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Abstract

Tetradecylthioacetic acid (TTA) is a synthetic fatty acid with a sulfur substitution in the

β-position. This modification renders TTA unable to undergo complete β-oxidation and

increases its biological activity, including activation of peroxisome proliferator activated

receptors (PPARs) with preference for PPARα. This study investigated the effects of TTA

on lipid and lipoprotein metabolism in the intestine and liver of mice fed a high fat diet (HFD).

Mice receiving HFD supplemented with 0.75% (w/w) TTA had significantly lower body

weights compared to mice fed the diet without TTA. Plasma triacylglycerol (TAG) was

reduced 3-fold with TTA treatment, concurrent with increase in liver TAG. Total cholesterol

was unchanged in plasma and liver. However, TTA promoted a shift in the plasma lipopro-

tein fractions with an increase in larger HDL particles. Histological analysis of the small

intestine revealed a reduced size of lipid droplets in enterocytes of TTA treated mice,

accompanied by increased mRNA expression of fatty acid transporter genes. Expression of

the cholesterol efflux pump Abca1 was induced in the small intestine, but not in the liver.

Scd1 displayed markedly increased mRNA and protein expression in the intestine of the

TTA group. It is concluded that TTA treatment of HFD fed mice leads to increased expres-

sion of genes involved in uptake and transport of fatty acids and HDL cholesterol in the

small intestine with concomitant changes in the plasma profile of smaller lipoproteins.

Introduction

The synthetic saturated fatty acid tetradecylthioacetic acid (TTA) is comprised of a 16-carbon

backbone with an insertion of a sulfur atom in position 3 (β-position) from its carboxyl end.
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This chemical modification still allows TTA to be absorbed in the intestine and transported to

the liver where it can act as substrate for desaturation and incorporation into glycerolipids,

preferably into the phospholipid fraction [1]. Although TTA has physicochemical properties

similar to natural fatty acids, the sulfur-substitution blocks β-oxidation of the fatty acid from

the carboxyl end. The relatively slow hepatic and renal occurring metabolism of TTA instead

involves ω-oxidation followed by partial β-oxidation from the omega end [2–4]. TTA has been

shown to be a potent ligand for nuclear receptors of the peroxisome proliferator-activated

receptor (PPAR)-family [3–9]. Resembling other PPARα agonists, TTA administration to

rodents has a pronounced plasma triacylglycerol (TAG) reducing effect [10,11]. In addition

some hypolipidemic effects of TTA have been demonstrated to be partly PPARα independent,

thus supporting the hypothesis that TTA acts as a PPAR pan-ligand activating also PPARγ and

δ [5,9]. In addition to the mentioned plasma TAG reducing effect, TTA promotes a multitude

of biological effects that are mostly considered beneficial for health. For example, TTA has

been shown to reduce body weight gain (especially by reducing adiposity), to provide benefi-

cial effects on insulin resistance and elevated plasma glucose levels, and to improve dyslipide-

mia in pre-clinical models of obesity and diabetes [8,12–14]. TTA has also been proven to have

anti-oxidative and anti-inflammatory effects both in vivo [14–17] and in vitro [15,17] Despite

all these evidence, no study has investigated in details the effect of TTA on plasma lipoprotein

and the role of the intestine in their modulation. The aim of the present study was to investi-

gate TTA dependent effects on lipid and lipoprotein metabolism in the small intestine and

liver in mice fed HFD. Analysis of plasma lipids revealed that TTA treatment lowers plasma

TAG and led to a redistribution of total plasma cholesterol into large HDL particles. In line

with these findings, TTA increased expression of the HDL cholesterol transporter Abca1
mRNA in the small intestine. TTA treatment also induced several genes with functions in fatty

acid activation and transport and decreased the expression of genes involved in lipogenesis.

Histological analysis of intestine showed a dramatic decrease in lipid droplet size in the entero-

cytes together with a robust increase of the fatty acid desaturating enzyme SCD1 in the villi of

mice receiving TTA.

Materials and methods

Animals and diets

Ten-week-old C57BL/6 male mice (purchased from Taconic, Ry, Denmark, and allowed one

week of acclimatization on chow diet before study start) were fed either a high fat control diet

(HFD, n = 9), or a high fat diet containing 0.75% TTA (n = 9), and water ad libitum for 6

weeks. The HF diet contained 24% fat w/w (21,3% lard and 2,3% soy oil). Mice were housed in

groups of 3 per cage in open cages at a constant temperature of 22˚C and a dark/light cycle of

12h/12h. Cumulative food intake was recorded three times during the study by weighing the

remaining food one or two days after food supply. Body weight was recorded for each mouse

every seventh day. Mice were anesthetized using 2% Isoflurane (Schering-Plough, Kent, UK),

followed by cardiac puncture, the blood was collected and EDTA-plasma was prepared by cen-

trifugation and frozen at -20˚C until further analysis. Livers were collected and snap frozen in

liquid nitrogen and stored at -80˚C. For histology, the small intestine was excised (n = 3 per

group) and fixed in 4% formaldehyde overnight and then stored in 70% ethanol until further

processing. Intestines from the rest of the animals were processed at +4 oC, excised, rinsed

with cold phosphate buffered saline, divided into four segments of equal length and cut open.

The intestinal mucosa cell layer was scraped off and transferred to TRI Reagent1 (Applied

Biosystems, Carlsbad, CA, USA) and the tubes were directly frozen in liquid nitrogen and

stored at -80˚C until further analysis.
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The animal experiments were carried out with ethical permission obtained from the Nor-

wegian State Board for Biological Experiments (Project number 20091741) and followed the

Norwegian Research Councils ethical guidelines, the Guide for the Care and Use of Laboratory

Animals, and the Guidelines of the Animal Welfare Act.

Liver lipids

Total liver lipids were extracted using the method of Bligh and Dyer [18]. Solvents were evapo-

rated and samples were then dissolved in isopropanol before enzymatically measured on a

Hitachi 917 system (Roche Diagnostics, Mannheim, Germany) using the triacylglycerol

(TAG)(GPO-PAP) and cholesterol kits (CHOD-PAP) from Roche Diagnostics, and the phos-

pholipid (PL) kit from bioMérieux SA (Marcy l’Etoile, France).

Plasma lipid and lipoprotein analyses

Plasma lipoproteins were separated from 2,5 μl plasma by size exclusion chromatography

(SEC) and lipids (TAG and cholesterol) were quantified with a real-time detection method.

Plasma total cholesterol and TAG concentration were calculated by integration of the areas

under the curves from each individual profile [19,20].

To further study the plasma lipoproteins, equal amounts of plasma from each animal from

respective groups were pooled and lipoproteins were then separated using SEC or separated

using D2O/sucrose density gradient ultracentrifugation as previously described [21]. Fifteen μl

of every second minute (from minute 39 to 55) fraction after the SEC separation or 5 μl of lipo-

protein isolated by density gradient centrifugation were separated using a 7–15% gradient

SDS-polyacrylamide gel (BioRad Laboratories, Hercules, CA, USA) under denaturing condi-

tions. Proteins were transferred onto nitrocellulose filters (Nitropure, Micron Separations Inc.,

Westborough, MA, USA), and blots were probed with antibodies against ApoA1 (Goat anti-

Human ApoA1, Rockland antibodies and assays, Gilbertsville, PA) and ApoE and ApoB (Rab-

bit anti-Mouse ApoE and ApoB, Meridian LifeScience,1 Inc. Memphis, TN, USA), followed

by detection by IRDyeTM 800 anti-Goat IgG and IRDyeTM 680 anti-Rabbit IgG antibodies

using The Odyssey1 Imaging System (LICOR, Lincoln, NB, USA). Native lipoprotein gel elec-

trophoresis analysis was performed using a semi-automated agarose gel electrophoresis system

(Hydrasis, SEBIA Inc, 400–1705 Corporate Drive, Norcross, GA 300, USA), using Hydragel 7

LIPO+Lp(a) and lipoproteins were stained by Sudan black dye.

Serum HDL subclasses were separated by 2D electrophoresis, in which agarose gel electro-

phoresis was followed by non-denaturing polyacrylamide gradient gel electrophoresis and sub-

sequent immunoblotting with anti-mouse apoA-I (Rockland, Gilbertsville, PA, USA) or an

anti-mouse apoE (Calbiochem, Merck, Darmstadt, Germany)[20,22]. Plasma ApoA1 levels

were detected by ELISA using the Mouse Apolipoprotein A1 ELISA PRO kit (MABTECH AB,

Nacka Strand, Sweden) following the manufacturer´s protocol.

RNA isolation and cDNA synthesis

Livers and intestinal epithelium were used for gene expression analysis. Tissues were homoge-

nized and total RNA was isolated using the MagMax total RNA isolation system (Applied Bio-

systems, Carlsbad, CA, USA). RNA quantity was measured using spectrophotometry

(NanoDrop 1000, NanoDrop Technologies, U.S.A), and quality control for each sample was

performed using the Experion Automated Electrophoresis System (BioRad). The quality limit

for RNA before further analysis was set to R/Q value of 7 (out of 10). cDNA was synthesized

using pooled or individual RNA samples (500 ng RNA per reaction) using High Capacity

RNA to cDNA Mastermix (Applied Biosystems).

PLOS ONE Tetradecylthioacetic acid promotes redistribution of plasma cholesterol towards large HDL

PLOS ONE | https://doi.org/10.1371/journal.pone.0229322 March 16, 2020 3 / 21

https://doi.org/10.1371/journal.pone.0229322


Gene expression analysis

Two types of TaqMan Low Density Arrays (TLDA) in 96-well formats (format 96b, Applied

Biosystems) were designed to investigate the expression of genes related to peroxisomal and

mitochondrial metabolic pathways. The TLDAs were run at the Bioinformatics and Expression

Analysis core facility (BEA) at Karolinska Institutet and mRNA expression data were analyzed

by RQI Manager (Applied Biosystems). Gene expression was calculated using the 2^-ΔΔCt

method using 18S as a reference gene. For QPCR on individual samples a mean for two refer-

ence genes Hypoxyxanthine phosphoribosyltransferase 1 (Hprt) and 18S, and Cyclophilin and

18S were calculated and used for intestinal and liver samples respectively.

Lipolytic activity in tissues

White adipose tissue (WAT) and skeletal muscle were homogenized in tissue homogenization

buffer (150mM NaCl, 10mM Tris-HCl, 2mM EDTA, pH 7,4) supplemented with complete protease

inhibitor (Sigma-Aldrich, Merk KGaA, Darmstadt, Germany) and phosphoSTOP (Sigma-Aldrich)

using a Teflon douncer. Homogenates were left on ice for 30 min before centrifugation at 10 000xg

for 10 min at 4˚C following supernatant collection. Protein concentration was determined and 3

and 5 μg of total tissue of WAT and skeletal muscle, respectively, were used for lipase activity using

Lipoprotein Lipase (LPL) Activity Assay Kit (Roar Biochemical Sigma-Aldrich). The described

enzymatic fluorescence assay is not specific for LPL and detects lipase activity in tissue [23].

Immunoassay

White adipose tissue was homogenized in homogenization buffer (150mM NaCl, 10mM Tris-

HCl, 2mM EDTA, pH 7,4) and liver tissue in RIPA-buffer (Radioimmunoprecipitation assay

buffer 150 mM NaCl, 2mM EDTA, 0,35% Na-deoxycholate, 0,50% Nonidet-40, 0,10% SDS

both buffers were supplied with complete protease inhibitor (Sigma-Aldrich, Merk KGaA,

Darmstadt, Germany) and phosphoSTOP (Sigma-Aldrich) using a Teflon douncer or a bead

beater. Samples were incubated on ice for 30 min and further centrifuged at 10 000xg for 10

min at 4˚C and the supernatants were collected.

Total protein concentration was determined using Bradford assay (BioRad). Total proteins

were separated using 10 or 12% gradient SDS-polyacrylamide gel (BioRad) under denaturing

conditions. Proteins were transferred onto nitrocellulose filters (Nitropure), and blots were

probed with antibodies against phosphorylated and total HSL, GAPDH, ASCL1 (Cell Signaling

Technology, Inc, Danvers, MA, USA) and FATP2 (abcam, Cambridge, UK), followed by

detection by IRDyeTM 800 anti-Goat IgG and IRDyeTM 680 anti-Rabbit IgG antibodies using

The Odyssey1 Imaging System (LICOR).

Immunohistochemistry

4 μm paraffin section were mounted on charged glass slides (Superfrost1 Plus, Thermo Scien-

tific, Menzel-Gläser) and pretreated with Rodent decloaker buffer (BioCare) at pH 6 in a 2100

automated pressure cooker (PickCell). Consecutive sections were incubated overnight with a

polyclonal guinea pig anti-mouse Perilipin2 (Progen, GP40) in 1:2000 dilution, and monoclo-

nal rabbit anti-mouse SCD1 (Cell Signaling #2794) in dilution 1:100. For the Perilipin2 anti-

body a mouse on mouse detection kit (Vector, BMK-2202) was used according to the

manufacturer’s protocol. Anti-Scd1 incubated sections were blocked in 4% normal goat serum

and incubated with biotinylated goat anti rabbit (Dako, E0432) at a 1:300 dilution. Immunore-

activity was visualized using routine avidin-biotin amplification and diaminobenzidine (DAB)

chromogenic reaction.
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Statistical analyses

All results are presented as mean ± SEM and Student´s t test was used for analysis of differ-

ence, significant changes between groups are indicated in figures and tables.

All statistics were calculated using GraphPad Prism 5.0d.

Results

TTA attenuates HFD induced body weight gain but not HFD induced fatty

liver

Age matched male C57BL/6J mice were fed HFD as control or HFD supplemented with 0.75%

TTA for six weeks. In line with previous findings the TTA group displayed an attenuated body

weight gain (Fig 1) without any change in food intake with time or between the groups.

Mice were weighted weekly, body weights of HFD controls (open circles, n = 9) and HFD

+TTA treated mice (grey boxes, n = 9). Imbedded bar graph represents the mean food intake

per mouse per day in the three cages (n = 3) at the different three time points. Data shown are

mean ± SEM, and student’s unpaired t-test was performed for each data set. � = p<0.05, �� =

p<0.01, ��� = p<0.001 and ���� = p<0.0001.

The final body weight of the TTA treated mice was approximately 4 grams lower than that of

the control group. However, the reduced body weight was not accompanied by a decrease in

liver weight. Instead, TTA increased both total and relative liver weight (Table 1). TTA treat-

ment elevated relative (μmol/g) hepatic TAG and PL levels, but not cholesterol levels (Table 1).

TTA effectively decreases plasma TAG levels and causes redistribution of

plasma cholesterol

Confirming previous results, a 3-fold decrease in total plasma TAG in TTA treated mice was

observed (Table 2).

Analysis of the TAG content in the different lipoprotein particles after separation by SEC

revealed the TAG reduction by TTA treatment was due to a 4.5-fold and a 3-fold reduction of

TAG in the VLDL/remnant and LDL fractions, respectively (Fig 2A).

Total plasma cholesterol levels did not change (Table 2), but the TTA treatment led to a

clear redistribution of cholesterol among the different lipoprotein particles (Fig 2B). Choles-

terol in the VLDL/remnant fraction was reduced about 2-fold and cholesterol levels in the

HDL peak was not changed. In contrast, LDL cholesterol seemed to be increased by the treat-

ment. Interestingly, analysis of the cholesterol lipoprotein profile revealed the appearance of a

new lipoprotein fraction in the plasma of TTA mice. These particles had a peak appearing

between 43 and 45 min, a retention time in between that of the LDL and HDL peaks. To char-

acterize the nature of this generated lipoprotein particle subgroup, we collected the lipoprotein

fractions appearing between 39–55 minutes, which were subjected to SDS-PAGE followed by

immunoblotting against ApoE and ApoA1 (see Fig 2B). The lipoprotein fractions from TTA

treated mice eluted at 41 and 43 and showed higher content of ApoE compared to those from

non-treated animals. The content of ApoAI started to increase in TTA treated animals in in

the fraction collected at 45 min. This result suggested the appearance of large HDL particles in

response to TTA treatment. To further characterize these particles, lipoproteins were also sepa-

rated by D2O-sucrose sequential density gradient ultracentrifugation from pooled plasma of

HF or HF+TTA fed mice and the ApoAI, ApoB and ApoE contents were quantified by West-

ern blot analysis (Fig 2C). The ApoE content was similar in the VLDL/remnants fractions

from control and TTA treated mice, while ApoB was reduced by TTA treatment in this lipo-

protein fraction. The presence of ApoE was also evident in the LDL fraction with stronger
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intensity in the control group compared to the TTA treated group. An increased amount of

ApoAI was observed in the LDL fraction isolated from TTA plasma compared to HFD con-

trols, indicating the presence of large HDL particles floating at the same density range. More-

over, ApoB (48 and 100) was strongly decreased in the VLDL/remnant and LDL fractions by

Fig 1. Body weight.

https://doi.org/10.1371/journal.pone.0229322.g001
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the TTA treatment. The ApoAI content in the HDL fraction appeared to be decreased in the

TTA group, but increased in the LDL fraction. We performed a native agarose gel electropho-

resis analysis on the isolated lipoproteins, followed by Sudan Black staining (Fig 2D). The

VLDL particles migrating in pre-beta position were reduced in the TTA group, confirming the

results of lipid quantification by SEC analysis. The native agarose gel electrophoresis also

revealed the presence of two bands in the LDL fraction; one band migrating in beta position

typical for LDL particles, and a second band migrating in alpha position specific for HDL par-

ticles. Importantly, the intensity of the LDL band was reduced in TTA treated animals,

whereas the intensity of the HDL band was higher in these mice when compared to the control

animals. Plasma ApoA1 was reduced in TTA treated animals compared to control (Fig 2E).

The TTA treated mice showed an enriched proportion of small pre-β HDL. and seemed to

carry more large ApoE-containing HDL with a diameter above 12 nm (Fig 2F).

TTA induces lipolysis in adipose tissue and fatty acid uptake and

metabolism in liver

Since TTA decreased body weight and that a reduced adiposity was observed at animal sacri-

fice, the rate of total lipase activity was investigated in skeletal muscle and white adipose tissue

Table 1. Liver weight and lipid content.

HFD (mean ± SEM) HFD+TTA (mean ± SEM)

Liver weight (g) 1.6 ± 0.1 2.1 ± 0.1 ���

Body to liver weight (%) 4.7 ± 0.1 7.2 ± 0.2 ����

Liver Cholesterol (umol/g) 5.7 ± 0.2 6.0 ± 0.2

Liver TAG (umol/g) 20.4 ± 4.9 37.6 ± 3.4 �

Liver PL (umol/g) 18.4 ± 0.5 21.9 ± 0.3 ����

Data shown are mean ± SEM, and student’s unpaired t-test was performed for each data set

� = p<0.05

��� = p<0.001 and

���� = p<0.0001.

https://doi.org/10.1371/journal.pone.0229322.t001

Table 2. Plasma lipids.

Plasma lipids (mmol/L) HFD (mean ± SEM) HFD+TTA (mean ± SEM)

Triacylglycerol

Total 1.07 ± 0.07 0.36 ± 0.09 ���

VLDL/remnants 0.68 ± 0.10 0.15 ± 0.06 ��

LDL 0.29 ± 0.03 0.10 ± 0.02 ���

HDL 0.10 ± 0.03 0.11 ± 0.03

Cholesterol

Total 3.42 ± 0.10 3.49 ± 0.32

VLDL/remnants 0.09 ± 0.01 0.04 ± 0.01 ��

LDL 0.28 ± 0.09 0.87 ± 0.19 �

HDL 3.04 ± 0.17 2.58 ± 0.17

The plasma lipids were calculated from the SEC analysis shown in Fig 2A and 2B. Data shown are mean ± SEM, and student’s unpaired t-test was performed for each

data set

� = p<0.05

�� = p<0.01 and

��� = p<0.001.

https://doi.org/10.1371/journal.pone.0229322.t002
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Fig 2. Plasma cholesterol and triacylglycerol lipoprotein profiles. a. Plasma triacylglycerol lipoprotein profiles. The

fig shows the triacylglycerol lipoprotein profiles of plasma samples from HFD control mice (black line, n = 5) and HFD

+TTA treated mice (grey line, n = 5) separated by SEC. The first peak in the graph represents VLDL/chylomicron

remnants-sized particles, the second peak LDL-sized particles and the last peak HDL-sized particles. Curves represent

the mean value of five individual samples from each group, and for each peak one time-point was chosen to show the

SEM of the group. b. Plasma cholesterol lipoprotein profiles. The figure shows the cholesterol lipoprotein profiles for

HFD controls (black line, n = 5) and HFD+TTA treated mice (grey line, n = 5). The first peak in the graph corresponds

to VLDL/CM-sized particles, the second peak LDL-sized particles and the last peak HDL-sized particles. Curve

represent the mean value of five individual samples from each group, and for each peak one time point (30 min for

VLDL/remnants, 41 min for LDL and 50 min for HDL) was chosen to show the SEM of the group. An extra time point

was included at 43 min, between the HDL and the LDL peak to emphasize the changed cholesterol profile in the HF

+TTA group. Immunoblots below the graph show representative western blots of ApoE and ApoA1 from SEC-

separated pooled samples from each group. One-minute fractions were collected and representative fractions for the

“beginning of LDL sized particles” to HDL sized particles were chosen, separated on a gradient gel and used for

western blot. Upper blot shows fractionated plasma from pooled HF plasma. Lower blot shows fractionated plasma

from pooled HF+TTA plasma. Marker to the left followed by every second fractions from minute 39 to 55, this section

is also marked with a line in the cholesterol lipoprotein profiles. c. Western blot analysis of lipoproteins in fractionated

plasma. Equal amounts of plasma from each animal in respective group were pooled and separated using density

gradient ultracentrifugation and 5 μl of each fraction (VLDL/remnants, LDL and HDL) were separated on a gradient

gel and used for Western blot analysis of ApoB (100 and 48), ApoE and ApoAI. d. Native gel electrophoresis analysis of

plasma lipoproteins. VLDL/remnants, LDL and HDL fractions isolated by ultracentrifugation from pooled plasma

samples were separated by agarose gel electrophoresis and lipoprotein bands were stained by Sudan Black dye. e. Total

plasma ApoA1 content determined by ELISA (n = 5). f. Western blot analysis of lipoproteins in HDL fraction

separated by 2-D gel electrophoresis.

https://doi.org/10.1371/journal.pone.0229322.g002
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(WAT). While total lipase activity was increased in skeletal muscle by TTA supplementation

(Fig 3A), no change was seen in adipose tissue when comparing the two groups. However,

when investigating the phosphorylation status of HSL (as an indicator of increased lipolysis) in

WAT, two out of three sites on HSL were highly phosphorylated in TTA treated mice com-

pared to control after overnight fast (Fig 3B). Increased lipolysis would result in increased

Fig 3. Regulation of genes in hepatic lipid metabolism. a. Total lipase activity in skeletal muscle lysate from control

and TTA fed mice (n = 5). b. Immuno blot analysis and quantification of phosphorylated HSL and total HSL in white

adipose tissue from control and TTA fed mice (n = 4). c. Total plasma NEFA (non-esterified fatty acids) (n = 8 and 7

for HFD and HFD+TTA respectively). d. Gene regulation of hepatic mitochondrial- and peroxisomal-lipid

metabolism genes. mRNA expression data from TaqMan Low Density Arrays of pooled samples from each group

(n = 6). Dashed line represents the expression of the HFD-pooled sample normalized to 1. 18S was used as reference

gene. e. Selected genes involved in fatty acid synthesis and cholesterol metabolism were analyzed in individual samples

(n = 6) from HFD and from HFD+TTA, with one individual sample in the HFD control group used as calibrator. Data

in bar plots are shown as mean ± SEM, in HFD as dark grey bars with individual values in light grey circles and in

HFD+TTA as light grey bars with individual values in dark grey circles. Student´s unpaired t-test was performed on

each data set, � = p<0.05 and ��� = p<0.001.

https://doi.org/10.1371/journal.pone.0229322.g003
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amount of NEFA in the plasma, however no increase in NEFA were detected in TTA treated

mice (Fig 3C). An increased uptake of fatty acid by the liver would theoretically drain the

plasma of NEFA and also contribute to the increase seen in liver TAG in mice treated with

TTA. In support of this, the protein expression of Fatty acid transporter 2 (FATP2), a protein

important for fatty acid uptake in hepatocytes, and the Acyl-CoA syntethase long 1 (ACSL1), a

mitochondrial associated acyl-CoA synthase known to be important both for proper fatty acid

oxidation and incorporation into glycerophospholipids, were increased in liver by TTA (Fig

3D). To gain further insight into the effects of TTA on intracellular lipid metabolism in the

liver, genes important for mitochondrial and peroxisomal lipid metabolism were investigated.

Several genes were dramatically induced in the TTA treated animals compared to controls (Fig

3E).

In particular, the mitochondrial PPARα target genes Acot2 (Acyl-CoA thioesterase 2),

Slc27a1 (Fatp1, fatty acid transporter protein 1) and Cpt1b (Carnitine palmitoyl transferase

1b), were increased 60-140-fold in TTA-treated livers (Fig 3E, left panel). In addition, several

genes involved in mitochondrial β-oxidation of fatty acids were induced 2 to 5-fold in the liv-

ers of the TTA group, e.g. Cpt2 (Carnitine palmitoyl transferase 2), Acadm and Acadl
(Medium- and Long-chain acyl-CoA dehydrogenase), Dci (Mitochondrial delta 3, delta

2-enoyl-CoA isomerase), Decr1 (2,4-dienoyl-CoA reductase) and Hadha (the alpha subunit of

mitochondrial Trifunctional protein) (Fig 3E).

Similarly, several PPARα target genes involved in peroxisomal lipid metabolism displayed

marked induction of their mRNA levels upon TTA treatment, including Acot3 (Acyl-CoA

thioesterase 3), Ehhadh (Enoyl-coenzyme A hydratase/3-hydroxyacyl coenzyme A) and Acot5
(Acyl-CoA thioesterase 5) with 80-400-fold induction (Fig 3A, right panel). In addition, 17

other genes with functions in peroxisomal fatty acid metabolism were induced 2-20-fold in the

TTA treated group, including all genes coding for proteins involved in peroxisomal β-oxida-

tion of straight chain fatty acids.

The cytosolic Acyl-CoA thioesterase 1 (Acot1) was strongly induced by TTA treatment, as

expected since it is an established PPARα target gene [24]. Fgf21 (fibroblast growth factor 21),

another reported PPARα target gene [25,26] and hormonal mediator of fatty acid oxidation

and lipid metabolism, increased with the TTA treatment (Fig 3F).

No changes in Acaca mRNA, and a tendency (p = 0.0501) of Fasn mRNA to be down regu-

lated were noted. However, mRNA for Scd1 coding for the fatty acid modulating enzyme

Stearoyl-CoA desaturase 1 was increased with the TTA treatment (Fig 3F).

In view of the drastic changes in the plasma lipoprotein fractions in the TTA treated group,

a selected set of mRNAs coding for proteins involved in hepatic cholesterol metabolism and

transport were quantified. However, except for a small decrease in the expression of ApoA1,

none of these gene transcripts (Hmgcr, Cyp7a1, Abcg5, Abca1, Acat2, Mttp, ApoB and ApoE)

were significantly changed between the groups (Fig 3F).

TTA effects gene expression and reduces the size of lipid droplets in the

enterocytes

The uptake and processing of lipids in the small intestine has a major impact on systemic lipid

homeostasis. The small intestine was analyzed for TTA mediated regulation of gene expression

by QPCR and for changes in lipid storage by immunohistochemistry.

Fig 4A shows a hematoxylin-eosin stained section of the proximal half of the intestine from

a HFD fed control mouse, and in higher magnification two adjacent parts of the intestine in

which the most proximal part has low amount of lipid droplets and the more adjacent part

located further away from duodenum where lipid droplets are more evident.
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Lower row shows representative pictures of hematoxylin-eosin stained and Perilipin2 anti-

body labeled intestines at 40x magnification for HFD (left) and HFD+TTA (right).

As seen from Fig 4B, the lipid accumulation was largely abolished in the mid sections of the

small intestine of the TTA treated group compared to control mice. The vacuoles were con-

firmed to be lipid-containing vesicles by immunohistochemistry against the peripheral lipid

vesicle membrane component Perilin2 (Fig 4B).

Messenger RNA expression of a selected set of genes involved in fatty acid and cholesterol

metabolism in the mucosa layer of the small intestine were further investigated by QPCR. For

Fig 4. Lipid droplets in small intestines from HFD controls and HFD+TTA fed mice. a. Inserted picture show an

overview of a cross section of the proximal half of a hematoxylin-eosin stained intestine from a HFD fed control

mouse. The box represents the magnified area shown to the right, showing a proximal part of the intestine without

evident lipid droplets and one adjacent part, located more to the middle section of the intestine, in which the lipid

droplet accumulation in the luminal part of the villi is evident. b. Upper row shows representative pictures of

hematoxylin-eosin stained intestines at 20x magnification, from approximately 5 cm in from the beginning of the

duodenum, from HFD control and from HFD+TTA treated mice. Lipid droplets are abundant in mice fed HFD and

abolished in mice fed the TTA supplemented diet.

https://doi.org/10.1371/journal.pone.0229322.g004
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this purpose, the small intestine was divided into four segments of equal length, denoted S1

(proximal) through S4 (distal segment). PPARα activation was evident in the intestine, as

Acot1 mRNA expression was highly increased (induced 8–20 fold) throughout the intestine,

with the highest expression in the proximal and middle part of the small intestine, a pattern

that is similar to the pattern of PPARα expression in the intestine [24]. PPARα target genes

fatty acid translocase Cd36 and fatty acid binding protein 1 (L-Fabp) expression were induced

approximately 2-3-fold in the S1 and S2 segments of the TTA treated animals (Fig 5). Acyl-

CoA synthetase 3 and 5 (Acsl3 and Acsl5) were also increased in the TTA treated group, how-

ever, the induction was only evident in the distal part of the intestine (Fig 5).

Differences in endogenous fatty acid synthesis in the small intestine may theoretically con-

tribute to the observed differences in lipid accumulation in the intestinal epithelium in TTA

treated mice. Accordingly, the genes coding for Acetyl-CoA carboxylase (Acaca) and Fatty

acid synthase (Fasn) were significant decreased in their mRNA expression by TTA (Fig 5).

Dgat1 and Dgat2 (Diacylglycerol acyltransferases 1 and 2), Mttp (Microsomal triglyceride

transfer protein) and ApoB are essential in the process of lipid droplet and CM formation in

the intestine. Of these genes were only ApoB and Mttp were slightly, but significantly,

Fig 5. Regulation of genes involved in intestinal fatty acid and cholesterol metabolism. The intestine was divided

into 4 segments of equal length, S1 (most proximal) to S4 (most distal). Genes coding for proteins involved in

intestinal fatty acid and cholesterol metabolism were analyzed in individual samples (n = 6). S1 of one individual in the

HFD control group was used as a calibrator to also visualize the pattern of gene expression throughout the intestine.

Data in bar plots are shown as mean ± SEM, in HFD as dark grey bars with individual values in light grey circles and in

HFD+TTA as light grey bars with individual values in dark grey circles and Student´s unpaired t-test was performed

on each data set for each segment � = p<0.05, �� = p<0.01, ��� = p<0.001 and ���� = p<0.0001.

https://doi.org/10.1371/journal.pone.0229322.g005
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decreased by TTA, in segment S2 (Fig 5). The mRNA expression levels of Npc1l1, Abcg5,

Acat2, and Abca1, involved in cholesterol transport and esterification in the small intestine,

were also analyzed. Of these, Npc1l1 and Acat2 mRNA levels were not significantly different

between the groups. However, expression of the half transporter Abcg5 was increased in seg-

ment S2 and S3 of the intestine, however without any increase in the expression of the nuclear

transcription factor LXRα in this segment. In contrast to the expression in liver, the expression

of the cholesterol efflux transporter Abca1 was increased approximately 3-fold in the two distal

segments (Fig 5).

Stearoyl-CoA desaturase 1(Scd1) mRNA expression was increased in all segments of the

small intestine with the increase being most pronounced in the S2 and S3 segments (20–40

fold) in TTA treated animals (Fig 6A). Using an SCD1 specific antibody, immunoreactivity

was mainly detected in enterocytes in the middle part of villi with the labeling being positive

from jejunum (approximately S2) to the start of ileum (approximately S4) in intestines from

the HFD control group. The labeling was weak and detected only in some cells. The increased

expression of Scd1 mRNA was translated into a robust increase in SCD1 protein in TTA fed

mice with markedly increased immunoreactivity in the part of the intestine corresponding to

the jejunum, with labeling further extending along the villus length although the strongest

labeling was still evident in the middle part of villi (Fig 6B).

Strong positive SCD1 immunoreactivity was also detected in enterocytes overlying the lym-

phoid patches, but the expression was not affected by the TTA treatment (see S1 Fig).

Fig 6. mRNA and protein expression of Scd1. a. mRNA expression of Scd1 was analyzed on individual samples

(n = 6) with S1 of one individual in the HFD control group used as a calibrator. Data in bar plots are shown as

mean ± SEM, in HFD as dark grey bars with individual values in light grey circles and in HFD+TTA as light grey bars

with individual values in dark grey circles and student´s unpaired t-test (two tailed) was performed, � = p<0.05 and ��

= p<0.01. b. Immunohistochemistry of the middle part of the intestine using an antibody against SCD1. Left panel,

HFD control and right panel, HFD+TTA.

https://doi.org/10.1371/journal.pone.0229322.g006
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Discussion

To date only one study have investigated the beneficial effect of TTA in the gut: TTA adminis-

tration reduced colonic wall thickening and the abundance of inflammatory cytokines in a

dextran sodium sulfate induced model of colitis in rats [16]. However, the effect of TTA on the

intestinal lipid metabolism and its possible contribution to modulation of plasma lipoprotein

content have not been investigated. In the present study we aimed to investigate TTA effects

on the intestinal and hepatic lipid and lipoprotein metabolism in mice fed HFD. TTA effec-

tively reduced plasma TAG and attenuated body weight gain. This effect was coupled with a

moderate increase in liver weight in accordance with previous findings of studies on TTA

[8,12]. TTA’s effects on genes involved in hepatic mitochondrial and peroxisomal β-oxidation

of fatty acids has earlier been show. The present study confirms and expand these findings to

comprise genes across the entire pathways of mitochondrial and peroxisomal lipid metabo-

lism. The regulation of these gene sets by TTA closely resembles those induced by other

PPARα agonists with classical PPARα target genes being induced, such as Ehhad [27], and

some genes being negatively regulated by PPARα activation, such as e.g. Nudt7α [28].

Despite the strong induction of genes involved in hepatic β-oxidation of fatty acids by TTA,

it was evident that the levels of TAG increased in the liver, which is in contrast to the effects

reported for most known PPARα agonists in the setting of fatty liver [29–34] However,

increased liver TAG levels have earlier been found in rodents fed diets supplemented with

PPARα agonists, [35–37],in overweight humans with NAFLD treated with fenofibrate [38] as

well as in HFD fed hTNFα transgenic mice supplemented with TTA [39]. In this latter study

the hepatic TAG accumulation were explained to be a dose and time dependent effect of the

TTA supplementation [39,40]. TTA is a PPAR-pan agonist, thus also able to activate PPARγ.

PPARγ ligands are known to cause mild steatosis accompanied by an increase in endogenous

lipogenesis and expression of fatty acid transporters (for review, see [41]). Change in hepatic

gene expression of classical lipogenic enzymes (i.e Acaca and Fasn) were however not found in

these TTA-treated animals. Since no change in food intake was detected, while we could

observe a reduction in white adipose tissue at the time of sacrifice (as also reported in [12]),

the increased hepatic TAG levels in TTA-treated mice might be secondary to increased periph-

eral lipolysis and a consequent increase in hepatic uptake of plasma fatty acids. We could

indeed show increased lipase activity in skeletal muscle, increased phosphorylation of HSL in

white adipose tissue and increased expression of the fatty acid transporting and activating pro-

teins FATP2 and ACLS1 in the liver of TTA-treated mice. Nevertheless, in our experimental

setting, we could not rule out the possibility that a reduced hepatic VLDL secretion could have

a concomitant causative effect. We indeed observed a reduction of both TAG and cholesterol

in VLDL/remnants. This effect was coupled to a reduced amount of plasma ApoB (data not

shown) in the TTA treated group. We did not observe any changes in hepatic Mttp and ApoB
mRNA levels thus suggesting that TTA rather might affect the rate of lipidation and/or assem-

bling of VLDL particle.

Further studies are required in order to elucidate these mechanisms that could cause liver

TAG accumulation in mice secondary to TTA treatment.

Liver total cholesterol was unaffected by TTA treatment. This was in line with the

unchanged mRNA levels of the enzymes Hmgcr1 and Cyp7a1 that are rate-limiting for choles-

terol synthesis and its conversion into bile acids (Fig 3B). Notably, PPARα agonists are gener-

ally suppressors of Cyp7a1 [42]. These results suggest that the effect of TTA on overall

cholesterol metabolism in the liver is modest under the conditions used here.

We further investigated the effect of TTA treatment on plasma lipoprotein composition.

TAG was reduced in both VLDL/remnants and LDL particles in agreement with previous
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studies in Wistar rats [6,43]. Mentioned studies revealed that TTA was also effective in reduc-

ing plasma cholesterol. However, in the present study performed in mice we clearly show that

total plasma cholesterol levels are not changed by the TTA treatment, but that TTA instead

causes changes in the composition of plasma lipoproteins resulting in the redistribution of

cholesterol between the particles. TTA led to a reduction of plasma apoA-I, thus suggesting

and atherogenic profile. On the other end, the levels of apoAI containing nascent pre-β HDL

were increased by the treatment as most likely the results of the increased lipolysis observed in

the extra hepatic tissues. Pre-β HDL seem to play, at least in vitro and in preclinical studies, an

important role in anti-atherogenic the reverse cholesterol transport (RCT) pathway being an

efficient acceptor of unesterified cholesterol from peripheral cells [44]. However, prebeta-1

HDL associates positively with the presence of CAD, [45–48], myocardial infarction [45], and

carotid intima media thickness [49,50]. Moreover and in line with previous preclinical studies

on fibrates [51], our results showed that TTA treatment led to the appearance of triglyceride

poor and cholesterol rich large apoE containing HDL particles, having a density in the range

of LDL, and a size in between the LDL and HDL particles. Interestingly, large apoE-HDL seem

to be a diet-responsive metabolic pathway that renders HDL more biologically active in RCT

[52].

These lipoprotein changes were coupled to a marked induction of the Abca1 transporter

mRNA in the small intestine, but not in the liver. ABCA1 is known for its importance in the

formation of HDL in the small intestine [53]. Several studies have shown that PPARα agonists

can induce expression of the Abca1 gene in the small intestine, possibly through an indirect

mechanism that may involve the LXR nuclear receptors [54–57]. Interestingly, other studies

demonstrated increased plasma HDL cholesterol levels and increased levels of Abca1 and

ApoA1 mRNA levels in the small intestine when a dual PPARα/δ agonist was employed in

ApoE2-KI mice, which has a similar response to PPARα agonists as humans [58]. In the same

study it was also shown that treatment of human jejunal explants with a PPARα/δ dual agonist

induced both Abca1 and ApoA1 mRNAs. Since no effects on hepatic Abca1 or ApoA1 expres-

sion were observed in the present study it may be hypothesized that the apparent increase in

ApoE-containing HDL fraction in TTA treated mice could possible improve cholesterol efflux

from extrahepatic tissue and may as well play an anti-inflammatory role [59–62].

Despite the vast use of HFD in metabolic research relatively little is known about the effects

of these diets on small intestine biology. Recently it has come to attention that enterocytes of

the small intestine accumulate and store lipids when present in excess in the diet [63–65].

Lipid droplets were evident in enterocytes of HFD fed mice while the small intestines of the

TTA treated animals displayed drastically reduced lipid content as seen from the histological

analysis. This is in line with a previous study where it was shown that mice receiving HFD diet

together with fenofibrate had reduced lipid content in the enterocytes compared to controls

[66].

The actual absorption of lipids in the small intestine was not measured in the present study.

However, if there was a reduction of actual lipid uptake under conditions used here, it

occurred despite of an apparent increase of the absorption capacity of lipids in the small intes-

tine of TTA treated mice, as indicated by markedly increased mRNA expression of Cd36 and

L-Fabp, genes involved in fatty acid transport were induced by TTA.

Mice fed HFD together with PPAR agonists fibrates or DHA display a reduced postprandial

hypertriglyceridemia [57,66,67]. In conjunction to these findings it was demonstrated that

mice fed HFD and fenofibrate have a substantially larger fecal loss of lipids [57,66].

Therefore, the induction of genes by TTA involved in lipid processing in the small intestine

may in part be a response to a primary fecal loss of lipids. This should be addressed in detail in

future studies of TTA.
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Peroxisome proliferators have previously been shown to regulate expression of the Scd1
gene in liver [68,69] and in the small intestine [54,70]. Upregulation of Scd1 gene expression in

the liver by TTA resulted in increased oleic acid content in liver and VLDL as well as accumu-

lation of a delta 9-desaturated metabolite of TTA [1]. Interestingly, TTA induced expression of

the Scd1 gene at mRNA level to a much higher extent in small intestine than in the liver. The

increased mRNA expression in the small intestine was translated into a markedly increased

protein expression as shown by immunohistochemistry. The impact of elevated SCD1 expres-

sion in the small intestine under the challenge of HFD in the presence of TTA is at present not

clear. However, it has been suggested that SCD1 is crucial for synthesis of cholesterol esters

and triglycerides at least in liver [71]. Recently, it has been described that knockdown of Scd1

in on a Ldlr-/- background resulted in an altered plasma lipid pattern [72]. Therefore,

increased expression of SCD1 in the small intestine may enhance the formation of chylomi-

crons and HDL with a subsequent release from the enterocytes by enhancing neutral lipid for-

mation, which may contribute to the decreased lipid droplet size seen in enterocytes from the

TTA treated mice. TTA has previously been shown to increase the amount of oleic acid in lipo-

proteins [1,30]. If an induction oleic acid production in the intestine is responsible for the

altered plasma HDL pattern observed in this study remains to be investigated.

Additionally, it has been demonstrated that deletion of Scd1 in the intestine increases intes-

tinal inflammation and tumor burden in a colorectal and intestinal cancer mouse model [73].

This is interesting since SCD1 is known as major promoter of cancer cell survival in several,

but not all cancer forms [74,75].

An additional interesting finding from the examination of SCD1 staining in the intestine

was the positive staining in enterocytes overlying the lymphoid patches in the intestine, how-

ever, the staining of these cells was apparently not affected by the TTA treatment.

In summary, this work supports the notion of TTA as an efficient activator of intestinal and

hepatic expression of genes for fatty acid uptake and oxidation. There is also a tissue specificity

in the regulation of certain genes by TTA, i.e. Acot1 displayed higher increase in the liver than

the small intestine while the opposite was found for Scd1. TTA also induced a shift in the

plasma cholesterol profile with larger HDL particles and less LDL. The TTA mediated effects

on lipid metabolism in the small intestine such as a dramatically reduced enterocyte lipid con-

tent are likely to be of importance for the overall systemic effects of TTA on lipid homeostasis.

The finding of TTA as a lipid lowering drug in humans [7] prompts for more detailed studies

of the biological actions of TTA and TTA derived molecules in the processes of lipid metabo-

lism in the small intestine.

Supporting information

S1 Fig. SCD1 in lymphoid patches. Immunohistochemistry of the small intestine showing

immunolabeling of SCD1 in cells surrounding lymphoid patches of a HFD control mouse.
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