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ABSTRACT 

Computer-aided drug design methods, such as docking, pharmacophore searching, 3D database 

searching and the creation of 3D-QSAR models, need conformational ensembles to handle the 

flexibility of small molecules. Here we present Conformator, an accurate and effective 

knowledge-based algorithm for generating conformer ensembles. With 99.9% of all test 

molecules processed, Conformator stands out by its robustness with respect to input formats, 

molecular geometries and the handling of macrocycles. With an extended set of rules for 

sampling torsion angles, a novel algorithm for macrocycle conformer generation, and a new 

clustering algorithm for the assembly of conformer ensembles, Conformator reaches a median 



 

minimum root-mean-square deviation (measured between protein-bound ligand conformations 

and ensembles of a maximum of 250 conformers) of 0.47 Å, with no significant difference to the 

highest-ranked commercial algorithm OMEGA and significantly higher accuracy than seven free 

algorithms, including the RDKit DG algorithm. Conformator is part of the NAOMI ChemBio 

Suite and is available as a standalone tool free for non-commercial use and academic research at 

https://software.zbh.uni-hamburg.de. 

INTRODUCTION 

Computational methods for 3D virtual screening, drug design and other applications depend on 

the ability of algorithms to represent the conformations that small molecules adopt upon binding 

to biomacromolecules. In particular, fast tools such as pharmacophore-based and shape-focused 

screening engines make use of pre-calculated, multi-conformational databases composed of 

compounds represented by (preferably small) conformer ensembles.1–4 

The generation of representative conformer ensembles of small molecules poses significant 

challenges. Small molecules can have a substantial number of conformational degrees of 

freedom.5 Upon binding, they may adopt conformations that are distinct from the low-energy 

conformations observed in the gas phase and in solution, such as strained conformations related 

to transition states.6–9 On top of that, what constitutes the most appropriate algorithm for 

conformer ensemble generation depends on the specific purpose of use: fast algorithms may be 

preferred for sampling large molecular libraries for use with, for example, coarse virtual 

screening approaches such as pharmacophore models, whereas more time-consuming but more 

accurate algorithms are generally preferred for sampling small sets of molecules to be used e.g. 

for 3D QSAR. In consequence, a large number of conformer ensemble generators based on 



 

various algorithmic approaches are available today. They are based, among others, on random 

and systematic search algorithms, molecular dynamics (MD) simulations, genetic algorithms 

(GA), distance geometry (DG) and knowledge-based approaches.10 Two recent studies from our 

labs11,12 directly compare the performance of seven free (the RDKit DG algorithm13 and the 

Experimental-Torsion basic Knowledge Distance Geometry algorithm (ETKDG)14, Confab,15 

Frog2,16 Multiconf-DOCK17 and the Balloon DG and GA algorithms18) and eight commercial 

(ConfGen,19 ConfGenX,20 cxcalc,21 iCon,22 MOE LowModeMD,23 MOE Stochastic, MOE 

Conformation Import and OMEGA24) conformer ensemble generators. These studies were the 

first to employ comprehensive sets of high-quality structures of protein-bound ligands for 

benchmarking. In particular, a newly developed cheminformatics pipeline was utilized for the 

fully automated extraction and curation of a complete set of 10,936 high-quality structures of 

protein-bound ligands (“Sperrylite Dataset”5) from a total of over 350k ligand conformations 

(from structures deposited in the PDB). The support of the individual atoms of all ligands by the 

measured electron density was quantified by the electron density score for individual atoms 

(EDIA25). Based on the Sperrylite Dataset, a diverse subset of 2859 high-quality structures of 

unique ligands bound to their biomacromolecular targets (“Platinum Diverse Dataset”12) was 

compiled and provided to the scientific community for benchmarking. The outcomes of these 

studies show that commercial algorithms generally obtain higher accuracy and robustness than 

their free counterparts. OMEGA was confirmed as the leading commercial algorithm, with the 

distance geometry approach of RDKit and its knowledge-based counterpart, ETKDG, as the 

best-performing free alternatives.11,12 Importantly, for all of the tested free algorithms severe 

geometrical errors related to wrong bond lengths and bond angles, as well as out-of-plane errors, 

were detected in the generated conformations. In contrast, for most of the tested commercial 



 

algorithms only a few instances of anomalous geometries were observed. For OMEGA and iCon 

no geometric errors were identified. 

In this work we introduce Conformator as a new conformer ensemble generator that is free for 

non-commercial use and academic research, and which addresses several of the limitations 

shared by most of the existing free algorithms. Conformator is a knowledge-based conformer 

ensemble generator that builds on concepts of the previously introduced CONFECT algorithm.26 

Major conceptual advancements of Conformator over CONFECT include a novel approach to 

sampling the conformational space of macrocycles, a new efficient clustering algorithm, an 

extended set of rules for sampling torsion angles, and capabilities for handling SMILES and 

InChI input. Together with the revised and extended torsion angle library of Guba et al.27 these 

advancements make Conformator a highly accurate and effective algorithm that stands out by its 

robustness with respect to input formats, molecular geometries and the handling of macrocycles. 

METHODS 

Conformer Generation Algorithm 

Conformator is a conformer ensemble generator built on established concepts of incremental 

construction of conformers. At its core, Conformator consists of a torsion driver enhanced by an 

elaborate algorithm for the assignment of torsion angles to rotatable bonds, plus a new clustering 

component that compiles ensembles efficiently by taking advantage of the fact that the lists of 

generated conformers are partially presorted. The clustering algorithm minimizes the number of 

comparisons between pairs of conformers that are required in order to effectively derive 

individual RMSD thresholds for molecules and to compile the ensemble. 



 

Conformator features two conformer ensemble generation modes, “Fast” and “Best”. As their 

names suggest, the emphasis of Fast is on computational efficiency whereas that of Best is on 

accuracy. Both modes include checks that ensure chemically correct bond lengths and bond 

angles, as well as the planarity of conjugated systems including rings. 

Conformator reads molecular structures from SD and MOL2 files as well as from SMILES and 

InChI notations. By default, Conformator generates a new set of 3D atom coordinates as a 

starting point for conformation generation. Thus, Conformator does not rely on input coordinates 

and generates a canonicalized order of atoms and bonds (similar to canonical SMILES)28. This 

representation serves as a unique and independent starting point for conformer ensemble 

generation (Figure 1). 

After parsing, the molecule is compartmentalized at any acyclic, non-terminal single bond that is 

not connected to a methyl, trifluoromethyl or nitrile group (following the concept of rigid rotor 

approximation). Each of these single bonds are assigned all torsion angle values of matching 

fragments recorded in the torsion angle library developed by Schärfer et al.29 and revised by 

Guba et al.27 As part of the construction of conformers, optimal bond angles based on the 

Valence Shell Electron Pair Repulsion (VSEPR) model are assigned.30,31 Bond lengths of acyclic 

adjacent atoms used in the construction of conformers are calculated from the sum of covalent 

radii. They are adjusted for different atom types, taking into account the local molecular 

environment (e.g. delocalization). Details on the exact procedure and exceptions are reported in 

ref 26. 

 



 

 

Figure 1. Schematic depiction of the conformer ensemble generation approach followed by 

Conformator. The boxes show the major algorithmic steps including the loop for macrocycle 

conformer generation. 

 



 

Once all possible torsion angles have been assigned based on this SMARTS pattern matching 

procedure,32 individual torsion angle values are removed during an iterative process until the 

maximum number of possible conformers (based on the combination of all assigned torsion 

angles, neglecting potential clashes) no longer exceeds the maximum number of generated 

candidate conformers for clustering. The number of torsion angles assigned to a rotatable bond 

depends on the bond’s centricity in the molecule, the overall flexibility of the molecule, and the 

sampling parameters defined by the user (such as the maximum ensemble size). The centricity is 

estimated from the topological distance of the rotatable bond to the farthest atoms calculated on 

the molecular graph with the Floyd-Warshall algorithm.33 Rotatable bonds located at the center 

of a molecule are assigned more alternative torsion angle values compared to rotatable bonds of 

terminal fragments. This is because fragments close to the center of a molecule are more likely to 

have a determinant effect on the overall conformation. More specifically, fragments located at 

the center of a molecule keep many if not all torsion angles recorded for a specific SMARTS 

pattern in the torsion angle library whereas fragments located away from the center of the 

molecule are assigned only a few of the most frequently observed torsion angles. The overall aim 

of this procedure is the reduction of the number of conformers to be generated and analyzed 

during the clustering process (typically hundreds of thousands or even millions of 

conformations) by two to three orders of magnitude. The flexibility of a molecule is estimated 

based on the maximum number of possible conformations resulting from the enumeration of all 

torsion angle values stored in the library (without the consideration of potential clashes). The 

maximum number of generated candidate conformers for clustering is the product of the 

maximum allowed ensemble size (user-adaptable parameter; in this study 50 or 250) and a factor 

of 10 (Fast) or 20 (Best). 



 

Once all torsion angles for conformer enumeration have been selected, the conformer generation 

process is initiated, starting from the most central fragment and following a standard incremental 

construction approach.34 Initially, a depth-first search of the most likely torsion angles is carried 

out in order to ensure that the most relevant torsion angles are represented in the conformer 

ensemble and that the conformer generation produces the conformers which are likely most 

relevant. Provided that the number of conformers resulting from this depth-first search does not 

exceed the maximum number of candidate conformers for clustering, breadth-first search 

(starting again from the most central fragment) is carried out iteratively to explore all selected 

torsion angles and, hence, generate additional candidate conformers. 

During conformer generation, topological symmetry classes of each heavy atom of the molecule 

are calculated in a canonical way using a variant of the CANON algorithm.35 Based on these, 

local symmetries are detected and considered during torsion angle enumeration in order to avoid 

the generation of duplicate conformers. Since local symmetry detection depends on the used 

central fragment, not all symmetries can be detected and a final symmetry clustering via 

complete automorphism enumeration is performed to remove similar conformers due to global 

symmetries. 

Conformations for rings formed by up to nine heavy atoms are calculated using conformations 

from a ring template library embedded in NAOMI36 as described by Schärfer et al.26 Ring 

systems are incrementally constructed from individual ring conformers. Following the concept of 

unique ring families (URFs) reported by Kolodzik et al.37 (a recent reimplementation by 

Flachsenberg et al.38 was used for Conformator), at most one relevant cycle (RC) per URF is 

selected for ring system conformation generation. Starting from the RC with the highest 

connectivity, the remaining cycles are attached while considering atom geometries according to 



 

VSEPR and taking into account the available stereo information. Within a tailored optimizer, 

simplified force field terms for bond distortion, angle bending and torsion energy are used for 

evaluating the deviations of molecular geometries from the ideal values and for assessing steric 

clashes. The tailored optimizer subsequently relaxes the assembled ring system conformation.   

This optimizer is also used to generate additional low-energy conformations based on initial 

template conformations to generate an ensemble of ring system conformations. Rings formed by 

more than nine atoms are handled by a new algorithm for sampling the conformations of 

macrocycles (see Conformer Generation for Macrocycles). 

Conformations causing clashes are rejected as early as possible during the incremental 

construction process. Intramolecular clashes are defined as overlaps of more than 30% of the van 

der Waals radii of 1-4-connected (or more distant) heavy atom pairs that are not part of the same 

ring system. Alternatively, users can choose for Conformator to include hydrogen atoms in the 

clash calculation. 

The configuration of any defined stereogenic centers is preserved by the algorithm, whereas the 

configuration of any undefined R/S-stereogenic centers is arbitrarily chosen once per molecule. 

Undefined E/Z-stereogenic centers are enumerated (limited only by steric hindrances and the 

maximum ensemble size). In the case of undefined stereogenic centers, the macrocycle 

conformation generation (see section "Conformer Generation for Macrocycles") may produce a 

mix of stereoisomers (R/S and E/Z). Arbitrarily selecting one stereoisomer could prevent the 

algorithm from finding any reasonable result, especially in the case of E/Z isomers. 



 

Clustering of Conformers 

A new algorithm based on sphere exclusion clustering39,40 was developed as part of Conformator 

for the efficient assembly of conformer ensembles (Algorithm S1, Figure S1). The clustering 

algorithm is the final step of the conformer ensemble generation. It aims to reduce the number of 

computationally expensive geometric comparisons of pairs of conformers required for the 

assembly of ensembles of a defined maximum size by exploiting the fact that sequentially 

generated conformers are likely to be highly similar to each other. To an outside observer the list 

of conformers generated by Conformator will appear to be the result of a systematic search 

which explores valid torsion angles for one rotatable bond after the other. Geometric deviations 

between pairs of sequentially generated conformers are likely small because they often differ 

only by one torsion angle. Large deviations are less common and are often related to clashes 

which, when occurring during early stages of the search, can result in the rejection of whole 

branches of the search tree. The number of comparisons (RMSD calculations) between 

conformers is heavily reduced by traversing the list of conformers forward and the list of cluster 

centers backwards. This increases the probability of similar conformers being compared early. 

When a similar enough conformer (defined by a RMSD threshold) is identified, the conformer is 

removed from the list of candidates and not compared to any further conformers. 

During clustering, Conformator adjusts the minimum RMSD distance between conformers and 

determines an appropriate RMSD threshold for each individual molecule in order to generate 

ensembles that do not exceed the maximum ensemble size. This RMSD threshold depends on the 

maximum ensemble size and quality level, as well as the size and flexibility of the molecule. The 

algorithm is heuristic but deterministic, i.e., it produces the same result given the same list of 

conformations (note that, unless the user requests that input coordinates be used as a starting 



 

point for conformer generation, the list of conformations generated during each run is identical 

for a given molecule). 

Conformator does not rank conformers explicitly (although the first conformers generated by the 

algorithm are more likely based on the most commonly observed torsion angles). The 

conformers of an ensemble of small size (e.g. five conformers) will not necessarily be part of an 

ensemble of larger size (e.g. 50 conformers) because for small ensembles Conformator may 

prioritize conformers of high diversity over conformers with more commonly observed torsion 

angles. It is also unlikely that the first few conformers of an ensemble of larger size are those that 

would be included in an ensemble of small size. For this reason, in order to obtain ensembles of 

desired size, users are advised to not extract individual conformers but to define an adequate 

maximum ensemble size prior to ensemble generation. 

The clustering algorithm (illustrated in Figure S1 and reported as pseudo code in Algorithm S1) 

involves the following key steps (with radius and increase having the values 0.1 Å and 0.05 Å 

for Best, and 0.5 Å and 0.5 Å for Fast): 

1. An empty list of cluster centers is created.  

2. The first conformation becomes the first cluster center.  

3. Each conformer in the list of conformers is compared to the reversed list of cluster 

centers. 

4. If the conformer is 

○ a) similar to an existing cluster center (RMSD smaller than radius), then the 

conformer is immediately discarded. 



 

○ b) dissimilar to any of the existing cluster centers, then the conformer is added to 

the list of cluster centers. 

5. If the number of cluster centers reaches the maximum ensemble size, radius is increased 

as specified by the increase parameter and the clustering process is restarted with an 

empty list of cluster centers and the list of remaining conformers. 

6. When all conformers are assigned to a cluster center and the ensemble size is equal to or 

below the maximum ensemble size, the list of cluster centers is reported as the conformer 

ensemble.  

Conformer Generation for Macrocycles 

Conformers for macrocyclic ring systems are generated using a novel algorithm. First, all 

macrocycles are sliced by cutting bonds until no macrocycles are left. Next, conformations are 

generated for these structures without macrocycles, which serve as starting points for the 

rebuilding of the macrocycles by a local optimization algorithm. The following sections describe 

these processes in detail. Schematics of the conformer generation algorithm for macrocycles are 

provided in Figure S2. 

Preprocessing of Macrocyclic Structures for Conformer Generation 

In the following, all rings formed by more than nine atoms are termed macrocycle; all others are 

termed small rings. This distinction is necessary because conformations for small rings are 

covered by the ring template library (see Conformer Generation Algorithm). The concept of 

unique ring families (URFs)37,38 is used to consider one ring family at a time instead of 

processing individual rings. URFs are a unique, chemically meaningful and polynomial 

description of the rings in a molecule. 



 

First, all URFs of the molecule are identified.37,38 An URF is called macrocyclic if it contains at 

least one ring with more than nine atoms. All ring systems are processed independently. All 

macrocyclic URFs in a ring system are iteratively cut at one single bond outside of small rings 

until the resulting ring system no longer contains any macrocycles. In case a molecule contains 

exactly one macrocycle this process results in the cutting of one bond. By choosing exactly one 

bond to be cut during each iteration, the molecule remains connected. The single bond to be cut 

is chosen by prioritizing carbon-carbon and then carbon-incident bonds. If no such bond exists, 

the same priority rule is applied to bonds in conjugated systems. Bonds that are not adjacent to 

small rings are favored in the selection process. Double bonds, triple bonds and bonds that are 

part of small rings are not cut. Macrocycles consisting entirely of small rings are incrementally 

constructed from individual ring conformers. Following the cutting of a bond, new single bonds 

equal in length to the original bond are introduced by attaching two dummy atoms. 

Generation of Conformers for Preprocessed Macrocyclic Structures 

Diverse conformations of the preprocessed macrocyclic structures are generated with 

Conformator’s standard algorithm following the exact same procedure as described above (see 

Conformer Generation Algorithm; Figure 1).  

Rebuilding the Macrocycles by Numerical Optimization 

The conformations generated during the previous process are used as starting points for a 

gradient-based numerical optimization procedure that aims to reconstitute macrocycles by 

superimposing the dummy atoms with the atoms they replaced during the cutting step. Note that 

the initial conformations already have valid geometries at this point, obviously with the 

exception of the part where the macrocyclic bond is to be reintroduced. The optimization is 



 

performed employing internal coordinates, namely the torsion angles and bond angles in the 

macrocycles. By this strategy the number of parameters is reduced down to at most one bond 

angle per atom and one torsion angle per bond. 

Local optimization is performed using a reimplementation of the BFGS-B algorithm,41,42 which 

was modified to not allow any atoms to move by more than 0.5 Å per iteration. This 

modification, inspired by recent work on the refinement of the positions of water molecules in 

protein crystal structures,43 was made to increase the locality of the optimization method and 

avoid unreasonably large changes in geometry. The local optimization is performed only on the 

atoms of the macrocycle (all other atoms of the molecule are not considered) and no part of the 

macrocycle is fixed (except for individual atoms in small rings, which are moved as a unit). 

The here introduced macrocyclic optimization score (MCOS, see Eq. (1)) is used to reconstruct 

the macrocycle. It includes several well-known components from common force fields and some 

components specific to the optimization of macrocycles. The formulae of the terms in Eq. (1) are 

provided in the Figures S3 to S9 in the SI, the weights were determined empirically and are 

provided in Table S1. Please note that the MCOS and the individual score contributions are 

dimensionless and are not genuine energy terms. 

𝑀𝐶𝑂𝑆 = 𝑤!"#$%&'	𝑆!"#$%&' +	𝑤(!)*		𝑆(!)* +𝑤&),%#	𝑆&),%# +𝑤%-.-/	𝑆%-.-/ +𝑤/!$0-!)	𝑆/!$0-!) 	

+ 	𝑤/!$0-!),2!)34,&/#* 	𝑆/!$0-!),2!)34,&/#* +𝑤2%&05	𝑆2%&05 

 (1) 

 

The overlay score given in Eq. (2) is the central part of the scoring function. 



 

𝑆!"#$%&' = ∑ 		
{-,3}	∈	24/(!)*0

9
:
(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑑𝑢𝑚𝑚𝑦(𝑖))	: + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑗, 𝑑𝑢𝑚𝑚𝑦(𝑗))	:), (2) 

where {i,j} is a cut bond and dummy(j) is the dummy atom replacing atom j as a terminal atom 

adjacent to atom i. 

Soverlay scores the distance between the dummy atoms and the atoms in the original macrocycle 

they replaced. Ideally, this distance should be close to 0 (see Figure S3). The overlay score 

ensures that the bond angle and bond length across the cut bond will be restored during local 

optimization. It also supports the preservation of local stereochemistry. 

The bond angle term Sangle uses a harmonic potential (calculated on the angle cosine, see Figure 

S4) to account for deviations from the ideal values (see Conformer Generation Algorithm and ref 

26). It is calculated only for bond angles directly altered during optimization (i.e. angles 

involving bonds along the macrocycle that are optimization parameters) and the angles involving 

the cut bonds. During local optimization, bond angles are box-constrained such that no bond 

angle may be set to values greater than 179 degrees (if the atom does not have linear VSEPR 

geometry) and smaller than 0 degrees. This is to prevent unreasonable bond angle changes or 

even inversions of the local stereochemistry as bond angles usually stay rather close to the 

respective ideal values. The bond angle constraints are further supported by the penalty Slimit in 

the scoring function for bond angles in macrocycles, which leads to a preference of bond angles 

between 30 and 150 degrees (see Figure S5). Both terms Sangle and Slimit  are multiplied by a 

function (see Figure S7) that reduces the scores to 0 in cases where any bond length adjacent to 

the angle approaches 0 Å. This is necessary because bond angles are not defined in cases where 

two defining atoms are placed on top of each other. 



 

In addition, the bond length term Sbond uses a harmonic potential (see Figure S6) to account for 

deviations from ideal values (see Conformer Generation Algorithm and ref 26). Only the bond 

lengths of the cut bonds are scored. 

The torsion angle score for bonds within (Storsion,conjugated) and outside (Storsion) of conjugated 

systems is calculated using the same torsion angle potential but different weights. The 

(continuous) torsion angle potential is based solely on torsion angle peaks recorded in a freely 

available torsion angle library derived from the CSD.27 It uses the von Mises function as the 

kernel for curve approximation44 with a tailored equation for kappa. We estimate the curve width 

through connecting the second peak tolerance and the peak score from the torsion library with 

the measure of concentration of the von Mises function (kappa). Due to the numerical 

optimization steps in continuous torsion space, torsional angles may differ from the angles stored 

in the torsion library (note that the angles start from those stored in the torsion angle library). 

The torsion angle potential is multiplied by a function (see Figure S8) that reduces the torsion 

angle score to 0 in cases where any bond angle along that torsion bond is either close to 0 or 180 

degrees (such bond angle values may be observed for cut bonds where the bond angle is not 

directly modified and therefore not subject to the box constraints). This is necessary because the 

torsion angle, as a function of the four atom coordinates, has a discontinuity when three 

consecutive atoms are collinear. The torsion angle potential is furthermore multiplied by the 

same function described above for Sangle and Slimit that reduces the score to 0 in cases where bond 

lengths are close to 0 Å (Figure S7). 



 

To prevent intramolecular clashes, the clash term Sclash was added to the MCOS. Sclash is a 

quadratic function that penalizes van der Waals overlaps between 1-4-connected (or further 

away) heavy atoms that exceed the threshold level of 30% (see Figure S9). 

Postprocessing and Filtering of Macrocyclic Structures for Conformer Generation 

Following the optimization procedure, the cut bonds are reintroduced to close the macrocycle 

conformations again, and the dummy atoms are removed. In the rare event that the resulting 

macrocycle has assigned a configuration that does not correspond to the conformation of the 

input structure, the conformer is rejected. The geometry of all atoms forming macrocycles is then 

checked and, if required, optimized to resemble VSEPR geometries by adjusting the position of 

the macrocycle substituents. 

All macrocycle conformations are then checked for bond lengths and angles that deviate strongly 

from the known optimal value.26 The optimal values for bond length and bond angles were the 

same as used for the optimization; for allowed deviations see ref 45. Furthermore, the planarity 

of conjugated macrocycles (e.g. protoporphyrin IX, PP9) is tested by checking their bonds for 

torsion angles deviating from 0 or 180 degrees. Since macrocycles can adopt highly strained 

conformations a maximum deviation of 20 degrees of torsion angles in conjugated macrocycles 

is allowed. Only in cases where no (approximately) planar conjugated system can be generated 

are non-planar alternative conformations considered. 

Before utilizing the macrocycle conformations for ensemble generation, the conformations are 

sorted by their final MCOS and subjected to one iteration of clustering utilizing the identical 

clustering algorithm (see Clustering of Conformers) with an RMSD threshold of 0.1 Å. The 



 

sorting step prior to the clustering step ensures that for each cluster the best-scored conformation 

is selected. 

Output Summary 

In addition to any warnings and errors, Conformator prints out a single-line summary for each 

processed molecule. The summary includes information on the name of the molecule, the 

number of generated conformers, and stereochemistry. The user may request additional output, 

such as the minimum pairwise RMSD between a generated conformer and the input conformer, 

and the minimum pairwise RMSD between any generated conformers. Note that these options 

may lead to substantially longer runtimes. 

Benchmarking Conformer Ensemble Generators 

Preparation of the Benchmark Dataset for Computation 

The Platinum Diverse Dataset used for benchmarking conformer ensemble generators is a 

representative subset of the Platinum Dataset.46 Both datasets were compiled according to the 

method described in ref 11, with the improvements described in ref 12 and downloaded from ref 

47. 

Conformer Ensemble Generation 

In our previous benchmark studies, standard 3D structures (SDF format) generated from 

SMILES with NAOMI served as input for conformer ensemble generation for the RDKit DG 

algorithm and OMEGA. The same structures were used as input for CONFECT26 in the present 

work. Conformator was benchmarked with both SMILES and 3D structures as input. Conformer 



 

ensembles were calculated with the parameters described in the Results section and summarized 

in Table 1. 

Table 1. Parameter Sets Applied to Conformer Ensemble Generation. 

Algorithm Modea Clusteringb Force field 

Conformator Best (default) RMSD n/MCOSc 

Conformator Fast RMSD n/MCOSc 

CONFECT 3d TFDe TrAmberf 

RDKit DGg n/a RMSD UFF48 

OMEGAg default RMSD mmff94s_NoEstath 

a Parameter sets and search modes supplied by the developers of the respective algorithms. 

b Distance measure for clustering conformers to form ensembles. Default values were applied. 

c Macrocycle Optimization Score (MCOS). Only used for macrocycle optimization. 

d Setting recommended by the developers.49  

e Torsion fingerprint distance.50 

f TrAmber is a hybrid force field partly based on TAFF51 and used for resolving clashes by small 

rotations of torsion angles. 

g Best-performing parameter set in our previous study.12 

h MMFF94 variant that includes all MMFF94s terms except those for Coulomb interactions. 



 

RMSD Calculations, Geometry Checks and Runtime Measurements 

The RMSD between pairs of conformers was calculated with NAOMI.36 NAOMI determines the 

RMSD based on the best superposition of a pair of conformers, taking into account molecular 

symmetry via complete automorphism enumeration. 

NAOMI was also utilized to determine the deviation of atom angles and bond lengths from 

known optimal values as well as the divergence of aromatic rings and ring systems (up to 6 

bonds per relevant cycle) from planarity.45 Runtimes of conformer ensemble generation were 

measured for SD files containing single molecules. 

Statistical Analysis 

The Mann−Whitney U test was used to test for statistical significance at α = 0.05 and α = 0.01, 

with the Holm−Bonferroni method52 applied to control the familywise error rate. The p-values 

are reported for pairwise comparisons of the conformer ensemble generators at maximum 

ensemble sizes 250 and 50 in the Supporting Information (Table S2 and S3). 

Hardware Setup 

All calculations were performed single-threaded on Linux workstations running openSUSE 42.2 

and equipped with Intel Xeon processors (2.2–2.7 GHz) and 126 GB of main memory 

(Conformator typically uses less than 1 GB of memory). 



 

RESULTS 

Benchmarking Conformator 

The accuracy and efficiency of Conformator in representing protein-bound ligand conformations 

was assessed using the same dataset46 and following the same testing procedure12 previously 

applied to the benchmarking of the commercial algorithms ConfGen,19 ConfGenX,20 cxcalc,21 

iCon,22 MOE23 and OMEGA.24 In a second, earlier published study11 we compared the 

performance of the free conformer ensemble generators Balloon (two different algorithms),18 the 

RDKIT DG13 and ETKDG14 algorithms, Confab,15 Frog216 and Multiconf-DOCK.17 This study 

also followed the identical testing protocol but utilized an earlier version of the Platinum Diverse 

Dataset.53 We have previously shown12 that the marginal differences in the composition of both 

versions of the Platinum Dataset have no significant impact on any study outcomes. This means 

that all results presented in the current work can be directly compared to the results reported in 

either of our previous studies. 

The following sections report on key performance figures computed for Conformator and 

CONFECT, some of which are summarized in Figure 2 and Table 2. In support of the 

discussions, results obtained as part of our previous study with the best-performing parameter 

sets (Table 1) for the RDKit DG algorithm (the best-performing free algorithm) and OMEGA 

(the best-performing commercial algorithm) are recited in the figures and tables of the current 

work. Results of the Mann−Whitney U test for statistical significance for maximum ensemble 

sizes of 250 and 50 are provided in the Supporting Information (Table S2 and S3). In the 



 

following sections, four-letter codes refer to PDB entries and three-letter codes in italics refer to 

PDB ligand identifiers. 

Table 2. Comparison of the Performance of Conformer Ensemble Generators on the 

Platinum Diverse Dataseta 

Algorithm Maximum ensemble size 50 Maximum ensemble size 250 

 mean median mean median 

 RMSD [Å] 

Conformator Best 0.68 0.58 0.57 0.47 

Conformator Fast 0.75 0.66 0.64 0.53 

CONFECT 0.92 0.74 0.78 0.67 

RDKit DG 0.82 0.64 0.64 0.52 

OMEGA 0.67 0.51 0.57 0.46 

 Ensemble size 

Conformator Best 38 42 166 187 

Conformator Fast 20 19 70 54 

CONFECT 18 15 50 38 



 

RDKit DG 42 49 180 229 

OMEGA 34 50 118 74 

 Runtime [s] 

Conformator Best 2 1 7 3 

Conformator Fast 2 1 3 1 

CONFECT 2 1 4 1 

RDKit DG 4 3 18 14 

OMEGA 2 2 3 2 

a The best values obtained for RMSD (considering statistical significance), ensemble size and 

runtime by any of the tested algorithms are marked in bold. 

 



 

 

Figure 2. Percentage of protein-bound ligand conformations of the Platinum Diverse Dataset 

reproduced by the different algorithms within a certain accuracy (left), ensemble size (middle), 

and runtime per molecule (right) at maximum ensemble sizes (a) 50 and (b) 250 conformers. 

Steeper curves indicate better performance with respect to all three criteria.  

Accuracy and Ensemble Size 

This study, like most benchmark studies (including ours11,12), defines the accuracy of conformer 

ensemble generators by the minimum RMSD in Å measured between the experimentally 

determined protein-bound conformation and any conformer of the computed ensemble. Accuracy 

is, to some extent, a function of ensemble size.54 This is because ensembles are generally 

designed to consist of diverse conformers, which means that chances for one of these conformers 

to closely resemble the experimentally observed conformation generally increase with the 

number of generated conformers. Unless stated otherwise, all results presented in the following 

sections refer to ensembles with a maximum of 250 conformers. 



 

Conformator Best represented the protein-bound ligand conformations with a median RMSD of 

0.47 Å at a median ensemble size of 187. Its accuracy was significantly better than that of the 

RDKit DG algorithm (median RMSD 0.52 Å), even though the RDKit DG algorithm produces 

larger ensembles (median 229 conformers). The accuracy of Conformator Best was also 

competitive with that of OMEGA (RMSD 0.47 vs. 0.46 Å; difference not statistically 

significant), at, however, the expense of a substantially larger median ensemble size (187 vs. 74 

conformers). Run at a maximum ensemble size of 250, Conformator Best tends to produce larger 

ensembles than OMEGA for molecules with four or fewer rotatable bonds (Figure 3a). The 

opposite trend is observed for more flexible molecules, for which OMEGA generally produces 

more conformers than Conformator Best. Whereas only 0.8% of all ensembles generated with 

Conformator Best consisted of the maximum allowed number of conformers (i.e. 250), this 

figure was 34% for OMEGA. The R2 for the correlation between the number of rotatable bonds 

and the size of conformer ensembles was 0.27 for Conformator Best. This weak correlation is a 

result of the rules for sampling torsion angles for rotatable bonds and of the clustering algorithm, 

both of which bias the ensembles towards more diversity, meaning that even if for a rotatable 

bond multiple preferred torsion angles are known, few representative torsion angles are utilized 

to comply with the maximum allowed ensemble size. 

For a maximum ensemble size of 50 conformers, Conformator Best produced smaller ensembles 

(median 42 conformers) than OMEGA (median 50 conformers) and the RDKit DG algorithm 

(median 49 conformers). In this setup, no statistically significant difference in the accuracy of 

Conformator Best (median 0.58 Å) and OMEGA (median 0.51 Å) was observed (Table S3). 

Again, the accuracy of Conformator Best was significantly higher than that of RDKit DG 

(median 0.64 Å). At a maximum ensemble size of 50 conformers, Conformator Best generated 



 

larger ensembles than OMEGA for molecules with less than four rotatable bonds but smaller-

sized ensembles for molecules with more than four rotatable bonds (Figure 3b). Only 7% of all 

conformers generated with Conformator Best but 56% of all conformers generated with OMEGA 

had the maximum ensemble size of 50 conformers (Figure 2a). 

 

Figure 3. Median ensemble size vs number of rotatable bonds for ensembles of a maximum of a) 

250 and b) 50 conformers. Lower curves indicate better performance with respect to ensemble 

size. 

At a maximum ensemble size of 250 conformers, Conformator Fast reproduced the 

experimentally observed conformations with equal accuracy as the RDKit DG algorithm (median 

RMSD 0.53 vs. 0.52 Å; difference not statistically significant), despite much smaller ensembles 

(median 54 vs. 229 conformers). CONFECT produced the smallest ensembles but also was the 

least accurate among all tested algorithms (median 38 conformers per ensemble; median RMSD 

0.67 Å). 

In addition, we quantified the accuracy of conformer ensemble generators as the percentage of 

experimentally observed conformations represented below RMSD thresholds of 0.5, 1.0, 1.5 and 

2.0 Å (Table 3). In this assessment, Conformator Best and OMEGA showed comparable 



 

performance, with 53% and 56% of all experimental conformations represented with an RMSD 

below 0.5 Å, and 97% and 96% represented with an RMSD below 1.5 Å, respectively 

(maximum ensemble size 250 conformers). The success rates of Conformator Fast were 

comparable with those of the RDKit DG algorithm. For ensembles of a maximum of 50 

conformers at an RMSD threshold below 0.5 Å, the success rate of OMEGA was higher than that 

of Conformator Best (49% vs. 42%) and any other tested algorithm. 

Table 3. Percentage of Structures of the Platinum Diverse Dataset Successfully Reproduced 

within a Specified RMSD Thresholda 

Algorithm Maximum ensemble size 50 Maximum ensemble size 250 

 RMSD threshold [Å] 

 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 

Conformator Best 42 78 94 98 53 86 97 99 

Conformator Fast 37 73 91 98 46 83 95 99 

CONFECT 32 60 76 85 37 62 82 88 

RDKit DG 38 71 89 96 47 82 95 98 

OMEGA 49 80 92 97 56 87 96 99 

a The values of the best-performing algorithms per column are marked in bold. 



 

As a third way of assessing the accuracy of conformer ensemble generators, we quantified the 

percentage of molecules represented with an RMSD below 0.6 (the maximum positional 

uncertainty for atoms in the Platinum Dataset)11 and below 1.0 Å (below which docking poses 

are commonly deemed sufficiently accurate) with respect to the complexity of their 

conformational space, represented (in part) by the number of rotatable bonds (Figure 4). At both 

RMSD thresholds (maximum ensemble size 250 conformers), Conformator Best performed 

comparably to OMEGA and Conformator Fast comparably to the RDKit DG algorithm. Both 

Conformator Best and OMEGA, however, performed substantially better than Conformator Fast, 

the RDKit DG algorithm and CONFECT at both RMSD thresholds. The success rates of 

representing experimental structures below an RMSD of 0.6 Å were 63 to 96% for Conformator 

Best, 64 to 95% for OMEGA and 58 to 98% for the RDKit DG algorithm. Likewise, the success 

rates of representing experimental structures below an RMSD of 1.0 Å were 86 to 99% for 

Conformator Best, 87 to 98% for OMEGA and 82 to 99% for the RDKit DG algorithm.  

Among all tested algorithms, the accuracy of ensembles generated with OMEGA was least 

dependent on the number of rotatable bonds. At an RMSD cutoff of 0.6 Å, OMEGA successfully 

represented 88% of all molecules with up to four rotatable bonds and 71% of all molecules with 

up to eight rotatable bonds. These figures were 89% and 69% for Conformator Best, 

respectively. 



 

 

Figure 4. Percentage of molecules of the Platinum Diverse Dataset reproduced by the tested 

algorithms with a maximum RMSD of (a) 0.6 Å and (b) 1.0 Å as a function of the maximum 

number of rotatable bonds. The maximum ensemble size was set to 250 conformers.  

 

The diversity of the ensembles generated with Conformator strongly depends on the specific 

molecular structure in question. In general, the diversity of ensembles increases with the number 

of rotatable bonds. The R2 for the correlation between the median pairwise RMSD of all 

conformers and the number of rotatable bonds was 0.60 (default settings; Figure S10). Two 

outliers were observed, which are the highly symmetrical ligands B3P (Figure S10A) and 5MY 

(Figure S10B), for which the symmetry-corrected RMSD was lower than expected based on the 

number of rotatable bonds. The R2 for the correlation between the minimum pairwise RMSD and 

the number of rotatable bonds was 0.50 (default settings; Figure S11). Note that the RMSD also 

depends on the size of the molecule and that the clustering threshold is not adjusted if the 

initially generated conformer ensemble is smaller than the maximum allowed ensemble size. 

Also, during each round of clustering, the radius is incrementally increased by a defined value 



 

(i.e. 0.1 Å for Fast and 0.05 Å for Best), for which reason the maximum allowed ensemble size is 

often not reached. 

For a subset of 987 molecules of the Platinum Diverse Dataset (all of them have a maximum of 

six rotatable bonds) we were able to generate complete conformer ensembles without clustering 

and without a set maximum ensemble size (maximum allowed runtime of 72 h per molecule; 

Table S4). For 92% of all molecules in this subset (84% with default settings) the complete 

ensembles included a conformer with an RMSD lower than 0.5 Å and for 99% (98% with default 

settings) a conformer with an RMSD lower than 1 Å. Use of complete conformer ensembles 

instead of the (default) ensembles of a maximum size of 250 improved the RMSD by 0.5 Å or 

more in only 14 out of 987 cases. The maximum ensemble size measured was 185,112 

conformers; the mean ensemble size 12,024. These results demonstrate the efficiency of the 

clustering procedure implemented in Conformator. 

Success Rates in Processing Molecules 

With the exception of CONFECT (success rate 93.4%), all ensemble generators successfully 

produced ensembles for more than 99% of all tested molecules (Conformator Best and Fast 

100.0%; OMEGA 99.6%; RDKit DG algorithm 99.9%). Conformator and OMEGA are designed 

to handle both 2D and 3D input and produce identical results with either type of information. In 

the case of SMILES input, Conformator was able to successfully process all molecules with the 

exception of three molecules with small, bridged rings (i.e. HUX, SAW, TSA). If valid input 

coordinates are given and the option to generate new 3D coordinates is not set, these three 

molecules can also be successfully processed by Conformator. 



 

Runtimes 

For ensembles consisting of a maximum of 250 conformers, the median runtimes for 

Conformator Fast and Best were 1 and 3 seconds, respectively (for individual molecules, 

repeated runtime measurements differed by less than 5%). Hence Conformator was much faster 

than the RDKit DG algorithm (median 14 seconds) and approximately as fast as OMEGA 

(median 2 seconds). For ensembles consisting of a maximum of 50 conformers, no substantial 

differences in the median runtimes were observed: calculations with Conformator Fast and Best 

had a median runtime of 1 second, with OMEGA 2 seconds and with the RDKit DG algorithm 3 

seconds. Note that in previous tests11 the RDKit ETKDG and DG algorithms produced 

conformers of comparable quality, with the ETKDG algorithm being 25% faster.  

Case Studies on the Reproduction of Experimentally Observed 

Conformations of Macrocycles 

In recent years, macrocycles have emerged as one of the most promising categories of drug 

candidates for multiple indications.55–58 Macrocyclic systems are restricted in their rotational and 

conformational freedom. While this property is actively exploited in the design of highly 

effective and specific compounds, the interdependency of rotatable bonds and other features such 

as bridged rings pose significant challenges to conformer ensemble generation. New conformer 

ensemble generators and extensions, in particular to commercial algorithms, have recently been 

reported to specifically address these issues.59–66  

The dedicated algorithm for macrocycle conformer generation, which is part of Conformator, 

cuts all macrocycles and generates conformers for these open ring structures with Conformator’s 



 

standard algorithm. In contrast to DG approaches (which usually start from random coordinates), 

the conformers used as a starting point for cyclization are already geometrically valid.  

We tested the ability of Conformator to represent the experimentally observed, protein-bound 

conformations of macrocyclic compounds. For this purpose, we extracted from the Sperrylite 

Dataset all 49 structures of compounds including at least one ring formed by ten or more atoms 

(29 of these structures are also part of the Platinum Diverse Dataset). Seven of the molecules 

included in this dataset are represented by more than one experimental structure: latrunculin A 

(LAR; 6 conformers), 6-deoxyerythronolide B (DEB; 4 conformers), and geldanamycin (GDM), 

LAB, LY4, PP9 and S1A (2 conformers). The dataset contains rings of eight different sizes 

(Figure 5a). It is dominated by 16 molecules (26 conformers) with rings consisting of twelve 

atoms and seven molecules (nine conformers) with rings consisting of 16 atoms. 

Conformator Best successfully processed all 49 macrocyclic structures and obtained a median 

RMSD of 1.0 Å (Figure 5b). The maximum RMSD measured was 2.3 Å for both structures of 

geldanamycin (PDB complexes 3C11 and 4XDM; Figure 6). Geldanamycin is a particularly 

challenging molecule. It consists of 40 heavy atoms and a macrocycle formed by 19 atoms. Its 

conformation is strongly bent and includes several torsion angles that according to 

Conformator’s torsion angle library are unlikely. 

 



 

 

Figure 5. The Sperrylite Dataset contains 49 protein-bound structures of compounds including at 

least one macrocycle formed by ten or more atoms. (a) Distribution of the maximum ring sizes 

(number of atoms in a ring) of these macrocycles and their conformations. (b) Cumulative 

percentage of these structures reproduced by Conformator below a defined maximum RMSD 

threshold (maximum ensemble size 250 conformers). 

 

 

Figure 6. Visualization of structures of geldanamycin. (a) The conformer from the Sperrylite 

Dataset (GDM in 3C11; input for the validation of Conformator), (b) 2D representation of 

geldanamycin, (c) an ensemble of conformers generated by Conformator Best and superposed 

with original conformer (green carbon atoms), and (d) the closest conformer generated with 

Conformator Best and superposed with the original conformer (green carbon atoms). 



 

 

All further (47) macrocyclic structures were reproduced with RMSD values of less than 2.0 Å. 

Conformator Best reproduced the experimentally observed conformation of macbecin (BC2; 

2VWC) and valerjesomycin (VJ6; 4JQL), both including macrocycles formed by 19 atoms, with 

RMSDs of 1.9 Å and 0.8 Å, respectively. For 27 macrocyclic structures (55%), Conformator 

Best generated at least one conformer with an RMSD not higher than 1.0 Å. At a maximum 

ensemble size of 250 conformers, the median size of ensembles generated with Conformator 

Best for the 49 macrocycles was 197 conformers and the average runtime was 104 s (median 

88 s) per molecule. Given the limited amount of high-quality structural data on protein-bound 

macrocycles available to date, no statistically sound conclusions can be drawn on which of the 

two algorithms performs better. 

Comparison of Conformator’s Clustering Algorithm with K-Medoids 

Clustering 

In order to assess the performance of the new clustering algorithm implemented in Conformator 

we produced a version of Conformator Best with the new clustering algorithm replaced by the k-

medoids clustering algorithm (the partitioning around medoids method).67,68 With a maximum of 

25 iterations, Conformator in combination with the k-medoids clustering algorithm reached 

median and mean accuracy values identical to those of the original version of Conformator 

(median RMSD 0.47 Å; mean RMSD 0.57 Å). However, the median and mean runtimes were 

substantially longer for the k-medoids clustering algorithm variant (14 s and 272 s per molecule, 

respectively) as compared to the original version of Conformator (median 3 s; mean 7 s per 

molecule, respectively). The longest runtime observed for the k-medoids clustering variant was 



 

12.1 h as compared to 512 s for the original version of Conformator. The ensembles generated by 

the k-medoids clustering variant had a median ensemble size of 250 conformers (mean ensemble 

size 205) as compared to 187 conformers (mean ensemble size 166) for the original version of 

Conformator. With k-medoids clustering, 58% of all generated ensembles were of the maximum 

allowed size (250) whereas this was the case for only 7% of all ensembles generated with the 

original version of Conformator. The high percentage of large ensembles generated by the k-

medoids clustering variant is not surprising since reaching the maximum ensemble size is a 

defined objective of this clustering algorithm. 

CONCLUSION 

Conformator is an efficient knowledge-based algorithm for the generation of conformer 

ensembles of small molecules. One of the key features of Conformator is its new clustering 

algorithm for the compilation of representative conformer ensembles that exploits the partial 

presorting of consecutively generated conformers. Conformer ensembles generated with 

Conformator are independent of input geometries and formats, because the input coordinates are 

not considered, the new cluster algorithm introduced here is deterministic and the atom order of 

the molecule is canonized prior to conformer generation. Furthermore, we present a novel 

algorithm for the generation of conformations for macrocyclic ring systems. The algorithm is 

robust, widely applicable and makes use of the sophisticated technology for acyclic conformer 

generation. A novel numeric optimizer working hand in hand with a differentiable scoring 

function MCOS is responsible for low-energy conformations even in complex, macrocyclic ring 

systems. 



 

Conformator reaches a level of accuracy and efficiency that is comparable to that of OMEGA. 

The new algorithm performs particularly well with molecules composed of five or more rotatable 

bonds, for which it reaches competitive performance while keeping ensemble sizes low. 

OMEGA, on the other hand, is still ahead in sampling molecules with fewer than five rotatable 

bonds (which account for more than half of all molecules of the benchmarking dataset), for 

which it obtains the best accuracy among all tested algorithms even with small ensembles. 

Preference for either algorithm will depend on the specific application, such as the composition 

and size of the molecular libraries to be processed. From the outcomes of this study, however, it 

is clear that in direct comparison with other free algorithms, Conformator obtains very good 

performance and is the only algorithm for which no significant geometric errors were detected in 

any of the generated conformations. Conformator successfully processes more than 99% of all 

input structures, is capable of handling different types of 2D and 3D input and requires only 

moderate computing resources. In contrast to many other approaches, Conformator does not use 

any PDB data for deriving geometric parameters like bond lengths, bond angles, torsion angles 

or ring conformations. Therefore, the performance measured on the basis of the Platinum Dataset 

gives a realistic picture of the algorithm’s practical performance. 

Software Availability 

Conformator is free for academic use. It is part of the software tool UNICON, a universal 

converter able to create 2D and 3D conformations on the fly. Conformator and UNICON are 

standalone command-line tools within the NAOMI ChemBio Suite36 available from 

https://software.zbh.uni-hamburg.de. 
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