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Abstract. Simulation of a dynamic contrast-enhanced magnetic reso-
nance imaging (DCE MRI) multiple sclerosis brain dataset is described.
The simulated images in the implemented version have 1x1x1mm3 voxel
resolution and arbitrary temporal resolution. Addition of noise and simu-
lation of thick-slice imaging is also possible. Contrast agent (Gd-DTPA)
passage through tissues is modelled using the extended Tofts-Kety model.
Image intensities are calculated using signal equations of the spoiled gra-
dient echo sequence that is typically used for DCE imaging. We then use
the simulated DCE images to study the impact of slice thickness and
noise on the estimation of both semi- and fully-quantitative pharma-
cokinetic features. We show that high spatial resolution images allow
significantly more accurate modelling than interpolated low resolution
DCE images.

Keywords: DCE imaging · Quantitative DCE analysis · Semi-quantitative
DCE analysis · Biomarkers.

1 Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a type of
perfusion imaging. DCE can be used to assess tissue microcirculation parameters
that are biomarkers for diagnosis, prognosis and treatment monitoring [6]. A
DCE dataset is a time sequence of T1-weighted (T1W) MR images, acquired
before, during and after administration of a paramagnetic contrast agent (CA).

DCE images are characterized, among others, by spatial and temporal res-
olution. The spatial resolution is defined as the ability to differentiate small
structures in the image, while the temporal resolution refers to the time lapse
between consecutive T1W scans. There exists a trade-off between the spatial
and temporal resolution of DCE images. In general, as explained in [27], the
decision concerning the acquisition of a high spatial resolution or a high tempo-
ral resolution dataset depends on the type of image analysis that is required (a
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review of those can be found in [15]), which in turn depends on the disease or
condition. The temporal resolution would be more important than spatial if the
CA kinetics are to be finely studied. If tumour heterogeneity is to be studied,
spatial resolution is more important than temporal. High spatial resolution of
breast cancer MRI was shown to be critical by [9].

We claim that the trade-off between spatial and temporal resolution in DCE
MRI can be improved, using super-resolution methodology, for example. The
proof of the above claim requires demonstration of the feasibility of super-
resolution methods, preferably using quantitative evaluation. In [14], we used
MRI images of a physical phantom with known geometrical properties to quan-
titatively evaluate super-resolution images. For evaluation of super-resolution
DCE images we postulate to use a digital phantom with known pharmacokinet-
ics to simulate high spatial resolution DCE images.

According to our literature research, there have been just a few attempts in
the past to simulate realistic DCE MRI data. Pannetier et al. [21] simulated a
DCE experiment on the level of cells and microvessels. Abdominal DCE MRI
simulation was studied in [2], using anatomy masks derived from CT images.
Similarly, [7] simulated CA-based enhancement in a DCE sequence of the ab-
domen acquired without CA administration, using a mathematical model. In [3],
prostate cancer DCE was simulated using an anatomical atlas of the prostate.
These approaches used thick-slice images of the abdomen or prostate and thus
resulted in low resolution (LR) simulated DCE images that are not suitable for
evaluation of super-resolution DCE images. Simulation of higher resolution im-
ages was proposed by [4], which used a digital phantom of the brain, but did not
model the partial volume effect (PVE), responsible for blurring and loss of spa-
tial resolution. In this paper, we simulate DCE images by using the DCE signal
modelling methods similar to [2, 7, 3] with a high resolution (HR) brain phan-
tom published on BrainWeb: Simulated Brain Database [5], similarly as [4]. The
BrainWeb phantom, however, has an important property that was not exploited
in [4]: apart from having relatively high, isotropic spatial resolution, it is a fuzzy
model with knowledge about the partial volume effect within each voxel. We
innovate DCE image simulation by modelling the impact of PVE on enhance-
ment curves in the high resolution isotropic simulated images and in thick-slice
LR simulated images. We then conduct a study to estimate quantitative and
semi-quantitative biomarkers from these images. We focus on the impact of slice
thickness and noise on the value of the estimates.

2 Materials

2.1 Anatomical phantom of the brain

Construction of the adapted BrainWeb digital brain phantom is described in [5].
The phantom dataset is composed of 11 tissue maps of voxel resolution 1x1x1
mm3. The value of voxels is in the [0,1] range and denotes the proportional
contribution of a particular tissue to the voxel tissue content. The tissue classes
and their parameters are summarized in Table 1. A sagittal slice through the
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phantom image is shown in Figure 1, where each voxel has a label referring to
the tissue with largest contribution1.

Table 1: Tissue parameters of the brain phantom used for MRI simulation in [17]

Parameter / Tissue class background
cerebrospinal

fluid
gray

matter
white

matter
glial

matter
fat

muscle
+ skin

skin skull meat
MS

lesions

T1 0 2569 833 500 833 350 900 2569 0 500 752

T2* 0 58 69 61 69 58 30 58 0 61 204

PD 0 1 0.86 0.77 0.86 1 1 1 0 0.77 0.76

Fig. 1: The BrainWeb phantom shown as a tissue-labelled sagittal slice

3 Methods

3.1 Modelling of CA concentration in blood plasma

The organs are supplied in blood by at least one artery. The model of the curve
showing CA blood plasma concentration over time is called the arterial input
function (AIF). Personalized models assume that the parameters of the AIF
curve can be found by fitting the model to DCE timeseries taken from a large
artery. Other models include population-based models, that are obtained by
averaging of CA blood plasma contrast measurements of a group of subjects. A
common population-based model is the Tofts biexponential model [25, 12], used
for DCE simulation by [3]. The temporal resolution of the data that were used
to fit the Tofts model, however, was several minutes [26]. This timescale does

1 https://brainweb.bic.mni.mcgill.ca/tissue mr parameters.txt
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not match the temporal resolution of modern DCE images. We therefore use the
Parker AIF [22], given by

Cb(t) =

2∑
n=1

An

σn
√

2π
exp(−(t−Tn)2)/2σ2

n)+αexp(−βt)/(1+exp(−s(t−τ)))

(1)

where the CA concentration in blood Cb(t) is a parametrised sum of two Gaus-
sians and an exponential modulated by a sigmoid function. The parameters were
found in [22] by fitting the model to several DCE datasets and averaging: A1 =
0.809 mMol · min, A2 = 0.330 mMol · min, T1 = 0.17046 min, T2 = 0.365 min,
σ1 = 0.0563 min, σ2 = 0.132 min, α = 1.05 mMol, β = 0.1685 mMol, s = 38.078
min−1, τ = 0.483 min−1. The AIF is shown in Figure 2.

Fig. 2: The AIF assumed in our simulation, as proposed by Parker et al. [22]. Note
that concentration peaks (first-pass- and recirculation-related) occur during the
first minute of CA passage

3.2 Modelling of CA concentration in tissues

The concentration of the CA in tissues is described by the extended Tofts-Kety
model:

Cp(t) = Cb(t)/(1−H) (2)

Ct(t) = vpCp(t) + Cp(t)⊗ (Ktranse−kept) (3)

Equation (2) calculates blood plasma CA concentration Cp(t) using the blood
hematocrit value H = 0.42 and CA concentration in blood Cb(t). Then, Equa-
tion (3) calculates the tissue CA concentration Ct(t) which is a sum of two
components dependent on the plasma concentration, where ⊗ denotes convolu-
tion, Ktrans is the volume transfer constant, kep is the efflux rate constant from
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extravascular extracellular space to plasma and vp is the blood plasma volume
per unit volume of tissue, respectively [24, 19]. The latter three pharmacokinetic
parameters are used to describe the state of the tissue and can reflect malignancy,
blood-brain barrier (BBB) disruption etc.

3.3 From CA concentration to MR signal enhancement

In general, the MR signal in T1W MR images is related to both the T1 and
T2* relaxation times of tissues. The CA creates chemical bonds with signal-
generating molecules and changes the native T1 and native T2 times (T10 and
T ∗
20) by a factor related to the longitudinal and transverse relaxivities of the CA

(R1 and R2) and the CA concentration in tissue. The contrast of the MR images
is further dependent on the acquisition parameters set on the MR scanner: the
echo time (TE), repetition time (TR) and flip angle (FA). Finally, scanner gain
k and the density of protons in the tissue (PD) weigh the signal amplitude.
Altogether, signal amplitude S(t), in the commonly used spoiled gradient echo
acquisition sequence that we adapt, is given by Equation (4), which we modified
from [27, 3].

S(t) = k·PD·sin(FA)·exp(−TE(
1

T ∗
20

+R2Ct(t)))·(1−exp(−TR(
1

T10
+R1Ct(t))))·

· (1− cos(FA) · exp(−TR(
1

T10
+R1Ct(t))))

−1 (4)

3.4 Modelling of PVE in high resolution voxels

Each voxel of an MR image represents a space in which a variety of tissues
is present. These tissues have different PD value and relaxation times. For a
particular voxel, its intensity in the image depends on the sum of signals sent
by the mixture of tissues. Knowing the proportion of the tissues contributing to
each voxel and the PD, we propose to calculate this sum using Equation (5):

Sv(t) =

11∑
l=1

λvl · k · PDl · al(t) (5)

where v is the index of the current voxel, l is the tissue class label and λvl is
the contribution of tissue l to voxel v. Using the above formula, PVE can be
modelled for the original 1x1x1 mm3-sized voxels of the HR phantom.

3.5 Modelling of thick-slice imaging

To model a low spatial resolution DCE imaging of the brain, we used an imaging
model described in [14]:

ILR = D(IHR) (6)
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where D is an operator leading to ILR, a LR thick-slice anisotropic-voxel image
and IHR is the high resolution isotropic volume.

Operator D takes as input a block of 1×1×AF neighbouring isotropic voxels
(in the single, desired direction), calculates their average intensity and assigns
it to the anisotropic output voxel, which covers the same space as the input
voxel block. One can also view these operations as averaging AF thin slices to
compute a single thick-slice. We refer to AF as the anisotropy factor.

Downsampling and averaging leads to an increased PVE and aliasing arti-
facts, deteriorating image quality [13]. As we will show, it also introduces errors
to the estimates of pharmacokinetic parameters.

3.6 Modelling of noise

In DCE analysis, noise spoils not only the three spatial dimensions of the image,
but also the fourth temporal dimension. In MRI generally, the noise has Rician
distribution in high-intensity regions and Rayleigh distribution (a special case
of the Rician) in background regions with no MR signal [10]. This situation can
be modelled in the following way. Our simulated DCE images are noise-free,
real-valued magnitude images, as follows from Equation (5). The intensity Sv

n of
a noisy image voxel can be modelled as:

Sv
n =

√
(Sv +NR)2 + (jNI)2 (7)

where j is the imaginary unit, NR is the additive noise of the real part of the
voxel signal and NI is the additive noise of the complex part of the signal. This
refers to the physical mechanism of image acquisition, as explained in [16], but
the model can be used for our simulation as well. Both NR and NI are random,
zero-mean Gaussian noise variables. Calculating the magnitude of the complex
intensity in Equation ( ) gives images with the desired Rician noise distribution.

The level of noise is defined by the standard deviation of the Gaussians NR

and NI , that is specified as a certain percentage of the intensity of the brightest
tissue. In our experiment, we use 3% noise relative to the brightest tissue, which
we find reasonable based on a comparison with a real brain DCE dataset.

3.7 Semi-quantitative DCE analysis

Semi-quantitative analysis of DCE timeseries is based on the paradigm of curve
shapes [11, 8], that are believed to correspond to the presence and aggressiveness
of neoplasms. This type of analysis does not require more than the DCE dataset
itself to derive meaningful features. The features, as shown in Figure 3, are
estimated from interpolated, normalized time-intensity curves and include time-
to-peak, wash-in gradient and wash-out gradient, among others [11]. Time-to-
peak is defined as the time necessary for the voxel signal to reach its maximum
value (t3, S100%). Wash-in gradient is the rate of change of the intensity starting
at the timepoint where the intensity has 10% of the maximal value (t1, S10%),
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until it reaches 90% of the maximum value (t2, S90%)

Gin =
t2 − t1

S90% − S10%
(8)

Wash-out gradient is defined as the rate of change of the intensity after time-to-
peak until the end of the timeseries (t4, Send).

Gout =
t4 − t3

Send − S100%
(9)

Normalization of the curves is achieved by subtracting the mean value of the
pre-injection signal from all time points and then dividing by the same mean
value [11]. The injection time can be determined manually or automatically,
while in our experiments it is known by design. For interpolation of the 6-second
resolution simulated timeseries we used linear interpolation and subsampling
by a factor of 60, thus obtaining the temporal resolution of 1/10 seconds for
semi-quantitative analysis.

Semi-quantitative analysis seems to be more robust than fully quantitative
analysis as demonstrated in [18]. We believe this is mainly due to the number of
unknown variables in Equation 4. We shall leave investigation of this problem
to another study.

Fig. 3: Relevant times and relative signal intensity values for the determination
of semi-quantitative pharmacokinetic parameters [11]

3.8 Fully quantitative DCE analysis

Fully quantitative analysis is a way to estimate the value ofKtrans, kep and vp pa-
rameters by fitting the function from Equation (3) to the measured time-intensity
timeseries converted to time-concentration curves, for every voxel. To obtain the



8 J. Jurek et al.

time-concentration curves, it is not enough to acquire the DCE dataset. Con-
version requires the estimation of the AIF for the analysed patient, which can
be done in two ways. The first way is to use an averaged, population-based in-
put function, such as the ones proposed by Orton [20] or Tofts-Weinmann [26,
25]. The advantage is that they are readily available, in contrast to personalized
AIFs. To measure the latter, it is required to capture a large vessel in the image
field-of-view. The size of the vessel is important due to smaller expected PVE
in larger vessels, which leads to better AIF parameter estimation.

If the AIF is known, the remaining variables necessary to obtain the time-
concentration curves are R1, R2, TE, TR, FA (known by design) and k, PD,
T ∗
20 and T10 that still need to be estimated. The relaxation times can be es-

timated using multiple variable flip angle (VFA) acquisitions and appropriate
signal equations [16]. However, it would be infeasible to extend scanning time
in practice to estimate both T ∗

20 and T10. The first of these appears in the term
exp(−TE( 1

T∗
20

+R2Ct(t))) in (4). We obtain

exp(−TE(
1

T ∗
20

+ 0)) = exp(
−TE
T ∗
20

) (10)

for t = 0 and

exp(−TE(
1

T ∗
20

+R2Ct(t))) = exp(
−TE
T ∗
20

) · exp(−TE ·R2Ct(t)) (11)

for t > 0. The influence of (10) component on the total signal (4) can be neglected
if TE is set to be short, given that T ∗

20 of tissues is longer than 30 ms [16, 27]
(Table 1). Then, T10 is estimated by acquiring at least two T1-weighted datasets
with a different FA, keeping the TR and TE constant. [27] suggests that k · PD
and T10 can be fit to the signal equation, while we calculate it directly using
only two VFA acquisitions. Then,

T10
TR

= loge(
S1sin(FA2)cos(FA1)− S2sin(FA1)cos(FA2)

S1sin(FA2)− S2sin(FA1)
)−1 (12)

where S1 and S2 are intensities of the two T1-weighted images and FA1, FA2

are two different flip angles. Once T10 is estimated, it can be used to calculate
k · PD by solving Equation (4) for t = 0 and TE>> T ∗

20. With all the other
parameters in hand, Ktrans, kep and ve can finally be estimated.

The latter yet requires conversion of the measured time-intensity signals to
time-concentration signals. The relation is obtained from (4) and is the following:

C(t) = (TR+ loge(1− kPDsin(FA)S−1)− loge(cos(FA)−
− kPDsin(FA)S−1)) · (−R1T10TR)−1 (13)

We use a curve fitting approach to find the parameters of (3). The Levenberg-
Marquardt algorithm was used to minimize the least squares error between the
converted observed data and the model (3).
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3.9 Implementation

All models were implemented in-house using Python and its popular libraries
such as NumPy, SciPy, NiBabel, scikit-image and Matplotlib. Quantitative and
semi-quantitative parameters were computed likewise. The programs were run
on a laptop with an Intel Core i3-4000M CPU with 2.4 GHz clock speed and 16
GB of random access memory.

3.10 Simultion of high spatial resolution VFA and DCE images

Our simulated HR scanning session included acquisition of 56 image volumes
in total. For most parameters of the acquisition, we followed the Quantitative
Imaging Biomarkers Alliance 1.0 profile for DCE quantification [1]. The first VFA
T1-weighted image was simulated using FA = 15o, TR/TE = 4 ms/1 ms, scanner
gain k was set to 10000 for all simulations. The DCE sequence was simulated
using (5) for every voxel of the phantom, with TR/TE unchanged and FA = 25o.
The first time-frame of the DCE sequence was used as the second VFA image
for T1-mapping, using (12). In total, the DCE sequence consisted of 55 volumes,
5 of which were pre-contrast ones. The simulated CA was gadopentate dimeg-
lumine (Gd-DTPA) with R1 = 3.75 (mM·s)−1 and R2 = 4.89 (mM·s)−1[23].
The temporal resolution was set to 6 seconds, although the convolution in (3)
was performed with signals of 1 second temporal resolution and the result was
downsampled. For all tissues but the MS lesions, we set Ktrans = 0.0002, kep =
0.2, vp = 0. For MS lesions, which we assumed to be fully homogeneous, we set
Ktrans = 0.01, kep = 1, vp = 0.03. The resulting ground-truth concentration
curves for lesions and normal tissue are shown in Figure 4. Pre-contrast and
post-contrast slices of the resulting DCE volumes are shown in Figure 5.

Fig. 4: Model-based pharmacokinetic curves representing CA concentration
changes over time in normal (blue) and lesion (red) white matter (WM) tis-
sue
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(e) HR (f) Noisy HR (g) ILR (h) Noisy ILR

Fig. 5: Sample time-frames (pre-contrast – top, post-contrast – bottom) from
simulated HR and interpolated LR (ILR) DCE images

3.11 Simulation of low spatial resolution DCE images

Low spatial resolution VFA volumes and DCE sequence were obtained from the
HR counterparts using (6) with AF = 6. 3% noise was added to the volumes
following LR imaging simulation. The LR images were then linearly interpolated
to recover the original voxel resolution, although with a loss in the spatial reso-
lution. As demonstrated in Figure 5, the ILR images are blurred in the plane of
the slices and aliasing might occur in the direction perpendicular to the slices.

4 Results

4.1 Comparison of time-intensity signal curves in HR and LR DCE
images

Curves sampled from a lesion region and from a healthy region are plotted in
Figure 6. In the case of the healthy white matter, due to the protection of the
BBB, only little enhancement is present. Since the sample was taken from a
specific region where tissue is homogeneous, the noise-free curves do not differ.
The noisy curves vary only due to the random noise.

A different result is observable for the curve sampled from a lesion. The noise-
free curves are not identical in this case, because significant PVE occurs for the
ILR volume. This has visible effect on the amount of enhancement and initial
intensity value, as well as the slope of the curve in the initial wash-in and final
wash-out phases. For actively enhancing lesion, noise is effectively smaller than
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for the mildly enhancing normal white matter as compared to signal variations
due to enhancement.

(a) WM (100%) voxel (b) Lesion voxel (10% WM)

Fig. 6: Sample intensity timeseries taken from noisy and noise-free HR and ILR
images. In a), PVE does not occur due to tissue homogeneity and the difference
in noisy curves is due to noise only. In b), PVE increases in the ILR image,
affecting the curve shape

4.2 Semi-quantitative DCE analysis

In analysis of the simulated DCE datasets, we first performed semi-quantitative
modelling. We estimated the time to peak and the mean and wash-out gradients
for noise-free and noisy HR and ILR volumes, for all voxels were lesion tissue was
dominant. Mean values and standard deviations of these estimates are presented
in Table 2. The time to peak was slightly underestimated in the noise-free HR
DCE. For other volumes, the value of this feature was overestimated, but the
largest error and standard deviation is observed for the noisy ILR volume. For
the wash-in gradient, its value was significantly underestimated for the noisy
ILR DCE images, suggesting that is might be misleading to use it for diagnostic
purposes. The wash-out gradient was overestimated by the noisy HR images,
and for the noisy ILR images it was underestimated. The standard deviation of
the latter was yet more than twice larger.

4.3 Fully quantitative DCE analysis

Estimates of Ktrans, kep and vp were obtained and then averaged over all vox-
els when the lesion tissue was dominant. The results are presented in Table 3.
Comparison to the ground truth values reveals that noisy ILR volumes, which
are designed to be the most similar to actual DCE datasets, are associated with
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Table 2: Mean and standard deviation of the semi-quantitative pharmacokinetic
parameters in voxels where MS lesion tissue is dominant. See Section 3.7 for
equations

Image
Volume

t3 [min] Gin [min−1] Gout [min−1]
mean st. dev. mean st. dev. mean st. dev.

HR 1.28 0.07 7.31 1.75 -0.13 0.03

HR + 3% N 1.60 0.43 4.12 2.80 -0.17 0.05

ILR 1.61 0.30 3.44 2.27 -0.06 0.04

ILR + 3% N 1.91 0.73 1.77 1.85 -0.11 0.10

MS lesion value 1.3 - 8.55 - -0.14 -

the largest standard deviation of the estimates. The errors in the mean values
are also largest for the ILR images. It is worth noting that even the HR volumes
resulted in estimates relatively far from the ground truth values.

Table 3: Mean and standard deviation of the quantitative pharmacokinetic pa-
rameters in voxels where MS lesion tissue is dominant. See Section 3.2 for ex-
planation of the parameters

Image
Volume

Ktrans [10−3·min−1] kep [min−1] vp
mean st. dev. mean st. dev. mean st. dev.

HR 6.9 1.5 0.96 0.03 0.019 0.004

HR + 3% N 7.1 3.1 0.97 0.08 0.018 0.008

ILR 3.7 1.8 0.84 0.10 0.012 0.005

ILR + 3% N 3.5 2.5 0.86 0.20 0.009 0.015

MS lesion value 10 - 1 - 0.03 -

5 Discussion and conclusions

The results clearly show the negative impact of the PVE on estimation of both
semi- and fully-quantitative pharmacokinetic features in voxels where lesion tis-
sue is dominant. Although we have simulated a brain dataset with multiple
sclerosis, as allowed by the publicly available anatomical data, we think that
similar results would be obtained for other organs and other lesion types. There-
fore, the main point of our work is to acknowledge the opinions that spatial
resolution is the crucial factor in DCE analysis, regardless of the analysis type.
It is also clear that magnitude of errors is feature-dependent. In our analysis,
time to peak appeared to be estimated with lower error than wash-in gradient,
for example. The reason could be that averaging and downsampling, which is
the source of spatial resolution loss in ILR DCE images, affect different parts of
the time-intensity curves to a variable degree.
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3% noise that was added to HR and LR images showed to have smaller im-
pact on the estimates of fully quantitative parameters than 6 mm slice thickness.
For semi-quantitative parameters, this effect was not so clear. The estimate of t3
and Gin was affected to a similar degree by noise and slice thickness. However,
for the Gout parameter, noise lead to overestimation of the negative slope, while
slice thickness cause underestimation. Both noise and slice thickness increased
the standard deviation of the estimate. This is understandable for random noise.
For slice thickness, it implies that different voxels are affected to a variable de-
gree by averaging and downsampling leading to thick slices.

Considering possible drawbacks of our study, we first note that our DCE
simulations are based on imaging and perfusion models that do not reflect the
complex phenomena of both image acquisition and pharmacokinetics perfectly.
In our experiment, HR image acquisition was simulated using signal equations
and LR image acquisition was modelled using averaging and downsampling.
Both models simplify the complex nature of MR imaging and MR signal mea-
surements and do not reflect all phenomena that occur during imaging. The
pharmacokinetic model of Tofts-Kety that we used to simulate the CA kinetics
is a popular, but again simplified description of the true, complex processes of
CA passage through vessels and tissues. The anatomical model of the brain is
simplified as well, it does not include vessels, for example. Lesions were modelled
as homogeneous regions, while in reality, they are heterogeneous. Nonetheless,
we believe that the above simplifications do not hinder our goals of studying the
influence of spatial resolution on DCE image analysis results, since this analysis
always assumes some simplifications. Moreover, this influence might be common
to various models, as it basically results from signal sampling theory. We find the
simulated images useful to study the influence of such factors as noise or PVE
on the biomarkers computed from the images. In the future, it is possible to use
more complicated models of the imaging process and CA kinetics to improve
the realisticness of the simulated DCE dataset. To the best of our knowledge,
however, we are first to simulate DCE images with adjustable slice thickness,
noise and such that incorporate the partial volume effect. Such images can be of
great use in future studies, for example for assessment of super-resolution meth-
ods or pharmacokinetic modelling methods, since they allow a truly quantitative
evaluation when kinetic feature values are known by design.

We have successfully simulated DCE MRI images using brain anatomy. We
used them to study the impact of spatial resolution on pharmacokinetics-related
biomarkers, which revealed the lacks of typical DCE images, which usually have
considerable slice thickness.

Acronyms

AIF - arterial input function, BBB - blood-brain barrier, CA - contrast agent,
DCE MRI - dynamic contrast-enhanced magnetic resonance imaging, FA - flip
angle, Gd-DTPA - gadopentate dimeglumine, HR - high resolution, ILR - inter-
polated low resolution, LR - low resolution, PD - proton density, PVE - partial
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volume effect, TE - time to echo, TR - repetition time, T1W - T1-weighted, VFA
- variable flip angle, WM - white matter
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8. Fabijańska, A.: A novel approach for quantification of time-intensity
curves in a DCE-MRI image series with an application to prostate
cancer. Computers in biology and medicine 73, 119–130 (Jun 2016).
https://doi.org/10.1016/j.compbiomed.2016.04.010

9. Furman-Haran, E., Grobgeld, D., Kelcz, F., Degani, H.: Critical role of spatial res-
olution in dynamic contrast-enhanced breast MRI. Journal of magnetic resonance
imaging : JMRI 13, 862–867 (Jun 2001). https://doi.org/10.1002/jmri.1123

10. Gudbjartsson, H., Patz, S.: The rician distribution of noisy MRI
data. Magnetic resonance in medicine 34, 910–914 (Dec 1995).
https://doi.org/10.1002/mrm.1910340618

11. Haq, N.F., Kozlowski, P., Jones, E.C., Chang, S.D., Goldenberg, S.L., Moradi,
M.: A data-driven approach to prostate cancer detection from dynamic con-
trast enhanced MRI. Computerized medical imaging and graphics : the official
journal of the Computerized Medical Imaging Society 41, 37–45 (Apr 2015).
https://doi.org/10.1016/j.compmedimag.2014.06.017

12. He, D., Xu, L., Qian, W., Clarke, J., Fan, X.: A simulation study comparing nine
mathematical models of arterial input function for dynamic contrast enhanced MRI
to the parker model. Australasian physical & engineering sciences in medicine 41,
507–518 (Jun 2018). https://doi.org/10.1007/s13246-018-0632-0

13. Jurek, J.: Super-resolution reconstruction of three dimensional magnetic resonance
images using deep and transfer learning. Ph.D. thesis (2020)
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