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3. Abbreviations 

BAL: bronchoalveolar lavage 

BR: bronchoscope rinse 

COPD: chronic obstructive pulmonary disease 

CR: catheter rinse 

CT: cryotube  

DADA2: divisive amplicon denoising algorithm 2 

ICS: inhaled corticosteroids 

LLL: left lower lobe 

LUL: left upper lobe 

MC: mock community 

NCS: negative control sample 

OTU: operational taxonomic unit 

OW: oral wash 

PBAL: protected bronchoalveolar lavage 

PBS: phosphate-buffered saline 

PE: paired-end sequencing 

PSB: protected specimen brush 

QIIME: Quantitative Insights into Microbial Ecology  

RLL: right lower lobe 

RML: right middle lobe 

SBS: sequencing by synthesis 

SDS: Salmonella dilution series 

SVL: small volume lavage 

 



 

 

9 

4. Abstract 

Background 

Studies on the lung microbiome face unique methodological challenges tied to the 

low bacterial load of acquired samples and the increased susceptibility to bacterial 

DNA contamination. Contamination may be introduced from i) the upper airways 

during sampling and ii) reagents, kits and the general laboratory environment during 

laboratory processing steps. Few publications exist on validity and reliability of 

applied methods of sampling, laboratory processing and bioinformatics analysis.  

Objectives 

The objective of the thesis was to address some of the methodological issues that 

remain unresolved in the field of lung microbiome research. In the first paper, we 

sought to determine whether protected (via a sterile catheter) bronchoscopic sampling 

techniques would reduce the influence of bronchoscopic carryover from the upper 

airways. In paper II, we examine the impact of laboratory contamination on airway 

samples and explore the expected inverse relationship between sample bacterial load 

and influence of contamination. We also compare different bioinformatic strategies to 

dealing with contamination. In paper III, we sought to determine whether processing 

samples through longer laboratory workflows would increase susceptibility to 

contamination, and to explore impact of choice of 16S rRNA gene variable region 

(V3 V4 or V4) on the presentation of the airways microbiome.  

Methods 

Study samples were collected from participants enrolled in the Bergen COPD 

Microbiome study (short name «MicroCOPD»). Samples included oral washes (OW), 

bronchoscopically acquired protected specimen brushes (PSB), protected 

bronchoalveolar lavages (PBAL), small-volume lavages (SVL) and negative control 

samples (NCS) consisting of PBS used for collection of all samples.   
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Bacterial DNA was extracted using a combination of enzymatic and mechanical lysis 

methods and processing through the FastDNA Spin Kit (MP Biomedicals). Bacterial 

community composition was determined by high-throughput sequencing of the 

bacterial 16S rRNA gene using the Illumina MiSeq sequencing platform. Three 

library preparation setups were included in the thesis, varying in number of PCR 

steps (1- or 2-steps) and target marker gene region (16S rRNA gene V3 V4 or V4): 

Setup 1 (2-step PCR; V3 V4 region); Setup 2 (2-step PCR; V4 region); Setup 3 (1-

step PCR; V4 region). Papers I and II were based on setup 1. Paper III included all 

three setups. Bacterial load was determined by quantitative PCR targeting the 16S 

rRNA gene region V1 V2 (paper II). 

Bioinformatics processing steps were performed using the Quantitative Insights Into 

Microbial Ecology (QIIME) bioinformatic package, versions 1 (papers I and II) and 2 

(paper III). Strategies for decontamination varied across papers and included i) 

keeping samples intact (i.e. do nothing), ii) removing all sequences observed in NCS 

and iii) the removal of sequences identified as contaminants using the Decontam R 

package tools. In paper I, sequences observed in NCS were removed. In paper II, all 

three strategies were applied and compared. In paper III, Decontam was used.  

Results 

Analyses for paper I were based on the underlying assumption that the more similar 

the bronchoscopically acquired specimens (PSB, PBAL and SVL) were the OW 

sample, the greater the influence of upper airway contamination. Between sample 

comparisons were made based on three parameters: i. taxonomy, ii. alpha diversity 

and iii. beta diversity. Across all three parameters, similarity to the OW sample 

decreased in order SVL>PBAL>PSB.  

In paper II, an estimated 10-50% of the bacterial community profiles for the lower 

airway samples (PSB, PBAL) were derived from laboratory contamination. This was 

determined based on comparison to a dilution series of known bacterial composition 

and load. The DNA extraction kit was identified as the main contamination source. 

On comparison of the three decontamination strategies, we found that the Decontam 
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R package provided a balance between keeping and removing sequences found in 

both NCS and study samples.   

In paper III, we found that the number of sequences and ASVs decreased in order 

setup1>setup2>setup3. This appeared to be associated with increased taxonomic 

resolution when targeting the V3 V4 region (setup 1) and an increased number of 

small ASVs in setups 1 and 2. For setups 1 and 2, we interpreted this as a result of 

contamination in the 2-step PCR protocol and sequencing across multiple runs (setup 

1). Analyses of taxonomic composition revealed that genera Streptococcus, 

Prevotella, Veillonella and Rothia dominated all setups, but that relative abundances 

differed. Analyses of beta diversity revealed that while OW samples clustered 

together regardless of number of PCR steps, samples from the lower airways (PSB, 

PBAL) separated. Removal of contaminants identified in Decontam did not resolve 

differences across setups.  

Conclusions 

We show that protected bronchoscopic sampling techniques (PSB, PBAL) may 

provide protection from oropharyngeal carryover and should be the preferred 

sampling technique in future studies (paper I).  

We demonstrate that bacterial load will vary across airway sample types and that 

bacterial contamination from the laboratory will have an increased impact on samples 

of lower bacterial load (paper II). We recommend that estimates of contamination are 

reported in all studies. We also recommend the use of contaminant identification 

tools based on statistical models that limit subjectivity (e.g. Decontam).  

Finally, we demonstrate that differences in number of PCR steps (1- or 2-steps) will 

have an impact on final bacterial community descriptions, and more so for samples of 

low bacterial load (e.g. lower airway samples) (paper III). Our findings could not be 

explained by differences in contamination levels alone, and more research is needed 

to understand the underlying mechanisms contributing to the observed protocol bias.  
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6. Introduction 

Chronic obstructive pulmonary disease (COPD) is a progressive disease of the lower 

airways, characterized by chronic inflammation and airflow obstruction [1]. Much 

research has been directed towards understanding the factors triggering the onset and 

progression of COPD. We have learned that there may be a genetic component (most 

important being alpha-1 antitrypsin deficiency) [2], and that smoking, air pollution, 

and occupational exposures [3] are important risk factors. However, enough 

understanding to enable the development of effective therapies, or the prevention of 

disease development has not been reached using current research methods.  

Advancements in DNA sequencing technologies have however provided us with a 

new angle by which we can study the airways and airway diseases. Through massive 

parallel sequencing of the bacterial 16S ribosomal RNA gene (16S rRNA gene), we 

can establish the type of bacteria present in a sample and their relative abundances. 

The application of sequence-based techniques has already revolutionized our 

understanding of the role of bacteria in the lower airways – the biggest revelation so 

far being that the lungs are not sterile, even in healthy individuals [4]. Research 

efforts have since this newfound understanding been directed towards finding a 

potential link between the bacterial communities of the airways and the development 

and progression of disease, COPD being most studied. Progress in this relatively new 

field of lung “microbiome” research has in large been characterized by an urge to 

rapidly publish data comparing healthy and diseased states. Few publications 

however exist on validity and reliability of applied methods of sampling, laboratory 

processing and bioinformatics analyses.  

The aim of the current PhD work is to address some of the methodological issues that 

remain unresolved in the field of lung microbiome research. In the following 

introductory sections (6.1 - 6.3), the general workflow for generating data on the 

bacterial component of the airway microbiome is described from steps of sampling, 

to library preparation for high-throughput sequencing, and finally bioinformatics 

analyses. The focus of discussion will be on inherent sources of bias and error, many 



 

 

14 

of which pertain to all fields of microbiome research regardless of site being studied. 

In the final introductory section (6.4), specific challenges related to the low bacterial 

load of the lower airways, and the resulting increased susceptibility to contaminating 

bacterial DNA is discussed.  

In the literature, there is some inconsistency in the definition and usage of the terms 

“microbiome” and “microbiota”, and the terms are often used interchangeably [5]. 

Herein, the term “microbiota” is used to describe the microorganisms that make up a 

sampled community. “Microbiome” is used to describe the collection of genomes 

from these microorganisms. As the basis of the analyses for the current PhD work is 

the bacterial 16S rRNA gene, the usage of the terms “microbiome” and “microbiota” 

is limited to bacteria.  

6.1 Sampling the lower airway microbiome 

Obtaining valid (uncontaminated) lower airway microbiome samples is challenging. 

First of all, the lower airways are relatively inaccessible. Although percutaneous 

procedures exist, most sampling procedures must involve the passage of a sample 

(e.g. sputum) or sampling device (e.g. bronchoscope) through the upper airways. 

Regardless of route of sampling, which may be performed via the oral or nasal 

passage, contamination from the upper airways is more or less inevitable. Adding to 

the severity of the contamination issue is the difference in bacterial load between the 

upper and lower airways, which has been measured to be several logs greater in the 

upper airways [6]. Therefore, even minute amounts of carryover from the upper to 

lower airways during sampling may be enough to confound the analyses of a lower 

airway sample – this effect has however not been thoroughly studied in the literature. 

Furthermore, natural processes connecting the upper and lower airways (e.g. 

microaspiration, mucosal dispersion, inhalation), lead to an expected overlap (or 

similarity) between the sampled microbiota of the two sites [6, 7]. Recognizing when 

a sample is contaminated or not remains a challenge.  
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Despite the aforementioned issues, the field of lung microbiome research has pushed 

forward and studies have been published using a wide range of sampling techniques - 

often with little concern about the potential for upper airway contamination beyond 

its mention as a potential weakness in the discussion section of their reports [8]. The 

degree to which different sample types are of sufficient quality for microbiome 

analyses, particularly in terms of minimizing the influence of upper airway 

contamination, has not been thoroughly evaluated in the existing literature. A 

discussion on the most commonly used sampling techniques for studying the lung 

microbiome (sputum and bronchoscopy) is given below.   

6.1.1 Sputum sampling 

A priori, sputum samples are the most vulnerable to upper airway contamination. 

During the sampling procedure, sputum (i.e. mucus) is coughed up from the lower 

airways and expelled from mouth and into a container [9]. By passage through the 

mouth, the sample is in direct contact with the bacterial communities of the upper 

airways, rendering contamination more or less inevitable. Despite this, many 

researchers have still opted for sputum sampling. It is inexpensive, non-invasive, 

repeatable and used routinely in the clinical setting. In addition, samples can be 

readily acquired from most subjects, irrespective of age or health status. The debate 

on the validity of microbiome studies based on sputum sampling, however persists 

[10].   

Besides upper airway contamination, several other factors must be considered when 

sampling sputum. First of all, sputum can be collected either spontaneously or when 

sputum production is low, or the procedure is difficult for the subject (e.g. children), 

it may be induced [9]. Sputum induction involves the inhalation of nebulized 

hypertonic saline solution that triggers mucus secretion and irritation, leading to 

coughing. Induced sputum may be collected at different times. Based on the analysis 

of cell (e.g. neutrophils, alveolar macrophages) and protein (e.g. mucin, SP-A) 

composition in studies on inflammatory markers, it has been proposed that earlier 

samples are representative of the proximal airways, whereas later samples are 

representative of the distal airways (i.e. alveoli) [9, 11]. Spontaneous sputum in turn, 
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is most likely representative of the proximal airways. Provided one accepts that 

different bacterial populations are found within the different regions of the lungs (e.g. 

as proposed by the adapted island model of lung biogeography [12]), one may expect 

that different microbiota populations will also be represented when sampling by one 

or the other technique (spontaneous or induced) or when samples are collected at 

different time points (induced). It is currently unclear whether spontaneous and 

induced samples can be used interchangeably in studies of the airway microbiome, 

and studies addressing the issue have been conflicting [10, 13]. 

6.1.2 Bronchoscopy sampling 

Sampling by bronchoscopy is currently considered the gold standard in the lung 

microbiome field. Bronchoscopy, or flexible video bronchoscopy is an endoscopic 

technique for examination and sampling of the airways and lungs. The endoscope 

(i.e. bronchoscope) is inserted through the mouth or the nose, and under local or 

general anaesthesia passed through the vocal cords and into the lower airways. The 

flexible bronchoscope has a diameter of 2-7 mm and contains a working channel that 

is used for instillation of fluids (medication, sampling fluids), as well as insertion of 

various instruments for sampling or delivering treatment in the airways and lungs. A 

number of different sample types can be collected through the bronchoscope 

including endo- or transbronchial biopsies, bronchoalveolar lavages (BAL) and 

specimen brushings (SB). BAL and SB are most commonly used for sampling the 

microbial communities of the alveolar space and conducting airways, respectively.  

Sampling BAL involves instilling a set volume of liquid into the lower airway region 

to be sampled, and then suctioning the liquid back through the bronchoscope working 

channel. When sampling BAL, an estimated 1/40 of the total lung surface area (i.e. 

17500 cm2) is covered [14]. The amount of liquid instilled may vary according to 

both the subject being examined and what the examiner is looking for. The amount of 

volume returned is lower than that instilled and may differ between study subjects as 

a natural consequence of anatomical variations and diseases of the lung and airways. 

The manner by which BAL sampling is performed has not been standardized in 

studies of the lung microbiome. BAL may be fractionated, for example by instilling 
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2x50 mL liquid in turn from the same segment. The resulting «BAL return 1» and 

«BAL return 2» may be pooled together or kept separate. SB sampling involves 

passing a specimen brush through the working channel to the sampling point and 

brushing the targeted region. SB sampling typically covers 1 cm2 of the airway 

mucosa - i.e. a significantly smaller area than that which is covered when sampling 

BAL.  

Sampling by bronchoscopy (whether by BAL or SB) comes with the added advantage 

of enabling a more targeted sampling than sputum. This however means that also the 

«biogeography» of the lower airways must be considered when deciding on an 

appropriate sampling scheme. Dickson et al. [12, 14] introduced “the adapted island 

model of lung biogeography” to explain differences in microbiota that one may 

expect to find across lung sites in health. The model assumes the upper airways are 

the main source community for the lower airways, and that upper-lower airway 

similarity will decrease as one moves further down the lower airways. Further the 

model assumes that bacterial communities in the lung do not replicate and that the 

bacterial composition at any one site is determined by processes of immigration (e.g. 

inhalation, microaspiration and mucosal dispersion) and elimination (e.g. the 

«mucociliary escalator», cough, local host immune cells) [14]. Particulary illustrative 

was their observation that brushings from the right upper lobe were more similar to 

the upper airways, than that from the left upper lobe [12]. The authors explained these 

findings as a likely result of differences in the angle by which the left and right main 

bronchi leave the trachea; the sharper upward angle of the left main bronchus appears 

to direct microaspirated bacteria down the right main bronchus. Importantly, the 

authors also conclude that the observed variation found across intrapulmonary sites 

within one subject, is less than that observed across different subjects – the take home 

message being that in health multiple sampling of different sites within the lungs may 

not be important.  

The diseased lung however is a different matter. Willner et al. [15] show in their 

study that variation exists between different sites in the CF lung. Erb-Downward et 

al. [8] found the same in the study of the COPD lung. These changes are likely a 
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result of regional differences in the lung that may occur in the diseased state, and that 

hinder processes of elimination and result in favorable conditions for growth of 

certain bacteria. Thus, particularly in studies including subjects with disease, it may 

be important to sample multiple sites within the lungs.  

6.1.3 Bronchoscopy and upper airway contamination 

Athough a more «protected» approach than sampling sputum, bronchoscopy is not 

without risk of contamination from the upper airways. To reach the lower airway 

sampling point, the bronchoscope must pass through the upper airways, either via the 

oral or nasal route. Both routes are heavily populated with distinct upper airway 

microbiota [4, 6, 7, 16, 17], and both the outside of the scope and the inner working 

channel may carry with it contamination from the upper airways.  

To minimize the risk of bronchoscopic carryover from the upper to lower airways, 

several different preventative measures have been observed in the literature. In some 

studies participants have been instructed to rinse their mouths with antiseptic 

mouthwash (e.g. Listerine) prior to sampling [7, 18, 19]. In other studies, 

investigators have attempted to avoid the high bacterial load of the oral cavity by 

sampling via the nasal rather than the oral route [8, 20, 21]. However, as described in 

more detail later, the common passage through the supraglottic region, leaves the 

effect of choice of sampling route questionable. Most studies report that they avoid 

suctioning prior to passage through the vocal cords [6, 7, 12, 18, 20]. However, this 

likely provides little protection against the influence of contamination from the 

outside of the bronchoscope. Most studies also report that when sampling multiple 

lower airway sites, care is taken not to retract the bronchoscope back up through the 

upper airways (i.e. above the vocal cords) [7]. Furthermore, several studies have 

performed SB sampling through a sterile wax-plugged catheter passed through the 

bronchoscope working channel. The resulting sample is commonly referred to as a 

“protected” specimen brush (PSB), reflecting findings from a culture-based study 

indicating that sampling via a sterile inner catheter (preferentially with a plug at the 

scope tip) provides protection from contaminants found within the scope channel 

[22]. These effects have however not been thoroughly studied in the context of the 
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more sensitive culture-independent methods used in microbiome studies. The 

MicroCOPD study [23] (for which the work for the thesis is a part of), is the only 

study for which protected bronchoalveolar lavage (PBAL) sampling has been 

performed. 

Few studies on the lung microbiome have directly examined the relative contributions 

of contamination introduced from the outside and/or inside of the bronchoscope 

working channel – for the studies that have attempted to do so, conclusions have been 

contradicting. Charlson et al. [6] sought to examine the contamination picked up by 

the bronchoscope after passage through the upper airways via the oral route. They 

passed the bronchoscope to the supraglottic region (i.e. above the vocal cords) and 

back. Samples were collected from the outside bronchoscope tip and the inner 

bronchoscope working channel. They found that their samples were indistinguishable 

from oral (OW) and oropharyngeal (OP) samples and lower airway samples (BAL 

and PSB), but distinct from nasopharyngeal (NP) and negative control samples [6]. 

Their results therefore confirmed that both the outside and the inside of the 

bronchoscope working channel carried contaminants from the upper airways that 

could confound their analyses of the lower airways. Dickson et al. [14] examined the 

influence of bronchoscopic carryover when sampling PSB via the oral route. They 

passed the bronchoscope to just below the vocal cords, where they performed PSB 

sampling of the lumen space. In this study, the samples were indistinguishable from 

negative control samples and the authors concluded that bronchoscopic carryover had 

minimal influence on the analysis of their lower airway samples [14]. The two studies 

are however not directly comparable. While Charlson et al. actively sampled the 

outside and inside of the bronchoscope channel, Dickson et al. only sampled the 

airway lumen and an eventual coating of biofilm that the protected brush comes near 

when the wax-plug of the PSB is ejected. When actual sampling of the mucosal wall 

is performed, there is likely a greater risk of direct contact between the bronchoscope 

tip and the sampled microbiota. Thus, while protected sampling appears to provide an 

efficient barrier against contaminants found within the working channel, the degree of 

protection against contaminants found on the outside of the bronchoscope remains 

unclear.  
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To validate their studies, investigators have used indirect methods to show that their 

lower airway samples are authentic (i.e. uncontaminated) representations. A common 

argument is based on the expectation of a “dilution” effect in serially sampled BAL 

[6, 7, 14, 20, 24]. The assumption is that if the bacterial communities detected in the 

lower airways are a result of upper airway contaminants having been brought down 

by the bronchoscope, the similarity of the samples to the upper airways will decrease 

with each successive sampling event. Charlson et al. [6] used measures of bacterial 

load to conclude on the degree of upper airway carryover by the bronchoscope. They 

observed a dilution effect between the first and second BAL return collected from the 

same wedged position at sampled site A of the right middle lobe (RML). When 

comparing BAL return 2 (site A) with a third BAL collected from an adjacent site B 

(also RML), they found similar levels of bacteria. They concluded that upper airway 

carryover mainly influenced the first BAL return.  

Not all studies have observered a dilution effect, and this has been used as evidence 

that upper airway contamination is negligible. Segal et al. [20, 25] and Bassis et al. 

[7], for instance did not observe a dilution effect in their respective studies when 

comparing BAL samples collected from the lingula and RML. In contrast to the 

previous study, where serial BAL was collected from the same wedged position, 

herein the samples compared were collected from different lungs (lingula and RML). 

An alternative explanation for the lack of an observed dilution effect may therefore 

be that the dilution effect was masked by the introduction of intrapulmonary 

contamination when repositioning the scope for sampling of the second site. If we 

accept the model of bacterial topography in the lungs as presented by Dickson et al. 

[14], the pulmonary site for which lung microbiota can be expected to be the most 

similar to the upper airways is the carina. When sampling across the left and right 

lungs, it can therefore become difficult to distinguish between carryover from the 

upper airways and intrapulmonary contamination – and consequentially so, difficult 

to conclude on the presence or lack of a dilution effect. In addition as described 

earlier, Dickson´s adapted island model of lung biogeography [12], predicts that 

microaspirated bacteria will be directed down the right main bronchus rather than left 
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bronchus. Thus we can expect a greater inherent similarity of microbiota, in terms of 

composition and load, between the upper and lower airways when sampling the RML 

than when sampling the lingula. Based on theoretical models, we are therefore 

reminded that observations of a dilution effect should perhaps be limited (at least) to 

samples from the same lung.  

A second argument commonly used to show that samples are uncontaminated by the 

upper airways is the observation that similar community descriptions are obtained 

when sampling via the oral or nasal route [20, 21]. Since these two sites hold distinct 

microbiotas, the argument is based on the expectation that if contaminated, the 

community descriptions should reflect one or the other of these two source 

communities. However, little is mentioned about the fact that both the nasal and oral 

cavities funnel to a common passage located above the vocal cords at the entry to the 

lower airways (i.e. the supraglottic region). In theory, one may expect that this region 

will hold bacterial communities more similar to the oral cavity than the nasal cavity 

due to an increased flow of saliva relative to nasal fluid (in health) [7]. Thus, an 

alternative interpretation of the observed similarity of lower airway community 

descriptions when sampling by either nasal or oral route is that the contamination 

signal reflects the supraglottic region, which in turn likely reflects a composite signal 

from both nasal and oral sites – and is likely dominated by the communities that 

resemble that found in the oral cavity. 

In summary, sampling the lower airways is difficult due to the potential cofounding 

issue of contamination from the upper airways. As described, different studies have 

come to different conclusions regarding the impact and degree of upper airway 

carryover being brought down by the bronchoscope during sampling. It can perhaps 

be agreed upon that protected sampling procedures (e.g. PSB) appear to provide an 

efficient barrier to upper airway carryover from within the scope channel. Despite 

this, no study has examined the benefits of sampling protected BAL (PBAL) in 

studies of the lung microbiome.  
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6.2 Amplicon-based marker gene analyses  

Amplicon-based marker gene sequencing workflows are most common in studies of 

the bacterial airway microbiome. Although much variation exists across protocols, 

most all laboratory workflows fit into the general framework outlined in Figure 1.  

There are two key pieces of information that are obtained using amplicon-based 

marker gene analyses targeting the 16S rRNA gene. First of all, we are able to 

establish the type of bacteria that are found in the sampled community (i.e. 

membership), as each amplicon sequence will reflect a bacterial taxa which can be 

identified when matched up against a database of known sequences. Second, we are 

able to determine the relative abundances of each of these members, based on the 

relative proportions of the different amplicons in the amplicon pool.  

The accuracy of amplicon-based marker gene analyses, will depend on the degree to 

which information regarding both membership and relative abundance is accurately 

transferred through each step of the laboratory workflow – including all steps of 

DNA extraction, library preparation for sequencing and sequencing itself. It is well 

established that both error and bias may be introduced at multiple steps within this 

framework. Herein, errors are defined as inaccurate representations of the marker 

gene sequence. Bias is used to describe inaccurate representations of the relative 

abundances of bacterial community members [26].  

In the following section, each step outlined in Figure 1, will be described in turn, with 

emphasis on methodological pitfalls along the way that may introduce error and/or 

bias to the sequencing data. In section 6.3 current bioinformatic approaches to dealing 

with some of these issues will be reviewed.  

 

 

 



 

 

23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re 1

. A
m

p
lico

n
-b

a
sed

 m
a
rk

er g
en

e seq
u

e
n

cin
g
 w

o
rk

flo
w

. B
acteria

l D
N

A
 is ex

trac
ted

 fro
m

 th
e sa

m
p
led

 

co
m

m
u
n
ity

 - h
e
re co

m
p

rised
 o

f th
re

e d
ifferen

t b
acteria p

resen
t at d

iffe
ren

t rela
tiv

e ab
u
n
d
an

ce
s (b

lu
e>

red
>

o
ran

g
e) (step

 

A
). Id

eally
, th

e p
ro

to
co

l fo
r D

N
A

 ex
tractio

n
 w

ill en
su

re th
a
t b

acte
ria

l D
N

A
 is ex

tracted
 w

ith
 eq

u
al efficien

cy
 a

cro
ss a

ll 

th
ree co

m
m

u
n
ity

 m
e
m

b
ers. T

h
is is im

p
o

rtan
t in

 o
rd

er to
 o

b
tain

 accu
rate rep

resen
tatio

n
 o

f b
o

th
 m

em
b
ersh

ip
 an

d
 

ab
u
n
d
an

ce. T
h
e targ

e
t m

ark
e
r g

en
e to

 b
e an

aly
ze

d
 is th

en
 a

m
p
lified

 fro
m

 th
e g

en
o

m
es o

f a
ll b

ac
te

rial co
m

m
u
n

ity
 

m
em

b
ers b

y
 p

o
ly

m
erase ch

a
in

 reac
tio

n
 (P

C
R

) u
sin

g
 u

n
iv

ersal P
C

R
 p

rim
ers (step

 B
). T

h
e a

m
p
lified

 P
C

R
 p

ro
d
u
ct is 

referred
 to

 as an
 a

m
p
lico

n
. O

p
tim

al p
rim

ers a
re n

eed
ed

 to
 en

su
re th

at rep
resen

tatio
n
 o

f th
e sa

m
p
led

 co
m

m
u
n

ity
 is 

m
ain

tain
ed

 a
lso

 at th
is stag

e. In
 th

e sa
m

e o
r a se

p
arate P

C
R

, sh
o
rt D

N
A

 seq
u
en

ces (h
erein

 re
ferred

 to
 as in

d
ex

e
s) are 

ad
d
ed

 to
 th

e en
d
s o

f th
e a

m
p
lico

n
s. In

d
ex

 seq
u
e
n
ces are th

e sam
e fo

r all seq
u
en

ce
s in

 a g
iv

en
 sa

m
p
le; im

p
o

rtan
t b

ecau
se 

am
p
lico

n
 lib

raries fro
m

 all sa
m

p
les to

 b
e seq

u
en

ced
 o

n
 th

e sam
e seq

u
en

cin
g
 ru

n
 are p

o
o

led
 to

g
e
th

er p
rio

r to
 seq

u
en

c
in

g
 

(n
o
t sh

o
w

n
). P

o
o
led

 a
m

p
lico

n
 lib

raries a
re fin

ally
 seq

u
en

ced
 u

sin
g
 a h

ig
h

-th
ro

u
g
h
p
u
t seq

u
en

cin
g

 p
latfo

rm
 (step

 C
). T

h
e 

in
d
ex

 seq
u
en

ces ad
d
ed

 in
 step

 B
, allo

w
 fo

r reassig
n
m

en
t o

f ea
ch

 seq
u
en

ce to
 th

e sa
m

p
le fro

m
 w

h
ich

 it o
rig

in
a
ted

 (i.e. 

sam
p
le d

e
m

u
ltip

lex
in

g
).  



 

 

24 

6.2.1 DNA extraction 

The DNA extraction step (Figure 1, step A), has been recognized as one of the main 

sources of bias in the general microbiome field. While protocols for DNA extraction 

may vary in many regards, most important is perhaps the chosen method for bacterial 

cell lysis, for which there are many different examples in the literature (e.g. 

mechanical [6, 12], enzymatic, chemical or a combination [27]). Differences in cell 

wall structure across bacteria will render different types of bacteria more or less 

resistant to the various methods of cell lysis. If these differences are not accounted 

for, we can obtain a biased picture of the sampled community, already at this first 

step of the sequencing workflow.  

Peptidoglycan is an important structural component of the bacterial cell wall, and the 

main target in most cell lysis methods [28]. Peptidoglycan consists of chains of 

alternating N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) sugar 

derivatives [28]. These chains are in turn linked together via short peptides. In the 

broadest of terms, we can distinguish between two groups of bacteria classified 

according to cell wall structure - the gram-positive and the gram-negative bacteria. 

The gram-positive bacteria have a thicker peptidoglycan layer than the gram-negative 

bacteria and therefore the former are considered more resistant to most cell lysis 

procedures. However, depending on choice of lysis method, also more subtle 

differences in peptidoglycan structure may be important. When using enzymatic lysis 

methods for instance, small differences in peptidoglycan structure can render some 

bacteria more or less vulnerable to the lytic activity of a particular enzyme [29, 30]. 

An example of this involves the commonly used enzyme lysozyme, which exerts its 

lytic activity by cleaving the glycosidic bond between NAG and NAM. For bacteria 

with O-acetylated NAM (e.g. Neisseria gonorrhoeae, Staphylococcus aureus), 

lysozyme is unable to bind sufficiently to the peptidoglycan substrate [30]. Bacteria 

with this modification are therefore resistant to treatment with lysozyme and other 

enzymes are needed (e.g. mutanolysin and lysostaphin [29]).  

To ensure accurate representation in terms of both membership and abundance, 

protocols for DNA extraction should ideally be tailored to the bacterial communities 
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found in the samples under study. This however requires a priori knowledge of the 

bacterial communities in these samples – this is knowledge we usually do not have, 

and particularly not for the lower airways. It might therefore be tempting to use the 

whole arsenal of cell lysis tools available in order to secure accurate community 

representation. However, due consideration must also be made towards maintaining 

the integrity and yield of the extracted DNA, for which will be processed through a 

number of additional protocol steps post DNA extraction (Figure 1, steps B and C).  

DNA integrity can be greatly impacted by choice of lysis method. When employing 

mechanical lysis methods there is an increased risk of DNA shearing and 

fragmentation. Because genomic DNA is released at an earlier stage of DNA 

extraction from the more easy-to-lyse gram-negative bacteria, these community 

members are likely more vulnerable to fragmentation than gram-positive bacteria. 

The main concern in amplicon-based microbiome studies, is that the fragmented 

DNA will increase the formation of recombinant amplification products (i.e. 

chimeras) in downstream steps of PCR (Figure 1, step B) [31]. As will be discussed 

further in a later section, chimeras represent a major source of error in microbiome 

analyses workflows because they may be interpreted as novel sequences (i.e. 

bacteria). Maintaining the integrity of the isolated DNA is therefore important for 

accurate representation of community composition, and choice of cell lysis method 

must carefully balance the goal of equal extraction efficiencies and DNA integrity 

against one another.  

In addition, concentration of DNA obtained after DNA extraction (i.e. DNA yield) is 

variable across DNA extraction methods [29, 32]. Although it may seem reasonable 

that obtaining higher DNA yield, will result in better representation of community 

membership by also increasing signal from rare taxa, studies have shown that 

increased DNA yield does not necessarily equate to better community representation 

[29]. However, when processing low biomass samples the issue of contamination 

becomes relevant and increased DNA yield may be particularly important [32]. The 

discussion on low biomass samples will be elaborated on in section 6.4. 
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6.2.2 Library preparation for sequencing 

After DNA extraction, the next step in the amplicon-based marker gene sequencing 

workflow is library preparation for sequencing (Figure 1, step B). As described 

earlier, this entails PCR amplification of the target marker gene to be sequenced and 

the addition of index sequences necessary for sample multiplexing.  

Marker gene amplification  

The bacterial 16S ribosomal RNA (16S rRNA) gene, is the most commonly targeted 

marker gene in amplicon-based microbiome studies. The approximately 1500 base 

pair long gene encodes a structural RNA component of the bacterial ribosome, and is 

a critical component of the cellular process of protein synthesis (i.e. translation of 

DNA to protein). The vital function of its gene product means that the 16S rRNA 

gene is found in all bacteria – and thus it serves as the perfect marker gene for 

capturing the full collection of bacteria in the sampled community [33, 34]. Although 

highly conserved, along its full length, the 16S rRNA gene consists of alternating 

variable and conserved sequences [33, 35, 36]. Conserved sequences are similar 

across all bacteria. The variable regions (for which there are nine (V1-V9)), on the 

other hand vary enough to allow bacterial identification to genus and sometimes even 

species level [37].  

The popularity of the 16S rRNA gene as a target in microbiome studies comes in part 

from its gene structure enabling optimal use of current molecular tools. Current high-

throughput sequencing technologies have a limitation on the maximum length of the 

DNA that can be sequenced; the power of high-throughput sequencing technologies 

lies in the large number of sequences that can be sequenced simultaneously, not the 

length of each of these sequences. At the time of writing this is approximately a third 

of the full-length 16S rRNA gene (approximately 600 bp). The structure of the 16S 

gene is convenient as “universal” PCR primers targeting the conserved regions within 

the gene allow for isolation and amplification of one or more of the shorter variable 

region(s) within the gene from (in theory) all bacteria in the sampled community. The 

length of these shorter amplicons is suitable for sequencing, and importantly have 
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been shown to be as informative as the full length sequences [38]. It is however 

important to note here that the optimal choice of target gene region has not been 

agreed upon, and some variation in results can occur based on choice of target 

variable region.  

Indexing 

Indexing is a method by which each amplicon is given a label or “address” sequence 

that links it back to the sample from which it was PCR amplified. The index sequence 

is attached to the amplicons during PCR, by their inclusion in PCR primer sequences. 

Indexing is necessary because amplicon libraries from all samples to be sequenced on 

the same sequencing run are mixed together in the final stages of library preparation 

prior to sequencing. A more detailed description is given below. 

Figure 1 is a simplified representation of a typical library preparation workflow and 

shows steps as it occurs for one sample. In practice, this is usually performed for 96 

samples at a time, using 96-well PCR plates. The final step of library preparation 

involves combining aliquots from all 96 samples to generate one sample that is 

further processed through the sequencing protocol (i.e. multiplexing). Post 

sequencing, sequences are assigned back to their samples via the unique sample 

specific “index” sequence(s) that were added to each amplicon during PCR steps of 

library preparation (i.e. demultiplexing) [39, 40].  

As described in the Figure 1 text, index sequence(s) can be added during the same 

PCR step for which the target marker gene is amplified (i.e. 1-step PCR protocol) or 

during a separate PCR dedicated to the process of indexing (i.e. 2-step PCR protocol). 

Most common has been the use of a 1-step PCR protocol for which PCR primers 

include both the marker gene targeting sequence and the index sequence. Notably, the 

supplier of the most commonly used sequencing platform (Illumina), have chosen to 

base their commercial protocol for microbiome analyses on a 2-step PCR approach. 

Index sequences can be added to only one end of the amplicons (i.e. the single 

indexing approach) or to both ends (i.e. the dual indexing approach). When the dual 
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index approach is used, the design can be either combinatorial or non-redundant. The 

combinatorial approach takes advantage of the fact that relatively few primers are 

needed for multiplexing many samples. For example in the 96 sample setup, a total of 

8 forward and 12 reverse primers with unique indexes is sufficient for multiplexing 

96 samples.  

Bias and error during library preparation 

Post-sequencing analysis of bacterial community composition is built on the 

assumption that the pool of 16S amplicons generated during library preparation is an 

accurate representation of the original sample, in terms of both bacterial membership 

and abundance. In Figure 1 step B, the relative proportion of amplicons from each of 

the three bacteria perfectly reflects the relative proportions of these bacteria in the 

sampled community. However, in practice the PCR is not perfect in this regard and 

several factors may contribute to the introduction of bias and error.  

PCR primer bias is a problem that has attracted a lot of attention because of the 

inability to correct for this bioinformatically. Recall that “universal” PCR primers 

used in microbiome studies are designed to target conserved regions within the 16S 

rRNA gene – the designation “universal” implies that the primers are able to target all 

bacteria in the sampled community with equal efficiency. The issue of primer bias 

arises because the conserved regions are in fact not 100% similar (or conserved) 

across all bacteria [26, 36]. Preferential amplification, and hence a biased 

overrepresentation, of gene sequences for which the conserved region more closely 

matches the primer sequences is a general concern in microbiome studies. 

In the design of “universal” primers for amplification of all bacterial members in the 

sampled community, sequence variability is somewhat accounted for by the use of 

degenerate primers. Degenerate primers consist of a mixture of primers that vary only 

at the specific base positions that are less conserved. However, the use of degenerate 

PCR primers does not completely alleviate the issue of primer bias. First of all, it is 

not certain that variability across all bacterial genomes is accounted for. Second, is 

the issue of “GC content”. In DNA, the hydrogen bonding between guanine (G) and 



 

 

29 

cytosine (C) (3 hydrogen bonds) is stronger than that between adenine (A) and 

thymine (T) (2 hydrogen bonds). Thus the higher affinity of PCR primers with G or C 

to its target template sequence, may result in the preferential amplification of genome 

targets with GC rich primer binding sites [41]. Thus, despite the use of degenerate 

universal primers, the issue of primer bias remains.  

In addition to PCR primer bias introduced as a result of the marker gene targeting 

sequence, there is the question of the influence of additional overhang sequences such 

as Illumina adaptor sequences and index sequences. It is not understood whether the 

use of longer primer sequences associated with the 1-step PCR protocol may interfere 

with amplification of the target marker gene when compared to the 2-step PCR 

protocol, that separates marker gene amplification and indexing [42].  

Besides PCR primer bias, inherent differences in 16S rRNA gene copy numbers 

across bacterial genomes may also lead to a biased representation of the sampled 

community. The ribosomal RNA operon (rrn), which holds the 16S rRNA gene, is 

often found in multiple and variable copy numbers across bacterial taxa – copy 

numbers typically range from 1 to 15 copies per genome [43]. Bacterial genomes 

with higher marker gene copy numbers may be overrepresented in the pool of 

amplicons generated after PCR amplification. In downstream analyses, this may 

result in a false impression that bacteria which are low in relative abundance in the 

sampled community, but contain high marker gene copy numbers, predominate. 

Further complicating matters is that sequence variation may be found between the 

16S rRNA gene copies found even within the same bacterial genome – in the 

actinomycete Thermobispora bispora for example, 6.4% sequence variation has been 

found between two 16S rRNA copies [44]. When sequenced, this variation may be 

interpreted as originating from different bacteria, inflating measures of diversity 

within the community. 

While, the issues of primer bias, GC content and copy number variation discussed 

above are examples of factors that may introduce bias (i.e. skew in relative 

abundances), other factors may introduce errors to the sequencing data (i.e. 
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misrepresentation of the sequence itself). Erroneous sequences are a concern because 

they are often difficult to identify and distinguish from true sequences. If not 

corrected for, erroneous sequences may even be interpreted as originating from other 

bacteria than those which are present in the sampled community – thus introducing 

false positives to the study. Two types of erroneous sequence are commonly 

described in the literature – that introduced by the polymerase during PCR and 

chimeras. The impact of polymerase incorporated errors vary according to DNA 

polymerase, but an estimated error rate of 1 substitution per 105-106  bases can be 

expected [26]. Bioinformatic approaches to dealing with such misincorporated bases 

are limited and pose a particular challenge when performing post-sequencing quality 

filtering steps, as will be discussed in section 6.3.2.  

Chimeras, represent another type of erroneous sequence. Chimeras are mixed PCR 

products derived from two or more parent sequences found within the sampled 

community - resulting in so-called “bimeras” or “multimeras”, respectively. They 

may form between sequences originating from different bacterial genomes but also 

from copy variants found within the same genome [45]. The rate of chimera 

formation has been reported to be as high as over 30% in some studies [46, 47]. Even 

within well curated public repositories, it is assumed that approximately 5% of the 

sequences are chimeras [35]. Chimeras form as a result of mistakes during PCR and 

several mechanisms have been proposed. Recall that PCR amplification is performed 

in cycles, consisting of the following three steps: i) template denaturation, ii) primer 

annealing and iii) extension. If the extension step is terminated prematurely, 

incomplete PCR products may form that contain both the universal primer sequence 

and sequences specific to the 16S variant for which the primer annealed. In the next 

PCR cycle, these may behave as primers for amplification of other 16S variants, 

resulting in the formation of mixed PCR products (i.e. chimeras). Wang and Wang 

[46] were able to show that by using longer extension times, the frequency of chimera 

formation decreased, providing support for this mechanism. Another perhaps less 

frequent mechanism of chimera formation, is that which results from damaged DNA 

templates. As discussed earlier, harsh DNA extraction procedures (e.g. bead beating) 
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are required for efficient lysis of some bacteria, and this may result in DNA breakage 

and fragmentation. During the extension step of PCR, an encountered break in the 

DNA template may result in the “jumping” of the incompletely extended primer to 

another template, again resulting in a mixed PCR product or chimera [31]. Several 

bioinformatic tools for identification and removal of chimeras have been developed, 

and will be discussed further in section 6.3.4.  

6.2.3 High-throughput sequencing 

The final step in the amplicon-based marker gene sequencing workflow is high-

throughput sequencing of the amplicon libraries (Figure 1, step C). While a number 

of different sequencing platforms exist (e.g. 454, PacBio, Illumina), each with own 

characteristic error patterns, herein the focus will be on the most commonly used 

platform – the Illumina MiSeq.  

A description of the MiSeq sequencing process is first in order. All sequencing steps 

are performed on an Illumina flow cell, which may be described simply as a glass 

surface covered with two types of short DNA sequences (i.e. oligonucleotides). The 

oligonucleotides are attached to the flow cell surface and are complementary in 

sequence to the Illumina adapters found at the ends of the amplicon libraries. These 

adapters were added during library preparation steps (Figure 1, step B). 

Before the actual sequencing can begin, a preparatory step referred to as “cluster 

generation” must be completed. During this process, the amplicon template DNA 

libraries (denatured to single strands in the final steps of library preparation), are first 

attached to the Illumina flow cell surface via complementary base pairing to the 

oligonucleotides that are attached to the flow cell. Each bound DNA fragment is then 

amplified via so-called bridge amplification PCR, to generate clusters consisting of 

approximately 1000 copies of the amplicon template DNA. After successful cluster 

generation, the flow cell consists of millions of distinct clusters, evenly spaced out 

across the flow cell surface, with each cluster representing an amplicon from the 

original pooled library.  
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Sequencing is then performed using an approach termed sequencing-by-synthesis 

(SBS). In short, sequences are “read” by building the strands complementary to the 

fragments that make up each cluster – one base at a time. The process is also carried 

out simultaneously for all clusters spread out across the flow cell - hence the term 

massive parallel sequencing used for the technology. Sequencing begins with the 

addition of sequencing primer, which marks the start position for the sequencing 

reads. During each cycle of sequencing, four fluorescently labeled nucleotides (A, T, 

C, G) with reversible terminator labels, are allowed to flow across the flow cell 

surface. The appropriate nucleotide binds to the strand being synthesized through 

complementary base pairing with the template DNA fragments that make up each 

cluster. The cumulative fluorescent signal generated from each of the fragments 

within a cluster is then recorded, and used to determine the base call for that cluster. 

The fluorescent reversible terminator labels are then removed, and the process repeats 

itself until the pre-programmed number of cycles have been completed.  

The accuracy of the MiSeq sequencing process is determined in large by so-called 

phasing and pre-phasing events described hereafter [48]. Recall that for each cycle of 

sequencing, base calls are determined from the signal collected from all identical 

fragments that make up a particular cluster. The signal intensity is therefore 

dependent on the simultaneous incorporation and detection of the same nucleotide 

(i.e. base) across all fragments within a cluster. However, the chemistry is not perfect, 

and for each cycle it is expected that for a small fraction of the fragments, sequencing 

will either slow down (phasing) or progress ahead (pre-phasing) of the rest of the 

fragments. Phasing may for example result if the terminator label is not removed after 

a completed cycle. In turn, pre-phasing may result if a nucleotide lacks the terminator 

label, enabling the incorporation of more than one nucleotide in a cycle. For each 

sequencing cycle, the fraction of fragments in a cluster impacted by phasing and pre-

phasing events increases - and the sequencing signal for that cluster becomes more 

distorted. This results in increasingly high error rates towards the ends of sequencing 

reads, and is currently the main reason for the limitation on maximum read lengths 

using this technology [48, 49]. The errors typically manifest themselves as 
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substitution type errors (i.e. an A is called instead of G), in contrast to insertion or 

deletion type errors frequently seen for other platforms.  

Because of the issue of phasing and pre-phasing, the sequencing of the marker gene 

template and index(es) are typically performed in separate reads. The introduction of 

fresh primer for each new read will “restart” the sequencing process for all fragments 

within the cluster, mitigating the cumulated effects of phasing and pre-phasing [50]. 

And as described later, the paired-end (PE) sequencing approach, uses separation of 

reads to expand on the maximum read length that can be achieved using the currently 

available chemistry.  

6.3  Bioinformatic sequence processing 

In the previous section 6.2, the amplicon-based microbiome sequencing workflow has 

been outlined, with a focused discussion on potential sources of error and bias. In the 

following section, current bioinformatic approaches to dealing with some of these 

issues, as well as limitations that remain, will be discussed. Examples will be taken 

from one of the most popular bioinformatic pipelines – Quantitative Insight into 

Microbial Ecology (i.e. QIIME1/QIIME2). Note that QIIME is a wrapper for 

numerous other tools (e.g. DADA2) and for the current discussion, the default 

algorithms implemented in the pipeline will be referred to.  

6.3.1 Demultiplexing 

Recall that prior to sequencing, amplicon libraries from all samples to be sequenced 

on the same sequencing run are pooled together (i.e. multiplexed) [39, 40]. Once 

sequencing has been completed, the index sequence(s), which are the same for all 

amplicons from the same sample, are used to reassign sequences back to the sample 

from which they originated (i.e. demultiplexing). The sequencing output (Figure 1, 

step C), may be retrieved in the form of already demultiplexed fastq files. Other 

times, the fastq files have not been demultiplexed and bioinformatics processing 

begins with demultiplexing.  
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Bias may be introduced during demultiplexing if sequences are not assigned back to 

the correct sample - a phenomenon referred to as index misassignment. There are 

several ways by which index misassignment may occur [51]. Primers may for 

instance be contaminated during their manufacture. Cross-contamination may also 

occur during library preparation by way of internal well-to-well contamination 

between samples placed next to one another on the PCR plate, or during sequencing 

due to the presence of indexed amplicons from previous sequencing runs. Beside the 

issue of cross-contamination, there is the issue of PCR or sequencing error. Errors 

during PCR or sequencing may result in the conversion of an index sequence to that 

of another index used in the same sequencing setup. Most indexes are however 

designed to ensure that multiple substitution errors would have to occur before any 

one index would begin to resemble another index [49]. Index misassignments may 

also be associated with mixed or overlapping clusters on the flow cell, resulting in the 

assignment of an entire index read from one cluster to a sequence read from an 

adjacent cluster, or the assignment of a sequence read from one cluster to the index 

read(s) from another cluster [50, 51]. The use of unique dual indexed libraries, 

instead of single indexed libraries have been shown to reduce the impact of index 

misassignments [50, 51]. Quality filtering of index sequences has been proposed as a 

mechanism for correcting for index misassignments [51], although this has not been 

implemented in most pipelines.  

6.3.2 Quality filtering 

The aim of the quality filtering step is to filter out erroneous sequences resulting from 

PCR point errors and sequencing error (chimeras are dealt with in a subsequent step). 

While the occurrence of PCR and sequencing errors may appear as rare events to be 

overlooked, when dealing with the millions of sequences generated in amplicon 

sequencing data - these errors if not corrected for may result in inflated measures of 

diversity [26, 49, 52, 53]. In the following sections, differences between PCR and 

sequencing error and challenges associated with the removal of each will be 

discussed.  

The Phred Q score 
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Most bioinformatic approaches to dealing with erroneous sequences have targeted 

errors generated during the sequencing process. These errors are relatively easy to 

identify compared to PCR incorporated errors, due to the sequencer generated Phred 

quality scores (Q score) that accompany sequence data (i.e. fastq files). By definition, 

the Q score is a measure of the probability by which a base is called incorrectly 

during the SBS process. It is calculated using the formula Q = -10 log10 P, where Q is 

the Q score and P is the estimated error probability [54]. A Q30 score (Q score of 30) 

will for example translate to a base call accuracy of 99.9%. Quality scores can be 

used as an indicator to trim off low quality bases at read ends or for error correction 

when handling PE data – each strategy described subsequently. However, care must 

be taken when interpreting results, as there has been some disagreement on the 

reliability of the association between Q scores and error probabilities. While Kozich 

et al. [55] reported that sequencing errors were highly associated with low Q scores 

for example, Schirmer et al. [48] found the association to be unreliable.  

Quality trimming 

The aim of quality trimming is in essence to determine the point along the read for 

which the Q scores begin to fall below the desired threshold values (recall that 

reduction in quality scores is expected across the read length (section 6.2.3). The 

method described by Bokulich et al. [52], was implemented in the QIIME1 pipeline 

and performed in the same step as demultiplexing. The methods applied when using 

QIIME2 differ (implemented in denoising algorithms, e.g. DADA2), and will be 

discussed in a subsequent section. In simple words, when applying the “Bokulich 

method”, sequences are screened for low quality bases, starting at the beginning of 

the sequence and progressing until the end of the sequence is reached. Decisions 

regarding the number of consecutive bases (default=3) that must maintain a user 

defined threshold Q score (default=3), the length of the sequence after trimming 

(default = 75% of the untrimmed sequence), and finally the maximum number of 

ambiguous base calls (default = 0), determine whether a sequence is kept or 

discarded. Deciding on the appropriate threshold Q score is perhaps the most 

challenging. While demanding a high Q score (e.g. Q30) increases the overall quality 
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of the sequencing data, one also risks losing accurate reads that have been assigned 

lower but perhaps acceptable Q scores (e.g. Q20). 

PE error correction 

The PE sequencing approach adds another dimension to quality filtering [55, 56]. As 

described previously (section 6.2.3), sequencing error rates tend to increase towards 

the end of sequencing reads (and Q scores decrease). Using a PE sequencing 

approach (i.e. separation of reads), it is possible to extend the maximum read length 

that can be obtained using current sequencing chemistries. When performing PE 

sequencing, the targeted region is sequenced from both ends of the DNA sequence, in 

two separate reads. By design, the marker gene targeting primers should be chosen so 

that the amplicons are short enough to allow for an overlap between PE reads. This 

will enable the merging of the paired reads to form a contiguous read, and the 

opportunity to resolve discrepancies at the read ends. Different choices can be made 

with regards to resolving discrepancies between the overlapping reads. For the most 

stringent filtering procedures, one can demand that the overlapping reads match 

perfectly - if they do not, then the sequence may be removed. Alternatively, the 

overlap can be used to correct for an incorrect base, as more often than not, one of the 

reads will have a higher Q score than the other at the given base position. While PE 

sequencing has mainly been used to achieve longer sequencing reads, others have 

suggested that the approach should be used for generating completely overlapping 

reads for improved error filtering [49].  

As mentioned above, because the Q score is a measure of the accuracy of the SBS 

process, it does not capture PCR errors incorporated during library preparation or 

cluster generation; an incorporated PCR error may indeed generate a perfect Q score. 

Current methods for dealing with PCR error (and also potentially missed sequencing 

errors) have largely been based on grouping sequences together into clusters called 

operational taxonomic units (OTUs).  
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6.3.3 Clustering and denoising  

While much variation exists across different bioinformatic pipelines, a central step 

performed in all pipelines is clustering to OTUs or denoising to ASVs.  

Clustering to operational taxonomic units (OTUs) 

The most common approach has been to cluster sequences into operational taxonomic 

units (OTUs) based on a shared sequence similarity threshold of 97% (or dissimilarity 

of 3%). The method was built on the work by Stackebrandt and Goebel et al. [37] 

who were able to demonstrate that at 97% 16S sequence similarity one could 

distinguish between bacteria at species level. A representative sequence from each 

OTU is assigned a taxonomic label, and the number of sequences in each OTU is 

used to conclude on the relative abundance of the particular taxa in the sampled 

community. The list of OTUs, and the number of sequencing reads binned to each 

OTU form the working OTU table for which all subsequent bioinformatic analyses 

are performed.  

Clustering of sequences into 97% OTUs serves two purposes. First of all, it reduces 

the number of sequences that are processed further down the bioinformatic pipeline. 

A typical MiSeq sequencing run will generate millions of sequencing reads. After 

clustering to OTUs this volume is often reduced to the thousands. Second, clustering 

serves the purpose of error correction. Erroneous sequences with less than 3% 

incorporated error, will be placed in the same OTU group as the correct sequences 

[57]. The method is however still vulnerable to spurious OTUs that may form from 

sequences with greater than 3% incorporated error. The issue of spurious OTUs was 

addressed by Bokulich et al. [52]. The authors recommended the removal of small 

OTUs, defined as those for which there were fewer sequences than 0.005% of the 

total sequence count.  

Denoising to amplicon sequence variants (ASVs) 

Recently, new methods of handling amplicon sequencing data have been developed 

with the promise of effectively removing both PCR and sequencing error [58, 59]. 
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These methods have collectively been referred to as “denoising”, and the product 

sequences after denoising are referred to as an exact sequence variants (ESV) or 

amplicon sequence variants (ASVs). The most commonly used denoising method is 

implemented in DADA2 (divisive amplicon denoising algorithm 2) [59]. In simple 

words, the DADA2 denoising algorithm builds on the assumption that true biological 

sequences will be present at a higher frequency than erroneous sequences. Because 

ASVs are assumed to be free of PCR and sequencing error, there is no need to cluster 

sequences at 97% as was performed for OTUs. ASVs are thus referred to as the 

equivalent of 100% OTUs, making it possible to distinguish between sequences that 

vary by just one nucleotide. In addition to denoising to ASVs, the DADA2 method 

incorporates all general steps typical for amplicon sequencing data including, 

filtering, dereplication, chimera removal and joining of PE reads.  

6.3.4 Chimera removal 

Several bioinformatic tools have been developed for identification of chimeras. Early 

tools (e.g. Bellepheron [60], Pintail [35]) were designed for analysis of full-length 

16S sequences, and were later shown to perform suboptimally on short amplicon data 

[47, 61]. This triggered the further development of new tools. Some examples include 

ChimeraSlayer [47], Perseus [61], and UCHIME [62] - to name a few. Chimera 

removal is also an integrated part of the DADA2 method as described above, 

developed specifically for targeting denoised ASVs.   

The existing chimera detection tools listed above, are more or less based on a similar 

strategy. In short, the sequence in question is compared to a pre-defined set of non-

chimeric reference sequences [61, 62]. If the query sequence matches to two or more 

sequences in the reference set, it is assumed that it formed from a recombination 

event between these matched sequences during PCR – the query sequence is then 

flagged as chimeric. Different detection tools may vary with regards to the origin of 

the non-chimeric reference set. Using de novo abundance based approaches (e.g. as 

seen in Perseus [61], UCHIME-de novo [62] and DADA2) sequences of high 

abundance in the data to be analysed are considered non-chimeric, and used to build 

the non-chimeric reference set. The logic being that parent sequences must have gone 
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through a greater number of PCR cycles than the chimeras that form between them 

(i.e. the parent sequence must already exist). Using an alternative approach, the 

reference set is provided by the user and based on a preexisting database of chimera-

free sequences (e.g. as seen in ChimeraSlayer [47] and UCHIME – reference mode 

[62]).  

The accuracy of the chimera filtering step will in large be dependent on quality of the 

non-chimeric reference set. Using the de novo approach, it is for example assumed 

that preferential amplification of a chimera sequence did not occur during PCR, as 

this would place the chimera in the reference set. The accuracy of chimera filtering 

methods will also depend on the presence of sequencing errors, as with the short read 

lengths characteristic of amplicon sequencing data, differences to be detected and 

used for inferring a chimera are small [62]. Using the database based approach, 

another consideration is whether the community under study is adequately 

represented in the reference set, important because chimeras formed from parent 

sequences not found in the reference set will not be detected. For most datasets, the 

communities under study (e.g. the airways) are poorly characterized and the chosen 

database likely to be incomplete; thus the de novo approach is often preferred.  

6.4  Low biomass samples from the lungs  

In the following section, the framework presented in Figure 1 is put in context to 

studies on the lower airway microbiome, which presents with additional challenges 

related to the low bacterial load of acquired samples.  

6.4.1 Sample bacterial load and contamination  

It was the reports by Biesbroek et al. [32] and Salter et al. [63] that initially stirred up 

discussion regarding the degree to which accurate microbiota analyses could be 

achieved for samples holding low bacterial loads (for which the lungs are the classic 

example in the literature). Both studies demonstrated the existence of an inverse 

relationship between sampled bacterial DNA levels and the influence of bacterial 

DNA contamination introduced during laboratory processing steps (e.g. from DNA 
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extraction kits, PCR reagents, the technician etc.). The significance of these studies 

warrants the review of key findings from each.  

Biesbroek et al. [32] were concerned about the variable levels of DNA obtained from 

low biomass nasopharyngeal swabs. To explore the impact of bacterial load on the 

analyses of microbiota composition, they set up an experiment based on a serially 

diluted sample of saliva. Bacterial community composition began to differ from the 

original undiluted sample at a concentration of 105 bacteria/mL. The observed shift in 

bacterial composition coincided with an increase in the levels of bacteria mapping to 

the phylum Proteobacteria. Although the authors could not with certainty show that 

these bacteria originated from laboratory contamination, this was their interpretation 

of the data. Further, they defined 106 bacterial cells/mL as the threshold bacterial load 

for which accurate microbiota analyses could be performed. When extrapolating their 

findings to data obtained from the low biomass nares and nasopharynx, they found 

that choice of DNA extraction method (four different methods compared) determined 

whether samples fell above or below their set threshold level of bacterial load.  

The paper by Salter et al. [63] was published two years later. The authors recognized 

the difficulty in distinguishing between contaminants and actual members of the 

sampled community, e.g. as seen for Proteobacteria in the Biesbroek study [32]. 

They designed a similar dilution experiment to that conducted in the former study, 

but with an important modification. Rather than using saliva (or other complex 

natural sample), they based their study on a monoculture consisting of one bacterial 

species not likely to be introduced from the laboratory environment or from reagents 

and kits used for sample processing (Salmonella bongori). On analysis of the 

sequencing output, sequences classified to taxa other than S. bongori were interpreted 

as derived from contamination. In accordance with the Biesbroek study [32], they 

observed a clear inverse relationship between sample bacterial load and proportion of 

non-S. bongori sequences (i.e. contaminants).  

In summary, these groundbreaking studies have raised questions regarding the quality 

of sequencing data generated in studies on the bacterial lung microbiome – the most 
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important questions regarding the proportion of sequences that can be expected to be 

representative of the sampled lung microbiota and not contamination introduced from 

the laboratory. However, as discussed in the following section, the lack of standards 

with regards to protocols for sampling and laboratory processing make it difficult to 

generalize on the state of the field.  

6.4.2 Sample bacterial load varies across protocols  

In the design of their studies, investigators are faced with several decisions along the 

laboratory pipeline, that can determine the strength of the signal from the sampled 

bacterial community. A description of some critical steps follows.  

Sampling. 

As discussed earlier (section 6.1.2), BAL and SB are the most common sample types 

in airway microbiome studies. The manner by which these samples are collected has 

however not been standardized, and different approaches may lead to differences in 

obtained sample bacterial load. This is mainly due to differences in dilution effects. 

When sampling BAL for instance, decisions regarding the amount of fluid to instill 

and whether to keep fractions separate or pooled, will determine the levels of bacteria 

in the collected sample. However, the decision on whether to fractionate BAL or not, 

is not straightforward due to the potential for bronchoscope carryover from the upper 

airways. As discussed earlier, the fractioning of BAL may be used as a method for 

which one can “dilute away” upper airway bronchoscope carryover [6, 24] – however 

this is at the cost of lowering the obtained sample bacterial load. When sampling SB, 

the volume of sampling fluid for which SB are placed in after sampling will be 

equally important – be it saline sampling fluid or buffer for DNA extraction. Also the 

number of SB taken per sampling site has not been standardized – and the greater the 

number of SB per site, the higher we may expect the levels of bacteria.  

Eukaryote cell removal  

Once samples have been collected, a decision must then be made on whether to keep 

or remove eukaryotic host cells that have been collected together with the bacterial 
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cells [64, 65]. Eukaryotic cell removal is performed by centrifugation of the sample at 

a speed that pellets these larger cells out of solution, while leaving the smaller 

bacterial cells in suspension. Dickson et al. [64] compared results when processing 

whole (eukaryotic cells kept) and acellular (eukaryotic cells removed) BAL. They 

found that eukaryotic cell removal resulted in lower community richness - implying 

the concomitant removal of bacterial cells associated with eukaryote host cells (for 

instance via biofilms). Important to the current discussion - they also observed a 

lower bacterial load after the removal of eukaryotic cells. Both these findings warrant 

the use of whole samples over acellular samples. While most studies process whole 

samples, some key studies in the field have also used acellular samples [20, 25, 66, 

67]. In the study by Lozupone et al. [67] both whole and acellular samples were used 

in the same study.  

The publications by Biesbroek et al. and Salter et al. emphasize the importance of 

securing a high bacterial load already at the stage of sampling [32, 63]. This in order 

to overpower the contaminating bacterial signal introduced in subsequent steps - 

starting with bacterial DNA extraction.  

Bacterial DNA extraction  

A decision regarding the input sample volume used for DNA extraction is also one to 

be made. There is no standard in the field, and large differences are found across 

studies. For instance, the input volume BAL used in some studies is as low as only a 

few mL [6, 23], while in other studies volumes approximating 100 mL have been 

used [14, 64]. As described above however, several factors will determine the levels 

of bacteria in these samples (i.e. sample type, dilution effects and the use of whole or 

acellular BAL). Also, clinical factors such as disease state and the use of antibiotics 

may be important.  

In addition to input sample volume, a decision has to be made regarding choice of 

DNA extraction method. Importantly, differences across methods can result in 

variable DNA yields [29, 32]. This has not been a major concern in studies on 

samples carrying high bacterial loads (e.g. the gut). DNA yield can however have a 
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major impact on studies on samples carrying low bacterial loads [32, 63]. Recall that 

Biesbroek et al. [32], show in their study how choice of DNA extraction kit 

determined whether samples fell above or below their defined threshold bacterial load 

for which accurate microbiota analyses could be achieved.  

Polymerase chain reaction (PCR)  

The PCR is a central tool in the amplicon-based marker gene sequencing workflow. 

In studies of low biomass samples, an increased number of PCR cycles is often used 

to obtain adequate levels of DNA for sequencing [32]. However, error and bias 

associated with the PCR, is expected to increase with increased number of PCR 

cycles. Furthermore, increasing the number of PCR cycles appears to result in weaker 

signals from the sampled microbiota and an increased signal from contamination. 

This was demonstrated in the study by Salter et al. [63] on comparison of sequencing 

output generated by processing the S. bongori dilution series through 20 and 40 PCR 

cycles.  

In conclusion to the introduction sections 6.1 - 6.4, there is a need for studies that i) 

add to the discussion on how to sample the microbiota of the lower airways with 

minimal influence of oropharyngeal carryover, ii) increases knowledge on the impact 

of laboratory contamination in a low-biomass setting, and strategies to handle this, 

and finally, iii) shed light on the impact of methodological choices related to marker 

gene amplification and primer selection.  
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7.  Objectives 

The main objective of the thesis was to evaluate the impact that various 

methodological choices could have on the presentation of the airway microbiome. 

Specifically we investigated: 

 

1. The bacterial composition observed when employing protected and 

unprotected bronchoscopic sampling methods of the lower airways (paper I). 

 

2. The impact of laboratory contamination, and bioinformatic strategies for 

dealing with contamination in samples with low bacterial loads (paper II). 

 

3. The impact of a one vs two step PCR protocol and choice of target amplicon 

region, 16S rRNA gene V3 V4 and V4 (paper III). 
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8. Materials and methods 

8.1  Study design and participants  

The PhD project was conducted as part of a single-center observational study: The 

Bergen COPD Microbiome study (short name «MicroCOPD»). The data collection 

for the MicroCOPD study was carried out at the outpatient clinic at the Department of 

Thoracic Medicine, Haukeland University Hospital (Bergen, Norway). The design of 

the MicroCOPD study has been published [23].  

In brief, MicroCOPD is a bronchoscopy study designed to compare the airway 

microbiome of subjects with and without airway disease (i.e. COPD, asthma, healthy 

controls). The study was initiated in the spring of 2012, and two years of protocol 

development and a pilot phase followed. The first planned research bronchoscopy 

procedure for the main study was performed in April 2013. The last bronchoscopy 

was performed in June 2015.  

All together, 323 bronchoscopies were performed on a total of 249 study participants 

(130 with COPD, 16 with asthma and 103 healthy controls). All participants were 

volunteers recruited to MicroCOPD from two previous studies conducted at the same 

department; the GeneCOPD follow-up study [68] and the Bergen COPD cohort study 

[69–71]. A small number of participants were also recruited by interest generated by 

the local press. In addition, asthma patients were recruited from a respiratory 

medicine private practice. There were several inclusion criteria. In the original 

protocol, there was an age limit of 40 years for COPD patients, and all COPD 

patients were above 40 years of age. As the study eventually also included asthma 

patients, this age limit was abandoned. This also applied to the requirement of a 10 

pack year tobacco smoke exposure, enabling inclusion of also “never-smokers” with 

COPD for a total of three categories based on smoking habit (“current smokers”, “ex-

smokers” and “never-smokers”). Airway obstruction was identified by post-

bronchodilator spirometry, whereas all diagnoses were confirmed by experienced 

respiratory clinicians based on a comprehensive evaluation of patient history, 
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pulmonary function and radiologic imaging. Severity of airway obstruction was 

evaluated by the forced expiratory volume in 1 second (FEV1) in percent of predicted 

values based on Norwegian reference values [72]. The spirometry was performed on 

a Viasys Vmax ENCORE, and bronchodilation achieved by the administration of 0.4 

mg salbutamol by a large-volume spacer at least 30 minutes before the procedure. 

Exclusion criteria included all factors indicating that the subject would not be able 

tolerate research bronchoscopy. We postponed participation for subjects that had 

received antibiotics or corticosteroids the last 14 days.  

Only a subset of the participants from the MicroCOPD study was included in the 

three papers for the current PhD project. Paper I included 125 participants (58 control 

subjects, 64 subjects with COPD and 3 subjects with asthma). Papers II and III, 

included the same 23 participants (9 control subjects, 10 subjects with COPD and 4 

subjects with asthma).  

8.2  Study samples 

8.2.1 Procedural samples (Papers I, II and III) 

Sample types included oral washes (OW), bronchoscopically acquired protected 

specimen brushes (PSB), protected bronchoalveolar lavages (PBAL), small-volume 

lavages (SVL), and negative control samples (NCS). A description of the sampling 

procedure used in the MicroCOPD study follows. 

A sealed bottle (500 mL) of sterile phosphate-buffered saline (PBS) was opened prior 

to each procedure or used within 24 hours if multiple procedures were performed on 

the same day. The PBS had been sterilized by sterile filtration (0.22 µm) and 

autoclaving at 121 °C for 15 minutes by the manufacturer. 1 mL of the PBS was set 

aside for use as a negative control sample (NCS), never entering the study subject or 

being in contact with the bronchoscope.  

Study participants were given 0.4 mg of salbutamol (a bronchodilator); this was 

required for pre-procedural lung function testing, but also a safety measure to prevent 
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the risk of bronchoscopy-induced bronchospasm. Before the bronchoscopy 

procedure, the participant was asked to gargle 10 mL of PBS for the collection of an 

oral wash sample (OW). Flexible video-bronchoscopy was then performed in supine 

position via the oral route. Each participant received local anaesthesia with lidocain; 

pre-procedurally as a spray to the tongue and oropharynx, and per-operatively 

through a catheter to the vocal cords, trachea, and bronchi. To minimize upper airway 

contamination to the scope working channel, no suctioning was performed before 

passage of the scope through the vocal cords. Having entered the lower airways, three 

protected specimen brushes (rPSB) were first collected from the right lower lobe 

(RLL) using double sheathed wax-plug protected specimen brushes (Conmed, USA) 

and placed in 1 mL PBS. Next, two fractions of protected bronchoalveolar lavage 

(PBAL1/PBAL2) were collected from the right middle lobe (RML); this by instilling 

2 x 50 mL PBS through a wax-plugged catheter (Plastimed Combicath, France). The 

bronchoscope was then repositioned for sampling of the left lung. This was done 

without retracting the bronchoscope above the vocal cords. Three wax-plugged 

protected specimen brushes (lPSB) were collected from the left upper lobe (LUL) and 

placed in 1 mL PBS. Finally, a sample of small-volume lavage (SVL) was collected 

from the same segment as the lPSB by instilling 20 mL PBS directly through the 

working channel. For 100 participants, the left side was examined before the right 

side.  

8.2.2 Procedural control samples (Paper II) 

For the collection of procedural control samples, we returned to the bronchoscopy 

room and performed ten simulated (no patient) procedures over two days. For each 

procedure five samples were collected: a bronchoscope rinse (BR), a catheter rinse 

(CR), a protected specimen brush (PSB), a sample of phosphate buffered saline (PBS) 

transferred to a cryotube (CT) and a negative control PBS sample (NCS).                           

On each day, a sealed 500 mL bottle of PBS was opened for use in all five 

procedures. 1 mL PBS was transferred to both an eppendorf tube for collection of the   

NCS and to a cryotube for collection of the CT sample. Sampling PSB was 

performed by passing a wax-plug protected specimen brush (Conmed, USA) through 
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the bronchoscope working channel. The brush was exposed to the air and then 

returned back through the bronchoscope. Using sterile scissors, the brush end was cut 

off and transferred to an eppendorf tube with 1 mL PBS. This was repeated until three 

brushes had been collected per sampling. Sampling CR was performed by passing a 

wax-plugged catheter (Plastimed Combicath, France) through the bronchoscope 

working channel and instilling 50 mL PBS. This was collected in a 50 mL Falcon 

tube on the other end and then suctioned back up. Sampling BR was performed by 

instilling 20 mL PBS and collected in a serial connected lavage trap. Samples were 

aliquoted and stored at - 80 °C. 

8.2.3 Salmonella dilution series (Paper II) 

Salmonella enterica serovar Typhimurium (ATCC 14028, USA) was plated out on 

blood agar plates and incubated overnight at 37 °C. The following day, colonies were 

transferred to a tube containing sterile physiological water using sterile cotton swabs 

until a McFarland density of approximately four was reached. The suspension was 

used to prepare a ten-fold dilution series across a total of seven samples. Aliquots 

were stored at -20 °C. 

8.2.4 Mock community (Paper III) 

A mock community (MC) sample consisting of genomic DNA from 20 different 

bacterial species (17 genera) was included on all sequencing runs. The MC consisted 

of uneven levels of genomic DNA from the different species of bacteria, with the 

number of rRNA operons per species varying from 1000 to 1000000 counts (Table 

1). The operon count (provided on the certificate of analysis) was used to calculate 

the relative abundance of the different bacteria in the sample.  

The reagent was obtained through BEI Resources, NIAID, NIH, as part of the Human 

Microbiome Project: Genomic DNA from Microbial Mock Community B (Staggered, 

Low Concentration), v5.2L, for 16S rRNA Gene Sequencing, HM-783D. 
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Table 1. Mock community HM-783D  

Species Number of operons Relative abundance  

Acinetobacter baumannii 10000 0.22 % 

Actinomyces odontolyticus 1000 0.02 % 

Bacillus cereus 100000 2.19 % 

Bacteroides vulgatus 1000 0.02 % 

Clostridium beijerinckii 100000 2.19 % 

Deinococcus radiodurans 1000 0.02 % 

Enterococcus faecalis 1000 0.02 % 

Escherichia coli 1000000 21.91 % 

Helicobacter pylori 10000 0.22 % 

Lactobacillus gasseri 10000 0.22 % 

Listeria monocytogenes 10000 0.22 % 

Neisseria meningitidis 10000 0.22 % 

Propionibacterium acnes 10000 0.22 % 

Pseudomonas aeruginosa 100000 2.19 % 

Rhodobacter sphaeroides 1000000 21.91 % 

Staphylococcus aureus 100000 2.19 % 

Staphylococcus epidermidis 1000000 21.91 % 

Streptococcus agalactiae 100000 2.19 % 

Streptococcus mutans 1000000 21.91 % 

Streptococcus pneumoniae 1000 0.02 % 

 



 

 

50 

8.3  Bacterial DNA extraction (Papers I, II, III) 

The protocol for bacterial DNA extraction used in the MicroCOPD study was 

designed in-house by Tuyen Thi Van Hoang (UiB) and Professor Harald G. Wiker 

(UiB). The protocol includes both enzymatic and mechanical lysis methods, as 

recommended in the current literature [29]. A description follows.  

The volume of sample used as input to the DNA extraction protocol varied with 

sample type. For procedural samples: 1800 µl for OW and PBAL and 450 µl for PSB 

and NCS. For procedural control samples: 1800 µl for BR and CR, 550 µl for PSB 

and 450 µl for CT and PBS. For the SDS, an input volume of 500 µl was used.  

The samples were first treated with Sputasol (Oxoid Limited, England) (i.e. 

dithiothreitol) and incubated at 37 °C for 15 minutes on a thermomixer (1000 rpm); 

this to ensure a homogenous distribution of the bacterial cells in the sample. The 

volume of Sputasol added to each sample, was the same as the input sample volume 

for DNA extraction. Bacterial cells (and eukaryotic cells) were collected by 

performing a high speed centrifugation step, at 15700 g for 8 minutes. The resulting 

cell pellet was resuspended in 250 µl PBS. Next, enzymatic lysis was performed by 

treatment with an enzyme cocktail solution consisting of 25 µl lysozyme (10 mg/ml, 

Sigma-Aldrich, USA), 3 µl mutanolysin (25 KU/mL, Sigma-Aldrich), 1.5 µl 

lysostaphin (4000 U/mL, Sigma-Aldrich) and 20.5 µl TE5 buffer (10 mM Tris-HCl, 5 

mM EDTA, pH 8) and incubated at 37 °C for 1 hour on a thermomixer (350 rmp). 

Bacterial cells not sufficiently lysed by the enzymes, were collected by centrifugation 

at 15700 g for 15 minutes. The supernatant containing any extracted DNA was 

transferred to a new eppendorf tube and stored at 4 °C, while further processing of the 

hard to lyse pellet; this to prevent DNA shearing in the subsequent mechanical lysis 

step. Mechanical lysis was then performed on the pelleted cells by processing through 

the FastDNA Spin Kit (MP Biomedicals, USA). The pellet was first resuspended in 

800 µl CLS-TC lysis buffer and then transferred to a Lysing Matrix A tube (FastDNA 

Spin Kit). Mechanical lysis was performed using the FastPrep-24 instrument (MP 

Biomedicals) at a speed setting of 6.0 m/s for 40 seconds. The lysate was then 
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combined with the supernatant from the enzyme lysis step. Further processing was 

performed as described by the manufacturers for the FastDNA Spin Kit. DNA was 

eluted in a total volume of 100 µl. 

8.4 Quantification of bacterial load (Paper II) 

Sample bacterial load was measured by probe-based quantitative PCR (qPCR) 

targeting the bacterial 16S rRNA gene region V1V2.  

Primers with sequences [5′-AGAGTTTGATCCTGGCTCAG-3′] (forward) and [5′-

CTGCTGCCTYCCGTA-3′] (reverse) were used together with probe [5´-6-FAM-

TAACACATGCAAGTCGA-BHQ-1-3´] (locked nucleic acid bases are underlined; 

6-FAM: 6-carboxyfluorescein; BHQ-1: Black Hole Quencher-1) [6, 7, 14, 21]. Each 

reaction consisted of 10 µl Takyon No ROX Probe MasterMix (2X) (Eurogentec, 

Belgium), 0.2 µl of each forward and reverse primer (10 µM), 0.15 µl of the 

hydrolysis probe (10 µM), 2 µl sample and RT-PCR grade water (Thermo Fisher 

Scientific, USA) for a total volume of 20 µl.  

Cycling was performed on a Light Cycler 480 instrument (Roche) using the following 

conditions: an initial cycle at 95 °C for 5 minutes followed by 45 cycles of 95 °C for 

5 seconds, 60 °C for 20 seconds and 72 °C for 10 seconds and a final extension cycle 

of 72 °C for 2 minutes. A standard curve was constructed from a 10-fold dilution 

series of genomic DNA from E.coli strain JM109 (Zymo Research, USA).  

8.5 Illumina MiSeq sequencing (Papers I, II, III) 

Analysis of bacterial community composition was performed by high-throughput 

amplicon-based sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq 

sequencing platform. Three different setups for MiSeq sequencing were used in the 

project. The setups varied with regards to the number of PCR steps (one or two) and 

the target marker gene region sequenced (16S rRNA gene region V3 V4 or V4): 

Setup 1 (2-step PCR; region V3 V4); Setup 2 (2-step PCR; region V4); Setup 3 (1-

step PCR; region V4).  
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8.5.1  MiSeq sequencing setup 1 (Papers I, II, III) 

Sequencing setup 1 is based on the Illumina 16S Metagenomic Sequencing Library 

Preparation guide (Part # 15044223 Rev. B). The protocol consists of two PCR steps; 

the first for amplification of the target marker gene region to be sequenced, and the 

second for the addition of index sequences required for sample multiplexing.  

In the first PCR, the 16S rRNA gene region V3 V4 was targeted using primers [5′-TC 

GTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-

3′] (forward) and [5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAC 

TACHVGGGTATCTAATCC-3′] (reverse). Illumina overhang adapter sequences are 

underlined. Gene specific sequence (not underlined) were taken from Klindworth et 

al. [73], and included four degenerate bases named according to IUPAC nucleotide 

nomenclature (N = any base; W = A or T; H = A, C or T; V = A, C, or G).  

Each reaction consisted of 5 µl sample, 12.5 µl KAPA HiFi HotStart ReadyMix (2X) 

(Kapa Biosystems, South Africa), 0.5 µl of each primer (10 µM) and 6.5 µl RT-

PCR grade water (Thermo Fisher Scientific, USA) for a total volume of 25 µl. PCR 

cycling was performed using the following program: an initial cycle at 95 °C for 3 

minutes, followed by 45 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds, 72 °C 

for 30 seconds, and a final extension cycle at 72 °C for 5 minutes. PCR cleanup was 

performed using Agencourt AMPure XP beads (Beckman Coulter, USA).  

The second PCR was performed using primers from the Nextera XT Index kit 

(Illumina Inc., USA). The primers targeted the Illumina overhang adapter sequences 

added to each amplicon in the first PCR (underlined in the primer sequences given 

above). PCR cycling was performed using the following program: an initial cycle at 

95 °C for 3 minutes, followed by 8 cycles of 95 °C for 30 seconds, 55 °C for 30 

seconds, 72 °C for 30 seconds, and a final extension cycle at 72 °C for 5 minutes. 

PCR cleanup was performed using Agencourt AMPure XP beads (Beckman Coulter, 

USA). 

Amplicon libraries were quantified using the Qubit dsDNA HS Assay Kit (Life 

Technologies, USA), normalized to 4 nM, and pooled. The pooled library was 
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denatured with NaOH, and diluted to 10 pM using a buffer provided in the MiSeq 

reagent kit v3 (Illumina). Finally, the diluted, denatured library pool was spiked 

(15%) with PhiX from the PhiX Control Kit v3 (Illumina). MiSeq sequencing was 

performed using 2x300 cycles of paired-end sequencing using reagents from the 

MiSeq reagent kit v3 (Illumina). 

8.5.2 MiSeq sequencing setup 2 (Paper III) 

Sequencing setup 2 was based on the two-step PCR protocol described in the Illumina 

16S Metagenomic Sequencing Library Preparation guide (Part # 15044223 Rev. B).  

In the first PCR, the 16S rRNA gene region V4 was targeted using primers [5´-TCGTC 

GGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA-3´] 

(forward) and [5´-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACT 

ACHVGGGTWTCTAAT-3´] (reverse). Illumina overhang adapter sequences are 

underlined. Gene specific sequence (not underlined) were taken from Caporaso et al. 

[74] and included four degenerate bases named according to IUPAC nucleotide 

nomenclature (M = A or C; H = A, C or T; V = A, C, or G; W = A or T).  

Each reaction consisted of 5 µl sample, 12.5 µl KAPA HiFi HotStart ReadyMix (2X), 

1.25 µl of each primer (10 µM), and 5 µl RT-PCR grade water (Thermo Fisher 

Scientific, USA) for a total volume of 25 µl. PCR cycling was performed using the 

following program: an initial cycle at 95 °C for 3 minutes, followed by 45 cycles of 

95 °C for 30 seconds, 50 °C for 30 seconds, 72 °C for 30 seconds, and a final 

extension cycle at 72 °C for 5 minutes. PCR cleanup was performed using Agencourt 

AMPure XP beads (Beckman Coulter, USA).  

The second Index PCR step, library quantification, normalization and preparation for 

sequencing was performed as described for sequencing setup 1. MiSeq sequencing 

was performed using 2x275 cycles of paired-end sequencing using reagents from the 

MiSeq reagent kit v3 (Illumina).  
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8.5.3  MiSeq sequencing setup 3 (Paper III) 

Sequencing setup 3 was based on the one-step PCR protocol described in Kozich et 

al. [49]. Both steps of target gene amplification and indexing are incorporated into a 

single PCR step using primers that include the gene specific sequences, index 

sequences and the Illumina sequencing adapters.  

The 16S rRNA gene region V4 was targeted using primers [5´-AATGATACGGCGA 

CCACCGAGATCTACACNNNNNNNNTATGGTAATTGTGTGCCAGCMGCCG

CGGTAA-3´] (forward) and [5´-CAAGCAGAAGACGGCATACGAGATNNNNNN 

NNAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3´] (reverse). Illumina 

sequencing adapters, indexes, pad and linker regions (detailed in Kozich et al. [49]) 

are underlined. The gene specific sequences (not underlined) are the same as for the 

primers used in the sequencing setup 2 (section 8.5.2), from Caporaso et al. [74].  

Each reaction consisted of 5 µl sample, 18 µl Accuprime Pfx SuperMix (Thermo 

Fisher Scientific, USA), 1 µl of each primer (10 µM), for a total volume of 25 µl. 

PCR cycling was performed using the following program: an initial cycle at 95 °C for 

2 minutes, followed by 45 cycles of 95 °C for 20 seconds, 55 °C for 15 seconds, 72 

°C for 5 minutes, and a final extension cycle at 72 °C for 5 minutes. PCR cleanup 

was performed using Agencourt AMPure XP beads (Beckman Coulter, USA).  

Sequencing was performed using sequencing primers [5´- TATGGTAATTGTGTGC 

CAGCMGCCGCGGTAA-3´] (read 1 primer), [5´-AGTCAGTCAGCCGGACTACH 

VGGGTWTCTAAT-3´] (read 2 primer) and [5´-TTAGAWACCCBDGTAGTCCG 

GCTGACTGACT-3´] (index read primer).  

Library quantification, normalization and preparation for sequencing was performed 

as described for sequencing setup 1. MiSeq sequencing was performed using 2x250 

cycles of paired-end sequencing using reagents from the MiSeq reagent kit v3 

(Illumina).  

*Degenerate bases are named according to the IUPAC nucleotide nomenclature (N = 

any base; W = A or T; H = A , C  or T; V = A, C or G; M = A or C; B= C, G or T). 
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8.6 Bioinformatics sequence processing 

Bioinformatics sequence processing was performed using the Quantitative Insights 

Into Microbial Ecology (QIIME) bioinformatic package (http://qiime.org) [75]. 

QIIME underwent an upgrade from QIIME1 to QIIME2 in January 1, 2018 and both 

versions were used in the project.  

8.6.1 QIIME1 (Papers I and II) 

For papers I and II, bioinformatic sequence processing steps were performed using 

the QIIME1 package, version 1.9.1. Sequences were first retrieved from the Illumina 

MiSeq in the form of two fastq files per sample – one for the forward read and one 

for the reverse read (i.e. demultiplexed, paired-end reads). Sequence processing 

began with the removal of PCR primer sequences. This was performed by instruction 

to trim off the first 17 and last 21 bases, which corresponds to the length of the 

forward and reverse primer sequences. The forward and reverse reads were then 

joined together to form contiguous sequences, using the default “fastq-join” method. 

We required a minimum of 100 bases of overlap between the forward and reverse 

reads. Quality filtering was performed by removal of sequences with a base quality 

(Phred) score of less than 20. In paper II, chimeras were removed after identification 

using the VSEARCH [76]. The working operational taxonomic unit (OTU) table was 

generated by clustering of sequences into 97% OTUs, using UCLUST [77] and the 

GreenGenes reference database (v.13.8) [78]. Small OTUs consisting of fewer than 

0.005% of the total sequence count in the dataset were discarded. Taxonomy 

assignment was performed using the naïve bayesian RDP Classifier [79] together 

with the GreenGenes reference database (v13.8). Sequences were aligned using 

PyNAST [80] and a phylogenetic tree was constructed using FastTree [81]. 

8.6.2 QIIME2 (Paper III) 

Demultiplexed paired-end sequencing reads (fastq files) were retrieved from the 

MiSeq sequencer and imported into the QIIME2 environment (release 2019.1). The 

DADA2 denoising method was applied using the dada2 denoise-paired plugin, 

resulting in i) the removal of primer sequences and low quality bases at read ends, ii) 
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the joining of paired end reads, ii) the removal of chimeras and iv) denoising to 

amplicon sequence variants (ASVs). An additional round of chimera filtration was 

performed using the vsearch uchime-denovo plugin. Abundance filtering was then 

performed by removal of ASVs with fewer sequences than 0.005% of the total 

number of sequences and removal of ASVs not found in at least two samples. 

Taxonomy was assigned using the feature-classifier classify-sklearn plugin together 

with a Naïve Bayes classifier (pre-trained on the full-length Greengenes 13_8 99% 

OTU reference database) available on qiime2.org. ASVs that classified above the 

phylum level were removed, in addition to ASVs that classified to mitochondria, 

chloroplasts or archaea.  

8.7 Decontamination strategies (Papers I, II, III) 

Two approaches to dealing with laboratory contamination were used in the thesis. In 

papers I and II, the “remove all” approach was used. In papers II and III, tools 

available within the the Decontam R package were used [82].  

8.7.1 The remove all approach 

When using the “remove all” approach, all OTUs found in NCS were discarded from 

the corresponding procedural samples collected under the same bronchoscopy 

procedure. In brief, the main working OTU table was first split by subject ID. OTUs 

found in NCS were removed along with samples with zero sequence counts. The 

resulting OTU tables (now free of NCS OTUs and NCS samples) were merged back 

together, generating the final decontaminated OTU table.  

8.7.2 Decontam 

Contaminant OTUs/ASVs were identified in procedural samples using the 

isContaminant function available in the Decontam [83] R package. The two 

algorithms that Decontam uses to identify potential contaminants are based on either 

the prevalence of ASVs/OTUs in NCS versus actual samples (prevalence based 

approach) or the co-variance of OTUs/ASVs with the total amount of DNA in 

samples, measured before standardizing the amount of DNA and loading samples into 
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the MiSeq. The possession of both negative controls and DNA quantitation data 

(qubit measurements) enabled us to take use of the approach “either”, within the 

isContaminant function. We set the user defined threshold value to 0.5 (default=0.1) 

for both algorithms. For the prevalence based approach, a setting of 0.5 implies that 

the OTU/ASV was as common in NCS samples as in procedural samples, whereas for 

the frequency-based approach, a threshold of 0.5 implies that the underlying 

statistical models for the sequence being a contaminant is as likely as the model for 

the sequence not being a contaminant. Our choice of the 0.5 setting was based on the 

intuitively available interpretation of this value, in addition to facilitate comparison 

with the “remove all” strategy. 

The output from the isContaminant analysis (method=”either”, threshold=0.5) was a 

list of all OTUs/ASVs identified as contaminants by either the “prevalence” or 

“frequency” based contaminant classification algorithms.  

8.8  Statistical analyses 

The samples in a microbiome study all have different yield in terms of number of 

sequences. To take this into account some analyses are performed on proportions 

(e.g. most of the taxonomic analyses show the relative abundance at various 

taxonomic levels). For other analyses a number of sequences is required as input. 

Many of these analyses require an equal number of sequences in each sample. The 

analyst can choose to normalize to an equal number of sequences, or rarefy. The latter 

implies drawing (randomly) a set number of sequences from each sample, while 

discarding those not randomized [84].  

We chose to rarefy our samples for alpha- and beta-diversity analyses, trying to 

balance between the exclusion of samples with few remaining sequences, and at the 

same time not discarding the signal from low-biomass samples of the airways. 

The study population was divided into subjects with- and without airway diseases. It 

is well known that the clinical characteristics of these differ, and it was not an 

objective of the three papers to investigate these. Thus, no formal statistical testing 
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was performed on the characteristics of the participants, but was presented in the first 

table of all three papers.  

Differences in taxonomic composition of samples were displayed in terms of plots of 

average composition of samples in all three papers. Since these were compositional 

data (i.e. relative abundances), we in paper I applied a beta distribution and used the 

betafit command in Stata to test for differences in the taxonomic composition 

between sample types.  

In paper II we compared the estimated bacterial burden in the different sample types. 

Statistical significance testing was performed on logarithmically transformed 

outcomes by nonparametric trend tests in Stata.  

For alpha-diversity (rarefied samples) we in paper I compared the Faith phylogenetic 

index by sample type using Wilcoxon matched pairs signed rank test as well as a 

nonparametric trend test (both performed in Stata). In the other two papers we did not 

perform formal tests of alpha diversity measures.  

For all three papers we chose unweighted UniFrac distance as our main outcome in 

beta-diversity analyses. In paper I, we compared beta diversity pairwise between 

different sample types, visualized by principle coordinates analyses. The significance 

of these differences was tested by applying a permanova test in QIIME1. Whereas we 

did not perform extensive beta diversity analyses in paper II, in paper III we used 

principle coordinates analyses to investigate the overlap between the NCS and 

procedural samples. In addition, we also visualized the overlap between procedural 

samples in experimental setups 2 and 3 (before and after Decontam).  

Beside using R, QIIME1 and QIIME2 we have used the statistical software Stata SE 

for Mac OS (versions 13 to 16, Stata Corp, College Station, TX, USA).  

8.9  Ethics 

MicroCOPD was conducted in accordance with the ethical principles outlined in the 

Declaration of Helsinki. The Regional Committee for Medical and Health Research 
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Ethics approved the study (REK Nord, project number 2011/1307). All study 

participants provided written informed consent.  
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9. Summary of papers 

9.1 Paper I  

Protected sampling is preferable in bronchoscopic studies of the airway microbiome  

For the first paper, we set out to determine whether protected (via a sterile catheter) 

bronchoscopic sampling techniques would reduce the influence of bronchoscopic 

carryover from the upper airways. We compare three sampling techniques: i. 

protected specimen brushings (PSB), ii. protected bronchoalveolar lavage (PBAL) 

and iii. (unprotected) small volume lavage (SVL).  

Samples were collected from a total of 125 participants, consisting of 67 subjects 

with obstructive lung disease (3 asthma and 64 COPD patients) and 58 healthy 

controls. Our bronchoscopy sampling scheme was designed to mitigate the impact of 

confounding factors, including microaspiration and intrapulmonary contamination. 

This required sampling at multiple intrapulmonary sites within each participant, and 

in a strictly specified order: three PSB from the right lower lobe (rPSB), two fractions 

of PBAL from the right middle lobe (PBAL1/PBAL2), three PSB from the left upper 

lobe (lPSB) and SVL from the left upper lobe. For a subset of participants (n=49), the 

left lung was sampled before the right lung. An oral wash (OW) sample was collected 

prior to each bronchoscopy procedure, for use as an upper airway reference sample, 

along with a negative control sample (NCS) consisting of PBS used for collection of 

all samples.  

Analyses of bacterial community composition was performed by MiSeq sequencing 

of the bacterial 16S rRNA gene V3 V4 region. Bioinformatics processing was 

performed using QIIME1. Our approach to contamination was to remove all 

sequences observed in NCS.   

Our analyses were based on the underlying assumption that the more similar the 

bronchoscopically acquired specimens (PSB, PBAL, SVL) were the OW sample, the 

greater the influence of upper airway carryover on these samples. Our assessment 



 

 

61 

was based on three parameters: i. taxonomy, ii. alpha diversity and iii. beta diversity. 

Across all three parameters, similarity to the OW sample decreased in the order: 

OW>SVL>PBAL>PSB. Our analysis of taxonomic composition revealed an increase 

in the proportion of Proteobacteria and a simultaneous decrease in the proportion of 

Firmicutes. Measures of alpha diversity (Faith´s PD) decreased across sample types. 

By analysis of PCoA plots of unweighted UniFrac distances (beta diversity) we found 

that the overlap between OW and SVL samples was greater than that for OW and 

PBAL samples and OW and PSB samples.  

9.2 Paper II 

Laboratory contamination in airway microbiome studies 

For paper II, we sought to determine the impact of laboratory contamination on 

airway microbiome analyses, and to explore the expected inverse relationship 

between sample bacterial load and influence of contamination when processing 

samples through the MicroCOPD laboratory pipeline. Furthermore, we set out to 

determine the optimal bioinformatic approach to dealing with contamination post 

sequencing. Analyses included quantitative PCR and targeted amplicon sequencing of 

the bacterial 16S rRNA gene. 

Samples were collected from 23 participants from the MicroCOPD study, consisting 

of 14 subjects with obstructive lung disease (COPD, asthma) and 9 healthy controls. 

Sample types collected from each participant included oral washes (OW), two 

fractions of protected bronchoalveolar lavage (PBAL1/PBAL2), protected specimen 

brushes (PSB) and an aliquot of the phosphate buffered saline (PBS) used for 

collection of all samples (NCS). Additional procedural control samples were 

collected after ten simulated bronchoscopy procedures (no patient). Samples included 

a bronchoscope rinse (BR), a catheter rinse (CR), a protected specimen brush (PSB), 

a sample of PBS transferred to a cryotube (CT) and a sample of PBS used for 

collection of all samples. Molecular grade water samples were also processed through 

the DNA extraction protocol without the introduction of PBS. For assessment of the 
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relationship between sample bacterial load and the influence of contamination, we 

included a ten-fold dilution series of a sample of Salmonella (SDS).  

Analysis of the SDS revealed an inverse relationship between sample bacterial load 

and the influence of contamination. When extrapolating these findings to quantitative 

data obtained for airway samples (PBAL, PSB), we found that an estimated 10-50% 

of the bacterial community profiles could be traced back to contaminating bacterial 

DNA introduced from the laboratory. The OW sample appeared unaffected by 

contamination. On examination of procedural control samples (BR, CR, PSB, CT, 

PBS), molecular grade water samples processed through DNA extraction and PCR 

water samples introduced post DNA extraction, the DNA extraction kit was identified 

as a main contamination source. 

We compared three different bioinformatic approaches for removal of contamination: 

i) keep all samples intact (i.e. do nothing), ii) remove all OTUs seen in NCS, and iii) 

correction based on statistical models (i.e. the Decontam R package). Contaminant 

removal based on Decontam appeared to provide a balance between keeping and 

removing OTUs found in both NCS and study samples.  

9.3 Paper III  

Exploring protocol bias in airway microbiome studies: one versus two PCR steps and 

16S rRNA gene regions V3 V4 versus V4 

The lung microbiome has been studied using a wide range of protocols for high-

throughput sequencing of the bacterial 16S rRNA gene. We set out to determine the 

impact of number of polymerase chain reaction (PCR) steps (1- or 2-steps) and 

choice of target marker gene region (V3 V4 or V4) on the presentation of the upper 

and lower airway microbiome.  

The study included samples from 23 participants in the MicroCOPD study, consisting 

of subjects with (n=14) and without (n= 9) obstructive lung disease (COPD, asthma). 

Samples collected included oral washes (OW), protected specimen brushes (PSB) 
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from the right lower lobe and protected bronchoalveolar lavages (PBAL) from the 

right middle lobe. An aliquot of phosphate buffered saline used for the collection of 

all procedural samples was used as a negative control sample (NCS) for assessment 

of contamination. A PCR water sample, introduced post DNA extraction was also 

included for distinguishing between contamination introduced before and after DNA 

extraction. A mock community (MC) sample consisting of genomic DNA from 20 

different bacterial species was included as a positive control. 

Samples were processed through three different library preparation setups varying in 

number of PCR steps and targeted marker gene region: Setup 1 (2-step PCR; V3 V4 

region), Setup 2 (2-step PCR; V4 region), and Setup 3 (1-step PCR; V4 region). 

Sequencing was performed on the Illumina MiSeq.  

The number of sequences and amplicon sequence variants (ASVs) decreased in order 

setup 1>setup 2>setup 3. The observation appeared to be associated with an increased 

taxonomic resolution when sequencing the V3 V4 region (setup 1) and an increased 

number of small ASVs in setups 1 and 2. The latter was considered the result of 

increased susceptibility to contamination when following the 2-step PCR protocol 

(setup 1 and 2) and when sequencing across multiple sequencing runs (setup 1). 

Comparison of contamination profiles (based on NCS) revealed the dominance of 

ASVs assigned to family Enterobacteriaceae across all three setups. For setup 3, an 

additional ASV attributed to genus Escherichia coli (family Enterobacteriaceae) 

dominated. The same ASV also dominated the PCR water sample in setup 3, and we 

interpreted this as a contaminant introduced with PCR reagents for this setup. The 

elevated levels of Escherichia coli in the MC sample processed in setup 3 further 

supported this interpretation.  

Comparison of procedural samples revealed that the same taxa dominated across all 

setups, although at different relative abundances. Analyses of beta diversity revealed 

that OW samples clustered together regardless of number of PCR steps. PSB and 

PBAL samples separated. The removal of Decontam contaminants did not resolve the 
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differences between setups. This indicated that mechanisms related to sample 

bacterial load, other than contamination was driving the observed protocol bias.  
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10. Discussion 

10.1 Discussion on methods 

10.1.1 Study populations 

Paper I 

Bronchoscopic studies on the lower airway microbiome have in general been limited 

by small population sizes. The bronchoscopy procedure is invasive and costly, and 

the implementation of larger studies has therefore shown to be challenging. For some 

studies, the need for more power has been addressed by combining data from 

different centers [18, 19, 67]. However, an important weakness of large multicenter 

initiatives, is that differences in methods for sampling, processing and sequencing 

across centers may introduce experimental bias to the data that is difficult to adjust 

for.  

With 249 participants enrolled in the MicroCOPD study, we were for the first paper 

in a position to conduct a high power single-center investigation that would meet the 

increasing demand for such studies in the field. As sampling and sequencing for 

MicroCOPD was still ongoing as we started our analyses, we could not include all 

participants from the main study. Our analyses were therefore limited to a subset 

consisting of 125 participants, encompassing a relatively even proportion of subjects 

with obstructive lung disease (n=67) and control subjects (n=58). Furthermore, the 

participants with obstructive lung disease were represented by users and non users of 

inhaled corticosteroids (ICS). The study population also included current-, ex- and 

never-smokers.  

We found no widely accepted method to estimate sample size, but compared to 23 

(out of 25) previous bronchoscopy studies (published by 2016), we had a larger 

number of participants [4, 6–8, 12, 18–21, 25, 27, 64, 66, 67, 85–95]; the exception 

being two multicenter studies conducted as part of the LHMP [19, 67], where one 

might question the validity of this approach, with significant protocol differences 

between centers. In relation to our research question, exploring differences in upper 
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airway contamination levels across bronchoscopic sampling techniques, we found 

that only five out of the 25 studies included protected sampling techniques [6, 12, 27, 

67, 88]. And only three studies included both protected and unprotected sampling 

techniques [6, 12, 27].  For these latter studies, the number of study participants did 

not exceed 15.  

In summary, this first paper gains power from a relatively large heterogenous study 

population. The full data-set collected in the MicroCOPD study, is however more 

than twice the size of the current paper. Although tempting, we decided not to look 

into details regarding disease state, use of ICS and smoking habits, as this would be 

the focus for later publications in the MicroCOPD study. In hindsight, we however 

acknowledge that smoking status may have confounded our analyses. Studies have 

indicated that smoking may alter the microbiota composition of both the upper and 

lower airways. Importantly, the upper airways appear to be more impacted than the 

lower airways [8, 18]. For participants in the “current-smokers” and “ex-smokers” 

categories, there is therefore the possibility that smoking may have expanded the 

distance between the lower airway samples and the upper airway samples. With only 

a few participants in the “never-smokers” category, stratification by smoking status 

was however not possible.   

Papers II and III 

For papers II and III, we included 23 participants from the MicroCOPD study - a low 

number compared to that which was available from the full data-set collected in the 

main study. However, the objectives of papers II and III were directed at resolving 

methodological issues associated with laboratory processing steps and the influence 

of variable sample bacterial load. Due to inherent bias expected to be found across 

sequencing runs, it was important that where possible, all study samples were 

included on the same sequencing run, for which there are 96 slots. We also wanted to 

take advantage of the multiple sample types collected per participant in the 

MicroCOPD study. The inclusion of multiple sample types per participant and 
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various technical control samples enabled us to analyze samples from 23 participants 

in these two studies. 

Whilst likely not of critical importance to the research question for papers II and III, 

we sought to obtain a balance in the number of participants in the healthy and 

diseased categories (9 control subjects, 14 subjects with obstructive lung disease). 

This because our hypotheses were driven by the expectation that methodological 

issues would be directly tied to sample bacterial load, and we recognized the potential 

for obtaining higher sample bacterial load in participants with respiratory disease. 

10.1.2 Procedural samples 

Since the aim of the first paper was to gain knowledge regarding airway sampling in 

microbiota studies, this section of the discussion mainly revolves around the first 

paper. Our findings, however, greatly influenced the design of the two subsequent 

papers.  

Paper I 

We sought to explore the potential of reducing the influence of oropharyngeal 

contamination through the use of protected bronchoscopic sampling techniques. As 

described in the introduction, protected sampling involves sampling via a sterile wax-

plugged catheter that is passed through the working channel of the bronchoscope. We 

hypothesized that the catheter would provide protection from contaminating bacteria 

present in the bronchoscope working channel. Second, we wanted to compare the 

performance of protected sampling techniques with the most common sample type 

utilized in studies of the lung microbiome – the unprotected bronchoalveolar lavage 

(BAL) sample.  

In addition to a large heterogenous study population (providing external validity), we 

included multiple sample types from each study participant – the number of which to 

our knowledge has not been seen in any previous study. Also, the sampling scheme 

used in the MicroCOPD study enabled us to account for the difficult and potentially 

confounding issue of microaspiration and intrapulmonary contamination (providing 
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internal validity). This was particularly important for the current paper as assessment 

of bronchoscopic carryover, was based on the similarity between the upper airway 

OW sample and lower airway samples collected across different sampled sites. 

To mitigate the impact of the aforementioned confounding factors, sampling in the 

MicroCOPD study was performed by collection of different samples across multiple 

sites and in a strictly specified order: three protected specimen brushes (rPSB) from 

the right lower lobe (RLL), two fractions of protected bronchoalveolar lavage 

(PBAL1/PBAL2) from the right middle lobe (RML), three protected specimen 

brushes (lPSB) from the left upper lobe (LUL), and (unprotected) small volume 

lavage (SVL) from the LUL. For a smaller subset of participants, the left lung was 

sampled before the right lung. An oral wash sample (OW) was collected before each 

bronchoscopy procedure for representation of the upper airway microbiota. For the 

current paper, we included all sample types collected in the MicroCOPD study. This 

enabled the evaluation of three sampling techniques: PSB, PBAL, and SVL.  

While PSB sampling has commonly been used in studies of the lung microbiome, we 

were not aware of any study that had previously performed BAL through a protective 

catheter (i.e. PBAL). This despite the potential benefits of protected sampling via a 

catheter, particularly against contaminants found inside the working channel as 

described in the introduction. We found that only three studies included both 

protected PSB and unprotected BAL [6, 12, 27]. The SVL sample collected in the 

MicroCOPD study, was obtained by sampling directly through the bronchoscope 

working channel. As such, comparisons could be drawn to the commonly used 

unprotected BAL.  

The comparison of all sampling techniques would ideally be based on sampling from 

the same pulmonary site. However, any one sampling event may alter the microbiota 

composition at the sampled site. Our comparison of the five different sample types, 

therefore included sampling at three different pulmonary sites – the right lower lobe 

(RLL), the right middle lobe (RML) and the left upper lobe (LUL). We searched the 

literature for studies that could help us predict the degree to which sampling across 
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multiple sites might confound our analyses. The few studies we found, described two 

different situations when studying healthy [12] and diseased subjects [8, 15].  

For healthy subjects, we can look to the adapted island model of lung biogeography 

introduced by Dickson and colleagues [12], which was described in the introduction.  

Recall that the model predicts that in healthy individuals, we can expect the bacterial 

communities of the lungs to resemble that of the upper airways. The model further 

predicts that as we move down the lower airways, the similarity to the upper airways 

decreases. We found the model particularly relevant to our paper, as the anatomical 

distance to the upper airways varies considerably between our three sampled sites 

(RLL, RML, LUL). Recall again that our analyses were based on the underlying 

assumption that the more similar our samples were the representative upper airway 

sample (OW), the greater the influence of contamination by bronchoscopic carryover. 

The adapted island model of lung biogeography would assume that inherent 

differences in lung microbiota across sites would result in an expected decrease in 

similarity to the OW sample in the order of LUL> RML>RLL; that is even without 

the influence of bronchoscopic carryover or contamination that we were looking for. 

We recognized that the model introduced a potential confounding factor in our study 

design that we needed to account for in our analyses. In the diseased state, we also 

can expect greater difference in microbiota across sites that are independent of the 

influence of microaspiration [8, 15]. However, given the difference in bacterial load 

between the upper and lower airways, we might also expect that upper airway 

carryover using unprotected sampling techniques could blur out differences in 

microbiota across sites in health and even diseased states. This is however currently 

unclear, and thus the inclusion a large study population with representation from both 

healthy and diseased states was critical. 

As the question of differences in microbiota across sites within the same individual is 

unclear, it was important that the MicroCOPD sampling scheme also accounted for 

the potential of contamination across sampling sites. First of all, PSB samples were 

always collected before lavage (PBAL, SVL) sampling. This to minimize the 

influence of residual sampling fluid on the surrounding sites. In our literature search, 
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our critique of one of the key papers in the field by Dickson et al. [12] comparing 

PSB and BAL sampling, was the sampling of BAL before PSB. Second, for a subset 

of the participants, we sampled the left lung before the right lung. The importance of 

this was twofold. First of all, one might predict that the first sampled site would be 

more influenced by oropharyngeal carryover, as for each subsequent sampling event 

this contamination would be more “diluted”. Second, repositioning the bronchoscope 

from one lung to the other involves passing the carina, a site for which microaspirated 

bacteria likely accumulate [14]. Thus, moving from one lung to the other, 

contaminating bacteria from the carina may give a false impression of oropharyngeal 

contamination in our analyses. By sampling also the left lung first, we could assess 

the influence of moving from left to right lung, right to left lung.  

Besides reducing the potential impact of intrapulmonary contamination during 

sampling, the sampling scheme enabled us to address the difficult issue of 

distinguishing between microaspirated bacteria and oropharyngeal carryover by the 

bronchoscope. First of all, by sampling PSB at the two sites with which the 

anatomical distance to the upper airways varies the most (RLL and LUL), we could 

determine whether differences in lung biogeography (and thereby microaspiration) 

was affecting our interpretation of the impact of oropharyngeal carryover. Second, 

the LUL was sampled using both the most protected sampling technique (PSB) and 

the sampling technique most vulnerable to oropharyngeal carryover (SVL). This to 

enable a direct comparison of these two sampling modalities, and therefore the ability 

to distinguish between the true microbiota likely found in PSB and increased 

oropharyngeal contamination in SVL. BAL from the RML (same wedged segment) 

was fractionated to PBAL1 and PBAL2, enabling assessment of the dilution effect 

described in the introduction. A dilution effect from PBAL1 to PBAL2 could indicate 

influence of oropharyngeal contamination.  

One weakness may be that, even our extensive sampling might not provide the detail 

needed to resolve the issue of how best to sample the airways. We did not collect 

samples from the last upper airway site for which the bronchoscope passes before 

reaching the lower airways (i.e. the supraglottic region). As described in the 
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introduction, this region likely consists of bacteria from the nasal and oral cavities, 

and particularly in diseased individuals, the bacterial communities derived from the 

nasal cavity may be relevant. Samples from this region may therefore be more 

representative of microbiota that are “microaspirated”. Samples from the lumen 

below the vocal cords might have told us more about what the bronchoscope brings 

down to the sampling sites, and samples from the carina and main bronchi might have 

shed light on the fraction of upper airways microbiota that reaches the lower regions. 

However, such comprehensive sampling would have greatly extended the procedure 

time with an associated increased need of sedation/anaesthesia and possibly also 

procedural complications.  

There are also alternatives to our protected sampling methods. For instance, some 

investigators use a two-scope technique where they change bronchoscope after 

anesthetizing the vocal cords; this to minimize contamination of the bronchoscope 

used for sampling. However, this implies more movement up and down the airways, 

and opens other routes of contamination. Protection might also be accomplished 

using a balloon catheter when performing BAL. This might minimize a “washing 

effect” of the bronchoscope tip when sampling lavage, and also increase yield by 

sealing the sampling site and preventing leakage to other parts of the airways.  

After sample collection, the next step in our microbiome analysis workflow was 

bacterial DNA extraction. As discussed in the introduction, controversy exists on 

whether eukaryote host cells should be removed from samples before proceeding 

with DNA extraction [64, 65]. While some studies have used acellular samples 

(eukaryote cells removed) [20, 25, 66], most studies have used whole samples 

(eukaryote cells kept). For the MicroCOPD study (and hence all papers of the thesis), 

we found the use of whole samples to be the most valid choice, as important members 

of the lower airway microbiota may be associated with eukaryote cells, for instance 

via biofilms [64]. However, there is currently no consensus in the field regarding the 

optimal sample type (acellular or whole). In fact some studies have even combined 

datasets obtained using both acellular and whole BAL, as in the multicenter LHMP 

study [67]. While the optimal sample type remains to be determined, we argue that 
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consistency in methods is most important and for such studies reliability/validity is 

questionable. 

Papers II and III 

Four different sample types were analyzed from each of the 23 participants included 

in the papers II and III: oral washes (OW), protected specimen brushes from the right 

lower lobe (rPSB), protected bronchoalveolar lavage (PBAL) from the right middle 

lobe, and negative controls samples (NCS). 

Importantly, we included both high and low biomass airway samples. The lower 

airways were represented by two different sampling techniques (PSB and PBAL). 

The SVL sample was not included, as in our hands protected sampling procedures 

appeared to provide protection from upper airways (paper I). In addition, the included 

samples were taken from the same lung, thereby minimizing the impact of 

intrapulmonary contamination [12, 14]. By including the same participants and 

samples in papers II and III, we strengthened our analyses and were able to compare 

our different bioinformatic approaches. In paper II, the bacterial load was established 

for these samples, providing more validity to the conclusions made for paper III 

based on assumed differences in bacterial load.  

10.1.3 Bacterial DNA extraction  

Papers I, II and III 

As discussed in the introduction, the bacterial DNA extraction step may introduce 

bias to a study if the genomic DNA is not extracted with equal efficiency from all 

bacterial members of the sampled microbiota. The protocol for DNA extraction used 

in the MicroCOPD study, was designed in-house and based on what we perceived as 

the best of knowledge currently available for securing optimal bacterial community 

representation.  

Samples were first treated with a combination of the three lytic enzymes (lysozyme, 

mutanolysin and lysostaphin), as recommended in Yuan et al. [29]. By using a 
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combination of three enzymes we addressed the potential resistance of bacteria to the 

lytic activity of any one particular enzyme. Bacterial cells that were not sufficiently 

lysed on treatment with the enzyme cocktail, were subjected to mechanical lysis by 

bead beating. Importantly, genomic DNA that had been successfully isolated by 

treatment with enzymes, were removed before proceeding with the bead beating step. 

This to avoid the shearing of genomic DNA, for which had been successfully 

extracted on treatment with the enzymes and hence potentially minimizing the 

formation of chimeras in subsequent PCR steps, as described in the introduction.   

A weakness to our study is perhaps that we did not validate our DNA extraction 

protocol against a mock community sample (MC). While this would have provided us 

with an indication of the differences in extraction efficiencies across bacteria with 

different cell wall structures, it can however be argued that a MC sample will anyhow 

not accurately reflect the true complexity of a natural sample.  

We recognize the possibility that differences in extraction efficiency across bacterial 

taxa may have impacted our analyses. Recall for instance that for paper I, our 

assessment of upper airway carryover by the bronchoscope was based on the degree 

of similarity between the lower airway samples and OW samples. If a taxon found 

exclusively in OW samples is extracted with low efficiency, the OW samples may 

appear to be more similar to lower airway samples than is the actual case. Analyses 

for paper III were aimed at elucidating error and bias associated with laboratory 

processing steps occurring after DNA extraction. By using the same DNA extracts as 

input to each of the three library preparation setups compared, we minimized the 

potential for bias associated with DNA extraction.  

10.1.4  Determination of bacterial load  

For paper III, the levels of bacteria in our samples were determined by probe-based 

quantitative PCR (qPCR) targeting the bacterial 16S rRNA gene region V1 V2. We 

chose to use the same primer/probe set utilized by several others in the field [6, 7, 14, 

21]. The standard curve used for determining absolute bacterial numbers was 

constructed from a ten-fold dilution series of E. coli genomic DNA.  
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The main weakness with our method, is that we did not account for the presence of 

human DNA in our samples. Human DNA may act as a competitive inhibitor in PCR, 

resulting in low reaction efficiencies. This is particularly a concern for samples where 

the levels of human DNA are high and the levels of bacterial DNA are low. Glassing 

and colleagues [96, 97] have shown that the presence of human DNA may have an 

impact not only on the 16S sequencing results for community profiling [97], but also 

on quantitative assessments of bacterial load [96] as discussed here (both are methods 

that build on the PCR). Glassing et al. [96] found that submucosal intestinal tissue 

samples (low biomass) containing high amounts of human DNA generated CT values 

(i.e. threshold cycle values) greater than that obtained for no template controls – i.e. 

their results indicated that there were higher levels of bacteria in the no template 

controls than in their tissue samples. We cannot dismiss the possibility that the 

presence of human DNA may have influenced our results. This particularly so 

because the samples used for construction of the standard curve – a pure culture of 

genomic E.coli DNA – was devoid of human DNA. One may therefore question 

whether possible differences in reaction efficiency between the standard samples and 

the samples being tested due to differences in human DNA content, could have led to 

an underestimation of bacterial load.  

10.1.5 Library preparation for sequencing  

Papers I and II 

For the first two papers of the thesis, library preparation for sequencing was 

performed using the commercial protocol by Illumina with title 16S Metagenomic 

Sequencing Library Preparation (Part # 15044223 Rev. B). Methodological issues 

associated with choice of protocol and target marker gene region are central themes 

in paper III and is discussed in section 10.2.3. The number of PCR cycles used for 

amplification of the target marker gene was increased from 25 cycles as specified in 

the commercial protocol, to 45 cycles. This was necessary in order to obtain adequate 

levels of DNA for sequencing. The issue of PCR cycle number was addressed in 

paper II and is discussed in section 10.2.2. 
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Paper III 

Three setups for library preparation and sequencing are compared in the third paper 

of the thesis: setup 1 (2-step PCR; V3 V4 region), setup 2 (2-step PCR; V4 region), 

setup 3 (1-step PCR; V4 region). The three setups were chosen to best answer two 

questions. First of all, will a 2-step PCR protocol render samples more vulnerable to 

laboratory contamination than a shorter 1-step PCR protocol? And second, will 

choice of target marker gene region (16S rRNA gene V3 V4 or V4) have an impact 

on final bacterial community descriptions?  

To address the first question, two protocols that differed with regards to the number 

of PCR steps was required. To ensure external validity, we sought to find protocols 

widely used in the field. For the 2-step PCR protocol (setups 1 and 2), the choice fell 

on the commercial protocol by Illumina. The protocol was used for preparing samples 

for sequencing in the MicroCOPD study, and hence the findings from paper III could 

be extended to interpreting results generated in previous and future papers in 

MicroCOPD. The 1-step PCR protocol was based on the protocol described in 

Kozich et al. [49].  

To address the second question, we first had to decide on which 16S rRNA gene 

variable regions to compare. Studies on the lung microbiome have been based on a 

wide range of 16S rRNA gene targets - including V1 V2 [6, 86], V1 V3 [8, 18, 19], 

V3 V5 [7, 19, 21, 64, 85, 98], V3 [87, 99], V4 [12, 14, 25, 67] and V3 V4 [23] – a 

decision regarding which target regions to compare was not a given. We however 

decided on the regions V3 V4 and V4. The V4 region stood out as the optimal choice 

as studies have collectively shown that the region generates the most accurate 

estimates of the three commonly used parameters - alpha diversity [100], beta 

diversity [38] and taxonomic assignment [79]. The short length of the V4 region also 

comes with the added advantage of enabling fully overlapping PE sequencing reads – 

which as discussed in the introduction, has shown to be a powerful means by which 

error correction may be performed (section 6.3.2). With the development of 

sequencers with increased read lengths, and novel denoising strategies (e.g. DADA2 
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[59]) longer regions are now becoming more favourable. The V3 V4 region was 

chosen as the second target as this was the region targeted in the MicroCOPD study, 

again enabling the expansion of current findings to the previous and future work in 

the MicroCOPD study.  

Papers I, II and III 

A third consideration, relevant to all three library preparation setups is the potential of 

contamination between study samples processed together on the same sequencing run 

(i.e internal contamination). Such internal contamination has been perceived as less 

of a concern than external contamination derived from bronchoscopic carryover or 

the general laboratory environment. We can distinguish between two types of such 

internal “between sample” contamination - that introduced during steps of library 

preparation for sequencing and that introduced during the sequencing process itself 

[101]. 

Internal contamination can arise during library preparation as a result of “well-to-

well” contamination between samples that are placed next to each other on the PCR 

plate [101]. Library preparation for sequencing was performed for 96 samples at a 

time on 96-well PCR plates and involved multi-protocol workflows. Each individual 

protocol involved an extensive amount of manual pipetting, for which we used 

multichannel pipettes.  

The issue of internal contamination across samples on the same PCR plate may be 

particularly relevant to the MicroCOPD study, due to the inclusion of multiple 

samples types and differences in bacterial load across sampled sites. Because samples 

were organized on the PCR plate according to bronchoscopy procedure and not 

sample type, samples of high bacterial load (i.e. OW) were placed directly adjacent to 

samples of low bacterial load (i.e. lower airway samples, NCS). The potential for 

well-to-well contamination in the direction of OW to lower airway sample (PSB, 

PBAL, SVL) is concerning because of the expected overlap in bacterial communities 

between the sampled sites. In much the same manner as described for microaspiration 

earlier, such internal contamination may for instance confound our analyses aimed at 
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comparing the similarity between OW samples and each of the different lower airway 

sample types (paper I). Well-to-well contamination in the direction of lower airway to 

NCS sample is also a concern, as this could lead to the false labelling of authentic 

airway community members as external contaminants (i.e. those derived from the 

laboratory environment or reagents). We did not conduct any experiments to 

determine the frequency of such contamination in the MicroCOPD study. We did 

however take the preventative measure of strictly using pipette tips with filters to 

avoid carryover by contaminated pipettes.  

Internal contamination may also occur during the sequencing process itself due to the 

issue of index misassignment (section 6.3.1). All three setups used in the current 

thesis were based on a so called combinatorial dual indexing approach based on 8 

forward primers with unique so called “i5” index sequences and 12 reverse primers 

with unique “i7” index sequences. Amplicons derived from different samples may 

therefore share the same “i5” or “i7” index sequence, but not both. As with the issue 

of well-to-well contamination, we did not experimentally determine the frequency of 

index misassignment in our library preparation setups. The use of unique indexes for 

all, could have reduced the potential for index misassignment. 

While the issue of internal contamination is not addressed in the current thesis, one 

may question whether the greater number of steps associated with a 2-step PCR 

protocol (setups 1 and 2) relative to a 1-step PCR protocol (setup 3) could leave 

samples more vulnerable not only to external contamination, but also internal 

contamination such as that described here. First of all, as samples are processed 

through a greater number of protocol steps in the 2-step PCR approach, there might 

be more opportunity for well-to-well contamination. Also, the timing of the index 

PCR step may be important. Recall that indexing is performed so that sequences are 

labeled according to the sample from which they originate. One may therefore expect 

that the earlier addition of index sequences in a 1-step PCR approach could lower the 

impact of well-to-well contamination compared to a 2-step PCR approach. This has 

however not been evaluated in the literature.  
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Finally, also relevant to all three papers is the issue of repeatability of analyses. 

Ideally all laboratory processing, including sequencing, should have been replicated 

to avoid spurious findings dominating our conclusions. Even if we did not replicate 

analyses in paper II and III, hopefully the number of samples processed and 

consistency in our findings mitigate some of this weakness in our design.  

10.1.6 Bioinformatics processing 

Paper I 

Bioinformatic sequence processing and analyses were conducted using tools available 

within the QIIME1 package. As with laboratory protocols, we found that there was 

no consensus in the field with regards to bioinformatic sequence processing steps or 

analyses. Most decisions were therefore made based on the default settings and 

recommendations provided by the QIIME development team [102]. Nonetheless, we 

had to make decisions regarding stringency of quality filtering and the approach to 

dealing with NCS.   

Quality filtering.  

In two key steps of the pipeline we had to make a decision regarding the stringency of 

quality filtering. First, when joining paired-end reads, a decision had to be made 

regarding the degree of overlap between the forward and reverse reads, and whether 

or not we would allow any discrepancies between the two overlapping regions. We 

demanded a minimum overlap of 100 bases and allowed for zero discrepancy. This 

was quite strict and in hindsight it is clear that we may have lost reads that could have 

been “saved” by error-correction using the read with a higher base quality score 

(section 6.3.2). Further down the pipeline, quality filtering was performed using 

default settings in QIIME1 [52] (6.3.2 ) but for which we increased the default quality 

score set to 3 to 19, thereby filtering out reads with lower Q scores than 20. With 

such a high threshold, we may have filtered out many accurate sequences together 

with erroneous sequences.  

Approach to NCS. 
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A main strength of the MicroCOPD study, is the collection of procedural NCS for 

each separate bronchoscopy procedure. The NCSs were never in contact with the 

study participant or the bronchoscope, but were processed through all subsequent 

laboratory steps (DNA extraction, library preparation for sequencing and sequencing) 

alongside the procedural samples. This provided us with a unique opportunity to 

address the issue of contamination from the laboratory. However, the literature 

provided us with few guidelines for dealing with NCS and approaches varied across 

studies. The simplest approach found in our literature search, was the removal of all 

OTUs or taxa observed in NCS (i.e. the “remove all” approach) [21, 86]. Although 

simple, the approach does not account for taxa naturally overlapping both NCS and 

airway samples. Pseudomonas is for example commonly found in the lungs [21], 

while also a typical laboratory contaminant captured in sequenced NCS [20, 63]. The 

“remove all” approach also does not account for the potential impact of internal 

contamination that may occur in the direction airway sample to NCS, as described 

earlier (section 10.1.5). Another approach involved the select removal of probable 

contaminants based on reports from previous publications (i.e. the “black-list” 

approach) [63, 103]. The obvious limitation with the “black-list” approach, is that 

contamination may vary greatly from study to study, and even within the same study, 

variation can be expected across different time points and when using different lots of 

reagents and kits for sample processing [63]. Furthermore, we found that others had 

removed sequences observed in NCS based on arbitrarily chosen abundance 

thresholds [99]. However, we found that it is unclear where to draw the line with 

regards to a set abundance threshold level. The perhaps most sophisticated approach 

found in our literature search, was the application of the neutral model of community 

ecology for detection of likely contaminating OTUs [19]. The method was however 

used in few publications and we found it challenging to perform with our limited 

bioinformatics experience. While the above mentioned methods were based on 

identification of contaminating sequences to remove from the dataset, alternative 

approaches were based on the removal of entire samples that overlapped with NCS in 

ordination space [18, 20, 99]. Regardless of chosen method of handling NCS, a 
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common limitation to all methods is the possibility that not all contaminants are 

represented in the NCS [103].  

With the backdrop described above, we found that there was no clear best approach 

to dealing with contamination and NCS. For paper I, we therefore chose the simplest 

approach – the removal of all OTUs found in NCS. As NCS were collected for each 

bronchoscopy procedure, OTUs were only removed from the corresponding 

procedural samples collected under the same procedure. Thus limitations associated 

with the “remove all” approach, with regards to potential impact of internal 

contamination (resulting in the removal of biologically relevant taxa) would only 

impact samples collected under the same bronchoscopy procedure. Despite the risk of 

removing OTUs naturally occurring in both airway and NCS samples due to an 

external contamination source potentially influencing all samples on the same 

sequencing run (e.g. DNA extraction kit or PCR reagents), we found the “remove all” 

approach satisfactory in light of our research question. This because the same OTUs 

were subtracted from the OW and lower airway samples. We therefore reasoned that 

our comparison of the upper airway OW to the lower airway samples would not be 

largely affected. In contrast, if samples were kept intact (i.e. no contaminant removal 

strategy), the influence of contamination would likely be greater on samples with low 

bacterial load (i.e. the lower airway samples) – possibly inflating the difference 

between upper and lower airway samples. The challenges associated with handling 

NCS in analyses for paper I prompted us to address the issue in the second paper for 

the thesis, as described in the subsequent section.  

Paper II 

The bioinformatic processing steps for paper II were conducted as for paper I, using 

tools available within the QIIME1 package. For the current paper we however made 

it an objective to explore bioinformatic strategies for handling NCS for removal of 

laboratory contamination. The focus of the current discussion will therefore be on our 

choice of strategies to compare.  
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As described for paper I, the inclusion of NCS was quickly becoming a requirement 

for publication in most journals. We however found that guidelines for handling NCS 

once they were collected were still lacking, even now years after the first paper was 

published. The bioinformatic field had however picked up on the issue and several 

tools were under development. Of particular interest to us was the Decontam package 

available in R [82], which was developed directly for dealing with contamination in 

amplicon-based studies. For the current paper, we sought to compare three strategies 

for dealing with contamination: i) keep all samples intact (i.e. do nothing), ii) remove 

all OTUs found in NCS and finally iii) remove OTUs identified as contaminants by 

Decontam.  

While the first two approaches were rather straightforward, the Decontam R package 

presented us with several options. Contaminant identification is performed using the 

Decontam isContaminant function using one of several methods; including the 

“frequency” or “prevalence” based methods. A third method “either”, combines the 

former two methods. The choice of method (“prevalence”, “frequency” or “either”) in 

any study will first of all depend on the availability of auxiliary data. Negative 

control samples are required when performing the “prevalence” based method. DNA 

quantitation data are required when performing the “frequency” based method. The 

“either” method uses both the “prevalence” and “frequency” methods and as such 

requires both negative control samples and quantitation data. For the current thesis, 

both negative control samples and DNA quantitation data (qubit measurements) were 

available, enabling us to take use of the Decontam approach “either”.  

It was decided that the strictest Decontam method would be chosen, for best 

comparison to the «removal all» approach. Therefore, we chose the «either» method, 

securing maximum contaminant identification where one of either the «frequency» or 

«prevalence» based method would fail. The methods were validated on a ten-fold 

dilutions series of Salmonella (SDS), for which we were able to confirm that the 

«either» method was most effective.  
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The frequency based approach and its dependency on total DNA measurements might 

be criticized. The total DNA measurement before loading the MiSeq is based on 

rather crude methods and will also measure non-bacterial DNA. However, the PCR 

has selectively amplified microbial DNA, and both our sequencing results and the 

sub-study investigated with qPCR has revealed a bacterial load that is worth 

examining. Furthermore, the non-bacterial DNA would most likely serve to weaken 

associations in a non-discriminant manner, and not affect the validity of identified 

contaminants.   

Paper III 

For the third paper, bioinformatic sequence processing steps were conducted using 

tools available within the QIIME2 package. A central tool in the pipeline is DADA2 

[59], which has the primary function of denoising sequences to ASVs. The DADA2 

workflow also includes all steps of filtering, dereplication, chimera removal and the 

merging of PE reads – all steps of which are executed in a single command using the 

DADA2 plugin in QIIME2. We chose to perform additional steps of chimera removal 

and abundance filtering post DADA2 processing – procedures that have not (yet) 

been recommended or expected to be necessary when working with ASVs. A 

discussion on our decision to include additional these steps follows.  

Chimera removal.  

We chose to perform two rounds of chimera removal because different algorithms 

will vary with regards to both sensitivity and specificity. The first round of chimera 

removal was performed as an integrated part of the DADA2 workflow, for which the 

de novo based approach isBimeraDenovo() is used [59]. The method is applied after 

denoising to ASVs and is highly specific for the detection of exact chimeras formed 

between two parent sequences (bimeras). For the detection of chimeras formed 

between more than two parent sequences (multimeras), we applied a second round of 

de novo based chimera removal using the vsearch uchime-denovo method [76], which 

is also available a a plugin in QIIME2. The method originally developed with OTUs 

in mind, offers less specificity but higher sensitivity to chimeras – possibly higher 
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risk of false positive identification. To my knowledge the use of two filtering 

procedures on ASV data has not been benchmarked although this has been discussed 

vaguely on the QIIME2 user forum. While the use of two rounds of chimera detection 

may seem excessive and with an added risk of false positive detection, we found it 

appropriate due to experimental conditions that may have left our data particularly 

vulnerable to recombination events during PCR; i.e. a high number of PCR cycles 

[46] and bead beating during DNA extraction [31]. In addition, studies have 

suggested that when using a one step protocol (setup 3), where longer primers are 

used, chimera formation may be increased.  

The additional “Bokulich” filter step.  

An additional abundance filtering step was also performed. In short, recall that ASVs 

for which there were fewer sequences than 0.005% of the total number of sequences 

were removed. This threshold abundance level was rather arbitrarily chosen, and 

based on the recommendations provided by Bokulich et al. [52] when performing 

quality filtering measures on OTU based data. As described in the introduction, the 

method was originally intended to reduce the number of spurious OTUs generated as 

a result of PCR and sequencing error, for which should not in theory be an issue 

when working with ASVs. ASVs are however a relatively new unit in the 

microbiome field and there are few recommendations for handling ASV data – and 

particularly so with regards to low biomass samples. We suspected that low abundant 

ASVs may reflect contaminants, undetected chimeras or organisms with little 

biological relevance, and chose to filter based on the “Bokulich” method as 

performed also for papers I and II when working with OTUs. To us it seemed 

unlikely that the 23 samples from the airways would hold over 1000 different taxa. 

The bioinformatic pipeline used differed for different sample types depending on the 

question being asked and purpose for these samples in subsequent analyses steps. 

While the procedural samples were processed through all steps of the bioinformatics 

pipeline - including denoising by DADA2, chimera removal by VSEARCH, removal 

of small ASVs (i.e. the “Bokulich method”), removal of ASVs not classified at 
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minimum the phylum level and finally the removal of ASVs identified as 

contaminants using Decontam - the mock community (MC) and negative controls 

were handled differently. For MC samples, the main question we sought to answer 

was whether the three setups were equally efficient at recovering the different MC 

members. We also wished to determine the impact of contamination (i.e. all ASVs 

assigned to taxa not expected in the MC). Bioinformatic processing steps were 

therefore limited to DADA2, the additional chimera removal step by VSEARCH and 

the removal of ASVs that did not classify at minimum to phylum level. Removal of 

small ASVs (i.e. the “Bokulich method” described above) and removal of 

contaminants identified using Decontam, was not performed as we also wanted our 

analyses to capture the impact of contamination. The negative control samples – 

including both procedural NCS and PCR water samples, were processed through all 

steps of the pipeline except for the removal of contaminants identified using 

Decontam. As such the MC sequencing output is more reflective of the “raw” 

sequencer generated data, as small ASVs were not removed.  

10.1.7 Analyses 

Analyses were based on the OTU (QIIME1) or ASV (QIIME2) tables generated after 

bioinformatics processing of samples as discussed above. Common parameters used 

for microbiome analyses include i. taxonomy, ii. alpha- and iii. beta-diversity.  

Taxonomy 

Analyses of taxonomic composition were performed in all three papers using average 

relative abundance of taxa in the sampled communities. While this is a common 

approach in the literature, it is important to note that taking averages may distort 

conclusions if major or minor taxa are driven by extreme samples lacking taxa or 

overrepresented by taxa, for example as a result of internal contamination. While for 

paper I, the study population was large and this may not be an issue, it must be 

acknowledged that for papers II and III this may have affected our interpretation of 

the data.  

Alpha diversity 
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Within sample comparisons (alpha diversity) were made using Faiths PD (paper I). 

For papers II and III alpha diversity was not assessed beyond the mention of number 

of sequences and OTUs/ASV generated per sample. However, without rarefaction, 

accurate comparisons across samples could not be made. But, nevertheless, this still 

provided us with useful information regarding differences in sequence depth. 

Beta diversity 

Between sample comparisons (beta diversity) were made using PCoA of unweighted 

UniFrac distances. By choosing unweighted rather than weighted UniFrac, every 

detected OTU in the samples were given equal significance regardless of relative 

abundance. This is likely important in order to recover small differences between 

samples. The upper and lower airway communities, for instance, appear from the 

literature and own analyses to be dominated by many of the same taxa. We may 

therefore expect that the use of the weighted UniFrac metric could result in the 

masking of small differences between samples. On the other hand, the limitation with 

the use of unweighted UniFrac is that equal significance is also given to OTUs/ASVs 

derived from contamination. Our bioinformatic pipeline, however included the 

filtering of small OTUs/ASVs, which may have reduced the impact of low abundant 

contaminants on analyses of beta diversity.  

Statistical analyses 

Analyses of microbiota based on next generation sequencing data is a relatively new 

field. Both the nature and magnitude of data available for scientists has changed 

substantially over the last few years, and we now analyze millions of sequences from 

several hundred samples. The sequences are again organized in several hundreds (at 

least) units (ASVs, OTUs, taxonomic levels). Associated features of the resulting data 

sets make statistical analyses particularly challenging.  

First the number of variables is very high, resulting in a multiple comparison 

problem. This is a problem well known from genetic studies, and although statistical 

corrections are available (Bonferroni, FDR), these tend to over-compensate [104]. 
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Second, there is a large number of zero values which makes choosing a statistical 

distribution to base tests on, difficult [105]. Third, many of the parameters have a 

compositional distribution, which excludes many conventional statistical methods. 

And finally, the data presented in the current thesis are mostly paired in some way or 

another, and compared parameters are not independent of each other.  

Currently, there are a plethora of suggested workarounds for most of these problems. 

However, there is no agreed-upon solution, and when choosing one approach you 

often face limitations that necessitates analyses by yet another method. The results 

might conflict, and the researcher might end up in a conflict between full disclosure 

and the need to present a clear message.  

Nevertheless, most of the objectives in the current thesis were to shed light on 

methodological issues. We therefore chose to focus on descriptive analyses, and 

visualizations of these, to provide investigators with as much information as possible 

without categorical conclusions based on uncertain statistical tests. 

10.2 Discussion of main results 

10.2.1 Paper I 

Our evaluation of the impact of upper airway contamination when using different 

bronchoscopic sampling techniques was based on the underlying assumption that the 

more similar the lower airway specimens (PSB, PBAL and SVL) were the OW 

sample, the greater the influence of upper airway contamination on these samples. 

Between sample comparisons were made based on three parameters: i. taxonomy, ii. 

alpha diversity and iii. beta diversity. 

Taxonomy 

For comparison of taxonomic composition, we looked at the average relative 

abundance of the most prominent phyla by sample type. A clear trend with decreasing 

similarity to the OW sample in the order OW>SVL>PBAL1>PBAL2>rPSB>lPSB 
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was observed. Driving this effect was an increase in Proteobacteria and a 

concomitant decrease in Firmicutes across sample types.  

The order by which similarity to the oral wash sample decreased across sampling 

types was in accordance with our prediction of which sampling techniques would 

offer the most protection from upper airway contamination. SVL being the only 

sample type that was unprotected, showed greatest resemblance to the OW sample, as 

expected. The lPSB sample for which sampling was performed from the same site as 

SVL, showed the least resemblance to the OW sample of all sample types. This 

indicated that differences in susceptibility to upper airway contamination and not 

lung biogeography, was responsible for the observed differences between samples. 

Also as expected, PBAL samples showed less similarity to the OW sample in the 

PBAL return 2, compared to PBAL return 1. As described in the section 6.1.3, this 

may indicate a dilution effect as upper airway contamination may be “diluted off” 

after the first PBAL sampling. Despite the use of protected sampling when using 

PBAL, the dilution effect may still be prominent if the outside of the bronchoscope is 

a major source of bronchoscopic upper airway carryover. Contamination from the 

outside of the bronchoscope channel may also be captured better by washings (i.e. 

PBAL) than brushings (i.e. PSB).  

The increase in Proteobacteria and simultaneous decrease in Firmicutes across 

sample types was however more challenging to interpret. Proteobacteria have 

previously been associated with contamination from the laboratory that is more 

pronounced in samples of low bacterial load. This was for instance found in the study 

by Biesbroek et al. [32] across serially diluted samples of saliva (section 6.4.1). Thus, 

the increase in Proteobacteria as samples become less similar to OW, may reflect a 

decrease in total bacterial load that have left these samples more influenced by 

laboratory contamination. The higher levels of Proteobacteria in PSB related to 

PBAL may also be expected as the input volume to DNA extraction was lower for 

PSB compared to PBAL (450 µl for PSB and 1800 µl for PBAL), thereby possibly 

securing a lower bacterial load for these samples. The observed simultaneous 

decrease in Firmicutes across sample types may also reflect a reduced signal from the 
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sampled microbiota. Indeed, Proteobacteria includes important bacteria of the 

airways such as Haemophilus, Legionella, Pseudomonas and Burkholderia. Without 

having quantified differences in bacterial load across sample types, we could however 

not further conclude on these possibilities. In addition, our approach to laboratory 

contamination was to remove all taxa found in NCS. The accuracy by which this 

approach is able to address all laboratory contaminants is not known, but is a central 

topic in paper II. 

Alpha diversity  

Alpha diversity measurements shed light on the level of biodiversity found within a 

single sample. In its simplest form this can be a count of the number of different 

operational taxonomic units (OTUs), amplicon sequence variants (ASVs) or bacterial 

species. The Faith´s phylogenetic diversity (Faith´s PD) metric used in the current 

study, takes into account not only the number of OTUs, but also how 

phylogenetically similar these are to one another. It does this by adding together the 

total branch length between all OTU placements in the phylogenetic tree. Thus, a 

sample will be more diverse the greater the number of OTUs and the greater the 

phylogenetic distance between these OTUs.    

We found that diversity decreased across sample types as the level of protection from 

upper airway contamination increased: OW>SVL>PBAL1>PBAL2>rPSB>lPSB. 

Importantly, this trend was the same as that observed when comparisons of 

taxonomic composition were made. Sampling the left or right lung first did not have a 

great impact on measurements of alpha diversity.  

Beta diversity 

Beta diversity measures the degree of (dis)similarity between samples. As with alpha 

diversity, we decided to incorporate phylogenetic information into our analyses. 

Using the UniFrac metric [106], the distance between samples was measured based 

on the branch length in the phylogenetic tree that is shared between their bacterial 

communities. The calculated distances between all samples were stored in a distance 



 

 

89 

matrix, and the (dis)similarity between samples visualized by principal coordinates 

analysis (PCoA) plot.  

Using PCoA of unweighted UniFrac distances, we compared the OW samples to each 

of the five different sample types. We found that the similarity to the OW sample 

decreased in the order of SVL>PBAL>PSB. It was difficult to visually assess 

whether the overlap between PBAL1 and OW or PBAL2 and OW was greater and 

likewise, whether the overlap between lPSB and OW or rPSB and OW was greater. 

However, the general trend with regards to the three sampling techniques (PSB, 

PBAL, PSB) was in agreement with our results for both taxonomy and alpha 

diversity.  

By performing a permutational multivariate analysis of variance (PERMANOVA) 

test on the calculated UniFrac distance matrix, we could ascertain whether the 

(dis)similarities visualized in PCoA space were significant. This was particularly 

important for evaluation of the sample types mentioned above, that visually appeared 

to overlap equally with the OW samples in PCoA space. We found that all 

comparisons of OW and sample type were significant. Importantly, we were also able 

to confirm that the differences between OW and sample type increased in the order 

SVL< PBAL1< PBAL2< rPSB< lPSB as indicated by an increasing pseudo F-

statistic.  

Our results led us to conclude that protected sampling methods (PBAL, PSB) 

diminish the influence of oropharyngeal carryover by the bronchoscope. Our 

conclusion was however not in complete agreement with the findings presented in the 

three papers found in our literature search, for which both protected and unprotected 

sampling was performed [6, 12, 27].  

 

Charlson et al. [6] compared PSB samples (from the LLL) and BAL fluid (from the 

RML) obtained from six healthy subjects. Using PCoA analyses on weighted UniFrac 

distances, they found that all samples from lungs (irrespective of sample type) 

clustered together with samples collected from the upper airways (oral washes (OW), 



 

 

90 

oropharyngeal swabs (OP)). Thus, protected sampling did not appear to influence the 

degree of similarity to upper airway samples. The study however lacked power in 

terms of the number of study participants and only one PSB sample was collected per 

subject. The sequencing depth was also lower than in our study. The authors also did 

not report results from PCoA analyses on unweighted UniFrac distances, which may 

have resulted in a different interpretation of the data. The combination of weighted 

(as opposed to unweighted) UniFrac analyses, and low sequencing depth may explain 

why differences were not detected between lower and upper airway samples, as seen 

in our study.   

 

Dickson et al. [12] compared PSB samples (from RUL and LUL) and BAL fluid 

(from RML and lingula) obtained from 15 healthy subjects. Based on principal 

component analyses of beta-diversity, they found that samples from the lungs (on 

average) clustered separately from that of the upper airway sample (PSB from the 

supraglottic region). They found no clustering by sample type, but noted that PSB 

samples from the RUL, showed the greatest resemblance to the upper airway sample. 

Collectively their results indicated that protected sampling techniques did not 

influence the degree of similarity to the upper airway sample. However, the sampling 

of BAL before PSB might have resulted in residual BAL fluid influencing the 

sampled PSB site. In the design of the sampling scheme used in the MicroCOPD 

study, we were careful to always sample PSB before BAL.  

 

Hogan et al. [27] compared PSB samples of mucus plugs and BAL fluid obtained 

from nine patients with CF. PSB and BAL were sampled from multiple lobes on the 

right lung (RUL, RML, RLL). On comparison of samples taken from the same lobe, 

they found that measures of alpha diversity (based on the Simpson Diversity Index 

metric) were consistently higher in PSB than in BAL. This was in direct contrast to 

our results. However, the CF lung likely reflects a completely different scenario than 

the healthy and even diseased COPD/asthma lungs sampled in our study. First of all, 

the CF lung is not considered particularly low biomass and therefore the impact of 

oropharyngeal contamination during sampling may be negligible. Second, mucus 
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plugs may form specific niches for microbial colonization that may impact the 

comparison of sampling techniques. Their study did not include healthy control 

subjects. Our study included a greater number of participants, for which the observed 

decrease in diversity (SVL>PSB), was observed for both healthy and diseased states.  

10.2.2 Paper II 

Our analyses for the second paper were aimed at i) estimating levels of contamination 

across different airway sample types, ii) determining the main contamination source 

when processing samples through the MicroCOPD laboratory workflow, and iii) 

exploring bioinformatic approaches to dealing with the issue of contamination. 

Bacterial load varies with sample type 

The bacterial load was determined for the following procedural samples: OW, rPSB, 

PBAL1, and PBAL2. We found that bacterial load varied with sample type and 

decreased in order OW>PBAL1>PSB>PBAL2 (p < 0.001, non parametric trend test). 

We did not find differences in bacterial load across diseased states, which may reflect 

the fact that our diseased subjects had a fairly high lung function. Due to a low 

number of study participants, we therefore did not stratify our analyses on disease 

category. A discussion on our interpretation of these results follows. 

The average bacterial load in the samples from the lungs was highest for PBAL1. The 

bacterial load in PBAL2 and PSB samples were approximately an order of magnitude 

lower. PBAL1 and PBAL2 were obtained from the same wedged position of the 

RML, and the same volume sampling fluid was instilled. Thus, these samples can be 

directly compared. The observed decrease in bacterial load across these sample types 

(PBAL1>PBAL2) could be interpreted in several ways. First of all, it could mean that 

the first lavage fraction (PBAL1) collects a larger portion of the resident microbiota, 

by primarily sampling the more proximal airways, and also “cleaning up” the 

secretions that the bronchoscope might bring with it from its passage down the 

airways. However, the decrease in bacterial load could also be a result of a dilution 

effect, as lavage yield tends to increase in second fraction (PBAL2). Charlson et al. 
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[6] also compared the bacterial load obtained when sampling two fractions of BAL 

from the same site (site A). As us, they observed a decrease in bacterial load from the 

first to second BAL fraction. In addition, they sampled BAL from an adjacent site 

(site B), for which they found similar levels of bacteria as in the second return of the 

sampled site A. Their interpretation was that the first BAL fraction was contaminated 

with bacteria from the upper airways. Although we did not include sampling from an 

adjacent site “B”, the Charlson study provides us with another interpretation of our 

data – that PBAL1 may be more susceptible to contamination from the upper airways 

than PBAL2. This is also in agreement with results from paper I, where we found that 

PBAL1 was more similar to the upper airway OW sample than PBAL2 in terms of 

taxonomy, and measures of both alpha and beta diversity. PSB samples represent a 

different sampling modality than PBAL, and therefore we could not make 

comparisons across these sample types.  

The comparison of bacterial levels across studies is difficult because of the lack of 

standards in the field with regards to protocols for sampling and DNA extraction - 

and quantification of bacterial load is performed on samples after processing through 

these steps. To illustrate this, we can again look to the study conducted by Charlson 

et al. [6], for which we can find some similarity in protocols to those used in the 

current study. As us, they sampled BAL from the RML by instilling 50 mL saline and 

used 1.8 mL of the returned BAL as input to their DNA extraction protocol. Our 

protocols for DNA extraction however differed. Without conducting a head-to-head 

comparison of the two DNA extraction protocols, it is unclear whether observed 

differences in sample bacteria load are due to actual differences in sampled bacterial 

levels or a result of differences in extraction efficiency between protocols. Equally 

important is likely differences in contamination levels introduced when processing 

samples through different DNA extraction kits. Commonly used DNA extraction kits 

are not free of bacteria, and differences in contamination levels across kits can be 

expected [63]. Importantly, the measured bacterial load will reflect both the sampled 

microbiota and contamination introduced from sampling and DNA extraction [63]. 

Bacterial load and impact of laboratory contamination 



 

 

93 

Estimates of contaminant levels for samples with varying bacterial load were made 

using the “Salter approach” described in the introduction. In brief, our analyses 

included a ten-fold dilution series of Salmonella (SDS). For evaluating the impact of 

varying PCR cycle number, the SDS was processed through two PCR protocols 

differing only in the number of PCR cycles (30 and 45 cycles).  

On analysis of the sequencing output for the SDS samples, we observed the expected 

inverse relationship between sample bacterial load and the proportion of sequences 

mapping to taxa other than Salmonella (i.e. contamination) [32, 63]. At an input of 

between 10^3 and 10^4 Salmonella/mL, we observed that contaminants constituted 

more than 50% of the bacterial community profile for a sample. Despite differences 

in protocols, our results were in accordance with the findings by Salter et al. [63]. 

This may be explained by the use of similar DNA extraction kits (both from MP 

Biomedicals, FastDNA Spin Kit). Further supporting our interpretation is the study 

by Biesbroek et al. [32], who found that choice of DNA extraction kit determined 

whether low biomass samples fell above or below their set threshold bacterial load 

for which contamination begins to dominate. When processing the SDS through an 

increased number of PCR cycles, we observed only a small increase in the proportion 

of non-Salmonella taxa (i.e. contamination). Thus the impact was low, validating the 

protocol used in the MicroCOPD study (45 cycles used).  

The SDS experiment was used to estimate levels of contamination in the different 

airway sample types (OW, PSB, PBAL). The OW sample appeared to be unaffected. 

For the lower airway samples (PSB, PBAL) however, an estimated 10-50% of the 

sequencing output was expected to be derived from contamination. A limitation to the 

Salter approach is that it does not capture PCR incorporated error (e.g. chimeras) that 

may be associated with a more complex natural sample (i.e. airway samples). As 

described in section 6.2.2, such erroneous sequences may result in sequences 

mapping to taxa not found in the sampled community. Although different than 

external contamination derived from the laboratory environment and reagents, such 

PCR incorporated errors would have the same impact on the bacterial community 

readout – i.e. the lowering of the relative proportion of true sequences from the 
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sampled community. We may therefore expect that the procedural samples would be 

more impacted by PCR cycle number than what was estimated using the SDS. 

The objective of the SDS experiment was to demonstrate a method by which levels of 

contamination could be reported on in airway microbiome studies, and not to define a 

threshold bacterial load applicable to all studies. Important because contamination 

levels may vary greatly across studies due to differences in protocols. For a more 

detailed discussion on protocol effects on bacterial load, the reader is directed to 

section 6.4.2.  

The SDS sample was also used as a tool to determine optimal methods and settings 

when performing contaminant removal using the Decontam R package tools. We 

recognize also that because the SDS is a less complex sample than the procedural 

samples, findings may not be directly transferable. On comparison of 

decontamination strategies, we could have also included other approaches, such as 

contaminant identification using the neutral community model [19]. 

10.2.3 Paper III 

Paper III was aimed at (dis)proving our hypothesis that contaminating bacterial DNA 

introduced during laboratory processing steps would render samples processed 

through the longer 2-step PCR protocol (setups 1 and 2) more vulnerable to 

laboratory contamination than when processed through the 1-step PCR protocol 

(setup 3). We also wished to explore differences that may result from targeting the 

16S rRNA gene V3 V4 region versus the V4 region.  

By processing the same DNA extracts through each setup it was possible to mitigate 

potential bias from differences in contamination introduced by the DNA extraction 

kit. This was important as we have previously shown that the DNA extraction kit is a 

main source of contamination in our experiments (paper II).  

The differences in sequencing output generated by processing samples through each 

library preparation setup was based on four separate analyses: i) comparison of 

sequences and ASV retained at each bioinformatic processing step, ii) comparison of 
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a mock community sample processed through each setup, iii) comparison of 

contamination profiles for each setup by examination of ASVs recovered in NCS, and 

finally iv) comparison of community descriptions obtained from procedural samples 

before and after the removal of contaminating ASVs using the Decontam strategy. 

Bioinformatics processing steps 

The comparison of the three different setups began with examination of the number 

of sequences and ASVs retained at each step of the bioinformatic pipeline. We 

expected that the removal of error and bias at each step would result in increasingly 

more similar datasets. Indeed, we did observe that the number of sequences and 

ASVs became more similar; however at the end of the pipeline differences remained 

with the number of sequences/ASVs still decreasing in the order: setup 1> setup 

2>setup 3. A closer examination of the number of sequence/ASVs retained at each 

step provided insight into the differences in the raw sequencing output generated 

when processing samples through each setup. A discussion on the most telling 

observations and our interpretation follows - namely that resulting from the additional 

filtering of small ASVs and that from the additional chimera removal step.  

The perhaps most interesting observation, was that the additional filtering step for 

removal of low abundant ASVs (i.e. the “Bokulich method”), led to the greatest 

reduction in the number of ASVs across all three setups. The impact was greatest for 

setups 1 and 2, both of which were based on the 2-step PCR protocol. These 

observations were in accordance with our prediction that small ASVs likely represent 

low abundant contaminating sequences, and that samples processed through the 

longer 2-step PCR protocol would be more susceptible to contamination than samples 

processed through the shorter 1-step PCR protocol. The greatest proportion of these 

“contaminating” small ASVs were observed in setup 1, and this was substantially 

greater than for setup 2, for which was based on the same number of PCR steps. We 

recognized that our observations could be a result of setup 1 samples being spread 

across four separate sequencing runs; this because contamination may vary across 

sequencing runs and ultimately may have led to the observed higher diversity of 
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sequences representative of contaminants. Analyses of MC samples included on each 

of four sequencing runs for setup 1, confirmed that contamination profiles differed 

across the four sequencing runs for setup 1. When reanalyzing the data on the subset 

of samples that were sequenced on the same sequencing run, this was confirmed, 

since the differences across setups were now lower.  

Also interesting was that the additional round of chimera filtering, led to an additional 

loss of sequences and ASVs. The additional chimera removal step had greatest 

impact on sequence data derived from setup 1. Interpretation of this observation is not 

straightforward as there again are multiple possible explanations. The observation 

may indicate that the proportion of chimeras is truly greater when processing samples 

through setup 1. This would be in line with studies that have indicated that longer 

target amplicons will be more inclined to form chimeras, and multimeras. On the 

other hand, it may reflect the fact that algorithms for chimera detection have more 

difficulty in identifying chimeras, the shorter the sequence. Thus there is the 

possibility that chimera removal may not be as effective for setups 2 and 3 targeting 

the shorter V4 region.  

Protocol effects on mock community  

A mock community (MC) sample of known bacterial composition was included on 

each sequencing run for the current paper III. In general, MC samples are used to 

answer one central question – does my protocol generate data that accurately 

represents the sampled bacterial community? Although not a perfect representation of 

a natural sample (i.e. lower complexity), the MC is a valuable tool for which bias 

introduced during library preparation and sequencing can be estimated. The MC can 

take form as a mixture of bacterial cells or a mixture of their genomic DNAs. In the 

form of a bacterial cell mixture, the MC is processed through all steps of the 

amplicon-based marker gene sequencing workflow from DNA extraction to 

sequencing. In the form of a mixture of genomic DNA, the DNA extraction step can 

be omitted, allowing assessment of downstream steps (PCR and sequencing) without 

the influence of DNA extraction as a confounding factor. The MC can be “staggered” 
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or “even” in composition, meaning that the different types of bacteria are represented 

at different or equal concentrations, respectively.  

For the current paper choice of MC fell on mock community HM-783D (Bei 

Resources) consisting of genomic DNA from 20 different bacterial species at varying 

concentrations in the range of 1000 to 1000000 rRNA operon counts per species. A 

MC of genomic DNA was chosen, rather than a MC of bacterial cells, because we 

wished to validate laboratory steps post-DNA extraction. In addition, the use of 

genomic DNA was favorable because the number of rRNA copies for each species 

was known. Analyses were therefore not influenced by variation in copy numbers. A 

staggered community was chosen in order to assess the degree to which both low and 

high abundant MC members were recovered. For setup 1, the MC was included on all 

four sequencing runs enabling also the assessment of reproducibility/reliability for 

this setup. For setups 2 and 3, for which only one sequencing run was performed for 

each, it was not possible to determine reproducibility/reliability. This may represent a 

weakness in our interpretation of results from MC sequencing across the three setups. 

We found that the three setups were equally efficient at recovering the high abundant 

members. For low abundant members, recovery varied across setups. Recall that the 

MC was processed on each of the four sequencing runs for setup 1. While the first 

run recovered all MC members, Bacteroides was missing on run II, and Actinomyces 

was missing on runs III and IV. For setup 2, all MC members were recovered. For 

setup 3, three genera were not recovered including Propionibacterium, Actinomyces, 

and Enterococcus. It thus appeared that the recovery of low abundant genera was an 

unreliable event across both 1- and 2-step PCR protocols (as demonstrated from 

output in both setups 1 and 3). However, setup 3 was most impacted as multiple 

genera were missing from data generated from the same sequencing run. One 

possible explanation for these observations was that the degenerate V4 primers in 

setup 3, were suboptimal matches to the sequences from these bacteria (i.e. primer 

bias). However, this was quickly dismissed as the setup 2 primers contained the same 

sequences for targeting the V4 region, and these same bacteria were recovered in data 

obtained from setup 2. Berry et al. [42], who also compared 1 and 2-step PCR 
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protocols, found in accordance with our findings, lower diversity for samples 

processed through a one step PCR protocol. They suggested another more likely 

explanation for observed differences – that the additional sequences required on 

primers used used in 1-step PCR protocols (marker gene targeting sequence, index 

and adapter sequences) may interfere with primer-template interactions during PCR.  

Based on these results, we concluded that the 1-step PCR protocol may be less apt for 

detection of rare taxa. This was in accordance with the analyses of bioinformatics 

processing steps, for which we observed a lower total ASV count when following 

setup 3 compared to setups 1 and 2. Our analyses of the MC however, forced us to 

rethink our previous conclusion. Recall that based on the analyses of bioinformatics 

processing steps, we interpreted the lower total number of ASVs in setup 3, and the 

more excessive removal of small ASVs for setups 1 and 2, following the “Bokulich 

model”, as an indication that samples were less prone to contamination when 

processing through a shorter 1-step PCR protocol. By analyses of the MC, we 

however learn that differences in contamination levels may not be directly linked to 

the length of the laboratory protocol. Rather, this may be a result of differences in 

PCR primer structure, for which primers required for the 1-step PCR protocol are less 

able to pick up on low abundant taxa – be it derived from contaminating bacteria or 

true members of the sampled community.  

Protocol effects on contamination profiles  

Our working hypothesis linked any observed differences in sequencing output to 

differences in susceptibility to laboratory contamination. We therefore proceeded 

with an examination of negative control samples – the procedural NCS and PCR 

water samples.  

The procedural NCS were across all three setups dominated by ASVs belonging to 

the family Enterobacteriaceae. At ASV level we found that setup 1 was dominated 

by 3 different ASVs that all mapped to the genus Gluconacetobacter (Family 

Enterobacteriaceae). For setup 2, a single ASV was mapped to Enterobacteriaceae at 

no deeper depth than family level; however the relative abundance of this ASV was 
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the same as the cumulative abundance of the three ASVs mapping to 

Gluconacetobacter in setup 1- suggesting a common bacterial origin. The same ASV 

was also observed in setup 3. Overall this told us that Enterobacteriaceae dominated 

all samples and was likely introduced during DNA extraction steps. This was also in 

accordance with findings from the previous paper II, for which analyses of top 20 

OTUs were conducted on the same samples using QIIME1 and the OTU based 

sequence clustering approach. Also noteworthy, is that the similarity of the results for 

the current paper (processed using QIIME2 and denoising to ASVs) to that generated 

for the previous paper II, provides internal validity with regards to bioinformatics 

processing steps and findings reported for both papers.  

Perhaps the most interesting finding in our analyses of the top 20 NCS across setups, 

was the observation of a second ASV mapping to Enterobacteriaceae in setup 3. The 

ASV was in turn nearly undetectable in setup 2, having been observed in just 2/23 

NCS samples (relative abundances of just 0.16% and 0.26%). Using NCBI blastn, 

this second Enterobacteriaceae ASV was identified as Escherichia coli. To further 

grasp the origin of this ASV, we looked to the PCR water samples. Indeed, we found 

that the ASV dominated the PCR water sample from setup 3 and was absent in the 

PCR water sample from setup 2. This told us that the ASV was a contaminant 

introduced during library preparation steps (i.e. post DNA extraction) in setup 3. To 

further back up our findings, we also searched for the ASV in the MC samples. We 

found the same ASV present in both MC samples regardless of sequencing setup 2 or 

3 – this was as expected as Escherichia coli is a high abundant member of the MC 

with an expected relative abundance of 21.91%. In accordance with our finding that 

the Escherichia ASV also behaves as a contaminant in setup 3, we observed 

increased levels of the ASV for setup 3 compared to the expected and that observed 

in setup 2– thus in other words for setup 3, the ASV represented both a true member 

of the sampled community, but also a contaminant. In addition, as will be discussed 

in the subsequent section, the same Escherichia ASV was also observed in the low 

biomass airway samples (PSB, PBAL) processed through setup 3 (and not setup 2). 

Thus, several lines of evidence show that the Escherichia ASV is a result of a 

contaminant introduced from a library preparation reagent in setup 3. In summary, 
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this included the observation of the ASV in both procedural NCS and PCR water and 

also the observation of elevated levels of the ASV in the mock community. While 

internal contamination - such as well to well carryover in the direction MC to PCR 

water sample may be theoretically be possible, the sum of our observations suggest 

this to be an unlikely alternative explanation. For such an internal contamination 

event to occur, we would also expect to observe other MC members in the PCR water 

sample (for instance the Rhodobacter); this was not observed when not taking into 

account potential members that overlap between airway and MC samples (e.g. 

Streptococcus, Staphylococcus) as this may indicate contamination from airway 

samples.  

Protocol effects on procedural samples  

Having compared NCS across setups, we were next interested in finding out whether 

differences in contamination would influence our interpretation of the lower airway 

microbiome. We were particularly interested in tracing the Enterobacteriaceae ASVs 

that were found to dominate the contamination profiles (NCS) for all three setups as 

described above. 

In accordance with expected patterns of contamination (section 6.4.1), we found that 

the proportion of Enterobacteriaceae was highest in the lower airway samples 

(PSB>PBAL) and nearly undetectable in OW samples. Also, consistent across setups 

was the observation that higher levels of Enterobacteriaceae were observed in PSB 

samples compared to PBAL samples. This is likely explained by differences in the 

bacterial load between the two sample types, rendering PSB samples more vulnerable 

to contamination. Recall that in paper II, it was established that the mean sample 

bacterial load decreased in order OW > PBAL1 > PSB > PBAL2. However, less 

sample volume was used as input to DNA extraction for PSB samples than PBAL 

samples (450 µl PSB vs 1800 µl PBAL), likely explaining the apparent increased 

impact of contamination on PSB samples. As expected from analyses of NCS, we 

also found that Enterobacteriaceae was found in greatest relative abundance in 

procedural samples in setup 3.  
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While the aforementioned observations were in line with expected patterns of 

contamination, the levels of Enterobacteriaceae were lower than the expected levels 

of contamination as estimated in paper II for setup 2 (section 10.2.2). We recognized 

that a significant proportion of contaminants were likely also represented by other 

taxa. For a more accurate assessment of contamination, comparison of samples was 

made before and after the removal of contaminants identified using the Decontam 

package tools. On analysis of unweighted UniFrac distances in PCoA space for 

setups 2 and 3, we found that high biomass OW samples clustered together regardless 

of setup, both before and after Decontam had been applied. The lower airway 

samples (PSB, PBAL) however separated according to setup 2 or 3. After removal of 

Decontam contaminants the overlap appeared to increase, but the observed separation 

according to setup was still apparent. We concluded that factors related to bacterial 

load, other than contamination was contributing to the observed protocol bias.  

No other study on the airway microbiome has addressed the issue of protocol effects 

(1- vs 2-PCR steps) on the presentation of the airways. We shed light on an issue that 

needs to be investigated further in future studies. Particularly concerning is that our 

findings indicate that the similarity between upper and lower airway samples may be 

protocol dependent. Furthermore, we show that similar community descriptions 

obtained for upper airway samples should not be interpreted as evidence that datasets 

are comparable also for lower airway samples.  
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11. Conclusions 

1. The bacterial composition of samples obtained by protected specimen brushes 

and protected bronchoalveolar lavage was less similar to oral wash samples 

than more unprotected sampling methods. Future investigators should take 

these findings into consideration, and take measures to prevent potential 

contamination from supraglottic regions.  

 

2. Laboratory contamination was considerable in airway microbiome studies, and 

in particular the DNA extraction kits appeared to represent a major 

contamination source. However, bioinformatic strategies were able to correct 

for this, given availability of proper negative control samples.  

 

3. A one-step PCR protocol yields results that differ taxonomically from a two-

step PCR protocol. These differences are likely related to mechanisms in the 

PCR itself and not to contamination. Differences between V4 and a combined 

V3 V4 target amplicon are smaller and more likely related to taxonomic 

resolution. 
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12. Future perspectives 

The field of lung microbiome research has up until now been characterized by an 

urge to rapidly publish data comparing healthy and diseased states. Few studies have 

however addressed validity and reliability of applied methods of sampling, laboratory 

processing and bioinformatics analyses. The findings in the current thesis underline 

the importance of addressing these issues in future studies.  

While our findings have suggested that protected bronchoscopic sampling techniques 

may minimize the influence of oropharyngeal contamination, there is still a need for 

further investigation. Studies for which the upper airway representative sample is 

obtained from the supraglottic region (the last upper airway site that the 

bronchoscope passes on its entry to the lower airways) may for instance provide 

deeper insight into impact of bronchoscopic carryover. Furthermore, we need a 

deeper understanding of the impact of dilution effects when sampling and when 

deciding on the volume of sample that is further passed down the laboratory pipeline.  

We found that differences in setups for library preparation for sequencing, related to 

the number of PCR steps (1- or 2-steps) led to different community descriptions for 

airway samples. Because differences in contamination levels alone could not explain 

these findings, we concluded that more research is needed to understand underlying 

mechanisms driving the observed protocol bias - these are likely related to the PCR. 

Besides impact of number of PCR steps, there is a need to investigate the impact of 

variation in PCR cycling conditions across studies. One study has for instance used 

touch-down PCR as a means to optimize their protocol [21]. The degree to which 

variations in PCR cycling may introduce bias is not known.   



 

 

104 

13. References 

1. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat 

Rev Immunol. 2008;8:183–92. 

2. Stoller JK, Aboussouan LS. α1-antitrypsin deficiency. The Lancet. 

2005;365:2225–36. 

3. Svanes Ø, Skorge TD, Johannessen A, Bertelsen RJ, Bråtveit M, Forsberg B, et al. 

Respiratory Health in Cleaners in Northern Europe: Is Susceptibility Established in 

Early Life? PLOS ONE. 2015;10:e0131959. 

4. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered 

microbial communities in asthmatic airways. PLoS ONE. 2010;5:e8578. 

5. Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. 

Microbiome. 2015;3. doi:10.1186/s40168-015-0094-5. 

6. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, et al. 

Topographical Continuity of Bacterial Populations in the Healthy Human Respiratory 

Tract. Am J Respir Crit Care Med. 2011;184:957–63. 

7. Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young 

VB, et al. Analysis of the Upper Respiratory Tract Microbiotas as the Source of the 

Lung and Gastric Microbiotas in Healthy Individuals. mBio. 2015;6:e00037-15. 

8. Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, 

Schmidt LA, et al. Analysis of the Lung Microbiome in the “Healthy” Smoker and in 

COPD. PLoS One. 2011;6. doi:10.1371/journal.pone.0016384. 

9. Paggiaro1 L of the WGPL, Group M of the W, Chanez P, Holz O, Ind PW, 

Djukanović R, et al. Sputum induction. European Respiratory Journal. 2002;20 37 

suppl:3s–8s. 

10. Tangedal S, Aanerud M, Grønseth R, Drengenes C, Wiker HG, Bakke PS, et al. 



 

 

105 

Comparing microbiota profiles in induced and spontaneous sputum samples in COPD 

patients. Respir Res. 2017;18:164. 

11. Gershman NH, Liu H, Wong HH, Liu JT, Fahy JV. Fractional analysis of 

sequential induced sputum samples during sputum induction: evidence that different 

lung compartments are sampled at different time points. J Allergy Clin Immunol. 

1999;104 2 Pt 1:322–8. 

12. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM, 

Huffnagle GB, et al. Spatial Variation in the Healthy Human Lung Microbiome and 

the Adapted Island Model of Lung Biogeography. Ann Am Thorac Soc. 

2015;12:821–30. 

13. Zemanick ET, Wagner BD, Robertson CE, Stevens MJ, Szefler SJ, Accurso FJ, et 

al. Assessment of airway microbiota and inflammation in cystic fibrosis using 

multiple sampling methods. Ann Am Thorac Soc. 2015;12:221–9. 

14. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Falkowski NR, 

Huffnagle GB, et al. Bacterial Topography of the Healthy Human Lower Respiratory 

Tract. mBio. 2017;8:e02287-16. 

15. Willner D, Haynes MR, Furlan M, Schmieder R, Lim YW, Rainey PB, et al. 

Spatial distribution of microbial communities in the cystic fibrosis lung. ISME J. 

2012;6:471–4. 

16. Charlson ES, Chen J, Custers-Allen R, Bittinger K, Li H, Sinha R, et al. 

Disordered Microbial Communities in the Upper Respiratory Tract of Cigarette 

Smokers. PLOS ONE. 2010;5:e15216. 

17. Consortium THMP, Huttenhower C, Gevers D, Knight R, Abubucker S, Badger 

JH, et al. Structure, function and diversity of the healthy human microbiome. Nature. 

2012;486:207. 

18. Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, et al. 

Comparison of the Respiratory Microbiome in Healthy Nonsmokers and Smokers. 



 

 

106 

Am J Respir Crit Care Med. 2013;187:1067–75. 

19. Beck JM, Schloss PD, Venkataraman A, Twigg H, Jablonski KA, Bushman FD, 

et al. Multicenter Comparison of Lung and Oral Microbiomes of HIV-infected and 

HIV-uninfected Individuals. Am J Respir Crit Care Med. 2015;192:1335–44. 

20. Segal LN, Alekseyenko AV, Clemente JC, Kulkarni R, Wu B, Chen H, et al. 

Enrichment of lung microbiome with supraglottic taxa is associated with increased 

pulmonary inflammation. Microbiome. 2013;1:19. 

21. Dickson RP, Erb-Downward JR, Freeman CM, Walker N, Scales BS, Beck JM, et 

al. Changes in the Lung Microbiome following Lung Transplantation Include the 

Emergence of Two Distinct Pseudomonas Species with Distinct Clinical 

Associations. PLoS One. 2014;9. doi:10.1371/journal.pone.0097214. 

22. Wimberley N, Faling LJ, Bartlett JG. A Fiberoptic Bronchoscopy Technique to 

Obtain Uncontaminated Lower Airway Secretions for Bacterial Culture. Am Rev 

Respir Dis. 1979;119:337–43. 

23. Grønseth R, Haaland I, Wiker HG, Martinsen EMH, Leiten EO, Husebø G, et al. 

The Bergen COPD microbiome study (MicroCOPD): rationale, design, and initial 

experiences. Eur Clin Respir J. 2014;1. 

24. Qvarfordt I, Riise GC, Andersson BA, Larsson S. Lower airway bacterial 

colonization in asymptomatic smokers and smokers with chronic bronchitis and 

recurrent exacerbations. Respir Med. 2000;94:881–7. 

25. Segal LN, Clemente JC, Tsay J-CJ, Koralov SB, Keller BC, Wu BG, et al. 

Enrichment of the lung microbiome with oral taxa is associated with lung 

inflammation of a Th17 phenotype. Nat Microbiol. 2016;1:16031. 

26. Schloss PD, Gevers D, Westcott SL. Reducing the Effects of PCR Amplification 

and Sequencing Artifacts on 16S rRNA-Based Studies. PLOS ONE. 2011;6:e27310. 

27. Hogan DA, Willger SD, Dolben EL, Hampton TH, Stanton BA, Morrison HG, et 



 

 

107 

al. Analysis of Lung Microbiota in Bronchoalveolar Lavage, Protected Brush and 

Sputum Samples from Subjects with Mild-To-Moderate Cystic Fibrosis Lung 

Disease. PLOS ONE. 2016;11:e0149998. 

28. Shehadul Islam M, Aryasomayajula A, Selvaganapathy PR. A Review on 

Macroscale and Microscale Cell Lysis Methods. Micromachines (Basel). 2017;8. 

doi:10.3390/mi8030083. 

29. Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ. Evaluation of methods for the 

extraction and purification of DNA from the human microbiome. PLoS ONE. 

2012;7:e33865. 

30. Brott AS, Clarke AJ. Peptidoglycan O-Acetylation as a Virulence Factor: Its 

Effect on Lysozyme in the Innate Immune System. Antibiotics. 2019;8:94. 

31. Pääbo S, Irwin DM, Wilson AC. DNA damage promotes jumping between 

templates during enzymatic amplification. J Biol Chem. 1990;265:4718–21. 

32. Biesbroek G, Sanders EAM, Roeselers G, Wang X, Caspers MPM, Trzciński K, 

et al. Deep Sequencing Analyses of Low Density Microbial Communities: Working 

at the Boundary of Accurate Microbiota Detection. PLOS ONE. 2012;7:e32942. 

33. Woese CR, Magrum LJ, Gupta R, Siegel RB, Stahl DA, Kop J, et al. Secondary 

structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and 

chemical evidence. Nucleic Acids Res. 1980;8:2275–93. 

34. Woese CR. Bacterial evolution. Microbiol Rev. 1987;51:221–71. 

35. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ. At Least 1 in 

20 16S rRNA Sequence Records Currently Held in Public Repositories Is Estimated 

To Contain Substantial Anomalies. Appl Environ Microbiol. 2005;71:7724–36. 

36. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S 

primers. J Microbiol Methods. 2003;55:541–55. 

37. Stackebrandt E, Goebel BM. Taxonomic Note: A Place for DNA-DNA 



 

 

108 

Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in 

Bacteriology. International Journal of Systematic and Evolutionary Microbiology. 

1994;44:846–9. 

38. Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R. Short pyrosequencing 

reads suffice for accurate microbial community analysis. Nucleic Acids Res. 

2007;35:e120. 

39. Binladen J, Gilbert MTP, Bollback JP, Panitz F, Bendixen C, Nielsen R, et al. 

The Use of Coded PCR Primers Enables High-Throughput Sequencing of Multiple 

Homolog Amplification Products by 454 Parallel Sequencing. PLoS One. 2007;2. 

doi:10.1371/journal.pone.0000197. 

40. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R. Error-correcting barcoded 

primers allow hundreds of samples to be pyrosequenced in multiplex. Nat Methods. 

2008;5:235–7. 

41. Polz MF, Cavanaugh CM. Bias in Template-to-Product Ratios in Multitemplate 

PCR. Appl Environ Microbiol. 1998;64:3724–30. 

42. Berry D, Mahfoudh KB, Wagner M, Loy A. Barcoded Primers Used in Multiplex 

Amplicon Pyrosequencing Bias Amplification. Appl Environ Microbiol. 

2011;77:7846–9. 

43. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. rrndb: the Ribosomal RNA 

Operon  Copy Number Database. Nucleic Acids Res. 2001;29:181–4. 

44. Wang Y, Zhang Z, Ramanan N. The actinomycete Thermobispora bispora 

contains two distinct types of transcriptionally active 16S rRNA genes. J Bacteriol. 

1997;179:3270–6. 

45. Wang GC, Wang Y. Frequency of formation of chimeric molecules as a 

consequence of PCR coamplification of 16S rRNA genes from mixed bacterial 

genomes. Appl Environ Microbiol. 1997;63:4645–50. 



 

 

109 

46. Wang GCY, Wang Y. The frequency of chimeric molecules as a consequence of 

PCR co-amplification of 16S rRNA genes from different bacterial species. 

Microbiology,. 1996;142:1107–14. 

47. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, et al. 

Chimeric 16S rRNA sequence formation and detection in Sanger and 454-

pyrosequenced PCR amplicons. Genome Res. 2011;21:494–504. 

48. Schirmer M, Ijaz UZ, D’Amore R, Hall N, Sloan WT, Quince C. Insight into 

biases and sequencing errors for amplicon sequencing with the Illumina MiSeq 

platform. Nucleic Acids Res. 2015;43:e37. 

49. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of 

a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon 

Sequence Data on the MiSeq Illumina Sequencing Platform. Appl Environ Microbiol. 

2013;79:5112–20. 

50. Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in 

multiplex sequencing on the Illumina platform. Nucleic Acids Res. 2012;40:e3. 

51. Wright ES, Vetsigian KH. Quality filtering of Illumina index reads mitigates 

sample cross-talk. BMC Genomics. 2016;17. doi:10.1186/s12864-016-3217-x. 

52. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. 

Quality-filtering vastly improves diversity estimates from Illumina amplicon 

sequencing. Nat Methods. 2013;10:57–9. 

53. Huse SM, Welch DM, Morrison HG, Sogin ML. Ironing out the wrinkles in the 

rare biosphere through improved OTU clustering. Environmental Microbiology. 

2010;12:1889–98. 

54. Quality Scores for Next-Generation Sequencing. :2. 

55. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of 

a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon 



 

 

110 

Sequence Data on the MiSeq Illumina Sequencing Platform. Appl Environ Microbiol. 

2013;79:5112–20. 

56. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: 

paired-end assembler for illumina sequences. BMC Bioinformatics. 2012;13:31. 

57. Edgar RC, Flyvbjerg H. Error filtering, pair assembly and error correction for 

next-generation sequencing reads. Bioinformatics. 2015;31:3476–82. 

58. Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace 

operational taxonomic units in marker-gene data analysis. The ISME Journal. 

2017;11:2639–43. 

59. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 

DADA2: High-resolution sample inference from Illumina amplicon data. Nature 

Methods. 2016;13:581. 

60. Huber T, Faulkner G, Hugenholtz P. Bellerophon: a program to detect chimeric 

sequences in multiple sequence alignments. Bioinformatics. 2004;20:2317–9. 

61. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. Removing Noise From 

Pyrosequenced Amplicons. BMC Bioinformatics. 2011;12:38. 

62. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves 

sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200. 

63. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. 

Reagent and laboratory contamination can critically impact sequence-based 

microbiome analyses. BMC Biology. 2014;12:87. 

64. Dickson RP, Erb-Downward JR, Prescott HC, Martinez FJ, Curtis JL, Lama VN, 

et al. Cell-associated bacteria in the human lung microbiome. Microbiome. 

2014;2:28. 

65. Twigg *Homer L., Nelson DE, Day RB, Gregory RL, Dong Q, Rong R, et al. 

Comparison of Whole and Acellular Bronchoalveolar Lavage to Oral Wash 



 

 

111 

Microbiomes. Should Acellular Bronchoalveolar Lavage Be the Standard? Ann Am 

Thorac Soc. 2014;11 Suppl 1:S72–3. 

66. Twigg HL, Knox KS, Zhou J, Crothers KA, Nelson DE, Toh E, et al. Effect of 

Advanced HIV Infection on the Respiratory Microbiome. Am J Respir Crit Care 

Med. 2016;194:226–35. 

67. Lozupone C, Cota-Gomez A, Palmer BE, Linderman DJ, Charlson ES, Sodergren 

E, et al. Widespread colonization of the lung by Tropheryma whipplei in HIV 

infection. Am J Respir Crit Care Med. 2013;187:1110–7. 

68. Sørheim I-C, Johannessen A, Grydeland TB, Omenaas ER, Gulsvik A, Bakke PS. 

Case-control studies on risk factors for chronic obstructive pulmonary disease: how 

does the sampling of the cases and controls affect the results? Clin Respir J. 

2010;4:89–96. 

69. Eagan TM, Aukrust P, Bakke PS, Damås JK, Skorge TD, Hardie JA, et al. 

Systemic mannose-binding lectin is not associated with Chronic Obstructive 

Pulmonary Disease. Respir Med. 2010;104:283–90. 

70. Eagan TML, Aukrust P, Ueland T, Hardie JA, Johannessen A, Mollnes TE, et al. 

Body composition and plasma levels of inflammatory biomarkers in COPD. Eur 

Respir J. 2010;36:1027–33. 

71. Eagan TM, Ueland T, Wagner PD, Hardie JA, Mollnes TE, Damås JK, et al. 

Systemic inflammatory markers in COPD: results from the Bergen COPD Cohort 

Study. The European respiratory journal. 2010. 

72. Gulsvik A, Tosteson T, Bakke P, Humerfelt S, Weiss ST, Speizer FE. Expiratory 

and inspiratory forced vital capacity and one-second forced volume in asymptomatic 

never-smokers in Norway. Clin Physiol. 2001;21:648–60. 

73. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. 

Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-

generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. 



 

 

112 

74. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh 

PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences 

per sample. Proc Natl Acad Sci USA. 2011;108 Suppl 1:4516–22. 

75. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, 

et al. QIIME allows analysis of high-throughput community sequencing data. Nat 

Methods. 2010;7:335–6. 

76. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open 

source tool for metagenomics. PeerJ. 2016;4. doi:10.7717/peerj.2584. 

77. Edgar RC. Search and clustering orders of magnitude faster than BLAST. 

Bioinformatics. 2010;26:2460–1. 

78. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. 

An improved Greengenes taxonomy with explicit ranks for ecological and 

evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8. 

79. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian Classifier for Rapid 

Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Environ 

Microbiol. 2007;73:5261–7. 

80. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. 

PyNAST: a flexible tool for aligning sequences to a template alignment. 

Bioinformatics. 2010;26:266–7. 

81. Price MN, Dehal PS, Arkin AP. FastTree: Computing Large Minimum Evolution 

Trees with Profiles instead of a Distance Matrix. Mol Biol Evol. 2009;26:1641–50. 

82. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical 

identification and removal of contaminant sequences in marker-gene and 

metagenomics data. Microbiome. 2018;6:226. 

83. Davis NM, Proctor D, Holmes SP, Relman DA, Callahan BJ. Simple statistical 

identification and removal of contaminant sequences in marker-gene and 



 

 

113 

metagenomics data. bioRxiv. 2017;:221499. 

84. McMurdie PJ, Holmes S. Waste Not, Want Not: Why Rarefying Microbiome 

Data is Inadmissible. PLoS Computational Biology. 2014;10:e1003531. 

85. Venkataraman A, Bassis CM, Beck JM, Young VB, Curtis JL, Huffnagle GB, et 

al. Application of a Neutral Community Model To Assess Structuring of the Human 

Lung Microbiome. mBio. 2015;6:e02284-14. 

86. Einarsson GG, Comer DM, McIlreavey L, Parkhill J, Ennis M, Tunney MM, et al. 

Community dynamics and the lower airway microbiota in stable chronic obstructive 

pulmonary disease, smokers and healthy non-smokers. Thorax. 2016;71:795–803. 

87. Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE. The lung microbiome 

in moderate and severe chronic obstructive pulmonary disease. PLoS ONE. 

2012;7:e47305. 

88. Huang YJ, Nelson CE, Brodie EL, DeSantis TZ, Baek MS, Liu J, et al. Airway 

Microbiota and Bronchial Hyperresponsiveness in Patients with Sub-optimally 

Controlled Asthma. J Allergy Clin Immunol. 2011;127:372-381.e3. 

89. Cabrera-Rubio R, Garcia-Núñez M, Setó L, Antó JM, Moya A, Monsó E, et al. 

Microbiome Diversity in the Bronchial Tracts of Patients with Chronic Obstructive 

Pulmonary Disease. J Clin Microbiol. 2012;50:3562–8. 

90. Willner DL, Hugenholtz P, Yerkovich ST, Tan ME, Daly JN, Lachner N, et al. 

Reestablishment of Recipient-associated Microbiota in the Lung Allograft Is Linked 

to Reduced Risk of Bronchiolitis Obliterans Syndrome. Am J Respir Crit Care Med. 

2013;187:640–7. 

91. Borewicz K, Pragman AA, Kim HB, Hertz M, Wendt C, Isaacson RE. 

Longitudinal Analysis of the Lung Microbiome in Lung Transplantation. FEMS 

Microbiol Lett. 2013;339:57–65. 

92. Cribbs SK, Uppal K, Li S, Jones DP, Huang L, Tipton L, et al. Correlation of the 



 

 

114 

lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV 

infection. Microbiome. 2016;4. http://d-scholarship.pitt.edu/28907/. Accessed 9 Aug 

2020. 

93. Molyneaux PL, Cox MJ, Willis-Owen SAG, Mallia P, Russell KE, Russell A-M, 

et al. The Role of Bacteria in the Pathogenesis and Progression of Idiopathic 

Pulmonary Fibrosis. Am J Respir Crit Care Med. 2014;190:906–13. 

94. Garzoni C, Brugger SD, Qi W, Wasmer S, Cusini A, Dumont P, et al. Microbial 

communities in the respiratory tract of patients with interstitial lung disease. Thorax. 

2013;68:1150–6. 

95. Zakharkina T, Heinzel E, Koczulla RA, Greulich T, Rentz K, Pauling JK, et al. 

Analysis of the Airway Microbiota of Healthy Individuals and Patients with Chronic 

Obstructive Pulmonary Disease by T-RFLP and Clone Sequencing. PLoS One. 

2013;8. doi:10.1371/journal.pone.0068302. 

96. Glassing A, Dowd SE, Galandiuk S, Davis B, Chiodini RJ. Inherent bacterial 

DNA contamination of extraction and sequencing reagents may affect interpretation 

of microbiota in low bacterial biomass samples. Gut Pathog. 2016;8. 

doi:10.1186/s13099-016-0103-7. 

97. Glassing A, Dowd SE, Galandiuk S, Davis B, Jorden JR, Chiodini RJ. Changes in 

16s RNA Gene Microbial Community Profiling by Concentration of Prokaryotic 

DNA. Journal of Microbiological Methods. 2015;119:239–42. 

98. Dickson RP, Erb-Downward JR, Prescott HC, Martinez FJ, Curtis JL, Lama VN, 

et al. Analysis of Culture-Dependent versus Culture-Independent Techniques for 

Identification of Bacteria in Clinically Obtained Bronchoalveolar Lavage Fluid. J 

Clin Microbiol. 2014;52:3605–13. 

99. Pragman AA, Lyu T, Baller JA, Gould TJ, Kelly RF, Reilly CS, et al. The lung 

tissue microbiota of mild and moderate chronic obstructive pulmonary disease. 

Microbiome. 2018;6:7. 



 

 

115 

100. Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, Elshahed MS. 

Comparison of Species Richness Estimates Obtained Using Nearly Complete 

Fragments and Simulated Pyrosequencing-Generated Fragments in 16S rRNA Gene-

Based Environmental Surveys. Appl Environ Microbiol. 2009;75:5227–36. 

101. Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA, Knight R. 

Quantifying and Understanding Well-to-Well Contamination in Microbiome 

Research. mSystems. 2019;4. doi:10.1128/mSystems.00186-19. 

102. Navas-Molina JA, Peralta-Sánchez JM, González A, McMurdie PJ, Vázquez-

Baeza Y, Xu Z, et al. Advancing our understanding of the human microbiome using 

QIIME. Methods Enzymol. 2013;531:371–444. 

103. Marsh RL, Kaestli M, Chang AB, Binks MJ, Pope CE, Hoffman LR, et al. The 

microbiota in bronchoalveolar lavage from young children with chronic lung disease 

includes taxa present in both the oropharynx and nasopharynx. Microbiome. 2016;4. 

doi:10.1186/s40168-016-0182-1. 

104. Jiang L, Amir A, Morton JT, Heller R, Arias-Castro E, Knight R. Discrete False-

Discovery Rate Improves Identification of Differentially Abundant Microbes. 

mSystems. 2017;2. doi:10.1128/mSystems.00092-17. 

105. Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. 

Normalization and microbial differential abundance strategies depend upon data 

characteristics. Microbiome. 2017;5:27. 

106. Lozupone C, Knight R. UniFrac: a New Phylogenetic Method for Comparing 

Microbial Communities. Appl Environ Microbiol. 2005;71:8228–35. 

 

  



 

 

116 

14. Papers and supplementary material 

 

   







Protected sampling is preferable in
bronchoscopic studies of the airway
microbiome

Rune Grønseth1, Christine Drengenes1,2, Harald G. Wiker2,3, Solveig Tangedal1,2,
Yaxin Xue4, Gunnar Reksten Husebø1,2, Øistein Svanes1,2, Sverre Lehmann1,2,
Marit Aardal1, Tuyen Hoang2, Tharmini Kalananthan1, Einar Marius Hjellestad
Martinsen2, Elise Orvedal Leiten2, Marianne Aanerud1, Eli Nordeide1,2,
Ingvild Haaland1,2, Inge Jonassen4, Per Bakke2 and Tomas Eagan1,2

Affiliations: 1Dept of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway. 2Dept of Clinical
Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway. 3Dept of Microbiology,
Haukeland University Hospital, Bergen, Norway. 4Computational Biology Unit, Dept of Informatics, University
of Bergen, Bergen, Norway.

Correspondence: Rune Grønseth, Dept of Thoracic Medicine, Haukeland University Hospital, Jonas Lies vei,
Bergen 5021, Norway. E-mail: nielsenrune@me.com

ABSTRACT The aim was to evaluate susceptibility of oropharyngeal contamination with various
bronchoscopic sampling techniques.

67 patients with obstructive lung disease and 58 control subjects underwent bronchoscopy with small-
volume lavage (SVL) through the working channel, protected bronchoalveolar lavage (PBAL) and bilateral
protected specimen brush (PSB) sampling. Subjects also provided an oral wash (OW) sample, and negative
control samples were gathered for each bronchoscopy procedure. DNA encoding bacterial 16S ribosomal
RNA was sequenced and bioinformatically processed to cluster into operational taxonomic units (OTU),
assign taxonomy and obtain measures of diversity.

The proportion of Proteobacteria increased, whereas Firmicutes diminished in the order OW, SVL,
PBAL, PSB (p<0.01). The alpha-diversity decreased in the same order (p<0.01). Also, beta-diversity varied
by sampling method (p<0.01), and visualisation of principal coordinates analyses indicated that differences
in diversity were smaller between OW and SVL and OW and PBAL samples than for OW and the PSB
samples. The order of sampling (left versus right first) did not influence alpha- or beta-diversity for PSB
samples.

Studies of the airway microbiota need to address the potential for oropharyngeal contamination, and
protected sampling might represent an acceptable measure to minimise this problem.
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Introduction
High-throughput sequencing has opened up a new window in microbial ecology, enabling the
characterisation of microbial communities in biological compartments thought to be completely sterile
only a few years ago. The implications for health and disease are widely unexplored, but are likely to be
significant [1]. Recent studies have found compelling evidence for the lungs to have a distinct microbiome [2],
providing a bacterial presence with which our immune system interacts [3, 4]. As almost all pulmonary
diseases have a local inflammatory component, there is a possibility of a disrupted microbiome being
integral to disease pathogenesis.

Thus, there is a current push to characterise the pulmonary microbiome, and its relation to different
pulmonary diseases. However, sampling the pulmonary microbiome is difficult. Sputum is fraught with
significant contamination from the oral cavity, and percutaneous sampling is unpractical with a high risk of
complications like pneumothorax or bleeding. The emerging gold standard for sampling is bronchoscopy.
But bronchoscopy also has its technical challenges, besides issues of discomfort, cost and sedation. The
bronchoscope must pass through either the oral or nasal cavity in addition to the pharyngeal cavity, and
might carry contaminants from the upper airways to the lower biomass compartment of the lower airways.
Samples are collected through the same bronchoscope working channel through which fluid is suctioned up
and out. The different modes of sampling (bronchoalveolar lavage (BAL) brushings, biopsies) might be
carried through catheters, which may or may not have a wax-sealed tip to ensure sterility. Added to this is
the conundrum caused by the constant influx of microbiota by microaspiration and inhalation that
probably is responsible for maintenance and creation of a large fraction of the lung microbiome [5].

In 25 studies of the human lung microbiome sampling the airway microbiome by bronchoscopy of healthy
subjects [2–4, 6–9] and patients with chronic obstructive pulmonary disease (COPD) [10–14], asthma
[15, 16], interstitial lung disease [17, 18], cystic fibrosis (CF) [19], HIV [20–23] and lung-transplanted
subjects [24–27]; only five used protected sterile brushes (PSB) to avoid contamination from the working
channel [7, 8, 16, 19, 22]. Some authors reported that suction was not used prior to entering the trachea
[2–4, 6–10, 20, 22], and three studies used separate bronchoscopes for anaesthesia and sampling of some
or all participants [3, 4, 7]. No study performed bronchoalveolar lavage (BAL) through a protected
catheter (protected BAL), and no study with more than 20 sampled subjects has compared protected with
unprotected sampling methods.

In preparation for the analyses of a large, ongoing COPD microbiome study [28], we sought to reduce
contamination as well as assess the performance of different sampling techniques. In the current paper we
present analyses to examine the degree of oropharyngeal influence on the airway microbiome applying
protected bronchoscopic sampling techniques. In addition we present an analysis on the effect of sampling
the left or right lung first.

Material and methods
The design of the entire MicroCOPD study has been published previously [28]. The current analysis
includes 58 control subjects, 64 subjects with COPD and three subjects with asthma. All participants were
at least 35 years old and were recruited from previous longitudinal case–control studies in addition to a
few volunteers [29]. Subjects had neither acute respiratory symptoms nor any reported use of antibiotics or
oral corticorticosteroids within the last 14 days prior to bronchoscopy. Other inclusion/exclusion criteria
are listed in the supplementary material.

The Regional Committee for Medical and Health Research Ethics approved the study (REK Nord, project
number 2011/1307). All participants provided written informed consent.

All participants received at least 0.4 mg of salbutamol through a spacer before the bronchoscopy
procedure. Flexible video-bronchoscopy was performed via the oral route in supine position. No suction
was used prior to having entered the trachea. All subjects received local anaesthesia with lidocaine both
before and during the procedure. All but 18 subjects received mild sedation (alfentanil) parenterally.
Participants were monitored according to current guidelines, and were observed for at least 2 h after the
procedure [30]. Six procedural samples, of which five were obtained during bronchoscopy, were analysed
for each participant: oral wash (OW); three protected specimen brushes (PSBs) from the right lower lobe
(right PSB) and three from the left upper lobe (left PSB); two 50-mL fractions of protected
bronchoalveolar lavage of the right middle lobe (PBAL1 and PBAL2); and small-volume lavage (SVL) in
the left upper lobe. In addition, we included negative control samples (NCSs) from the same bottle of
phosphate-buffered saline that was used for the procedure of the corresponding individual. For 49
subjects, we examined the left lung before the right lung. BAL and SVL were always collected after
obtaining PSB samples. Protected specimen brushes and protected bronchoalveolar lavage are illustrated in
supplementary figures S1 and S2.
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Bacterial DNA was extracted using a combination of enzymatic lysis with lysozyme, mutanolysin and
lysostaphin, and mechanical lysis methods using the FastPrep-24 as described by the manufacturers of the
FastDNA Spin Kit (MP Biomedicals, LLC, Solon, OH, USA).

Library preparation and sequencing of the V3-V4 region of the 16S rRNA gene was carried out according
to the Illumina 16S Metagenomic Sequencing Library Preparation guide (Part no. 15044223 Rev. B). The
V3-V4 region was PCR amplified (45 cycles) and prepared for a subsequent index PCR step using primers
adapted from KLINDWORTH et al. [31] as follows. 16S amplicon PCR forward primer (overhang adaptor
sequences are underlined): 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGG
NGGCWGCAG. 16S amplicon PCR reverse primer (overhang adaptor sequences are underlined):
5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC. The samples
were pooled and prepared for 2×300 cycles of paired-end sequencing on the Illumina Miseq sequencing
platform using reagents from the Miseq reagent kit v3 (Illumina Inc., San Diego, CA, USA).

The chosen bioinformatic pipeline was Quantitative Insights Into Microbial Ecology (QIIME, http://qiime.
org) v1.9.1. After creating a library of joined reads, operational taxonomic units (OTUs) were picked at a
97% similarity threshold, small OTUs and OTUs seen in negative control samples were removed,
taxonomy was assigned to the OTUs and a phylogenetic tree was constructed after alignment. We used the
GreenGenes version 13.8 as reference database [32]. Further details on the bioinformatic procedures can
be found in the supplementary material.

Differences in relative abundance of taxa were evaluated by applying a beta distribution and
non-parametric trend tests. Alpha-diversity was evaluated using Faith’s phylogenetic diversity (PD), or
“PD wholetree”. Beta-diversity was estimated with unweighted UniFrac and visualised by principal
coordinates analyses (PCoA) [33]. Diversity analyses require a similar number of sequences in each
sample, which was ensured by rarefaction. Statistical significance for alpha-diversity and beta-diversity
between sampling methods was evaluated by Bonferroni-corrected Wilcoxon matched-pairs test in Stata
version 13.2 (Statacorp, Texas, USA) and permutational ANOVA (permanova) tests in QIIME,
respectively.

Results
Only three subjects had asthma: two men and one woman. The 64 COPD subjects were slightly older,
included more men and had a larger tobacco-smoking burden than the 58 control subjects (table 1).

For each of the 125 participants, seven samples were sequenced (negative control sample, OW, right PSB,
PBAL1, PBAL2, left PSB, SVL). A total of 12.5 million sequences were obtained from the six procedural
samples after bioinformatics clean-up, as described in the methods section. For alpha- and beta-diversity,
we rarefied our data at 1000 sequences.

Taxonomy
Figure 1 shows the taxonomic classification by sampling method at the phylum level. As the degree of
protection from influence of oral environment increased, the proportion of Proteobacteria increased,
whereas Firmicutes diminished (p<0.01). At the genus level all sample types where dominated by
streptococci, but the mean proportion of the largest Streptococcus OTU showed the same declining pattern
by sample type (OW 14.5%, SVL 13.6%, PBAL1 11.8%, PBAL2 11.3%, right PSB 8,6% and left PSB 5.4%;
non-parametric trend test p<0.001).

TABLE 1 Characteristics of 125 subjects of the MicroCOPD study

COPD Asthma Control

Subjects 64 3 58
Males 34 (53.1%) 2 (67.7%) 34 (58.6%)
Current smokers 15 (23.4%) 0 16 (27.6%)
Ex-smokers 48 (75.0%) 2 (67.7%) 35 (60.3%)
Never-smokers 1 (1.6%) 1 (33.3%) 7 (12.1%)
Smoking exposure pack-years 28.49±16.08 20.88±24.22 22.83±18.55
FEV1 % predicted 56.83±16.30 88.31±11.37 100.71±11.00
Age years 68.73±7.23 64.41±9.1 64.89±8.43
Use of inhaled corticosteroids 44 (68.8%) 1 (33.3%) 1 (1.7%)

Data are presented as mean±SD unless otherwise stated. COPD: chronic obstructive pulmonary disease;
FEV1: forced expiratory volume in 1 s.
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Alpha-diversity
Figure 2 shows a boxplot of the alpha-diversity metric, Faith’s phylogenetic diversity, by sampling method
and by disease category, excluding the three asthma subjects. The phylogenetic diversity within a sample is
an indication of richness as the diversity increases both when a higher number of different OTUs are
present, and when the phylogenetic distance is larger within the phylogenetic tree (less genetically similar).
Bonferroni-corrected Wilcoxon matched-pairs signed-ranks tests showed that the oral wash samples were
more alpha-diverse than all other sampling methods (p<0.001). The diversity was lower in COPD patients
than controls, for most all sample types (figure 2). Importantly, the diversity decreased as the samples
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were less exposed to potential oral and bronchoscope contamination (OW>SVL>PBAL1>
PBAL2>rightPSB>leftPSB, non-parametric trend test p<0.01).

Beta-diversity
To compare between sample compositions (beta-diversity), we constructed principal coordinates analysis
(PCoA) plots of unweighted UniFrac distances including all procedural samples. Figure 3 shows the PCoA
plots for the oral wash versus each of the other sampling methods. Each dot represents a diversity
measurement for one sample, and the OW sample is always shown in green. As can be seen, most
respiratory tract samples clustered differently from the OW samples, but the visual impression is that the
differences in diversity were smaller between OW and SVL and OW and PBAL samples than for OW and
the PSB samples. Another way of comparing the beta-diversity was employed using a permanova test;
estimating the beta-diversity between OW samples and each of the other sampling methods. This method
tests to which degree the variation in a matrix of UniFrac distances can be explained by an imposed
categorisation (i.e. sampling method). Overall permanova test confirmed that the beta-diversity differed by
sampling method (pseudo F 8.73, p=0.001, 999 permutations). When the distance matrix was split
according to the comparisons in figure 3, all were significant (p<0.01, permanova, corrected for multiple
comparison), with the permanova pseudo F-statistic gradually increasing for the comparison of OW with
SVL, PBAL1, PBAL2, right PSB and left PSB respectively, again indicating that PSB samples were more
clearly separated from OW samples than SVL and PBAL.

Finally we investigated whether the order of sampling (left versus right lung first) influenced alpha- and
beta-diversity in PSB samples. We found no significant difference in alpha- or beta-diversity for the right or
the left PSBs as judged by phylogenetic diversity and unweighted UniFrac (supplementary figures S3 and S4).

Discussion
We have shown that protected BAL and protected brush samples differed more from oral wash samples
than unprotected lavage through the bronchoscope working channel. Thus, unprotected sampling of the
airway microbiome might convey an image of a microbiome that is more similar to the oral microbiome,
than it would have been with protected sampling.

Oral wash

Small volume lavage, LUL

Protected BAL, fraction 1, RML

Protected BAL, fraction 2, RML

Protected brush, RLL

Protected brush, LUL

FIGURE 3 Principal coordinates analyses on unweighted UniFrac distance matrix comparing sampling methods in the MicroCOPD to oral wash
samples. Rarefied at 1000 sequences. LUL: left upper lobe; BAL: bronchoalveolar lavage; RML: right middle lobe; RLL: right lower lobe.
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To our best knowledge this is the first study that presents both protected brush and protected lavage
sampling as compared with both the oral microbiome and unprotected sampling. With more than 120
examined subjects it is by today the largest single site bronchoscopy study of the lung microbiome.

As other authors we find evidence of a lung microbiome separated from the oral microbiome by a larger
fraction of Proteobacteria and a proportionately lower fraction of Firmicutes [2, 8, 15, 20]. However, SEGAL
and associates [3, 4] mainly found that the airway microbiome was characterised by enrichment from
supraglottic areas of the respiratory tract, and in particular by Prevotella and Veillonella OTUs, which are
Bacteriodetes and Firmicutes, respectively. They examined 49 subjects, with supraglottic brushes and BAL
through the working channel, and observed that two clusters dominated airway samples: one dominated
by OTUs present in negative control samples, and one dominated by OTUs present in supraglottic
brushes. One interpretation might be that these two clusters represent two different modalities of
contamination, the first one from laboratory procedures and the second from bronchoscopic carryover.
SEGAL et al. argue that if it was bronchoscopic carry-over, they would have observed a dilutional effect
when they compared a first BAL of the lingula, with the second BAL of the right middle lobe. However,
this comparison was done for only 15 individuals, and anatomically one might expect lower biomass in
the lingula than the right middle lobe.

Other authors have also investigated the possibility of bronchoscopic carryover. BASSIS et al. examined oral
wash samples of 12 subjects and compared them with a first BAL of the lingula and a second BAL of the
right middle lobe [6]. They did not find any difference in quantitative PCR between the first and second
BAL, and no difference in beta-diversity when comparing the OW with the two BALs. Their interpretation
was that if there was significant carryover, there should have been observed some sort of dilutional effect.
Nevertheless, the two sampled sites are separated by the carina, and the bronchoscope must be
repositioned between sampling, and these two sites are indeed in different communication with the
outside world, possibly leading to an a priori larger biomass in the right lung. Also, DICKSON et al.
compared supraglottic brushes with PSB and BAL through the working channel [8]. In principal
component analyses of beta-diversity they found no clustering by sample type, except that the supraglottic
samples differed from the intrapulmonary sample communities. However, by performing unprotected BAL
before PSB, residual BAL fluid might have affected the brush areas making them more similar to the BAL
sample sites. Finally, 15 sampled subjects might not be sufficient to detect the differences we observed in
the current study with more than 100 participants.

It is quite plausible that microbes migrate from the oropharyngeal cavity to the airways, generating a
normal overlap between the oropharyngeal and airway microbiomes [5]. But as we have shown, co-existing
sample contamination likely also is an issue. The oropharyngeal microbiome has a known large biomass,
with a high diversity. By passing through this cavity, contamination to the outside of the bronchoscope
including its tip is inevitable. Use of suction will contaminate the working channel [7]. Since the oral
biomass is much greater than the airway biomass, even a small contamination will have a disproportionate
effect on the supposed airway microbiome if the unprotected measurements are performed through the
working channel. Using the working channel for unprotected lavage repeatedly at different lobes will lead
to contamination from one lobe to another. Using larger volume lavage may negate this effect to some
degree, but not eliminate the problem.

Results from the current study suggest that protected sheet sampling is the superior sampling
methodology. Comparing unprotected SVL and PSB both taken from the upper left lobe in our study, SVL
was most similar to the oral sample by visual assessment of the 10 most abundant taxa, and likewise both
by alpha- and beta-diversity. A direct comparison of protected and unprotected lavage from the same lobe
is impossible, as any washing will impact the contents of later washings. However, the diversity of PBAL
from the right middle lobe was intermediate between that found in OW and that found in the PSB.

Besides the above-mentioned study by DICKSON and colleagues [8], only two other studies have compared
PSBs to other sampling methods [7, 19]. CHARLSON et al. [7] sampled laboratory reagents, the
bronchoscope itself during various parts of the procedure, and the oropharyngeal microbiome in addition
to BAL through the working channel and PSBs. They concluded that the microbiome from the lower
respiratory tract was indiscriminate from the oropharyngeal microbiome irrespective of sampling method.
However, the study included only one PSB per sampling, had lower sequencing depth than the current
study, included only six healthy individuals and there were no adjustments made for OTUs seen in the
negative control samples [7]. HOGAN et al. compared PSB, and SVL samples of nine CF patients [19]. For
eight CF patients who had PSB and SVL taken from the same lobe, diversity was consistently higher in the
PSB samples [19], the opposite of our findings. HOGAN et al. employed the PSB only at visible mucus
plugs, and the airways of adult CF patients are perhaps no longer representing a low biomass
environment. In addition the number of study subjects was limited.
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The main strength of our study was comprehensive sampling of a large, heterogeneous sample of subjects
with and without COPD, while taking precautions to avoid excessive influence from laboratory and
bronchoscopic contamination. However, some potential weaknesses should be acknowledged. First, we
have not performed quantitative PCR, and thus cannot conclude regarding the amount of 16S rRNA gene
copies in the samples before amplification. Second, our analyses do not include a mock community, and
we are therefore not able to provide sequencing error rates for the current study. We could also have
spiked our samples with bacteria that would have indicated the efficiency of our DNA extraction. Third,
pre-bronchoscopy all participants received 0.4 mg salbutamol. This was done for obtaining
pre-bronchoscopy post-bronchodilator lung function values, but had the added benefit of protecting
against procedural bronchospasm. Salbutamol was given as an aerosol through large volume spacers that
are cleaned daily, and we are not aware of reports on contamination through metered dose inhalers.
Furthermore, since both patients and controls received salbutamol, our conclusions should not be affected.
Fourth, some results are difficult to compare with those of other authors because of differences in DNA
extraction, PCR amplification, sequencing and bioinformatic approach. This is the result of a field where
standards for 16S rRNA gene amplicon studies of microbial communities currently do not exist. To
facilitate reproducibility we have used well-documented analytic approaches and mostly default settings for
our bioinformatic pipeline (QIIME), in addition to using primers and PCR recommendations from a
major next-generation sequencing provider (Illumina). Regardless of this, we cannot rule out that some of
our findings only pertain to the current set of methodological choices such as the choice of sequencing
hypervariable region V3V4 [34]. To minimise the influence of small/spurious OTUs we have excluded
singletons by using default settings in our OTU picking, and removed OTUs that constituted less than
0.005% of the total number of sequences.

Insights concerning the airway microbiome in disease and health might provide vital understanding of
disease mechanisms and provide new targets for treating lung diseases such as COPD, asthma, cystic
fibrosis and interstitial lung diseases. However, to date only a minority of studies have performed
protected sampling, and might have been affected by exposure to exposure to microbiota encountered
before reaching the sampled sites. We have shown that unprotected sampling is likely to be affected by this
phenomenon, and we encourage the use of protected specimen brushes when sampling the airway
microbiota.
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Abstract

Background: The low bacterial load in samples acquired from the lungs, have made studies on the airway
microbiome vulnerable to contamination from bacterial DNA introduced during sampling and laboratory
processing. We have examined the impact of laboratory contamination on samples collected from the lower
airways by protected (through a sterile catheter) bronchoscopy and explored various in silico approaches to dealing
with the contamination post-sequencing. Our analyses included quantitative PCR and targeted amplicon
sequencing of the bacterial 16S rRNA gene.

Results: The mean bacterial load varied by sample type for the 23 study subjects (oral wash>1st fraction of
protected bronchoalveolar lavage>protected specimen brush>2nd fraction of protected bronchoalveolar lavage;
p < 0.001). By comparison to a dilution series of know bacterial composition and load, an estimated 10–50% of the
bacterial community profiles for lower airway samples could be traced back to contaminating bacterial DNA
introduced from the laboratory. We determined the main source of laboratory contaminants to be the DNA
extraction kit (FastDNA Spin Kit). The removal of contaminants identified using tools within the Decontam R
package appeared to provide a balance between keeping and removing taxa found in both negative controls and
study samples.

Conclusions: The influence of laboratory contamination will vary across airway microbiome studies. By reporting
estimates of contaminant levels and taking use of contaminant identification tools (e.g. the Decontam R package)
based on statistical models that limit the subjectivity of the researcher, the accuracy of inter-study comparisons can
be improved.

Keywords: Microbiome, Contamination, Low biomass, Respiratory, 16S rRNA gene

Background
The most common method used for studying the bacter-
ial communities of the lower respiratory tract is high
throughput amplicon sequencing of the bacterial 16S
ribosomal RNA (16S rRNA) marker gene [1]. Some
studies use sputum samples [2, 3], with inevitable ques-
tions regarding the degree to which the samples are repre-
sentative of the lower respiratory tract as opposed to
contamination from the upper respiratory tract. The
emerging gold standard for lower respiratory tract samples

is protected bronchoscopy (sampling via a sterile catheter)
[4]. However, even with protected bronchoscopy the sam-
ples are processed through extensive laboratory workflows
that include at minimum steps of bacterial DNA
extraction, PCR amplification of the marker gene, and
preparation for sequencing. Each step opens up the possi-
bility for the introduction of contaminating bacterial DNA
from the laboratory environment, with greatest impact on
samples with the lowest bacterial load [5].
Accurate analysis of the lower respiratory tract micro-

biome will require separate consideration of both of the
aforementioned contamination sources - that from the
upper respiratory tract introduced during sampling and
that introduced during laboratory processing steps. We
have previously shown that protected bronchoscopy of-
fers some protection from upper airway contamination
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[4]. In the current study, we address the issue of con-
tamination from the laboratory.
The impact of laboratory contamination is typically

evaluated through the inclusion of negative control sam-
ples (NCS) that are processed through all steps of DNA
extraction and library preparation for sequencing along-
side the study samples. The approach is not perfect as
one may expect to find taxa in the NCS that also belong
to the bacterial communities of the sampled site. Re-
searchers are thus faced with a difficult decision with
regards to what to do with the information acquired
from the NCS. Some groups have removed all taxa iden-
tified in NCS from their study samples [4, 6, 7]. Others
single out taxa they believe likely represent contaminants
[8]. Currently bioinformatic tools are being developed
that aim to wriggle out the authentic microbiota signal
using statistical models [9–11], but these have yet to be
tested on lower respiratory tract sequencing data (e.g.
Decontam [9]).
In the current paper we illustrate an effective workflow

for evaluating the quality of lower respiratory tract sam-
ples for accurate assessment of bacterial composition.
Objectives of the study were i) to determine the influ-
ence of contamination on lower respiratory tract sam-
ples as a function of bacterial load, ii) to determine the
main source of contamination in our laboratory setting
and iii) to explore common in silico approaches to deal-
ing with contamination.

Results
In order to establish the bacterial load in protected
airway samples collected using different sampling tech-
niques, we included oral washes (OW), two fractions of
protected bronchoalveolar lavage (PBAL1 and PBAL2)
and protected specimen brushes (PSB) from 23 partici-
pants of the MicroCOPD study [12]. The subject charac-
teristics are provided in Table 1.

Bacterial load varies with sample type
The bacterial load in the four sample types collected per
subject was measured by probe based quantitative PCR
(qPCR) targeting the bacterial 16S rRNA gene V1 V2
region. The bacterial load decreased in order OW >
PBAL1 > PSB > PBAL2 (p < 0.001, non-parametric trend
test) (Fig. 1). The mean number of bacteria (× 106/ mL
sample) was 34.2 (range 1.4 to 155.8) for OW (n = 23);
1.1 (range 1.7 × 10− 3 to 6.6) for PBAL1 (n = 23); 0.7
(range 4.3 × 10− 3 to 2.8) for PSB (n = 20) and 0.5 (range
19.9 × 10− 3 to 5.1) for PBAL2 (n = 23).

Bacterial load and impact of laboratory contamination
Salter and colleagues [5] have previously illustrated the
inverse relationship between the bacterial load in a sam-
ple and the influence of contamination on the bacterial

community readout. Once we had established that the
bacterial load varied with sampling technique (Fig. 1),
we questioned whether the differences in bacterial load
for each of the patient samples would also reflect differ-
ences in susceptibility to laboratory contamination.
Using the Salter approach [5], we estimated the degree
of contamination as a function of bacterial load (Fig. 2),
and translated this to an estimate of contamination in
the procedural samples (OW, PBAL, PSB). Using quanti-
tative PCR we determined that the initial Salmonella
sample had a concentration of 107 bacterial cells/mL. As
expected the oral wash samples having a high bacterial
load (mean of approximately 107 bacterial cells/mL), will
not be greatly impacted by contamination. Samples from
the lungs (PBAL, PSB) fell between dilution 2 and 3
(Fig. 2), with contamination representing 10–50% of
the bacterial community readout. The impact of vary-
ing number of PCR cycles was low (Fig. 2).

Monitoring procedural contamination
Having learned that contaminating bacterial DNA likely
represents a substantial proportion (10–50%) of the
sequencing output for the lower airway samples in our
study, we attempted to identify the main contamination
source. We performed ten simulated bronchoscopy
procedures (no patient) over two days to capture the
environmental contaminants that may have been intro-
duced during sampling.
All procedural control samples were sequenced to-

gether on the same sequencing run (Run A). Additional
control samples were sequenced on a second run (Run
B) and included samples of molecular grade water that
were processed through the DNA extraction protocol
without the introduction of PBS. Although sequenced

Table 1 Subject characteristics

Controls COPD Asthma

Subjects 9 10 4

Age 63.0 ± 6.7 68.2 ± 5.2 63.6 ± 3.1

Men 6 (66.7%) 8 (80.0%) 2 (50.0%)

Current-smokers 2 (22.2%) 1 (10.0%) 0

Former-smokers 5 (55.6%) 9 (90.0%) 3 (75.0%)

Non-smokers 2 (22.2%) 0 1 (25.0%)

Smoker pack years 11.8 ± 6.1 25.2 ± 8.1 12.1 ± 6.2

FEV1 (% predicted) 97.0 ± 13.7 72.6 ± 23.2 101.6 ± 9.3

Inhaled corticosteroids 0 2 (20.0%) 3 (75.0%)

LABA 0 3 (30.0%) 1 (25.0%)

LAMA 0 4 (40.0%) 0

COPD chronic obstructive pulmonary disease, FEV1 forced expiratory volume in
1 s, LABA long-acting beta-agonist, LAMA long-acting muscarinic antagonist. 1
smoker pack year = 20 cigarettes (one pack) smoked daily for 1 year. Age,
smoker pack years and FEV1 (% predicted) are presented as the
mean ± standard deviation
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on a separate sequencing run (Run B), the molecular
grade water samples would indicate whether the PBS
was the main source of contamination. A sample of mo-
lecular grade water that was not processed through the
DNA extraction protocol (PCR water) was also included
on both sequencing runs (Run A and B). This later

sample would reflect contamination introduced during
PCR and sequencing steps without interference from
contamination introduced during sampling and DNA
extraction steps.
The total number of sequences obtained from the pro-

cedural control samples (Run A) after quality filtering

Fig. 1 Measured bacterial load in procedural samples (OW, PBAL1, PSB and PBAL2). The mean bacterial load in OW samples was approximately
30 fold higher than PBAL1, 50 fold higher than PSB and, 70 fold higher than PBAL2. OW: oral wash (n = 23); PBAL1: first fraction of protected BAL
from right middle lobe (n = 23); PSB: protected specimen brush from right lower lobe (n = 20); PBAL2: second fraction of protected BAL from right
middle lobe (n = 23)

Fig. 2 Estimate of contaminant levels in ten-fold dilution series of Salmonella (SDS). The major operational taxonomic units (OTUs) observed in
the initial Salmonella sample (10^7 bacteria/mL) were assigned to f__Enterobacteriaceae;g__. Using the NCBI nucleotide BLAST tool we confirmed
that these OTUs (OTU821080, OTU813457 and OTU813217) matched to the genus Salmonella. With each successive dilution, the relative
abundance of f__Enterobacteriaceae;g__ decreased. By dilution 3 (45 PCR cycles), the percentage had reduced to 47.83%. For comparison, PCR
amplification of the 16S rRNA gene was performed at both 30 and 45 cycles for all SDS samples. The control is a sample of PCR water processed
through steps of PCR and sequencing alongside the SDS samples. Taxonomic rank is described using prefixes (f__: family, g__: genus)
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and chimera removal was 4.8 × 106. The mean number
of sequences and operational taxonomic units (OTUs)
obtained from the procedural controls were for phos-
phate buffered saline (n = 10): 64,745 sequences (123
OTUs); catheter rinse (n = 10): 98,379 sequences (131
OTUs); protected specimen brushes (n = 10): 106,853 se-
quences (132 OTUs); bronchoscope rinse (n = 10): 109,
765 sequences (134 OTUs); cryotube (n = 9): 115,633
sequences (138 OTUs). The number of sequences ob-
tained from the PCR water control sequenced on the
same run (Run A) was lower than for the procedural
control samples with only 43,433 sequences and 65
OTUs, suggesting that contamination was predomin-
antly introduced prior to PCR steps of library prepar-
ation. The procedural control samples (Run A) showed a
similar taxonomic distribution that was quite distinct
from that of the PCR water sample (Run A) (Fig. 3). This
indicated that contamination was either introduced with
the phosphate buffered saline used for collection of all
samples or during DNA extraction steps.
To differentiate between PBS and DNA extraction as

contamination sources, we compared the molecular

grade water samples (Run B) to the corresponding PCR
water sample sequenced on the same run. The molecular
grade water (n = 3) (Run B) contained a mean number of
124,941 sequences and 107 OTUs, whereas the PCR water
(Run B) contained 126,103 sequences and only 39 OTUs.
Importantly, the taxonomic profile of the molecular grade
water (Run B) resembled that of the procedural control
samples (Run A), whereas the PCR water did not, indicat-
ing that the main source of contamination was the DNA
extraction kit (Fig. 3).

Exploring in silico approaches to dealing with
contamination in LRT samples
We began our analyses by looking at how the top 20
OTUs present in NCS were distributed in the procedural
samples (OW, PBAL, PSB) in our 23 subjects (Fig. 4).
The NCS were dominated by an OTU that mapped to
the family Enterobacteriaceae. The Ralstonia OTU that
dominated the procedural controls (Fig. 3) was the
fourth most abundant OTU in the NCS with an average
relative abundance of just 5.45%. This likely reflects
differences in contamination introduced from different

Fig. 3 Distribution of operational taxonomic units (OTUs) in procedural controls and PCR water samples. An OTU belonging to the genera
Ralstonia dominated the procedural control samples with an average relative abundance of 51.81% in scope rinse (n = 10), 54.33% in catheter
rinse (n = 10), 55.36% in cryotube (n = 9), 52.82% in protected specimen brushes (n = 10) and 54.93% in phosphate buffered saline (n = 10). The
same Ralstonia OTU also dominated the molecular grade water samples (n = 3) at an average relative abundance of 29.42%. The PCR water
control sample was dominated by Rhizobium (38.11%), Anaerobacillus New Reference OTU 110 (20.69%) and Delftia (10.65%) in run A and
Anaerobacillus New Reference OTU 110 (32.93%), Anaerobacillus OTU 622288 (24.04%) and Delftia (10.68%) in run B. Taxonomic rank is described
using prefixes (o__: order, f__: family, g__: genus). Data unrarefied
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lots of the FastDNA Spin Kit [5]. An OTU assigned to
the Streptococcus genus was found in NCS at a relative
abundance of just 1.51%; the same OTU was a major
OTU in patient OW, PBAL and PSB samples. This is
most likely not a contaminant and may be an important
component of the bacterial lung microbiota. For a de-
tailed presentation of the Streptococcus OTUs found in
PSB and NCS samples, see Additional file 1: Figure S1
and Additional file 2: Figure S2.
Common in silico approaches to dealing with contam-

ination include i) leaving the samples intact (i.e. do
nothing), ii) removing all OTUs seen in NCS, and iii)
correction based on statistical models (i.e. the Decontam
R package). We next examined how the application of
each approach would impact the taxonomic profiles of
the procedural samples in our study (Fig. 5).
When leaving the procedural samples intact, the

Streptococcus genus dominated all sample types. With
the removal of OTUs seen in NCS, the relative abun-
dance of the Streptococcus genus was significantly re-
duced in all sample types (Fig. 5), as was predicted from
Fig. 4. With removal of OTUs identified as contaminants
using Decontam [9], the Streptococcus genus again
dominated the procedural samples. This approach thus
appeared to provide a good balance between removing
all OTUs found in the NCS and leaving intact OTUs
present in both NCS and procedural samples.

Comparison of the frequency-based distribution plots
for the top 4 OTUs observed in NCS and the Streptococ-
cus OTU (Fig. 6), visually illustrate how Decontam (here
frequency-based method) is able to differentiate between
a contaminant OTU and a non-contaminant OTU.

Decontam performance test on the Salmonella dilution
series (SDS)
In the Decontam introduction paper [9], the authors il-
lustrate how Decontam is able to diminish the contam-
inant signal from the serially diluted Salmonella datasets
published in the Salter paper [5]. As our study also in-
cluded a Salmonella dilution series (SDS), we were able
to test the Decontam package tools on sequencing data
generated in the context of our laboratory setting after
processing through our chosen bioinformatic pipeline.
The SDS in our study included seven samples of a

successively ten-fold diluted Salmonella monoculture
and a PBS negative control sample that went through
DNA extraction and sequencing steps alongside the SDS
(Fig. 7). As library preparation for sequencing of the
SDS was performed at both 30 and 45 PCR cycles and
the impact of varying number of PCR cycles was low
(Fig. 2), the sequencing output for both sample sets were
used as input in the Decontam analyses. We also in-
cluded a PCR water control sample that was sequenced
on the same sequencing run.

Fig. 4 Distribution of the 20 most abundant operational taxonomic units (OTUs) observed in negative control samples (NCS). The NCS were
dominated by OTU 759061 assigned to the family Enterobacteriaceae (20.93%), OTU 4389128 assigned to a genus within the class ML635J-21
(16.31%), OTU 437105 and New. Reference OTU 133 both assigned to the genus Ralstonia (8.30 and 5.45%, respectively). Taxonomic rank is
described using prefixes (c__: class, o__: order, f__: family, g__: genus). Data presented as the average relative abundance. Data unrarefied
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Using the isContaminant function in the Decontam R
package, we compared three methods for identification
of contaminant OTUs including i) the prevalence-based
method, ii) the frequency-based method and iii) the ei-
ther method. In the prevalence-based method, an OTU
is marked as a contaminant based on a comparison of
how often the OTU is observed in negative control sam-
ples compared to the samples under study. For testing
the approach on the SDS, the final two samples in the
SDS were assigned as negative control samples together
with PBS and PCR water samples (as conducted by
Decontam developers when testing the approach on the
Salter dataset [13]). Figure 8 shows the taxonomic pro-
file of the SDS samples after removal of contaminant
OTUs identified using the prevalence-based approach.
The impression was that many small OTUs were re-
moved. In the frequency-based approach, the labelling of
an OTU as a contaminant is based on the correlation
between the DNA concentration measurements made
for samples during steps of library preparation (in our
lab using the Qubit instrument) and the relative abun-
dance of the OTU across samples. Figure 9 shows the
taxonomic profile of the SDS samples after removal of
contaminant OTUs identified using the frequency-based
approach. The impression was that the frequency-based
approach removed fewer but more abundant OTUs
compared to the prevalence-based approach. In the final
approach tested in Decontam (“either”), all OTUs

marked as contaminants by either the prevalence or fre-
quency-based methods are removed (Fig. 10).
Of the three approaches tested in Decontam, the

“either” method was able to most effectively remove the
contaminant signal from the bacterial community pro-
files of the samples; even in the most diluted sample
over 50% of the sequences mapped to the Salmonella
genus. Of concern is however that the PBS sample also
consisted of over 50% Salmonella. Also present in the
PBS sample was oral/lung specific genera including Veil-
lonella, Streptococcus and Neisseria that are obvious
contaminants from the procedural samples sequenced
on the same run. The number of reads in the PBS sam-
ple after processing in Decontam was only 32. Therefore
we learn that although effective, removal of contaminant
OTUs identified in Decontam may also lead to the
magnification of another type of noise in the sequencing
data – particularly that from cross sample contamination
during library preparation or index misassignment dur-
ing MiSeq sequencing.

Discussion
In the current paper we illustrate an effective workflow
for evaluating the quality of lower airway samples for
amplicon-based analysis of bacterial composition. Our
results show that the low bacterial load in samples from
the lungs make them vulnerable to bacterial DNA con-
tamination, which in our study mainly originated from

Fig. 5 Taxonomic distribution in procedural samples when different approaches to dealing with contamination have been applied. When
negative control sample (NCS) operational taxonomic units (OTUs) are kept, the Streptococcus genus dominated the procedural samples with an
average relative abundance of 31.66% in oral wash (OW) (n = 23), 27.95% in protected bronchoalveolar lavage (PBAL) (n = 23) and 22.27% in
protected specimen brushes (PSB) (n = 23). With the removal of NCS OTUs, the Streptococcus genus no longer dominated the procedural samples
and was present at an average relative abundance of 4.80% in OW (n = 23), 6.12% in PBAL (n = 23) and 7.60% in PSB (n = 23). With the removal of
OTUs identified as contaminants in Decontam (method = “either”, threshold = 0.5), the Streptococcus genus again dominated the samples, with an
average relative abundance of 32.52% in OW (n = 23), 34.40% in PBAL (n = 23) and 35.08% in PSB (n = 23). Taxonomic rank is described using
prefixes (c__: class, o__: order, f__: family, g__: genus). Data unrarefied
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DNA extraction kits. Even with contaminants represent-
ing an estimated 10–50% of the sequencing output for
these samples, we demonstrate that most of the contam-
inating signal can be removed post sequencing using
recently developed bioinformatic approaches.
Through the processing and sequencing of a serially

diluted culture of Salmonella [5], we were able to define
the threshold bacterial load for which contamination
would begin to dominate the bacterial profile in our
samples. At an input of between 10^3 and 10^4 Salmon-
ella/mL, we observed that contaminants constituted

more than 50% of the bacterial profile of the sample.
The use of alternative protocols for sample processing
and sequencing can slide this defined threshold of
bacterial load up or down and should therefore be deter-
mined independently in separate studies. Biesbroek et al.
[14] for example show in their study how the choice of
DNA extraction kit will affect the DNA yield and in turn
the placement of samples above or below a defined
threshold of bacterial load for which contamination
becomes a problem. Despite differences in laboratory
protocols, our results are in agreement with Salter and

Fig. 6 Decontam frequency distribution plots distinguish contaminants from non-contaminants. A frequency distribution plot generated from
samples with varying DNA concentration indicates whether a particular sequence fits the Decontam contaminant (red line) or non-contaminant
(black stippled line) model. The first four plots represent the top four operational taxonomic units (OTUs) observed in negative control samples
(NCS): OTU 759061 is assigned to the family Enterobacteriaceae; OTU 4389128 is assigned to a genus within the class ML635J-21; OTU 437105 and
OTU New. Reference OTU 133 are both assigned to the genus Ralstonia. The final plot represents the Streptococcus OTU 1082539 that most likely
is not a contaminant, although present among the top 20 OTUs found in NCS. Its frequency distribution pattern more closely fits the Decontam
non-contaminant model in contrast to the others
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colleagues [5] who in their study also recommend an
input of more than 10^3–10^4 bacterial cells. The con-
cordance of our results may partially be explained by the
use of a DNA extraction kit from the same manufacturer
(FastDNA Spin Kit, MP Biomedicals).
Using the Salmonella dilution series as a reference we

were able to determine the degree of laboratory contam-
ination in the various sample types (OW, PBAL1,
PBAL2, PSB) collected from participants in the Micro-
COPD study. The average bacterial load in the samples
acquired from the lungs was highest for PBAL1 samples

(10^6 bacteria/mL) and approximately an order of mag-
nitude lower for PSB and PBAL2 samples. This could
mean that the first lavage fraction harvests a larger por-
tion of the resident microbiota, but also a dilution effect,
as lavage yield tends to increase in the second fraction.
We used a sterile inner catheter for lavage sampling, to
minimize contamination from BAL, something no other
study has done to our knowledge. It is however possible
that the first fraction of lavage (PBAL1) is more suscep-
tible to contamination from the upper airways during
sampling compared to PBAL2 and PSB samples [4].

Fig. 7 Taxonomic distribution in Salmonella dilution series (SDS). The taxonomic profile of the SDS samples (amplified using 45 PCR cycles) before
removal of OTUs identified as contaminants in Decontam. Taxonomic rank is described using prefixes (f__: family, g__: genus). Data unrarefied

Fig. 8 Taxonomic distribution in Salmonella dilution series (SDS) after removal of Decontam contaminants (prevalence-based). 109 out of 235
operational taxonomic units (OTUs) in the SDS dataset were identified as contaminants and removed (user defined threshold = 0.5). At the default
threshold, only 34 out of 235 OTUs in the dataset were identified as contaminants (figure not drawn). Taxonomic rank is described using prefixes
(f__: family, g__: genus). Data unrarefied
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Thus, the question remains as to whether PBAL1 with
its higher bacterial load is a more representative sample
compared to PBAL2 and PSB samples or if we are
simply swapping contamination sources (contaminating
bacterial DNA introduced from the upper airways
during sampling versus contaminating bacterial DNA
introduced during laboratory processing steps). The
optimal sample type may thus be a question of which
contamination source is easiest to identify and remove
post sequencing.

Through the sequencing of procedural control samples
and PCR negative control samples that were not proc-
essed through the DNA extraction protocol, we were
able to trace the main source of contamination back to
the DNA extraction kit. Our findings are in agreement
with several other studies [5, 15, 16]. The difference in
the microbiota readout for the procedural control
samples and the negative control samples are likely
explained by differences in lot number for the DNA
extraction kits. Salter and colleagues report differences

Fig. 9 Taxonomic distribution in Salmonella dilution series (SDS) after removal of Decontam contaminants (frequency-based). 58 out of 235
operational taxonomic units (OTUs) in the dataset were identified as contaminants and removed (user defined threshold = 0.5). At the default
threshold, only 9 out of 235 OTUs in the dataset were identified as contaminants (figure not drawn). Taxonomic rank is described using prefixes
(c__: class, o__: order, f__: family, g__: genus). Data unrarefied

Fig. 10 Taxonomic distribution in Salmonella dilution series (SDS) after removal of Decontam contaminants (approach either). 136 out of 235
OTUs in the dataset were identified as contaminants and removed (user defined threshold = 0.5). Taxonomic rank is described using prefixes (f__:
family, g__: genus). Data unrarefied
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in contaminant profiles for three replicates of SDS ex-
tracted using different lots of the FastDNA Spin Kit for soil;
similar to our results they also found that one SDS replicate
was dominated by unclassified Enterobacteriaceae.
Publications such as that by Salter and colleagues have

led to an increased awareness of the effects of con-
tamination on microbiome studies of low biomass
samples [5, 16]. Most studies now process negative control
samples that allow for monitoring of the contaminant sig-
nal introduced from the laboratory. However, the inclu-
sion of NCS only partly addresses the issue. In our study
for example, we recognized that a major Streptococcus
OTU found in procedural samples (OW, PBAL, PSB) was
also among the top 20 most abundant OTUs found in
NCS. A comparison of the relative abundance of the
Streptococcus OTU in procedural samples and NCS
indicated that the OTU was likely not a contaminant.
However, the question of where to draw the line with
regards to a set abundance threshold for which an OTU
should be identified as a contaminant or not is not always
as straightforward. The Decontam package in R has been
developed to identify contaminants using statistical
models [9]. The Decontam developers demonstrate the
accuracy of their approach on the Salmonella dilution
series datasets generated in the Salter publication. We
show in the context of our laboratory setting that Decon-
tam is efficient at removing the contaminant signal from
the SDS also in our study. Using Decontam we were also
able to confirm the identity of the Streptococcus OTU
found in both procedural samples and the NCS as a non-
contaminant.
We acknowledge that our study does not address all

issues related to bacterial load in microbiome sequen-
cing data. The serial diluted Salmonella monoculture
does not provide insight into the effects of bacterial load
on the relative abundance of bacteria in a more complex
microbiota sample. Biesbroek et al. [14] show in their
study examining the microbiota of a serially diluted
saliva sample, an increase in the relative abundance of
Proteobacteria and Firmicutes and a decrease in Bacter-
oidetes across the dilution series. Proteobacteria likely
reflect contaminants as has been suggested in several pa-
pers [14, 17], again illustrating the inverse relationship
between bacterial load and the influence of contamin-
ation as observed in our study. The observed increase in
relative abundance of Firmicutes and concurrent de-
crease in Bacteroidetes is however of concern, as these
phyla hold members often detected in studies of the lung
microbiome (e.g. Veillonella and Prevotella). The field
would benefit from studies addressing the potential ef-
fects of bacterial load on the measured relative abun-
dance of taxa in a more complex sample, particularly
those that are suspect core lung microbiota members.
Secondly, we did not quantify the amount of human

DNA in the procedural samples. The presence of human
DNA may affect the efficiency of the qPCR reaction
[16], and thereby also the accuracy of the direct compari-
son to the SDS. Studies evaluating the impact of contam-
ination might consider quantification of human DNA for
an even more accurate estimate of contamination.

Conclusions
Measured amounts of bacteria will vary in lower airway
samples collected with different bronchoscopic sampling
techniques (e.g. PBAL1, PBAL2, PSB in the current
study). These differences combined with the inverse re-
lationship between bacterial load and bacterial DNA
contamination will render some sampling modalities
dominated by contaminating taxa.
Differences in protocols for sampling, laboratory process-

ing and bioinformatics analysis across studies will require
investigators to evaluate the impact of contamination in the
context of their own laboratory setting. We encourage
investigators to report an estimate of the degree of contam-
ination in their datasets defined against a sample of known
bacterial load as exemplified in the current study. We
further suggest the use of contaminant identification tools
(e.g. Decontam) based on statistical models for the objective
removal of laboratory contaminants in lung microbiome
sequencing data. Such measures will enable more accurate
inter-study comparisons and may also resolve discrepancies
between studies that have likely impeded understanding the
potential relationship between microbiota and its role in
chronic lung diseases.

Methods
Study samples
Study subjects (n = 23) were chosen from the Bergen
COPD Microbiome Study (short name “MicroCOPD”)
[12], to give an equal representation of healthy (n = 9) and
diseased (asthma (n = 4), COPD (n = 10)) states. Details on
data collection and the bronchoscopy procedures have
been previously published [4, 12]. Briefly, adult subjects
recruited from Western Norway with and without ob-
structive lung disease, underwent voluntary bronchosco-
pies between 2013 and 2015. All subjects were examined
in the stable state, not having received antibiotics at least
2 weeks prior to the procedure. All bronchoscopies were
performed by experienced chest physicians at the out-
patient clinic at the Department of Thoracic Medicine,
Haukeland University Hospital. The regional ethical
committee (REK-Nord, case # 2011/1307) approved the
study, and all patients gave written informed consent.
Sample types acquired per patient included the first

and second fraction of 2 × 50mL bronchoalveolar lavage
(PBAL1 and PBAL2) sampled through a sterile inner
catheter (Plastimed Combicath, Le Plessis Bouchard,
France) of the bronchoscope while the scope itself was
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wedged in the right middle lobe, and three protected
specimen brushes subsequently sampled from the right
lower lobe (rPSB), an oral wash (OW), and a negative
control sample (NCS). Additional procedural control
samples were collected after ten simulated bronchoscopy
procedures (no patient) carried out over two days;
samples included a bronchoscope rinse (BR), a catheter
rinse (CR), a protected specimen brush (PSB), a sample
of phosphate buffered saline (PBS) transferred to a cryo-
tube (CT) and a sample of PBS used for collection of all
samples. The PBS used for sample collection was sterilized
by sterile filtration (0.22 μm) and autoclaving at 121 °C for
15min. To study the relationship between bacterial load
and the influence of contaminating bacterial DNA in our
laboratory setting [5], we included a ten-fold dilution
series of Salmonella enterica serovar Typhimurium
(ATCC 14028) (ATCC, Manassas, VA, USA) (SDS).

Bacterial DNA extraction using enzymatic and mechanical
lysis steps
Samples were treated with lytic enzymes mutanolysin,
lysozyme and lysostaphin (all from Sigma-Aldrich, St.
Louis, MO, USA) and subsequently processed through
the FastDNA Spin Kit (MP Biomedicals, LLC, Solon,
OH, USA) following the manufacturer’s instructions.
Procedural samples were processed using different lots
of the DNA extraction kit (#79113, #84562, #57212,
#62903). The procedural controls and the SDS were
processed using a kit of same lot number (#93678). The
sample volume used as input varied with sample type
(for procedural samples: 450 μl for PSB and NCS and
1800 μl for OW, PBAL1, PBAL2; for procedural control
samples: 450 μl for PBS and CT, 550 μl for PSB and
1800 μl for BR and CR; for samples in the SDS: 500 μl).
DNA was eluted in a total volume of 100 μl.

Quantification of bacterial load by quantitative PCR
(qPCR)
The bacterial load in the samples was determined by
probe-based qPCR targeting the bacterial 16S rRNA
gene (region V1 V2) using forward primer 5′-AGAGTT
TGATCCTGGCTCAG-3′, reverse primer 5′-CTGCTG
CCTYCCGTA-3′ and probe 5′-6-FAM-TAACACATG-
CAAGTCGA-BHQ-1-3′ (locked nucleic acid bases are
underlined; 6-FAM: 6-carboxyfluorescein; BHQ-1: Black
Hole Quencher-1) [7, 18–20]. PCR reactions were car-
ried out using the following cycling conditions: an initial
cycle at 95 °C for 5 min followed by 45 cycles of 95 °C for
5 s, 60 °C for 20 s and 72 °C for 10 s and a final extension
cycle of 72 °C for 2min. A standard curve was constructed
from genomic DNA from E. coli strain JM109 (Zymo
Research, Irvine, CA, USA).

MiSeq sequencing of the bacterial 16S rRNA gene
The bacterial composition in the samples was deter-
mined by paired-end sequencing of the 16S rRNA gene
(region V3 V4) following instructions provided in the
Illumina 16S Metagenomic Sequencing Library Prepar-
ation guide (Part no. 15044223 Rev. B). PCR cycling con-
ditions were modified from the commercial protocol and
consisted of an initial cycle at 95 °C for 3min followed by
45 cycles of 95 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s and
a final extension cycle at 72 °C for 5min.

Bioinformatic sequence processing steps
Bioinformatic sequence processing steps were performed
using tools provided within the Quantitative Insights
into Microbial Ecology (QIIME) bioinformatic package,
version 1.9.1. In short, raw sequences were retrieved
from the MiSeq sequencer in the form of demultiplexed
forward and reverse fastq files (paired end reads). Primer
sequences were trimmed off and forward and reverse
reads joined. Chimera sequences identified using the
VSEARCH program [21] were subsequently removed.
Remaining sequences were grouped into open-reference
operational taxonomic units (OTUs) using UCLUST
[22] and the GreenGenes reference database (v.13.8)
[23]. Small OTUs, defined as those containing less than
0.005% of the total sequence count in the dataset were
then filtered out [24]. Taxonomy was assigned to OTUs
using the naïve bayesian RDP Classifier [25] together
with the GreenGenes reference database (v.13.8) [23].
The resulting OTU table displaying the sequence count
in each OTU for each sample was the starting point for
all subsequent analyses. The QIIME commands used for
generating the working OTU table are provided in the
Additional file 3: Supplementary Methods.

In silico contaminant identification and removal
Two approaches to contaminant identification and
subsequent removal were tested. In the first approach
contaminant OTUs were identified through their
presence in NCS. NCS OTUs were filtered out from the
procedural samples (OW, PSB, PBAL) collected under
the same procedure using QIIME commands (illustrated
in the supplementary methods). In the second approach,
contaminant OTUs were identified based on statistical
models using the Decontam package [9] in R. Contamin-
ant OTUs identified using the Decontam isContaminant
function (method = either, user defined threshold = 0.5)
were filtered out of the main OTU working table using
QIIME commands.
For greater details on study design, sample collection,

preparation of Salmonella samples, DNA extraction,
qPCR, 16S rRNA gene sequencing and bioinformatics,
please see the Additional file 3: Supplementary Methods.
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Additional file 1: Figure S1. Distribution of Streptococcus OTUs in
Protected Specimen Brush (PSB) samples (n=23). (PDF 8 kb)

Additional file 2: Figure S2. Distribution of Streptococcus OTUs in
Negative Control Samples (NCS) (n=23). (PDF 8 kb)

Additional file 3: Supplementary Methods. This file provides a detailed
description of protocols for sample collection, preparation of Salmonella
samples, DNA extraction, qPCR, 16S rRNA gene sequencing and
bioinformatics. (DOCX 240 kb)
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Abstract 25	

Background: Studies on the airway microbiome have been performed using a wide range of 26	

laboratory protocols for high-throughput sequencing of the bacterial 16S ribosomal RNA 27	

(16S rRNA) gene. We sought to determine the impact of number of polymerase chain 28	

reaction (PCR) steps (1- or 2- steps) and choice of target marker gene region (V3 V4 and V4) 29	

on the presentation of the upper and lower airway microbiome. Our analyses included 30	

lllumina MiSeq sequencing following three setups: Setup 1 (2-step PCR; V3 V4 region), Setup 31	

2 (2-step PCR; V4 region), Setup 3 (1-step PCR; V4 region). Samples included oral wash, 32	

protected specimen brushes and protected bronchoalveolar lavage (healthy and obstructive 33	

lung disease), and negative controls. 34	

Results: The number of sequences and amplicon sequence variants (ASV) decreased in order 35	

setup1>setup2>setup3. This trend appeared to be associated with an increased taxonomic 36	

resolution when sequencing the V3 V4 region (setup 1) and an increased number of small 37	

ASVs in setups 1 and 2. The latter was considered a result of contamination in the two-step 38	

PCR protocols as well as sequencing across multiple runs (setup 1). Although genera 39	

Streptococcus, Prevotella, Veillonella and Rothia dominated, differences in relative 40	

abundance were observed across all setups. Analyses of beta-diversity revealed that while 41	

oral wash samples (high biomass) clustered together regardless of number of PCR steps, 42	

samples from the lungs (low biomass) separated. The removal of contaminants identified 43	

using the Decontam package in R, did not resolve differences in results between sequencing 44	

setups.  45	

Conclusions: Differences in number of PCR steps will have an impact of final bacterial 46	

community descriptions, and more so for samples of low bacterial load. Our findings could 47	

not be explained by differences in contamination levels alone, and more research is needed 48	



	 3	

to understand how variations in PCR-setups and reagents may be contributing to the 49	

observed protocol bias.  50	

 51	

52	



	 4	

Background 53	

The bacterial airway microbiome has been studied using a wide range of protocols for high-54	

throughput sequencing of the bacterial 16S ribosomal RNA (16S rRNA) gene. Common to all 55	

amplicon based protocols is the application of the polymerase chain reaction (PCR) for i) 56	

amplification of the target marker gene to be sequenced and ii) the addition of index 57	

sequences necessary for sample multiplexing. These steps can be performed in a single PCR 58	

or in two separate PCRs. No study has addressed whether the increased number of 59	

laboratory processing steps associated with a 2-step PCR protocol, will leave samples more 60	

vulnerable to bacterial DNA contamination from the laboratory than when following a 1-step 61	

PCR protocol. The inverse relationship between sample bacterial load and the impact of 62	

contamination has been well documented in the literature by others [1, 2] and ourselves [3].	 63	

Thus, we predicted that while samples with a high bacterial load (i.e. upper airway samples) 64	

would be able to buffer against protocol effects resulting from differences in contamination 65	

levels, samples with a low bacterial load (i.e. lower airway samples) would not be resistant 66	

to these effects.   67	

 68	

In addition to number of PCR steps, sequencing protocols vary by choice of targeted marker 69	

gene region. Several different 16S rRNA gene variable regions have been targeted in studies 70	

of the lung microbiome, including V1 V2 [4, 5], V1 V3 [6–8], V3 V5 [7, 9–13], V3 [14, 15] and 71	

V4 [16–20]. Choice of target marker gene region has been limited by the short length of DNA 72	

that can be sequenced using current high-throughput sequencing technologies. The V4 73	

region has increased in popularity as studies on estimates of alpha- [21] and beta- diversity 74	

[22] (i.e. measures of diversity within and between samples, respectively) and taxonomic 75	

assignments [23] have collectivey indicated that this site generates the most accurate 76	
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descriptions. In addition, its relatively short length has allowed for the complete overlap of 77	

the forward and reverse sequencing read; advantageous because correction of sequencing 78	

errors is possible using the read with highest quality score [25]. The increased capacity of the 79	

MiSeq sequencer to sequence longer DNA sequences coupled with the development of 80	

novel denoising strategies (e.g. DADA2 [26]), has however led to an increased interest in the 81	

targeting of the longer V3 V4 region. It is however unclear how these results compare to 82	

earlier studies based on the shorter V4 region. 83	

 84	

In the current study, we sought to evaluate the impact of number of PCR steps (1- or 2-85	

steps) and choice of target marker gene region (V3 V4 vs V4) on the presentation of the 86	

upper and lower airway microbiome. To address these issues we processed samples of both 87	

high and low bacterial load through three library preparation setups varying in the number 88	

of PCR steps and target marker gene region: Setup 1 (2-step PCR; V3 V4 region), Setup 2 (2-89	

step PCR; V4 region), Setup 3 (1-step PCR; V4 region). The upper airways were represented 90	

by oral wash (OW) samples and the lower airways by protected specimen brushes (PSB) and 91	

protected bronchoalveolar lavages (PBAL) collected by bronchoscopy. Negative control 92	

samples (NCS) consisting of saline used in the collection of all samples was processed 93	

together with the clinical samples for assessment of contamination.  94	

 95	

 96	

 97	

 98	

 99	
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Results 100	

Study Participants 101	

The study included 23 subjects from the MicroCOPD study [27]. Subject characteristics are 102	

provided in Table 1.   103	

 104	

Table 1. Subject characteristics.  105	

 Controls COPD Asthma 

Subjects 9 10 4 

Age, mean ± SD years 63.0±6.7 68.2±5.2 63.6±3.1 

Men 6 (66.7%) 8 (80.0%) 2 (50.0%) 

Current-smokers 2 (22.2%) 1 (10.0%) 0 

Former-smokers 5 (55.6%) 9 (90.0%) 3 (75.0%) 

Never-smokers 2 (22.2%) 0 1 (25.0%) 

Smoker pack years, mean ± SD years  11.8±6.1 25.2±8.1 12.1±6.2 

FEV1 (% predicted), mean ± SD  97.0±13.7 72.6±23.2 101.6±9.3 

Inhaled corticosteroids 0 2 (20.0%) 3 (75.0%) 

LABA 0 3 (30.0%) 1 (25.0%) 

LAMA 0 4 (40.0%) 0 

COPD: chronic obstructive pulmonary disease; FEV1: forced expiratory volume in 1 second; LABA: long-acting 106	
beta-agonist; LAMA: long-acting muscarinic antagonist. 1 smoker pack year = 20 cigarettes (one pack) smoked 107	
daily for 1 year. Age, smoker pack years and FEV1 (% predicted) are presented as the mean ± standard 108	
deviation.SD: standard deviation. 109	
  110	
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Number of Sequences and Amplicon Sequence Variants (ASVs) 111	

We began our analyses with a comparison of the number of sequences and amplicon 112	

sequence variants (ASVs) retained at each step when processing through the bioinformatic 113	

pipeline (Figure 1). For sequencing setup 1, the procedural samples were dispersed across four 114	

sequencing runs (I-IV). For sequencing setups 2 and 3, two separate sequencing runs (one per 115	

setup) were conducted including all samples.  116	

 117	

As the sequences were passed through the different bioinformatic filtering steps, the total 118	

number of sequences and ASVs across the three setups became more similar. Denoising in 119	

DADA2 (Figure 1, step 1) resulted in the greatest decrease in sequence number. The  greatest 120	

decrease in ASV number occurred after the removal of small ASVs, for which the number of 121	

sequences was calculated to be less than 0.005% of the total number of sequences on the 122	

same run (Figure 1, step 3). The drop in ASV number was greatest for sequencing setups 1 and 123	

2, both of which are based on the longer 2-step PCR protocol.   124	

 125	

After the final filtering step (Figure 1, step 6), the number of ASVs was significantly higher for 126	

setup 1 compared to that observed for setups 2 and 3. When we restricted analyses to samples 127	

from the largest sequencing run in setup 1 (14 participants, 56 samples) (Figure 2), the number 128	

of ASVs for setup 1 was now more comparable to that observed for setups 2 and 3 (Figure 2, 129	

step 6). The higher number of ASVs still observed for setup 1, was expected due to the greater 130	

taxonomic resolution obtained when targeting a longer marker gene region (V3 V4).  131	

 132	

 133	

 134	
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Protocol effects on mock community sample 135	

The mock community sample HM-783D, consisting of genomic DNA from 20 different 136	

bacterial species (17 genera) was included on each sequencing run. For a detailed 137	

presentation of the mock community, see Additional file 5: Supplementary Methods. 138	

Because the protocols targeting different hypervariable regions result in different ASVs, we 139	

describe ASVs obtained for setup 1 (V3 V4 target) and setups 2 and 3 (V4 target), separately. 140	

 141	

When following setup 1 across four sequencing runs, we obtained the following number of 142	

sequences and ASVs: run I: 128,413 (27 ASVs); run II: 109,709 (23 ASVs); run III: 110,492 (24 143	

ASVs) and run IV: 84,909 (27 ASVs). As the number of sequences obtained for each run was 144	

similar, ASV numbers were also comparable across the four runs. While most genera were 145	

defined by a single ASV, genera Escherichia, Staphylococcus, Streptococcus, Clostridium and 146	

Rhodobacter were defined by multiple ASVs. The major ASVs attributed to each genus (i.e. 147	

those with the highest number of sequences) were the same across all four sequencing runs. 148	

For a detailed presentation of the ASVs observed in the mock community following setup 1, 149	

see Additional File 1: Table S.1. 150	

 151	

When following setups 2 and 3, we obtained 103,409 sequences (31 ASVs) and 120,073 152	

sequences (23 ASVs), respectively. The genera Escherichia, Staphylococcus, Streptococcus, 153	

Clostridium and Neisseria were defined by multiple ASVs. The major ASVs attributed to each 154	

genus were the same in both setups 2 and 3. For a detailed presentation of the ASVs 155	

observed in the mock community following each setup, see Additional File 2: Table S.2. and 156	

Additional File 3:Table S.3..  157	

 158	
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A summary of the expected and observed taxonomic distribution in the mock community 159	

sample, obtained for each setup is presented in Figure 3 and Table 2. We found that the 160	

three sequencing setups were for the most part equally efficient at recovering high 161	

abundant mock community members. Sequencing setup 3, was least efficient at recovering 162	

the low abundant members. Across all setups, we observed an increase in the relative 163	

abundances of genera Escherichia and Staphylococcus and a significant decrease in 164	

Rhodobacter compared to that expected. All setups generated low abundant ASVs that did 165	

not match to any of the expected taxa in the mock community (i.e contaminants). Because 166	

the mock community sample was included on each of the four sequencing runs I-IV 167	

performed following setup 1, we were also able to show that mock community sequencing is 168	

reproducible. 169	

 170	

 171	

 172	

 173	

 174	

 175	

 176	

 177	

 178	

 179	

 180	

 181	

 182	



	 10	

 183	

 184	

 185	

Genera Expected  Setup 1 

(I) 

Setup 1  

(II) 

Setup 1  

(III) 

Setup 1  

(IV) 

Setup 2 Setup 3 

Escherichia 21.91 27.68 23.99 25.20 26.65 22.54 32.90 

Rhodobacter 21.91 5.98 9.52 9.23 8.94 11.00 8.77 

Staphylococcus 24.10 29.02 29.27 29.66 30.56 29.88 24.98 

Streptococcus 24.12 28.51 27.39 27.03 25.38 26.20 25.81 

Bacillus 2.19 3.38 2.86 2.95 2.85 3.15 2.49 

Clostridium 2.19 2.18 3.28 2.19 1.88 2.64 1.69 

Pseudomonas 2.19 1.44 1.68 1.75 1.93 2.12 2.02 

Acinetobacter 0.22 0.32 0.29 0.33 0.30 0.29 0.12 

Helicobacter 0.22 0.36 0.49 0.44 0.38 0.61 0.26 

Lactobacillus 0.22 0.22 0.20 0.23 0.24 0.35 0.18 

Listeria 0.22 0.33 0.33 0.30 0.32 0.37 0.26 

Neisseria 0.22 0.24 0.31 0.30 0.27 0.43 0.39 

Propionibacterium 0.22 0.13 0.22 0.18 0.15 0.29 0.00 

Actinomyces 0.02 0.01 0.01 0.00 0.00 0.01 0.00 

Bacteroides 0.02 0.02 0.00 0.03 0.02 0.04 0.02 

Deinococcus 0.02 0.02 0.04 0.03 0.02 0.03 0.02 

Enterococcus 0.02 0.03 0.02 0.03 0.02 0.02 0.00 

Other 0.00 0.13 0.11 0.10 0.09 0.03 0.08 

 186	
 187	

Table 2. Expected and observed relative abundance (%) of genera in mock community 188	

sample HM-783D. Setup 1 (2-step PCR; V3 V4 region); Setup 2 (2-step PCR; V4 region); Setup 189	

3 (1-step PCR; V4 region). 190	

 191	

 192	

 193	

 194	
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 195	

196	
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Protocol effects on contamination profiles  197	

Our working hypothesis linked protocol bias to differences in susceptibility to laboratory 198	

contamination. We therefore proceeded with an examination of the average top 20 ASVs 199	

found in NCS. Because the same DNA extracts were processed through each of the three 200	

setups, any observed differences in taxonomic distribution would be attributed to library 201	

preparation steps (post DNA extraction). We also examined PCR water samples included on 202	

each sequencing run. In contrast to NCS, this later sample reflects contamination introduced 203	

during library preparation steps without interference from contaminating DNA introduced 204	

from the DNA extraction kit. ASVs obtained for setups 2 and 3, targeting the V4 region and 205	

the single setup targeting the V3 V4 region are described separately.  206	

 207	

The average top 20 ASVs observed in NCS in setups 2 and 3, are presented in Figure 4. The 208	

samples were dominated by many of the same taxa, and most of these taxa were defined by 209	

the same ASVs. The Decontam package (method=either, threshold= 0.5) applied 210	

downstream of the presented data identified the majority of the top 20 ASVs presented in 211	

NCS as contaminants. Exceptions included both ASVs mapping to the genus Streptococcus (in 212	

line with our previous findings [3]) (using NCBI blastn these ASVs were determined to be 213	

Streptococcus oralis (06f825b512d903b9230e1a55d87359ee) and Streptococcus 214	

thermophilus (fd496fd32dc8c08ade2e8b6c9d8ee13d) and the single ASV mapping to the 215	

family Pasteurellaceae.  216	

 217	

The distribution of ASVs in NCS (Figure 4) differed the most between setups 2 and 3 for an 218	

ASV belonging to the family Enterobacteriaceae (mapped to Escherichia using NCBI blastn), 219	

with a significant increase observed in samples sequenced by setup 3 (0.02% observed for 220	
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setup 2 and 29.34% observed for setup 3). These findings were in accordance with the 221	

results from the mock community analysis (Figure 3), for which the same Escherichia ASV 222	

was also found at higher levels in the mock community sample sequenced by setup 3 223	

(22.54% observed for setup 2 and 32.90% observed for setup 3). Its relatively high 224	

abundance in the mock community processed through setup 2 compared to NCS was 225	

expected as the Escherichia genus defined by this ASV constituted 21.91% of the expected 226	

mock community profile; i.e. for this sample the ASV represented both a contaminant and a 227	

non-contaminant.  228	

 229	

We proceeded with a comparison of the taxonomic distribution in PCR water samples 230	

sequenced following setups 2 and 3 (Table 3).  A relatively low number of sequences and 231	

ASVs were obtained (setup 2: 178 sequences (10 ASVs); setup 3: 130 sequences (6 ASVs)). 232	

Importantly, the dominating ASV (35.38%) found in the PCR water samples sequenced 233	

following setup 3, was the same ASV mapping to Escherichia discussed above. The same ASV 234	

was not found in the PCR water sample sequenced by setup 2. Together these findings 235	

indicate that the Escherichia ASV is a contaminant introduced during steps of library 236	

preparation using a reagent that is exclusive to setup 3.  237	

 238	

We next looked at the average top 20 ASVs observed in NCS when sequencing following 239	

setup 1 (Figure 5). The taxonomic profiles obtained after sequencing the longer V3 V4 region 240	

resulted in greater taxonomic resolution compared to that observed when sequencing the 241	

V4 region in setups 2 and 3. Whereas the three ASVs belonging to the family 242	

Enterobacteriaceae classified down to genus level Gluconacetobacter in setup 1, the 243	

Enterobacteriaceae ASVs classified no lower than to family level in setups 2 and 3 (Figure 5). 244	
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The cumulative average relative abundance of the three ASVs mapping to Gluconacetobacter 245	

when following setup 1 (22 %) was however the same as that found for the single ASV 246	

mapping to the family Enterobacteriaceae when following setup 2 (23%). Thus, for these two 247	

setups, the contamination profiles were similar although greater resolution was obtained 248	

when sequencing a longer target gene region in setup 1 (V3 V4).   249	

 250	

 251	

 252	

 253	

 254	

 255	

 256	

 257	

 258	

 259	

 260	

 261	

 262	

 263	

 264	

 265	

 266	

 267	

 268	
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 269	

ASV Lowest Classification Setup 2 Setup 3 

06f825b512d903b9230e1a55d87359ee∆ f__Streptococcaceae; g__Streptococcus 35.39 20.77 

ddfd49f939f92958b1ec816741055348 f__Oxalobacteraceae; g__Ralstonia; s__ 12.36 0.00 

394eda29c886632f514dd94b58381186 f__Pasteurellaceae 8.99 0.00 

d32e579b3ae7b2aae8d5bf9f027c29af f__Comamonadaceae 8.99 0.00 

5648dccee530d68ceb3e4d7d22cf8756 f__Pseudomonadaceae; g__Pseudomonas 7.87 0.00 

4f5efd25dacb5d639316e7291ff6ff8b f__Neisseriaceae; g__Neisseria 7.87 7.69 

85c44c83eddc5d3028261a1000b7d0e1 f__Gemellaceae 5.62 0.00 

923f521b9cf313f1f95c9367e09bbc1c f__Veillonellaceae; g__Veillonella; s__dispar 5.62 12.31 

dcba105f35d8ebc9e22269c7491ad3a7 f__Xanthomonadaceae; g__Stenotrophomonas; s__geniculata 5.06 0.00 

df8456a1abbfb4c8a2c450b44378d4cb f__Actinomycetaceae; g__Actinomyces; s__ 2.25 0.00 

d46e2205f0c6ecf67b51f83d111c509c* f__Enterobacteriaceae 0.00 35.38 

edc9e5c16e40aff1eadce6597940f08f f__Streptococcaceae; g__Streptococcus; s__ 0.00 13.85 

65d43491988bfe557da4d86a5ba25dae f__Staphylococcaceae; g__Staphylococcus 0.00 10.00 

 270	

 271	

Table 3. Relative abundance (%) of ASVs observed in PCR water samples in setups 2 and 3. 272	

The same Escherichia ASV (*) that differentiated mock community samples and NCS in 273	

setups 2 and 3, also caused the greatest difference observed in PCR water samples. 274	

Bioinformatic processing steps were performed up until the removal of contaminants 275	

identified using Decontam. Taxonomic rank is described using prefixes (f__: family, g__: 276	

genus, s__: species). 277	

 278	

 279	

 280	

 281	

 282	

 283	

 284	
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Protocol effects on procedural samples 285	

We next compared the sequencing output obtained for the procedural samples sequenced 286	

following each of the three setups. Because we suspected that any differences observed 287	

between sequencing setups could be explained by differences in susceptibility to laboratory 288	

contamination, comparisons were made both before and after the removal of contaminants 289	

identified in Decontam (Figure 1, Step 5).  290	

 291	

Before the removal of Decontam contaminants (Figure 6), we found that across all three 292	

sequencing setups, procedural samples (OW, PSB, PBAL) were dominated by many of the 293	

same taxa. The most prominent taxa averaged across all samples in order of decreasing 294	

relative abundance were genera Streptococcus, Prevotella, Veillonella and Rothia. We 295	

interpreted these as representative of the authentic airway microbiota based on the growing 296	

body of literature for which these same taxa have been consistently observed in airways.  297	

 298	

Several less abundant taxa for which we interpreted as contaminants, based on their 299	

dominance in NCS were also observed in the data. We previously learned that ASVs 300	

attributed to the family Enterobacteriaceae dominated the NCS and that an ASV mapping to 301	

Escherichia had a discriminating impact on NCS and mock communities processed through 302	

setup 3. We were therefore particularly interested in understanding whether 303	

Enterobacteriaceae would also have a discriminating impact on procedural samples 304	

processed through the different sequencing setups. Across all three sequencing setups we 305	

found that the levels of Enterobacteriaceae was highest in samples from the lower airways 306	

(PSB>PBAL) and nearly undetected in OW samples (Figure 6). The higher levels of 307	

Enterobacteriaceae in PSB samples compared to PBAL, was expected as less sample volume 308	
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was used as input to the DNA extraction protocol (450 µl PSB vs 1800 µl PBAL) thereby 309	

securing a lower bacterial load in PSB compared to PBAL. Across all sample types, the 310	

relative abundance of Enterobacteriaceae was highest when sequencing following setup 3; 311	

this was also in accordance with our results when sequencing the mock community and 312	

likely due to the additional Escherichia contamination introduced during library preparation 313	

following setup 3 (Figure 4). By analysis of beta diversity using the unweighted UniFrac 314	

metric, we were able to confirm that there was greater overlap or similarity between the 315	

bacterial communities found in NCS and procedural samples from the lungs when 316	

sequencing following setup 3 (Additional file 4: Figure S.1). 317	

 318	

After the removal of Decontam contaminants, the less abundant taxa that we predicted as 319	

representative of contaminants had been filtered out (Figure 7). Although the dominating 320	

taxa across all samples were now mainly expected core airway microbiota members, the 321	

relative abundances of these taxa still varied across the three setups.  322	

 323	

A direct comparison of the bacterial communities recovered when sequencing by a 1 or 2 324	

steps PCR protocol was achieved by analysis of beta-diversity on samples processed through 325	

each of setups 2 and 3. Before the removal of Decontam contaminants, OW and NCS 326	

clustered together regardless of whether they had been processed through setups 2 or 3 327	

(Figure 8). The samples from the lungs however clustered separately according to the 328	

protocol for which they were processed. When Decontam contaminants were removed, the 329	

samples from the lungs processed by setups 2 and 3 became more similar in bacterial 330	

community composition, as indicated by a greater degree of overlap in PCoA space (Figure 331	

9). The separation of the lower airway samples based on the setup for which they were 332	
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processed was however still apparent. This indicated that mechanisms related to the low 333	

bacterial load, other than differences in contamination were driving the observed protocol 334	

bias.   335	

 336	

 337	

 338	

 339	

 340	

 341	

 342	

  343	

 344	

 345	

 346	

 347	

 348	

 349	

 350	

 351	

 352	

 353	

 354	

 355	

 356	
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Discussion  357	

We have shown that choice of library preparation protocol for high-throughput amplicon-358	

based sequencing of the 16S rRNA gene (1-step PCR vs 2-step PCR) will have an impact on 359	

final bacterial community descriptions for airway samples - and more so for samples of low 360	

bacterial load. Differences observed when sequencing the different target regions (V3 V4 361	

and V4) appeared to be relatively small in comparison, and mainly attributed to differences 362	

in taxonomic resolution. Using bioinformatic filtering parameters, we were able to reduce 363	

but not completely remove the differences in sequencing output observed for the three 364	

sequencing setups: Setup 1 (2-step PCR; V3 V4), Setup 2 (2-step PCR; V4) and Setup 3 (1-step 365	

PCR; V4). We propose that protocol bias in studies of the lung microbiome are related not 366	

only to differences in susceptibility to contamination but also to less understood (and largely 367	

ignored) mechanisms of PCR bias.  368	

 369	

Beginning with a comparison of the number of sequences and ASVs retained at each 370	

bioinformatic processing step, we gained insight into the differences in the sequencing 371	

output generated for each of the three setups. We found that the removal of small ASVs 372	

resulted in the greatest decrease in total ASV number across all three setups - with greatest 373	

impact on data generated from the two sequencing setups based on the 2-step PCR protocol 374	

(setup 1 and 2). Our interpretation was that the small ASVs likely represent low abundant 375	

contamination and that the observed higher frequencies in data generated when processing 376	

through longer laboratory workflows was as predicted. Interestingly, this filtering step was 377	

originally recommended for filtering out spurious operational taxonomic units (OTUs) 378	

derived from PCR and sequencing error [28], and therefore not regarded as necessary after 379	

denoisning to ASVs [29]. The total number of ASVs after the removal of small ASVs, was still 380	
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markedly higher when sequencing was performed following setup 1, for which samples were 381	

spread across four different sequencing runs. We can expect contamination profiles to vary 382	

across sequencing runs, thereby adding to the number of ASVs in the data set, and we 383	

therefore interpreted the higher number of ASVs as contamination that had not been 384	

filtered out. When analyses were conducted on the subset of samples sequenced on the 385	

same run, we still observed a slight increase in ASV count in setup 1; this likely attributed to 386	

the greater taxonomic resolution obtained when sequencing a larger gene region. Based on 387	

the raw sequencing data, the take home message is therefore that researchers need to pay 388	

particular attention to small ASVs when making comparisons across datasets sequenced 389	

following different protocols. The observed inflation of ASVs when sequencing across 390	

multiple sequencing runs also needs to be accounted for.   391	

 392	

By sequencing of a mock community sample, we were able to show that the three 393	

sequencing setups were for the most part equally efficient at recovering the high abundant 394	

mock community members. For reasons that are unclear to us, we found that sequencing 395	

setup 3, was least efficient at recovering the low abundant members. Together with the 396	

observation that the total number of ASVs recovered following setup 3 was lower than for 397	

Setups 1 and 2, we concluded that the 1 step-PCR protocol may be less apt for detecting rare 398	

but potentially significant taxa [30, 31]. Berry et al. [32] also compared sequencing data 399	

generated when processing samples through PCR protocols that differed in the number of 400	

PCR steps (1-step PCR vs 2-step PCR). In accordance with our findings, they observed 401	

reduced richness when processing samples through the 1-step PCR protocol. Thus, it could 402	

be that although the 1-step PCR protocol may generate data less influenced by small 403	

contaminating ASVs, measures of alpha diversity may be underestimated. 404	
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  405	

To further explore the potential impact of contamination, we compared the contamination 406	

profiles (based on NCS) obtained for the three sequencing setups. We were surprised to find 407	

that the NCS samples processed through setup 3 were dominated by an ASV mapping to 408	

Escherichia coli (family Enterobacteriaceae). It was unexpected because we have previously 409	

traced the main source of contamination in the MicroCOPD study to the DNA extraction kit 410	

[3]. Because the same DNA extracts were used as input into the sequencing setup 3, we 411	

expected that the lower number of laboratory processing steps compared to setups 1 and 2, 412	

would secure a contaminant profile representative of that introduced during DNA 413	

extraction. We however learned that a contaminant introduced during library preparation 414	

was enough to overwhelm the contamination profile of the entire sequencing run. We 415	

immediately suspected that the DNA polymerase, manufactured in Escherichia coli and used 416	

exclusively in the PCR amplification step when sequencing following setup 3, was the main 417	

contamination source. Our findings emphasize the fact that researchers must be meticulous 418	

in their choice of PCR reagents and also aware of these effects when comparing data 419	

generated using different protocols.  420	

 421	

We have previously estimated that contaminants will represent 10-50% of the sequencing 422	

output for lower airway samples when sequencing by setup 1 [3]. We found that the 423	

Enterobacteriaceae family represented less than 10% of the taxonomy profiles for the 424	

procedural samples in all three setups and recognized that a significant fraction of the 425	

contaminants, were likely also represented by small ASVs and other taxa. For a more 426	

accurate assessment of the impact of contamination, we therefore also relied on the 427	

Decontam R package [33] for the identification of contaminants. We predicted that if 428	
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contamination was the main distinguishing factor causing the separation in sequencing 429	

output across sequencing setups, the removal of Decontam contaminants would close this 430	

gap. By analysis of unweighted Unifrac distances in PCoA space, both before and after the 431	

removal of Decontam contaminants, we observed that while the high biomass OW samples 432	

clustered together, the low biomass samples from the lungs (PBAL,PSB) separated according 433	

to the setup 2 or 3, for which they had been processed. We concluded that factors related to 434	

bacterial load, other than contamination must also be contributing to the observed protocol 435	

bias.  436	

 437	

The polymerase chain reaction (PCR) lies at the core of all amplicon-based sequencing 438	

protocols. The impact of PCR related bias (i.e. all mechanisms that may lead to the 439	

preferential amplification of particular sequences or taxa) on studies involving samples 440	

holding a low bacterial load is however not well understood. This despite that recent papers 441	

as well as research dating back even two decades has documented that PCR related bias 442	

appears to increase with decreasing template DNA concentration [1, 34–36].  Kennedy et al. 443	

[36] observed that bacterial community profiles of replicate soil samples decreased in 444	

similarity after sample dilution. The authors attributed these observations to an increased 445	

impact of stochastic fluctuations in PCR amplifications at lower bacterial loads. Biesbroek et 446	

al. [1] observed an increase in Firmicutes and decrease in Bacteriodetes across a serially 447	

diluted saliva sample, but were unable to explain the direct mechanism behind their 448	

observations. Our study contributes to the literature addressing these issues by 449	

demonstrating that samples of high bacterial load (OW) appear to be able to buffer against 450	

protocol bias (i.e. differences in number of PCR steps), while samples of low bacterial load 451	
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(PSB, PBAL) are directly impacted. More research is needed in order to understand the 452	

extent to which these mechanisms are responsible for our observations.  453	

 454	

The results presented in the current study have several important implications. Because the 455	

upper respiratory tract represents both i) a major potential source of contamination under 456	

sampling and ii) the main source community for the lung microbiota, most studies include 457	

representative samples from this site (e.g. OW samples) [4, 17, 19, 37, 38]. Our findings 458	

demonstrate that the observed overlap between the bacterial communities of the upper and 459	

lower respiratory tract may be protocol dependent. Of concern is also that similar 460	

community descriptions obtained for upper respiratory tract samples across protocols may 461	

mistakenly be interpreted as evidence that datasets are comparable also for lower 462	

respiratory tract samples. Our findings also lead us to question the conclusions made in 463	

studies where similar PCR reagents have been used. Dickson et al. [12] have for example 464	

suggested that Escherichia coli may be a significant lung pathogen that has previously gone 465	

undetected using culture-based techniques. Our results open for interpreting the bacterium 466	

as a contaminant introduced with the recombinant DNA polymerase used in the PCR.  467	

 468	

Conclusion 469	

Our findings show that choice of protocol for library preparation and sequencing (1- or 2- 470	

steps of PCR) will have an impact on the analyses of the airway microbiome. Upper airway 471	

samples (high biomass) were less impacted than lower airway samples (low biomass), 472	

indicating that protocol bias is related to sample biomass. This did not appear to be 473	

associated with differences in contamination levels when following a longer or shorter 474	
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protocol, but rather to mechanisms related to the PCR, for which more research is required. 475	

These methodological limitations likely explain the variable conclusions across studies of the 476	

airway microbiome (e.g. for comparisons of upper and lower airway samples). Differences in 477	

targeted amplicon region (16S rRNA gene V3 V4 versus V4) did not appear have a great 478	

impact on final bacterial community descriptions, although greater taxonomic resolution 479	

was observed when targeting the longer V3 V4 region. 480	

 481	

Methods 482	

Study Samples 483	

The 23 study subjects were chosen from the Bergen COPD Microbiome Study (short name 484	

“MicroCOPD”) for representation of both healthy (n=9) and diseased (asthma (n=4), COPD 485	

(n=10)) states. Out of the 350 study subjects included in the MicroCOPD study (with samples 486	

dispersed across over 30 sequencing runs), the subset of subjects included in the current 487	

investigation were chosen in order to minimize the spread of samples across multiple runs. 488	

Details on the MicroCOPD study design and bronchoschopy procedures have been 489	

previously published [27]. The MicroCOPD study was approved by the regional ethical 490	

committee (REK-Vest, case # 2011-1307), and all subjects signed written informed consent.  491	

 492	

In brief, voluntary bronchoscopies were performed on adult subjects (with and without 493	

obstructive lung disease) recruited from Western Norway between 2013 and 2015, at the 494	

Department of Thoracic Medicine, Haukeland University Hospital. Subjects were examined in 495	

the stable state and were not to have received antibiotics at minimum 2 weeks prior to the 496	

procedure. Samples collected under each procedure included the first and second fraction of 497	
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2 x 50 mL protected (through a sterile inner catheter passed through the scope channel) 498	

bronchoalveolar lavage (PBAL1 and PBAL2) from the right middle lobe, three protected 499	

specimen brushes sampled from the right lower lobe (PSB), an oral wash (OW) sample, and a 500	

negative control sample (NCS) taken from the sterile bottle of phosphate buffered saline 501	

directly; the same fluid used for BAL sampling, OW, and dissolution of the PSBs.  502	

We also included a mock community sample, obtained through BEI Resources NIAID, NIH as 503	

part of the Human Microbiome Project: Genomic DNA from Microbial Mock Community B 504	

(Staggered, Low Concentration), v5.2L, for 16S rRNA Gene Sequencing, HM783D.  505	

 506	

Bacterial DNA Extraction 507	

Bacterial DNA extraction was performed first by treatment with lytic enzymes mutanolysin, 508	

lysozyme and lysostaphin (all from Sigma-Aldrich, St. Louis, MO, USA) and subsequently by 509	

processing through the Fast DNA Spin Kit (MP Biomedcals, LLC, Solon, OH, USA) following 510	

the manufacturer´s instructions. The sample volume used as input into the DNA extraction 511	

protocol varied with sample type; 450 µl for PSB and NCS and 1800 µl for OW and PBAL.  512	

 513	

Library Preparation for MiSeq Sequencing 514	

We processed the same DNA extracts through three different library preparation setups for 515	

MiSeq sequencing of the bacterial 16S rRNA marker gene: Setup 1 (2-step PCR; 16S rRNA 516	

gene region V3 V4); Setup 2 (2-step PCR; 16S rRNA gene region V4); Setup 3 (1-step PCR; 16S 517	

rRNA gene region V4). Setups 1 and 2, were based on the 2-step PCR protocol described in 518	

the Illumina 16S Metagenomic Sequencing Library Preparation guide (Part no. 15044223 519	

Rev. B). In the first PCR, the 16S rRNA gene regions V3 V4 (setup 1) and V4 (setup 2) were 520	
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targeted using primers (gene specific sequences are underlined): 521	

Setup 1: 522	

5ʹ-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3ʹ and  523	

5ʹ-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3ʹ  524	

Setup 2: 525	

5´TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA3´ and 526	

5´GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTAAT3´  527	

 528	

PCR cycling was performed with an initial cycle at 95 °C for 3 min followed by 45 cycles of 95 529	

°C for 30s, 55 °C for 30 s (setup1)/ 50 °C (setup 2), 72 °C for 30 s and a final extension cycle at 530	

72 °C for 5 min. In the second PCR (8 cycles), index sequences were added to the ends of the 531	

amplicons generated in the first PCR, using primers from the Nextera XT Index Kit (Illumina 532	

Inc., San Diego. CA, USA). Amplifications were performed using the Kappa HiFi HotStart 533	

ReadyMix (KAPA Biosystems, USA). Setup 3 was based on the 1-step PCR protocol described 534	

in Kozich et al. [25], with modifications (see Additional file 5: Supplementary Methods). The 535	

primers used targeted the 16S rRNA gene region V4 and consisted of both gene specific 536	

sequences (underlined) and index sequences (N):  537	

Setup 3: 538	

5´AATGATACGGCGACCACCGAGATCTACACNNNNNNNNTATGGTAATTGTGTGCCAGCMGCCGCGGTAA3´ 539	

5´CAAGCAGAAGACGGCATACGAGATNNNNNNNNAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT3´ 540	

PCR cycling was performed with an initial cycle at 95 °C for 2 min followed by 45 cycles of 95 541	

°C for 20 s, 55 °C for 15 s, 72 °C for 5 min and a final extension cycle at 72 °C for 5 min. 542	
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Amplifications were performed using the recombinant DNA polymerse Accuprime Pfx Super 543	

Mix (Thermo Fisher Scientific, USA). 544	

Bioinformatics 545	

General Steps. Sequences were processed using plugin tools available within the 546	

Quantitative Insights Into Microbial Ecology (QIIME2) bioinformatic package (release 547	

2019.1). Two fastq-files per sample (demulitiplexed, paired-end reads) were imported into 548	

the QIIME2 environment. Using the dada2 denoise-paired plugin i) primer sequences and 549	

low quality bases at read-ends were trimmed off, ii) paired-end reads were joined, iii) 550	

chimeras discarded and iv) amplicon sequence variants (ASVs) inferred [26, 29]. Additional 551	

chimera filtering was performed using the vsearch uchime-denovo plugin [39].  ASVs with 552	

fewer sequences than 0.005% of the total number of sequences and ASVs not found in at 553	

least two samples were then discarded [28]. Taxonomy was assigned using the feature-554	

classifier classify-sklearn plugin together with a Naïve Bayes classifier that had been pre-555	

trained on the full-length Greengenes 13_8 99% OTU reference database (available on 556	

qiime2.org). ASVs classified as mitochondria, chloroplasts or archaea were discarded 557	

together with classifications that ended above the phylum level. Contaminant ASVs 558	

identified using the Decontam package in R were then discarded [40]. The Decontam 559	

method “either” (threshold=0.5) was chosen based on our previous work [3]. As the study 560	

samples were found across multiple sequencing runs, bioinformatics processing of samples 561	

was performed in batches according to run number. Samples not included in the study, but 562	

present on the same run were also included in the pipeline to optimize performance of run 563	

specific algorithms (e.g. DADA2 and Decontam). Analyses. Analysis on taxonomic 564	

composition was performed in Excel on ASV tables generated at various stages of the 565	
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bioinformatic pipeline. Analyses on procedural samples (PSB, PBAL, OW) were performed on 566	

the ASV table processed through all general steps described above. Analyses on the top 20 567	

ASVs found in NCS and in PCR water controls, were based on the ASV table processed 568	

through all steps in the pipeline except removal of contaminants identified in Decontam. For 569	

analyses on mock community samples, processing steps were limited to DADA2, VSEARCH 570	

and removal of ASVs not classified at minimum to phylum level. Analyses of beta-diversity 571	

were conducted using PCoA on unweighted UniFrac distances. The unweighted UniFrac 572	

metric scores samples with bacterial communities found at similar positions within the 573	

phylogenetic tree, as more similar than samples with bacterial communities found at 574	

different positions within the tree. The (dis)similarity between samples is visualized in 575	

principal coordinates of analysis (PCoA) space, with samples similar in bacterial composition 576	

plotted closer together. The unweighted UniFrac metric was chosen to ensure that the less 577	

abundant ASVs would have equal impact on the clustering pattern as the high abundant 578	

ASVs.  579	

 580	

Additional Files 581	
Additional file 1: Table S.1: The table presents an overview of the sequence count per ASV 582	
obtained after V3 V4 sequencing of mock community sample HM-783D following setup 1.  583	
Additional file 2: Table S.2: The table presents an overview of the sequence count per ASV 584	
obtained after V4 sequencing of mock community sample HM-783D following setup 2.  585	
Additional file 3: Table S.3: The table presents an overview of the sequence count per ASV 586	
obtained after V4 sequencing of mock community sample HM-783D following setup 3. 587	
Additional file 4: Figure S.1: Principal coordinates analysis on unweighted UniFrac distances 588	
for procedural samples sequenced following each setup before the removal of Decontam 589	
contaminants. 590	
Additional file 5: Supplementary Methods. The file provides a detailed description of the 591	
mock community HMD 783-D, protocols for sequencing. (DOCX) 592	
 593	
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Protected specimen brushes; QIIME: Quantitative Insights into Microbial Ecology  598	
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 761	
Figure Legends 762	

Figure 1. Comparison of the number of sequences and amplicon sequence variants (ASVs), 763	

retained at each bioinformatic filtering step for procedural samples (PSB, PBAL, OW, NCS) 764	

collected from 23 participants (n=92 samples). Setup 1 (2-step PCR; V3 V4 region), Setup 2 (2-765	

step PCR; V4 region), Setup 3 (1-step PCR; V4 region). 766	

 767	

Figure 2. Comparison of the number of sequences and amplicon sequence variants (ASVs), 768	

retained at each bioinformatic filtering step for procedural samples (PSB, PBAL, OW, NCS)  769	
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collected from 14 participants (n=56). Setup 1 (2-step PCR; V3 V4 region), Setup 2 (2-step PCR; 770	

V4 region), Setup 3 (1-step PCR; V4 region). 771	

 772	

Figure 3. Analysis of mock community HM-783D. The expected relative abundances of 773	

genera in the mock community sample is presented next to that observed in the sequencing 774	

output across the three setups. The Escherichia genus consisted of ASVs classified to family 775	

level (Enterobacteriaceae); ASV ffc36e27c82042664a16bcd4d380b286 dominated Setup 1 776	

targeting the 16S rRNA gene V3 V4 region and ASV d46e2205f0c6ecf67b51f83d111c509c 777	

dominated Setups 2 and 3 targeting the V4 region. Using the NCBI blastn tool we were able 778	

to confirm that these ASVs belonged to the Escherichia coli genus. Bioinformatics processing 779	

steps were limited to DADA2, VSEARCH, taxonomy assignment and removal of features not 780	

classified at minimum to phylum level. Setup 1 (2-step PCR; V3 V4 region), Setup 2 (2-step 781	

PCR; V4 region), Setup 3 (1-step PCR; V4 region). 782	

 783	

Figure 4. Comparison of the 20 most abundant amplicon sequence variants (ASVs) observed 784	

in negative control samples (NCS) after sequencing following setups 2 and 3.  Taxa presented 785	

according to decreasing abundance for ASVs observed following setup 2. Bioinformatic 786	

processing steps were performed up the removal of contaminants identified using 787	

Decontam. Taxonomic rank is described using prefixes (c__: class, o__: order, f__: family, 788	

g__: genus). Setup 2 (2-step PCR; V4 region); Setup 3 (1-step PCR; V4 region). Data is 789	

presented as the average relative abundance. Data unrarefied.   790	

 791	

Figure 5. The 20 most abundant amplicon sequence variants (ASVs) observed in negative 792	

control samples (NCS) after sequencing following setup 1. Multiple ASVs mapped to genera 793	
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Gluconacetobacter, belonging to familiy Enterobacteriaceae (cummulative 22%). 794	

Bioinformatic processing steps were performed up until the removal of contaminants 795	

identified using Decontam. Taxonomic rank is described using prefixes (c__: class, o__: 796	

order, f__: family, g__: genus). Data is presented as the average relative abundance. Data 797	

unrarefied.   798	

 799	

Figure 6. Taxonomic distribution obtained for procedural samples before the removal of 800	

Decontam contaminants. ASVs attributed to the family Enterobacteriaceae, had dominated 801	

the NCS across all setups. In the procedural samples, Enterobacteriaceae was observed with 802	

the following relative abundances in setups 2 and 3: setup 2 (OW: 0%; PBAL: 0.83%; PSB: 803	

5.23%); setup 3 (OW: 0.01%; PBAL: 1.87%; PSB: 7.51%). ASVs attributed to the genus 804	

Gluconacetobacter within the family Enterobacteriaceae was observed in procedural 805	

samples with the following relative abundances in setup 1 (OW: 0%; PBAL: 1.42%; PSB: 6.32 806	

%). Samples with fewer than 1000 sequences had been omitted from the analyses leaving 807	

the following number of samples in each setup: Setup 1 (OW: n=22; PBAL: n=23; PSB: n=23); 808	

Setup 2 (OW: n=23; PBAL: n=23; PSB: n=23); Setup 3 (OW: n=23; PBAL: n=21; PSB: n= 22). 809	

Setup 1 (2-step PCR; V3 V4 region); Setup 2 (2-step PCR; V4 region); Setup 3 (1-step PCR; V4 810	

region). Taxonomic rank is described using prefixes (p__: phyla; c__: class; o__: order; f__: 811	

family; g__: genus). 812	

 813	

Figure 7. Taxonomic distribution obtained for procedural samples after the removal of 814	

Decontam contaminants. Samples with fewer than 1000 sequences were omitted. Number 815	

of samples in each setup: V3V4 protocol A (OW: n=22; PBAL: n=22; PSB: n=21), V4 protocol A 816	

(OW: n=23; PBAL: n=22; PSB: n=20); V4 protocol B (OW: n=23; PBAL: n=21; PSB: n= 21). 817	
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Setup 1 (2-step PCR; V3 V4 region); Setup 2 (2-step PCR; V4 region); Setup 3 (1-step PCR; V4 818	

region). Taxonomic rank is described using prefixes (p__: phyla; c__: class; o__: order; f__: 819	

family; g__: genus). 820	

 821	

Figure 8. Principal coordinates analysis on unweighted UniFrac distances for procedural 822	

samples sequenced following setup 2 (sphere) and 3 (diamond) before the removal of 823	

Decontam contaminants. Rarefaction depth: 1066 sequences. Setup 2 samples include OW: 824	

n=23; PBAL: n=23; PSB: n= 23; NCS: n=21 and setup 3 samples include OW: n=23; PBAL: 825	

n=21; PSB: n=22; NCS: n=18. Oral Wash (OW): blue; Protected bronchoalveolar lavage 826	

(PBAL): green; Protected specimen brushes (PSB): purple; Negative control samples (NCS): 827	

red. Setup 2 (2-step PCR; V4 region), Setup 3 (1-step PCR; V4 region). 828	

 829	

Figure 9. Principal coordinates analysis on unweighted UniFrac distances for procedural 830	

samples sequenced following setup 2 (sphere) and 3 (diamond) after the removal of 831	

Decontam contaminants. Rarefaction depth: 1139 sequences. Setup 2 samples include OW: 832	

n=23; PBAL: n=21; PSB: n= 20 and setup 3 samples include OW: n=23; PBAL: n=21; PSB: 833	

n=21. Oral Wash (OW): blue; Protected bronchoalveolar lavage (PBAL): green; Protected 834	

specimen brushes (PSB): purple. Setup 2 (2-step PCR; V4 region), Setup 3 (1-step PCR; V4 835	

region). 836	
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f__Oxalobacteraceae; g__Ralstonia; s__ d026ba8391312cd4726993268770b541 21 0,016353484

128413 100 100,00

Mock Community HM-783D, Sample ID MKOLS1946, Setup 1 (II)
Mock Community Member (L6) QIIME 2 lowest classification level ASV

Sequence 
Count

Relative 
Abundance %

L6 Relative 
Abundance %

Escherichia f__Enterobacteriaceae ffc36e27c82042664a16bcd4d380b286 26321 23,99165064 23,99

Staphylococcus f__Staphylococcaceae; g__Staphylococcus 5497318e515a8c328a68f95975d9c7d4 24930 22,72375101 29,27

f__Staphylococcaceae; g__Staphylococcus 908e9b387f6b9ce7d3f794e658fba37e 4529 4,128193676

f__Staphylococcaceae; g__Staphylococcus 04be702b895fe5ed0568344daf564276 2651 2,416392456

Streptococcus f__Streptococcaceae; g__Streptococcus; s__ ef5af48ec2b6c023c5de28c59cb08a40 26478 24,13475649 27,39

f__Streptococcaceae; g__Streptococcus; s__agalactiae c3a3a503752209bc052b3995236b079f 3549 3,234921474

f__Streptococcaceae; g__Streptococcus a3725fbb7f4a76528d54dd283e88cad8 23 0,020964552

Rhodobacter f__Rhodobacteraceae; g__Rhodobacter; s__sphaeroides 332b70897316f7f62b81dfc53f41ca52 10448 9,523375475 9,52

Bacillus f__Bacillaceae; g__Bacillus 8cb24777cb48dde0aac60dfeca125d10 3142 2,86394006 2,86

Clostridium f__Clostridiaceae; g__Clostridium; s__butyricum 318669d5d926e9b81ca6911da00a14ea 3333 3,038036989 3,28

f__Clostridiaceae; g__Clostridium; s__butyricum 88a3a8e95e3605bd051054f937cde102 261 0,237902086

Pseudomonas f__Pseudomonadaceae 052ba7abaeaa968c4f79e3f97d1f0a2f 1842 1,678987139 1,68

Helicobacter f__Helicobacteraceae; g__Helicobacter; s__pylori e8de9432f2ada1078a2fda56ba92675a 534 0,4867422 0,49

Neisseria f__Neisseriaceae; g__Neisseria; s__cinerea f71e5aacd4c976a1833958c2870b1d8b 339 0,308999262 0,31

Listeria f__Listeriaceae; g__Listeria b77b151f7481fd080bedbf415e736539 357 0,325406302 0,33

Lactobacillus f__Lactobacillaceae; g__Lactobacillus; s__ 9b23053de8f4269fe6b5ce286dfbef3c 218 0,19870749 0,20

Acinetobacter f__Moraxellaceae; g__Acinetobacter; s__guillouiae c49cc7c2c45bd7a87913453e515ea14f 319 0,290769217 0,29

Propionibacterium f__Propionibacteriaceae; g__Propionibacterium; s__acnes b02a8d33d018119dedb2db15db887bfd 240 0,218760539 0,22

Bacteroides NA NA 0 0 0,00

Deinococcus f__Deinococcaceae; g__Deinococcus; s__ e4c0868fdefcdf2037ab5f7a071e4cc7 39 0,035548588 0,04

Enterococcus  f__Enterococcaceae; g__Enterococcus; s__ 892a20bbdc3ce599dc0c5d9f0866c352 23 0,020964552 0,02

Mock Community HM-783D, Sample ID MKOLS1848, Setup 1 (I)

Mock Community Member (L6) QIIME 2 lowest classification level ASV
Sequence 
Count

Relative 
Abundance %

L6 Relative 
Abundance %

Escherichia f__Enterobacteriaceae ffc36e27c82042664a16bcd4d380b286 35542 27,67788308 27,68

Staphylococcus f__Staphylococcaceae; g__Staphylococcus 5497318e515a8c328a68f95975d9c7d4 29124 22,67994673 29,02

f__Staphylococcaceae; g__Staphylococcus 908e9b387f6b9ce7d3f794e658fba37e 5133 3,997258845

f__Staphylococcaceae; g__Staphylococcus 04be702b895fe5ed0568344daf564276 3004 2,339327015

Streptococcus f__Streptococcaceae; g__Streptococcus; s__ ef5af48ec2b6c023c5de28c59cb08a40 32219 25,09013885 28,51

f__Streptococcaceae; g__Streptococcus; s__agalactiae c3a3a503752209bc052b3995236b079f 4377 3,408533404

f__Streptococcaceae; g__Streptococcus a3725fbb7f4a76528d54dd283e88cad8 13 0,010123586

f__Streptococcaceae; g__Streptococcus 2a025812c0b5b9ce4c6dab4c692bed7d 4 0,003114949

Rhodobacter f__Rhodobacteraceae; g__Rhodobacter; s__sphaeroides 332b70897316f7f62b81dfc53f41ca52 7676 5,977587939 5,98

Bacillus f__Bacillaceae; g__Bacillus 8cb24777cb48dde0aac60dfeca125d10 4343 3,382056334 3,38

Clostridium f__Clostridiaceae; g__Clostridium; s__butyricum 318669d5d926e9b81ca6911da00a14ea 2577 2,006806164 2,18

f__Clostridiaceae; g__Clostridium; s__butyricum 88a3a8e95e3605bd051054f937cde102 228 0,177552117

Pseudomonas f__Pseudomonadaceae 052ba7abaeaa968c4f79e3f97d1f0a2f 1850 1,440664107 1,44

Helicobacter f__Helicobacteraceae; g__Helicobacter; s__pylori e8de9432f2ada1078a2fda56ba92675a 464 0,361334133 0,36

Neisseria f__Neisseriaceae; g__Neisseria; s__cinerea f71e5aacd4c976a1833958c2870b1d8b 306 0,238293631 0,24

Listeria f__Listeriaceae; g__Listeria b77b151f7481fd080bedbf415e736539 430 0,334857063 0,33

Lactobacillus f__Lactobacillaceae; g__Lactobacillus; s__ 9b23053de8f4269fe6b5ce286dfbef3c 279 0,217267722 0,22

Acinetobacter f__Moraxellaceae; g__Acinetobacter; s__guillouiae c49cc7c2c45bd7a87913453e515ea14f 416 0,32395474 0,32

Propionibacterium f__Propionibacteriaceae; g__Propionibacterium; s__acnes b02a8d33d018119dedb2db15db887bfd 166 0,129270401 0,13

Bacteroides f__Bacteroidaceae; g__Bacteroides; s__ b6635d67cb594473ddba9f8cfba5d13d 26 0,020247171 0,02

Deinococcus f__Deinococcaceae; g__Deinococcus; s__ e4c0868fdefcdf2037ab5f7a071e4cc7 21 0,016353484 0,02

Enterococcus  f__Enterococcaceae; g__Enterococcus; s__ 892a20bbdc3ce599dc0c5d9f0866c352 34 0,02647707 0,03

Actinomyces f__Actinomycetaceae; g__Actinomyces; s__ c42488aff4cc842bf285a401dba39cc4 8 0,006229899 0,01

Other p__OD1; c__; o__; f__; g__; s__ 3be770f858d48a8c64d91c71fd000951 111 0,086439846 0,13

p__OD1; c__; o__; f__; g__; s__ 787efccde8e499d021ddb015a190b3b0 16 0,012459798

f__Comamonadaceae; g__Curvibacter; s__ 9e44fc82a0d6ac6109dac3dc4f1a3409 25 0,019468434

Actinomyces f__Actinomycetaceae; g__Actinomyces; s__ c42488aff4cc842bf285a401dba39cc4 7 0,006380516 0,01

Other p__OD1; c__; o__; f__; g__; s__ 3be770f858d48a8c64d91c71fd000951 108 0,098442243 0,11

p__OD1; c__; o__; f__; g__; s__ 787efccde8e499d021ddb015a190b3b0 18 0,01640704

109709 100 100,00

Mock Community HM-783D, Sample ID MKOLS2042, Setup 1 (III)
Mock Community Member (L6) QIIME 2 lowest classification level ASV

Sequence 
Count

Relative 
Abundance %

L6 Relative 
Abundance %

Escherichia f__Enterobacteriaceae ffc36e27c82042664a16bcd4d380b286 27844 25,20001448 25,20

Staphylococcus f__Staphylococcaceae; g__Staphylococcus 5497318e515a8c328a68f95975d9c7d4 25520 23,09669478 29,66

f__Staphylococcaceae; g__Staphylococcus 908e9b387f6b9ce7d3f794e658fba37e 4622 4,183108279

f__Staphylococcaceae; g__Staphylococcus 04be702b895fe5ed0568344daf564276 2634 2,383882996

Streptococcus f__Streptococcaceae; g__Streptococcus; s__ ef5af48ec2b6c023c5de28c59cb08a40 26375 23,87050646 27,03

f__Streptococcaceae; g__Streptococcus; s__agalactiae c3a3a503752209bc052b3995236b079f 3454 3,126018173

f__Streptococcaceae; g__Streptococcus a3725fbb7f4a76528d54dd283e88cad8 36 0,032581544

Rhodobacter f__Rhodobacteraceae; g__Rhodobacter; s__sphaeroides 332b70897316f7f62b81dfc53f41ca52 10200 9,23143757 9,23

Bacillus f__Bacillaceae; g__Bacillus 8cb24777cb48dde0aac60dfeca125d10 3257 2,947724722 2,95

Clostridium f__Clostridiaceae; g__Clostridium; s__butyricum 318669d5d926e9b81ca6911da00a14ea 2250 2,036346523 2,19

f__Clostridiaceae; g__Clostridium; s__butyricum 88a3a8e95e3605bd051054f937cde102 172 0,155667379

Pseudomonas f__Pseudomonadaceae 052ba7abaeaa968c4f79e3f97d1f0a2f 1939 1,754878181 1,75

Helicobacter f__Helicobacteraceae; g__Helicobacter; s__pylori e8de9432f2ada1078a2fda56ba92675a 489 0,442565978 0,44

Neisseria f__Neisseriaceae; g__Neisseria; s__cinerea f71e5aacd4c976a1833958c2870b1d8b 327 0,295949028 0,30

Listeria f__Listeriaceae; g__Listeria b77b151f7481fd080bedbf415e736539 337 0,304999457 0,30

Lactobacillus f__Lactobacillaceae; g__Lactobacillus; s__ 9b23053de8f4269fe6b5ce286dfbef3c 258 0,233501068 0,23

Acinetobacter f__Moraxellaceae; g__Acinetobacter; s__guillouiae c49cc7c2c45bd7a87913453e515ea14f 369 0,33396083 0,33
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Pseudomonas f__Pseudomonadaceae 052ba7abaeaa968c4f79e3f97d1f0a2f 1641 1,932657315 1,93

Helicobacter f__Helicobacteraceae; g__Helicobacter; s__pylori e8de9432f2ada1078a2fda56ba92675a 324 0,381584991 0,38

Neisseria f__Neisseriaceae; g__Neisseria; s__cinerea f71e5aacd4c976a1833958c2870b1d8b 230 0,270878234 0,27

Listeria f__Listeriaceae; g__Listeria b77b151f7481fd080bedbf415e736539 274 0,322698418 0,32

Lactobacillus f__Lactobacillaceae; g__Lactobacillus; s__ 9b23053de8f4269fe6b5ce286dfbef3c 201 0,236724022 0,24

Acinetobacter f__Moraxellaceae; g__Acinetobacter; s__guillouiae c49cc7c2c45bd7a87913453e515ea14f 257 0,302676984 0,30

Propionibacterium f__Propionibacteriaceae; g__Propionibacterium; s__acnes b02a8d33d018119dedb2db15db887bfd 124 0,1460387 0,15

Bacteroides f__Bacteroidaceae; g__Bacteroides; s__ b6635d67cb594473ddba9f8cfba5d13d 18 0,021199166 0,02

Deinococcus f__Deinococcaceae; g__Deinococcus; s__ e4c0868fdefcdf2037ab5f7a071e4cc7 19 0,022376898 0,02

Enterococcus  f__Enterococcaceae; g__Enterococcus; s__ 892a20bbdc3ce599dc0c5d9f0866c352 13 0,015310509 0,02

Actinomyces NA NA 0 0 0,00

Other p__OD1; c__; o__; f__; g__; s__ 3be770f858d48a8c64d91c71fd000951 58 0,068308424 0,09

f__Enterobacteriaceae; g__Gluconacetobacter; s__ e8165c825d679874a9c71c16408fbbfd 11 0,012955046

c__ML635J-21; o__; f__; g__; s__ 6de3d71f0b5574f91e4569ad3168d64c 11 0,012955046

84909 100 100,00

Propionibacterium f__Propionibacteriaceae; g__Propionibacterium; s__acnes b02a8d33d018119dedb2db15db887bfd 203 0,183723709 0,18

Bacteroides f__Bacteroidaceae; g__Bacteroides; s__ b6635d67cb594473ddba9f8cfba5d13d 38 0,03439163 0,03

Deinococcus f__Deinococcaceae; g__Deinococcus; s__ e4c0868fdefcdf2037ab5f7a071e4cc7 31 0,02805633 0,03

Enterococcus  f__Enterococcaceae; g__Enterococcus; s__ 892a20bbdc3ce599dc0c5d9f0866c352 28 0,025341201 0,03

Actinomyces NA NA 0 0 0,00

Other p__OD1; c__; o__; f__; g__; s__ 3be770f858d48a8c64d91c71fd000951 94 0,085074033 0,10

p__OD1; c__; o__; f__; g__; s__ 787efccde8e499d021ddb015a190b3b0 11 0,009955472

p__OD1; c__; o__; f__; g__; s__ 35801c031a5311c7d870432585668de7 4 0,003620172

110492 100 100,00

Mock Community HM-783D, Sample ID MKOLS2138, Setup 1 (IV)
Mock Community Member (L6) QIIME 2 lowest classification level ASV

Sequence 
Count

Relative 
Abundance %

L6 Relative 
Abundance %

Escherichia f__Enterobacteriaceae ffc36e27c82042664a16bcd4d380b286 22060 25,98075587 26,65

f__Enterobacteriaceae b0728b5f5f391ce7f6f2c7f944a6afcd 570 0,671306929

Staphylococcus f__Staphylococcaceae; g__Staphylococcus 5497318e515a8c328a68f95975d9c7d4 19807 23,3273269 30,56

f__Staphylococcaceae; g__Staphylococcus 908e9b387f6b9ce7d3f794e658fba37e 3471 4,087905876

f__Staphylococcaceae; g__Staphylococcus 04be702b895fe5ed0568344daf564276 2163 2,547433134

f__Staphylococcaceae; g__Staphylococcus cafb603c773ad5283866c506359242c7 505 0,594754384

Streptococcus f__Streptococcaceae; g__Streptococcus; s__ ef5af48ec2b6c023c5de28c59cb08a40 18608 21,91522689 25,38

f__Streptococcaceae; g__Streptococcus; s__agalactiae c3a3a503752209bc052b3995236b079f 2477 2,917240811

f__Streptococcaceae; g__Streptococcus; s__ 6fbbc62750f01a6bd96182337b85b090 464 0,546467395

Rhodobacter f__Rhodobacteraceae; g__Rhodobacter; s__sphaeroides 332b70897316f7f62b81dfc53f41ca52 7404 8,719923683 8,94

f__Rhodobacteraceae; g__Rhodobacter; s__sphaeroides c5f93cc01baff5679295e847f9c6b259 183 0,215524856

Bacillus f__Bacillaceae; g__Bacillus 8cb24777cb48dde0aac60dfeca125d10 2417 2,846576924 2,85

Clostridium f__Clostridiaceae; g__Clostridium; s__butyricum 318669d5d926e9b81ca6911da00a14ea 1491 1,755997597 1,88

f__Clostridiaceae; g__Clostridium; s__butyricum 88a3a8e95e3605bd051054f937cde102 108 0,127194997

			926	
	 	927	
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Mock Community HM-783D, Sample ID MKOLS2491, Setup 2

Mock Community 
Member (L6) QIIME 2 lowest classification level ASV

Sequence 
Count

Relative 
Abundance %

L6 Relative 
Abundance %

Escherichia f__Enterobacteriaceae d46e2205f0c6ecf67b51f83d111c509c 23274 22,50674506 22,54

f__Enterobacteriaceae 6e39a9f573846663e97117b62fad86f2 34 0,03287915

Staphylococcus f__Staphylococcaceae; g__Staphylococcus 65d43491988bfe557da4d86a5ba25dae 30851 29,83396029 29,88

f__Staphylococcaceae; g__Staphylococcus 4008f0a6a397740091ad145f78d08e5c 36 0,034813217

f__Staphylococcaceae; g__Staphylococcus 1776e0004f84ad79443ce2b037c69741 10 0,009670338

Streptococcus f__Streptococcaceae; g__Streptococcus e7cfd084265c4df4856ca07b1c9b24ee 24279 23,47861405 26,20

f__Streptococcaceae; g__Streptococcus; s__agalactiae e3055f1b3a2ef5ffe239567f02e0e758 2744 2,653540794

f__Streptococcaceae; g__Streptococcus e3e8d451223353321b8f96c9b2ecc2d8 35 0,033846184

f__Streptococcaceae; g__Streptococcus 02df8598ac39f1ef54609afb19c8c450 23 0,022241778

f__Streptococcaceae; g__Streptococcus; s__ 5195aa3753b9257988f5339baca424e3 8 0,007736271

f__Streptococcaceae; g__Streptococcus 2082fcd6d3ed62054d6730e77350f1f8 2 0,001934068

Rhodobacter f__Rhodobacteraceae; g__Rhodobacter; s__sphaeroides dffc86cefa76e3e3d93e7eea450e6807 11372 10,99710857 11,00

Bacillus f__Bacillaceae; g__Bacillus bdf8a26094624622d68509a87fa75ba7 3261 3,153497278 3,15

Clostridium f__Clostridiaceae; g__Clostridium; s__butyricum 4e8d7a4662640b90817f015280cf5713 2549 2,4649692 2,64

f__Clostridiaceae; g__Clostridium; s__butyricum cb97fb83d4c8cc6eccded352a4ca3f8f 181 0,175033121

Pseudomonas f__Pseudomonadaceae; g__Pseudomonas ff9d93d7b7e46787568f2d241caeaf3b 2194 2,121672195 2,12

Helicobacter f__Helicobacteraceae; g__Helicobacter; s__pylori e832be098a5318684958d14305267752 634 0,61309944 0,61

Neisseria f__Neisseriaceae; g__Neisseria 8224351b2abd16dd4d58c3015ff5e795 449 0,434198184 0,43

Listeria f__Listeriaceae; g__Listeria 8ae518dbb29595b3f79214be0b589066 380 0,367472851 0,37

Lactobacillus f__Lactobacillaceae; g__Lactobacillus; s__ 0df6c802966e8670279671824da4f10a 357 0,345231073 0,35

Acinetobacter f__Moraxellaceae; g__Acinetobacter; s__guillouiae ea403646ed22d679fa4586263d8fc32f 300 0,290110145 0,29

Propionibacterium f__Propionibacteriaceae; g__Propionibacterium; s__acnes 5a7b179b1b45f0fe2282f260bf073f60 302 0,292044213 0,29

Bacteroides f__Bacteroidaceae; g__Bacteroides; s__ 99deb3c5ecb022ec05609ebd1112a557 45 0,043516522 0,04

Deinococcus f__Deinococcaceae; g__Deinococcus; s__ 2385fe1c2dd5a3f83237272a6644088b 28 0,027076947 0,03

Enterococcus  f__Enterococcaceae; g__Enterococcus 9908fffab7ed4f3bec44cda2f5084d49 22 0,021274744 0,02

Actinomyces f__Actinomycetaceae; g__Actinomyces; s__ df8456a1abbfb4c8a2c450b44378d4cb 7 0,006769237 0,01

Other p__OD1; c__; o__; f__; g__; s__ 4479c551f476e1599cf18a69523c5395 18 0,017406609 0,03
p__OD1 cb68de6534f0baf0aac84a0e027862c9 3 0,002901101
p__OD1; c__; o__; f__; g__; s__ 9cb241738be5cc7ede67aaa803cddf70 2 0,001934068
f__mitochondria; g__; s 7859d5f3e16e553f08178cb43bf95802 5 0,004835169
o__Actinomycetales 29f83e66700f19358051530ce2f68e96 4 0,003868135

103409 100 100,00

Mock Community HM-783D, Sample ID MKOLS2830, Setup 3 
Mock Community 
Member (L6) QIIME 2 lowest classification level ASV

Sequence 
Count

Relative 
Abundance %

L6 Relative 
Abundance %

Escherichia f__Enterobacteriaceae d46e2205f0c6ecf67b51f83d111c509c 39507 32,90248432 32,90

Staphylococcus f__Staphylococcaceae; g__Staphylococcus 65d43491988bfe557da4d86a5ba25dae 29989 24,97563982 24,98

Streptococcus f__Streptococcaceae; g__Streptococcus e7cfd084265c4df4856ca07b1c9b24ee 27912 23,24585877 25,81

f__Streptococcaceae; g__Streptococcus; s__agalactiae e3055f1b3a2ef5ffe239567f02e0e758 2945 2,452674623

f__Streptococcaceae; g__Streptococcus 06f825b512d903b9230e1a55d87359ee 65 0,054133735

f__Streptococcaceae; g__Streptococcus; s__ edc9e5c16e40aff1eadce6597940f08f 46 0,038310028

f__Streptococcaceae; g__Streptococcus; s__ fd496fd32dc8c08ade2e8b6c9d8ee13d 26 0,021653494

Rhodobacter f__Rhodobacteraceae; g__Rhodobacter; s__sphaeroides dffc86cefa76e3e3d93e7eea450e6807 10534 8,772996427 8,77

Bacillus f__Bacillaceae; g__Bacillus bdf8a26094624622d68509a87fa75ba7 2992 2,491817478 2,49

Pseudomonas f__Pseudomonadaceae; g__Pseudomonas ff9d93d7b7e46787568f2d241caeaf3b 2430 2,023768874 2,02

Clostridium f__Clostridiaceae; g__Clostridium; s__butyricum 4e8d7a4662640b90817f015280cf5713 1923 1,601525739 1,69

f__Clostridiaceae; g__Clostridium; s__butyricum cb97fb83d4c8cc6eccded352a4ca3f8f 110 0,091610937

Neisseria f__Neisseriaceae; g__Neisseria 8224351b2abd16dd4d58c3015ff5e795 442 0,3681094 0,39

f__Neisseriaceae; g__Neisseria 4f5efd25dacb5d639316e7291ff6ff8b 21 0,017489361

Helicobacter f__Helicobacteraceae; g__Helicobacter; s__pylori e832be098a5318684958d14305267752 317 0,264006063 0,26

Listeria f__Listeriaceae; g__Listeria 8ae518dbb29595b3f79214be0b589066 309 0,257343449 0,26

Lactobacillus f__Lactobacillaceae; g__Lactobacillus; s__ 0df6c802966e8670279671824da4f10a 220 0,183221873 0,18

Acinetobacter f__Moraxellaceae; g__Acinetobacter; s__guillouiae ea403646ed22d679fa4586263d8fc32f 144 0,119927044 0,12

Propionibacterium NA NA 0 0 0,00

Bacteroides f__Bacteroidaceae; g__Bacteroides; s__ 99deb3c5ecb022ec05609ebd1112a557 30 0,024984801 0,02

Deinococcus f__Deinococcaceae; g__Deinococcus; s__ 2385fe1c2dd5a3f83237272a6644088b 19 0,015823707 0,02

Enterococcus  NA NA 0 0 0,00

Actinomyces NA NA 0 0 0,00

Other f__Pasteurellaceae 394eda29c886632f514dd94b58381186 36 0,029981761 0,08

f__Prevotellaceae; g__Prevotella; s__melaninogenica 32f8fd11d2bee278d609a1d4ab767554 36 0,029981761

f__Veillonellaceae; g__Veillonella; s__parvula cd9401a6bce4a63af516d06d2a843f9d 20 0,016656534

120073 100 100,00

928	
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	930	

Additional	file	4:	Figure	S.1	931	
 932	

A. Setup 1 933	

 934	

 935	

 936	

 937	
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 940	

B. Setup 2 941	

 942	

 943	
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 945	

 946	

 947	

 948	

 949	

C. Setup 3 950	

 951	

 952	

 953	

 954	
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 955	

Supplementary Figure 1. Principal coordinates analysis on unweighted UniFrac distances for 956	

procedural samples sequenced following each setup before the removal of Decontam 957	

contaminants. A. Setup 1 (OW: n=22; PBAL: n=23; PSB: n=23; NCS: n=20).  B. Setup 2 (OW: 958	

n=23; PBAL: n=23; PSB: n= 23; NCS: n=21). C. Setup 3 (OW: n=23; PBAL: n=21; PSB: n=22; 959	

NCS: n=18). Setup 1 (2-step PCR; V3 V4 region); Setup 2 (2-step PCR; V4 region); Setup 3 (1-960	

step PCR; V4 region). Rarefaction depth: 1066 sequences.  Oral Wash (OW): blue; Protected 961	

bronchoalveolar lavage (PBAL): green; Protected specimen brushes (PSB): purple; Negative 962	

control samples (NCS): red. 963	

 964	
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	1023	

	1024	

Mock Community Sample HM-783D 1025	

The mock community sample was obtained through BEI Resources, NIAID, NIH, as part of the 1026	

Human Microbiome Project: Genomic DNA from Microbial Mock Community B (Staggered, 1027	

Low Concentration), v5.2L, for 16S rRNA Gene Sequencing, HM-783D. The input number of 1028	

16S rRNA gene operons was given on the certificate of analysis provided by the BEI 1029	

Resources, and used to calculate the relative abundance of the different bacteria in the 1030	

sample (Table S.1). 1031	

 1032	

Table S.1. Mock community HM-783D  1033	

Species Number of operons Relative abundance (%) 

Acinetobacter baumannii 10000 0.22 % 

Actinomyces odontolyticus 1000 0.02 % 

Bacillus cereus 100000 2.19 % 

Bacteroides vulgatus 1000 0.02 % 

Clostridium beijerinckii 100000 2.19 % 

Deinococcus radiodurans 1000 0.02 % 

Enterococcus faecalis 1000 0.02 % 

Escherichia coli 1000000 21.91 % 

Helicobacter pylori 10000 0.22 % 

Lactobacillus gasseri 10000 0.22 % 

Listeria monocytogenes 10000 0.22 % 

Neisseria meningitidis 10000 0.22 % 

Propionibacterium acnes 10000 0.22 % 

Pseudomonas aeruginosa 100000 2.19 % 

Rhodobacter sphaeroides 1000000 21.91 % 

Staphylococcus aureus 100000 2.19 % 

Staphylococcus epidermidis 1000000 21.91 % 

Streptococcus agalactiae 100000 2.19 % 

Streptococcus mutans 1000000 21.91 % 
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Streptococcus pneumoniae 1000 0.02 % 

 1034	

Library Preparation for MiSeq Sequencing  (Setups 1, 2 and 3) 1035	

We compare three different library preparation setups for MiSeq sequencing of the bacterial 1036	

16S rRNA gene. The three setups vary with regards to the number of PCR steps (one or two) 1037	

and the target marker gene region sequenced (16S rRNA gene region V3 V4 or V4): Setup 1 1038	

(2-step PCR; region V3 V4); Setup 2 (2-step PCR; region V4); Setup 3 (1-step PCR; region V4).  1039	

Setups 1 and 2 1040	

Setups 1 and 2 were performed according to the the Illumina 16S Metagenomic Sequencing 1041	

Library Preparation guide (Part no. 15044223 Rev. B). The protocol consists of two PCR 1042	

steps; the first for amplification of the target marker gene region to be sequenced and the 1043	

second for the addition of index sequences required for sample multiplexing.  1044	

 1045	

Setup 1. In the first PCR step, the 16S rRNA gene V3 V4 region was targeted using primers: 1046	

5ʹ-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3ʹ (forward) and  1047	

5ʹ-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3ʹ (reverse).  1048	

Illumina overhang adapter sequences are italicized. Gene specific sequences (underlined) 1049	

are taken from Klindworth et al. [1]. Each reaction consisted of 5 µl sample, 12.5 µl KAPA 1050	

HiFi HotStart ReadyMix (2X) (KAPA Biosystems, USA), 0.5 µl of each primer (10 µM) and 6.5 1051	

µl RT-PCR grade water (Thermo Fisher Scientific, USA) for a total volume of 25 µl. PCR cycling 1052	

was performed using the following program: an initial cycle at 95 °C for 3 minutes, followed 1053	

by 45 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds, 72 °C for 30 seconds, and a final 1054	

extension cycle at 72 °C for 5 minutes.  1055	

 1056	

Setup 2. In the first PCR step, the 16S rRNA gene V4 region was targeted using primers: 1057	

5´-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA-3´ (forward) and 1058	

5´-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTAAT-3´ (reverse).  1059	

Illumina overhang adapter sequences are italicized. Gene specific sequences (underlined) 1060	

are taken from Caporaso et al. [2]. Each reaction consisted of 5 µl sample, 12.5 µl KAPA HiFi 1061	

HotStart ReadyMix (2X), 1.25 µl of each primer (10 µM), and 5 µl RT-PCR grade water 1062	
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(Thermo Fisher Scientific, USA) for a total volume of 25 µl. PCR cycling was performed using 1063	

the following program: an initial cycle at 95 °C for 3 minutes, followed by 45 cycles of 95 °C 1064	

for 30 seconds, 50 °C for 30 seconds, 72 °C for 30 seconds, and a final extension cycle at 72 1065	

°C for 5 minutes. 1066	

 1067	

For both setups 1 and 2, the second PCR step was performed using primers from the Nextera 1068	

XT Index kit (Illumina Inc., USA). Each reaction consisted of 5 µl amplicons from PCR step 1069	

one, 25 µl KAPA HiFi HotStart ReadyMix (2X), 5 µl of each forward and reverse index primer 1070	

(Nextera XT Kit), and 10 µl RT-PCR grade water (Thermo Fisher Scientific, USA) for a total 1071	

volume of 50 µl. PCR cycling was performed using the following program: an initial cycle of 1072	

95 °C for 3 minutes, followed by 8 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds, 72 °C 1073	

for 30 seconds, and a final extension cycle at 72 °C for 5 minutes. 1074	

 1075	

Amplicon libraries were quantified using the Qubit dsDNA HS Assay Kit (Life Technologies, 1076	

USA), normalized to 4 nM and pooled together. The pooled library was denatured with 1077	

NaOH and diluted to 10 pM. The library was then spiked (15%) with PhiX from the PhiX 1078	

Control Kit (Illumina). Paired-end sequencing was performed using 2x300 cycles (setup 1079	

1)/2x275 cycles (setup 2) on the Illumina MiSeq using reagents from the MiSeq reagent kit 1080	

v3 (Illumina).  1081	

 1082	

Setup 3  1083	

Setup 3 was based on the 1-step PCR protocol described by Kozich et al. [3]. The protocol 1084	

consists of just one PCR step using primers that contain gene targeting sequences, index 1085	

sequences and illumina sequencing adapter sequences.  1086	

 1087	

The 16S rRNA gene V4 region was targeted using primers 5´-1088	

AATGATACGGCGACCACCGAGATCTA CACNNNNNNNNTATGGTAATTGTGTGCCAGCMGCCGCGGTAA-3´ 1089	

and 5-´CAAGCAGAAGACGGCATACGA GATNNNNNNNNAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-1090	

3´. As detailed in Kozich et al. [3], the primers consist of different regions including: the Illumina 1091	

sequencing adapter sequence, index sequence (NNNNNNNN), pad and linker sequence 1092	

(reading 5´-3´).	The gene specific sequences (underlined) are the same as for the primers 1093	
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used in the sequencing setup 2. Each reaction consisted of 5 µl sample, 18 µl AccuPrime Pfx 1094	

SuperMix (Thermo Fisher Scientific, USA) and 1 µl of each primer (10 µM) for a total volume 1095	

of 25 µl. PCR cycling was performed using the following program: an initial cycle at 95 °C for 1096	

2 minutes, followed by 45 cycles of 95 °C for 20 seconds, 55 °C for 15 seconds, 72 °C for 5 1097	

minutes, and a final extension cycle at 72 °C for 5 minutes. PCR clean-up was performed 1098	

using Agencourt AMPure XP beads (Beckman Coulter, USA). 1099	

 1100	

Amplicon libraries were quantified using the Qubit dsDNA HS Assay Kit, normalized to 4 nM 1101	

and pooled together. The pooled library was denatured with NaOH and diluted to 10 pM. 1102	

The library was spiked (15%) with PhiX from the PhiX Control Kit (Illumina). Paired-end 1103	

sequencing was performed using 2x250 cycles on the Illumina MiSeq using reagents from 1104	

the MiSeq reagent kit v3. 1105	

 1106	

 1107	

 1108	
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