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Abstract
The alpha complex efficiently computes persistent homology of a point cloud X in Euclidean
space when the dimension d is low. Given a subset A of X, relative persistent homology can
be computed as the persistent homology of the relative Čech complex Č(X, A). But this is not
computationally feasible for larger point clouds X. The aim of this note is to present a method
for efficient computation of relative persistent homology in low dimensional Euclidean space. We
introduce the relative Delaunay-Čech complex DelČ(X, A) whose homology is the relative persistent
homology. It is constructed from the Delaunay complex of an embedding of X in (d + 1)-dimensional
Euclidean space.
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1 Introduction

Persistent homology is receiving growing attention in the machine learning community. In
that light, the scalability of persistent homology computations is of increasing importance.
To date, the alpha complex is the most widely used method to compute persistent homology
for large low-dimensional data sets.

Relative persistent homology has been considered several times in recent years. For
example Edelsbrunner and Harrer [8] have presented an application of relative persistent
homology to estimate the dimension of an embedded manifold. Relative persistent homology
is also a way to introduce the concept of extended persistence [5]. De Silva and others have
shown that the relative persistent homology H∗(X,At) with an increasing family of sets At
and a constant X = ∪tAt, and the corresponding relative persistent cohomology have the
same barcode [6]. They also show that absolute persistent homology of At can be computed
from this particular type of relative persistent homology. More recently, Pokorny and others
[9] have used relative persistent homology to cluster two-dimensional trajectories. Some
software, such as PHAT [2], even allows for the direct computation of relative persistent
homology. For an example see the PHAT github repository.

Despite the fact that relative persistent homology has been considered in many different
situations, we are not aware of a relative version of the alpha- or Delaunay-Čech complexes
being used.

Our contributions are as follows.
1. We give a new elementary proof that the Delaunay-Čech complex is level homotopy

equivalent to the Čech complex. This has previously been shown using discrete Morse
theory [1].

2. We extend this proof to the relative versions of the Delaunay-Čech complex and the Čech
complex.
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3. We explain how the relative Delaunay-Čech complex can be constructed through embed-
ding in a higher dimension.

Given finite A ⊆ X ⊆ Rd, these contributions lead to the constuction of a filtered
simplicial complex DelČ(X,A) with persistent homology isomorphic to the relative persistent
homology of Čech persistence modules Č∗(X; k)/Č∗(A; k). The underlying simplicial complex
of DelČ(X,A) is the Delaunay complex of an embedding Z of X in Rd+1 with the property
that the projection pr: Rd+1 → Rd takes Z onto X. All simplices in the Delaunay complex
of Z projecting to a subset of A are given filtration value zero. The filtration value of the
remaining simplices in the Delaunay complex of Z is defined to be the Čech filtration value
of their projection to Rd. This is the content of Theorem 2.

This manuscript is structured as follows. In Section 2, we introduce relative persistent
homology, and in Section 3 we construct the relative Delaunay-Čech complex. The rest of the
paper serves to prove that the relative Delaunay-Čech complex is level homotopy equivalent
to the relative Čech complex. Section 4 introduces Dowker Nerves, the theoretical foundation
used in the proof. In Section 5, we introduce the alpha- and Delaunay-Čech complexes using
the Dowker Nerve terminology and show that they are level homotopy equivalent to the
Čech complex. Section 6 introduces the relative alpha- and Delaunay-Čech dissimilarities,
and proves that their nerves are level homotopy equivalent to the relative Čech complex.
Finally, in Section 7 we show that the nerve of the relative Delaunay-Čech dissimilarity is
level homotopy equivalent to the relative Delaunay-Čech complex.

2 Relative persistent homology

Let X be a finite subset of Euclidean space Rd. Given t > 0, the Čech complex Čt(X) of X
is the abstract simplicial complex with vertex set X and with σ ⊆ X a simplex of Čt(X) if
and only if there exists a point p ∈ Rd with distance less than t to every point in σ. Varying
t we obtain the filtered Čech complex Č(X).

Given a subset A ofX we obtain an inclusion Č(A) ⊆ Č(X) of filtered simplicial complexes
and an induced inclusion Č∗(A; k) ⊆ Č∗(X; k) of associated chain complexes of persistence
modules over the field k. The relative persistent homology of the pair (X,A) is defined as
the homology of the factor chain complex of persistence modules Č∗(X; k)/Č∗(A; k).

For X of small cardinality, the relative persistent homology can be calculated as the
reduced persistent homology of the relative Čech complex Č(X,A), where σ ⊆ X is a simplex
of Č(X,A)t if either σ ⊆ A or σ ∈ Čt(X). However, as the cardinality of X grows, this
quickly becomes computationally infeasible.

3 The relative Delaunay-Čech complex

Before delving into theory we present a filtered simplicial complex that is level homotopy
equivalent to the relative Čech complex Č(X,A) of a pair of finite subsets A ⊆ X of Euclidean
space Rd. Two filtered simplicial complexes K = (Kt)t≥0 and L = (Lt)t≥0 are level homotopy
equivalent if there exists a filtered simplicial map f : K → L so that the geometric realizaton
of ft : Kt → Lt is a homotopy equivalence for each t.

For convenience, we let B = X −A so that X is the disjoint union of A and B. Choose
s > 0 bigger than the maximal filtration values in the alpha complexes of A and B. The set

Z = A× {s} ∪B × {−s}

is an embedding of X in Rd+1. Let Del(Z) be the Delaunay complex of Z.
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I Definition 1. The relative Delaunay-Čech complex of the finite subsetes A ⊆ X of Rd
is the filtered simplicial complex DelČ(X,A) with Del(Z) as underlying simplicial complex
and with filtration R : Del(Z) → R defined as follows: Given σ ∈ Del(Z), let pr(σ) be the
projection of σ ⊆ Rd+1 to Rd. If pr(σ) is contained in A we let R(σ) = 0. Otherwise we let
R(σ) be the radius of the smallest enclosing ball of pr(σ).

I Theorem 2. The filtered simplicial complex DelČ(X,A) is level homotopy equivalent to
the relative Čech complex Č(X,A). In particular, the persistent homology of DelČ(X,A) is
isomorphic to the relative Čech persistent homology of the pair (X,A). If X is of cardinality
n, then DelČ(X,A) contains O(nd(d+1)/2e) simplices.

The statement about the size of the relative Delaunay-Čech complex is a direct consequence
of the result of [10] that the Delaunay triangulation of n points in d+ 1 dimensions contains
O(nd(d+1)/2e) simplices

4 Dowker nerves

A dissimilarity is a continuous function of the form Λ: X×Y → [0,∞], for topological spaces
X and Y , where [0,∞] is given the order topology. A morphism f : Λ→ Λ′ of dissimilarities
Λ: X×Y → [0,∞] and Λ′ : X ′×Y ′ → [0,∞] consists of a pair (f1, f2) of continuous functions
f1 : X → X ′ and f2 : Y → Y ′ so that for all (x, y) ∈ X × Y the following inequality holds:

Λ′(f1(x), f2(y)) ≤ Λ(x, y).

This notion of morphism is less general than for example [3, Definition 2.10], but it is simpler
and suffices for our purposes.

The Dowker Nerve NΛ of Λ is the filtered simplicial complex described as follows: For
t > 0, the simplicial complex NΛt consists of the finite subsets σ of X for which there exists
y ∈ Y so that Λ(x, y) < t for every x ∈ σ.

Let f : Λ→ Λ′ be a morphism of dissimilarities as above and let σ ∈ NΛt. Given y ∈ Y
with Λ(x, y) < t for every x ∈ σ we see that

Λ′(f1(x), f2(y)) ≤ Λ(x, y) < t,

so f1(σ) ∈ NΛ′t. Thus we have a simplicial map f : NΛ→ NΛ′.
Given x ∈ X and t > 0, the Λ-ball of radius t centered at x is the subset of Y defined as

BΛ(x, t) = {y ∈ Y, | Λ(x, y) < t}.

The t-thickening of Λ is the subset of Y defined as

Λt =
⋃
x∈X

BΛ(x, t).

Note that by construction the set of Λ-balls of radius t is an open cover of the t-thickening
of Λ.

The geometric realization |K| of a simplicial complex K on the vertex set V is the
subspace of the space [0, 1]V of functions α : V → [0, 1] described as follows:
1. The subset α−1((0, 1]) of V consisting of elements where α is strictly positive is a simplex

in K. In particular it is finite.
2. The sum of the values of α is one, that is

∑
v∈V α(v) = 1.

SoCG 2020
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With respect to the product topology, the subspace topology on |K| is called the strong
topology on the geometric realization. It is convenient for construction of functions into |K|.
The weak tooplogy on |K|, which we are not going to use here, is convenient for construction
of functions out of |K|. The homotopy type of |K| is the same for these two topologies [7,
p. 355, Corollary A.2.9]. Given a simplex σ ∈ K, the simplex |σ| of |K| is the closure of

{α : V → [0, 1] |α(v) > 0 for all v ∈ σ}.

The simplices of |K| are the sets of this form.
A partition of unity subordinate to the dissimilarity Λ: X × Y → [0,∞] consists of

continuous maps ϕt : Λt → |NΛt| such that given x ∈ X, the closure of the set

{y ∈ Y | ϕt(y)(x) > 0}

is contained in BΛ(x, t). We say that Λ is numerable if a partition of unity subordinate to
Λ exists. If Y is paracompact, then every dissimilarity of the form Λ: X × Y → [0,∞] is
numerable [7, p. 355, paragraph after Definition A.2.10].

Let y ∈ Λt and let {ϕt : Λt → |NΛt|} be a partition of unity subordinate to Λ. If x ∈ X
with ϕt(y)(x) > 0, then Λ(x, y) < t. Therefore ϕt(y) is contained in a simplex |σ| in |NΛt|
with σ contained in {x ∈ X | Λ(x, y) < t}. Every finite subset of this set is an element
of NΛt. This implies that for s ≤ t there is a simplex of |NΛt| containing both ϕs(y) and
ϕt(y). It also implies that given another partition of unity {ψt : Λt → |NΛt|} subordinate to
Λ there is a simplex of |NΛt| containing both ϕt(y) and ψt(y). This is exactly the definition
of contiguous maps, so ϕt and ψt are contiguous, and thus homotopic maps [7, Remark 2.22,
p. 350]. Similarly, the diagram

Λs ϕs

−−−−→ |NΛs|y y
Λt ϕt

−−−−→ |NΛt|

commutes up to homotopy [7, paragraph on the nerve starting on page 355 and ending on
page 356].

Recall that a cover U of Y is good if all non-empty finite intersections of members of U
are contractible. We now state the Nerve Lemma in the context of dissimilarities.

I Theorem 3. If Y is paracompact and Λ: X × Y → [0,∞] is a dissimilarity, then there
exists a partition of unity {ϕt : Λt → |NΛt|} subordinate to Λ. Moreover, if the cover of Λt
by Λ-balls of radius t is a good cover, then ϕt is a homotopy equivalence.

Proof. By the above discussion, we only need to note that the last statement about good
covers is [11, Theorem 4.3]. J

A functorial version of the Nerve Lemma can be stated as follows:

I Proposition 4. Let Λ: X × Y → [0,∞] and Λ′ : X ′ × Y ′ → [0,∞] be dissimilarities
and let f = f1 × f2 : X × Y → X ′ × Y ′ be a morphism f : Λ → Λ′ of dissimilarities. If
{ϕt : Λt → |NΛt|} is a partition of unity subordinate to Λ and {ψt : (Λ′)t → |NΛ′t|} is a
partition of unity subordinate to Λ′, then for every t ≥ 0 the diagram

Λt ϕt

−−−−→ |NΛt|

f2

y y|f1|

(Λ′)t ψt

−−−−→ |NΛ′t|,
commutes up to homotopy.
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Proof. We show that the two compositions are contiguous. Recall that |f1| takes a point
α : X → [0, 1] of |NΛt| to the point |f1|(α) of |NΛ′t| with |f1|(α)(x′) =

∑
f1(x)=x′ α(x).

Recall further that ϕt(y) is contained in a simplex |σ| in |NΛt|, where σ is contained in
{x ∈ X | Λ(x, y) < t}. Then we have that for y ∈ Λt, the elements |f1|(ϕt(y)) and ψt(f2(y))
of |NΛ′t| are contained in simplices |σ| and |τ | respectively. Both σ and τ are subsets of the
set {x′ ∈ X ′ | Λ′(x′, f2(y)) < t}. However every finite subset of this set is a simplex in NΛ′t.
In particular, so is the union σ ∪ τ . J

5 The alpha- and Delaunay-Čech complexes

Given a finite subset X of Rd we define the Voronoi cell of x ∈ X as

Vor(X,x) = {p ∈ Rd | d(x, p) ≤ d(y, p) for all y ∈ X}.

Let Rdd be Euclidean space with the discrete topology. The discrete Delaunay dissimilarity
of X is defined as

delX : X × Rdd → [0,∞], delX(x, p) =
{

0 if p ∈ V (X,x)
∞ if p /∈ V (X,x).

The Delaunay complex Del(X) is the simplicial complex with vertex set X and with σ ⊆ X
a simplex of Del(X) if and only if there exists a point in Rd belonging to Vor(X,x) for every
x ∈ σ. That is, Del(X) = N delXt for t > 0.

Note that with respect to Euclidean topology, the discrete Delaunay dissimilarity is not
continuous, and hence delX : X × Rd → [0,∞] is not a dissimilarity. One way to deal with
this is to use the Nerve Lemma for absolute neighbourhood retracts [4, Theorem 8.2.1]. In
order to use Theorem 3 and Proposition 4 from above, instead we construct a continuous
version of the Delaunay dissimilarity.

Given a subset σ of X and p ∈ Rd, let

dVor(p, σ) = max{d(p,Vor(X,x)) | x ∈ σ},

where for any A ⊆ Rd, we define d(p,A) = infa∈A{d(p, a)}.
Note that if σ /∈ Del(X), the infimum εσ of the continuous function dVor(−, σ) : Rd → R

is strictly positive. Choose ε > 0 so that 2ε < εσ for every subset σ of X that is not in
Del(X). Given x ∈ X we define the ε-thickened Voronoi cell Vor(X,x)ε by

Vor(X,x)ε = {p ∈ Rd | d(p,Vor(X,x)) < ε}.

By construction the nerve of the open cover (Vor(X,x)ε)x∈X of Rd is equal to Del(X).
Let h : [0,∞]→ [0,∞] be the order preserving map

h(t) =
{
− ln(1− t/ε) if t < ε

∞ if t ≥ ε.
(1)

For x ∈ X, let Delx : Rd → [0,∞] be the function defined by Delx(p) = h(d(p,Vor(X,x))) so
that Delx(Vor(X,x)) = 0 and Delx(Rd \Vor(X,x)ε) =∞.

The Delaunay dissimilarity of X is defined as

DelX : X × Rd → [0,∞], DelX(x, p) = Delx(p).

By the above discussion we know that N DelXt = N delXt = Del(X) whenever t > 0.

SoCG 2020
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The Čech dissimilarity of X is defined as

dX : X × Rd → [0,∞],

where dX(x, p) is the Euclidean distance between x ∈ X and p ∈ Rd.
The alpha dissimilarity of X is defined as

AX = max(DelX , dX) : X × Rd → [0,∞].

The Delaunay-Čech dissimilarity is defined as

DelČX : X ×
(
Rd × Rd

)
→ [0,∞], DelČX(x, (p, q)) = max(dX(x, p),DelX(x, q)).

Note the nerve of the dissimilarity

delČX : X ×
(
Rd × Rdd

)
→ [0,∞], delČX(x, (p, q)) = max(d(Xx, p),delX(x, q))

is identical to the nerve of DelČX . Moreover, the Dowker nerves of the Delaunay-, Čech-,
alpha- and Delaunay-Čech dissimilarities are the Delaunay-, Čech-, alpha- and Delaunay-Čech
complexes respectively. For all these dissimilarities, the corresponding balls are convex, so
the geometric realizations are homotopy equivalent to the corresponding thickenings. In
order to see that the morphism AX → dX of dissimilarities induces homotopy equivalences
|NAXt |

'−→ |NdXt | it suffices to note that the corresponding map (AX)t → (dX)t is the identity
map. This holds because BAX (x, t) = BdX (x, t)∩BDelX (x, t) and given y ∈ BdX (x, t) we have
that y ∈ Vor(X,x′) for some x′ ∈ X. Thus, dX(y, x′) is minimal, so dX(y, x′) ≤ dX(y, x) < t

and y ∈ BdX (x′, t) ∩BDelX (x′, t).
In order to see that the morphism DelČX → dX of dissimilarities induces homotopy

equivalences |N DelČXt |
'−→ |NdXt | we use the following lemma:

I Lemma 5. For every (p, q) ∈ (DelČX)t, the entire line segment between (p, p) and (p, q)
is contained in (DelČX)t.

Proof. In order not to clutter notation we omit superscript X on dissimilarities. Let
γ : [0, 1]→ Rd be the function γ(s) = (1− s)p+ sq. We claim that given (p, q) ∈ DelČt and
s ∈ [0, 1] the point (p, γ(s)) = (p, (1− s)p+ sq) is in DelČt.

If (p, q) ∈ DelČt, there exists a point x ∈ X, such that p ∈ Bd(x, t) and q ∈ BDel(x, t),
that is, d(q,Vor(X,x)) < h←(t), where h← is the generalized inverse of h. Pick q′ ∈ Vor(X,x)
so that d(q, q′) < h←(t). Let γ′ : [0, 1]→ Rd be the function γ′(s) = (1− s)p+ sq′. Given
s ∈ [0, 1], suppose that the point (p, γ′(s)) = (p, (1− s)p+ sq′) is in delČt. Then there exists
x′ ∈ X so that d(x′, p) < t and γ′(s) ∈ V (X,x′) and (p, γ(s)) is in DelČt since the distance
between (1− s)p+ sq and (1− s)p+ sq′ is less than h←(t) and d(γ′(s),Vor(X,x′)) = 0.

We are left to show that, given s ∈ [0, 1], the point (p, γ′(s)) = (p, (1− s)p+ sq′) is in
delČt. Suppose γ′(s) ∈ Vor(X, y) for some s ∈ [0, 1) and some y ∈ X. We claim that then
p ∈ Bd(y, t). To see this, we may without loss of generality assume that y 6= x. Let H be
the hyperplane in between x and y, i.e.

H = {z ∈ X | d(x, z) = d(y, z)}.

Let

H+ = {z ∈ X | d(x, z) ≥ d(y, z)}
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and

H− = {z ∈ X | d(x, z) ≤ d(y, z)}.

Since γ′(s) ∈ Vor(X, y) we have γ′(s) ∈ H+. Since q ∈ Vor(X,x) we have q ∈ H−. Since the
line segment between p and q either is contained in H or intersects H at most once we must
have p ∈ H+. That is, d(y, p) ≤ d(x, p) < t, so p ∈ Bd(y, t) as claimed. J

By Lemma 5, the inclusion

(dX)t = ∪x∈XBdX (x, t)→ ∪x∈XBDelČX (x, t) = (DelČX)t, p 7→ (p, p)

is a deformation retract. In particular it is a homotopy equivalence.

6 The relative Delaunay-Čech dissimilarity

In this section we consider two subsets X1 and X2 of d-dimensional Euclidean space Rd.
The Voronoi diagram of a finite subset X of Rd is the set of pairs of the form (x,Vor(X,x))

for x ∈ X, that is,

Vor(X) = {(x,Vor(X,x)) | x ∈ X}.

This may seem overly formal since the projection on the first factor gives a bijection
Vor(X)→ X. However, when we work with Voronoi cells with respect to different subsets
X1 and X2 of Rd it may happen that Vor(X1, x1) = Vor(X2, x2) even when x1 6= x2. The
Voronoi diagram of the pair of subsets X1 and X2 of Rd is the union

Vor(X1, X2) = Vor(X1) ∪Vor(X2).

The discrete Delaunay dissimilarity of X1 and X2 is defined as

delX1,X2 : Vor(X1, X2)× Rdd → [0,∞], delX1,X2((x, V ), p) =
{

0 if p ∈ V
∞ if p /∈ V .

The simplicial complex N delX1,X2
t is independent of t > 0. It is the Delaunay complex

Del(X1, X2) on X1 and X2. In order to describe the homotopy type of this simplicial complex
we thicken the Voronoi cells like we did in the previous section:

Given a subset σ of Vor(X1, X2) and p ∈ Rd, let

dVor(p, σ) = max{d(p, V ) | (x, V ) ∈ σ}.

Note that if σ /∈ Del(X1, X2), the infimum εσ of the continuous function dVor(−, σ) : Rd → R
is strictly positive. Choose ε > 0 so that 2ε < εσ for every subset σ of Vor(X1, X2) that is
not in Del(X1, X2). Given (x, V ) ∈ Vor(X1, X2) we define the ε-thickening V ε of V by

V ε = {p ∈ Rd | d(p, V ) < ε}.

By construction, the nerve of the open cover {(x, V ε)}(x,V )∈Vor(X1,X2) is equal to Del(X1, X2).
The Delaunay dissimilarity DelX1,X2 of X1 and X2 is defined as

Vor(X1, X2)× Rd DelX1,X2
−−−−−−→ [0,∞], DelX1,X2((x, V ), p) = h(d(p, V ))

for h : [0,∞]→ [0,∞] the order preserving map defined in Equation (1).

SoCG 2020
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The inclusion X1 → Vor(X1, X2) taking x ∈ X1 to (x,Vor(X1, x)) induces a morphism
of dissimilarities DelX1 → DelX1,X2 and an inclusion of nerves N DelX1

t ⊆ N DelX1,X2
t for

t > 0.
Next, we construct the dissimilarity AX1,X2 as

Vor(X1, X2)× Rd AX1,X2
−−−−−→ [0,∞], ((x, V ), p) 7→ max(d(x, p),DelX1,X2((x, V ), p)).

Also here we have an obvious inclusion NAX1
t → NAX1,X2

t , and the AX1,X2 -balls are convex
so the nerve lemma yields a homotopy equivalence

|NAX1,X2
t | '

⋃
(x,V )∈Vor(X1,X2)

BAX1,X2 ((x, V ), t) =
⋃

x∈X1∪X2

BdX1∪X2 (x, t) = (X1 ∪X2)t.

Finally, we construct the dissimilarity DelČX1,X2

Vor(X1, X2)× (Rd × Rd) DelČX1,X2
−−−−−−−→ [0,∞],

((x, V ), (p, q)) 7→ max(d(x, p),DelX1,X2((x, V ), q))

Here again we have an obvious inclusion N DelČX1
t → N DelČX1,X2

t , and the DelČX1,X2 -balls
are convex so the nerve lemma yields a homotopy equivalence

|N DelČX1,X2
t | ' (DelČX1,X2)t

The following variant of Lemma 5 implies that (DelČX1,X2)t is a deformation retract of
(X1 ∪X2)t.

I Lemma 6. For every (p, q) ∈ (DelČX1,X2)t, the entire line segment between (p, p) and
(p, q) is contained in (DelČX1,X2)t.

Proof. Given (p, q) ∈ (DelČX1,X2)t = (DelČX1)t ∪ (DelČX2)t, we have (p, q) ∈ (DelČXi)t

for some i ∈ {1, 2}. Then also (p, p) lies in (DelČXi)t, and Lemma 5 proves the claim. J

7 Nerve of the relative Delaunay-Čech dissimilarity

In this section we show that the nerve of the relative Delaunay dissimilarity is level homotopy
equivalent to the relative Dealunay-Čech complex.

We fix some notation used in this section: X1 ⊆ Rd and X2 ⊆ Rd are finite subsets. We
let s be a positive real number, we let Z = X1 ×{s} ∪X2 ×{−s} and we let pr: Rd+1 → Rd
be the projection omitting the last coordinate.

I Lemma 7. The projection pr: Rd+1 → Rd induces a surjection

Vor(Z) g−→ Vor(X1, X2), ((x, s), V ) 7→ (x, V (X1, x)), ((x,−s), V ) 7→ (x, V (X2, x)),

with pr(V ) ⊆ V (Xi, x) for x ∈ Xi. Given (x, V ) ∈ Vor(X1, X2) the fiber g−1((x, V )) consists
of all elements of Vor(Z) of the form ((x, a), V ) for a ∈ {±s}.

Proof. We show that pr(V ) ⊆ V (X1, x1) for ((x1, s), V ) ∈ Vor(Z) with x1 ∈ X1. Given
(p, r) ∈ V we have for all points of the form (x′1, s) for x′1 ∈ X1 that d((p, r), (x1, s)) ≤
d((p, r), (x′1, s)). This implies that d(p, x1) ≤ d(p, x′1), and thus p ∈ V (X1, x1). We conclude
that pr(V ) ⊆ V (X1, x1). An analogous argument applies for elements of the form ((x2,−s), V )
in Vor(Z). J
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Let s1 be larger than the largest filtration value of the alpha complex of X1. Then the
function j1 : Vor(X1) → Vor(Z) defined by j1(x1, V ) = ((x1, s), V (Z, (x1, s))) induces a
simplicial map of nerves del(X1) → del(Z) for all s > s1. Similarly, there is a simplicial
map del(X2)→ del(Z) for all s > s2 when s2 is larger than all filtration values of the alpha
complex of X2. Let s(X1, X2) = max(s1, s2).

Recall, from the previous two sections, that εσ is the infimum of the continuous function
dVor(−, σ) : Rd → R. Choose ε > 0 satisfying the following two criteria:
1. 2ε < εσ for every subset σ of Vor(X1, X2) that is not in Del(X1, X2).
2. 2ε < εσ for every subset σ of Vor(Z) that is not in Del(Z).
Let h : [0,∞]→ [0,∞] be the order preserving map defined in Equation (1), and let DelZ

and DelX1,X2 be constructed using h. We define a new dissimilarity

D : Vor(Z)× (Rd×Rd+1)→ [0,∞], D((z, V ), (p, q)) = max(d(pr(z), p),DelZ((z, V ), q)).

Note that the underlying simplicial complex
⋃
t>0NDt of the nerve of D is the Delaunay

complex del(Z). The filtration value of σ ∈ del(Z) in the neve of D is the filtration value of
g(σ) in the nerve of DelČX1,X2 .

I Proposition 8. Let X1 ⊆ Rd and X2 ⊆ Rd be finite. Choose s > s(X1, X2). Then
Vor(Z) g−→ Vor(X1, X2) and id× pr: Rd × Rd+1 → Rd × Rd form a morphism

f = (g, id× pr) : D → DelČX1,X2

of dissimilarities inducing a homotopy equivalence

g : NDt → N DelČX1,X2
t

for every t > 0.

Proof. For i = 1, 2 the inclusion pr(V ) ⊆ V (Xi, x) for ((x, (−1)i−1s), V ) ∈ Vor(Z) implies
that

DelX1,X2(g(z, V ),pr(q)) ≤ DelZ((z, V ), q)

for all ((z, V ), q) ∈ Vor(Z). So we have a morphism f = (g, id× pr) : D → DelČX1,X2 .
In order to show that g induces a homotopy equivalence of geometric realizations, by the

Nerve Lemma, it suffices to show that given a simplex σ of N DelČX1,X2
t , the inverse image

g−1(σ) is a simplex of NDt. Let p be a point in the intersection of the Voronoi cells in σ.
Write g−1(σ) = τ1 ∪ τ2, where τ1 consists of Voronoi cells with centers at height s and τ2
consists of Voronoi cells with centers at height −s. Let σ1 = {(x1, s) | (x1, V (X1, x1)) ∈ σ}
and σ2 = {(x2,−s) | (x2, V (X2, x2)) ∈ σ}.

Suppose that τ2 is empty. Then actually σ ∈ DelČX1
t , and since s > s1 we know that

j1(σ) ∈ del(Z). Since g ◦ j1 is the inclusion of Vor(X1) in Vor(X1, X2) = Vor(X1) ∪Vor(X2)
we know that j1(σ) ⊆ g−1(σ) = τ1 and that j1(σ) ∈ NDt. On the other hand, since τ2 is
empty, by Lemma 7 we know that g−1(σ) is contained in j1(σ), so they must be equal. We
conclude that g−1(σ) is a simplex of NDt. A similar argument applies when τ1 is empty.

In the remaining case where both τ1 and τ2 are nonempty, the function

f : Rd+1 → R, f(a) = dVor(a, σ1)− dVor(a, σ2)

has f((p,−s)) > 0 and f((p, s)) < 0. By the intermediate value theorem there exists
t ∈ [−s, s] with f(p, t) = 0. Since (p, t) has the same distance to all elements of σ1 and also
has the same distance to all elements of σ2 we conclude that (p, t) is in the intersection of
the Voronoi cells in g−1(σ) = τ1 ∪ τ2. Thus DelČZ((z, V ), p) = 0 and d(pr(z), p) < t for all
(z, V ) ∈ g−1(σ). In particular g−1(σ) ∈ NDt. J
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We are now ready to compute persistent homology of X1 ∪ X2 relative to X1. The
relative Delaunay-Čech complex DelČ(X1 ∪X2, X1) is the filtered simplicial complex with
DelČ(X1 ∪X2, X1)t = j1(del(X1)) ∪NDt. Note that this is consistent with Definition 1.

I Theorem 9. Let X1 ⊆ Rd and X2 ⊆ Rd be finite. Choose s > s(X1, X2). Then the
geometric realization of the filtered simplicial complex DelČ(X1 ∪X2, X1) is level homotopy
equivalent to the filtered space t 7→ (X1 ∪X2)t/Xt

1. In particular, there is an isomorphism

(H∗(DelČ(X1 ∪X2, X1)t))t>0 ∼= (H∗((X1 ∪X2)t, Xt
1))t>0

of persistence modules.

Proof. Since j1(del(X1) is contractible, the geometric realization of DelČ(X1 ∪X2, X1)t is
homotopy equivalent to the quotient space |DelČ(X1 ∪X2, X1)t|/|j1(del(X1)|. This quotient
space is homeomorphic to |NDt|/|NDt∩ j1(Del(X1))|. By Proposition 8 the map g : NDt →
N DelČX1,X2

t induces a homotopy equivalence of geometric realizations. Moreover g induces
an an isomorphism NDt ∩ j1(Del(X1)) → N DelČX1

t . Combining these two statements, g
induces a homotopy equivalence |NDt|/|NDt ∩ j1(Del(X1))| → |N DelČX1,X2

t |/|N DelČX1
t |.

The space |N DelČX1,X2
t | is homotopy equivalent to the Euclidean t-thickening (X1 ∪X2)t of

X1∪X2 and |N DelČX1
t | is homotopy equivalent to the Euclidean t-thickening Xt

1 of X1. J

This concludes the proof of Theorem 2.
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