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As a consequence of shearing, wing cracks can emerge from pre-existing fractures. The process involves
the interaction of sliding of the existing fracture surfaces and the tensile material failure that creates wing
cracks. This work devises a numerical model to investigate how wing cracks emerge, propagate and con-
nect pre-existing fractures under shear processes. A mathematical and numerical model for wing crack
propagation based on linear elastic fracture mechanics that also accounts for fracture contact mechanics
is presented. Computational efficiency is ensured by an adaptive remeshing technique. The numerical
model is verified and validated through a comparison of the analytical and experimental results.
Additional numerical examples illustrate the performance of the method for complex test cases where
wing-cracks develop for multiple pre-existing and interacting fractures.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Wing cracks can develop from a pre-existing fracture when the
fracture is subjected to shear processes. This occurs for many appli-
cations where fractured media are subjected to anisotropic stress
regimes. For example, in fractured subsurface systems, fractures
will slip if shear forces overcome the cohesion and frictional
strength of the contact between the fracture surfaces. This can
occur due to natural changes in tectonic stresses, but the process
can also be induced by fluid injection, such as in situations of
geothermal reservoirs. In the latter case, elevated pressures reduce
the effective normal stress on the fracture, ultimately causing slip
if the reduction in the normal stress is sufficient for the shear
forces to overcome the cohesion and frictional resistance of the
fracture. The slip of the fracture surfaces in opposite directions
can cause the fracture to propagate in the form of wing cracks, pos-
sibly creating enhanced reservoir connectivity (Cheng et al., 2019;
Jung, 2013; McClure and Horne, 2014; Norbeck et al., 2018).
Understanding this mechanism is, thus, crucial in the simulation
of fractured subsurface formations.

Many experimental studies have been published that consider
the formation, growth and connection of wing cracks caused by
external compressive loading in specimens made of rock or rock-
like materials (Haeri et al., 2014a, 2014b; Horii and Nemat-
Nasser, 1985; Ingraffea and Manu, 1980). In these experiments, if
the pre-existing fracture is not perpendicular to the external load,
wing cracks emerge at the tip and tend to align with the direction
of the maximum compressive stress. The same conclusion is drawn
from mathematical modeling. Based on the finite element method
(FEM), Ingraffea and Heuze (1980) predicted the propagation of
wing cracks in rock structures by using three different criteria
based on stress, energy and strain. Primary crack trajectories pre-
dicted by the stress and energy criteria are in good agreement with
the observed trajectories. Based on the phase-field model (Bryant
and Sun, 2018) and a modified phase-field model (Zhang et al.,
2017), wing crack propagation was modeled using energy criteria
that divided the active energy density into distinct parts corre-
sponding to different crack modes (mode I and mode II).
Sharafisafa and Nazem (2014) used the vector level set with both
the discrete element method (DEM) and the extended finite ele-
ment method (XFEM) to model the wing crack propagation and
coalescence in fractured rock masses. Among these methods and
failure criteria, the FEM is the simplest method in implementation
and the stress criterion is one of the most extensively used and
least complicated. Specifically, the combination of FEM with the
stress criterion (the maximum tangential stress) for modeling of
wing cracks has been shown to produce simulation in good agree-
ment with observed crack trajectories (Gonçalves da Silva and
Einstein, 2013; Ingraffea and Heuze, 1980).
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Fig. 1. An elastic body containing a pre-existing fracture.
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While wing cracks develop as tensile fractures, the pre-existing
fractures that wing cracks emerge from may be either open or in
contact. This necessitates the inclusion of fracture contact mechan-
ics in the wing crack models (Hüeber et al., 2008; Oden and Pires,
1983). There are several ways to formulate the contact mechanics
corresponding to the different types of discretizations. For exam-
ple, Kim and Duarte (2015) simulated the mode I propagation of
cohesive fractures in 3D by the cohesive law using a generalized
finite element method. Because of the difference of material beha-
viour in the vicinity of propagating crack fronts compared to the
rest of the domain, this approach requires updates of global–local
enrichments during the analysis, which increases the computa-
tional cost. Hesch et al. (2016) formulated the contact mechanics
by Coulomb’s friction law and Karush Kuhn-Tucker (KKT) condi-
tions applied to a phase-field approach within the context of isoge-
ometric analysis. A fourth order approach for the crack-density
functional was used to ensure sufficient accuracy of the chosen
phase-field approach. This leads to a request of at least C1 continu-
ity within the domain. Also using Coulomb’s friction law and the
KKT conditions, Nejati et al. (2016) modeled the internal contact
in fractured media by a sophisticated algorithm based on isopara-
metric integration-point-to-integration-point discretization of the
contact contribution to enforce the contact constraint accurately
over the crack surfaces. Based on the semianalytical displacement
discontinuity method, Kamali and Ghassemi (2018) developed a
simulation model in which the closed natural fractures were repre-
sented by so-called contact displacement discontinuity elements
(Asgian, 1988), approximating the contact mechanics condition.
However, the approach has limitations in dealing with the interac-
tion between multiple fractures due to inherent limitations of the
semianalytical displacement discontinuity method.

The FEM model for elasticity can be derived by using one of the
following widely used methods: the weighted-residual method
based on the linear momentum balance or minimization of an
energy function (Liu and Quek, 2003). By using the energy princi-
ple, the contact should be considered as an inequality constraint
of the optimization formulation of the potential energy. This
means that the potential energy is minimized while satisfying a
contact constraint assumed to be a nonpenetration condition
between the surfaces of the fracture. The inequality constraint
can be solved by some methods, such as the active-set, Frank-
Wolfe, penalty or barrier methods (Hüeber et al., 2008; Hüeber
and Wohlmuth, 2005).

An inherent problem in the simulation of fracture propagation
is the disparate length scales. While the simulation domain can
be quite large, the fracturing processes occur on a scale that is sev-
eral orders of magnitude smaller. Moreover, most numerical meth-
ods for fracture propagation are dependent on resolving the
fracture in a grid; however, the fracture path is not known a priori.
A possible remedy for both of these issues is to apply adaptive
remeshing (ARM) techniques to refine and adjust the mesh around
an advancing fracture path.

This paper presents a mathematical model and corresponding
numerical solution approach to simulate the development of wing
cracks while accounting for fracture contact mechanics. First, in
Section 2, the mathematical model for wing crack propagation is
formulated based on the linear elasticity theory, in combination
with the criteria for a mixed-mode fracture propagation. Fracture
surfaces are allowed to be in contact or fully open, modeled by con-
tact mechanics formed by the KKT conditions. Section 3 presents
the numerical solution approach. The governing equations are dis-
cretized using a finite element method with collapsed quarter-
point elements at the fracture tips. This is combined with an adap-
tive remeshing technique based on error estimates and Laplacian
smoothing. The contact mechanics are implemented by using an
active set method. Section 4 presents several numerical test cases.
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The obtained results are compared with both the analytical and
experimental data to verify, validate and show the accuracy of
the proposed model and procedure. Finally, more complex test
cases where wing cracks develop for multiple pre-existing and
interacting fractures show the capability of the proposed approach
in modeling the development of wing cracks under shear
processes.

2. Governing equations

A mathematical model for wing crack propagation based on lin-
ear elastic fracture mechanics is presented in the following section.
Emphasis is placed on the conditions on the boundaries of existing
and newly formed fracture paths. We also describe the criterion
used to decide when, where and how far a fracture will propagate.

2.1. Elasticity and contact mechanics

Consider a domain X � R2 with an outward unit normal vector
n on its boundary and a pre-existing fracture with boundaries
denoted by C�

C as shown in Fig. 1. The Dirichlet and Neumann con-
ditions are applied on the boundary. Ignoring, for the moment, the
internal boundary conditions on the fracture, the governing equa-
tions for a linear elastic body can be expressed as (Jaeger et al.,
2007)

r � rþ b ¼ 0 in X Equilibrium eq:
r ¼ C : e in X Constitutive eq:

e ¼ 1
2 ruþruT
� �

in X Kinematic eq:
u ¼ u0 on CD Dirichlet BC
r � n ¼ f on CN Neumann BC

8>>>>>><
>>>>>>:

ð1Þ

where, r, e and u ¼ u;vf gT are the Cauchy stress tensor, the sym-
metric infinitesimal strain tensor and the displacement field,
respectively; C is the fourth-order elasticity (Hooke’s) tensor
defined by the Young’s modulus, E, and Poisson’s ratio, v; b is the
body force; and u0 and f are the prescribed displacement along
the Dirichlet boundary and the applied traction along the Neumann
boundary, respectively.

To formulate the contact mechanics at the internal boundary,
the fracture’s boundary is divided into a positive side Cþ

C and a neg-
ative side C�

C . Let n xð Þ denote the normal vector initiating from x at
side Cþ

C to side C�
C . The initial gap between the two fracture sides is

g xð Þ P 0. The jump in the normal direction of the fracture, u xð Þ½ �n,
and the surface traction in the normal direction, f n xð Þ, are given by

u xð Þ½ �n ¼ u xð Þ½ � � n xð Þ; f n xð Þ ¼ f xð Þ � n xð Þ; x 2 Cþ
C ð2Þ

where f xð Þ ¼ r xð Þ � n xð Þ is the traction at the fracture’s boundary,
which vanishes in the case of an open fracture.

A nonpenetration condition is enforced in the normal direction
of the fracture segments. This condition is governed in the form of
Karush-Kuhn-Tucker (KKT) condition for the normal displacement
jump and the normal surface traction (Wohlmuth, 2011), which
reads
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u xð Þ½ �n � g xð Þ 6 0; f n xð Þ 6 0; f n xð Þ u xð Þ½ �n � g xð Þ� � ¼ 0; x 2 Cþ
C

ð3Þ
If Cþ

C and C�
C are in contact, by Newton’s third law, the surface

tractions on both sides are equal but in opposite directions; that is

f xð Þ ¼ �f R xð Þð Þ; x 2 Cþ
C ð4Þ

in which R : Cþ
C ! C�

C is a mapping that projects a point from side
Cþ

C onto side C�
C in the normal direction. The displacement jump,

u xð Þ½ �, is then defined by

u xð Þ½ � ¼ u xð Þ � u R xð Þð Þ; x 2 Cþ
C ð5Þ

For the tangential direction of CC, two types of conditions are
considered: Either the fracture surfaces are modeled as frictionless,
or the displacement jump in the tangential direction is specified.
For frictionless fracture surfaces, the tangential traction is zero at
CC; i.e.

r xð Þ � t xð Þ ¼ r R xð Þð Þ � t R xð Þð Þ ¼ 0; x 2 Cþ
C ð6Þ

where t xð Þ is the tangential vector initiating from x at side Cþ
C . The

assumption of zero friction leads to an exaggeration of the slip but
is acceptable herein, as the trajectory of the fracture is the primary
quantity of interest. For the friction-free case, the deformation of
the elastic medium and the fractures contained within are driven
by the body force, external boundary conditions on CD and CN, or
displacements on other fractures.

The second type of condition is a specified displacement jump
in the tangential direction of the fracture, i.e.

u xð Þ½ �t ¼ u xð Þ � u R xð Þð Þ½ � � t xð Þ ¼ u0 ð7Þ
where the total slip at CC, u0, is considered as known. This type of
condition is relevant to mimic the slip along an existing fracture,
which in applications, may be triggered by effects not considered
in the present model.

The wing cracks emerging due to the shear force on existing
fractures are tensile cracks (Bobet and Einstein, 1998; Wong and
Einstein, 2009). This means that their surfaces are in not contact
and both normal and tangential tractions at the corresponding
fracture faces are zero; i.e.

r � n ¼ r � t ¼ 0 ð8Þ
The wing cracks are not present in the computational domain at

the start of the simulations. Indeed, the computation of the point of
failure and the paths of the wing crack that develop are the main
challenges that are addressed in this work.

2.2. Failure and propagation

The wing crack growth processes are governed by a mixed-
mode fracture criterion. From the mathematical model for elastic
deformation, the stress at an arbitrary point can be directly calcu-
lated for a certain problem. In this work, we chose to adapt the
fracture criterion based on the maximum tangential stress (MTS)
(Erdogan and Sih, 1963), which is simple and sufficiently accurate
(Gonçalves da Silva and Einstein, 2013; Ingraffea and Heuze, 1980),
to predict the initiation and propagation angle of wing cracks. This
criterion states that a crack grows when the maximum average
tangential stress in the fracture process zone ahead of the crack
tip reaches a critical value. Moreover, the crack growth direction
coincides with the direction of the maximum average tangential
stress along a constant radius around the crack tip. In polar coordi-
nates r; hð Þ with the origin at the crack tip, the tangential stress for
a mixed-mode crack has the following form (Erdogan and Sih,
1963)
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rh r; hð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2pr

p K Icos3
h
2
� 3
2
K II cos

h
2
sinh

� �
ð9Þ

where r is the distance from the tip. KI and KII are the stress inten-
sity factors (SIFs), which are measures for the intensity of stresses
close to the crack tip. The wing crack emerges if the tangential
stress reaches a critical value, i.e.,

rh0

ffiffiffiffiffiffiffiffiffi
2pr

p
¼ K Icos3

h0
2
� 3
2
K II cos

h0
2
sinh0 ¼ K IC ð10Þ

where KIC is the material toughness and h0 is the crack initiation
angle with respect to the original crack plane. h0 is obtained by solv-
ing @rh=@h ¼ 0 for h and combining the result with the sufficient
condition @2rh=@h

2 < 0 such that

h0 ¼ 2tan�1 1
4
l� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 8

q� �
; l ¼ K I=K II ð11Þ

K II sin
h0
2
þ 9sin

3h0
2

� �
< K I cos

h0
2
þ 3cos

3h0
2

� �
ð12Þ

When the wing crack emerges, i.e., the criterion shown in Eq.
(10) is satisfied, the increment of each fracture needs to be deter-
mined. For a single crack propagation, the increment is defined by
a fixed distance such as the crack tip rosette radius h. In the case
where more than one crack grows simultaneously, the tips with
the highest energy in the fracture set advance significantly further
than the others (Paluszny and Matthäi, 2009). The increment for
each tip is defined by the Paris-type law (Paris and Erdogan,
1963; Renshaw and Pollard, 1994)

Liadv ¼ Lmax
Gi

max Gið Þ
� �a

ð13Þ

where Liadvand Gi are the propagation length and the energy release
rate for the ith propagation crack, respectively, Lmax is the maxi-
mum length increase at any propagation step, and the exponent a
is a numerical parameter, which is set to 0.35 in this work
(Renshaw and Pollard, 1994). For a general fracture in a two-
dimensional domain, the energy release around the fracture tip is
given by

G ¼ 1þ mð Þ 1þ kð Þ
4E

k2I þ k2II
� �

ð14Þ

here, kI and kII are the local mode I and mode II stress intensity fac-
tors at the tip obtained by summing the normal and shear stresses
(Anderson, 2017), respectively

kI ¼ ryy

ffiffiffiffiffiffiffiffiffi
2ph

p

¼ 1
4

3cos
h0
2

� �
þ cos

3h0
2

� �	 

K I

� 1
4

3sin
h0
2

� �
� 3sin

3h0
2

� �	 

K II ð15Þ

kII ¼ sxy
ffiffiffiffiffiffiffiffiffi
2ph

p

¼ 1
4

sin
h0
2

� �
þ sin

3h0
2

� �	 

K I

þ 1
4

cos
h0
2

� �
þ 3cos

3h0
2

� �	 

K II ð16Þ
3. Discretization

This section presents the finite element discretization of the
governing equations presented in Section 2, together with an adap-
tive remeshing technique. The propagation of wing cracks is com-
plicated, and their trajectories are difficult to achieve by analytical
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or semianalytical approaches, particularly when multiple fractures
interact. In this case, numerical solutions by means of the finite
element method (FEM) are a common approach. The finite element
formulation is based on the weak formulation established from the
governing equation and states: Find u 2 VS such that 8v 2 VT

(Zienkiewicz et al., 2005)Z
X
uTLTDLvdX�

Z
Cc

r � nvdC ¼
Z
X
bvdXþ

Z
CN

f
�
vdC ð17Þ

where VT and VS are the test space and the solution space satisfying
the inhomogeneous Dirichlet boundary conditions (so-called essen-
tial boundary conditions), respectively. VT and VS are defined by

VT :¼ v 2 H1
0ðXÞ; vjCD

¼ 0
n o

;

VS :¼ v 2 H1ðXÞ; vjCD
¼ u0

n o
ð18Þ

where H1ðXÞ is the Sobolev space of functions that are square inte-
grable and have a square integrable first derivative. In Eq. (17), L is
the differential operator, and D is the material matrix modified from
C and defined by

L ¼ @=@x 0 @=@y

0 @=@y @=@x

	 
T
ð19Þ

D ¼ E
1� v2

1 v 0
v 1 0
0 0 1

2ð1� vÞ

2
64

3
75; for plane stress ð20Þ

D ¼ E
1þ vð Þ 1� 2vð Þ

1� v v 0
v 1� v 0
0 0 1

2ð1� 2vÞ

2
64

3
75; for plane strain

ð21Þ
3.1. Deformation and contact mechanics

The approximate solution of Eq. (1), denoted by uh, can be eval-
uated by using a subset of the allowable function space Vh � VS

composed of piecewise polynomial functions. This requires dis-
cretizing the domain X into m nonoverlapping finite elements that
conform to the fracture geometry, such that

X ffi Xh �
[m

e¼1
Xe ð22Þ

In this work, Xe are chosen as triangular elements.
The stress field at fracture tip as shown in Eq. (9) is dominated

by the singularity whilst the stress field at remaining points is
finite. So, in this work, the numerical approximation employed
on the grid differs between the interior elements that are close
to the fracture tip and the interior elements that are not. On ele-
ments that are not connected to the crack tip, the displacement
field is approximated as a quadratic function, which is expressed

in terms of the displaced values, dh, at the three vertices and the
midpoints of the three edges such that

u ¼ u

v

� �
ffi uh ¼

X6

i¼1

Ni n;gð Þui

Ni n;gð Þv i

� �
¼ Ndh ð23Þ

where Ni are the shape functions of a 6-node triangular plane
isoparametric element defined by Eq. A(1).

To represent the stress singularity at the fracture tip, quarter-
point elements (QPE) (Barsoum, 1977) are employed. Each element
around the crack tip, as shown in Fig. 2(a), is mapped by an 8-node
plane isoparametric quadrilateral element, as shown in Fig. 2(b), so
that
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x ¼
X8
i¼1

Ni n;gð Þxi; y ¼
X8
i¼1

Ni n;gð Þyi ð24Þ

where Ni are the shape functions defined by Eq. A(2). Then, the dis-
placement field is approximated through the displacements at 6

nodes, dh, as a quadratic function such that

u ¼ u

v

� �
ffi uh ¼

X6

i¼1

N	
i n;gð Þui

N	
i n;gð Þv i

� �
¼ Ndh ð25Þ

where N	
i are defined by

N	
i n;gð Þ ¼ N1 þ N7 þ N8; if i ¼ 1;

N	
i n;gð Þ ¼ Ni; otherwise:

�
ð26Þ

By using the approximation given in Eq. (25), the numerical
stress is singular at the crack tip, similar to the analytical formula
shown in Eq. (9). More details are shown in Appendix A.

By substituting Eqs. (23) and (25) into Eq. (17), the discretized
system can be written as

Kdh ¼ F ¼ Fb þ
Z
CN

NT t
�
dC ð27Þ

where K and Fb are the global stiffness matrix and global body load
vector, respectively, and are obtained by the assembly of the stiff-
ness matrix and body load vector of each element (Ke and Fe) that
are expressed as

Ke ¼
Z
Xe

BTDBdX; Fe ¼
Z
Xe

NTbdX ð28Þ

where B is the gradient matrix defined as

B ¼ LN ð29Þ
In the discrete system, the contact mechanics relations defined

in Eq. (3) are manifested in the boundary conditions on the frac-
ture, which takes different from depending on whether the fracture
is in contact or not. This is treated at each pair of contact points by
the active set strategy (Hüeber and Wohlmuth, 2005). The details
of the active set algorithm are shown in Fig. 3 and explained as
follows:

(1) Set k = 1, initialize d as an initial solution, predict a set of
possible contact points VP and assume the actual contact
zone C1 ¼ VP. VP is defined as

VP ¼ x;R xð Þf g; x 2 Cþ
C ð30Þ

(2) Define the normal displacement jump u xð Þ½ �n and normal
traction f n xð Þ at points x;R xð Þf g by Eq. (2).

(3) With the current solution, the points x;R xð Þf g are in contact
if the normal displacement jump and normal traction satisfy
the following condition:

cf n xð Þ � u xð Þ½ �n � g xð Þ
 �
< 0; x 2 Cþ

C ð31Þ
where c is a positive constant depending on the material. If Eq. (31)
is satisfied, either f n xð Þ < 0, u xð Þ½ �n � g xð Þ P 0 or f n xð Þ ¼ 0,
u xð Þ½ �n � g xð Þ > 0. Therefore, the pair x;R xð Þf g should be consid-
ered as the contact points for the calculation in the next step.

(4) Check if the contact zone at step k, Ck, is the same as step
k + 1, Ckþ1. If yes then stop, else, the nonpenetration condi-
tion u xð Þ½ �n � g xð Þ ¼ 0 at the contact points is counted for
the system by using the Lagrangian multiplier, then go to
step (2).
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Fig. 2. Definition of the elements around the crack tip (a) and an 8-node plane isoparametric element (b).

Fig. 3. The numerical solver for the contact mechanics problem.
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3.2. Fracture propagation

The modeling of wing crack propagation is based on two
assumptions. First, the wing crack emerges from the tip of the frac-
ture, and second, a crack stops growing whenever its tip reaches a
domain boundary or another fracture. That is, we do not consider
the fracture propagation that crosses other fractures.

As detailed in Section 2.2, the fracture computation is based on
the stress intensity factor evaluation. In this work, we compute
SIFs by using the nodal displacement correlation technique
(Parks, 1974) in conjunction with QPE (Barsoum, 1977; Henshell
and Shaw, 1975) that not only captures the singularity of the stres-
ses but also considerably improves the displacement near the crack
tip, resulting in a more accurate computation of the SIFs (Khoei
et al., 2008). Through the displacement of the QPE around a crack
tip, these SIFs can be calculated as (Chen and Kuang, 1992; Kuang
and Chen, 1993)

K I ¼ E
6ð1þ vÞð1þ kÞ

ffiffiffiffiffiffiffi
2p
h

r
8ðv 0

b � v 0
dÞ � v 0

c � v 0
eð Þ½ � ð32Þ

K II ¼ E
6ð1þ vÞð1þ kÞ

ffiffiffiffiffiffiffi
2p
h

r
8ðu0

b � u0
dÞ � u0

c � u0
eð Þ½ � ð33Þ

where k ¼ ð3� vÞ=ð1þ vÞ for a plane stress problem and k ¼ 3� 4v
for a plane strain problem. As shown in Fig. 4(a), h is the crack tip
rosette radius or size of the element around the crack tip. u0 and
v 0 are the local displacements of the nodal points located on the
crack in the QPE, in which x0 is aligned in the direction of the crack
axis.

The advance of a fracture may cause difficulties in the current
approach, and thus some special conditions need to be defined
for the tip of propagating, approaching and intersecting fractures.
For the propagating fracture, a new crack tip must be defined by
the propagation length Ladv and crack initiation angle h0 each time
a crack propagates. To ensure the validity of the grid and to reduce
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the computational cost associated with updates to the grid geom-
etry, a tolerance for geometric mismatch based on the crack tip

rosette radius h, Limin ¼ 0:4hi is introduced. If Liadv < Limin, the crack
will not be allowed to move, except in the special case when
hi0 ¼ 0, when the tip position is updated by moving the tip node

to a new position. If Liadv P Limin, the crack tip is extended by split-
ting the previous tip into two new nodes, as shown in Fig. 4(b). For
the approaching fracture, when the distance between a growing
crack tip and a boundary (external boundary or surface of another
fracture), denoted by dbou, is less than the crack tip rosette radius,
they are assumed to be connected. A new crack tip belonging on
the boundary is determined by the stretching of the current crack
tip as shown in Fig. 5(a). After that the fracture joint is considered a
T-shape, as shown in Fig. 5(b), by splitting both the previous and
current tips.

A limitation of the present approach is its unability to predict
through-going fracturing, which is one of the most challenging
problem in computational fracture mechanics. The fracture propa-
gation process presented here also entails that the grid geometry is
updated in the vicinity of the crack, as detailed in the next
subsection.

3.3. Adaptive remeshing

The accuracy of the numerical simulation depends on the qual-
ity of the mesh that is affected by the geometric discretization
errors and the gradients of the solution within the individual ele-
ments. In this work, we use the adaptive mesh refinement to
obtain a solution that satisfies a given mesh discretization error
while minimizing the number of elements. The adaptive remesh-
ing (ARM) process involves two techniques: first, mesh refinement
based on the error estimator (Zienkiewicz and Zhu, 1987) is used to
improve the accuracy of the numerical solution, and second, Lapla-
cian smoothing (Buell and Bush, 1973; Field, 1988) is used to
improve the quality of the mesh.
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3.3.1. Error estimator and refinements
The error estimator is based on the comparison between the

numerical stress computed directly from the computed displace-
ment field and a recovered stress with higher regularity. The
numerical stress is directly computed by Eq. (1):

rh ¼ C :
1
2

ruh þ ruh� �Th i
ð34Þ

The quadratic approximation for the displacement renders a
numerical stress that is a piecewise linear function on the elements
and discontinuous across the interelement boundaries. To recover
a globally continuous stress, we first define a nodal stress r	

i by
area-weighted averaging of the elements in the surrounding node:

r	
i ¼

1Pn
i¼1

AXi

Xn
i¼1

Z
Xi

rhdX ð35Þ

where AXi
is the area of element Xi that has node i as a vertex. The

recovered stress is then defined by linear interpolation between the
stress values r	

i .
The error at each element is estimated by the difference

between the numerical and recovered stresses, such as

eXi
¼ k rh � r	 kXi

ð36Þ
The refinement is then performed based on a calculated error

estimator. The essence of this process is to balance the errors
between the elements. This means that the elements in regions
of high error are locally refined. This process is repeated until the
desired accuracy is obtained.

Fig. 6 illustrates the recovery process and mesh refinement in
the case of the 1D domain. The refinement with a high estimated
error (X1 and X2) increases the accuracy in both the displacement
and the stress computations. With the same idea as the 1D, in a 2D
problem, the element Xi that needs to be refined (Fig. 7(a)) is
divided into four subelements by the connection between the mid-
points of the edges (Fig. 7(b)). Three hanging nodes appear. These
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nodes are removed by connecting it to an opposite vertex, as
shown in Fig. 7(c).

3.3.2. The mesh smoothing process
The mesh refinement process proposed above is local and there-

fore has a low implementation cost. However, the locality some-
times causes triangles with undesirable properties, such as
overlapping elements. We improve the quality of the mesh by
using the Laplacian smoothing process that is defined as follows:
Let triangles Ei; i ¼ 1; :::;n, share an internal vertex x	 ¼ ðx	; y	Þ,
and let the remaining vertices of Ei, be xi ¼ ðxi; yiÞ. The node x	 is
updated by the equation

x	 ¼ 1
n

XM
i¼1

xi ð37Þ

A precaution is taken to guarantee that the new coordinate
assigned to x	 will define valid triangles. The new coordinate for
x	 is immediately used for all subsequent Laplacian smoothing of
other coordinates.

The general algorithm for the fracture propagation simulation
in conjunction with the adaptive remeshing and accounting for
the fracture contact mechanics is presented in Fig. 8. The item ‘‘nu-
merical solver” requires the solution of the contact mechanics
problem, as shown in Fig. 3.

4. Numerical investigation

In this section, four numerical examples are investigated. The
first and second examples are intended for verification and valida-
tion purposes, investigating the convergence rates and comparison
with the analytical solutions and experimental results. The last two
examples are designed to show how the methodology can handle
the complex case of shear deformation for a domain with multiple
fractures, accounting for wing crack formation as well as fracture
contact mechanics.

4.1. Method verification through convergence of computed strain
energy

To evaluate the new approach, we consider a benchmark prob-
lem with the propagation of an isolated crack in a medium that
undergoes tensile or shear stress. The medium is a general isotro-
pic material characterised by its Young’s modulus and Poisson
ratio. For this problem, the performance of the second order finite
element method and quarter point elements (FEM-QPE) with and
without adaptive mesh refinement is compared to that of conven-
tional finite elements. The performance is measured in terms of the
accuracy of the strain energy and SIF computation under grid
refinement.
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The model problem is a thin rectangular plate (length L, width b,
and thickness t) including a pre-existing edge fracture, which is
subject to tensile (mode I) or shear (mode II) stress as illustrated
in Fig. 9. To make a fair comparison, as shown in Fig. 10, the FEM
and FEM-QPE use a unique mesh, while the variant of the latter
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method that includes ARM (FEM-ARM-QPE) uses a multi-size-
mesh controlled by the error estimator. The strain energy is given
by

U uð Þ ¼ 1
2

Z
X

rTedX ð38Þ

For the plane stress singularity problem, the rate of convergence
of the numerical solution is bounded satisfying (Pin and Pian,
1973)

U uh � uexact� �
6 ch2a�2þn ð39Þ

where uh and uexact denote the solution from the numerical
method and the exact solution, and n and a are the spatial dimen-
sion of the domain and the singularity degree of solution near the
point of singularity, respectively. In the current case, n = 2 and
a ¼ 1=2 (by Eq. (9)); hence, the convergence of the strain energy
is linear with h.

For the mode I study, the comparisons of the convergence of the
strain energy between the three different methods are shown in
Fig. 11(a, b). A linear convergence rate for the strain energy can
be observed, in accordance with Eq. (39) and the conclusions by
previous published studies (Mirza and Olson, 1978; Pin and Pian,
1973). However, the FEM-QPE is significantly more accurate than
the FEM. The convergence rate of the FEM-ARM-QPE is better than
that of the FEM, and its accuracy approaches that of the FEM-QPE if
the mesh refinement is sufficiently good. The comparison with the
analytical solution (Tada et al., 2000) for the stress intensity factor
is shown in Fig. 11(c). The QPEs considerably improve the solution
near and ahead of the crack tip and result in a more accurate com-
putation of the SIF. The ARM technique reduces the computational
cost while still ensures the accuracy of the computation of the
strain energy and stress intensity factor. This is confirmed by
Table 1, which shows the total number of degrees of freedom
(DOF) and total number of elements for the three methods under
grid refinement.

For the mode II study, the reference solutions are obtained by
ANSYS for the strain energy and by ABAQUS (Treifi et al., 2008)
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for KII. As shown in Fig. 12, as in the case of tensile stress, the QPE
improves the accuracy of the solutions close to the stress singular-
ity, and the ARM technique preserves the accuracy with fewer
degrees of freedom.
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The demonstrated accuracy and efficiency of the FEM-ARM-QPE
methodology, shown in previous studies, make it suitable for
numerical examples considering more complex geometries in the
following section.



Table 1
Comparison between the computational costs of the three methods under grid refinement (L/b = 2, b/a = 2).

Computational costs Method b/h

4 8 16 32 64

Degrees of freedom (DOF) FEM 330 1106 4290 16802 66402
FEM-QPE 330 1106 4290 16802 66402
FEM-ARM-QPE 214 678 1454 4970 17742

Total number of elements FEM 68 248 1016 4088 16376
FEM-QPE 68 248 1016 4088 16376
FEM-ARM-QPE 44 152 340 1196 4348

 

a) Strain energy for mode II  

with grid refinement 

b = 1 m, L/b = 2, b/a = 2 

b) SIF for mode I with grid 

refinement 

b = 1 m, L/b = 2, b/a = 2 

c) SIF for mode II with grid 

refinement 

b = 1 m, L/b = 2, b/a = 2 

b/h
0 4 8 16 32 64

3.9

3.92

3.94

3.96

3.98

4

4.02

4.039

4.06

 

 

FEM

FEM-CQPE

ARM-CQPE

4.043

FEM

FEM-QPE
FEM-ARM-QPE

0 4 8 16 32 64
8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

9.4

9.5

9.6

 

 

FEM

FEM-CQPE

ARM-CQPE

8.928

b/h

FEM

FEM-QPE
FEM-ARM-QPE

0 4 8 16 32 64
1.05

1.1

1.15

1.2

1.25

1.3

1.369

1.4

 

 

FEM

FEM-CQPE

ARM-CQPE

b/h

1.357

FEM

FEM-QPE
FEM-ARM-QPE

Fig. 12. Convergence study for mode II.

H. Dang-Trung et al. International Journal of Solids and Structures 204–205 (2020) 233–247
4.2. Model validation through stress intensity factor accuracy

To further validate the presented numerical model, FEM-ARM-
QPE, the initiation and propagation of wing cracks from the ends
of a pre-existing fracture under uniaxial compression loading are
investigated. The test case focuses on the accuracy in the computa-
tion of the SIFs and fracture propagation paths for a case where
both analytical (Atkinson et al., 1982) and experimental (Haeri
et al., 2014b) data are available.

The computational domain is a disc-shaped rock specimen con-
taining a central single pre-existing fracture, as shown in Fig. 13.
Here, R and t denote the radius and thickness of the disc, and 2a
is the length of the fracture. The fracture is inclined at an angle
u to the vertical direction at the center of the specimen. The spec-
imen is compressed by two line loads f0 ¼ 0; f 0f g and
0f

0f

x

y R

Fig. 13. Geometry of the specimen with a single pre-existing fracture.
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�f0 ¼ 0;�f 0f g acting parallel to the y-axis. The material parame-
ters are the Young’s modulus E = 15 GPa, Poisson’s ratio m = 0.21,
and fracture toughness KIC = 2 MPa m1/2 (Haeri et al., 2014b). On
the existing fracture, a no-friction condition is assigned in the tan-
gential direction. For this problem, the analytical solution for the
SIFs is given by (Atkinson et al., 1982)

K I

K II

� �
¼ f 0

ffiffiffi
a

pffiffiffiffi
p

p
R

1� 4sin2uþ 4sin2u 1� 4cos2u
� �

a2

R2

2sin 2uð Þ þ sin 2uð Þ 8cos2u� 5
� �

a2

R2

8<
:

9=
; ð40Þ

The fracture is a purely mode I fracture for u ¼ 0o and u ¼ 90o,
while it is a mixed mode fracture for all other angles, with shear
effects being most pronounced at u ¼ 45o.

Numerical, analytical and experimental results for the nondi-
mensional SIFs considering different crack inclination angles are
shown in Table 2 and Fig. 14. The computation of the SIFs by the
FEM-ARM-QPE model is in good agreement with both the analyti-
cal solution (Atkinson et al., 1982) and the experimental data
(Haeri et al., 2014b) for various inclination angles of the pre-
existing crack.

Fig. 15 shows the computed propagation paths together with
the experimental observations (Haeri et al., 2014b) of two wing
cracks originating from the tips of the pre-existing fracture. The
paths are symmetrically curvilinear and tend to migrate stably
and gradually turn in the loading direction. A good agreement
between the proposed model and the experiment is recognized
in cases where u ¼ 30o and u ¼ 60o. For u ¼ 45o, the wing cracks
obtained by the experiment are asymmetric and visibly different
from those computed numerically. We do not consider this a con-
cern for accuracy of the numerical method and note that the sim-



Table 2
Comparison of KI and KII for different crack inclination angles (a = 5 mm, R = 42 mm).

u (deg) K I
ffiffiffiffi
p

p
R= f 0

ffiffiffi
a

p� �
K II

ffiffiffiffi
p

p
R= f 0

ffiffiffi
a

p� �
Present model Analytical

(Atkinson et al., 1982)
Experimental
(Haeri et al., 2014b)

Present model Analytical
(Atkinson et al., 1982)

Experimental
(Haeri et al., 2014b)

0 1.0269 1.0 1.0 0.0 0.0 0.0
15 0.7420 0.7323 0.715 1.0069 1.0175 1.017
30 �0.0272 0.0035 �0.016 1.7251 1.7443 1.778
45 �1.0417 �0.9858 �1.014 1.9601 1.9858 2.040
60 �2.0252 �1.9681 �2.054 1.6787 1.6952 1.712
75 �2.7469 �2.6827 �2.701 0.9580 0.9684 0.947
90 �3.0132 �2.9433 �2.948 0.0 0.0 0.0

0 15 30 45 60 75 90

-3

-2

-1

0

1

2

Crack inclination angle (deg)

N
o

n
-d

im
en

si
o

n
al

 c
o

ef
fi

ci
en

ts

I

0

K t R
f a

II

0

K t R
f a

Analytical

Experimental

Numerical

Fig. 14. Variation of nondimensional SIFs with crack inclination angles: Analytical
by Atkinson et al., (1982); Experimental by Haeri et al., (2014b).

H. Dang-Trung et al. International Journal of Solids and Structures 204–205 (2020) 233–247
ulations consistently predict propagation towards the locations of
the point loads, independent of the fracture rotation angle.

The agreement with the experimental observations in the above
examples shows that the mathematical model and the simulation
approach proposed in this work are valid for fracture propagation
of wing cracks.

4.3. Wing crack propagation due to shearing along a pre-existing
fracture

The third example investigates the formation and propagation
of wing cracks in a domain with multiple pre-existing fractures,
with fracture propagation driven by shearing along one of the frac-
tures. The setup is designed so that the existing fractures will first
o30

f0 = 1.55 106 N/m 

32 steps, DOF = 2352  8848 

45

f0 = 1.40 1

33 steps, DOF = 

Experimental
Numerical

Experimental
Numerical

Fig. 15. Comparison of fracture propagation paths between
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be linked by newly formed wing cracks, followed by further wing
crack formation from the extremities of the newly formed net-
work. The objectives of the example are to analyse the propagation,
connection, and final geometry of the generated fracture network.
The material parameters are chosen to resemble those of a granite
rock mass, with a Young’s modulus E = 70 GPa, Poisson’s ratio
m = 0.21, mass density q ¼ 2700 Kg=m3 and fracture toughness
KIC = 1.5 MPa m1/2. The gravity is g = 9.8 m/s2.

The initial configuration consists of three horizontal parallel
natural fractures shown in Fig. 16. The geometrical parameters
are W = 7 m, D = 6 m, thickness t = 1 m, a = 1 m, b = 0.5 m, and
h0 = 1 m. There is no opening of the pre-existing fractures. To
mimic the subsurface conditions, we assume that this granite rock
mass is located at a depth of H = 1000 m and subjected to in situ
stresses resulting from the weight of the overlying strata (assumed
to be granite) approximated by

rx ¼ m
1� m

qgHt; ry ¼ qgHt ð41Þ

A measurable slip, u0 ¼ u0;0f g, is imposed on the middle frac-
ture (fracture (2)), mimicking the slip due to the increase in the
fluid pressure in the hydraulic shear stimulation of the fractures.

The growth of the wing cracks, the increment of slip and the
number of DOFs during the fracture propagation are shown in
Figs. 17 and 18. The number of DOFs is approximately doubled at
the end of the simulation. When the pre-existing fracture (2) expe-
riences slip u0 = 0.012 mm in the tangential displacements, wing
cracks emerge at its tips. They form an angle of approximately
70 degrees to the main fracture. By increasing the slip until
u0 = 0.147 mm, wing cracks from fracture (2) gradually turn in
the direction perpendicular to the minimum principle stress and
o

06 N/m 

2264  9378 

o60
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the present model and experiment (Haeri et al., 2014b).
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connect to fractures (1) and (3). By increasing the slip until
u0 = 0.3105 mm, two wing cracks newly emerge from fracture
(1) and (3) and propagate away. As shown in Fig. 17, before the
wing cracks from fracture (2) reach fractures (1) and (3), the sur-
faces of pre-existing fractures (1) and (3) are completely in contact.
After that, the parts near the connected wing cracks open while the
rests are still in contact. The change in the open/closed state of the
fractures is caused by the influence of the in situ stresses and the
interaction between multiple fractures.
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Fig. 18. Increment of slip and DOF during fracture propagation for example 4.3.
4.4. Propagation of multiple fractures driven by the shearing boundary
conditions

Finally, we consider a more complex case with multiple closed
pre-existing fractures arbitrarily appearing in a specimen, as illus-
trated in Fig. 19. The proposed FEM-AMR-QPE technique is ideally
suited to address the complexity of this problem in an efficient and
accurate manner.

The size of the specimen is W = 7 m, D = 5 m, and thickness
t = 1 m, while the rock parameters are set equal to those in Sec-
tion 4.3. The fracture propagation is driven by a gradual increase
in the tangential traction, s, on the top and bottom boundaries of
the domain, while the left and right boundaries are assigned trac-
tion free conditions.

The propagation trajectory is shown in Fig. 20. The increments
of tangential traction and the number of DOFs are shown in
Fig. 21. The DOFs increased by approximately 30% at the end of
simulation. A wing crack first emerges at fracture (3) when the
assigned tangential traction reached s ¼ 0:0746 MPa. By increas-
ing the tangential traction until s ¼ 0:4735 MPa, a new wing crack
W
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Fig. 16. Geometry of specimens with three pre-existing fractures.

Step 16: DOF = 12632

u0 = 0.147 mm 

Step 21: DOF = 12768 

u0 = 0.147 mm 

S

Closed
Open

Closed
Open
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emerges at the end of fracture (2). At s ¼ 0:4847 MPa, wing cracks
emerge at both tips of fracture (2) and propagate in opposite direc-
tions; one connects to fracture (3), and the other connects to frac-
ture (1). After that, wing cracks appear at all tips of fractures (1)
and (3) and propagate further at different lengths. During shear
slip, fractures (4) and (5) do not propagate while the wing cracks
propagate in the direction almost 45 degrees with that of tangen-
tial traction. Fracture (4) is completely closed during the simula-
tep 22: DOF = 12972 

u0 = 0.3105 mm 

Step 41: DOF = 17294 

u0 = 0.3105 mm 

Closed
Open
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Open

ing until u0 = 0.3105 mm at the interfaces of a pre-existing crack.

Fig. 19. Geometry of specimens with multiple pre-existing fractures.
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Fig. 20. The trajectories of wing cracks caused by shear slip at the top and bottom sides.
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tion. Fracture (3) is completely closed before wing cracks emerge
and is partly closed after that. The remaining fractures are tensile
cracks during propagation. The results clearly show the further
propagation of wing cracks under tangential traction and how
the propagation of wing cracks and deformation of the larger frac-
tures prevents wing crack propagation of the smaller fractures

The obtained results in example 4.3 and 4.4 show the interac-
tion of different fractures, in which, a growing crack tip is weaker
and more deformed when approaching other fractures. Similar
observations on the fracture interaction has also been made by
other authors, e.g. Thomas et al. (2017), Legrand and Lazarus
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(2015), and Laures and Kachanov (1991). For the simple symmetric
geometry where an analytical solution exists, SIFs for interacting
fracture tips computed by our developed methodology were also
verified by the analytical solution by Kachanov (1987).

In the case of modeling multiple fractures propagation pre-
sented in examples 4.3 and 4.4 by FEM without ARM, a fine mesh
is required to accurately capture propagated paths. A regular mesh
in the same quality as the ones in the above examples consists
almost 40.000 elements with approximated 200.000 DOFs. The
number of DOFs by the regular mesh is approximately ten times
more than one by the ARM mesh at the end of the simulation.
Although ARM is costly for the element refinement in regions of
high error, the adjustments of the mesh are local, and the cost of
remeshing and discretization is negligible compared to a full dis-
cretization and solution of the corresponding algebraic equations.
So, using the proposed ARM for the fracture propagation simula-
tion is a great advantage when compared to approaches based on
a regular mesh.

5. Conclusions

This work presented a numerical model for wing crack initia-
tion and propagation due to shear slip. The governing mathemati-
cal model is based on linear elastic fracture mechanics and contact
mechanics, along with failure and propagation criteria for multiple
mixed-mode fracture propagation. The numerical solution
approach is based on a combination of the finite element method
combined with quarter point elements to handle the singularity
at the fracture tips. The fracture contact mechanics are solved by
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using the active set strategy. In addition, an adaptive remeshing
based on an error estimator and Laplacian smoothing for imple-
mentation is utilized for computational efficiency.

Verification and validation studies of the methodology are pre-
sented, showing appropriate agreement between the analytical
solutions and experimental observations for single fracture com-
putation. More complex numerical test cases demonstrated the
method’s capabilities in investigating the development of wing
cracks for situations where multiple fractures interact. The results
show how the development of wing cracks interacts with the
deformation and propagation of other existing fractures account-
ing for different fracture contact conditions as well as the overall
stress regime.
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Appendix A


 The 6-node triangular shape functions are defined by
Ni n;gð Þ¼ 1�n�gð Þ 1�ni�gið Þ 16 nniþggið Þþ 1�2n�2gð Þ 1�2ni�2gið Þ½ �

þnni 2n�1ð Þ 2ni�1ð Þþ16ngnigiþggi 2g�1ð Þ 2gi�1ð Þ
Að1Þ


 The 8-node quadrilateral shape functions are defined by

Ni n;gð Þ¼ n2i g
2
i

4 1þnnið Þ 1þggið Þ� 1�n2
� �

1þggið Þ� 1þnnið Þ 1�g2
� �� �

g2
i
2 1�nið Þ 1�n2

� �
1þggið Þþ n2i

2 1�g2
i

� �
1þnnið Þ 1�g2

� � Að2Þ


 The details of the QPE formulation.

Substituting specific coordinates of 6 nodes xi; yið Þ as shown in
Fig. 2(a) into Eq. (24) gives

x ¼ h
4

1þ nð Þ2; y ¼ l
4

1þ nð Þ2g Að3Þ

By assuming r is the distance from point (x, y) to the crack tip
gives

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
) 1þ nð Þ ¼ ffiffiffi

r
p

A0 h; l;gð Þ Að4Þ
The Jacobian of the transformation [J] is given by

½J� ¼ @x=@n @y=@n

@x=@g @y=@g

	 

¼ 1

4
2h 1þ nð Þ 2lg 1þ nð Þ

0 l 1þ nð Þ2
" #

Að5Þ

Taking the derivatives both sides of Eq. (25) gives

@uh

@x
@uh

@y

n oT
¼ ½J��1 @N

@n
@N
@g

n oT
dh Að6Þ

The derivatives of the displacement can be explicitly written in
the form

@uh
@x ¼ 1

nþ1ð ÞA1 h;ui;gð Þ þ A2 h; uið Þ; @vh

@x ¼ 1
nþ1ð ÞA1 h;v i;gð Þ þ A2 h;v ið Þ

@uh
@y ¼ 1

nþ1ð ÞB1 l;ui;gð Þ þ B2 l; uið Þ; @vh

@y ¼ 1
nþ1ð ÞB1 l;v i;gð Þ þ B2 l; v ið Þ

Að7Þ
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By combining Eq. (1), Eq. A(4) and Eq. A(7), the stress compo-
nents from the numerical method are defined by

rh
x

rh
y

shxy

8><
>:

9>=
>;¼ 1ffiffiffi

r
p

A0 h; l;gð ÞD
A1 h;ui;gð ÞþA2 h;uið Þ
B1 l;v i;gð ÞþB2 l;v ið Þ

A1 h;v i;gð ÞþA2 h;v ið ÞþB1 l;ui;gð ÞþB2 l;uið Þ

8><
>:

9>=
>;

Að8Þ

where Ai and Bi are defined by

A0 h; l;gð Þ ¼ 2 h2 þ l2g2
� ��1

4
Að9Þ

A1 h;ui;gð Þ ¼ 1
h

3u1 þ 2 gþ 1ð Þu2 � 3g2 þ gþ 2
� �

u3

þ 3g2 þ 1
� �

u4 � 3g2 � gþ 2
� �

u5 � 2 g� 1ð Þu6

" #

Að10Þ

A2 h;uið Þ ¼ 1
h

2u1 � 2u2 þ u3 þ u5 � 2u6ð Þ Að11Þ

B1 l;ui;gð Þ ¼ 1
l
�4u2 þ 2 gþ 1ð Þu3 � 4gu4 þ 2g� 1ð Þu5 þ 4u6½ �

Að12Þ

B2 l;uið Þ ¼ 1
l
2u2 � u3 þ u5 � 2u6ð Þ Að13Þ

It is clear that as r ! 0 (which means n ! 0 and/or g ! 0), the
terms Ai and Bi become constants. Therefore, the numerical stresses
in Eq. A(8) tend to Oð1= ffiffiffi

r
p Þ.

Appendix B

Influence of the interaction on stress intensity factor

The interaction between multiple fractures is an important con-
sideration on the fracture propagation simulation. In this section,
the SIFs of interacting fractures were evaluated by the FEM-ARM-
QPE in comparison with the exact solution for a geometrically sim-
ple test case, which is also extended to investigate the effect of the
fracture’s location. The setup model for this problem is shown in
Fig. B1. Two fractures of the same size (length a) exist in a domain
(Fig. B1 (a)). The fracture (1) is inclined at an angle u to the hori-
zontal direction while the fracture (2) is always parallel to the hor-
izontal direction. The horizontal distance between the fractures is
2b. Firstly, the SIFs around a interacting tip of fracture (2) (denoted

by Kint
I;II) that is interacting with fracture (1) are calculated. Then,

fracture (1) is removed (Fig. B1 (b)), and SIFs are calculated around

an isolated tip (denoted by K iso
I;II ) for the fracture (2). In this way, the

same geometry for fracture (2) is tested twice, and the changes in

the SIFs can be examined through the ratio between Kint
I;II and K iso

I;II .
The changes in SIFs are investigated due to changes of distance

between these existing fractures and the incline of the fracture (1).

The values of Kint
I =K iso

I and Kint
II =K

iso
II are shown in Tables B1 and B2,

respectively, for the tension by applying a normal traction and
shearing by applying a shear traction. A visual view of the influence
of distance on SIFs is shown in Fig. B2. For the tension of two col-
inear fractures, the present results are compared with the exact
solution presented by Kachanov (1987). A good agreement with
the exact solution is observed. As expected, the influence of the
interaction on SIFs decreases as the fractures move apart.



Fig. B1. Model of interacting fractures.

Table B1
The values of Kint

I =K iso
I change due to interaction of two fractures (Poisson’s ratio is 0.25).

b/a u ¼ 0o u ¼ 30o u ¼ 45o u ¼ 60o u ¼ 90o

Present model Exact (Kachanov, 1987) Present model Present model Present model Present model

0.02 1.9253 1.905 1.3716 1.1980 1.0921 1.0133
0.05 1.4974 1.473 1.3076 1.1683 1.0786 1.0090
0.1 1.2854 1.255 1.2235 1.1321 1.0636 1.0051
0.2 1.1568 1.112 1.1233 1.0835 1.0453 1.0084
0.5 1.0542 - 1.0406 1.0254 1.0081 0.9949
1.0 1.0266 - 1.0201 1.0159 1.0094 1.0058
1.5 1.0153 - 1.0109 1.0094 1.0056 1.0037

Table B2
The values of Kint

II =K
iso
II change due to interaction of two fractures (Poisson’s ratio is 0.25).

b/a u ¼ 0o u ¼ 30o u ¼ 45o u ¼ 60o u ¼ 90o

0.02 1.8777 1.0533 1.0560 1.0913 1.1272
0.05 1.4968 1.0769 1.0684 1.0885 1.1097
0.1 1.2905 1.1156 1.0876 1.0945 1.1016
0.2 1.1571 1.1077 1.0889 1.0895 1.0817
0.5 1.0544 1.0584 1.0528 1.0474 1.0372
1.0 1.0242 1.0308 1.0312 1.0293 1.0225
1.5 1.0190 1.0252 1.0262 1.0248 1.0188

Fig. B2. Change in SIFs with relative distance between two fracture.
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