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Abstract

The etiology of Parkinson’s disease is largely unknown. Genome-wide transcriptomic studies in bulk brain tissue
have identified several molecular signatures associated with the disease. While these studies have the potential to
shed light into the pathogenesis of Parkinson’s disease, they are also limited by two major confounders: RNA post-
mortem degradation and heterogeneous cell type composition of bulk tissue samples. We performed RNA
sequencing following ribosomal RNA depletion in the prefrontal cortex of 49 individuals from two independent
case-control cohorts. Using cell type specific markers, we estimated the cell type composition for each sample and
included this in our analysis models to compensate for the variation in cell type proportions. Ribosomal RNA
depletion followed by capture by random primers resulted in substantially more even transcript coverage,
compared to poly(A) capture, in post-mortem tissue. Moreover, we show that cell type composition is a major
confounder of differential gene expression analysis in the Parkinson’s disease brain. Accounting for cell type
proportions attenuated numerous transcriptomic signatures that have been previously associated with Parkinson’s
disease, including vesicle trafficking, synaptic transmission, immune and mitochondrial function. Conversely,
pathways related to endoplasmic reticulum, lipid oxidation and unfolded protein response were strengthened and
surface as the top differential gene expression signatures in the Parkinson’s disease prefrontal cortex. Our results
indicate that differential gene expression signatures in Parkinson’s disease bulk brain tissue are significantly
confounded by underlying differences in cell type composition. Modeling cell type heterogeneity is crucial in order
to unveil transcriptomic signatures that represent regulatory changes in the Parkinson’s disease brain and are,
therefore, more likely to be associated with underlying disease mechanisms.
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Introduction
Parkinson’s disease (PD) is the second most prevalent
neurodegenerative disorder, affecting ~ 1.8% of the popu-
lation above 65 years [45]. PD is a complex disorder
caused by a combination of genetic and environmental
factors, but the molecular mechanisms underlying its eti-
ology remain largely unaccounted for. Genome-wide tran-
scriptomic studies can identify expression signatures
associated with PD. While not able to establish causality,
these studies hold the potential to highlight important bio-
logical mechanisms, some of which may be exploited as
targets for therapeutic modulation.
A recent systematic review identified 33 original

genome-wide transcriptomic studies in the PD brain, of
which 5 were performed on laser microdissected neu-
rons from the substantia nigra pars compacta (SNc) and
the remaining in bulk tissue from various brain regions
[8]. These studies show surprisingly low replicability at
the level of individual genes, however, and only partial
concordance for pathways. The most consistent alter-
ations have been found in pathways related to energy
metabolism/mitochondrial function and protein degrad-
ation, followed by synaptic transmission, vesicle traffick-
ing, lysosome/autophagy and neuroinflammation [8].
While these processes commonly show differential ex-
pression signatures in PD, it remains unknown whether
this is because they truly reflect the biology of PD or
due to systematic bias and confounding factors. Two
major sources of bias for transcriptomic studies in the
human brain are the post-mortem degradation of RNA
and the highly heterogeneous cell type composition of
bulk tissue samples.
RNA degradation of variable extent occurs in post-

mortem tissue. To further complicate the picture, it has
been shown that different cell types exhibit different de-
grees of susceptibility to RNA degradation [32], poten-
tially confounding differences in cellular composition
with differences in RNA quality. Access to high-quality
brain tissue is generally limited, and thus an optimal
choice of experimental platforms becomes paramount to
maximize sensitivity. While RNA microarrays are being
gradually superseded by RNA-seq technology, only 3 out
of the 33 studies identified by an up-to-date review [8]
used RNA-seq, and all of them employed poly(A) cap-
ture, a widely used protocol (in both RNA-seq and
microarray analyses) to restrict the analysis to mature
mRNA [20, 30, 46]. However, this library preparation
method only picks up RNA fragments with a poly-A tail,
introducing substantial bias in low quality RNA samples
[1, 25, 47, 56]. A well-established approach to mitigate
this limitation is whole RNA-seq following active riboso-
mal RNA (rRNA) depletion and capture by random
primers, such as the Illumina Ribo-Zero technique [31].
To our knowledge there are no genome-wide

transcriptomic studies on PD brain employing active
rRNA depletion methods to date.
Systematic differences in sample cell composition repre-

sent another important confounding factor. These typic-
ally originate from two sources: biological differences (e.g.
secondary to neurodegeneration) and technical variation
in sample dissection and preparation. Brain areas affected
by neurodegeneration are characterized by neuronal loss
and gliosis, resulting in a systematically increased glia-to-
neurons ratio in patients. This confounder is strongest in
areas with severe changes, such as the SNc, but is also
present to a variable degree in less affected areas, such as
the neocortex. In addition, technical sources of variation
due to sampling may affect any brain region and cause an
uneven distribution of gray and white matter, resulting in
a variable fraction of oligodendrocytes. Thus, transcrip-
tional signatures associated with PD in bulk brain tissue
may reflect changes in cellular composition rather than
disease-specific transcriptional modulation. This observa-
tion has already been put forward using neurodegenera-
tive mouse models and re-analysis of human brain
transcriptomic data [50]. Heterogeneous cell composition
is, hence, a major confounder that needs to be considered
and appropriately addressed in transcriptomic studies in
bulk brain samples.
We report the first genome-wide transcriptomic study

in the PD brain employing RNA-seq following rRNA de-
pletion and random primer capture. We show that this
approach is able to substantially mitigate the bias of
post-mortem degradation, resulting in substantially bet-
ter transcript coverage compared to poly(A) capture.
Moreover, by estimating the relative cell type proportion
in our samples, we confirm that cellular composition is a
major source of variation in bulk tissue data, confound-
ing the differential gene expression profile even in the
less affected prefrontal cortex. By incorporating the esti-
mated cell type proportions into our analysis models, we
were able to unveil transcriptomic signatures which are
more likely to be associated with the underlying disease
mechanisms.

Material and methods
Subject cohorts
All experiments were conducted in fresh-frozen pre-
frontal cortex (Brodmann area 9) from a total of 49 indi-
viduals from two independent cohorts. The first cohort
(n = 29) comprised individuals with idiopathic PD (n =
18) from the Park-West study (PW), a prospective
population-based cohort which has been described in
detail [2] and neurologically healthy controls (Ctrl, n =
11) from our brain bank for aging and neurodegenera-
tion. Whole-exome sequencing had been performed on
all patients [24] and known/predicted pathogenic muta-
tions in genes implicated in Mendelian PD and other
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monogenic neurological disorders had been excluded.
None of the study participants had clinical signs of mito-
chondrial disease or use of medication known to influ-
ence mitochondrial function (Additional file 1). Controls
had no known neurological disease and were matched
for age and gender. The second cohort comprised sam-
ples from 21 individuals from the Netherlands Brain
Bank (NBB) including idiopathic PD (n = 10) and demo-
graphically matched neurologically healthy controls (n =
11). Individuals with PD fulfilled the National Institute
of Neurological Disorders and Stroke [26] and the UK
Parkinson’s disease Society Brain Bank [54] diagnostic
criteria for the disease at their final visit. Ethical permis-
sion for these studies was obtained from our regional
ethics committee (REK 2017/2082, 2010/1700, 131.04).
To investigate the effect of the rRNA depletion and

random primer capture protocol compared to the pre-
vailing poly(A) method, we re-analyzed an RNA-seq
dataset from a previous publication which employed a
poly(A) tail selection kit on post-mortem tissue of the
same brain area and same disease (PA cohort, n = 29 PD
samples, n = 44 neurologically healthy controls, all males;
GEO: GSE68719) [20]. Informed consent was available
from all individuals.

Tissue collection and neuropathology
Brains were collected at autopsy and split sagittaly along
the corpus callosum. One hemisphere was fixed whole in
formaldehyde and the other coronally sectioned and
snap-frozen in liquid nitrogen. All samples were col-
lected using a standard technique and fixation time of ~
2 weeks. There was no significant difference in post-
mortem interval (PMI) (independent t-test, PW cohort
p = 0.16; NBB cohort p = 0.92), age (independent t-test,
PW cohort p = 0.18; NBB cohort p = 0.074) or gender
(independent t-test, PW cohort p = 0.94; NBB cohort
p = 0.53) between PD subjects and controls. Subject
demographics and tissue availability are provided in
Additional file 1. Routine neuropathological examination
including immunohistochemistry for α-synuclein, tau
and beta amyloid was performed on all brains. All cases
showed neuropathological changes consistent with PD
including degeneration of the dopaminergic neurons of
the SNc in the presence of Lewy pathology. Controls
had no pathological evidence of neurodegeneration.

RNA sequencing
Total RNA was extracted from prefrontal cortex tissue
homogenate for all samples using RNeasy plus mini kit
(Qiagen) with on-column DNase treatment according to
manufacturer’s protocol. Final elution was made in 65 μl
of dH2O. The concentration and integrity of the total
RNA was estimated by Ribogreen assay (Thermo Fisher
Scientific), and Fragment Analyzer (Advanced Analytical),

respectively and 500 ng of total RNA was used for down-
stream RNA-seq applications. First, rRNA was removed
using Ribo-Zero™ Gold (Epidemiology) kit (Illumina, San
Diego, CA) using manufacturer’s recommended protocol.
Immediately after the rRNA removal the RNA was frag-
mented and primed for the first strand synthesis using the
NEBNext First Strand synthesis module (New England
BioLabs Inc., Ipswich, MA). Directional second strand
synthesis was performed using NEBNExt Ultra Directional
second strand synthesis kit. Following this the samples
were taken into standard library preparation protocol
using NEBNext® DNA Library Prep Master Mix Set for
Illumina® with slight modifications. Briefly, end-repair was
done followed by poly(A) addition and custom adapter
ligation. Post-ligated materials were individually barcoded
with unique in-house Genomic Services Lab (GSL)
primers and amplified through 12 cycles of PCR. Library
quantity was assessed by Picogreen Assay (Thermo Fisher
Scientific), and the library quality was estimated by utiliz-
ing a DNA High Sense chip on a Caliper Gx (Perkin
Elmer). Accurate quantification of the final libraries for se-
quencing applications was determined using the qPCR-
based KAPA Biosystems Library Quantification kit (Kapa
Biosystems, Inc.). Each library was diluted to a final con-
centration of 12.5 nM and pooled equimolar prior to clus-
tering. One hundred twenty-five bp Paired-End (PE)
sequencing was performed on an Illumina HiSeq2500 se-
quencer (Illumina, Inc.). RNA quality, as measured by the
RNA integrity number (RIN), varied across samples
(mean = 5.3, range = 3.0–7.2 for PW; mean = 6.8, range =
3.2–9.1 for NBB), although the difference between condi-
tions did not reach statistical significance in any of the co-
horts (t-test P = 0.72 and 0.90 for PW and NBB cohorts,
respectively).

Data quality control
FASTQ files were trimmed using Trimmomatic version
0.36 [7] to remove potential Illumina adapters and low
quality bases with the following parameters: ILLUMI-
NACLIP:truseq.fa:2:30:10 LEADING:3 TRAILING:3 SLI-
DINGWINDOW:4:15. FASTQ files were assessed using
fastQC version 0.11.5 [3] prior and following trimming.
For an in-depth quality assessment, we mapped the
trimmed reads using HISAT2 version 2.1.0 [34] against
the hg19 human reference genome (using --rna-strand-
ness RF option) preserving lane-specific information. To
discard potential lane-specific sequencing batch effects
we inspected the output of the CollectRnaSeqMetrics
tool of Picard Tools version 2.6 [11]. Mapping efficiency
and proportion of reads mapping to rRNA, intronic,
intergenic and coding regions were obtained from the
output of the CollectRnaSeqMetrics (Additional file 2:
Figure S1 and S2).
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For the poly(A) capture dataset [20], raw FASTQ files
were obtained from the Gene Expression Omnibus
(GEO:GSE68719) and analyzed exactly as described for
our cohorts (with the exception of --rna-strandness in
HISAT2, which was turned off to take into account that
the cDNA library of this cohort was unstranded).

RNA expression quantification and filtering
We used Salmon version 0.9.1 [43] to quantify the abun-
dance at the transcript level with the fragment-level GC
bias correction option (−-gcBias) and the appropriate
option for the library type (−l ISR) against the Ensembl
release 75 transcriptome. Transcript-level quantification
was collapsed onto gene-level quantification using the
tximport R package version 1.8.0 [49] according to the
gene definitions provided by the same Ensembl release.
We filtered out genes in non-canonical chromosomes
and scaffolds, and transcripts encoded by the mitochon-
drial genome. To further reduce the potential for arti-
facts we filtered out transcripts with unusually high
expression by removing transcripts that gathered more
than 1% of the reads on more than half of the samples,
which resulted in the removal of 3 and 4 transcripts
from the PW and NBB cohorts, respectively. Addition-
ally, low-expressed (i.e. genes whose expression was
below the median expression in at least 20% of the sam-
ples) were filtered out from downstream analyses. Sam-
ples were then marked as outliers if their median
correlation in gene expression (log counts per million)
with the other samples was below Q1–1.5*IQR or above
Q3 + 1.5*IQR (Tukey’s fences; Q1: first quartile, Q3: third
quartile, IQR: inter-quartile range). As a result, 3 sam-
ples were marked as outliers in the PW cohort and 3 in
the NBB cohort, and were not included in downstream
analyses (resulting sample sizes: NPW = 26, NNBB = 18,
Additional file 2: Figure S3).

Estimation of marker gene profiles
It has been previously shown that cell type-specific tran-
scriptional signature patterns derived from bulk tissue
samples (marker gene profiles, MGPs), can be used as
surrogates for relative cell type abundance across sam-
ples [37]. MGPs for each cell type are calculated indi-
vidually, by summarizing the concordant change in their
respective marker genes via the first principal compo-
nent of their expression (i.e. log-transformed counts per
million (CPMs)). For the purpose of our study, we calcu-
lated MGPs for the main cortical cell types (neurons,
oligodendroglia, microglia, endothelial cells, and astro-
cytes). Cortical cell type markers were obtained from the
NeuroExpresso database [37], a comprehensive database
compiled using mouse brain cell type expression data-
sets, and human orthologs were defined using Homolo-
Gene [38]. To reduce the impact of outlier samples,

principal component analysis was repeated 100 times on
subsampled data, containing an equal number of sub-
jects per group, and removing markers with opposite
sign of the main trend. The median score for each sam-
ple was used as MGP for the downstream analyses.
MGPs obtained with Neuroexpresso-based markers were
highly correlated with MGPs calculated using two inde-
pendent sets of markers from human brain single-cell
transcriptomic studies [33, 53] (Additional file 2: Figures
S4–8, Additional file 2: Table S1). To assess potential
variations associated with the disease across the neur-
onal markers, we examined the overlap between the
markers and the differentially expressed genes in four
publicly available datasets of laser microdissected neu-
rons from PD brain (SNc dopaminergic neurons [13, 22,
48] and posterior cingulate cortex pyramidal neurons
[51]). We found minimal overlap (3/78 genes) between
our neuronal markers and genes differentially expressed
in PD dopaminergic neurons. Moreover, none of the
markers were differentially expressed in PD cortical neu-
rons [51] (Additional File 2: Figure S9). The vast major-
ity of the cell type markers used for the calculation of
MGPs changed in the same direction across our samples
(Additional File 2: Figure S9), indicating that MGPs truly
represent changes in global cell type-specific transcrip-
tion profiles, rather than being driven by changes in spe-
cific genes.
To unravel potential complex interactions between

MGPs and other experimental covariates, including dis-
ease status, we calculated the pairwise correlation be-
tween all the variables and also their association with
the main axes of variation of gene expression. To assist
us in choosing an optimal set of MGPs to include as co-
variates, we quantified the group differences in the cellu-
lar proportions between PD and controls using linear
models adjusting for the known experimental covariates
(i.e. RIN, PMI, sex, age, and sequencing batch). Signifi-
cant association with disease status was found for oligo-
dendrocyte MGP in the PW cohort and for microglia in
the NBB cohort. Thus, these were included in the down-
stream analyses.

Differential gene expression and functional enrichment
analyses
We performed differential gene expression analyses
using the DESeq2 R package version 1.22.2 [35] with de-
fault parameters. Experimental covariates (sex, age, RIN,
PMI, and sequencing batch) as well as oligodendrocyte
and microglia MGPs were incorporated into the statis-
tical model. Multiple hypothesis testing was performed
with the default automatic filtering of DESeq2 followed
by false discovery rate (FDR) calculation by the
Benjamini-Hochberg procedure. Analyses were carried
out independently for the two cohorts. Genes were
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scored according to their significance by transforming the
p-values to account for direction of change. For each gene,

the up-regulated score was calculated as Sup ¼
1−p=2; LFC < 0
p=2; LFC≥0

�
, and the down-regulated score as

Sdown = 1 − Sup, where LFC corresponds to the log fold
change and p to the nominal p-value of the gene. Genes
were then tested for enrichment using alternatively
log(Sup) and log(Sdown) scores employing the gene score
resampling method implemented in the ermineR package
version 1.0.1 [39], an R wrapper package for ermineJ [27]
with the complete Gene Ontology (GO) database annota-
tion [5] to obtain lists of up- and down-regulated path-
ways for each cohort.
In order to characterize the main biological processes

affected by the cell type correction, we scored pathways
based on the loss of significance caused by the addition of
cellular estimates to the gene expression model. We quan-
tified the difference in the level of significance in the up-
and down-regulated enrichment results for each signifi-
cant pathway as Δ = log(p0) − log(pCT), where pCT and p0
are the corrected enrichment p-values for the model with
cell types (CT) and without (0), respectively. Only path-
ways that were significant in either one of the models were
analyzed in this manner (p0 < 0.05 or pCT < 0.05).
The source code for the analyses is available in the

GitLab repository (https://git.app.uib.no/neuromics/cell-
composition-rna-pd) under the GPL public license v3.0.

Results
Ribo-zero is superior to poly(A) selection in post-mortem
brain
We carried out RNA-seq using rRNA depletion and ran-
dom primer capture (henceforth referred to as Ribo-Zero)
in fresh-frozen prefrontal cortex (Brodmann area 9) from
a total of 49 individuals from two independent cohorts:
the Norwegian ParkWest study (PW, n = 29) [2] and the
Netherlands Brain Bank (NBB, n = 21). Comparison of our
data to a published poly(A) capture dataset of similar
characteristics [20] (PA cohort) revealed important differ-
ences of mapping coverage. Mapping efficiency was
slightly higher in the poly(A) dataset (PA: median = 0.976,
range = 0.971–0.980) compared to the Ribo-Zero datasets
(PW: median = 0.952, range = 0.940–0.962; NBB: median =
0.959, range = 0.947–0.965). The counts per million
(CPM) of rRNA regions, as defined by Ensembl release 75,
was very low in all samples (PW: median = 3099, range =
1047-7071; NBB: median = 1583, range = 1129-5024) and,
as expected, significantly lower in the Ribo-Zero cohorts
compared to the poly(A) dataset (PA: median = 40,058,
range = 10,701-95,183) (Additional file 2: Figure S1).

In both datasets, the RIN was positively correlated with
mapping efficiency to mRNA regions, but not to inter-
genic and/or intronic regions (Additional file 2: Figure
S2). Despite having higher mean RIN values, the PA co-
hort showed a marked unevenness of transcript body
coverage compared to the Ribo-Zero cohorts (Fig. 1a).
The median coefficient of variation in coverage was sig-
nificantly lower in the Ribo-Zero cohorts and the 5′- and
3′-ends of the transcripts showed substantially better
coverage compared to the PA cohort (Fig. 1b). Moreover,
in the Ribo-Zero datasets both the 3′- and 5′-end cover-
age loss showed a significant inverse correlation with the
RIN values. In contrast, RIN showed no correlation with
the 5′-bias and a positive correlation with the 3′-bias in
the PA dataset (Fig. 1c). Thus, Ribo-Zero results in sub-
stantially better and more even coverage of the transcrip-
tome in post-mortem brain tissue, providing a better
alternative to poly(A) capture and minimizing the pro-
spect of transcript quantification biases downstream.

Cell composition is a major confounder of gene
expression in bulk brain samples
The observed gene expression profiles in bulk brain tis-
sue can be dramatically influenced by differences in cel-
lular composition. Such differences can be a result of
variation in gray/white matter ratios introduced during
tissue extraction, inter-subject variability or represent
disease related alterations [14, 37, 52]. To study the con-
tribution of various technical and biological sources of
variation in our dataset we first estimated marker gene
profiles (MGPs) for the major classes of cortical cell
types (astrocytes, microglia, oligodendrocytes, endothe-
lial cells and neurons) in our samples by summarizing
the expression of the cell type-specific marker genes as
previously described [37, 52]. Next, we examined the
Pearson’s correlation between potential sources of bio-
logical variation in our data, including technical and
demographic factors (RIN, PMI, sex, age, and disease
status) and MGPs. MGPs for neuronal cell types were
significantly anticorrelated with the other main cortical
cell types in both cohorts (p < 0.05, Fig. 2a). In agree-
ment with previous studies [6, 32], MGPs were also
correlated with RNA quality. In both cohorts RIN was
significantly correlated with neuronal (positive correl-
ation) and astrocyte (negative correlation) MGPs. Signifi-
cant negative correlation of RIN with microglia MGPs
was observed in the NBB cohort (Fig. 2a). Most concern-
ing was the detection of a significant association between
the oligodendrocyte MGP and the disease status in the
PW cohort (Fig. 2a). The main axis of variation in gene
expression (which explained 44 and 45% of the total
variance in PW and NBB, respectively) was significantly
correlated with RNA quality and cellular composition in
both cohorts (Fig. 2b), singling out RNA quality and
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cellular composition as the main drivers of transcrip-
tional change in bulk brain tissue.
We next looked for differences in cellular proportions

between PD and controls adjusting for the known

experimental covariates. In the NBB cohort, PD subjects
exhibited a significant increase in the microglia MGP
(p = 0.015, Wilcoxon test), while a significant increase in
the oligodendrocyte MGP (p = 5.5 × 10− 3, Wilcoxon test)

Fig. 1 Transcript coverage profiles of Ribo-Zero datasets compared to poly(A). a Heatmaps of transcript coverage in our two cohorts (PW, NBB)
and a poly(A) dataset (PA). The y-axis shows samples sorted by RIN (top: lowest RIN; bottom highest RIN). The x-axis represents the transcript
body percentiles (5′ to 3′). The shading for a given row represents the sample-normalized coverage averaged across all transcripts. b Boxplots for
different coverage quality metrics: median 5′-bias, median 3′-bias and median coefficient of variation (CV) for each cohort. The bias metric is
calculated by Picard tools on the 1000 most highly expressed transcripts and corresponds to the mean coverage of the 3′(or 5′)-most 100 bases
divided by the mean coverage of the whole transcript. Values closer to 1 indicate absence of bias, while values departing from 1 indicate a
coverage bias (asterisks indicate significance at (*) p > 0.05, (**) p ≤ 0.01, (***) p ≤ 0.001, (****) p≤ 0.0001, Wilcoxon test). The same metrics are
expanded in (c), with sample scatterplots showing RIN values against the coverage quality metrics. Linear regression trends are indicated with
black lines. P-values for the F-statistic of the linear model are also shown in the panels. Panels are organized in columns (cohorts) and quality
metrics (rows). CV = coefficient of variation; PW = ParkWest cohort; NBB = Netherlands Brain Bank cohort; PA = poly(A) cohort
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Fig. 2 (See legend on next page.)
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was observed in PD subjects from the PW cohort. In
both cohorts, these changes were accompanied by a
non-significant decrease in neuronal MGPs (Fig. 2c).
MGPs of different cell types are not entirely independ-

ent from each other, since changes in one cell type can
be accompanied by changes in other cell types. Thus, to
ensure that neuronal, endothelial, and astrocyte MGPs
do not differ between the groups, we re-estimated group
differences in these MGPs while adjusting for the oligo-
dendrocyte and microglia MGPs. This analysis showed
no significant differences between the groups (Add-
itional file 2: Figure S10). Therefore, only MGPs of oli-
godendrocytes and microglia were included in the
statistical model of differential expression.

Differential gene expression
Differential gene expression analysis of a total of ~ 31,
000 pre-filtered genes was carried out using experimen-
tal covariates (sex, age, PMI, RIN, and sequencing batch)
with or without oligodendrocyte and microglia MGPs.
In the PW cohort, 595 genes were defined as differen-
tially expressed (FDR < 0.05) without adjusting for cell
type composition. Inclusion of oligodendrocyte and
microglia MGPs in the model decreased the number of
differentially expressed genes to a total of 220. In total,
74 genes remained significant both with and without ad-
justment for cell type composition. No genes with FDR <
0.05 were identified in the NBB cohort, irrespective of
adjustment for cell type composition. A list with the
nominally significant genes overlapping between the two
cohorts is provided in Additional file 3. Comprehensive
results of differential expression analysis are available in
Additional file 4.

Functional enrichment
Functional enrichment analysis of the differential gene
expression results without MGP adjustment indicated
476 significantly enriched (FDR < 0.05) pathways in PW
(107 up-regulated and 369 down-regulated) and 992 in
NBB (421 up-regulated and 571 down-regulated). MGP
adjustment reduced the number of significant pathways
to 89 in PW (35 up-regulated and 54 down-regulated)
and 248 in NBB (115 up-regulated and 133 down-
regulated). Of these, 34 pathways replicated across the
two cohorts. Concordant pathways comprised protein

folding, ER-related processes and lipid oxidation (Fig. 3).
The complete results are provided in Additional file 5.
As expected, scoring each pathway according to the

change in p-value when accounting for cellularity, re-
vealed a marked downplay of the relevant cell type-
specific functions (Table 1). In the PW cohort, which
was characterized by a skewed oligodendrocytes/neurons
proportion, the function with the largest attenuation (i.e.
increase in p-value) was seen for up-regulation of mye-
lination and other oligodendrocyte related functions and
for down-regulation of neuronal pathways. For NBB, ac-
counting for cell-composition resulted in attenuation of
immunity and neuronal pathways, consistent with the
unbalanced microglial/neuronal proportions seen in that
cohort (Table 1). Strikingly, pathways linked to mito-
chondrial respiration, including respiratory complex I,
were among the down-regulated processes that lost stat-
istical significance when controlling for cellularity. The
attenuation of the mitochondrial signal was observed in
both cohorts. Conversely, up-regulation of protein
folding-related pathways gained significance in both co-
horts (Table 2 and Fig. 3). Complete results are provided
in Additional file 6.

Discussion
We present the first genome-wide transcriptomic study
in the PD brain employing whole RNA-seq after rRNA
depletion and random primer capture (Ribo-Zero). Our
findings show that PD-associated differential gene ex-
pression signatures in bulk brain tissue are influenced to
a great extent by the underlying differences in cell type
composition of the samples. Modeling cell type hetero-
geneity allowed us to highlight transcriptional signatures
that are likely to represent aberrant gene expression
within the cells of the PD brain, rather than changes in
cell composition.
Our results suggest that the Ribo-Zero approach is su-

perior to the more commonly used poly(A) method and
allows for a more accurate mapping and quantification
of the transcriptome in post-mortem brain tissue. The
Ribo-Zero method provides substantially higher even-
ness of coverage and effectively mitigates the 3′- and 5′-
end coverage bias associated with poly(A) capture.
Ultimately, the unevenness of coverage will influence
transcript quantification, affecting the sensitivity of the

(See figure on previous page.)
Fig. 2 Analysis of sample covariates. a Pearson correlation coefficients for each pair of variables are shown in correlograms. Sizes of the circles in
the upper triangular of the correlograms are proportional to the Pearson correlation coefficient, with color indicating positive (blue) or negative
(red) coefficients. The precise values for the Pearson coefficients are indicated in the lower triangular. Non-significant pairwise correlations (p ≥
0.05) are represented with a cross. b Heatmaps showing the association between the sample variables with the first 5 principal components of
the gene expression. Only significant p-values (p < 0.05) are shown (linear regression F-test). c Cell type estimates based on MGPs for the main
cortical cell types controlling for all the experimental variables except disease status (i.e. sex, age, PMI, RIN, and sequencing batch). P-values
calculated with Wilcoxon tests. PW = ParkWest cohort; NBB = Netherlands Brain Bank cohort
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differential expression estimates. While these observa-
tions are in agreement with previous comprehensive re-
ports [1, 25, 47, 56], we cannot rule out the contribution

of experimental variables specific to each cohort, in
addition to the RNA sequencing methodology. Further-
more, while the Ribo-Zero protocol shows advantages

Fig. 3 Functional enrichment. The treemap shows the concordant enriched pathways between PW and NBB cohorts accounting for experimental
covariates and MGPs (same direction of gene expression change and FDR < 0.05). Pathways are grouped with a white border if their gene overlap
is above 0.5 (Szymkiewicz–Simpson coefficient). Darker shades of red/blue represent lower enrichment p-values for up−/down-regulated pathways.
Sizes of the rectangles are proportional to pathway sizes
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compared to the poly(A) method, it is certainly not suffi-
cient to fully mitigate the impact of RNA degradation on
transcript quantification.
Our study supports the notion that cell composition

can be a major confounder in bulk brain tissue tran-
scriptomics. We estimated the relative cell type abun-
dance across our samples by calculating MGPs for the
main cortical cell types. While MGPs do not provide a
direct measure of cell counts, they are a validated and
robust surrogate for cell type composition [37, 52].
Moreover, we show that MGPs are (1) highly consistent
across three different single cell-based marker sets, (2)
highly robust to marker gene outliers, and (3) not sus-
ceptible to PD-associated changes in gene expression.
Taken together, these results indicate that MGPs reliably
represent the general behavior of cell type-specific tran-
scriptional signature in our data.
Our analyses indicate that the observed expression

profiles in both cohorts were driven predominantly by a
combination of technical factors associated with RNA
quality, and differences in cellular composition between
PD and controls. This difference was primarily due to ol-
igodendrocytes in PW and microglia in NBB. Since
oligodendrocyte proliferation is not a pathological fea-
ture of PD, it is plausible that the difference in oligo-
dendrocyte MGPs in PW was due to technical variation
in gray/white matter content introduced during tissue
sampling. Microglial infiltration does occur in affected
areas of the PD brain [18]. It is noteworthy, however,
that increased microglial MGP was only observed in one
of the cohorts (NBB), highlighting the biological hetero-
geneity of PD. Accounting for relative cell proportions
reduced the number of differentially expressed genes
and attenuated the calculated enrichment of cell type-
specific pathways between PD and controls. In the PW
cohort, this alleviated a substantial false positive signa-
ture of oligodendrocyte genes presumably caused by
skewed grey/white matter sampling bias. Similar sam-
pling bias could be responsible for oligodendroglia-
specific functions appointed to PD brain in previous
transcriptomic studies [46].
Intriguingly, accounting for cellular proportions down-

played several of the transcriptomic signatures that have
been previously associated with PD. For instance, the
signal from vesicle trafficking- and synaptic
transmission-related processes [9, 10, 15, 21, 29, 40] was
significantly attenuated in both cohorts, suggesting that
the signal was primarily driven by changes in neuronal
proportions between PD and controls, rather than
modulation of these pathways within neurons. More-
over, we observed an attenuation in the down-regulation
of mitochondrial pathways, including the respiratory
chain and oxidative phosphorylation, which are among
the most consistent transcriptomic signatures in PD [8,

Table 1 Loss of significance in enriched pathways

PW

Up-regulated Down-regulated

Pathway Delta Pathway Delta

myelination −8.85 regulation of synaptic
vesicle exocytosis

−9.63

ensheathment of neurons −8.67 intrinsic component of
synaptic membrane

−9.60

axon ensheathment −8.67 regulation of synaptic
vesicle cycle

−9.58

detection of chemical stimulus
involved in sensory perception of
bitter taste

−7.95 positive regulation of
synaptic transmission

−9.48

oligodendrocyte differentiation −
6.94

Schaffer collateral - CA1
synapse

−9.46

oligodendrocyte development −6.58 regulation of synaptic
plasticity

−9.44

apical junction complex −5.57 regulation of
neurotransmitter
secretion

−9.41

glial cell development −5.54 presynaptic membrane −9.27

glial cell differentiation −5.52 regulation of synaptic
vesicle transport

−9.19

tight junction −4.16 protein transport within
lipid bilayer

−9.11

NBB

Up-regulated Down-regulated

Pathway Delta Pathway Delta

activation of innate immune
response

−8.54 ribonucleoside
monophosphate
metabolic process

−9.09

regulation of leukocyte
proliferation

−8.11 purine nucleoside
triphosphate metabolic
process

−9.03

regulation of lymphocyte
proliferation

−8.01 mitochondrial
membrane part

−8.99

regulation of mononuclear cell
proliferation

−7.79 ATP metabolic process −8.92

innate immune response-activating
signal transduction

−7.43 regulation of synaptic
vesicle exocytosis

−8.87

regulation of adaptive immune
response

−7.16 inner mitochondrial
membrane protein
complex

−8.82

response to interferon-gamma −7.15 purine ribonucleoside
triphosphate metabolic
process

−8.77

adaptive immune response based
on somatic recombination of
immune receptors built from
immunoglobulin superfamily
domains

−7.07 respiratory chain −8.70

blood microparticle −6.75 regulation of synaptic
vesicle transport

−8.68

regulation of T cell proliferation −6.73 cellular respiration −8.43

Tables representing the top 10 pathways with the lowest delta for up-
and down-regulated pathways for PW and NBB cohorts. The delta value
represents the change in the enrichment –log10 (p-value) between the
results with and without MGP adjustment (negative values of delta imply
a loss of significance when accounting for cellularity). Complete results
are provided in Additional file 6
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9, 19, 20, 29, 42, 55, 57]. The loss of transcriptional sig-
nal in these pathways is intriguing, because there is com-
pelling evidence that decreased complex I protein levels
occur in PD neurons [23]. Our results suggest that the
previously reported transcriptional down-regulation of
the respiratory chain is at least partly driven by altered
cellular composition (due to decreased number of

neurons which highly express these genes) and may
therefore not be the sole mechanism by which neuronal
complex I deficiency occurs in PD. Indeed, it has been
suggested that complex I deficiency in PD may be medi-
ated by proteolytic degradation by the LON-ClpP prote-
ase system, rather than transcriptional regulation [44].
Changes in the cell-composition of the affected brain

regions occur in all neurodegenerative diseases, includ-
ing PD, Alzheimer disease, amyotrophic lateral sclerosis
(ALS) and Huntington disease. Interestingly, common
and overlapping transcriptional signatures have been re-
ported across these neurodegenerative diseases, includ-
ing mitochondrial, neuronal-specific, and immunity-
related pathways [4, 17]. Our findings suggest that these
common transcriptional signatures of neurodegeneration
may largely represent the common pattern of altered
cellularity, involving neuronal loss and glial proliferation,
rather than biological processes of causal nature.
Accounting for cell type composition in our samples

highlighted processes related to the endoplasmic
reticulum, unfolded protein response and lipid/fatty acid
oxidation as the top differential gene expression signa-
tures in the PD prefrontal cortex. Unfolded protein re-
sponse is indeed one of the most consistently reported
transcriptomic signatures in PD [8, 9, 20, 28, 41, 55].
Moreover, endoplasmic reticulum stress and aberrant
proteostasis have been associated with the accumulation
of misfolded proteins, including α-synuclein, in both
in vitro studies and animal models of PD [16]. While less
is known regarding the role of lipid metabolism in PD,
evidence of aberrant fatty acid oxidation has been found
by metabolomic studies in serum [12] and urine [36] of
patients. Our results corroborate these findings and indi-
cate that aberrant fatty acid metabolism occurs in the
PD prefrontal cortex.
Based on our findings, we advocate that modeling cell

type heterogeneity is crucial in order to unveil transcrip-
tomic signatures reflecting regulatory changes in the PD
brain. It is, however, important noting that modeling of
cellular estimates cannot completely mitigate the cell-
composition bias in bulk tissue. Moreover, cell type cor-
rection complicates the identification of transcriptional
changes that are confounded with changes in cellular
composition and may thus increase the false negative
rate. Single-cell or cell-sorting based methods will be
key to overcoming this limitation and deciphering tran-
scriptomic signatures directly associated with underlying
disease mechanisms in PD.

Conclusions
Our findings show that differential gene expression sig-
natures derived from bulk brain tissue of PD patients are
significantly confounded by underlying differences in cell
type composition. Modeling cell type heterogeneity is

Table 2 Gain of significance in enriched pathways

PW

Up-regulated Down-regulated

Pathway Delta Pathway Delta

protein folding 5.77 DNA packaging complex 3.76

‘de novo’ protein folding 5.73 basement membrane 3.47

unfolded protein binding 5.54 positive regulation of
epithelial cell proliferation

2.52

chaperone-mediated
protein folding

5.32 negative regulation of
gliogenesis

2.49

‘de novo’ posttranslational
protein folding

4.68 fatty acid beta-oxidation 2.30

heat shock protein binding 4.34 nucleosome 2.18

response to unfolded
protein

4.10 glomerulus development 2.16

response to topologically
incorrect protein

3.53 aorta development 2.06

oxidoreductase activity,
acting on paired…

2.74 endothelium development 1.95

NBB

Up-regulated Down-regulated

Pathway Delta Pathway Delta

positive regulation of
cardiac muscle tissue dev…

1.99 tertiary granule 5.22

regulation of smooth
muscle cell differentiation

1.98 ficolin-1-rich granule
membrane

5.00

negative regulation of
protein serine/threonine
kin…

1.98 regulation of myeloid
leukocyte mediated
immunity

4.55

hormone-mediated
signaling pathway

1.95 regulation of leukocyte
degranulation

4.34

lung alveolus development 1.71 specific granule 4.22

positive regulation of
striated muscle tissue dev…

1.69 ficolin-1-rich granule 4.15

positive regulation of
muscle organ development

1.69 tertiary granule membrane 3.57

positive regulation of
muscle tissue development

1.62 regulation of mast cell
activation

3.52

negative regulation of MAP
kinase activity

1.48 vacuolar lumen 3.05

regulation of cardiac muscle
cell differentiation

1.48 regulation of mast cell
degranulation

3.05

Tables representing the top 10 pathways with the highest delta for up- and
down-regulated pathways for both cohorts. The delta value represents the
change in the enrichment –log10 (p-value) between the results with and
without MGP adjustment (positive values imply an increase in p-value when
accounting for cellularity). Complete results are provided in Additional file 6
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crucial in order to unveil transcriptomic signatures that
represent regulatory changes in the PD brain and are,
therefore, more likely to be associated with underlying
disease mechanisms.
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