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Abstract 

Aims 

Studies of the climatic responses of plant assemblages via vegetation-based environmental 

reconstructions by weighted averaging (WA) regression and calibration are a recent development in 

modern vegetation ecology. However, the performance of this technique for plot-based vegetation 

datasets has not been rigorously tested. We assess the estimation accuracy of the WA approach by 

comparing results, mainly the root mean square error of prediction (RMSEP) of WA regressions for 

six different vegetation datasets (total species, high-frequency species, and low-frequency species as 

both abundance and incidence) each from two sites. 

Methods 

Vegetation-inferred environment (plot elevation) calibrated over time is used to quantify the 

elevational shift in species assemblages. Accuracy of the calibrations is assessed by comparing the 

linear regression models developed for estimating elevational shifts. The datasets were also used for 

the backward predictions to check the robustness of the forward predictions. 

Important findings 

WA regression has a fairly high estimation accuracy, especially with species incidence datasets. 

However, estimation bias at the extremes of the environmental gradient is evident with all datasets. 

Out of eight sets (each set with a model for total species, low-frequency species and high-frequency 

species) of WA regression models, the lowest RMSEPs are produced in the four models based on the 

total species datasets and in three models based on the high-frequency species only. The inferred 

environment mirrored the estimation precision of the WA regressions, i.e. precise WA regression 

models produced more accurate calibrated environmental estimates, which, in turn, resulted in 
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regression models with a higher adjusted r2 for estimating the elevational shift in the species 

assemblages. 

Reliable environmental estimates for plot-based datasets can be achieved by WA regression and 

calibration, although the edge-effect may be evident if species turnover is high along an extensive 

environmental gradient. Species incidence (0/1) data may improve the estimation accuracy by 

minimising any potential census and field estimation errors that are more likely to occur in species 

abundance datasets. Species data processing cannot guarantee the most reliable WA regression 

models. Instead, generally optimal estimations can be achieved by using all the species with a 

consistent taxonomy in the training and reconstruction datasets.  

Keywords: Calibration, environmental reconstruction, RMSEP, temporal changes, weighted averaging 

regression  
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Introduction 

The study of the climatic responses of plant assemblages is an important topic in modern vegetation 

ecology, palaeoecology, biogeography, and conservation science. Various approaches have been 

applied to study how mountain vegetation responds to recent climate warming. The most common 

approaches can be grouped into four broad types: changes in species richness or composition on 

mountain summits (e.g., Odland et al. 2010; Pauli et al. 2012); changes in the highest elevational 

point of observation for a species (e.g., Dolezal et al. 2016; Vittoz et al. 2008); changes in the 

elevational range or optimum of a species along an elevational gradient (e.g., Felde et al. 2012; 

Lenoir et al. 2008); and shifts in the entire plant assemblage along the elevational gradient (e.g., 

Bertrand et al. 2011; Bhatta et al. 2018a; Bhatta and Vetaas 2016; Vetaas 1993). Each of these 

approaches has its own strengths and limitations in assessing the climatic response of individual 

species or assemblages. Nonetheless, most have been used in modern vegetation ecology in 

conjunction with other analytical tools. Their strengths and limitations, and possible ways to resolve 

or minimise these limitations have been well documented (e.g., Chytrý et al. 2014; Dornelas et al. 

2013; Gotelli et al. 2010; Jackson et al. 2012; Kapfer et al. 2016; Kopecký and Macek 2015; van der 

Maarel 2007). 

Studies of changes in plant assemblages and their environment by vegetation-based environmental 

reconstructions have recently been developed in modern vegetation ecology (e.g., Bertrand et al. 

2011; Bhatta et al. 2018a; Brady et al. 2010). Such vegetation-based environmental reconstructions, 

i.e. environmental estimations based on vegetation composition, mostly make use of the technique 

of weighted averaging (WA) regression and calibration. The basic assumption of the technique is that 

taxa in a training set are systematically related (with a unimodal relationship) to the physical 

environment in which they live (ter Braak and Prentice 1988), and therefore the environment of a 

species assemblage in a region (reconstruction set) can be predicted by using the species-

environment relationship of the training set. The technique has been used extensively in 
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palaeoenvironmental reconstructions using species assemblage data from modern sediments and 

their major environmental factors as the training set, and fossil data of assemblages preserved in 

sediment cores as the reconstruction set (e.g., Birks 1994; Birks et al. 2010 and references therein; 

Birks et al. 1990; Cao et al. 2017; ter Braak and van Dam 1989; Tian et al. 2014). In studies where WA 

regression and calibration are used in modern vegetation ecology, historical vegetation assemblages 

from known elevations or temperatures are usually used as the training set and the modern 

assemblages whose apparent elevational or temperature change is being inferred are the 

reconstruction set. This approach is here called ‘forward predictions’. The role of the modern and 

historical datasets can be reversed to give ‘backward predictions’ where the training set comprises 

the modern data, as in paleoecology. 

In WA regression and calibration, the species assemblage of the training set is first fitted to the 

environmental gradient of interest by WA regression, and then the environmental parameter for the 

reconstruction set is predicted from the regression model by WA calibration (Birks et al. 1990). In 

modern vegetation studies, the plot-level temperature or elevation can be inferred for the present 

vegetation, which can then be used to assess the climatic responses of the species assemblages in 

relation to the historical data in the training set (e.g., Bertrand et al. 2011; Bhatta et al. 2018a; Lenoir 

et al. 2013). Difference in the measured and the predicted elevation for the present vegetation gives 

an estimate of elevational shifts in the species assemblages in response to temperature change.  This 

approach uses the overall species composition of the modern and historical vegetation at a locality. It 

performs well irrespective of the multicollinearity among abundances of the taxa, of the number of 

zero values in the dataset which are ignored, of the proportion of the environmental gradient 

sampled, and of minor spatial inaccuracies in vegetation datasets (ter Braak and Juggins 1993). 

Moreover, it assumes a realistic non-linear taxon-environment response, works well with noisy and 

taxon-rich data, and is also relatively insensitive to outliers. Therefore, it is a theoretically sound, 

computationally straightforward, and robust analytical technique for environmental reconstructions 
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(Birks et al. 2010; ter Braak and Looman 1986). In modern vegetation ecology, the technique is 

particularly useful when the plot relocations and sampling intensity are not precise enough during 

vegetation re-surveys and hence are likely to produce biased estimations of climate-driven 

compositional changes with other analytical procedures. Moreover, the technique is useful also for 

testing the robustness of the climatic responses of vegetation quantified by other techniques such as 

ordinations and linear regressions (e.g., Bhatta et al. 2018a)  

Performance of WA has been tested in palaeoecology with different sediment core-based training 

sets by comparing the results (mainly the estimated prediction errors, RMSEP) for the datasets (e.g., 

Birks 1994; Birks et al. 1990; Salonen et al. 2012; Telford and Birks 2009; Telford and Birks 2011b; 

Tian et al. 2014). However, despite being used in modern vegetation ecology for the same purpose, 

the performance of the technique for different types of plot-based vegetation datasets has not been 

explored rigorously. Although plot-based vegetation datasets mostly fulfil the basic assumptions of 

the technique (as summarised by Birks et al. 2010), plot-based data differ in several ways (e.g., in 

spatial and temporal scale of study, methods of data collection, nature of collected data) from the 

sediment core-based data used in palaeoecological studies. These differences in dataset types may 

lead to differences in the nature and degree of species-environment correspondence that ultimately 

might influence the estimation accuracy of WA regression and calibration. Therefore, it is important 

to assess whether the technique produces environmental estimates for plot-based vegetation data 

as reliably as in palaeoenvironmental reconstructions.  

Both species incidence and cover-abundance (hereafter abundance) datasets have been commonly 

used in vegetation ecology for testing ecological hypotheses (Jongman et al. 1995; Magurran 2004). 

However, incidence data are thought to be of limited scope in WA regression as the weights given to 

all taxa are either ‘0’ or ‘1’, whereas species abundance data do not have this limitation. Census or 

estimation bias, though, is likely to be more common in abundance data, especially if the data have 

been generated by different observers at different times (see Burg et al. 2015; Kapfer et al. 2016). 

D
ow

nloaded from
 https://academ

ic.oup.com
/jpe/advance-article-abstract/doi/10.1093/jpe/rty039/5106973 by U

niversitetsbiblioteket i Bergen user on 26 Septem
ber 2018



 

7 

 

Therefore, it is important to test whether the estimation accuracy of the technique is influenced by 

taxon incidences or abundances in the datasets. 

Persistence of noise is a common characteristic of community data matrices (Legendre 1993), which 

comes from a variety of sources, such as inadequate representation of response variables and their 

explanatory factors, census and measurement biases, taxonomic inaccuracies, and so on. In addition, 

sampling of exceptionally rare or particularly abundant taxa or particularly unusual sites may also 

add noise to the data. This in turn results in an inevitably high unexplained variation in the data (ter 

Braak and Looman 1986; ter Braak and Prentice 1988). Therefore, processing of plot-based 

vegetation data prior to statistical analyses is a common practice in quantitative vegetation ecology, 

where species with very few occurrences and the sites with very few species are usually regarded as 

potential outliers. These species or sites are thought to convey little or no useful information or have 

information that differs from the main trend in the data, and therefore, may contribute to potentially 

spurious analytical results (Jongman et al. 1995; ter Braak and Prentice 1988). However, it is 

uncertain whether or not these species are useful or how they may influence environmental 

predictions for whole plant assemblages using WA regression and calibration. It is important to 

answer these questions before one makes environmental reconstructions using such datasets 

because the original dataset together with potential outliers (= adding potential noise to the 

vegetation dataset) may influence the accuracy of the environmental estimations. Conversely, 

removal of infrequent species from the dataset may also result in a loss of ecological information 

represented by such species, leading to a compromise in the estimation accuracy. 

In this study, we test the performance of WA regression and calibration for plot-based vegetation 

datasets with different species abundances and frequencies. Our research question is: 
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How does the estimation accuracy of WA regression and calibration vary between species abundance 

and species incidence datasets, and how do species of different frequencies influence the estimation 

accuracy? 

To answer this, we compare WA regression and calibration estimates of species abundance and 

species incidence in three categories: total species, low-frequency (species with more than 50% 

frequency are removed), and high-frequency species (species with less than 5% frequency are 

removed) using vegetation data from two sites in Nepal. Estimation accuracy is assessed mainly by 

comparing the goodness-of-fit of the models for these different datasets.  
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Material and methods 

Datasets 

Species abundance and incidence data from two sites in central Nepal (Site 1, Phulchoki Mountain 

with temperate forest vegetation; Site 2, Langtang region with subalpine shrub to alpine meadow 

vegetation) are used in the analyses (Fig.1). Elevation of the sample plots (surrogate for temperature) 

forms the environmental data. For Site 1, the data are from 1993 and 2013, and for Site 2, they are 

from 1990 and 2014. The plots in the modern surveys were not the exact relocations of the historical 

plots, but they were in the same locality as the historical plots, and the historical and modern 

datasets for each site consist of equal numbers of sample plots over a similar elevational range. An 

overview of the data used in the analyses is given in Table 1. 

For Site 1, we treated the dataset of 1993 as the training set and the species dataset of 2013 as the 

modern ‘reconstruction’ set during ‘forward prediction’, i.e. for the estimation of the environment 

for the 2013 species composition using the species and environmental variables of 1993. We also 

performed ‘backward prediction’, where we estimated the environment for the 1993 datasets using 

the species and environment of 2013 as the training set. A similar approach was applied to the 

datasets from Site 2. Backward predictions with the different dataset categories were performed to 

investigate the robustness of the environmental predictions made by forward predictions. 

Species transformation 

We transformed the relative abundance scores (0–4) of the species in Site 1 and Braun-Blanquet 

cover-abundance scores of the species in Site 2 to percentage cover values (Table 1) using the 

‘bb2num’ function of ‘simba 0.3-5’ package (Jurasinski and Retzer 2012) in R version 3.4.1 (R Core 

Team 2017). Transformation of the factorial species scores to numeric values makes the dataset 

more suitable for WA regression. 
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Dataset categories 

We divided the abundance datasets from each site into three categories as well as converting each 

into an incidence dataset. The three categories are 1) all data, 2) low-frequency where all species 

with more than 50% frequency are removed; and 3) high-frequency where species with less than 5% 

frequency are removed. Thus, we have three pairs (historical and modern) of datasets of species 

abundances as well as of species incidences for each of the two sites (= 24 datasets in total). The 24 

datasets were further grouped into eight sets of data, each with three categories of data – all 

species, high-frequency and low-frequency species. 

Environmental variable 

We aim to estimate elevational shift in species assemblages in response to temporally increased 

temperature. Therefore, elevation of sample plots (= temperature for species assemblages) 

represent our main environmental variable. Elevation gradient as such may have minimal direct 

effect on ecology of species assemblages; however, it is a complex gradient of many important 

environmental variables such as temperature, rainfall, potential evapotranspiration (hence the 

number of growing days) and net primary productivity that exhibit very regular trends along 

elevation gradient of Nepal Himalaya (Bhattarai and Vetaas 2003; Bhattarai et al. 2004). Climate 

records (from 1970-2000) of the weather stations along elevation gradient from 70 m to 4500 m a.s.l 

have been collected and published by the Department of Hydrology and Meteorology (DHM), 

Government of Nepal. Based on the regression analysis of these records, the most influential climatic 

variable, i.e. annual mean temperature reveals linear declining trend with increasing elevation (r2 = 

0.98; P = < 0.001), with a lapse rate of 0.53 °C per 100m elevation (Acharya et al. 2011; Bhattarai and 

Vetaas 2003). Temperature is a major gradient that directly affects potential evapotranspiration, net 

primary productivity and number of growing days (length of growing season) for plant assemblages. 

Therefore, we treated elevation of plots as a proxy of atmospheric temperature, and regarded the 
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temporally changed elevation of species assemblages as a response of species under climate 

warming. 

Data analysis 

Detrended Correspondence Analysis (DCA) 

We performed DCA of the incidence data matrices of all species, where elevation and sampling data 

were fitted as supplementary variables. Temporal changes in species composition revealed by DCA 

were used to test the robustness of the temporal patterns inferred by WA regression and calibration. 

We also used DCA plots to detect any unusual plots before using the datasets in WA regression and 

calibration. DCA was performed using CANOCO version 5.04 (ter Braak and Šmilauer 2012). 

Weighted Averaging (WA) regression and calibration 

WA regression and calibration is a two-step analysis (Birks et al. 1990; ter Braak and van Dam 1989). 

In the first step, a WA transfer function is derived using known environmental values associated with 

the species data in the training set using WA regression. In the second step, environmental values for 

a species assemblage are inferred by using the species-environment relationships of the training set, 

in WA calibration. The accuracy of such estimations depends on the predictive power of the datasets, 

i.e. goodness-of-fit of the WA regressions. We used ‘rioja’ package version 0.9-15 (Juggins 2016) in R 

version 3.4.1 for all WA regression and calibration analyses.  

 

WA regression 

To evaluate the goodness-of-fit of the WA regressions, cross-validated estimates in WA regression 

are more reliable because cross-validation provides the basis for producing more robust estimates of 

the prediction error associated with the environmental reconstruction (Birks et al. 2010). Therefore, 

we compared the cross-validated estimates (by bootstrapping, bootstrap cycles = 1000) of the WA 
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regression models for the different training sets. Root mean square error of prediction (RMSEP) in 

WA regression represents the goodness-of-fit of the model and is commonly used as a measure of 

the predictive abilities of training sets (Birks et al. 1990). Averages of the environmental parameter 

being used are taken twice in WA, once in WA regression and once in WA calibration, which results in 

a shrinkage of the range of inferred environmental values (elevation or temperature). To correct for 

this, deshrinking of the inferred values is done by using different types of regression models that 

minimise the estimation error, such as edge effects. Environmental estimates were made using 

‘inverse’, ‘classical’, and ‘monotonic curvilinear’ deshrinking of the WA regressions, with taxa 

downweighted by their ‘tolerances’ (Birks et al. 1990; ter Braak and Juggins 1993).  Among these, we 

used the estimate with the lowest RMSEP for each dataset for making comparisons between the 

different datasets. We also used the WA regression estimate (with the lowest RMSEP) of each 

dataset for the environmental calibration of the reconstruction sets.  

Environmental calibration 

We used the species-environment relationships of the training sets in WA regression to predict the 

environment (elevation of plots) of the modern ‘reconstruction’ datasets. In most cases, cross-

validated WA with a ‘monotonic curvilinear regression deshrinking’ procedure (WA.mon) (ter Braak 

and Juggins 1993) reduced the edge effect and produced the lowest RMSEP among the regression 

models based on different deshrinking procedures (supplementary Tables S1, S2). Therefore, we 

used WA.mon to predict the environment for the reconstruction sets, and used that predicted 

environment to estimate the temporal change in species composition. Differences in the observed 

and predicted environment of the modern datasets give an estimate of the temporal change in 

elevation of the plots, i.e. species assemblages. We also compared the pattern of temporal change 

revealed by the different dataset categories.  
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If the environmental calibrations are robust, the trends of elevational shift in species assemblages 

estimated from forward and backward predictions should complement each other. If forward 

prediction reveals an upslope shift in the current species assemblages, the backward prediction is 

expected to reveal a downslope shift for the historical species assemblages or vice versa.  

We developed three linear regression models for each calibrated environmental dataset to assess 

the temporal pattern of elevational shift in the species assemblages: 

M0: change ~ obs.elev (Null model) 

M1: change ~ obs.elev + time (to test whether communities have shifted elevationally over the 

studied time period) 

M2: change ~ obs.elev*time (to test whether the communities have shifted more upwards at higher 

elevations) 

where ‘change’ = change in elevation of the sample plots, i.e. difference in the observed and 

predicted elevation of the sample plots, obs.elev = observed elevation of the sample plots, and time 

= sampling time (year). 

Hence, in the case of forward prediction, a positive trend in the elevational change of the plots of the 

modern dataset will indicate an upslope shift of the species assemblages, whereas a positive trend in 

the elevational change in backward prediction will indicate a downslope shift of the species 

assemblages over the time period. If there is a temporal trend in elevational shift in the species 

assemblages, we would expect the lowest adjusted coefficient of determination (adj. r2) for the null 

model (model without the time factor or temporal trend included), and r2 would increase with the 

addition of the time factor in the regression models.  
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Results 

Detrended correspondence analysis (DCA) 

DCA reveals a clear change in species composition along DCA axis 1 at both sites, irrespective of 

variation along the spatial/elevation gradient (Fig. 2). This axis corresponds to the temporal gradient. 

At both sites, the temporal gradient explains most of the variation in species composition (eigenvalue 

= 0.45 for site 1, 0.55 for site 2; explained variation (%) along axis 1 = 8.20 for site 1 and 4.24 for site 

2; gradient length of compositional turnover = 2.60 standard deviations (sd) for site 1 and 5.81 sd for 

site 2), whereas the spatial gradient (elevation) at both sites is represented by the second DCA axis 

(eigenvalue = 0.21 for site 1, 0.49 for site 2; explained variation (%) along axis 2 = 3.83 for site 1 and 

3.82 for site 2; gradient length = 2.20 sd for site 1, 5.45 sd for site 2). 

Weighted averaging (WA) regression and calibration 

a) WA regression 

Goodness-of-fit of a WA regression model is assessed by the degree of concordance between the 

estimated and observed environment values for the training set. For all the training sets, there is high 

concordance (r2 > 0.90 for Site 1; r2 > 0.84 for Site 2) between the estimated and observed 

environment in the cross-validated models (Fig. 3, 4; supplementary Table S1, S2). For most datasets 

(all but two), WA regression models based on the monotonic curvilinear deshrinking procedure 

produced estimates with the lowest RMSEP for the environmental variable. However, model 

performance varies among the different categories of datasets (total species, low-frequency species, 

high-frequency species datasets for both abundance and incidence data; Fig. 3, 4; supplementary 

Table S1, S2). 

 

1. Abundance versus incidence data 
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Species abundance datasets usually produce a higher RMSEP for the normal WA estimates, but a 

lower RMSEP for tolerance-downweighted WA estimates compared to the species incidence datasets 

(Fig. 3; supplementary Table S1, S2). The lowest RMSEP associated with the estimates based on the 

abundance datasets is always higher than that for the incidence datasets (supplementary Table S1, 

S2). 

2. WA estimation for the datasets – total species vs. low-frequency species vs. high-frequency species 

Among the datasets of Site 1, WA of the high-frequency species produces the lowest RMSEP in 

forward prediction (Fig. 3a; supplementary Table S1a). Furthermore, the lowest RMSEP for the 

incidence dataset of high-frequency species is significantly lower than for the abundance dataset. 

The trend is similar for the incidence datasets in backward WA prediction, but with the abundance 

based datasets, WA of the dataset with total species produces the lowest RMSEP (Fig. 3b, 

supplementary Table S1b). 

Based on the RMSEP of the WA regression estimates, datasets with the lowest to highest RMSEP (WA 

estimates with the lowest RMSEP being the most accurate) can be ranked as:  

Abundance and incidence datasets in forward WA prediction: high-frequency species < total species < 

low-frequency species 

Incidence datasets in backward WA prediction: high-frequency species < total species < low-

frequency species 

Abundance datasets in backward WA prediction: total species < low-frequency species < high-

frequency species 

Among the abundance datasets of Site 2, WA estimation for the dataset with all species produces the 

lowest RMSEP in forward prediction, whereas among the incidence datasets, estimation for the 

dataset of low-frequency species produces the lowest RMSEP (Fig. 3c; supplementary Table S2a). 

However, the difference in RMSEP for the datasets with total species and low-frequency species is 
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very small. The lowest RMSEP for the incidence dataset is significantly lower than for the abundance 

dataset. Trends of WA estimates in the backward predictions are similar to those for the abundance 

datasets in forward predictions (Fig. 3d; supplementary Table S2b). Based on the RMSEP of the WA 

regression estimates, the datasets with the lowest to highest RMSEP can be ranked as:  

Abundance datasets in forward prediction: total species < low-frequency species < high-frequency 

species 

Incidence datasets in forward prediction: low-frequency species < total species < high-frequency 

species 

Abundance as well as incidence datasets in backward prediction: total species < low-frequency 

species < high-frequency species 

b) WA environmental calibration or reconstruction 

1. Abundance versus incidence data 

Accuracy of the environmental calibration for the different datasets was assessed by developing 

linear regression models for the elevational shifts based on the estimated or predicted environment 

factor. 

Among the three contrasting regression models of environmental change for each dataset, the one 

with an interaction between observed elevation and time is the most significant (Table 2, 

Supplementary Table S3). However, differences are evident among the datasets regarding the 

diagnostics of the most significant regression models. The models for the incidence datasets mostly 

have higher adjusted r2 than those for the abundance datasets (Table 2). 

 

2. WA estimation for datasets – total species versus low-frequency species versus high-frequency 

species 
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At Site 1, significant elevational shifts of species assemblages are revealed by forward prediction for 

all abundance-based (Fig 5a-5c) as well as incidence-based (Fig. 5d-5f) datasets (Table 2a). For all the 

datasets, the elevational shift in plant communities is significantly explained by an interaction of the 

observed elevation (obs.elev) and sampling year (time) (Supplementary Table S3). Among the three 

frequency categories, the regression model for the dataset with high-frequency species is the most 

significant (r2 = 0.82, 0.85 for abundance and incidence datasets, respectively; Fig. 5c, 5f; Table 2a3). 

The regression models from backward prediction are not as good as those from forward prediction 

(supplementary Fig. S1, Table 2b). The model for the total species dataset is most significant among 

those of the three frequency categories (r2 = 0.71, 0.76 for abundance and incidence datasets, 

respectively; Fig. 5a, 5d; Table 2b1). 

At Site 2, significant elevational shifts of species assemblages are revealed by calibrations for all 

abundance-based (Fig 6a-6c) as well as incidence-based (Fig. 6d-6f) datasets. Among the abundance 

datasets, the regression model for the dataset with high-frequency species is most significant (r2 = 

0.79; Table 2c3; Fig. 6c). In contrast, among the models for the incidence datasets, the model for the 

dataset of total species is most significant (r2 = 0.81; Table 2c1; Fig. 6d). Trends of elevational shifts in 

assemblages estimated by forward prediction are similar to those estimated in backward prediction 

(Table 2d, Supplementary Fig. S2). However, the regression models for backward prediction have 

notably lower adjusted r2 than those for forward prediction.  
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Discussion 

Overall performance 

Weighted Averaging (WA) regression and calibration reconstruct the environment of plot-based 

vegetation datasets with a fairly high accuracy. The inferred temporal trends in vegetation and 

environment revealed by the reconstructions are supported by ordination analyses that reveal 

significant changes in species composition at both sites along the temporal gradient. However, 

compositional turnover varies significantly between the two sites. This is largely due to the 

elevational effect on the compositional turnover, difference in the length of elevation gradient in 

both sites, and variation in census as well as estimation accuracy and sampling technique of the 

present and the past datasets in the sites.  

Species turnover increases with increasing elevation, especially due to increased rate of plot-to-plot 

species loss with elevation that causes compositional dissimilarity among plots (Bhatta et al. 2018b). 

Due to this, the high-elevation site (Site 2) revealed higher compositional turnover along elevation 

gradient than that in the low-elevation site. Moreover, sample plots of site 1 are distributed along 

elevation gradient of c 500 m (approximately 2200 m a.s.l. to 2700 m a.s.l.) and cover only broad-

leaved forest in temperate vegetation zone; whereas the site 2 spans over elevation gradient of c 

1200 m (approximately 3800 m a.s.l. to 5000 m a.s.l.) and cover three vegetation types namely 

subalpine forest, alpine scrub and alpine meadows. This eventually resulted in higher compositional 

turnover in the site 2 datasets. Species’ incidence-based datasets of site 1 were sampled using 

frequency of subplos (0-4) procedure during both surveys (Vetaas 1997, cf. below)). However, 

datasets of site 2 were sampled on species’ cover-abundance scale using different (subjective 

sampling for the past dataset and systematic sampling for the present dataset) sampling techniques 

and by different observers at different times. These factors lead to higher census and taxonomic 
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biases in the datasets resulting higher compositional dissimilarity between the past and present 

datasets of site 2 as compared to those of site 1. 

Of the 12 pairs of datasets analysed, almost all suffer from ‘edge-effects’ that lead to an 

overestimation of optima at the low end of the gradient and an underestimation at the high end (ter 

Braak and Juggins 1993). This effect is most likely caused by the training sets that exhibited high 

compositional turnover along a dominant, long spatial gradient, which is a typical situation for 

marked edge effects (Birks et al. 2010; ter Braak and Juggins 1993). As recommended by previous 

studies (e.g., ter Braak and Juggins 1993), monotonic curvilinear deshrinking of WA regression 

models reduces, to some extent, the edge-effect and produces more accurate estimations with lower 

RMSEP than inverse or classical linear deshrinking.  

Comparison of the accuracy of WA regression estimates across the different datasets of species 

abundance and frequency revealed several important trends, some of which are more pronounced 

and systematic than the other. These differences are also mirrored in the environmental calibrations 

and consequently, in the estimate of the temporal changes in species assemblages. Therefore, we 

focus our discussion on the WA regression estimates. 

WA regression 

Species abundance vs. incidence datasets 

WA regression performed notably better with the species incidence datasets than with the species 

abundance datasets. The abundance scores of each species are standardised to 1 in the incidence 

datasets, otherwise the abundance and incidence datasets are identical regarding taxonomic 

diversity and species composition. Therefore, the difference in estimation accuracy is likely 

associated with field and recording methodological inaccuracies. In vegetation ecology, studies of 

temporal changes are mostly based on the resampling of previously sampled plots or vegetation or 

areas, mostly by different observer(s) (Chytrý et al. 2014; Kapfer et al. 2016). This may lead to 
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methodological differences between the surveys such as sampling design, sampling effort, census or 

estimation accuracy, individual observer skills and experience, and distribution of sample plots along 

an environmental gradient (e.g., Archaux et al. 2006; Kapfer et al. 2016; Tingley and Beissinger 2009). 

Consequently, noise may become prominent in the datasets. Census and estimation biases are 

pronounced in the cover-abundance datasets generated by different observers because it is unlikely 

that a relative cover-abundance score given to a species by two different observers at the same time 

is identical. Differences in the observer’s experience and expertise may also influence the taxonomic 

accuracy of the species recorded (Bhatta and Vetaas 2016). Species abundance itself also fluctuates 

yearly due to seasonal changes in the weather conditions (Diekmann 2003). Such errors can 

contribute to high prediction errors in WA regression. Therefore, use of abundance data is 

sometimes avoided in the ecological studies that make WA estimations or compare the historical and 

current species composition (Diekmann 1995; Diekmann 2003). 

In a normal WA regression analysis, an estimate of a taxon’s optimum for a particular environmental 

factor is an average of all the values of that factor for the sites in which the taxon occurs, weighted 

by the taxon’s relative abundance (ter Braak and van Dam 1989). Therefore, the above-mentioned 

bias is incorporated into the WA estimates via weights (relative abundance) of the taxa. However, 

this bias is minimised in the incidence dataset because here the abundances of all taxa recorded from 

a site are standardised to 1, and therefore only an average of the environmental parameter for the 

sites in which the species occurs is used to estimate the optimum of the species for that parameter. 

Incidence datasets have been preferred in many studies for WA calculations because the quantitative 

response of a species does not only depend on the environmental conditions but also on its specific 

growth form (Diekmann 1995 and references therein; Ellenberg 1991). Some species by nature, grow 

individually whereas the others from extensive populations irrespective of their response to 

environmental conditions, and hence the more frequent species are weighted comparatively more in 

WA calculations based on abundance datasets. 
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WA regressions for Site 1 datasets produced notably lower estimation errors than those for Site 2 

because the relative abundance score (0 to 4) in the Site 1 datasets is only based on the absence or 

presence of a species within four subplots of a main plot (Vetaas 1997). The datasets are thus 

essentially incidence matrices and any error in cover-abundance estimation is absent. In contrast, the 

datasets from Site 2 were recorded using Braun-Blanquet’s cover-abundance scale by different 

observers at different times. Therefore, census and taxonomic biases may be prevalent in the Site 2 

datasets.  

The 1990 survey of Site 2 was based on selective sampling, whereas that of 2014 used a non-

preferential (systematic) sampling procedure. In contrast, the datasets of Site 1 were sampled by 

applying exactly the same (stratified-random) sampling technique in both surveys. Such differences 

in the sampling design can produce several important differences in the datasets regarding the 

representation of frequent and infrequent species in the datasets, sampled species heterogeneity, 

and species-environment concordance (Bhatta et al. 2012; Diekmann et al. 2007; Grabherr et al. 

2003; Michalcová et al. 2011). This may also ultimately lead to differences in the estimation 

accuracies of WA regression based on the datasets from both sites. An uneven distribution of the 

sample plots along an elevational gradient may also influence the performance of WA regression 

models (Telford and Birks 2011a). Accordingly, the higher number of sample plots in high elevation 

areas (4700–5000 m a.s.l.) compared to those between 3850 m and 4600 m a.s.l. at site 2 may have 

contributed to the higher RMSEP for the WA regression models compared to those for the 

elevationally uniformly distributed data of Site 1. 

Datasets with total species vs. low-frequency species vs. high-frequency species 

We found some inconsistency in the estimation accuracy of the WA regressions with the datasets 

processed in different ways. At Site 1, removal of infrequent species from the datasets mostly 

improved the accuracy of the regression models. In contrast, at Site 2, WA regression with the 
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unprocessed datasets (all species) performed better than with the reduced datasets. However, there 

are exceptions in both cases. Out of eight WA estimates (four for each Site: two forward and two 

backward, one each for abundance and incidence data), only four of the best estimates (lowest 

RMSEP) were for the training sets with all species. Nonetheless, WA regression with all species never 

had the worst performance (highest RMSEP) unlike the datasets with low-frequency or high-

frequency species. Therefore, the findings of classical studies in palaeoenvironmental reconstructions 

that inclusion of the maximum number of taxa in the training sets minimises the predictions errors in 

WA regressions (Birks 1994; Birks et al. 1990) is not fully supported by our analyses. 

Removal of the 31 most frequent species from the full training set (175 species) of Site 1 during 

forward prediction reduced the estimation accuracy (increased RMSEP) compared to that for the 

total species dataset; whereas estimation accuracy increased (decreased RMSEP) when we removed 

the least frequent 49 species from the full training set. These findings contrast with those of previous 

studies that show that large prediction errors occur when only the commonest and numerically most 

abundant taxa are included in the WA regression (Birks 1994). In the full training sets, the most 

frequent taxa were identified with high taxonomic precision, whereas taxonomic inaccuracy (and 

hence noise) is more likely associated with the least frequent taxa. Removal of the most frequent 

species from the full training set is therefore likely to cause loss of valuable ecological information, 

whereas removal of the least frequent species intuitively minimises noise within the dataset.  

At Site 2, WA regression with all species produced the most accurate environmental estimates, 

whereas removal of the infrequent species from the datasets reduced the estimation accuracy. There 

were 113 species in the 1990 dataset and 121 species in the 2014 dataset with less than 5% 

frequency. Despite a high taxonomic mismatch between both datasets, mostly due to these species, 

removal of almost half of the species from the dataset certainly contributed to a loss of 

environmental information associated with some of the correctly identified species. Moreover, low-
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frequency species may sometimes have a narrow environmental tolerance and may therefore be 

optimal indicator species. 

High accuracy in WA regression and environmental calibration requires high taxonomic accuracy, 

together with high spatial, temporal, and chronological precision (Birks 1993; Birks 1994; Birks et al. 

2010; Munro et al. 1990; ter Braak and Juggins 1993). The development of modern and training sets 

with a high taxonomic precision ideally requires that the data be sampled, the taxa identified, and all 

the analyses be done by the same analyst, and that the analyst be skilled in taxonomy (Birks 1994; 

Munro et al. 1990). Careful standardisation of taxonomy, censuses, and other methods are 

alternatives when the data have been collected by different observers or analysed by different 

analysts (Birks et al. 2010). However, differences probably linked to taxonomic and sampling biases 

persisted in our datasets despite standardisation prior to analyses. Thus, our analyses indicate that 

estimation accuracy of the WA regression is mainly influenced by taxonomic mismatches, census 

biases, and the number of taxa included or eliminated during data processing. 

Calibration 

As expected, environmental calibrations with different datasets revealed elevational shifts of sample 

plots (and thus of assemblages) over the studied time period. The ability of the regression models 

used to estimate the elevational shifts (indicated by adjusted r2 of the models) mirrors the estimation 

accuracy of the WA regressions. This means that precise WA regression estimates produce more 

accurate calibrated environmental parameters, which, in turn, result in a robust regression model 

with a high adjusted r2 for estimating elevational shift in plant assemblages. 

In our analyses, backward predictions only broadly follow the trends of forward predictions, 

especially for the Site 2 datasets. One possible reason for this may be that not all the species were 

recorded in both the surveys (training and modern datasets) due to differences in the sampling effort 

and potential taxonomic inaccuracies. Another potential reason is that each species responds 
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individually to a particular environmental factor and therefore there will be changes in assemblages 

in response to the changed environmental conditions. Because WA regression is sensitive to the 

distribution of the environmental variable in the training set (ter Braak and Looman 1986), the 

backward prediction using the changed environment and assemblage as a training set may not 

properly complement the pattern revealed in forward predictions. 

In conclusion, WA regression and environmental calibration with plot-based vegetation data perform 

with a fairly high accuracy, although edge-effects may be evident if species turnover is high along an 

extensive and monodominant environmental gradient. Species abundance datasets generated by 

different observers at different times may be prone to potential taxonomic and census errors that 

may result in high estimation errors in the models. However, the use of a species incidence matrix 

may improve the estimation accuracy. Species data processing cannot guarantee the most accurate 

WA regression estimates: instead it can lead to extreme estimates. However, most optimal estimates 

and calibrations can be achieved by using the full set of the species in the datasets.  
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Fig. 3. Root Mean Squared Error of Prediction (RMSEP) of the weighted averaging (WA) regression 
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by monotonic curvilinear regression deshrinking procedures were selected.  

Fig. 4. Adjusted coefficient of determination (r2) of the weighted averaging (WA) regression models 

for different training sets from (a, b) Site 1 and (c, d) Site 2, where the estimates produced by 

monotonic curvilinear regression deshrinking procedures were selected.  

Fig 5a-5f. Change in the elevational distribution of the species assemblages from 1993 to 2013 at Site 

1, where the difference in the observed and the predicted elevation of the sample plots of 2013 is 

the temporal change in elevation of the species assemblages (forward prediction 

Fig 6a-6f. Change in the elevational distribution of the species assemblages from 1990 to 2014 at Site 

2, where the difference in the observed and the predicted elevation of the sample plots of 2014 is 

the temporal change in elevation of the assemblages (forward prediction). 
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Table 1. Overview of the datasets compiled for the analyses. 

Table 2. Elevational shift in plant communities over the time period (time) revealed by analyses of 

different datasets, where elev.change (elevational shift in metres) = predicted – observed elevation 

(obs.elev), SE = Residual standard error. The linear regression model for each dataset is fitted with 
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Table 1. Overview of the datasets compiled for the analyses. 

Site Category 1993/1990 data 2013/2014 data Transformed 

cover scale 

Incidence 

scale 
Plots Species Plots Species 

1 Total species 63 175 64 182 0-87.5 0/1 

1 Without frequent 

species 

63 144 64 156 0-87.5 0/1 

1 Without infrequent 

species 

63 126 64 113 0-87.5 0/1 

2 Total species 91 215 91 264 0-87.5 0/1 

2 Without frequent 

species 

91 211 91 252 0-87.5 0/1 

2 Without infrequent 

species 

91 102 91 143 0-87.5 0/1 
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Table 2. Elevational shift in plant communities over the time period (time) revealed by analyses of 

different datasets, where elev.change (elevational shift in metres) = predicted – observed elevation 

(obs.elev), SE = Residual standard error. The linear regression model for each dataset is fitted with 

‘elev.change’ as a response variable and the interaction of ‘obs.elev’ and ‘time’ as predictor 

variables. 

Site 1 

(a) 1993 as training set 

Model Abundance dataset Incidence dataset 

1. Total species 

 adj. r2 SE P adj. r2 SE P 

elev.change~obs.elev*time 0.79 37.22 <0.001 0.83 31.51 <0.001 

2. Low-frequency species 

elev.change~obs.elev*time 0.69 45.46 < 0.001 0.67 39.20 < 0.001 

3. High-frequency species 

elev.change~obs.elev*time 0.82 36.75 < 0.001 0.85 0.84 < 0.001 

(b) 2013 as training set 

1. Total species 

elev.change~obs.elev*time 0.71 51.53 < 0.001 0.76 36.79 < 0.001 

2. Low-frequency species 

elev.change~obs.elev*time 0.46 49.89 < 0.001 0.51 40.51 < 0.001 

3. High-frequency species 

elev.change~obs.elev*time 0.63 56.11 < 0.001 0.67 37.98 < 0.001 

Site 2 

(c) 1990 as training set 

1. Total species 
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elev.change~obs.elev*time 0.77 88.02 < 0.001 0.81 78.58 < 0.001 

2. Low-frequency species 

elev.change~obs.elev*time 0.75 100.50 < 0.001 0.78 88.77 < 0.001 

3. High-frequency species 

elev.change~obs.elev*time 0.79 94.54 < 0.001 0.80 90.26 < 0.001 

(d) 2014 as training set 

1. Total species 

elev.change~obs.elev*time 0.36 181.80 < 0.001 0.35 178.40 < 0.001 

2. Low-frequency species 

elev.change~obs.elev*time 0.49 189.00 < 0.001 0.45 182.10 < 0.001 

3. High-frequency species 

elev.change~obs.elev*time 0.24 181.00 < 0.001 0.28 161.00 < 0.001 
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Fig. 1. Location map of the study area. Site 1 = Phulchoki mountain, Site 2 = Langtang National Park. 
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Fig. 2. Detrended Correspondence Analysis (DCA) biplot of species composition. (a) Site 1. 

Eigenvalues: 0.45 and 0.21; gradient length: 2.60 and 2.20 standard deviations, for the first and 

second axis, respectively. yr93 = year 1993, yr13 = year 2013. (b) Site 2. Eigenvalues: 0.55 and 0.49; 

gradient length: 5.81 and 5.45 standard deviations, for the first and second axis, respectively. yr93 = 

year 1993, yr13 = year 2013. 
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Fig. 3. Root Mean Squared Error of Prediction (RMSEP) of the weighted averaging (WA) regression 

models for different training sets from (a, b) Site 1 and (c, d) Site 2, where the estimates produced 

by monotonic curvilinear regression deshrinking procedures were selected. Cross-validated 

regression estimations are derived by bootstrapping with 1000 cycles. 
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Fig. 4. Adjusted coefficient of determination (r2) of the weighted averaging (WA) regression models 

for different training sets from (a, b) Site 1 and (c, d) Site 2, where the estimates produced by 

monotonic curvilinear regression deshrinking procedures were selected. Cross-validated regression 

estimations are derived by bootstrapping with 1000 cycles. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/jpe/advance-article-abstract/doi/10.1093/jpe/rty039/5106973 by U

niversitetsbiblioteket i Bergen user on 26 Septem
ber 2018



 

39 

 

 

Fig 5. Change in the elevational distribution of the species assemblages from 1993 to 2013 at Site 1, 

where the difference in the observed and the predicted elevation of the sample plots of 2013 is the 

temporal change in elevation of the species assemblages (forward prediction). Elevation for the 2013 

data was calibrated using the species-environment relationship of the training set (year 1993). The 

patterns of the elevational change are given for (5a-5c) abundance datasets (a) with total species, (b) 

with low-frequency species, and (c) with high-frequency species; (5d-5f) incidence datasets (d) with 

total species, (e) with low-frequency species, and (f) with high-frequency species. 
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Fig 6. Change in the elevational distribution of the species assemblages from 1990 to 2014 at Site 2, 

where the difference in the observed and the predicted elevation of the sample plots of 2014 is the 

temporal change in elevation of the assemblages (forward prediction). Elevation for the 2014 data 

was calibrated using the species-environment relationship of the training set (year 1990). The 

patterns of the elevational change are revealed for (6a-6c) abundance datasets (a) with total species, 

(b) with low-frequency species, and (c) with high-frequency species; (6d-6f) incidence datasets (d) 

with total species, (e) with low-frequency species, and (f) with low-frequency species. 
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