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A B S T R A C T

Concurrent with the introduction of cardiac troponin measurements into the diagnostic definition of myocardial
infarction (MI), clinicians and laboratory professionals signaled a clear clinical need for improved analytical
quality. This was an important precipitant for developing high-sensitivity cardiac troponin (hs-cTn) assays,
currently used in rapid algorithms guiding investigations of patients presenting to the emergency department
with possible MI. The hs-cTn assays were also important for the detection and monitoring of low-grade chronic
myocardial injury, a condition that has been linked to increased long-term risk of cardiovascular morbidity and
mortality. This review summarizes the general recommendations for defining analytical performance specifi-
cations while providing relevant clinical situations related to analytical performance. Importantly, outcome
studies suggest analytical quality performance for hs-cTn is sufficient for early discharge of patients investigated
for possible MI. However, bias due to change in calibrators or reagents may significantly affect the percentage of
patients discharged. Biological variation data is suitable for defining performance specifications when hs-cTn
measurements are used for diagnosing and monitoring chronic myocardial injury. Further improvement in
analytical performance for hs-cTn testing may result in even faster decision making in the emergency setting;
while also identifying those with chronic injury at risk for an adverse cardiac event.

1. Introduction

The hallmark of cardiomyocyte injury is the release of cardiac
specific troponin T and troponin I into the systemic circulation.
Commercial assays for cardiac troponins were introduced during the
1990s, and since then the steadily improvement in analytical perfor-
mance advocated by cardiologists, emergency physicians and clinical
chemists have shaped clinical practice and lead to the development of
the current generations of high-sensitivity cardiac troponin assays.
Throughout the evolution of the cardiac troponin tests, laboratory
professions were deeply involved in the specification of the analytical
goals for sensitivity, specificity (through proper antibody selection) and
the standardization and harmonization that were needed for the crea-
tion of the next generation cardiac troponin assays.

Cardiac troponin testing was clinically endorsed in the consensus
definition of myocardial infarction (MI) published in 2000 [1], one year
after the National Academy of Clinical Biochemistry endorsed cardiac

troponin in this setting [2]. Similar to the current 4th Universal Defi-
nition of Myocardial Infarction published in 2018 [3], MI was defined
as a significant rise or fall in cardiac troponin concentrations together
with one measured concentration above the 99th percentile upper re-
ference limit (URL) from a healthy population of the assay, if the
clinical setting was compatible with acute coronary syndrome (ACS).
The 99th percentile URL was analytically a challenge to determine and
monitor in the early 2000s since the available assays were not able to
measure quantitative results in a large proportion of the healthy po-
pulation. This finding coupled to the high analytical uncertainty at the
99th percentile concentration opted some sites to use another cutoff for
the detection of injury. Most hospitals therefore used higher cut offs,
and there were large inter-hospital variations in the applied cut offs
[4,5]. However, clinical and laboratory advocates for improved analy-
tical performance with outcome data supporting even minor myo-
cardial injury being prognostically important spurred the diagnostic
industry to further develop these assays, leading to the development of
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the current generation of high-sensitivity cardiac troponin (hs-cTn)
assays.

2. Clinical implications of high-sensitivity cardiac troponin assays

The first publications on hs-cTn assays detailing analytical, clinical,
and the diagnosis of MI were published in 2009, with the past decade
leading to more assays being developed [6–8]. By definition, hs-cTn
assays should measure quantitative concentrations in at least 50% of
the healthy population and show a maximum 10% “guideline accep-
table” analytical variation (CVA) at the 99th percentile of the assay
[9,10].

The advantage of the hs-cTn assays was an improved “signal to
noise ratio”, meaning that the assays could differentiate between a
significantly increased cardiac troponin concentration (“signal”) and
random variation due to pre-analytical, analytical and biological un-
certainty (“noise”), even at minor myocardial necrosis. The improved
analytical certainty at low concentrations made it possible to detect
myocardial injury at an earlier stage, reducing the observation time for
patients with chest pain susceptive of non-ST elevation myocardial in-
farction (NSTEMI) from six to three hours to even earlier measurements
[7,11], and further paved the road for early and rapid clinical decision
making in the work-up of patients presenting to the emergency de-
partment (ED) with acute chest pain [12,13].

The improved analytical performance of hs-cTn assays also in-
creased the ability to predict long-term cardiovascular (CV) risk in the
general population and in high-risk patients with and without prior CV
disease. Seminal papers have demonstrated the strong predictive power
of stable low-grade increased cardiac troponin concentrations [14–16]
and the condition was recently acknowledged as clinically important
and termed chronic myocardial injury [3]. The observation that chest
pain patients with chronic injury show similar long-term prognosis as
those diagnosed with acute MI [17] has led to increased interest in and
search for treatment possibilities in this population [18–20].

3. Define sufficient analytical performance

Strategies to define the necessary analytical performance for la-
boratory tests have recently been updated [21]. The current re-
commendations suggest three different models for defining perfor-
mance specifications (PS) depending on the clinical use of the test;
clinical outcome, biological uncertainty (usually termed “biological
variation”) and state of the art. Cardiac troponins are used in different
clinical contexts and all three models may therefore be relevant. The
optimal way to define PS based on clinical outcomes are by conducting
a randomized clinical trial (RCT) measuring if patient outcomes are
different based on different analytical performance. This strategy ty-
pically requires large patient cohorts and/or long follow-up periods so
an alternative and simpler approach is to measure indirect outcomes.
This may be done by registering changes in surrogate endpoint, usually
changes in clinical classification [21,22]. It is important to acknowl-
edge that this model evaluates how the total uncertainty affects the
patient outcome. There are no separate recommendations related to
within-subject biological or analytical uncertainty, so a biomarker with
a very low within-subject biological variation and a very high analytical
uncertainty could provide an excellent outcome if the total uncertainty
is sufficiently low for clinical needs.

The second option is to use the biological variation, this is re-
commended for components that usually are in a steady-state when an
individual is in good health, and may be less feasible for components
that have large physiological variations. This concept implies that an
increase or decrease from the steady state concentration may signal a
clinically significant change and it is usually feasible to identify the
smallest possible reliable delta values when clinical cut offs are defined.
Analytical uncertainty should therefore only add minor changes to the
unavoidable biological variation and typically, a CVA being half the

within-subject biological variation and a bias less than ¼ of the com-
bined within-subject and between-subject variation, is regarded suffi-
cient [23]. The last model is state of the art; and can be employed by all
laboratories as precision goals and total uncertainty are provided [24].

4. Defining analytical performance specification for cardiac
troponin based on patient outcomes

The largest study investigating the impact analytical performance
and cutoffs for cardiac troponin has on clinical outcomes is the High-
STEACS study; a stepped-wedge cluster-based RCT including 48 282
patients with possible ACS [25]. The somewhat disappointing result
was that even if the hs-cTnI assay re-classified 17% of patients from
unstable angina pectoris (UAP) to non-ST segment elevation MI
(NSTEMI), this did not improve the long-term prognosis of the patients.
The authors explained this unexpected observation as most of the re-
classified patients were unavailable for treatment (i.e., type 2 MI or
patients who were already maximally treated for coronary artery dis-
ease) or were less likely to receive it (i.e., female sex). Other endpoints
came out positively, e.g. the overall length of hospital stay was reduced
by a third since most patients without ACS could be discharged earlier.
Other caveats for this study included no a prior criteria on what con-
stituted a significant change in hs-cTnI concentrations (which is de-
pendent on analytical performance) with only educational and im-
plementation efforts focused on the change to a hs-cTnI assay and the
sex-specific 99th percentile cutoffs. Another RCT trial, the RAPID trial,
compared two emergency department algorithms for rapid follow-up of
possible ACS, using different time frames and cut offs for lower re-
portable results (1 h observation and 5 ng/L vs. 3 h observation and
29 ng/L). This study showed similar diagnostic performance for both
algorithms, but shorter duration of stay and higher discharge rate in the
ED in the 1 h low troponin algorithm arm [26]. These studies under-
scores the complexity and high work-load when RCTs are used to define
PS for laboratory tests, and also that even if a high analytical quality
seems beneficial the definitive effects on “hard end-points” may be
difficult to demonstrate.

Notwithstanding these study findings, the clear diagnostic definition
and diagnostic cut off established for myocardial infarction allows one
to use the alternative approach and calculate the number of re-classified
patients depending on different analytical quality criteria (i.e., a more
feasible strategy). International recommendations suggest that patients
presenting with possible NSTEMI should be investigated using specific
cardiac troponin-based rule-out and rule-in algorithms. Based on hs-cTn
results patients are eligible for early discharge or further investigations
or treatment for ACS [12,13]. These algorithms typically encompass an
initial review of the admission sample in patients who present more
than 2–3 h after symptom onset. If the concentration is below the limit
of detection (LoD) of the hs-cTn assay the patient is eligible for “rule-
out”, meaning they may be discharged if the ECG and/or the clinical
symptoms are less likely of ACS. Remaining patients are subjected to
serial sampling on 1 to 3 h intervals depending on the algorithm. Based
on baseline and delta values obtained patients are allocated to “rule-
out”, “observation” or “rule-in” for NSTEMI. Ruled-out patients may be
discharged if the clinical suspicion of ACS is low, ruled-in may go di-
rectly to cardiac angiography and eventually invasive treatment, while
those in the observation group undergo diagnostic follow-up and
eventually a minor fraction is diagnosed with NSTEMI. These algo-
rithms have reasonable high accuracy for NSTEMI, still the im-
plementation have been slow through Europe and Northern America
[5]. Laboratory reluctance due to uncertainty about analytical perfor-
mance of hs-cTn assays at low concentrations and government restric-
tions (e.g. in the USA) regarding the lower limit of reportable results
may provide an obstacle to implementation. A much cited study sur-
veyed clinical expectations and found that most emergency physicians
would accept a miss-rate for NSTEMI of less than 1% [27]. As absolute
concentrations are used as cut offs both in the admission sample rule-
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out and several times in the serial sampling protocols it is obvious that
intermittent bias due to change in calibrators or reagents may influence
the percentage of patients allocated into different categories and false
rule-outs and rule-in could potentially occur [28–30]. If the combined
pre-analytical uncertainty and CVA is high this may also cause erro-
neous delta values for individual patients, and result in incorrect
follow-up strategy [31–33]. In spite of this it is reassuring that most of
the algorithms have been extensively validated through a large number
of clinical cohorts demonstrating a performance in line with or close to
the 1% clinical criteria [34], leading to a growing consensus that these
algorithms are clinically safe. Yet, the challenge for the laboratory to
maintain objective acceptable performance may still be difficult
[35,36], and all novel assays/algorithms need rigorous clinical valida-
tion before implementation into daily practice.

Even if safe, different studies show large variations in the efficiency
of an algorithm (ability to rule-out patients as non-NSTEMI and rule-in
patients as NSTEMI) [37,38]. This variation may relate to clinical dif-
ference between study cohorts but is also likely explained by the use of
different reagent and calibrator lots, as a slight bias in assay accuracy
may have significant impact of percentage of patients presenting with
concentrations above or below the limit of detection (LoD) or the cut
offs used in the serial protocols [28,29,39]. A recent simulation study
done by Lyon et al showed that bias would lead to misclassification of
5–10% of patients when very low concentrations were applied as
thresholds [40], and another study showed percentages of concentra-
tions below the LoD measured in the ED could vary between 15% and
30%, depending on lot used [41]. The reason why these minor biases,
do not translate into a reduced sensitivity for NSTEMI is most likely due
to the fact that the majority of NSTEMI patients rapidly develop myo-
cardial necrosis which by far exceeds the amount needed to increase the
cardiac troponin concentration above the LoD or the suggested delta
values in serial protocols [42]. As shown in Fig. 1, minor biases related
to different reagent lots mainly affect classification of the large number
of patients exhibiting low concentrations, these are usually patients
with non-coronary chest pain. Accordingly, the effect of intermittent
bias most likely influence the percentages of true negatives who are
eligible for rule-out, e.g. affecting the efficiency, but not the safety, of
the algorithm.

5. Defining analytical performance specification for hs-cTn assays
based on biological variation

Chronic myocardial injury is a condition were cardiac troponin
concentrations are expected to be stable and even a slight deviation
from baseline could be clinically relevant. Biological variation data are
therefore feasible for making PS when cardiac troponins are used in the
diagnosis or monitoring of chronic myocardial injury. Herein, chronic
myocardial injury is defined as stable cardiac troponin concentrations
above the 99th percentile of the assay, but the risk of future cardio-
vascular events or death increases constantly from lower to higher
concentrations starting even below the LoD of the hs-cTn assay [41].
Studies have demonstrated that medical treatment (statins), physical
activity programs or even surgery in the morbidly obese may stabilize
or slightly reduce cardiac troponin at low concentrations [18–20]. Such
minor changes in concentrations are commonly interpreted as surrogate
markers of prognosis and PS based on long-term biological variation
would facilitate early identification of clinically significant changes.

A meta-analysis of available biological variation data for cardiac
troponins will be undertaken by the EFLM and eventually be available
on the EFLM Biological Variation Database webpage (personal com-
munication Aasne K Aarsand), including tools for calculating the re-
commended CVA and bias. Until then an overview of biological varia-
tion studies for hs-cTn assays are provided in Table 1. Most studies
suggest a long-term within-subject variation below 15%. Between –
subject variation are dependent on clinical condition with low values
(below 30%) in healthy and substantially larger variations in patients
with chronic disease. Based on this a desirable analytical variation for
hs-cTn assays of approximately 7% and a desirable bias (e.g. useful for
evaluating intermittent bias due to changes in calibrators and reagent
lots) below 9% may be suggested for cardiac troponin concentrations
below the 99th percentile concentration. Assay specific analytical per-
formance data as stated by the manufacturer are reported from the IFCC
Committee on Clinical Applications of Cardiac Bio-Markers [43] and
illustrates that most assays have slightly higher CVA at low concentra-
tions. Even though the manufacturer information provided is useful for
analytical specifications, the IFCC table does not include data on total
uncertainty or bias due to changes in calibrators or reagent lots, which
may be of interest when chronic injury is being monitored. Studies
demonstrate a long-term total analytical uncertainty for hs-cTn assays
in routine laboratories of< 3.5 ng/L with within-series CVA of less than
1 ng/L [28] for concentrations ≤10 ng/L. Of note, these estimates are
slightly higher compared to the most conservative PS that may be
calculated based of biological variation.

6. Is further improvement in analytical performance of hs-cTn
assays clinically useful?

Assays with further improvement in analytical performance, which
are able to measure cardiac troponin concentrations in all healthy in-
dividuals with high precision, may have a potential for further im-
provement in clinical practice. First, such assays will have an even
better signal to noise ratio, making it possible to detect very small in-
creases in cardiac troponin concentrations and potentially reduce the
2–3 h time lag that is currently recommended between symptom onset
and cardiac troponin measurements when NSTEMI is being in-
vestigated. Depending on the country, 15–40% of chest pain patients
are early presenters [44,45], and an assay that could identify myo-
cardial injury after a shorter time-lag would have a potential for
streamlining the work-flow of chest pain patients in the ED compared to
todays practice. Few studies have tested this but there are indications
that the hs-cTnI(sgx) assay from Singulex Clairety System (currently
unavailable on the commercial market) that could measure quantitative
troponin concentrations in nearly 100% of healthy individuals with
high precision, may be able to identify myocardial necrosis with a
shorter time – lag compared to todays assays [46].

Fig. 1. Cumulative percentages of troponin results obtained from the emer-
gency department at Haukeland University Hospital using three different re-
agent lots. The median concentrations of results in the low range (≤20 ng/L)
were 5.53 ng/L (low lot), 6.52 ng/l (intermedium lot) and 7.60 (high lot). Lot
variation mainly affected low concentrations as percentage below 5 ng/L (LoD)
ranged from 18% to 31% while percentage below 52 ng/L (cut off for rule-in)
ranged from 86% to 88%.
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Second, UAP and chest pain of non - cardiac origin may be differ-
entiated by clinical judgement or the use of advanced investigations,
e.g. coronary computer tomography angiography. UAP is myocardial
ischemia with stable troponin concentrations as the coronary arteries
are not completely occluded and no biochemically detectible necrosis
occur. UAP requires similar treatment as NSTEMI while patients with
chest pain of non - cardiac origin may be discharged without further
follow-up. The hourly biological variation of cardiac troponins are quite
low, median within-subject biological variation are 6% and 9% for
cardiac troponin T and I, respectively (Table 1). The delta values cur-
rently determining a significant troponin release in the 0/1 and 0/3 h
protocols (e.g. 3–6 ng/L) are consequently largely decided based on the
assays CVA at low concentration. Assays with improved precision will
diminish the “noise” zone for delta values (see Fig. 2), and possible
identify patients with presently biochemical undetectable myocardial
injury. This could open a possibility to differentiate UAP from patients
with non-cardiac chest pain, which would be of large clinical im-
portance. However, a recent study did investigate if the more sensitive
hs-cTnI(sgx) assay could identify reversible ischemia in patients with
stable coronary artery disease, unfortunately showing disappointing
results [47].

Even if more sensitive assays become available the troponin amount
release during UAP will always be low, as this condition is dominated
by reversible myocardial injury. It is not fully understood how tropo-
nins are released during cardiac injury and it is still debated if re-
versible injury can lead to significant troponin increase [48]. Different
troponin fragments have been detected after acute MI [49,50] but it is
unclear if fragments are released directly from injured cells (before
necrosis) or results from systemic metabolized troponin molecules.
Multiple studies have shown that troponin concentrations may increase
after physical activity. Few studies have characterize the post-exercise
troponin molecules, but one study could not detect intact troponin
molecules after physical activity, only fragments were present [51]. As
physical activity is associated with clear health benefits a common in-
terpretation is that troponin release after activity is physiological and
possible related to reversible injury. The troponin fragments detected
after exercise could therefore be a potential biomarker of reversible
injury. However, similar fragments have also been detected in patients
with end stage renal disease, who have chronic myocardial injury and
an expected poor prognosis [52]. The utility of troponin fragments to
detect or diagnose reversible ischemia occurring during UAP is there-
fore unclear and should be elaborated in future studies.

Third, hs-cTn assays that give measurable concentrations in all in-
dividuals and show low analytical uncertainty may improve our ability
to diagnose and monitor subclinical low-grade myocardial injury even
below the current cut of the 99th percentile of the assay [53,54]. This
would require further improvement aligning analytical performance
closer to conservative estimates for biological variation.

Finally, assays with improved analytical performance will produce
excellent research tools, to the betterment of patient care via an ex-
pansion of our knowledge and the treatment options for acute and
chronic myocardial injury.

7. Conclusion

The analytical performance of hs-cTn assays should be based on the
clinical use of the test and different PS are necessary for diagnosis of
NSTEMI and chronic myocardial injury. PS for NSTEMI may be based
on clinical outcome studies, and current data show that the perfor-
mance for most assays are sufficient for early and rapid identification of
NSTEMI. The efficiency of the protocols, the number of non-coronary
chest pain patients eligible for rule-out, is affected by even slight biases
in calibrator and reagent lots. When hs-cTn assays are used for risk
estimation, long-term biological variation data is most useful for de-
termining the analytical performance needed. A further improvement
in analytical performance of the troponin assays may open newTa
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opportunities for improved efficiency in the ED, better risk estimation
and long-term monitoring of chronic myocardial injury, with significant
research possibilities in various populations.
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