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Abstract
We explicitly construct Brill–Noether general K3 surfaces of genus 4, 6 and 8 having the
maximal number of elliptic pencils of degrees 3, 4 and 5, respectively, and study their moduli
spaces and moduli maps to the moduli space of curves. As an application we prove the
existence of Brill–Noether general K3 surfaces of genus 4 and 6 without stable Lazarsfeld–
Mukai bundles of minimal c2.
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1 Introduction

It is well-known that a general curve of genus g ≤ 9 or g = 11 can be realized as a linear
section of a primitively polarized K3 surface, cf. [26,28]. Since for even g a general curve C
carries a finite number of pencils of minimal degree g

2 +1, it is natural to ask whether one can
simultaneously extendC and all or some of these pencils to some K3 surfaces for g = 4, 6, 8.
This question is connected to the existence of non-stable Lazarsfeld–Mukai bundles. Indeed,
the Lazarsfeld–Mukai bundle associated to a pencil on a smooth curve on the K3 surface
induced by an elliptic pencil on the surface is necessarily not stable, cf. Lemma 5.1.

Using vector bundle methods, Mukai [29] showed that the projective model of any Brill–
Noether general K3 surface (S, L) is obtained as sections of homogeneous varieties for
g ∈ {6, . . . , 10, 12}. By definition, cf. [29, Def. 3.8], a polarized K3 surface (S, L) of genus
g isBrill–Noether general ifh0(M)h0(N ) < g+1 = h0(L) for anynon-trivial decomposition
L ∼ M + N . In these low genera this is equivalent to all the smooth curves in the linear
system |L| being Brill–Noether general, due to techniques in [13,22] (see [14, Lemma 1.7]).
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UsingMukai’s results, we will study projective models of Brill–Noether general K3 surfaces
of genus g ∈ {4, 6, 8} containing the maximal possible number of elliptic pencils of degree
g
2 + 1.

The goal of our paper is threefold:

(1) We provide explicit constructions/equations of K3 surfaces with special geometric fea-
tures.

(2) We describe their moduli spaces as lattice polarized K3 surfaces and the corresponding
moduli map to the moduli space of curves of genus g.

(3) We study the slope-stability of Lazarsfeld–Mukai bundles of hyperplane sections on such
K3 surfaces.

Our main results are the following.

• Section 3: We prove that a general curve C of genus 4 is a linear section of a smooth K3
surface S such that its two g1

3s (which are well-known to be auto-residual) are induced
by two elliptic pencils |E1| and |E2| on S satisfying C ∼ E1 + E2, cf. Proposition
3.4. Furthermore, the moduli space parametrizing such K3 surfaces is unirational (and
18-dimensional), cf. Proposition 3.2. We believe that these results should be known, but
could not find any reference.

• Section 4: A general curve C of genus 6 carries precisely five pencils |A1|, . . . , |A5| of
minimal degree 4 which satisfy 2KC ∼ A1 + · · · + A5 (see [4, p. 209ff]). We prove
that C is a linear section of a smooth K3 surface S such that its five g1

4s are induced
by five elliptic pencils |E1|, . . . , |E5| on S satisfying 2C ∼ E1 + · · · + E5, cf Theorem
4.3(a). We prove that the moduli space parametrizing such pairs (S, C) is unirational, cf.
Theorem 4.3(b). The moduli space of the underlying K3 surfaces was already studied in
[5] where it was shown to be birational to the moduli spaceM6 of curves of genus 6 (and
therefore, rational, cf. [34]). Our approach shows that this moduli space is exactly the
locus of Brill–Noether general K3 surfaces that cannot be realized as quadratic sections
of a smooth quintic Del Pezzo threefold (but as quadratic sections of a cone over a smooth
quintic Del Pezzo surface), cf. Remark 4.4(b).

• Section 6: A general curve C of genus 8 carries precisely 14 pencils of degree 5. An
easy lattice computation shows that at most 9 can be extended to a K3 surface containing
C . We prove that this bound is reached in codimension 3 in the moduli space M8, and
for a general curve only six out of its 14 pencils can be extended to elliptic pencils on
a K3 surface, cf. Corollary 6.11. We prove that the moduli spaces of such K3 surfaces
containing i elliptic pencils are unirational for 1 ≤ i ≤ 6 and i = 9, cf. Theorems 6.7
and 6.8.

• Section 5: The K3 surfaces constructed in Sect. 3 (respectively 4) provide examples of
K3 surfaces without stable (resp. semistable) Lazarsfeld–Mukai bundles with c2 = 3
(resp. 4), cf. Corollary 5.2 (resp. 5.3). This shows in particular the sharpness of a result
of Lelli-Chiesa [23, Thm. 4.3], cf. Remark 5.4.

Notation and conventions

We work over C. We will denote Vn an n-dimensional vector space and G(k, Vn) (respec-
tively G(Vn, k)) the Grassmannian of k-dimensional sub- (resp. quotient-) spaces of Vn . The
projective space of one-dimensional sub- (resp. quotient-) spaces is denoted P∗(Vn) (resp.
P

∗(Vn)).
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2 Lattice polarized K3 surfaces and their moduli spaces

Let h be a lattice. The moduli space Fh of h-polarized K3 surfaces parametrizes pairs
(S, ϕ) (up to isomorphism) consisting of a K3 surface S and a primitive lattice embedding
ϕ : h → Pic(S) such that ϕ(h) contains an ample class. It is a quasi-projective irreducible
(20 − rk(h))-dimensional variety by [11].

If (S, ϕ) ∈ Fh is an h-polarized K3 surface and L ∈ h ∼= ϕ(h) is a distinguished class
with L2 = 2g − 2 ≥ 2, one may consider the open subset

Fh
g =

{
(S, ϕ)

∣∣ (S, ϕ) ∈ Fh and L ample
}

of the moduli space Fh, which may also be considered as a subset of the moduli space Fg

of polarized K3 surfaces of genus g. Furthermore, let Ph
g denote the moduli space of triples

(S, ϕ, C) where C ∈ |L| is a smooth irreducible curve in the distinguished linear system.
Then we have moduli maps

mg : Ph
g → Mg.

Since in our cases of study it will be clear what the distinguished class L will be, we will
often skip the index g in Fh

g and Ph
g .

3 K3 surfaces of genus 4

We will show the unirationality of the moduli space FU(3) of lattice polarized K3 surfaces
where U is the hyperbolic lattice of rank 2. We believe that this result should be well-known,
but we could not find any reference.

The following example is well-known, but we include it for the sake of the reader and it
serves as an introduction for our next results and constructions.

Example 3.1 (The moduli space of K3 surfaces of genus 4) A smooth polarized K3 surface
S ⊂ P

4 of genus 4 is the complete intersection of a quadric Q and a cubic hypersurface
Y in P

4. The quadric Q = V (q) and the cubic Y = V (y) are given by polynomials q ∈
H0(P4,OP4(2)) and y ∈ H0(P4,OP4(3)) of degrees 2 and 3, respectively.

The moduli spaceF4 of K3 surfaces of genus 4 is described as follows. The quadric has to
be of rank at least 4 since otherwise S will be singular. Let V ⊂ H0(P4,OP4(2)) be the open
subset consisting of quadratic equations of rank≥ 4. For a chosen equation q we need to pick
a cubic y such that y is no multiple of q , and the intersection of Q and Y should be smooth.
Let Vq be the five-codimensional quotient of H0(P4,OP4(3)) parametrizing non-multiples
of q . The desired cubic equations are parametrized by an open subset Wq ⊂ Vq . Let W be
the iterated Grassmannian

W
G(1,Wq )

P∗(V ) ∼= P
14

whose fibers are Grassmannians of one-dimensional subspaces of Wq . Then F4 is birational
to W modulo the automorphism group of P

4 and therefore F4 is unirational. Note further
that a dimension count yields

dim V + dim Wq − dim PGL(5) =
((

6

2

)
− 1

)
+

((
7

3

)
− 1 − 5

)
− (52 − 1) = 19,

as expected.
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3.1 K3 surfaces of genus 4 with an elliptic pencil of degree 3

With notation as in the previous example let S ⊂ P
4 be a smooth K3 surface of genus 4

with polarization L = OS(1). Assume that there exists a class E ∈ Pic(S) such that E2 = 0
and E .L = 3. By Riemann–Roch, h0(S, E) = 2 and E ′ is a smooth elliptic normal curve
for general E ′ ∈ |E |. Hence we get a pencil of elliptic normal curves. The pencil induces a
rational normal scroll

X =
⋃

E ′∈|E |
E ′ ⊂ P

4

of dimension 3 and degree 2 where E ′ = P
2 is the linear span of E ′. Thus the scroll X is the

unique quadric hypersurface containing S. Furthermore, the scroll X is singular in a point
(since any two different projective planes in P

4 intersect and X cannot be singular along a
line), that is, X is a rank 4 quadric.

We remark that the residual class L − E is a second elliptic pencil of degree 3 on S and
the maximal number of such pencils is two since S ⊂ P

4 is generated by a unique quadric.
We get a K3 surface whose Picard lattice contains the intersection matrix with respect to the
ordered basis {L, E} (respectively {L − E, E})

(
6 3
3 0

)(
resp.

(
0 3
3 0

)
= U(3)

)

where U is the hyperbolic lattice of rank 2 and L is the sum of the two basis elements of
square 0. In general Pic(S) ∼= U(3) (such K3 surfaces exist by [24, Thm. 2.9(i)] or [31]), in
which case L is the unique element (up to sign) of square 6, hence genus 4, which is easily
seen to be very ample by the classical results of Saint-Donat [32]. Furthermore, such a K3
surface (S, L) is Brill–Noether general.

Recall from the introduction thatFU(3) is themoduli space ofU(3)-polarized K3 surfaces.

Proposition 3.2 The moduli space FU(3) is unirational.

Proof Bywhat we said, a general element inFU(3) comes equippedwith a unique embedding
into P

4 (up to the action of the projective linear group), as a complete intersection of a cubic
and a rank 4 quadric, singular in a point. The converse holds true: if a smooth surface S ⊂ P

4

is a complete intersection of a rank 4 quadric hypersurface Q and a cubic hypersurface, then
the two rulings on Q cut out two residual elliptic pencils of degree 3 on S.

We describe a birational model of the moduli space FU(3) by modifying the construction
in Example 3.1, keeping the notation therein.

Let V ′ ⊂ H0(P4,OP4(2)) be the subset of quadratic equations of rank 4. Since a rank 4
quadric is a cone over a smooth quadric in P

3, the space V ′ is isomorphic to an open subset
of a P

4-bundle over PH0(P3,OP3(2)) and is therefore unirational. Pick q ∈ V ′. Then the
moduli space FU(3) is birational to the iterated Grassmannian

W ′ G(1,Wq )
V ′

modulo automorphisms and is therefore unirational, too. (Since dim V ′ = (5
2

) − 1+ 4 = 13,
a dimension count yields that FU(3) is a codimension one subspace of F4, as expected.) 
�
Remark 3.3 Let U be the hyperbolic lattice of rank 2. Even if the example above should be
classically known,we only found in the literature unirationality results ofFU(n) for n = 1 and

123



Geometriae Dedicata

2 (cf. [9]). Elliptic surfaces are parametrized by FU and double covers of P
1 × P

1 branched
along a curve of bidegree (4, 4) are parametrized by FU(2).

Recall from the introduction that PU(3) is the moduli space of triples (S, ϕ, C) where
(S, ϕ) ∈ FU(3) and C ∈ |L| is a smooth curve of genus 4 in the distinguished linear system.
Also recall that a general curve of genus 4 has exactly two distinct g1

3s, which are auto-
residual.

Proposition 3.4 The moduli map PU(3) → M4 is dominant. In particular, a general curve
C of genus 4 is a linear section of a smooth K3 surface S such that its two g1

3s are induced
by two elliptic pencils |E1| and |E2| on S satisfying C ∼ E1 + E2.

Proof We consider a general curve C ⊂ P
3 of genus 4, canonically embedded into P

3, which
is a complete intersection of a smooth quadric Q′ and a cubic Y ′ (the quadric Q′ is smooth
since the two g1

3s are distinct). We will construct a K3 surface S ∈ FU(3) with the curve C
as a linear section. Therefore, we choose a P

4 containing the ambient space P
3 of the curve.

Let Q ⊂ P
4 be a cone over the quadric Q′ ⊂ P

3, that is, a rank 4 quadric whose hyperplane
section with the given P

3 is Q′. Let Y ⊂ P
4 be any cubic hypersurface such that Y ∩P

3 = Y ′.
The surface S ⊂ P

4 can be chosen as the complete intersection of Q and Y . Then, the pair
(S, C) is an element ofPU(3) by construction, and the dominance of the moduli map follows.
The last statement is immediate. 
�
Remark 3.5 Similarly in [21] it is shown that the moduli space of K3 surfaces admitting a
special automorphism of order 3 is birational to the moduli space of curves of genus 4 (see
also [6] for its generalization).

4 K3 surfaces of genus 6

Inspired by the seminal work of Mukai [27], we will construct a Brill–Noether general K3
surface S of genus 6 where every complete pencil of degree 4 on a hyperplane section of S
is induced by an elliptic pencil on S. Furthermore, we show that the moduli space of such
lattice polarized K3 surfaces is unirational.

Webriefly recallMukai’s construction. Let (S, L)be aBrill–Noether general K3 surface of
genus 6. There exists a unique stable (rigid) vector bundle E of rank 2 on S with c1(E) = L ,
h0(S, E) = 5 and hi (S, E) = 0 for i = 1, 2 [16, Prop. 5.2.7]. This bundle induces an
embedding of S into the Grassmannian G(V5, 2), where V5 = H0(S, E), by sending s ∈ S
to the fiber Es = E ⊗ Os . As described in [27], a Brill–Noether general K3 surface S is the
intersection of a linear section of codimension 3 (or 4) and a quadratic section of either the
Plücker embedding G(V5, 2) ⊂ P

9 or of its cone Ĝ(V5, 2) ⊂ P
10, respectively.

In order to get an elliptic pencil of degree 4 on a K3 surface, we need special sections
of the following form. If the linear section of codimension 3 cuts a sub-Grassmannian of
type G(4, 2) in a quadric surface, we get an elliptic normal curve of degree 4 on S as the
intersection of this quadric surface with the quadric section. A pencil of Grassmannians of
type G(4, 2) induces a pencil of elliptic curves on S and can be controlled in the dual space
in the following way.

Lemma 4.1 A hyperplane corresponds to a point in the dual Grassmannian G(2, V5) ⊂ P
9∨

if and only if it cuts out a Schubert subvariety. Moreover, the Schubert variety is a one-
dimensional union of Grassmannians of type G(4, 2) contained in G(V5, 2).
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We will prove the same statement for the Grassmannian G(V6, 2) in the next section (cf.
Sect. 6.1.1) and leave this proof to the readers. Note that two Grassmannians of type G(4, 2)
in G(V5, 2) intersect in a 2-plane. Hence, two elliptic curves of distinct pencils of degree 4
with respect to L intersect in two points. This can also be seen in the following way: if E1

and E2 are such elliptic curves, then E1.E2 ≥ 2 (as each |Ei | is a pencil); moreover, since
(L − E1)

2 = 2, one also has 4 − E1.E2 = E2.(L − E1) ≥ 2, whence E1.E2 ≤ 2. Also
inspired by the previous example of K3 surfaces of genus 4, we will construct a K3 surface
with Picard lattice of the following form:

⎛
⎜⎜⎜⎜⎜⎜⎝

10 4 4 . . . 4
4 0 2 . . . 2

4 2 0
. . .

...
...

...
. . .

. . . 2
4 2 . . . 2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

An easy computation shows that the rank can be at most five (otherwise the matrix has at
least two non-negative eigenvalues). LetM be the lattice given by the following intersection
matrix

M =

⎛
⎜⎜⎜⎜⎝

10 4 4 4 4
4 0 2 2 2
4 2 0 2 2
4 2 2 0 2
4 2 2 2 0

⎞
⎟⎟⎟⎟⎠

.

We denote S a K3 surface with the above Picard latticeM of rank 5 (which exists by [24,
Thm. 2.9(i)] or [31]) and let L be the basis element of square 10. Let Ei , i = 1, . . . , 4, be
the generators of square zero. Note that E5 := 2L − E1 − E2 − E3 − E4 is also an element
of square zero and degree 4 with respect to L .

The latticeM is also generated by elements s0, s1, . . . , s4 where s0 = E1 + · · ·+ E4 − L
and si = s0 − Ei , i = 1, . . . , 4, with intersection matrix

⎛
⎜⎜⎜⎜⎝

2 0 0 0 0
0 −2 0 0 0
0 0 −2 0 0
0 0 0 −2 0
0 0 0 0 −2

⎞
⎟⎟⎟⎟⎠

.

(This is the lattice considered in [5].) We may assume that s0 is big and nef by standard
arguments (see [7, VIII, Prop. 3.10]). Note that L = 3s0 − ∑4

i=1 si , Ei = s0 − si for
i = 1, . . . , 4 and E5 = 6s0 − 3

∑4
i=1 si .

Lemma 4.2 (a) The class L is ample.
(b) The K3 surface (S, L) is Brill–Noether general.
(c) The classes E1, . . . , E5 define elliptic pencils and are the only classes in Pic(S) of square

0 and degree 4 with respect to L.

Proof Let � = ∑4
i=0 ai si be an arbitrary class. Then �2 = 2a0 − 2

∑4
i=1 ai , thus L.� =

8a0 − �2. If � is effective, then a0 = 1
2 s0.� ≥ 0 since s0 is nef. It follows that L.� ≥ 2

for any (−2)-curve �, and we conclude (a). It also immediately follows that there exists no
nontrivial effective class � such that either �2 = 0 and �.L ≤ 3 or �2 = 2 and �.L = 5.
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This implies (b) by either a direct computation using the definition ofBrill–Noether generality
or invoking, e.g., [17, Prop. 10.5] and [32], or [14, Lemma 1.7].

Toprove that |Ei | is an elliptic pencil, it suffices to show that Ei is nef by [32]. If Ei for some
i ∈ {1, . . . , 5} is not nef, there exists a (−2)-curve � with �.Ei ≤ 0. Let k := −�.Ei ≥ 1.
Then (Ei − k�)2 = 0 and Ei − k� is effective and nontrivial with (Ei − k�).L ≤ 4− k ≤ 3
by ampleness of L , a contradiction to the Brill–Noether generality. Finally, if F is another
effective class with F2 = 0, then F .Ei ≥ 2 for all i , since F moves in (at least) a pencil.
Thus F .L = 1

2 F .(E1 + · · · + E5) ≥ 5. 
�

We will show that the general curve lies on a six-dimensional family of such K3 surfaces
of Picard rank 5. We will use the cone over the Grassmannian G(V5, 2) in P

10.

4.1 K3 sections of a cone of the Grassmannian G(V5, 2)

LetM be the rank 5 lattice above. Let FM be the moduli space ofM-polarized K3 surfaces
and PM be as in the introduction. Recall that dimFM = 15 and dimPM = 21. Also recall
that a general genus 6 curve carries precisely five elliptic pencils |A1|, . . . , |A5| of degree
four, which satisfy 2KC ∼ A1 + · · · + A5.

By [5] the moduli space FM is birational to M6, which is well-known to be rational
by [34]. More precisely, Artebani and Kondō show that FM is the locus of K3 surfaces
admitting a double cover to a quintic Del Pezzo surface branched along a curve of genus
6. In particular, this shows that the moduli map ψ : PM → M6 is dominant since we
get a section. However, the pairs (S, L) admit automorphisms fixing L , therefore PM is
not birational to a P

6-bundle over FM and one cannot conclude its unirationality from the
rationality of FM. We will show by our construction that PM is unirational and that FM is
the space of polarized K3 surfaces of genus 6 such that all the five g1

4s of their smooth curve
sections are induced by elliptic pencils on the surfaces.

Theorem 4.3 (a) The moduli map ψ : PM → M6 is dominant. Furthermore, a general
curve C of genus 6 is a linear section of a smooth K3 surface S such that its five g1

4s are
induced by five elliptic pencils |E1|, . . . , |E5| on S satisfying 2C ∼ E1 + · · · + E5.

(b) PM is unirational.

Proof (a) We will describe a K3 surface containing the general curve in M6 as well as the
geometry describing the elliptic pencils on the K3 surface. This is based on Mukai’s result
[27, §6].

Let C ∈ M6 be a general curve of genus 6 which is given as follows. We fix a Plücker
embedding of the Grassmannian G(V5, 2) ⊂ P

9. Then there exists a projective 5-space
P ⊂ P

9 as well as a quadric hypersurface Q ⊂ P such that C = P ∩ Q ∩ G(V5, 2).
Let P∨ = P

3 ⊂ P
9∨

be the dual space. As C is assumed to be general, W 1
4 (C) is finite-

dimensional, more precisely W 1
4 (C) consists of five smooth points, and is isomorphic to

P∨ ∩G(2, V5) ⊂ P
9∨

, that is, the intersection of P∨ and the dual Grassmannian G(2, V5) =
G(V5, 2)∨ ⊂ P

9∨
. By Lemma 4.1 each point of P∨ ∩ G(2, V5) corresponds to a pencil

of Grassmannians of type G(4, 2) in P
9. This pencil induces a cubic scroll in P

9 whose
restriction to C cuts out the corresponding point of W 1

4 (C).

Now let Ĝ(V5, 2) ⊂ P
10 be the cone over the Grassmannian G(V5, 2) with vertex point

v. We denote Ĝ(2, V5) ⊂ P
10∨

the cone over the dual Grassmannian with vertex w such that

Ĝ(2, V5) = Ĝ(V5, 2)
∨
. We consider the given projective 5-space P as a subspace of P

10.
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Let Pv = P + v be the span of P and the vertex v. Let Q′ ⊂ Pv be a quadric hypersurface
such that Q′ ∩ P = Q. We get a K3 surface S = Ĝ(V5, 2) ∩ Pv ∩ Q′, which we can assume
to be smooth for general Q′. Then the dual space of this Pv is exactly the above P∨. As above
the five intersection points P∨ ∩ ̂G(V5, 2) = P∨ ∩ G(V5, 2) correspond to five pencils of
Grassmannians in P

10 whose restriction to S are the five elliptic pencils of degree 4 on S.
We get the desired K3 surface with the right Picard lattice.

(b) Recall that any canonical model of a general curve of genus 6 can be realized as a
quadratic section of a fixed quintic Del Pezzo surface Y ⊂ P

5 (see [34]).
We fix a P

6 ⊃ P
5 and a point v ∈ P

6. Let Ŷ be the cone over Y with vertex v. For a general
curve C ∈ M6 we consider the linear system LC of quadratic sections of Ŷ containing C .
We have dimLC = h0(P6,OP6(2)) − h0(P5,O

P5(2)) − 1 = 6. We define the incidence
correspondence

I = {(C, S) | C ⊂ S} ⊂ |OY (2)| × |OŶ (2)| = P
15 × P

22

together with the projection π : I → |OY (2)|, whose fibers are given by LC . It follows that
π has the structure of a P

6-bundle, whence dim(I ) = 15 + 6 = 21.
By the proof of part (a) the general member of LC is a smooth K3 surface in FM (note

that P = P
5, Pv = P

6, Y = P ∩ G(V5, 2) and Ŷ = Ĝ(V5, 2) ∩ Pv in the notation of that
proof). Hence, we get a natural rational moduli map ϕ : I ��� PM. Since I is unirational,
the corollary will follow if we prove that ϕ is dominant, equivalently, generically finite, since
PM is irreducible of the same dimension as I .

Assume therefore that ϕ has positive-dimensional fibers. Since the rational moduli map
|OY (2)| ��� M6 is finite, the fibers of ϕ lie in fibers of π . Hence, the K3 surfaces in LC do
not have maximal variation in moduli. Note that LC contains the quadratic sections of the
form Y ∪ Y ′ where Y ′ ∈ PH0(Ŷ ,OŶ (1)) which form a hypersurface in LC . Hence a general
one-dimensional family in LC is non-isotrivial, a contradiction. 
�

Remark 4.4 (a) The proof of Corollary 4.3 shows that our construction dominates the moduli
space FM, that is, the general K3 surface in FM is a quadratic section of a cone over a
quintic Del Pezzo surface in P

5.
(b) By [27], all Brill–Noether general K3 surfaces of genus 6 can be realized as a quadratic

section of either a smooth quintic Del Pezzo threefold in P
6 or a cone over a quintic Del

Pezzo surface. Item (a) shows that FM is precisely the locus of K3 surfaces that cannot
be realized in a smooth Del Pezzo threefold.

5 Lazarsfeld–Mukai bundles and their stability

For K3 surfaces constructed in Sects. 3 and 4wewill show that these are K3 surfaces without
any stable rank 2 Lazarsfeld–Mukai bundle with determinant L and c2 = 3 or 4, respectively.
This shows in particular that the result of Lelli-Chiesa [23, Thm. 4.3] about stability of rank
2 vector bundles on K3 surfaces is optimal.

We recall the definition and basic properties of Lazarsfeld-Mukai bundles, which will also
be needed in Sect. 6. Let S be a K3 surface and let C ⊂ S be a smooth curve of genus g with
a globally generated line bundle A of degree d with h0(C, A) = r +1. The Lazarsfeld-Mukai
bundle EC,A is defined via an elementary transformation on S:

0 −→ E∨
C,A −→ H0(C, A) ⊗ OS −→ A −→ 0, (5.1)
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where A is considered as a coherent sheaf on S supported on C . Hence, it is a bundle of rank
r + 1 satisfying c1(EC,A) = [C], c2(EC,A) = deg A = d and Hi (S, EC,A) = 0 for i = 1, 2.
The bundles have been introduced by Lazarsfeld [22] and Mukai [30]. Dualizing the above
sequence, we get

0 −→ H0(C, A)∗ ⊗ OS −→ EC,A −→ ωC ⊗ A∗ −→ 0,

and in particular a distinguished (r + 1)-dimensional subspace H0(C, A)∗ ⊂ H0(EC,A).
Equivalently, by [2, Prop. 1.3], a rank (r + 1)-bundle E on S is a Lazarsfeld-Mukai bundle
if and only if h1(S, E) = h2(S, E) = 0 and there exists an (r + 1)-dimensional subspace
V ⊂ H0(S, E) such that the degeneracy locus of the evaluation morphism V ⊗ OS → E is
a smooth curve.

Lemma 5.1 If A ∈ W 1
d (C) with d ≤ g − 1 is induced by an elliptic pencil |E | on the K3

surface S, then EC,A is not L-stable, where L = OS(C). Furthermore, the bundle EC,A is
L-unstable, if d < g − 1.

Proof This is essentially already contained in [1, Proof of Thm. 1.1]. Using the snake lemma,
we get the following commutative diagram

0

0 0 E ⊗ L∗

0 E∗ H0(S, E) ⊗ OS

∼=

E 0

0 E∨
C,A H0(C, A) ⊗ OS A 0

E ⊗ L∗ 0 0

0

Dualizing the left column, we see that L ⊗ E∗ is a subbundle of EC,A. Computing slopes,
we get μ(L ⊗ E∗) = 2g − 2 − d ≥ g − 1 = μ(EC,A). 
�
Corollary 5.2 Let (S, L) ∈ FU(3)

4 be a Brill–Noether general polarized K3 surface as in
Sect. 3.1. Then S contains only L-strictly semistable Lazarsfeld–Mukai bundles EC,A of rank
2 and det(EC,A) = L, c2(EC,A) = 3 for C ∈ |L| smooth.

Proof Note that W 1
3 (C) consists of exactly two residual pencils of divisors which extend to

two elliptic pencils on S. We can apply Lemma 5.1, and the corollary follows. 
�
Corollary 5.3 Let (S, L) ∈ FM

6 be a Brill–Noether general polarized K3 surface as in
Sect. 4. Then S contains only L-unstable Lazarsfeld–Mukai bundles EC,A of rank 2 and
det(EC,A) = L, c2(EC,A) = 4 for C ∈ |L| smooth.
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Proof Since C is Brill–Noether general, every pencil in W 1
4 (C) is induced by an elliptic

pencil on the K3 surface S. The result follows from Lemma 5.1. 
�
Remark 5.4 Part (i) of [23, Thm. 4.3] implies that on any Brill–Noether general K3 surface
(S, L) of genus g there are L-stable Lazarsfeld–Mukai bundles of determinant L and c2
equal to d as soon as ρ(g, 1, d) > 0. (Indeed, sections of Brill–Noether general K3 surfaces
have maximal gonality as a consequence of the definition and have Clifford dimension 1 by
ampleness of L , cf. [18, Thm. 1.2] or [10, Prop. 3.3]). The above corollaries show that this
does not always hold for ρ(g, 1, d) = 0 (at least when g = 4 or 6).

6 K3 surfaces of genus 8

In this section we construct K3 surfaces of genus 8 with the maximal number of elliptic
pencils of degree 5. We recall Mukai’s construction from [27,29] and fix our notation.

Let (S, L) be a Brill–Noether general polarized K3 surface of genus 8. Then there exists
a unique globally generated stable vector bundle E of rank 2 with determinant L and Euler
characteristic 6 (this can be constructed as the Lazarsfeld–Mukai bundle associated to a g1

5 on
any smooth C ∈ |L| not induced by an elliptic pencil on S by [2, Prop. 1.3]). It is known that
V6 = H0(S, E) is six-dimensional. Every fiber Es of E for s ∈ S is a 2-dimensional quotient
space of V6, which induces a morphism φE : S → G(V6, 2), s �→ Es . The Grassmannian
G(V6, 2) is naturally embedded into P

∗(
∧2 V6) = P

14 via the Plücker embedding. The
second exterior product induces a surjective map on global sections

λ :
2∧

H0(S, E) → H0(S,

2∧
E),

and we get the following commutative diagram

S
φE

φ∧2 E

G(V6, 2)

Plücker

P
8 = P

∗(H0(S,
∧2 E))

P
∗(λ)

P
14

where P
∗(λ) is the linear embedding induced by λ. Since

∧2 E = c1(E) = L , the map φ∧2 E
is given by the linear system |L|. The above diagram is cartesian, that is, S = P

8 ∩ G(V6, 2).
Hyperplane sections of G(V6, 2) are parametrized by P∗(

∧2 V6). The dual of P
8 is a

five-dimensional projective space P
5 = P∗(ker λ) ⊂ P∗(

∧2 V6).
Let C ∈ |L| be a smooth curve. The Brill–Noether generality of (S, L) is equivalent to C

not containing a g2
7 (arguing as in [13,22] or see [14, Lemma 1.7]). Let EC be the restriction of

E to C , which is stable by [27, §3] and H0(S, E) ∼= H0(C, EC ). As above we get a surjective
morphism λC : ∧2 H0(C, EC ) → H0(C, ωC ) and a commutative cartesian diagram

C G(V6, 2)

Plücker

P
7 = P(H0(C, ωC )∗) P

∗(λC )
P
14

since P∗(λC ) ∩ G(2, V6) ∼= W 1
5 (C) is finite (see [27, Thm. C]). Note that P∗(λC ) is a

six-dimensional space containing P∗(λ).
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For our purpose we state Mukai’s result in the following form.

Lemma 6.1 (Mukai) A linear intersection of G(V6, 2) and P
8 is a surface (in particular a

Brill–Noether general K3 surface if smooth) if and only if the dual projective space P
5 inter-

sects the Grassmannian G(2, V6) in the following way: for every P
6 ⊃ P

5 the intersection
with G(2, V6) ⊂ P∗(

∧2 V6) is finite.

Proof The ”only if“ part follows from the above. Conversely, the second condition is equiv-
alent to any hyperplane section of the given linear section being a curve. 
�

6.1 Linear sections of G(V6, 2) and elliptic pencils

We are interested in K3 surfaces S ⊂ P
8 with an elliptic pencil of minimal degree 5. We

describe a way of constructing such K3 surfaces.
We use the notation above. Let V6 be a 6-dimensional complex vector space, and let V5

be a 5-dimensional subspace of V6. We consider G(V5, 2) ⊂ G(V6, 2) ⊂ P
∗(

∧2 V6). By
a dimension count, a general 8-dimensional linear subspace of P

14 intersects G(V5, 2) in 5
points. Assume instead that our P

8 intersects G(V6, 2) transversally and P
8 ∩ G(V5, 2) is a

smooth curve, which is then an irreducible elliptic normal curve of degree 5. Then we get a
K3 surface S with an elliptic pencil.

6.1.1 Dual Grassmannian and Schubert varieties

Even more is true. As Mukai already notices in [27, end of p.3], a hyperplane corresponds to
a point in the dual Grassmannian G(2, V6) ⊂ P∗(

∧2 V6) if and only if it cuts out a Schubert
subvariety. We will explain this fact in detail.

Let U ∈ G(2, V6) be a point in the Grassmannian, that is, U ⊂ V6 be a 2-dimensional
subspace of V6. Hence,U⊥ = V6/U is a 4-dimensional quotient of V6. By the perfect pairing∧2 V6 ⊗ ∧4 V6 → C we may interpret U⊥ as a linear function on

∧2 V6, denoted by HU .

We compute the hyperplane section HU ∩ G(V6, 2). By definition HU : ker(∧2 V6
∧4U⊥−→∧6 V6 = C). Thus,

HU ∩ G(V6, 2) = {U ′ ∈ G(V6, 2) |
2∧

U ′ ∧
4∧

U⊥ = 0}
= {U ′ ∈ G(V6, 2)| dim(U ′ ∩ U⊥) ≥ 1} =: �1(U

⊥)

is a Schubert variety. Note that dim(U ′ ∪ U⊥) ≤ 5 for U ′ ∈ HU ∩ G(V6, 2), and it is easy
to check that

�1(U
⊥) =

⋃
v∈W

G(U⊥ ∪ v, 2),

where W ⊕ U⊥ = V6. Note that everything is compatible with projectivization. Finally,
we see that P

∗(HU ) ∩ G(V6, 2) ⊂ P
14 is a pencil of Grassmannians of type G(5, 2). The

converse direction can be shown similarly.
We conclude that every intersection point of P∗(ker λ)∩G(2, V6) gives a pencil of elliptic

curves on S. In order to get K3 surfaceswithmany elliptic pencils of degree 5, we have to con-
struct a transversal linear section P

8 such that its dual P∗(ker λ) intersects the Grassmannian
G(2, V6) in as many points as possible.
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6.1.2 Extension of elliptic curves to the Grassmannian G(V6, 2)

Let (S, L) be a Brill–Noether general polarized K3 surface of genus 8 with an elliptic pencil
|E | satisfying L.E = 5. As S can be embedded (as a linear section) into the Grassmannian
G(V6, 2), we will show that every elliptic curve E ′ ∈ |E | is a linear section of a sub-
Grassmannian of type G(5, 2) of G(V6, 2).

We need some lemmas. We note that (L − E)2 = 4 and (L − E).L = 9, whence
h0(L − E) ≥ 4 by Serre duality and Riemann–Roch.

Lemma 6.2 The complete linear system |L−E | is base point free and maps S birationally onto
a quartic surface in P

3 having at most isolated A1-singularities coming from contractions
of smooth rational curves � satisfying �.L = �.E = 1.

Proof Assume there exists an effective divisor � such that �2 = −2 and �.(L − E) ≤ 0.
In particular, �.E ≥ �.L > 0. Then (L − E − �)2 ≥ 2, whence h0(L − E − �) ≥ 3.
As (S, L) is assumed to be Brill–Noether general, we must have h0(E + �) = h0(E) = 2,
thus �.E = 1, and consequently �.L = 1 and �.(L − E) = 0. It follows that L − E is
nef. It also follows, once we have proved that |L − E | defines a birational morphism, that
any connected curve contracted by this morphism is an irreducible rational curve of degree
one with respect to L and E , proving that the image surface has at most isolated rational
A1-singularities.

To prove that |L − E | defines a birational morphism, it suffices by the well-known results
of Saint-Donat [32] to prove that there is no irreducible curve D on S satisfying D2 = 0 and
D.(L − E) = 1 or 2. If such a D exists, then it is easily seen to satisfy D.L ≥ 5 by Brill–
Noether generality. Hence, D.E ≥ 3, so that (D + E)2 ≥ 6. It follows that h0(D + E) ≥ 5.
Since (L − E − D)2 ≥ 0 and (L − E − D).D ≥ 1, we have h0(L − E − D) ≥ 2 by
Riemann–Roch and Serre duality, contradicting Brill–Noether generality. 
�

Let C ∈ |L| be a smooth curve and let E = EC,A be the Lazarsfeld–Mukai bundle
associated to C and a pencil |A| of degree 5 on C . Note that the bundle EC,A is the unique
L-stable bundle on S with determinant L and Euler characteristic 6. We write AE = E ⊗OC

and note that A � AE by Lemma 5.1.

Lemma 6.3 Let (S, L), E and E = EC,A be as above. Then h0(E(−E)) = 1 and
h1(E(−E)) = h2(E(−E)) = 0. In particular, H0(E|E ) is a five-dimensional quotient of
H0(S, E).

Proof Sincewe know that h0(E) = 6, the last assertion immediately follows from the claimed
cohomology of E(−E) by the obvious restriction sequence.

We will compute the cohomology of E(−E) using Serre duality and the sequence

0 −→ E∨(E) −→ H0(C, A) ⊗ OS(E) −→ A ⊗ AE −→ 0, (6.1)

which is (5.1) tensored by OS(E).
Since E∨(E) is semi-stable of degree −4, one has h0(E∨(E)) = 0. Moreover,

h0(OS(E)) = 2 and h1(OS(E)) = h2(OS(E)) = 0, as E is an irreducible elliptic curve.
Hence, the desired cohomology of E(−E) will follow once we prove that

h0(C, A ⊗ AE ) = 4 and h1(C, A ⊗ AE ) = 1. (6.2)

To prove the latter, note that h0(C, A ⊗ AE ) = χ(C, A ⊗ AE ) + h1(C, A ⊗ AE ) = 3 +
h1(C, A ⊗ AE ) by Riemann–Roch. Since A � AE , we have h0(C, A ⊗ AE ) ≥ 4; moreover,
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equality must hold, as otherwise h0(C, ωC ⊗ (A ⊗ AE )−1) = h1(C, A ⊗ AE ) ≥ 2 and
deg(ωC ⊗ (A ⊗ AE )−1) = 4, hence C would contain a g1

4, a contradiction to Brill–Noether
generality. This proves (6.2). 
�

By abuse of notation, let E be an elliptic curve of the pencil |E | on S. Since H0(E|E ) is a
5-dimensional quotient space of V6 = H0(S, E), each fiber Es for s ∈ E is a 2-dimensional
quotient of H0(E|E ) and hence of V6. The image φE (E) of the elliptic curve is contained in
G(H0(E|E ), 2). Since λ is surjective and E is projectively normal, we have the following
commutative diagram

∧2 H0(S, E)
λ

H0(S,
∧2 E) ∼= H0(S, L)

∧2 H0(E, E|E ) H0(E,
∧2 E|E ) ∼= H0(E, L|E ).

So, we obtain the commutative diagram

E
φE |E

φ∧2 E |E

G(H0(E|E ), 2)

Plücker

G(V6, 2)

P
4 = P

∗(H0(E, L|E ))
α

P
∗(

∧2 H0(E, E|E )) P
∗(

∧2 H0(S, E))

where α is an embedding. The diagram is also cartesian. Indeed, let P
4 = E be the linear

span, then

E ⊂ P
4 ∩ G(H0(E|E ), 2) ⊂ P

4 ∩ G(V6, 2) = P
4 ∩ P

8 ∩ G(V6, 2) = S ∩ P
4.

But E = S ∩P
4 since |E | and |L − E | are base point free (c.f. Lemma 6.2). Hence, it follows

that E = P
4 ∩ G(H0(E|E ), 2). By Section 6.1.1, the elliptic pencil |E | on S is cut out by the

Schubert cycle �1(V4) on G(V6, 2) for some four-dimensional quotient V4. Recall further
that there is a one-to-one correspondence between such Schubert cycles and points on the
dual Grassmannian G(2, V6).

The following corollary follows immediately from our discussion.

Corollary 6.4 Let (S, L) be a Brill–Noether general polarized K3 surface of genus 8. Let
P
5
(S) ⊂ P∗(

∧2 H0(S, E)) be the dual space of P
8 = P

∗ H0(S, L) ⊂ P
∗(

∧2 H0(S, E)).
There is a one-to-one correspondence between elliptic pencils |E | on S satisfying L.E = 5
and points of G(2, V6) ∩ P

5
(S).

6.1.3 Maximal number of distinct elliptic pencils

Let (S, L) be a Brill–Noether general K3 surface of genus 8, and let E1, E2 be two classes
with E2

1 = E2
2 = 0 and E1.L = E2.L = 5. Then E1.E2 = 2. Indeed, the Hodge Index

Theorem on E1 + E2 and L yields E1.E2 ≤ 3. Equality implies (E1 + E2)
2 = 6 and

(L − E1 − E2)
2 = 0, whence h0(S, E1 + E2) ≥ 5 and h0(S, L − E1 − E2) ≥ 2, a

contradiction to Brill–Noether generality.
On can also see this fact geometrically using the notation of the previous section. Let

V5, V ′
5 be two distinct 5-dimensional quotients of V6. The intersection of the Grassmannians

G(V5, 2) and G(V ′
5, 2) is the Grassmannian G(V5∩V ′

5, 2). The Grassmannian G(V5∩V ′
5, 2)
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is a 4-dimensional quadric. Hence, if P
8 is a general linear subspace such that its intersection

with G(V5, 2) and G(V ′
5, 2) are elliptic curves, then these elliptic curves intersect in two

points, namely P
8 ∩ G(V5 ∩ V ′

5, 2).
If all our above assumptions are satisfied,weget a K3 surfacewith Picard lattice containing

the following lattice
⎛
⎜⎜⎜⎜⎜⎜⎝

14 5 5 . . . 5
5 0 2 . . . 2

5 2 0
. . .

...
...

...
. . .

. . . 2
5 2 . . . 2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

An easy computation shows that the maximal possible rank is 10 (otherwise the matrix
has at least two positive eigenvalues). Let G9 be such a lattice of maximal possible rank
which is given by the following intersection matrix

G9 =

⎛
⎜⎜⎜⎜⎜⎜⎝

14 5 5 . . . 5
5 0 2 . . . 2

5 2 0
. . .

...
...

...
. . .

. . . 2
5 2 . . . 2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
10 columns

.

We denote S a K3 surface with the above Picard latticeG9 of rank 10 (which again exists
by [24, Thm. 2.9(i)] or [31]), and let L be the basis element of square 14, which can be taken
to be big and nef by standard arguments (see [7, VIII, Prop. 3.10]). Let Ei , i = 1, . . . , 9, be
the generators of square zero.

Lemma 6.5 (a) The class L is ample.
(b) The K3 surface (S, L) is Brill–Noether general.
(c) The classes E1, . . . , E9 define elliptic pencils.

This can probably be proved arguing as in the proof of Lemma 4.2, but the computations
are much more tedious. Instead we will give a constructive proof in the next subsection.

6.2 A unirational construction of K3 surfaces with nine distinct elliptic pencils

Recall that any projective equivalence of two K3 surfaces that are linear sections of the
Grassmannian G(V6, 2) is induced by an automorphism of V6 (see [28, Theorem 0.2]).

By Corollary 6.4, any Brill–Noether general polarized K3 surface S of genus 8 with
exactly nine elliptic pencils of degree five induces and is induced by a unique five-dimensional
space P

5
(S) intersecting G(2, V6) ⊂ P

14 in exactly nine points. We reformulate this fact in
the following proposition. To state it we denote H9,5(G(2, V6)) the space of 9-secant 5-
planes of the Grassmannian G(2, V6) ⊂ P

14 intersecting the latter in exactly nine points and
H̃9,5(G(2, V6)) this space modulo the automorphisms of V6.

Proposition 6.6 The moduli space of Brill–Noether general polarized K3 surfaces of genus 8
with exactly nine elliptic pencils of degree 5 is birational to H̃9,5(G(2, V6)), and both spaces
are non-empty.

123



Geometriae Dedicata

Proof By Corollary 6.4, we only need to prove the non-emptiness of H9,5(G(2, V6)). A
general intersection of G(2, V6) and aP

7 is a smooth curveC of genus 8 and the general curve
of genus 8 is obtained in this way (cf. [27]). Furthermore, a 9-secant 5-plane of G(2, V6)

contained in this P
7 is also a 9-secant of C , which is a divisor in a g3

9 by the geometric
Riemann–Roch. Note that the g3

9 is automatically base point free as otherwise the curve
would not be Brill–Noether general and thus could not be a linear section of the G(2, V6) by
[27]. Hence a general divisor in the g3

9 induces an element of H9,5(G(2, V6)).
We have reduced the problem to constructing a curve of genus 8 as a linear section of

G(2, V6) carrying a g3
9, or equivalently, taking residuals, a g1

5. Such a curve can be realized
as follows: We get a divisor D of degree 5 in a g1

5 on a curve C of genus 8 if we fix a G(2, V5)

(whereV5 is a 5-dimensional subspace ofV6) and choose aP
7 such thatC = P

7∩G(2, V6) and
D = P

7 ∩ G(2, V5) induces the g1
5 = |D|. In an ancillary file, cf. [15], we have implemented

this construction in Macaulay2 (see [12]) as well as the construction of the corresponding
K3 surface. 
�

The Picard lattice of the K3 surfaces in the moduli space in Proposition 6.6 contains the
latticeG9 and the generator of square 14 is (very) ample and the generators of square 0 are nef.
Let FG9 be the moduli space of G9-lattice polarized K3 surfaces. By standard deformation
arguments (see [20, Thm. 14]) the very general element in FG9 has Picard lattice equal to
G9, is Brill–Noether general with ample generator of square 14 and the generators of square
0 define elliptic pencils.

Proof of Lemma 6.5 The last discussion proves the lemma for the very general element in
FG9 having Picard lattice equal toG9. Since the properties (a)-(c) of the lemma only depend
on the lattice, this finishes the proof. 
�

We also have the following

Theorem 6.7 The moduli space FG9 of G9-lattice polarized K3 surfaces is unirational.

Proof The above discussion shows that FG9 is birational to H̃9,5(G(2, V6)). In particular,
H̃9,5(G(2, V6)) is irreducible.

Consider the following incidence variety

{(V 9
5 , P

7)∈H9,5(G(2, V6)) × G(8,�2V6) | V 9
5 ⊂ P

7,

C =P
7 ∩ G(2, V6) a smooth curve}

and denote I its quotient with the automorphisms of V6 acting diagonally. Then I admits a
natural first projection map π1 : I → H̃9,5(G(2, V6)) and a second projection to the moduli
space of curves of genus 8. As for K3 surfaces, any projective equivalence of two curves of
genus 8 that are linear sections of the Grassmannian G(2, V6) is induced by an automorphism
of V6.

The proof of Proposition 6.6 shows that I is non-empty and is therefore birational to a
P
3-bundle over the universal Brill–Noether variety W3

8,9 by the universal Abel–Jacobi map.

Hence, I is unirational and irreducible since W3
8,9

∼= W1
8,5 is unirational (and irreducible)

by [3]. Since π1 is dominant (because H̃9,5(G(2, V6)) is irreducible), H̃9,5(G(2, V6)) is
unirational. The theorem follows. 
�
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One may also consider, for i ∈ {0, . . . , 8}, the moduli spaces FGi ofGi -lattice polarized
K3 surfaces, where Gi is the rank i + 1 lattice

Gi =

⎛
⎜⎜⎜⎜⎜⎜⎝

14 5 5 . . . 5
5 0 2 . . . 2

5 2 0
. . .

...
...

...
. . .

. . . 2
5 2 . . . 2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
i+1 columns

Then dimFGi = 19 − i and FGi+1 ⊂ FGi for each i ∈ {0, . . . , 8}. Note that FG0 = F8.

Theorem 6.8 The moduli spaces FGi of Gi -lattice polarized K3 surfaces are unirational
for i ≤ 6.

Proof The case i = 0 is proved in [28]. By Corollary 6.4 and Lemma 6.5, the general K3
surface in FGi corresponds uniquely to a five-dimensional projective space intersecting the
Grassmannian G(2, V6) ⊂ P

14 in exactly i points modulo automorphisms of V6. Such i-
secant 5-planes are unirationally parametrized by the product of the i-th symmetric product
of G(2, V6) and (6 − i)-th symmetric product of P

14. 
�
We remark that the unirationality of FG1 can also be shown using quartic surfaces in P

3

containing an elliptic quintic curve. The question of (uni)rationality ofFG7 andFG8 is open.

6.3 Themoduli map

Let F8 denote the 19-dimensional moduli space of polarized K3 surface of genus 8 and P8

the moduli space of triples (S, L, C) where (S, L) ∈ F8 and C ∈ |L| is a smooth irreducible
curve. Let m8 : P8 −→ M8 be the moduli map.

Proposition 6.9 Let (S, L) ∈ F8 be a Brill–Noether general K3 surface such that S contains
an elliptic pencil |E | satisfying E .L = 5. Then the fiber of m8 is smooth and 6-dimensional
at any point represented by a smooth curve C in |L|.
Proof By comparing dimensions, the fibers of m8 are at least 6-dimensional. (It is known
that m8 is dominant, and therefore its general fibers are precisely 6-dimensional, but we will
not use this.) By [33, §3.4.4] or [8], the kernel of the differential of m8 at a point (S, L, C) is
isomorphic to H1(TS(−L)). To prove the proposition, it therefore suffices by Serre duality
to prove that h1(�S(L)) ≤ 6.

Let ϕ : S → P
3 be the morphism defined by |L − E | and S0 be its image, which is a

quartic surface. By Lemma 6.2 its possible singularities are images of contracted disjoint
rational curves �i on S, i = 1, . . . , k. By [25, Thm. 2.1] we have a short exact sequence

0 O�1+···+�k ϕ∗�S0 �S O�1+···+�k 0. (6.3)

Twisting by OS(L), taking cohomology and using the fact that �i · L = 1 by Lemma 6.2,
we obtain

h1(�S(L)) ≤ h1(ϕ∗�S0(L)). (6.4)
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Pulling back the conormal bundle sequence

OS0(−4) ∼= IS0/P3/I
2
S0/P3

�P3 |S0 �S0 0

and twisting by OS(L), we obtain

OS(−3L + 4E) ϕ∗�P3 |S0(L) ϕ∗�S0(L) 0.

The left hand map is injective, as OS(−3L + 4E) is locally free. Thus,

h1(ϕ∗�S0(L)) ≤ h1(ϕ∗�P3 |S0(L)) + h0(3L − 4E), (6.5)

using Serre duality. Pulling back the dual of the Euler sequence,

0 �P3 |S0 H0(OS0(1)) ⊗ OS0(−1) OS0 0

and twisting by OS(L), we obtain

0 ϕ∗�P3 |S0(L) H0(L − E) ⊗ OS(E) OS(L) 0.

Hence, since h1(E) = 0 as E is irreducible, we obtain

h1(ϕ∗�P3 |S0(L)) ≤ corkμ, (6.6)

where μ is the multiplication map of sections

μ : H0(L − E) ⊗ H0(E) −→ H0(L).

Combining (6.4), (6.5) and (6.6), we see that we obtain the desired inequality
h1(�S(L)) ≤ 6 if we prove that

h0(3L − 4E) = 5 (6.7)

and

corkμ = 1. (6.8)

To prove (6.8), note that the evaluation map H0(E) ⊗ OS → OS(E) is surjective as |E | is
base point free and has kernel OS(−E). Twisting by OS(L − E), we obtain

0 OS(L − 2E) H0(E) ⊗ OS(L − E) OS(L) 0

Taking cohomology and using the fact that h1(L − E) = 0 as L − E is big and nef by Lemma
6.2, we obtain that corkμ = h1(L − 2E).

We have (L −2E).L = 4, hence h2(L −2E) = h0(2E −L) = 0, as L is ample. Similarly,
h0(L − 2E) = 0, since (L − 2E).(L − E) = −1 and L − E is nef. Since (L − 2E)2 = −6,
Riemann–Roch yields h1(L − 2E) = 1, and (6.8) is proved.

To prove (6.7), note that (3L − 4E)2 = 6 and h2(3L − 4E) = h0(4E − 3L) = 0, as
(4E − 3L).E < 0 and E is nef. Hence, (6.7) is equivalent to h1(3L − 4E) = 0.

To get a contradiction, assume that h1(3L − 4E) > 0. Then, by [19], there exists an
effective divisor � such that �2 = −2 and k := −�.(3L − 4E) ≥ 2. Since �.L > 0, as L
is ample, we must have

�.E ≥ 2. (6.9)
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One computes (3L − 4E − k�)2 = 6 and (3L − 4E − k�).(L − E) = 7 − k�.(L − E).
By the Hodge index theorem,

24 = (3L − 4E − k�)2 · (L − E)2 ≤ [7 − k�.(L − E)]2 ,

and the only possibilities are

(I) �.(L − E) = 0; or
(II) �.(L − E) = 1 and k = 2.

In case (I) we find (L − E − �)2 = 2 and (L − E − �).(L − E) = 4, whence h0(L −
E − �) ≥ 3 by Riemann–Roch and Serre duality. By (6.9) we have (E + �)2 ≥ 2, thus
also h0(E + �) ≥ 3 by Riemann–Roch. But then h0(L − E − �)h0(E + �) ≥ 9 = 8 + 1,
contradicting Brill–Noether generality.

In case (II) we have �.L = �.E + 1 and −2 = �.(3L − 4E), which together yield
�.E = 5 and �.L = 6. Therefore, (L − E − �)2 = 0 and (L − E − �).L = 3, it follows
h0(L − E −�) ≥ 2 by Riemann–Roch and Serre duality. Moreover, (E +�)2 = 8, whence
h0(E +�) ≥ 6 by Riemann–Roch. Similarly to the previous case, we obtain a contradiction
to Brill–Noether generality.

This shows that (6.7) holds and finishes the proof of the proposition. 
�
For i ∈ {0, . . . , 9}, let Gi and FGi be as in the previous subsection and let PGi be

the moduli space of triples as in Sect. 2. Note that PGi is birational to the open part of
the tautological P

8-bundle over FGi consisting of pairs (S, C) with [S] ∈ FGi and [C]
representing a smooth curve in |L|, where L is the generator class of square 14 in Gi . We
have PGi+1 ⊂ PGi for each i ∈ {0, . . . , 8}.

Let mGi
8 : PGi → M8 be the moduli map.

Proposition 6.10 For each i ∈ {0, . . . , 9}, a general fiber of mGi
8 has dimension

max{0, 6 − i}.
Proof ByProposition 6.9, the fiber ofmG0

8 is smooth and 6-dimensional at any point (S, C) ∈
PG9 . Fix such an (S, C).

We will show that there exists a chain of irreducible components Fi ⊂ (mGi
8 )−1([C]) of

the fiber of mGi
8 for i ∈ {0, . . . , 5}, respectively, containing (S, C) ∈ PG9 such that

(S, C) ∈ F5 � F4 � · · · � F1 � F0.

Consequently, there exist K3 surfaces Si ∈ FGi \FGi+1 for i ∈ {0, . . . , 5} containing C .
Since dim F0 = 6 by Proposition 6.9, the dimension of Fi is 6− i for i ∈ {0, . . . , 5} and the
proposition will follow.

By construction, S (resp. C) is the intersection of G(V6, 2) with a P
8 (respectively a P

7)
in P

14. The dual P
5 of the P

8, which we henceforth call P
5
(S), intersects the dual G(2, V6)

in 9 points, call them x1, . . . , x9, and the dual P
6 of the P

7, which we henceforth call P
6
(C),

contains P
5
(S).

By construction, the nine points x1, . . . , x9 span P
5
(S). Thus, we may find inside P

6
(C) a

set of six additional hyperplanes P
5
(i), i ∈ {0, . . . , 5} containing precisely i of the points

x1, . . . , x9; in particular P
5
(i) intersects G(2, V6) in precisely i points.

Denote by P
8
(i) the dual P

8 of P
5
(i). Then P

8
(i) ∩ G(V6, 2) is a K3 surface Si containing C

and precisely i elliptic pencils of degree 5 (andmutually intersecting in 2 points) by Corollary
6.4. As the nine elliptic pencils together with C generate G9 ⊂ Pic(S), we also have that C
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and the i elliptic pencils generateGi ⊂ Pic(Si ), whence Si ∈ FGi \FGi+1 . Each pair (Si , C)

therefore lies in Fi\Fi+1. This concludes the proof. 
�

Corollary 6.11 For each i ∈ {0, . . . , 9}, the codimension of the image of the moduli map mGi
8

is max{0, i − 6}. In particular, a general curve of genus 8 is a linear section of a K3 surface
such that precisely six out of its 14 g1

5s are induced by elliptic pencils on the K3 surface.
Moreover, there is a codimension k family of curves lying on a K3 surface such that precisely
6 + k of its g1

5s are induced by elliptic pencils on the K3 surface for k ∈ {1, 2, 3}.

Remark 6.12 One can ask similar questions for K3 surfaces of higher even genus. For
instance, how many elliptic pencils of minimal degree exist on a Brill–Noether general K3
surface? But the methods in this article cannot be applied to K3 surfaces of higher genus.
Indeed, let C be a Brill–Noether general curve of even genus g ≥ 10. Note on the one hand
that the curve C does not lie on a K3 surface and on the other hand that the (finite) number of
pencils of minimal degree on C is bigger that 19 (the maximal rank of the Picard lattice of a
smooth K3 surface). Furthermore, a characterization of Brill–Noether general K3 surfaces
is only known for g ≤ 10 and 12.
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