phase 1 training set of MetScore, which roughly contains double as many 

annotated SoMs as that of FAME 3 (note that for MetScore SoMs have been annotated with a 

(semi-) automated procedure whereas for the training of FAME 3, SoMs have been manually 

assigned by experts; also note that the MetScore training data is restricted to well-defined one-

step transformations represented by more than 100 instances14). Similar factors are believed to be 

involved in the also slightly lower performance of the phase 2-specific FAME 3 model in 

comparison to the respective MetScore model (MCCs 0.72 versus 0.76). 

Evaluation of the Final Models on Test Sets 
In addition to internal validation, FAME 3 models were also validated on holdout data sampled 

randomly prior to modeling (Tables 3 and 4; see Methods section). For the four models without a 

reaction subclass restriction (i.e. the “P1+P2 model”, “CYP model”, “P1 model” and “P2 

model”), the performance on the test sets was not worse than that observed during the cross-

validation experiments. More specifically, between the cross-validation experiments and testing 

on unseen data, the MCC, AUC and Top-2 success rate values dropped by a maximum of only 

0.01, 0.02 and 1 percentage points, respectively (Table 4). For the “CYP model”, a slight 

increase in performance was noted even (+0.05 in MCC, +0.02 in AUC and +8 percentage points 

in Top-2 success rate). Overall, these results demonstrate the robustness and good generalization 

capability of the FAME 3 models. 

 



Table 4: Cross-Validation and Test Set Performance of Selected Models. 

Modela 

MCC  

(cross-

validation) 

MCC  

(test set) 

AUC  

(cross-

validation) 

AUC  

(test set) 

Top-2  

(cross-

validation) 

Top-2  

(test set) 

P1+P2 0.51 0.50 0.89 0.90 82% 82% 

CYP 0.52 0.57 0.90 0.92 82% 90% 

P1 0.53 0.53 0.90 0.88 84% 83% 

P2 0.72 0.71 0.96 0.97 90% 92% 

P1+P2 100+ 0.54 0.55 0.91 0.92 83% 87% 

CYP 100+ 0.55 0.63 0.92 0.94 86% 86% 

P1 100+ 0.57 0.52 0.93 0.92 86% 80% 

P2 100+ 0.75 0.75 0.97 0.97 91% 91% 

a All models based on the "circCDK+ATF" descriptor set with a maximum bond depth of 5. 

 

The increase in performance of the “CYP model” on the test set may be related to the good 

coverage of CYP-catalyzed reactions in the MetaQSAR database. Roughly 64% of the phase 1 

data are on CYPs. Therefore, it is likely that the CYP data are more complete. Also, the diversity 

of CYP-catalyzed reactions is lower, which likely boosts the generalization ability of the model. 

In comparison to the “P1 model” and “P1+P2 model” the “CYP model” also shows good 

performance for atoms with lower FAMEscore values, which are more abundant in the “CYP 

model” test set (Table 5 and Figure 5C). 



The results obtained for the models with the reaction subclass restriction were, in general, 

comparable to those obtained during cross-validation. In fact, the MCC, AUC and Top-2 success 

rate values never dropped below the cross-validation average for all but one model (Table 4). In 

line with the observations made for the “CYP model”, the “CYP 100+” model for well-

represented CYP reactions performed slightly better on the test set than during cross-validation 

(+0.08 in MCC, +0.02 in AUC and identical values for the Top-2 success rates). On the other 

hand, a minor decrease in performance was observed for the “P1 100+ model” (-0.05 in MCC, -

0.01 in AUC and -6 percentage points in Top-2 success rate).  

In order to understand the reason as to why the “P1 model” reached comparable performance 

during cross-validation and testing on holdout data whereas the “P1 100+ model” had a slightly 

better internal performance, a detailed analysis of the composition of training and test sets is 

necessary. This is where the developed distance measure, FAMEscore, can be useful (see 

Methods for details on FAMEscore). Table 5 and the histograms in Figure 5 demonstrate that the 

test set for the “P1 model” contains more atom environments closely related to the training data 

(higher FAMEscore) and less dissimilar atom environments (lower FAMEscore). In the case of 

the P1 100+ test set the opposite is true. The test set has a higher proportion of atom 

environments that are dissimilar from those in the training data and fewer atom environments 

that are closer to the training set (Figure 5F and Table 5). This likely makes the P1 100+ test set 

more challenging, which is reflected by the lower performance of the model. 

 



 



Figure 5: Test set composition and its impact on performance indicators (for models based on the “circCDK+ATF” descriptor set of a 

maximum bond depth of 5). The graph reports the regression line based on the MCCs obtained by the individual models as a function 

of the coverage of atom environments of the test set by the training data. For this purpose, the individual test sets were binned 

according to FAMEscore values and the MCC was calculated for each bin. In the graph, each bin is represented by its FAMEscore 

center point on the x-axis while the MCC value calculated for each bin is indicated on the y-axis. Pearson’s correlation coefficient (r) 

between FAMEscore center points and the calculated MCC is shown in the top left corner of each graph. The histograms show the 

FAMEscore distribution among the atoms in each test set. The total number of atoms in each bin is indicated on the y-axis and the 

endpoints of each bin are indicated on the x-axis. (A) “P1+P2 model”, (B) "P1+P2 100+ model", (C) "CYP model", (D) 

"CYP 100+ model", (E) "P1 model", (F) "P1 100+ model", (G) "P2 model" and (H) "P2 100+ model". 



Evaluation of the Applicability Domain Score on Test Sets 

It is important to understand the coverage of the specific molecule or atom of interest by the 

training data but few SoM predictors provide such information. A notable exception is 

SMARTCyp, which, in its third version, offers a fingerprint-based method to calculate the 

similarity between the matched substructure in the input structure and the exact molecule 

fragment used for the SoM prediction.7 

We explored the applicability of FAMEscore as an estimator of prediction accuracy. FAMEscore 

is a measure of how far a sample atom is from the training data and, thus, how easy it should be 

for the model to make a correct prediction for it. Therefore, the FAMEscore values obtained for 

atoms in the test sets should correlate with model performance. 

The regression lines in Figure 5 estimate the MCC of models as a function of binned FAMEscore 

values for each test set. From this graphical representation and also from the Pearson’s 

correlation coefficients calculated for the MCC and the FAMEscore center points, a clear linear 

relationship between FAMEscore and model performance is apparent across all test sets.  

All types of models built in this study obtained high MCCs for atom environments with a high 

FAMEscore. This was to be expected since high FAMEscore values should be associated with 

atom environments that are well-represented by the training data and, thus, the model 

performance should be considerably better for such atoms. Conversely, atom environments with 

a low FAMEscore should be less often correctly predicted, which was also confirmed in our 

experiments. For all models in this study, MCCs between 0.63 and 0.93 were achieved if the 

atoms belonged to a bin with a FAMEscore higher than 0.8 (Table 5). On average, 36% of atoms 

in all test sets satisfied this condition. On the other hand, MCCs between 0.20 and 0.66 were 



recorded for atoms belonging to bins with FAMEscore lower than 0.6. On average, this affected 

32% of atoms in our test sets. 

 

Table 5: MCCs Obtained for Subsets of the Test Set that are Represented by the Training 

Data to Varying Degrees.  

Modela 

FAMEscore 

≤ 0.6 %b 

FAMEscore 

≥0.8 %c 

Min. MCC  

(FAMEscore 

≤ 0.6)d 

Max. MCC  

(FAMEscore 

≤ 0.6)e 

Min. MCC  

(FAMEsco

re ≥ 0.8)f 

Max. MCC  

(FAMEscor

e ≥ 0.8)g 

P1+P2 24% 45% 0.30 0.32 0.63 0.76 

CYP 34% 33% 0.39 0.42 0.69 0.85 

P1 27% 37% 0.23 0.38 0.63 0.67 

P2 36% 35% 0.55 0.66 0.77 0.89 

P1+P2 

100+ 27% 39% 0.20 0.32 0.68 0.78 

CYP 

100+ 39% 32% 0.46 0.47 0.75 0.82 

P1 100+ 38% 28% 0.37 0.39 0.67 0.72 

P2 100+ 31% 37% 0.45 0.56 0.86 0.93 

Average 32% 36% 0.37 0.44 0.71 0.80 

Min 24% 28% 0.20 0.32 0.63 0.67 

Max 39% 45% 0.55 0.66 0.86 0.93 

a All models based on the "circCDK+ATF" descriptor set with a maximum bond depth of 5. 



b Percentage of atoms in the test set with FAMEscore lower than or equal to 0.6. 

c Percentage of atoms in the test set with FAMEscore higher than or equal to 0.8. 

d Minimum MCC calculated for a bin of the test set where the FAMEscore for all atoms in this 

bin is lower than or equal to 0.6. 

e Maximum MCC calculated for a bin of the test set where the FAMEscore for all atoms in this 

bin is lower than or equal to 0.6. 

f Minimum MCC calculated for a bin of the test set where the FAMEscore for all atoms in this 

bin is higher than or equal to 0.8. 

g Maximum MCC calculated for a bin of the test set where the FAMEscore for all atoms in this 

bin is higher than or equal to 0.8. 

Case Studies 

The utility of FAME 3 in real world applications was assessed in two sets of case studies. In both 

of these sets, the FAME 3 “P1+P2 model” with bond depth 5 and trained on the complete 

(preprocessed) MetaQSAR database (rather than the FAME 3 training set presented above) was 

used to predict SoMs for various molecules. In the first set of case studies, high-quality data set 

consisting of drug-like molecules and their metabolites compiled and published by Finkelmann 

et al.14 (“MetScore Validation Set”) was utilized. Data used for the second set contained 

interesting cases of pharmaceutically relevant natural products and their derivatives. We 

refrained from defining thresholds for class assignment and FAMEscore (applicability domain) 

in order to avoid introducing a bias to these case studies. Instead, we focused on analyzing the 

ability of the models to correctly rank sites of metabolism early in the ordered list of atoms of the 

individual query molecules. 



MetScore Validation Set 

It was determined that seventeen out of the 24 compounds of the original MetScore validation set 

are part of the FAME 3 training set (the complete preprocessed MetaQSAR database in this case) 

and were therefore not included in the case studies. In addition, paritaprevir was excluded 

because of incomplete data on its metabolism.26 Thus, in the first set of case studies predictions 

of metabolic liability of atoms in six molecules were investigated (Figure 6A-F). It should be 

noted that the MetScore validation set has been deemed as very challenging by its authors.14 In 

addition, most of the atoms in this set are characterized by generally lower FAMEscore values. 

Therefore, we can expect the data set to be challenging for FAME 3 as well.  

AZD1 (Figure 6A) is a selective glucokinase activator with seven annotated SoMs related to 

phase 1 and one SoM related to phase 2 metabolism. FAMEscore values lower than 0.65 indicate 

that the atom environments of this compound differ somewhat from those included in the 

training data. The FAME 3 model placed seven out of the nine true SoMs at the top of the 

generated rank-ordered list, including C.14, C.35, C.33, C.24, C.11, C.30 and C.15. However, 

interestingly, C.34 is ranked at the very top of the list, although not labeled as a SoM in the 

MetScore validation set. MetScore was also quite successful in this case and correctly labelled 

five out of the nine SoMs. Unfortunately, neither FAME 3 nor MetScore predicted well the 

phase 1 SoM at C.12 and the phase 2 SoM at O.13. Nevertheless, both methods perform 

reasonably well in this case and we see some agreement between them. 

AZD7 (Figure 6B) is a chemokine receptor 2 antagonist with three annotated phase 1 SoMs and 

one phase II SoM. The FAMEscore values of AZD7 atoms were again rather low (mostly below 

0.5). Nevertheless, the FAME 3 model fared quite well and correctly placed O.11 and C.10 at the 

second and third position in the ranked-ordered list, respectively. MetScore was also successful 



in this case and labeled O.11 and C.10 correctly. MetScore also predicted S.12 as a SoM, which 

is at the top of the ranked-ordered list of FAME 3 as well. This is intriguing since S.12 is not 

labeled as a true SoM in the MetScore validation set. However, the fact that both tools predicted 

this atom as a possible SoM could be an important indication that an unreported metabolite could 

form here. In addition, MetScore also labeled C.8 as a SoM, which is also quite high on the atom 

list generated by FAME 3, so further research of this potential site could also be warranted by 

these results. Unfortunately, both the FAME 3 model and MetScore failed to identify C.24 and 

N.22 as SoMs. 

Dasabuvir (Figure 6C) is a non-nucleoside inhibitor of the hepatitis C virus RNA-dependent 

RNA polymerase. The MetScore Validation Set lists four phase 1 SoMs for dasabuvir and one 

phase 2 SoM for one of its metabolites. The FAMEscore values are not particularly high for this 

compound either (around 0.55 or lower). However, FAME 3 was still able to rank all 

experimental SoMs at the very top of the sorted list. MetScore was less successful in this 

example and only predicted one true SoM (located at either C.12, C.13 or C.14 due to 

symmetry). This SoM is involved in the formation of the hydroxylated metabolite of dasabuvir 

which then undergoes a phase 2 transformation. The oxygen atom involved in this phase 2 

reaction was also correctly predicted by both FAME 3 and MetScore (data not shown). 

Epacadostat (Figure 6D) has two phase 1 SoMs and one phase 2 SoM annotated in the MetScore 

Validation set. It is clear from the FAMEscore values (often lower than 0.4) that many atom 

environments in this molecule are quite far from those represented by the training data. The 

accuracy of the predictions also reflects this fact. There is no clear relationship between the order 

of atoms in the list and the recorded experimental results. The phase 2 SoM O.8 and the phase 1 

SoM N.7 are both ranked at high positions in the list but are still preceded by three non-SoM 



atoms. C.19, a phase 1 SoM, is also ranked poorly. MetScore correctly labeled N.7 as a SoM but 

also failed to recognize the remaining SoMs. It should also be noted that some of the 

transformations recorded for this molecule are rare, as the authors of MetScore point out in their 

paper.14 

Levobunolol (Figure 6E) is a nonselective beta-adrenoceptor antagonist with two annotated 

phase 1 SoMs (note that in the case of atoms C.5 and O.4 the SoM is not unambiguously defined 

in the available literature, for which reason both atoms are highlighted in this case27) and two 

annotated phase 2 SoMs. The FAMEscore values for this molecule are not high but never drop 

below 0.6. FAME 3 correctly ranks O.21, O.4 and C.5 at the top of the rank-ordered list. Both 

O.21 and C.5 are also correctly marked by MetScore. MetScore in addition labels C.1, C.3 and 

C.6 as potential SoMs but they are not recorded as such in the validation set. FAME 3 ranks 

those three atoms higher than others, but the calculated probabilities are still rather low. 

Unfortunately, both algorithms failed to highlight nitrogen N.18 as a phase 2 SoM and carbons 

C.14, C.15 and C.16 as phase 1 SoMs.  

A compound named “mGluR5 compound 2” (Figure 6F), an allosteric modulator of 

metabotropic glutamate receptor subtype 5, has two phase 2 SoMs assigned in the MetScore 

Validation Set. The FAMEscore values are higher for the atoms in this molecule (mostly 

between 0.7 and 0.8), likely prompted by the presence of several examples of compounds with 

similar scaffolds in the MetaQSAR database. Therefore, we can expect the FAME 3 model to 

give more reliable results, which it does. Both C.7 and C.8 are correctly placed at the top of the 

rank-ordered list. MetScore only marks O.28 in this case, but this atom is not labeled as a SoM in 

its validation set. 



Concluding on this case study, the MetScore Validation Set proves challenging to SoM 

prediction methods. However, it was shown that despite the low similarity between the atom 

environments of molecules of the MetScore Validation Set and those of the training data, the 

FAME 3 model was in many cases able to rank atoms according to their metabolic lability quite 

reliably. 



 



Figure 6: FAME 3 and MetScore predictions for six compounds selected from the MetScore 

validation set (A-F) and FAME 3 predictions for three examples of pharmaceutically relevant 

natural products and their derivatives (G-I). All FAME 3 predictions were made with the “P1+P2 

model” with bond depth 5, trained on the complete, preprocessed MetaQSAR database. The 

SoMs predicted by MetScore are taken from the publication of Finkelmann et al.14 For each 

compound, the first twelve rows of the FAME 3 output are listed in the pink box. Each atom in 

the box is identified by its ID (see the “Atom” column). The atoms are sorted by their SoM 

likelihood as assigned by FAME 3 (see the “Probability” column). For each atom, the calculated 

FAMEscore is reported in the “FAMEscore” column. MetScore predictions and experimental 

SoMs are indicated next to the atom list by green and red dots, respectively. If one of multiple 

atoms can be a SoM due to symmetry, all plausible atom positions are annotated in both the 

structure and the ordered atom list. 

Natural Products and Natural Product Derivatives 

In addition to the six compounds selected from the MetScore validation set, we also investigated 

the performance of FAME 3 on three cases of interesting natural products and natural product 

derivatives for which metabolism plays a major role in their biological effect. MetScore 

predictions for these three compounds are not shown because MetScore was not accessible to the 

authors. 

Mevastatin (also known as compactin) is an inhibitor of the HMG-coenzyme A (HMG-CoA) 

reductase. The prodrug takes its active form by hydrolysis of the lactone ring (Figure 6G). 

FAME 3 performs well in this case because the FAMEscore values are quite high (mostly 

between 0.8 and 0.95). This is due to the fact that similar statins are present in the MetaQSAR 

database. Carbon C.18 is involved in the conversion of mevastatin to its active metabolite, and 



the FAME 3 “P1+P2 model” correctly ranks this atom at the top of the list with very high 

probability. 

The final two case studies involve the natural product artemisinin (Figure 6H) and its semi-

synthetic derivative, artemotil (arteether; Figure 6I). These compounds are potent antimalarial 

agents.28 Artemisinin is known to undergo at least the following two metabolic reactions: (i) 

deactivation by the formation of deoxydihydroartemisinin through the reduction of the 

endoperoxide moiety (oxygens O.7 and O.8 in Figure 6H), which is also held responsible for its 

antimalarial activity,29,30 and (ii) activation by reduction of the lactone moiety (carbon C.2 in 

Figure 6H) yielding dihydroartemisinin (artenimol), which is the well-known active metabolite 

of all artemisinin-type compounds.31  

The structure of artemisinin is present in the MetaQSAR database as well as the SoMs involved 

in its deactivation (oxygen O.7 and O.8). On the other hand, the SoM involved in the activation 

reaction (carbon C.2) is not annotated in the database. FAMEscore values are slightly lower than 

in the case of mevastatin, but quite high nonetheless (around 0.8 and not lower than 0.7; 

Figure 6H). Unsurprisingly, the two oxygen atoms involved in the deactivation reaction (O.8 and 

O.7) are placed at the top of the rank-ordered list generated by FAME 3. However, despite the 

fact that the MetaQSAR database is lacking an annotation for the formation of the active 

metabolite, the C.2 atom involved in this transformation is ranked just below the two oxygens in 

this example. This suggests that the FAME 3 model is able to generalize and balance out the 

incompleteness of the training data to some extent. In other words, the model was able to rank 

C.2 higher and, thus, hint at the possibility that this atom could be implicated in a metabolic 

transformation despite the lack of direct evidence in the training data. 



Artemotil has a very similar structure to artemisinin. The key difference between the structure of 

these two molecules is that the carbonyl group of artemisinin is replaced by an ethyl-ether 

substituent in the structure of artemotil (Figure 6I). Therefore, the active metabolite 

dihydroartemisinin is created not by the reduction of the lactone, but through a dealkylation 

reaction on carbon C.2.32,33 The endoperoxide moiety of artemisinin is preserved in artemotil and 

it is also eliminated during its metabolism.34 The metabolic transformations and the structure of 

artemotil are not annotated in the MetaQSAR database. This is reflected by slightly lower 

FAMEscore values than obtained for artemisinin. However, since the two structures are related, 

the values still remain quite high (around 0.7 and not lower than 0.65). The order of atoms in the 

rank-ordered list generated by FAME 3 reflects the true sites of metabolism quite well (Figure 

6I). Both of the endoperoxide oxygens (O.18 and O.19) responsible for the deactivation are on 

top of the list, as well as C.2, at which the dealkylation reaction occurs during the formation of 

the active metabolite. In particular, the prediction for the C.2 atom is an interesting result since 

this environment and SoM annotation is missing from the database for the training case of 

artemisinin. This suggests that the FAME 3 model is able to extract knowledge from the 

information it has on other reactions involving different structures and successfully apply the 

learned rules to unknown atomic environments. 

FAME 3 Public Web Server and Software Package 

FAME 3 is available via a public web service at https://nerdd.zbh.uni-hamburg.de/ and as a self-

contained Java software package for local execution. Both web service and software package 

provide the “P1+P2”, “P1” and “P2” models, trained and optimized as described in this study but 

featuring the complete MetaQSAR data set. This includes the “P1+P2” model with bond depth 5 

used in our case studies.  



The web service accepts various types of inputs, including the upload of larger sets of 

compounds in SD file format. Upon submission of a job, users are provided a web link, allowing 

them to collect their predictions at a later point in time. Usually, for individual molecules, 

predictions will only take a few seconds. Upon completion of the calculations, interactive HTML 

depictions of the model’s predictions for each compound are generated (similar to those shown 

in Figure 6) using components of the open source SMARTCyp. Users are offered options for 

downloading and for deleting all results from the server. 

The command line interface of the FAME 3 software package accepts input structures in either 

SMILES format or as an SDF file and then proceeds to generate the interactive HTML 

depictions described above. In addition to the HTML page, results of FAME 3 are also reported 

as a CSV file. 

CONCLUSIONS 

The third generation of FAME models for SoM prediction is based on a new, comprehensive 

data set of expert-derived SoMs. FAME 3 includes a collection of models for both phase 1 and 

phase 2 metabolism and is as such, to our knowledge, the most broadly applicable SoM predictor 

that is freely available for academic and non-commercial research. As we show in 

comprehensive tests, the FAME 3 models reach competitive performance, with MCCs ranging 

from 0.50 for the combined phase 1 and phase 2 model (“P1+P2 model”) to 0.75 for a focused 

phase 2 model (“P2 100+ model”). A key feature of FAME 3 is the newly developed 

FAMEscore, an atom-based distance measure allowing the estimation of the applicability 

domain. FAME 3 thus enables researchers to understand the quality of the representation of any 

atom in their molecules of interest by the training data. Our benchmarking results suggest that 

the applicability domain of the FAME 3 models should be defined by a minimum FAMEscore of 



0.6. However, in some cases accurate predictions (in particular with respect to atom ranking) can 

still be obtained even below this threshold. In addition to statistical analysis, this was also shown 

by several case studies with synthetic compounds and natural products. 

A general conclusion that can be drawn from this and others' works is that models for SoM 

prediction are approaching a performance plateau defined primarily by the data available for 

model development. We therefore recognize that the generation and publication of additional 

data on xenobiotic metabolism is of utmost importance to the further progress of the field. Here 

we would hope that industry in particular will continue to strengthen their efforts in sharing data 

with the scientific community. 
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ABBREVIATIONS 

AUC, area under the ROC curve 

CDK, Chemistry Development Kit 

CoA, coenzyme A 

CSV, comma-separated values 

CYP, cytochrome P450 

HMG-CoA, β-Hydroxy β-methylglutaryl-CoA 

HTML, hypertext markup language 

MCC, Matthews correlation coefficient 

PCA, principal component analysis 

RNA, ribonucleic acid 



ROC, receiver operating characteristic curve 

SDF, structure data file 

SoM, site of metabolism 
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