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ABSTRACT: A plethora of similarity-based, network-based,
machine learning, docking and hybrid approaches for predicting
the macromolecular targets of small molecules are available today
and recognized as valuable tools for providing guidance in early
drug discovery. With the increasing maturity of target prediction
methods, researchers have started to explore ways to expand their
scope to more challenging molecules such as structurally complex
natural products and macrocyclic small molecules. In this work, we
systematically explore the capacity of an alignment-based approach
to identify the targets of structurally complex small molecules
(including large and flexible natural products and macrocyclic
compounds) based on the similarity of their 3D molecular shape to
noncomplex molecules (i.e., more conventional, “drug-like”,
synthetic compounds). For this analysis, query sets of 10 representative, structurally complex molecules were compiled for each
of the 28 pharmaceutically relevant proteins. Subsequently, ROCS, a leading shape-based screening engine, was utilized to generate
rank-ordered lists of the potential targets of the 28 × 10 queries according to the similarity of their 3D molecular shapes with those
of compounds from a knowledge base of 272 640 noncomplex small molecules active on a total of 3642 different proteins. Four of
the scores implemented in ROCS were explored for target ranking, with the TanimotoCombo score consistently outperforming all
others. The score successfully recovered the targets of 30% and 41% of the 280 queries among the top-5 and top-20 positions,
respectively. For 24 out of the 28 investigated targets (86%), the method correctly assigned the first rank (out of 3642) to the target
of interest for at least one of the 10 queries. The shape-based target prediction approach showed remarkable robustness, with good
success rates obtained even for compounds that are clearly distinct from any of the ligands present in the knowledge base. However,
complex natural products and macrocyclic compounds proved to be challenging even with this approach, although cases of complete
failure were recorded only for a small number of targets.

■ INTRODUCTION

The past decade has seen a boost in the development of in
silico approaches for the prediction of the macromolecular
targets of small molecules.1−3 Progress has been fueled by,
among other factors, (i) the increasing amount of chemical and
biological data available in the public domain, (ii) the strategic
shift from the “one drug-one target” paradigm that had
dominated small-molecule drug discovery for decades to the
concept of polypharmacology,4 and (iii) advances in computa-
tional power and algorithms. Despite the rapid development,
however, it is challenging to obtain a realistic understanding of
the performance of target prediction methods.5

There are several classes of in silico approaches for target
prediction in existence: (i) similarity-based methods, which use
the similarity between data such as small molecules, targets,
and interactions to make predictions,6 (ii) network-based
methods, where networks based on anything from ligand
similarity7 to highly heterogeneous data are built to gain

systemic understanding of modeled data,8 (iii) machine
learning approaches, which make use of machine learning
methods such as random forests, support vector machines, or
artificial neural networks to make predictions,9 (iv) reverse (or
inverse) docking methods, which dock queries into potential
targets to make predictions based on docking scores3 and
methods which combine two or several types of these
approaches.1

A large proportion of models reported in the scientific
literature are available as free public web services or
commercial tools.10 Most models utilize information from
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the largest public resources of chemical and biological data,
PubChem,11 and the ChEMBL database.12 PubChem currently
contains more than 102 million compounds and 268 million
bioactivity data points,13 and the latest release of the ChEMBL
database contains close to 2 million compounds, with more
than 16 million measured activities.14

With the increasing coverage and reliability of the models,
researchers have started to develop strategies for predicting the
likely targets of more challenging compounds such as natural
products,15,16 for which there is a notorious lack of available
measured data,17 and macrocyclic compounds, characterized
by a large number of conformational degrees of freedom in
combination with distinct torsional angle preferences.18−20 For
example, Reker et al.21 dissected the macrocyclic antitumor
agent archazolid A and used pharmacophoric descriptions of

these fragments to relate them to small molecules with known
bioactivities. Several then unknown targets of archazolid A that
were predicted by this approach have subsequently been
confirmed in biological tests. More recently, Cockroft et al.16

have reported on the development of a stacked ensemble
approach which, despite being trained on data for synthetic
compounds, is able to predict the macromolecular targets of
natural products with good accuracy.
In silico methods based on the comparison of the 3D

molecular shapes of aligned molecules are predestined for use
in target prediction because of their ability to recognize
similarity among structurally dissimilar compounds, as long as
their molecular shapes (or at least parts of their molecular
shapes) are preserved. Most shape-based methods take the
distribution of chemical features (“color”) into account, which

Figure 1. Examples of CSMs and non-CSMs. Represented on the left are the three most diverse CSMs (used as queries in this study) identified for
the HIV-1 protease, paired box protein Pax-8 and mu opioid receptor, and on the right the five most diverse non-CSMs (representing the
knowledge base compounds). More details on the automated and unbiased procedure employed for selecting these example compounds are
provided in the Compilation of a Test Set for Target Prediction section in the Methods section.
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contributes substantially to their performance.22 They form the
basis of several target prediction approaches23−25 and are also
attractive tools for virtual screening and scaffold hop-
ping.22,26,27

Here, we systematically investigate the capacity of a leading
3D alignment-dependent, shape-based approach to identify the
macromolecular targets of structurally complex small mole-
cules (CSMs) on the basis of their molecular similarity with
non-CSMs. In the context of small-molecule drug discovery,
3D shape-based screening, and this study alike, non-CSMs are
compounds that medicinal chemists would identify as typical
drug-like small molecules of low structural complexity. In
contrast, CSMs represent less conventional compounds,
characterized, above all, by their larger size (reflected by a
high number of heavy atoms and high molecular weight), and
along with it, larger numbers of conformational degrees of
freedom and/or higher 3D shape complexity (Figure 1). CSMs
include, in particular, complex natural products and macro-
cyclic compounds, many of which are of high relevance to drug
discovery but typically lack experimental data. Therefore, if it is
found in this study that computational approaches based on
3D shape-based alignment are indeed capable of deriving the
likely macromolecular targets of CSMs based on data
measured for more conventional small molecules, this could
open new avenues to support drug discovery efforts in less
densely populated, and hence more innovative, areas of the
relevant chemical space.

■ METHODS
Extraction of High-Quality Data from ChEMBL. The

ChEMBL database12,28 was processed following a protocol
inspired by the work of Bosc et al.29 First, any data records
matching the following criteria were extracted from ChEMBL:

(1) Bioactivity record includes a molecular structure (canon-
ical_smiles is not null).

(2) Reported bioactivity is measured on a single protein or a
protein complex (i.e., conf idence_score 7 or 9).

(3) data_validity_comment is null OR “manually validated”.
(4) potential_duplicate is “0”.
(5) activity_comment is not “inconclusive” OR “unspecified”

(capitalization ignored).
(6) standard_type is “Kd” OR “Potency” OR “AC50” OR

“IC50” OR “Ki” OR “EC50”.
(7) NOT (standard_value is null AND pchembl_value is

null AND activity_comment is not “active” (capital-
ization ignored)).

(8) NOT (standard_relation “>”, “ ≥ ”, or “ ≫ ” AND
standard_value less than 20 000).

This procedure resulted in a total of 1 452 655 data records.
A small number of these data records (2157) had
concentrations applied to bioactivity measurements reported
in μg·mL−1 as opposed to nM; these values were converted
into nM. Next, for each compound−target pair, the median
bioactivity value was calculated (because compounds may have
assigned more than one bioactivity value for one and the same
target). Any compounds with a median activity smaller than or
equal to 10 000 nM were defined as active, and all other
compounds were discarded. This resulted in a total of 481 194
molecules, corresponding to 786 817 bioactivity records.
Processing of Molecular Structures. The molecular

structures extracted from ChEMBL as SMILES were imported
into MOE30 (parsing failed for one molecule) and prepared

using MOE’s Wash function. Processing included the removal
of the minor components of salts, neutralization, and the
addition of hydrogen atoms. Any molecules with a molecular
weight in the range of 150 to 1500 Da were kept. The
molecules were then labeled “CSM” or “non-CSM” according
to the following definition (see Results for motivation and
discussion of the thresholds): non-CSMs are compounds with
15 to 30 heavy atoms, whereas CSMs include all compounds
with 45 to 55 heavy atoms and all macrocycles with 30 to 55
atoms. Compounds consisting of more than 55 heavy atoms
were discarded, as were very small compounds (less than 15
heavy atoms) and CSMs with at least one undefined chiral
atom (to ensure that stereochemistry is unambiguously defined
for all queries).
Next, conformers were generated with OMEGA,31,32 a

widely applied, systematic, knowledge-based conformer
ensemble generator that makes extensive use of fragment
libraries. OMEGA features a “default” or “classic” mode, which
handles molecules with rings formed by up to nine atoms, and
a macrocycle mode, which handles molecules with larger ring
systems. A recent benchmark study of commercial conformer
ensemble generators identified OMEGA’s classic algorithm as
the best commercial tool with respect to both accuracy and
speed.33 Also OMEGA’s macrocycle mode has been shown to
obtain good performance on macrocycles.34

For all non-CSMs (knowledge base compounds), ensembles
of a maximum of 400 conformers were calculated with
OMEGA (the default value is 200 conformers). OMEGA’s
classic mode was employed for all non-CSMs without any rings
formed by more than nine atoms (the flipper option, which
enumerates the stereochemical configurations of undefined
chiral atoms, was enabled). OMEGA’s macrocycle mode was
employed to generate conformer ensembles for any molecule
with rings formed by more than nine atoms (in accordance
with the developer’s specifications).
All CSM queries were represented by the lowest energy

conformation generated with OMEGA’s classic or macrocycle
modes, applying the same ring size cutoffs as for non-CSMs.
The composition of the data set resulting from this

processing workflow is reported in Table 1.

Compilation of a Test Set for Target Prediction. A test
set of 28 targets was compiled by following a protocol designed
to ensure that the selected proteins are diverse and
representative of pharmaceutically relevant protein space.
Starting from the sorted list of the 39 proteins with the
highest number of CSM records in the processed data set
(108− 730 CSMs per target), a diverse and representative set

Table 1. Composition of Processed Data Set

Number of
compounds

Number of
bioactivity
records

Number
of targets

Complex small
molecules
(CSMs)

macrocycles 2780 4618 474a

Complex small
molecules
(CSMs)

nonmacrocycles 10 870 16 640 1164a

Noncomplex
small
molecules
(non-CSMs)

nonmacrocycles 272 640 460 047 3642

aCorresponding to a total of 1318 unique targets.
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of proteins was selected based on the following procedure:
First, for proteins for which bioactivity records are available for
multiple species, only the data for the species with the largest
number of CSMs was retained. Second, the protein “protease”
from human immunodeficiency virus 1 (CHEMBL2366517)
was removed because of the availability of a more
comprehensive set of data on the protein “human immuno-
deficiency virus type 1 protease” (CHEMBL243). Cytochrome
P450 enzymes and transporters were excluded because of their
wide substrate selectivity and the fact that substrates are known
to have multiple binding modes. In the final step, the
remaining proteins were clustered with CD-HIT35,36 based
on their full-length amino acid sequence (a sequence identity
cutoff of 0.4 was employed for this procedure). For each of the
clusters, only the protein with the largest number of CSMs was
kept. With the 28 targets of interest now defined, in the next
step, for each of the selected proteins, the 10 most diverse
CSMs were determined with MOE’s function for the
generation of diverse subsets (using MACCS fingerprints in
combination with the Tanimoto coefficient).
Target Prediction. The 280 (28 × 10) CSMs served as

queries for screening with ROCS37,38 against the knowledge
base of 272 640 non-CSMs (note that the number of unique
CSMs is 269 as a minority of the selected CSMs are active on
more than one of the selected 28 proteins). The proteins were
ranked according to the maximum similarity between a CSM
query and all non-CSM ligands recorded for a protein in the
knowledge base.
Molecular similarity was quantified separately by each of

four similarity metrics implemented in ROCS: ShapeTanimo-
to, TanimotoCombo, RefTverskyCombo, and FitTverskyCom-
bo score. As suggested by their names, metrics are either based
on the Tanimoto or the Tversky coefficient. The Tanimoto
coefficient quantifies the similarity of two molecules, f and g,
based on their self-volume overlaps (If and Ig) and the volume
overlap between the two molecules (Of,g)

=
+ −

O

I I O
Tanimotof g

f g

f g f g
,

,

,

The Tversky coefficient can be asymmetric (depending on
the alpha and beta parameters chosen), hence allowing
emphasize on either substructure or superstructure matching

α β
=

+
O

I I
Tverskyf g

f g

f g
,

,

The ShapeTanimoto score ranges from 0 to 1, with a value
of 1 indicating a perfect fit of molecular shapes. Importantly,
the ShapeTanimoto score only considers the fit of shapes for
the volume overlap, whereas the three “combo” scores
additionally take the type and distribution of chemical features
into account. The “combo” scores typically range from 0 to 2,
with equal weights applied to the shape and color components.
The RefTverskyCombo score assigns an alpha value of 0.95

to the CSM query molecule as the main self-overlap term,
meaning, in the context of this study, that it emphasizes the
matching of the CSM (which, by design of the data sets, is the
superstructure). The FitTverskyCombo score, on the contrary,
assigns a beta value of 0.95 to the fit molecule (i.e., the
knowledge base molecule), emphasizing the match of the non-
CSM (substructure). Note that the RefTverskyCombo and
FitTverskyCombo scores can have values greater than 2
because the overlap of two compounds can be larger than a
molecule’s self-overlap.
ROCS was run with factory settings with the following

exceptions: both “-besthits” and “-maxhits” were set to “0” in
order to cause ROCS to retain all results. The “-rankby” option
was set to an appropriate value in order to have the results
ranked by the four similarity metrics. For experiments using
the ShapeTanimoto score, the “-shapeonly” function was
enabled in order to cause ROCS to align molecules by taking
only molecular shape into account (and not color). Targets
assigned identical scores were also assigned identical ranks.

Figure 2. Schematic overview of the general approach.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00161
J. Chem. Inf. Model. 2020, 60, 2858−2875

2861

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00161?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00161?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00161?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00161?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00161?ref=pdf


■ RESULTS AND DISCUSSION

The aim of this work is to determine the capacity of 3D
alignment-dependent shape-based approaches to predict the
macromolecular targets of CSMs based on their similarity to
non-CSMs with measured bioactivities (Figure 2).
Defining what constitutes a complex or a noncomplex

molecule is a nontrivial task because molecular complexity is
context dependent and its perception inherently subjective.
Thus, it does not come as a surprise that there is no universally
applicable and easily interpretable metric for the quantification
of molecular complexity in existence.39

Our aim was to identify an effective, robust, and,
importantly, easily interpretable metric. We investigated several
of the many complexity metrics discussed in a recent review.39

By visual inspection of the molecular structures contained in
our processed data sets, we unanimously converged on using
the number of heavy atoms as a metric of structural complexity
for the following reasons:

(1) The number of heavy atoms correlates well with
molecular weight (and molecular size), the most

important parameter in drug discovery besides log P,
and chemists are well familiar with it.

(2) In the context of shape-based screening, the number of
heavy atoms is more descriptive of molecular complexity
than other common measures such as the number (or
fraction) of Csp3 atoms because nonplanarity itself does
not pose a particular challenge to the algorithms under
investigation.

(3) The aim of this study is to understand the limits of 3D
shape-based approaches for target prediction, and these
are, like for most other in silico approaches, defined
primarily by the available data, and there are clearly
more data available for conventional drug-like com-
pounds (small “small molecules” with molecular weight
below 500 Da), than there are for larger-sized
compounds (Figure S1).

Hence, for the purpose of this study, non-CSMs are any
compounds consisting of 15−30 heavy atoms (corresponding
to an average molecular weight from 222 to 424 Da for this
data set). In contrast, CSMs are compounds that are unusually
large (minimum of 45 heavy atoms; corresponding to an
average of 631 Da) or macrocyclic with at least 30 heavy

Table 2. Overview of Targets Selected for Testing Performance of 3D Shape-Focused Target Prediction Approach

Target ID Target name
Protein

classification
Target

abbreviation Organism
No.

CSMsa
No. non-
CSMsb

CHEMBL243 Human immunodeficiency virus type 1
protease

enzyme HIV-1 protease Human immunodeficiency
virus 1

703 185

CHEMBL2362980 Paired box protein Pax-8 unclassified PAX8 Homo sapiens 390 465
CHEMBL270 Mu opioid receptor membrane

receptor
MOR Rattus norvegicus 337 299

CHEMBL4616 Ghrelin receptor membrane
receptor

GHSR Homo sapiens 299 127

CHEMBL2001 Purinergic receptor P2Y12 membrane
receptor

P2Y12 Homo sapiens 290 70

CHEMBL4822 Beta-secretase 1 enzyme BACE1 Homo sapiens 289 1634
CHEMBL3717 Hepatocyte growth factor receptor enzyme HGFR Homo sapiens 274 800
CHEMBL3948 Angiotensin II type 1a (AT-1a) receptor membrane

receptor
AGTR1 Oryctolagus cuniculus 266 43

CHEMBL4860 Apoptosis regulator Bcl-2 ion channel BCL2 Homo sapiens 266 84
CHEMBL203 Epidermal growth factor receptor erbB1 enzyme EGFR Homo sapiens 233 1451
CHEMBL259 Melanocortin receptor 4 membrane

receptor
MC4R Homo sapiens 233 85

CHEMBL325 Histone deacetylase 1 epigenetic
regulator

HDAC1 Homo sapiens 192 1453

CHEMBL1957 Insulin-like growth factor I receptor enzyme IGF1R Homo sapiens 177 514
CHEMBL2820 Coagulation factor XI enzyme F11 Homo sapiens 173 15
CHEMBL5023 p53-binding protein Mdm-2 other nuclear

protein
MDM2 Homo sapiens 156 183

CHEMBL5658 Prostaglandin E synthase enzyme PGES Homo sapiens 153 288
CHEMBL5251 Tyrosine-protein kinase BTK enzyme BTK Homo sapiens 147 83
CHEMBL286 Renin enzyme REN Homo sapiens 144 84
CHEMBL4414 Plasmepsin 2 enzyme PM2 Plasmodium falciparum 144 15
CHEMBL220 Acetylcholinesterase enzyme AChE Homo sapiens 130 1083
CHEMBL2327 Neurokinin 2 receptor membrane

receptor
NK2R Homo sapiens 129 45

CHEMBL2954 Cathepsin S enzyme CTSS Homo sapiens 123 424
CHEMBL4662 Proteasome Macropain subunit MB1 enzyme MB1 Homo sapiens 121 73
CHEMBL240 HERG ion channel HERG Homo sapiens 117 2260
CHEMBL244 Coagulation factor X enzyme F10 Homo sapiens 115 277
CHEMBL3572 Cholesteryl ester transfer protein ion channel CETP Homo sapiens 114 26
CHEMBL1865 Histone deacetylase 6 epigenetic

regulator
HDAC6 Homo sapiens 112 1070

CHEMBL3706 ADAM17 enzyme ADAM17 Homo sapiens 108 256
aNumber of ligands that are CSMs. bNumber of ligands that are non-CSMs.
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atoms. Any compounds with more than 55 heavy atoms
(corresponding to an average molecular weight of 772 Da)
were not considered in this study because of the excessive size
of their conformational space. The numbers of CSMs and non-
CSMs present in the processed ChEMBL data set are reported
in Table 1.
Twenty-eight representative and pharmaceutically relevant

targets were selected for testing, each represented by the 10
most diverse bioactive CSMs (giving rise to a total of 280 CSM
queries). Each of the 280 CSM queries was represented by a
calculated minimum energy conformation, whereas each of the
272 640 non-CSMs of the knowledge base (with measured
bioactivities on a total of 3642 proteins) was represented by up
to 400 conformers representative of the low-energy conforma-
tional space.
Characterization of Data Sets Underlying the

Evaluation. Targets. The 28 targets selected for this study
(Table 2) are diverse and a good representation of the
pharmaceutically relevant protein space. The pairwise identity
of the full-length protein sequence of all selected targets is
below 40%. Most target classes are well represented, as shown
by the comparison of the target class distributions over all
proteins that have at least one CSM ligand (1318 proteins)
and the 28 selected targets (Figure 3). Only transporters and
transcription factors are not represented. The transporters
represented by a significant number of diverse CSMs in the
data set bind a wide variety of substrates, in part with clearly
distinct binding modes, for which reason we excluded them, as
we excluded cytochrome P450 3A4 for the same reason. There
are no transcription factors with sufficient numbers of CSM
records that would allow their inclusion in this study.
Complex and Noncomplex Small Molecules. The

physicochemical property spaces of the 13 650 CSMs and
272 640 non-CSMs serving as the data basis of this work are
clearly distinct, as shown in Figure 4. While most CSMs in this
study have a molecular weight between 550 and 800 Da
(median 664 Da), most non-CSMs have a molecular weight of
less than 500 Da (median 355 Da; Figure 4a). Analogous
observations are made for the number of heavy atoms (Figure
4b), where the median is 47 for CSMs and 25 for non-CSMs.
CSMs have a substantially higher number of rotatable bonds
than non-CSMs (median 11 vs 4; Figure 4c) and also a higher
number of chiral centers on average (median 2 vs 0; Figure
4d). Also the average number of rings (Figure 4e) and the
number of aromatic rings (Figure 4f) are higher for CSMs
(average 4.96 and 3.39, respectively) than for non-CSMs
(average 3.23 and 2.46, respectively). Although the fraction of

heteroatoms (Figure 4g) in CSMs and non-CSMs is
comparable (median 0.25 for both classes of compounds),
the log P (Figure 4h) is higher for CSMs (median 4.85 and
3.33, respectively).

Performance of Shape-Based Screening with Differ-
ent Similarity Metrics. ROCS features two different
alignment modes: a default mode, which takes into account
both molecular shape and color, and the shape-only mode,
which considers molecular shape only. Both of these alignment
modes were assessed in this study with different scores
implemented in ROCS in the following setups (consistent with
the underlying algorithm): (i) the default alignment mode in
combination with the TanimotoCombo, RefTverskyCombo,
and FitTverskyCombo scores and (ii) the ShapeTanimoto
score in combination with ROCS’ shape-only mode (i.e., with
the -shapeonly function enabled).

Performance Measured for Individual Complex Small
Molecules. Among the four investigated scores, the Tanimo-
toCombo score clearly outperformed all other scores in
ranking the targets of CSMs among the top positions of 3642
proteins (Table 3 and Figure 5a; note for the figure that
steeper curves indicate worse performance and that the y-axis is
on a logarithmic scale). With the TanimotoCombo score, the
target of interest (i.e., the target assigned to this particular
query) was ranked among the top-5 positions for 83 (30%) of
the 280 CSM queries (note that the automated query selection
procedure resulted in the selection of 10 CSMs which are
active on more than one of the 28 targets; accordingly, these
CSMs represent more than one query). The success rate
increases to 41% when considering the top-20 ranks and to
47% when considering the 40 top-ranked proteins (which
corresponds to roughly 1% of the total list of proteins
represented by the knowledge base).
Compared to the TanimotoCombo score, the success rates

obtained by the ShapeTanimoto, RefTverskyCombo, and
FitTverskyCombo scores were roughly 20 percentage points
lower. The RefTverskyCombo score tended to have higher
success rates than the ShapeTanimoto and FitTverskyCombo
scores when considering a greater number of ranks (top-40,
top-80, and top-200).
In order to obtain a better understanding of the reasons for

the observed differences in the target ranking performance of
the individual scores, we (i) visually inspected alignments and
related them to the respective score values, (ii) analyzed the
relationships between scores and ranks, and (iii) determined
the relationships between scores and molecular weight.

Figure 3. Comparison of the distribution of target classes across (a) all (1318) proteins with at least one known CSM ligand and (b) the 28 targets
selected for this study.
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Figure 4. Comparison of the physicochemical property spaces of CSMs (blue) and non-CSMs (gray): (a) molecular weight, (b) number of heavy
atoms, (c) number of rotatable bonds, (d) number of chiral centers, (e) number of rings, (f) number of aromatic rings, (g) fraction of heteroatoms,
and (h) log P.

Table 3. Success Rates for Predicting Targets of Interest of Queries with Different Scoring Functions

All/macrocyclic/nonmacrocyclic complex small molecules (CSMs) [%]

Rank TanimotoCombo score ShapeTanimoto score RefTverskyCombo score FitTverskyCombo score

Top-5 30/20/31 9/2/10 11/7/12 9/4/10
Top-10 37/27/39 14/7/16 12/9/12 11/4/12
Top-20 41/29/43 20/11/22 22/13/23 14/7/15
Top-40 (∼1%) 47/33/49 24/11/27 35/18/38 19/7/22
Top-80 54/42/56 34/20/37 46/24/51 28/16/30
Top-200 62/60/63 51/36/54 60/58/60 46/42/47
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The FitTverskyCombo score emphasizes the matching of
the knowledge base molecule (which is the smaller-sized
molecule in this context). We found that the parametrization
of the FitTverskyCombo score leads to the preference for
knowledge base molecules that are particularly small in size
because there is a high likelihood for these molecules to
produce good matches with a part of the CSM. This preference
is reflected by negative Pearson’s and Spearman’s correlation
coefficients for the FitTverskyCombo score and molecular
weight (−0.37 and −0.39, respectively; numbers report
averages over all CSM queries). The fact that alignments of
CSMs with small non-CSMs have a high likelihood of
obtaining high FitTverskyCombo scores is visible from Figure
6, where it is shown that the FitTverskyCombo function
indeed assigns high scores to a much larger proportion of
CSMs aligned with their nearest non-CSM (Figure 6c) than
any of the other scoring functions (Figure 6a, b, d). This

behavior results in high false-positive prediction rates of this
score in the study context, which explains the inferior
performance over the TanimotoCombo score.
The RefTverskyCombo score emphasizes the matching of

the CSM and, consequently, has a preference for larger
molecules, which is reflected by averaged Pearson’s and
Spearman’s correlation coefficients of 0.43 and 0.40,
respectively. Consistent with the fact that pairs of larger-
sized molecules are less likely to produce good matches, the
proportion of targets for which the best match is assigned a
high RefTverskyCombo score value is substantially lower than
for the FitTverskyCombo score (Figure 6b, c).
The reason for the superior performance of the Tanimoto-

Combo score appears to be the fact that, as a balanced measure
of molecular similarity, its ranking capacity is less affected by
differences in the size of molecules. This is reflected by lower
averaged Pearson’s and Spearman’s correlation coefficients

Figure 5. Percentage of queries for which the target of interest (out of 3642 proteins) was assigned ranks better than or equal to the ranks indicated
on the y-axis (“rank order distribution”) for (a) all queries, (b) nonmacrocyclic queries, and (c) macrocyclic queries. Note that steeper curves
indicate worse performance and that the y-axis is on a logarithmic scale.

Figure 6. Relationship between the (a) TanimotoCombo, (b) RefTverskyCombo, (c) FitTverskyCombo, and (d) ShapeTanimoto scores and the
ranks obtained for the targets of interest of the 280 CSM queries. Note that there is one instance where the FitTverskyCombo score is greater than
2.0 (see Target Prediction section in the Methods section for an explanation).
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between the score and molecular weight (0.39 and 0.33,
respectively). Figure 6a shows that high TanimotoCombo
scores generally go along with high target ranks (observed as a
tail toward the bottom right corner of the plot), which is often
not the case for other scores, in particular, the FitTversky-
Combo and ShapeTanimoto scores.
The obvious explanation for the inferior performance of the

ShapeTanimoto score over the three “combo” scores is the
neglect of chemistry, which leads to a lack of specificity during
alignment and scoring and, in turn, a clear preference for
matches involving larger-sized non-CSMs (averaged Pearson’s
and Spearman’s correlation coefficients 0.62 and 0.51,
respectively). ShapeTanimoto scores are often high (Figure
7) because good overlaps of molecular shapes are likely when

chemical features (color) are not considered. However, high
ShapeTanimoto scores often do not correspond to high target
rankings (Figure 6d), which is another indication of the lack of
specificity of this score.
Further conclusions that can be derived from these analyses

are that values obtained with different scores should not be
directly compared. Moreover, the scores obtained for
individual query−target combinations should not be used as
a measure of the likelihood of a compound to be active on that
target. In other words, the predictions provide an indication of
the likelihood of a protein being a target only relative to all
other possible targets.
Performance Measured on a Per-Target Basis. A further

way of analyzing success rates is on a per-target basis,
evaluating the results for query sets (the 10 queries) rather
than individual queries. For 24 of the 28 targets (86%), the
TanimotoCombo score assigned the top rank to the target of
interest for at least one of the 10 queries (Figure 8). For the
ShapeTanimoto, RefTverskyCombo, and FitTverskyCombo
scores, this was only the case for 43%, 57%, and 29% of the 28
proteins, respectively. Additional details are provided in Table
4.
Only for four out of 28 targets, the TanimotoCombo score

failed to rank the target of interest among the top-10 positions
with any of the 10 queries: the paired box protein Pax-8 (Homo
sapiens), plasmepsin 2 (Plasmodium falciparum), neurokinin 2
receptor (Homo sapiens), and cholesteryl ester transfer protein
(Homo sapiens).
For the paired box protein Pax-8, the highest rank obtained

with any of the 10 queries was 32 (TanimotoCombo score).
One of the reasons for failure is the fact that most of the CSMs

active on this target are very different from the bioactive non-
CSMs in terms of chemistry. They are characterized by long
and flexible scaffolds; a minority are macrocyclic (indicated in
Figure 8).
In the case of plasmepsin 2, the best rank obtained was just

420 (TanimotoCombo score). This target is characterized by a
highly flexible ligand binding site to which small molecules are
known to bind in several distinct modes.40 The fact that there
were only 15 non-CSMs recorded for that target may
contribute to the difficulties in recognizing CSMs active on
this protein (note, however, that coagulation factor XI was
correctly identified as the target of two out of the 10 CSMs and
ranked among the top-3 positions even though the target is
represented by only 15 non-CSMs in the knowledge base).
For the neurokinin 2 receptor, the best rank obtained with

any of the 10 CSMs was 96 (TanimotoCombo score). The
reasons for failure appear to be similar to those for Pax-8. Most
of the CSMs have a substantial number of rotatable bonds; a
minority are macrocyclic.
For the cholesteryl ester transfer protein, the best rank

obtained with any of the 10 CSMs was 53 (TanimotoCombo
score). The CSM queries of the cholesteryl ester transfer
protein are characterized by three to four similarly sized
branches originating from a central carbon or nitrogen atom.
The structures of most CSM queries are clearly distinct from
those of the ligands represented in the knowledge base.
Overall, the results obtained on a per-target basis indicate

that the value of the method can be substantially higher in
cases where several compounds targeting the same protein are
explored, although this scenario is rare in the context of CSMs
(as opposed to conventional drug-like compounds). A further
conclusion (derived from the results presented in Figure 8) is
that there is no correlation between the success rates for a
target and the number of non-CSM representing that target in
the knowledge base.

Performance on Macrocyclic as Compared to Non-
macrocyclic Complex Small Molecules. Forty-five of the
280 CSMs are macrocyclic, covering 14 out of the 28 targets
studied in this work. The ring systems of the 45 macrocyclic
CSMs are formed by up to 22 atoms, with a median of 15
atoms (Figure 9).

Figure 7. Density distributions of the four similarity metrics over all
lists of scores obtained for all 280 queries. The TanimotoCombo,
RefTverskyCombo, and FitTverskyCombo score values were scaled to
the same range as the ShapeTanimoto score.

Figure 8. Ranks assigned with the TanimotoCombo score to the
target of interest for the 280 CSM queries. Note that the y-axis is on a
logarithmic scale. The numbers reported at the bottom of the graph
indicate the number of CSM queries for which the target of interest
was assigned the rank of 1 (indicating perfect prediction); the dashed
line indicates the rank of 10.
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Our results show that the task of target prediction is more
challenging for macrocyclic compounds than for nonmacrocy-
clic ones (Figure 5b, c). For the TanimotoCombo score, the
top-5, top-10, top-20, and top-40 success rates for non-
macrocyclic CSMs were 31%, 39%, 43%, and 49%, respectively,
whereas for macrocyclic CSMs, they were just 20%, 27%, 29%,
and 33%, respectively. Besides the low molecular similarity of
macrocyclic compounds with the non-CSMs of the knowledge
base, a major reason for the lower success rates observed for
macrocyclic compounds are the complexities involved in
representing the 3D conformations of these queries, related
to a high number of conformational degrees of freedom and

torsional properties that are distinct from nonmacrocyclic
compounds.

Cases Where at Least One Score Worked Well While
Others Failed. There are several examples of CSMs for which
their targets were ranked at high positions with one score while
other scores failed. We identified nine CSMs (three of them
being macrocyclic compounds) for which their targets were
assigned ranks of 10 or better by at least one score while other
score(s) assigned ranks of 450 or worse (Table 5). In seven
out of the nine cases, the TanimotoCombo score performed
well, while others failed (Figure 10a, b); in two cases the
ShapeTanimoto score outperformed the other scores (Figure
10c, d). For the examples reported in Table 5, it can be seen
that the alignments produced by the three “combo” scores are
generally more consistent in terms of chemistry (in particular,
with regard to the orientation of chemical features) than the
alignments produced by the ShapeTanimoto score. However,
the FitTverskyCombo score failed to identify the target of
interest for many CSMs due to its emphasis on matching the
knowledge base molecule (substructure; see Performance of
Shape-Based Screening with Different Similarity Metrics
section in the Results section). In contrast, the ShapeTanimoto
score often failed because of its disregard of chemistry, which is
reflected by alignments that lack the matching of chemical
features.

Performance as a Function of Molecular Similarity.
The performance of similarity-based approaches depends on

Table 4. Best and Median Target Ranks Obtained by Different Scores for Query Sets Consisting of 10 CSMs Each

Target rank with score

TanimotoCombo RefTverskyCombo FitTverskyCombo ShapeTanimoto

Proteina best median best median best median best median

HIV-1 protease 1.0 116.0 1.0 135.0 2.0 381.5 7.0 356.0
PAX8 32.0 294.0 83.0 315.0 80.0 216.0 126.0 253.0
MOR 1.0 1.0 16.0 19.5 12.0 88.0 1.0 34.0
GHSR 1.0 260.0 1.0 213.5 11.0 794.0 4.0 349.0
P2Y12 1.0 1.5 1.0 24.0 1.0 67.0 1.0 185.5
BACE1 1.0 162.0 16.0 320.0 32.0 304.5 54.0 197.0
HGFR 1.0 87.5 1.0 84.5 6.0 162.5 1.0 59.0
AGTR1 1.0 2.0 1.0 2.0 3.0 89.5 2.0 20.5
BCL2 1.0 236.5 16.0 188.5 153.0 705.0 1.0 280.5
EGFR 1.0 4.5 1.0 18.0 1.0 69.5 1.0 59.0
MC4R 1.0 233.0 28.0 475.5 25.0 274.0 1.0 289.5
HDAC1 1.0 21.5 1.0 63.0 1.0 96.0 1.0 78.5
IGF1R 1.0 25.0 1.0 29.0 1.0 310.0 1.0 126.5
F11 1.0 774.0 1.0 901.0 139.0 1765.0 1.0 462.5
MDM2 1.0 240.5 2.0 326.0 3.0 235.0 1.0 143.5
PGES 1.0 6.0 1.0 41.0 3.0 285.5 8.0 96.0
BTK 1.0 62.5 1.0 59.0 1.0 652.0 1.0 200.0
REN 1.0 95.0 1.0 187.0 1.0 673.5 161.0 599.0
PM2 420.0 1308.5 534.0 1257.0 636.0 1225.0 440.0 1452.0
AChE 1.0 3.0 1.0 47.5 1.0 29.5 17.0 41.0
NK2R 96.0 712.0 305.0 908.5 83.0 372.5 287.0 921.5
CTSS 1.0 18.5 1.0 64.0 1.0 88.0 4.0 99.0
MB1 1.0 132.5 8.0 116.5 17.0 136.0 5.0 529.5
HERG 1.0 12.5 1.0 49.0 28.0 81.5 13.0 62.0
F10 1.0 28.5 16.0 74.5 10.0 420.5 1.0 58.5
CETP 53.0 625.0 1063.0 1772.0 93.0 443.5 6.0 484.0
HDAC6 1.0 39.5 16.0 84.5.0 5.0 89.5 11.0 166.0
ADAM17 1.0 102.5 1.0 141.0 4.0 229.0 2.0 222.0

aFor the explanation of all target acronyms, see Table 2.

Figure 9. Size of largest ring systems of 45 macrocyclic CSMs.
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Table 5. Examples of CSMs for Which Their Targets Were Successfully Identified by One at Least One Score While Others
Failed
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how well the query is represented by the data stored in the
knowledge base. In the context of this study, one of the
simplest measures of the molecular similarity is the difference
in the number of heavy atoms between the CSM query and the
nearest non-CSM ligand. Figure 11a and b shows that the
success rates of the method are largely unaffected by the
differences in the number of heavy atoms over the observed
range. The compatibility of chemical features seems to play a
much more important role than pure differences in molecular
size. This is confirmed when using the Tanimoto coefficient
derived from 2D Morgan2 fingerprints as a measure of
molecular similarity. As shown in Figure 11c, ROCS (in

combination with the TanimotoCombo score) ranked 43% of
all CSMs with a maximum Tanimoto coefficient between 0.2
and 0.3 among the top-10 positions and 73% of all CSMs with
a coefficient between 0.3 and 0.4. This robustness is
remarkable, as molecular structures with a Morgan2 finger-
print-based Tanimoto coefficient below 0.4 are clearly distinct
in most cases. Importantly, it is likely that compounds with
such a low degree of molecular similarity have different binding
modes, which is beyond the reach of any ligand-based
approach.
Among the 280 queries investigated in this work, we

identified 11 compounds (six of them are macrocyclic

Table 5. continued

aQueries marked with a “∗” are macrocyclic compounds. bF11, coagulation factor XI; BACE1, beta-secretase 1; REN, renin; AGTR1, angiotensin II
type 1a (AT-1a) receptor; PGES, prostaglandin E synthase; CETP, cholesteryl ester transfer protein; MOR, mu opioid receptor. cChEMBL IDs
reported are those that obtained the highest/lowest rank for the target of interest of the individual CSM queries, according to the scoring function
indicated in the respective table cells. Alignments shown are those that obtained the highest rank for a CSM query. In cases where multiple
alignments obtained identical scores (and ranks), only one alignment is shown.
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compounds) for which their target was ranked within the top-
10 positions out of 3642 targets, despite being structurally
extremely dissimilar from any ligands (non-CSMs) recorded in
the knowledge base (Tanimoto coefficients lower than 0.18).
As shown in Table 6, most of the alignments produced by
ROCS for the 11 compounds are not only plausible and
sensible from a chemistry point of view but also visually easily

interpretable thanks to the hard Gaussians used by ROCS for

chemical features (color), which cause a lock-in of the

alignment on hydrogen bond donors and acceptors.
We did not observe any cases of CSMs for which their

targets were not ranked early in the hit list and at least one

known ligand shared a high degree of 2D similarity with the

Figure 10. Ranks assigned to the targets of interest of the 280 CSM queries by the (a) TanimotoCombo vs ShapeTanimoto scores, (b)
TanimotoCombo vs FitTverskyCombo scores, (c) ShapeTanimoto vs RefTverskyCombo scores, and (d) ShapeTanimoto vs FitTverskyCombo
scores. The nine compounds for which one score produced good results while others failed are highlighted in blue.

Figure 11. Success rates (i.e., fraction of CSM queries for which the target of interest was ranked among the top-k positions) and how they are
influenced by the structural relationship between the query CSM and the nearest ligand (non-CSM) recorded in the knowledge base: (a) success
rates of the TanimotoCombo score as a function of the difference of molecular size (quantified as number of heavy atoms, separated into bins of
size 5), (b) success rates of the RefTverskyCombo score as a function of the difference of molecular size (separated into bins of size 5), and (c)
success rates of the TanimotoCombo score as a function of the 2D molecular similarity quantified as Tanimoto coefficient based on Morgan2
fingerprints (separated into bins of size 0.1. Note that in panel (c) success rates for queries with a Tanimoto coefficient greater than 0.7 are not
reported because of the limited number of examples. The trends observed in panel (c) are consistent with those observed when using atom type
fingerprints instead of Morgan2 fingerprints to quantify 2D molecular similarity and also when using the Tversky coefficient (α = 0.95) instead of
the Tanimoto coefficient (data not shown).
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Table 6. Examples of CSMs for Which Their Targets Were Successfully Identified Despite Being Dissimilar from Any
Reference Compound
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query (note that the number of CSMs in this category was
small).
Performance as a Function of Common Substruc-

tures. Target rankings are expected to improve with the size of
the maximum common substructure (MCS) shared between
the CSM query and the closest related non-CSM in the
knowledge base (as determined by ROCS). The results
presented in Figure 12 confirm this assumption: For the
TanimotoCombo score, the median ranking of the targets of
interest was 3.5 for CSMs sharing an MCS of at least 20 heavy
atoms with the closest ligand (non-CSM) recorded in the
knowledge base, whereas the median target rank was just 111.5
for CSMs with an MCS of 15 to 19 heavy atoms. The median
target ranks obtained by the RefTverskyCombo, FitTversky-
Combo, and ShapeTanimoto scores were substantially lower
(worse): 28, 80, and 43 for CSMs sharing an MCS of a least 20
heavy atoms, respectively, and 318, 299, and 227 for CSMs
with an MCS of 15 to 19 heavy atoms, respectively. We
repeated this analysis using the percentage of heavy atoms
rather than absolute numbers covered by the MCSs and
observed the same trends (data not shown).
Performance on Natural Products. By overlapping the

queries with a data set of 201 761 natural products compiled as
part of the work reported in ref 41, we determined that at least
six out of the 269 (unique) CSMs are natural products (which
is a surprisingly low portion of natural products). We
employed NP-Scout41 to identify additional CSMs that likely
are natural products or natural product-like. NP-Scout is a
random forest classifier discriminating between natural
products and synthetic molecules. The model is trained on
108 393 natural products and 157 162 synthetic molecules

represented by MACCS keys. The model yielded an AUC of
0.997 and Matthews correlation coefficient of 0.960 during
tests with external data. NP-Scout identified an additional 20
CSMs with a high likelihood (probability >0.70) of being
natural products.
The 26 natural products and natural product-like com-

pounds cover a total of 18 different targets; eight of the queries
are macrocyclic. Using the TanimotoCombo score, ROCS
ranked the targets of interest of the natural products among the
top-10 positions for only seven out of 31 queries (23%; the 31
queries result from the 26 unique natural products and natural
product-like compounds). This success rate is considerably
lower than the ones averaged over all 280 queries (37%), all
245 nonmacrocyclic queries (39%), and all macrocyclic queries
(27%), indicating that the prediction of the targets of complex
natural products is more challenging than of complex synthetic
molecules. A main reason for the low prediction success rates is
the fact that the similarity of complex natural products and
natural product-like compounds and the nearest non-CSMs of
the knowledge base is generally low: The median Tanimoto
coefficient based on Morgan2 fingerprints for these types of
CSMs and the non-CSMs of the knowledge based is only 0.13,
whereas it is 0.21 for the other CSMs and their closest non-
CSMs).

Runtimes. The ROCS screening process takes less than 6 h
per CSM query on a single core of an i5-4590 CPU at 3.30
GHz. Runtimes are therefore expected not to pose a barrier to
the usability of the method.

Table 6. continued

aQueries marked with a “∗” are macrocyclic compounds. b2D molecular similarity between the CSM query and the closest ligand recorded in the
knowledge base (measured as Tanimoto coefficient based on Morgan2 fingerprints). cHDAC1, histone deacetylase 1; AChE, acetylcholinesterase;
PGES, prostaglandin E synthase; HIV-1 protease, human immunodeficiency virus type 1 protease; F11, coagulation factor XI.
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■ CONCLUSIONS

In this work, we showed that the 3D alignment-dependent
shape-based methods ROCS, in combination with the best-
performing scoring function, the TanimotoCombo score, ranks
the targets of approximately one-third of 280 investigated CSM
queries among the top-5 ranks of hit lists of more than 3600
proteins. The success rate increases to 41% if the top-20 ranks
are considered. For 24 of the 28 proteins (86%), the target of
interest was ranked at the top position with at least one of the
10 queries. These results indicate that the method may well be
a valuable tool for prioritizing research efforts in early drug
discovery because researchers, with their expert knowledge and
background information on a compound of interest (e.g.,
observations from phenotypic assays), will likely be able to rule
out many of the proteins wrongly predicted as targets.
An important advantage of ROCS is its use of hard

Gaussians for describing chemical features (color), which
causes a lock-in effect during alignment. Alignments produced
by ROCS therefore typically look “tidy”, enabling chemists to
easily interpret the results and make their own judgements on
the reliability of individual predictions (thereby excluding
many false-positive predictions). Even if none of the
predictions are deemed plausible, e.g., because of the lack of
any good matches with compounds in the knowledge base, this

can be valuable information as it is a good indication for a
compound being novel and perhaps targeting a so-far
unexplored biomacromolecule (or having a distinct binding
mode). An important advantage of similarity-based approaches
over many other methods is that the final prediction relies on a
single data point (as opposed to, for example, machine learning
approaches), making it straightforward for researchers to verify
the reliability of that specific data point with the primary
literature data.
Also, for 3D alignment-dependent shape-based methods, the

success rates for the prediction of the targets of CSMs decline
with decreasing molecular similarity between the CSM query
and the ligands in the knowledge base. Macrocyclic
compounds and natural products prove to be particularly
challenging to the approach. Nevertheless, the robustness of
the approach is impressive, given the fact that structurally
highly dissimilar molecules, even though binding to the same
binding site, may likely exhibit distinct binding modes, which is
beyond the reach of any ligand-based approach.
Taking performance, usability, and interpretability into

account, we believe that 3D alignment-dependent shape-
based approaches such as the one investigated in this work are
predestined for use in target prediction for CSMs and
molecules for which data on structurally related compounds
are scarce. With the increasing amount of bioactivity data, the

Figure 12. Ranks obtained for the targets of interest as a function of the size of the MCS shared between the CSM queries and most similar ligand
(non-CSM) recorded for the respective target for the (a) TanimotoCombo, (b) RefTverskyCombo, (c) FitTverskyCombo, and (d)
ShapeTanimoto scores. The lines are merely a guide for the eye and indicate the median values of the target rankings in relation to the size of the
MCS.
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reach and value of these and related methods will continue to
improve.

■ DATA AVAILABILITY
The complete sets of CSMs and non-CSMs (including the
original SMILES notations from ChEMBL, ChEMBL com-
pound IDs, natural product-likeness scores, and labels for
macrocycles) are available on GitHub at https://github.com/
anya-chen/CSMs_target_prediction.
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Germany; orcid.org/0000-0001-5273-1815

Neann Mathai − Department of Chemistry and Computational
Biology Unit (CBU), University of Bergen, N-5020 Bergen,
Norway; orcid.org/0000-0002-5763-6304

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.0c00161

Funding
Y.C. is supported by the China Scholarship Council
(201606010345). N.M. and J.K. are supported by the Trond
Mohn Foundation (BFS2017TMT01).
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Christina de Bruyn Kops from the
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