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Abstract

The formulation and use of the momentum equations for multiphase systems are

not always consistent in the literature. The objective of this note is to clarify

an issue, which long has dogged the literature on the multiphase flow equations.

The standard book by Gidaspow, which historically has formed the basis of at

least two of the major CFD software packages in common use today, describes

three formulations of the momentum equations for fluid (continuous phase)-solids

(dispersed phase) flows that are often not clearly distinguished, as this note will

demonstrate.

This note focuses on Models “A” and “B”, which are more widely used than

model “C”. Their form and significance are discussed, as are the most common

flaws in their interpretation and use.

The equations are listed in their differential form, the form in which they are

normally used, although in their nature, and when derived, the equations are not

differential.

1 Continuity equations

The continuity equations are the same for models A and B. They are 1-D equations

derived by considering the flow in a tube of cylindrical cross-section.
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Fluid:

d

dx
[ερgvg] = 0 (1)

Solid:

d

dx
[(1 − ε)ρsvs] = 0 (2)

Since the book of Gidaspow [1] discusses gas fluidization, the phase indices are “g” for

gas (the continuous or carrier phase) and “s” for solid (the dispersed phase(s)). ε is the

“voidage fraction” or the volume fraction of the continuous phase; x is the coordinate

in the direction of the axis of the containing tube. The rest of the symbols have their

usual meaning.

2 Momentum equations

2.1 Equations Common to the two models

The equation for the mixture momentum is the same for models A and B:

d
[
(1 − ε)ρsv

2
s

]
dx

+
d
[
ερgv

2
g

]
dx

= −dP
dx

− dσ

dx
− gρs(1 − ε) − gρgε−

4(τwg + τws)

Dt
. (3)

The accumulation terms can be rewritten using the equation of continuity, for example:

d
[
ερgv

2
g

]
dx

= ερgvg
dvg
dx

+ vg
d [ερgvg]

dx
= ερgvg

dvg
dx

,

since the second term in the middle part of this equation is zero by the continuity

equation.

2.2 Equations that differ between models A and B

2.2.1 Model A

Fluid momentum, modelling the upflow of a fluid through a bed of particles in a

cylindrical tube of diameter Dt:

d
[
ερgv

2
g

]
dx

= −εdP
dx

− gρgε−
4τwg

Dt
− βA(vg − vs). (4)
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Solid momentum:

d
[
(1 − ε)ρsv

2
s

]
dx

= −(1 − ε)
dP

dx
− dσ

dx
− gρs(1 − ε) − 4τws

Dt
− βA(vs − vg). (5)

These equations are symmetrical for the two phases if the solids stress, σ, arising from

particle-particle collisions, is neglected. The symbols have their usual meaning.

2.2.2 Model B

Fluid momentum:

d
[
ερgv

2
g

]
dx

= −dP
dx

− gρg −
4τwg

Dt
− βB(vg − vs). (6)

Solid momentum:

d
[
(1 − ε)ρsv

2
s

]
dx

= −dσ
dx

− g(ρs − ρg)(1 − ε) − 4τws

Dt
− βB(vs − vg). (7)

2.3 Difference between the models

A key point here is that in model A both the dynamic pressure and the hydrostatic

pressure are considered to act through both the phases, while in Model B the pressure

is considered to act only through the continuous-phase fluid.

Model A thus describes the situation where both phases are continuous and interpen-

etrating, such that neither plays the role of a dispersed phase and the shared pressure

acts through both phases. In the derivation of each phase equation the pressure on the

in- and outflow faces of the control volume is applied only to the area filled with that

particular phase. The symmetry of the phase equations in model A means that they

are suitable also for systems involving phase inversion, which may be one reason that

this model is preferred in CFD simulation software packages. The main issue with the

equations of this model is that analyses by the method of characteristics [2] show them

to be only conditionally well-posed as discussed by Lyczkowski et al. [3] and Pannala

et al. [4].
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Model B is directly formulated for the situation where one of the phases is dispersed

as particles or droplets in the other, and the pressure does not, therefore, act through

the dispersed phase but only through the continuous one. In this model the pressure

is applied over the entire cross-sectional area in the derivation of the continuous-phase

equation. In model B an explicit buoyancy term is included in the solid phase equation

and the phase equations are not symmetrical.

In both models the fluid and solid equations can be obtained by subtracting the solid

and fluid equations, respectively, from the mixture equation.

2.4 Drag

Note that:

βB = βC =
βA
ε
. (8)

βB and βC are the actual drag coefficients1 and can be found directly from the Ergun

equation or from the definition of CD with correction for the presence of other particles,

while to find βA these expressions must be multiplied by ε (Equations (2.11) and (2.12)

in the book of Gidaspow [1] showing that βA(vg − vs) is drag multiplied by ε as stated

in his Equation (2.17)).

2.5 Buoyancy

To recover, also in Model A, that in fluidized beds the dissipative drag balances the

force of gravity minus the classical, Archimedean, buoyancy force Gidaspow subtracts

the solid equation divided by (1− ε) from the fluid equation divided by ε and neglects

acceleration, solids and fluid wall friction and solids pressure to obtain:

g(ρs − ρg)(1 − ε) =
βA(vg − vs)

ε

net gravity = drag.

(9)

where “net gravity” can be seen to include the effect of Archimedian buoyancy.

1drag force per unit volume of suspension per unit of velocity difference between the phases
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In Model B it follows directly from the solids momentum equation that:

g(ρs − ρg)(1 − ε) = βB(vg − vs). (10)

2.6 Relation to Crowe et al. [5]

An example, among many, of the misinterpretations of the above we choose the stan-

dard, and otherwise very useful—especially the first edition—textbook of Crowe et

al. [5], because it is the most used and quoted reference representing this type of

interpretation.

In the following we concentrate on the continuous-phase, i.e. fluid, momentum equa-

tion.

The final form of the continuous-phase momentum equation derived in Crowe et al. [5]

is consistent with Model A above, it is:

∂(ρcαcu)

∂t
+

1

A

∂(αcρcu
2A)

∂x
= smassv − αc

∂p

∂x
+ βV (v − u) − 1

Rh
τw + αcρcg (11)

Tranlating this to the notation used in this paper, which is largely consistent with that

used by Gidaspow, gives:

∂(ρcεvg)

∂t
+

1

A

∂(ερcv
2
gA)

∂x
= smassvs − ε

∂p

∂x
+ βA(vs − vg) − 1

Rh
τw + ερcg (12)

where Crowe et al. account for the momentum transport associated with a mass

exchange, smass, between the phases and for a tube of varying cross-sectional area, A,

which Gidaspow does not. Rh is the hydraulic radius of the conduit and in the drag

term the velocities are reversed in the equation giving by Crowe et al. compared to

Equation (4).

Two aspects of the derivation of this equation are problematic, their effects cancel out

to leave the correct form of the final equation.

1. Crowe et al. apply the pressure in the fluid over the entire cross-section, as Gi-

daspow does in Model B, using arguments that would be correct for model B but
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not for model A (see equations (6.38) and (6.41) in [5] and the arguments leading

up to them, noting that ∆A = 0 in [1]) and

2. they include the reaction on the continuous phase of a force assumed to be acting on

the particles proportional to the macroscopic pressure drop (their equation (6.44)).

This is often referred to as a “pressure gradient force”.

while the operation in item 1 is inconsistent with the derivation in ref. [1], the operation

in item 2 brings Crowe et al. back to the proper form of the model A equation.

However, as pointed out here, and also shown by the extended Bernoulli equation and

by the analysis of Happel and Brenner [6] (their equations (3-6.6) and (3-6.7))2, the

pressure drop in excess of the hydrostatic pressure gradient is due to dissipative drag,

and is therefore properly and completely accounted for in the term for the dissipative

drag acting on the particles. Including an extra force, Vp
∆P
∆L , which is conservative,

acting on the particles proportional to the macroscopic pressure drop, is therefore,

although bringing them back to the correct form of Gidaspow’s Model A equation, not

consistent with the extended Bernoulli equation. Several publications in addition to [1]

and [7], many of which are related to fluidized beds (e.g. refs. [8–10]), have pointed out

that such a force is not physically correct: all the fluid-particle interaction, aside from

Archimedean buoyancy, is due to dissipative drag (except when the entire system is

accelerating, e.g. as in a pipeline bend) consistent with equations (9) and (10) above.

Maxey and Riley [11] point out that if a force due to the pressure gradient in the

undisturbed flow around the particle is included, then also a dissipative force due to

the undisturbed flow should be included, such that the force acting on a neutral-density

particle due to the undisturbed flow is equal to the force that would act on a fluid

particle in that position.

As discussed above, if Crowe et al. had omitted the force assumed to act between the

particle and fluid phases proportional to the part of the macroscopic pressure drop

2The analysis of Happel and Brenner also shows that the force proportional to the macroscopic

pressure drop acting on larger objects in a bed of small particles is associated with dissipation
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generated by the flow, and also had applied the pressure forces on in-and outflow faces

of their fluid control volume only to the continuous phase rather than the whole cross-

section, their resulting equations would also have been consistent with Gidaspow’s

model A.

The argument made in this note is a theoretical one, but it can be interesting to see

whether the presence or absence of a pressure gradient force will make a detectable

difference in model predictions. In fluidized beds the issue translates to whether the

buoyancy force on the fluidized particles is calculated using the suspension density

(assuming a pressure gradient force) or the fluid density (without it) [9, 12]. Foscolo

and Gibilaro proposed an innovative model to determine at which voidage, εmb, a

Geldart group A powder would transition from particulate to aggregative (bubbling)

fluidization when increasing the fluidization velocity, an important design variable for

fluidized beds. They assumed the presence of a “pressure gradient force”, and others,

namely Jean and Fan [13] and Mazzei et al. [12] reformulated the model to calculate

the buoyancy using the fluid density so that on basis of these papers it is possible to

assess the effect in practice (Mazzei et al. also reformulated the constitutive equations

involved in the model in some other respects). Figure 1 shows a parity plot, plotted

on basis of experimental results and predictions given in tabular form in [12]. The

figure clearly shows that there is a correlation between experiment and the predictions

of the model of Foscolo and Gibilaro. It also shows that the corrections proposed by

Jean and Fan and Mazzei et al., eliminating the “pressure gradient force”, do make a

significant difference to the model predictions, over most of the range improving the

agreement with experiment. The powders used by Mazzei et al. are mostly relatively

fine FCC powders, which have a low envelope density.

[Figure 1 about here.]
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3 Conclusions

It could be argued that since the resulting continuous phase momentum equations are

the same, the inconsistencies pointed out here are only of academic interest, having

practical ramifications only in some specific contexts. However, it is always damaging

to research if incorrect arguments are being promulgated in the literature. Some CFD

software packages offer an option for a “pressure gradient force” acting on the dispersed

phase to be turned off or on [15,16] and in some cases the “on” option has even been

made the default.

And also there is the “academic interest”: to make sense, teaching should be con-

sistent with the fundamental result that, in an inertial system, any force, except for

Archimedean buoyancy, acting between the dispersed and continuous phases is dissi-

pative drag, no additional conservative force acts.
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Figure 1: Parity plot between experimental and model [14] predicted values for the
voidage fraction at the transition from particulate to bubbling fluidization for Geldart
group A powders according to the tabulated data of Mazzei et al. [12]. Circles: Foscolo
and Gibilaro; triangles: Mazzei et al.; squares: Jean and Fan.
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