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Abstract

Exosomes are vesicles involved in intercellular communication. Their membrane structure

and core content is largely dependent on the cell of origin. Exosomes have been investi-

gated both for their biological roles and their possible use as disease biomarkers and drug

carriers. These potential technological applications require the rigorous characterization of

exosomal blood brain barrier permeability and a description of their lipid bilayer composition.

To achieve these goals, we have established a 3D static blood brain barrier system based

on existing systems for liposomes and a complementary LC-MS/MS and 31P nuclear mag-

netic resonance methodology for the analysis of purified human plasma-derived exosome-

like vesicles. Results show that the isolated vesicles pass the blood brain barrier and are

taken up in endothelial cells. The compositional analysis revealed that the isolated vesicles

are enriched in lyso phospholipids and do not contain phosphatidylserine. These findings

deviate significantly from the composition of exosomes originating from cell culture, and

may reflect active removal by macrophages that respond to exposed phosphahtidylserine.

Introduction

Delivery of therapeutic agents to the brain is challenging due to the blood-brain barrier (BBB),

a highly selective membrane that separates circulating blood from the brain extracellular fluid

in the central nervous system [1]. The stringent selectivity of the barrier makes treatment of

neurological diseases notoriously difficult. In fact, more than 98% of small-molecule drugs and

almost 100% of large-molecule drugs, including peptides, recombinant proteins, monoclonal

antibodies, genes and short interfering RNAs (siRNAs) cannot cross the BBB [2]. In the last

decade, exosomes have emerged as promising vehicles for the transport of therapeutics across

the BBB, giving promise for treatment of Alzheimer disease, Parkinson disease, epilepsy, men-

tal disorders and more [3,4].

Several mechanisms allow compounds to cross the BBB and also prevent harmful com-

pounds from entering the brain, and their normal function is critical for proper neuronal
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function [5]. Passive diffusion of water-soluble agents across the BBB is negligible due to the

tight junctions between endothelial cells, while O2 and CO2 freely diffuse across the BBB. As

bases are cationic, they interact with the negatively charged head groups of phospholipids,

which gives them a higher affinity than acids to pass the BBB, resulting in more efficient diffu-

sion of lipid-soluble molecules than compounds with polar surfaces [6]. High molecular

weight compounds like peptides and proteins can cross BBB via receptor- or adsorptive medi-

ated transcytotic mechanisms [6].

Exosomes are small vesicle-like entities ranging from 50–100 nm in diameter [7]. In con-

trast to micro-vesicles and apoptotic bodies that bud off the cell membrane of the parent cell,

exosomes are released from the parent cell when multi-vesicular bodies fuse with the mem-

branes of the parent cell [7,8]. Researchers have suggested many different functional roles of

exosomes [9], ranging from cellular garbage vesicles [10] to immunological functions [11] and

cell-to-cell communication [12–14]. In addition, the potential of exosomes as biomarkers of

disease [15–18] and as therapeutic drug carries [19] has been investigated in recent years.

Exosomes show diverse mixtures of proteins, lipids and nucleic acids depending on their

cell of origin [20]. Moreover, it seems that the exosomic population can be very diverse even

when derived from one cell line. This variability is documented in established databases such

as EVpedia, Vesiclepedia or Exocarta, which contain several thousand protein and mRNA

entries for different populations of exosomes [19,21,22]. However, there is very little informa-

tion about the lipid components of exosomes, and there is no information about the lipid com-

position of exosomes isolated from human plasma. A significant challenge in exosome

research is that the method of isolation, the cell of origin, and method of downstream analysis

will greatly affect the outcome of the analysis performed [20].

Here, we have isolated vesicles of exosomal size (EVs) originating from human plasma

using qEV size exclusion columns, and verified their purity and expected characteristics using

dynamic light scattering (DLS), UV-vis spectroscopy, electrophoresis and immunoblotting.

We then analyzed their BBB permeability and endothelial cell uptake in a 3D culture system

and demonstrate that the BBB permeability of the isolated EVs is comparable to that of lipo-

somes. Finally, the lipid composition was quantitatively determined by combining LC-MS/MS

and 31P nuclear magnetic resonance (NMR). Interestingly, it seems that EVs originating from

human plasma completely lack PS and contain a higher abundance of lyso- phosphatidylcho-

line lipid species than EVs isolated from PC3 cells.

Material and methods

Preparation of blood plasma

Anonymized blood samples from healthy volunteers were obtained following standard proce-

dures by qualified health professionals in accordance with ethics guidelines provided by the

Regional Committees for Medical and Health Research Ethics (REK). Venous blood samples

were collected from the cubital vein of fasting individuals into EDTA tubes via a BD-vacutai-

ner using a butterfly extension. Plasma and serum were separated by centrifugation 2x 15 min

at 2500 xg and 4˚C, eliminating cellular components. The platelet-free plasma was aliquoted

into cryo-vials and stored at -80˚C.

Isolation of EVs by size exclusion chromatography

EVs derived from human plasma were isolated by size exclusion chromatography (SEC) using

qEV original size exclusion columns following the manufacturer’s protocol and in accordance

with earlier studies purifying exosome (iZON Science, Oxford OX4 4GA, United Kingdom,

and [23]). In brief: Plasma samples were centrifuged 15 min at 2500 xg and 4˚C and 13.000 xg
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to remove cellular debris and proteins respectively. The qEV column was equilibrated with 10

mL degassed phosphate buffer saline (1x PBS) and let to stabilize to room temperature (RT).

After loading the column with 0.5 mL plasma, fractions were eluted with degassed 1x PBS and

collected.

Analysis of EV size and homogeneity

DLS was applied to determine the size and homogeneity of three independent isolations of

EVs using a Zetasizer Nano ZSP (Malvern, UK). In DLS analysis, the mean hydrodynamic

diameter of particles (hd) can be determined from the particles’ characteristic Brownian

motion. An intensity distribution of determined hd-values documents the dispersity of the

sample [24]. Such intensity distribution were recorded at 20˚C and plotted as a function of cal-

culated hd-values. The average value of the peak, weighted by the Y-axis parameter (mean

hydrodynamic diameter) is given for all samples.

Analysis of the EV protein-lipid abundance

To determine the total protein content versus vesicles in the isolated EV fractions, absorbance

at 280 nm (protein) and 498 nm (vesicles) were determined in a Spextramax1 Paradigm1

microplate reader (Molecular Devices, CA, 95134, USA). Absorbance at 280 nm and 498 nm

were plotted against the qEV-eluted fractions.

Denaturing-PAGE and WB analysis of isolated EVs

Isolated EV fractions were separated on a 10% Bolt ready made gel (Thermofisher), stained by

Coomassie Brilliant Blue (CBB) and transferred to nitrocellulose (NC) membranes for subse-

quent immunological identification of the exosome specific CD63, CD81 and Hsp70 proteins

(monoclonal 1˚ anti-CD63, DC81 and Hsp70 produced in rabbit (1:1000) and 2˚ Ab Goat

anti-Rabbit HRP (1:20000), SBI system biosciences, Catalog# EXOAB-KIT-1). Finally, the

immuno-reactive proteins were identified in a ChemiDocTM Toch Imaging System (Bio-rad).

Staining of EVs

Isolated EVs were pelleted for 1 hour, 16 xg at 4˚C and the pellet resuspended and incubated

in WGA488 stain (Biotium, 5 μg/mL, diluted in HBSS) for 30 minutes, dark at RT. After incu-

bation the EVs were centrifuged for 30 min, 16 xg at 4˚C and stained EVs washed twice with

PBS+. The pellet was diluted in 0.5 mL pBEC Assay buffer (HBSS, 25mM HEPES, 0.5% BSA).

To confirm successful staining of EVs, the fluorescence was recorded in a SpectraMax at 490/

515 nm.

Isolation of primary porcine brain microvascular endothelial cells (pBECs)

pBECs were isolated from porcine brains from a local slaughterhouse (Nortura, Stavanger,

Norway). Each brain was gently washed in ice-cold PBS prior to removal of the meninges. The

grey matter was scraped off the brains using a sterile scalpel and transferred to a 500 mL flask

containing isolation medium (DMEM/F12 (Gibco), 10% FBS (Sigma-Aldrich) and 1% Pen-

strep (Life Technologies). The grey matter was homogenized using a loose pestle in a cell

homogenizer and cells were thereafter disrupted using a tighter pestle prior to a 1/10 dilution

in isolation media. The homogenate was filtered through a 100 μM filter (Corning Cell

strainer, Nylon), and the filters incubated in digestion media (75% DMEM/F12 (Gibco),

18.000 U Trypsin (Sigma Aldrich), 42.000 U Collagenase type 2 (Life technologies) and 23.000

U DNase (Life technologies)) for 1 hour at 37˚C and 5% CO2 on a shaker. The digested
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homogenate was washed with 10 mL media, centrifuged 5 min and 250 xg at 4˚C and the the

pellet resuspended in 10 mL media. The washing step was repeated once. Following resuspen-

sion, the suspension was kept on ice for 5 min, allowing the debris to settle. The supernatant

was carefully removed and the centrifugation step repeated. Cells were cryopreserved and

stored in liquid nitrogen.

BBB permeability assays

Primary rat astrocytes (gift, Prof. Dr. Morten Nielsen, University of Aarhus, Denmark) resus-

pended in astrocyte medium (DMEM Glutamax (Gibco), 10% FBS and 1% Pen-Strep) were

seeded in 6 well plates pre-coated with poly-L-lysine (Boster). At the same time pBECS were

sowed in transwells (TW, polycarbonate) pre-coated with collagen (Gibco) and fibronectin

(Gibco). TWs were inserted in the 6 well astrocyte wells and incubated at 37˚C and 5% CO2

for 3 days or until the trans endothelial resistance (TEER) reached 400–600 O. For the perme-

ability assay 0.5 mL stained exosomes were added to the apical side of the TW and 1.5 mL of

assay buffer (HBSS, 25mM HEPES, 0.5% BSA) to the basal side. Plates were incubated for

selected time points in the dark at 37˚C, 100 rpm on an orbital shaker. After incubation,

400 μL samples were collected from the apical side and 1.4 mL from the basal side, and porcine

Brain endothelial cells (pBECs) washed quickly with 2x assay buffer (4˚C, HBSS, 25 mM

HEPES pH 7.4 and 0.5% BSA)). 250 μL lysis buffer (1% triton X-100 with protease inhibitors)

was added to the collected samples and left at RT for a minimum of 45 min and lysate was col-

lected in a low-bind tube. Lysates (basal and apical side) were centrifuged at 14.000 xg, 10 min

at 4˚C.

For apical lysates, 200 μL supernatant was transferred to a 96-well plate, and the pellet

resuspend in 400 μL assay buffer and 200 μL added to the 96-well plate. For the basal lysates,

200 μL supernatant was transferred to the 96-well plate and the pellet was resuspended in

280 μL assay buffer (5x concentrated) and 200 μL was added to the 96-well plate. Total fluores-

cence was set to 100% and the % retained in pBECs, the % passed pBECs and the % passed TW

filter was calculated.

Cell culture

A T75 flask was coated with collagen (10 ng/cm2) and incubated at 37˚C in a 5% CO2 humidi-

fied incubator for 1 hour prior to use. Endo-GRO Basal medium was prepared according to

the manufacturers instructions (Merck Millipore, SCME004) by addition of 10 mM L-Gluta-

mine, 1 μg/mL Hydrocortisone Hemisuccinate, 0.75 U/mL Heparin Sulfate, 50 μg/mL Ascor-

bic acid, 5% FBS, 0.2% 5 ng/mL Endo-GRO-LS Supplement, 5 ng/mL Rh EGF and 1 ng/mL

FGF-2). A vial of hCMEC/D3 cells (Merck) was thawed in a 37˚C water bath, transferred to a

sterile 15 mL conical tube followed by a drop-wise addition of Endo-GRO complete medium.

Cells were centrifuged at 300 xg for 3 min at RT and the pellet was resuspended in 10 ml of

pre-warmed hCMEC/D3 complete medium. Finally the cells were plated on the pre-coated

T75 flask and incubated at 37˚C in a 5% CO2 humidified incubator until 80% confluence was

reached.

Uptake assays and confocal microscopy

hCMEC/D3 cells (Merck) were grown on pre-coated coverslips in a 12-well plate until 70%

confluent. The medium was removed and the cells were stained by WGA640 (Biotum, 20ug/

mL, diluted in HBSS) for 10 minutes and washed three times in HBSS. 0.5 mL pre-stained vesi-

cles, or buffer alone, were added to each well and incubated with the cells for 20 minutes. The

coverslip was washed twice with 4% paraformaldehyde (PFA) and left to dry in order to fix the
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cells. 8 μl mounting medium (Vectashield, Antifade Mounting Medium with DAPI) was

added to the microscope slide and the coverslip was placed cell side down on the slide.

Mounted slides were stored in the dark at 4˚C until use.

Images were acquired using an inverted Nikon A1R confocal laser scanning microscope

with a 60X Plan-Apo/1.20 NA oil objective. Excitations used laser lines at 408 nm, 488 nm, or

561 nm, and images were recorded at 425/475 nm, 500/550 nm, or 570/620 nm, respectively.

Laser intensities/detection settings were kept constant between parallel images to enable sam-

ple comparisons. NIS-Elements imaging software 4.0 (Nikon, Japan) was used for image cap-

ture. Stacks of images were acquired with a 0.5 μm confocal slice. The slices view was used to

display orthogonal XY, XZ and ZY projections of the image sequence.

Mass spectrometry

EVs isolated, as described above, were freeze-dried, and the resulting powder films were resus-

pended in 100 μl of water:acetonitrile: isopropanol: dichloromethane mixture (1.5:2:3:3.5).

Accurate mass LC-MS and MS/MS was done on a Thermo Q-Exactive mass spectrometer fit-

ted with a Dionex Ultimate 3000 UPLC (Thermo Fisher, USA). Briefly, each sample was sepa-

rated using an HSS C18 column (1.7 μm particle size, Waters) and reverse phase elution.

Buffer A consisted of a 40:60 (v/v) ratio of acetonitrile: water and buffer B was a 10:90 (v/v)

ratio of acetonitrile: isopropanol. Lipids were then separated using a multi-step gradient from

40% of solvent B to 100% of solvent B across 17 min. Sample injection was set to 10 μL and

MS/MS analysis was done using an iterative exclusion method, with a total of 4 runs for each

positive and negative mode [25]. The analysis was performed using a home-written MATLAB

script, LipMat, available at GitHub: https://github.com/MarJakubec/LipMat, whose function-

ality and use is described in detail here [26]. Briefly, the LipMat script compared the detected

m/z values and compared them to a mass library of lipids. The script then uses a scoring func-

tion to assign individual lipids. The function is based on the Greazy scoring function,

described here [27]. LipMat script was tested on Avanti Lipid MAPS standards: 12:0–13:0 PC,

17:0–14:1 PC, 17:1 LPC, 12:0–13:0 PE, 17:0–14:1 PE, 17:0–20:4 PE, 12:0–13:0 PG, 12:0–13:0 PI,

17:0–14:1 PI, 17:0–20:4 PI, 12:0–13:0 PS, 17:0–14:1 PS, 17:0–20:4 PS, and cardiolipin mix 1.

The fragmentation patterns of Avanti standards are available with LipMat script on GitHub:

https://github.com/MarJakubec/LipMat. All spectrum assignments were manually confirmed.

Nuclear magnetic resonance

EVs isolated as described above were freeze-dried, and the resulting powder films were dis-

solved in the Culeddu-Bosco “CUBO” NMR solvent system (a mixture of 1 ml dimethylforma-

mide, 0.3 mL trimethylamine by volume, and 100 mg guanidinium chloride) [28]. 31P spectra

were acquired on a Bruker BioSpin NEO600 spectrometer (instrument carrier frequency set to

242.93 MHz) equipped with cryogenic probe using inverse gated proton decoupling. Experi-

ments were performed at 300K, consisted of 3072 scans per sample, and had an overall recov-

ery delay of 8 s between scans to ensured full relaxation of the 31P nuclei. Processing was then

performed using the Topspin 4.0.1 software package from Bruker Biospin. Before Fourier

transformation, FIDs were apodized using an exponential line broadening window function of

3.0 Hz. Manual phase correction and automatic baseline correction were then applied. The

chemical shift scale was calibrated by setting the most abundant phospholipid signal in the

sample–phosphatidylcholine (PC)–to zero ppm, and all peaks were deconvoluted. Peaks were

identified and assigned to individual phospholipids based on the chemical shifts provided in

previously published work using the CUBO solvent [29]. A total of five independent exosome

samples were collected.
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Results

Characterization of vesicles derived from human plasma

SEC is a gentle exosome isolation method, suitable for downstream analysis, however the

method risks co-isolating microvesicles and lipid species. Therefore, we analyzed the isolated

EVs by SDS PAGE, CBB staining, western blot (WB), Abs spectrometry and DLS to determine

the purity, size and homogeneity (Fig 1 and S1 Fig). The electrophoretic separation of plasma

(P, Fig 1A) identified a protein band at approximately 60 kDa and a high molecular weight

smear. MS analysis identified two different proteins in the 60 kDa band: Immunoglobulin IgM

heavy chain and Fibrinogen β, both abundant plasma proteins (S1 Table). In comparison, iso-

lated EVs (V, Fig 1A) did not contain protein concentrations detectable by CBB.

To investigate the presence of exosomes in the isolated EV fractions we performed WBs tar-

geting the exosome specific proteins CD63, CD9 and Hsp70 (Fig 1B). For both CD63 and

Hsp70, chemiluminescence was detected around 60 kDa (Fig 1B, lane 2, 3 and 5), and for CD9

two chemiluminescent bands were detected in the 40 kDa region (Fig 1B, lane 4). This indi-

cates that there is a significant amount of exosomes in the isolated vesicles.

Next, we wanted to investigate the difference in the ratio of protein/lipids in plasma and

isolated vesicles. The correlation of protein and lipids in plasma and isolated EVs were deter-

mined by absorbance spectroscopy at 280 nm (Fig 1C, grey bar) and 495 nm (Fig 1C, red bar)

in a SpectraMax1 Paradigm1Multi-Mode Micro-plate reader (Molecular devices). Follow-

ing SEC the protein concentration in the EV fraction decreased by a factor of 9.75 (Fig 1C,

grey bars). The large drop in A280 nm corroborated the non-detectable protein concentration

Fig 1. Characterization of isolated EVs. EVs originating from human plasma was isolated by SEC using qEV

columns (iZON). Plasma (P) and EVs were separated by Bolt ready made 10% gels at denaturing conditions and

stained with CBB (A). Proteins were transferred to a NC membrane and incubated in 1˚ Ab CD63, CD9 and Hsp70

produced in rabbit (1:1000) and 2˚ Ab Goat anti-Rabbit HRP (1:20000) (B). To determine the protein to vesicle ratio

absorbance at 280 nm (grey) and 498 nm (red) were determined using a SpectraMax1 Paradigm1Multi-Mode

Microplate reader (Molecular devices) (C). The size and poly-dispersity of the isolated vesicles were analyzed in a

Zetasizer Nano ZSP instrument (Malvern, UK) (D).

https://doi.org/10.1371/journal.pone.0232442.g001
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in the CBB stained gel (Fig 1A, lane 2). The loss of EVs from the isolated vesicles compared to

plasma was less pronounced, showing a decrease of only 1.63 fold (Fig 1C, red bars). The

decrease in detected vesicles likely reflects elution of contaminating large apoptotic bodies and

micro-vesicles.

Next, we investigated the size distribution and homogeneity of the isolated EVs to deter-

mine the main vesicle type present in the sample using DLS. Poly-dispersity indexes (PDI)

between 0.1 and 0.3 are considered homogenous. Our analysis showed a homogenous sample

with an average PDI of 0.21 ± 0.011 and with an average diameter of 68.8 ± 1.392 nm (Fig 1D).

Apoptotic bodies, micro-vesicles and exosomes range from 1000–5000 nm.d, 100–1000 nm.d

and 30–120 nm.d respectively. Thus, the average size and low PDIs of the isolated vesicles

show that exosomes are abundant in the sample, but some co-isolation of micro-vesicles and

small vesicles were observed, as sizes up to� 164 nm.d was detected in the long tail of the data

(Fig 1D). The plasma was to poly-dispersed to be measured by the instrument.

BBB permeability and uptake by hCMEC/D3 cells

The EV BBB permeability was quantified in the static BBB model adapted to permeability

assays of EVs (Table 1). Assays were set up using pBECs and rat astrocytes and showed that

7.8% of the vesicles passed the TW filter, indicating a high functionality of the adapted system

(Table 1). Results showed a BBB permeability of 1.4% and retention of 88.4% for EVs, percent-

ages comparable to that of liposomes [30,31]. Thus, the isolated EVs were able to pass the BBB

in quantities acceptable for future use in transport of therapeutics across the BBB [30]. Inter-

estingly, we also saw a high uptake (2.6%) of EVs in the pBECs, indicating a different delivery

mechanism than seen for liposomes.

To further investigate the observed EV retention in the pBECs, uptake assays were per-

formed in hCMEC/D3 cells and analysed by fluorescent confocal microscopy (Fig 2). EVs

stained with WGA488 were visualised as clusters of different sizes (Fig 2, green). Subsequently,

hCMEC/D3 cells were stained with the membrane dye WGA647 (red) and then incubated

Table 1. EVs BBB permeability.

Permeability EVs (%)

Passed TW filter 7.7

Passed BBB 1.3

Retained apical side 88.4

Retained in pBECs 2.6

https://doi.org/10.1371/journal.pone.0232442.t001

Fig 2. EV uptake in endothelial cells (hCMC/D3) 15 min post addition of EVs the co-localization of EVs in the

hCMEC/D3 cell line were visualized by confocal microscopy (Nikon A1). EVs were stained with WGA 488 (green),

nuclei with DAPI (Blue), cell membranes glyco-proteins with WGA640 (red). The images were analyzed by NIS

element viewer version 4.40.00. Scale bare 50 μm.

https://doi.org/10.1371/journal.pone.0232442.g002
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with vesicles stained with WGA488 (Fig 2) or with buffer alone (Fig 2) for 15 minutes. The

cells were then fixed and analyzed by confocal microscopy. The sample incubated with EVs

revealed small green puncta to co-localise with the cells (Fig 2). Further analysis using serial

sectioning revealed that the green vesicles were observed to be located in the same focal plane

as the cells, suggesting import into the cells.

Combined mass spectrometry and nuclear magnetic resonance

phospholipid analysis

In order to analyze the phospholipid composition of EVs, we used a robust combination of

NMR and LC-MS/MS (Figs 3 and 4). The 31P NMR analysis provided reliable quantitative

data on the phospholipids present in the samples, but no lipid acyl-chain information (Fig 3).

The LC-MS/MS analysis provided a highly detailed picture of the lipids present in the sample,

as well as quantitative data on the relative amounts of acyl-chains found on each lipid species

(Fig 4).

The 31P NMR revealed that the two most abundant lipid species present in exosomes lipid

samples are phosphatidylcholine (PC) 76.7 ± 3.8% and sphingomyelin (SM) 20.3 ± 1.0% (Fig

3). Other phospholipid species, observed in some of the samples, includes phosphatidyletha-

nolamine (PE), lyso-phosphatidylcholine (lyso-PC) and phosphatidylinositol (PI). However,

those minor phospholipid species accounted for less than 3% of the total lipid content, and it

was not possible to quantify their abundance using NMR.

The overall composition of the sample as determined by NMR was corroborated by LC-

MS/MS (Fig 4 and S2 Table). We then proceeded with the analysis of fatty acid chains (FA)

using LC-MS/MS, using the LipMat script whose application to cell lipidomics is described

here [26]. Each MS2 spectrum that could be interpreted reliably according to the LipMat script

and manual verification has been used to reconstruct the MS1 chromatogram for each lipid

species. This reconstruction has then been used to quantify the relative abundance of each

lipid for PC, SM, PI and PE (Fig 4). All identified lipid species are listed in S2 Table.

Fig 3. 31P NMR spectra of EV lipids. Lipids isolated from EVs was analyzed for phospholipid content by 31P NMR

(Bruker NEO 600 MHz) and the most common phospholipids were identified. Figure insert: Box plot of the relative

abundances determined by deconvolution of NMR spectra for the two most abundant phospholipids.

https://doi.org/10.1371/journal.pone.0232442.g003
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Discussion

Characterization of isolated vesicles

The characterization of EVs for future application in targeted delivery of therapeutics across

the BBB is a research priority. Here we provide the first detailed characterization of EVs iso-

lated from human plasma and show that they area able to cross the BBB.

To date, most of the exosomal membrane composition analysis has been performed on PC3

cells, B-lymphocytes and dendritic cells [32–34]. In one of the most detailed reports available,

a quantitative lipidomic analysis of 70 nm exosomes originating from PC3 cells revealed a 1.36

ratio for lipids in the outer and inner membrane [33]. A typical feature of exosomes character-

ized so far is having relatively high abundances of cholesterol (28%), sphingomyelin (23%,

SM) and phosphoethanolamine (13%, PE) when compared to the maternal cell [20].

While exosomes from PC3 cells are relatively well described concerning their lipid profile,

very limited analyses have so far been performed on exosomes from biological fluids [20]. A

literature review reveals two studies only: One focusing on prostasomes from seminal fluid iso-

lated by sequential ultracentrifugation (SUC), size exclusion chromatography (SEC) and

sucrose gradient (SG) followed by lipid analysis by LC-MS [35]. The second involves exosomes

originating from urine, isolated by SUC, and analysed by MS [36]. However, both of these

methods give fairly similar results with the three most abundant lipids being cholesterol, phos-

phatidyl serine (PS) and SM.

Contamination of abundant proteins, vesicles and lipids from plasma, serum or other bio-

fluids is a major concern regarding purity and downstream analysis of EVs [37]. The gold stan-

dard for isolation of EVs has been ultracentrifugation, but this has recently been challenged by

methods based on size, affinity and more [37]. In a recent study, Baranyai et al. made a qualita-

tive and quantitative comparison of ultracentrifugation and size exclusion chromatography

Fig 4. MS analysis of lipid species abundance for PC, SM, PI and PE. Lipids identified by MS2 has been quantified

by MS1 chromatogram reconstruction. The bar plots represent the relative abundance of each lipid species towards

other lipid species with the same headgroup. Centr3l mark indicates median, the bottom and top edges of the

box indicates 25th and 75th percentiles, respectively. The whisker extends to the most extreme data points not

considered outliers and the outliers are plotted as ‘+’ symbol.

https://doi.org/10.1371/journal.pone.0232442.g004
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(SEC) for isolation of blood-plasma derived exosomes [38], concluding on the advantage of

SEC based exosome isolation from plasma samples. Further, SEC has resulted in significantly

reduced amounts of contaminating albumin in the isolated EVs [39].

Here, CBB staining of plasma and isolated EVs resulted in non-detectable protein concen-

trations in the EV fraction (Fig 1A). Further, MS analysis could not identify albumin, immu-

noglobulin IgM heavy chain, fibrinogen β or any other abundant plasma protein in the

isolated EV fraction (Table 1). The abundant plasma proteins could only be identified in the

plasma fraction as expected. Further, we were able to demonstrate a 9.8 fold decrease in A280

nm between plasma and EVs showing efficient removal of plasma proteins, supporting the

results from the CBB staining (Fig 1A and 1C). Our identification of the exosome-specific pro-

teins CD63, CD9 and Hsp70 proteins (Fig 1B) supports a significant abundance of exosomes

in the isolated vesicle fraction. Our DLS analysis determined average sizes for our vesicles to

58.3 d.nm and with a low PDI, suggesting that the isolated EVs primarily consists of exosomes.

However, vesicles smaller than 30 nm.d and larger than 100 nm.d are present in the samples,

likely reflecting a low degree of co-isolation of lipid structures and microvesicles (Fig 1D). The

observed 1.6 fold decrease in vesicle content likely reflects removal of apoptotic bodies and

large micro-vesicles, while the 8.9 fold drop in absorbance at 280 nm reflects the efficient

removal of contaminating plasma proteins (Fig 1C). In accordance with the findings of Bara-

nyai et al., our isolated EVs, resulted in homogenous vesicles with low protein contamination

and limited co-isolation of other vesicles and lipids [38].

EVs cross the BBB and are retained in endothelial cells

To date, most analysis of exosomes for therapeutic use in disease has been performed based on

cell-culture medium [40]. To enable a more personalized strategy for treatment with EVs, EVs

isolated from individual patients plasma/serum would be preferable to reduce immunological

issues to a minimum. In addition, plasma/serum would be the most promising bio-fluid source

due to the relatively high concentrations of EVs [41]. The BBB is a challenge when it comes to

delivery of therapeutics to the central nervous system. We identified uptake of our plasma

derived EVs in the hCMEC/D3 cells line (Figs 2 and 3), supporting the findings of Chen et. al

2016 who identified internalization of exosomes derived from HEK 293T cells in endothelial

cells [40]. The same study show that the endothelial cells internalize the EVs by endocytosis via

the trans-cellular route. The uptake mechanism for plasma-derived exosomes still remains to

be solved. Our study show that a 15 min incubation of the EVs on the coverslip was sufficient

for internalization of the EVs, while the exosomes originating from the HEK 293T medium

where incubated for up to 48 hours to identify uptake in endothelial cells [40].

The 3D BBB permeability experiments were performed with primary porcine endothelial

cells and rat astrocytes ensure physiological like tight junctions [42]. Our analysis showed a

permeability of our plasma derived EVs equal to that observed for liposomes using absorbance

spectrometry (Table 1). This is in partial contrast to what was observed for the HEK 293T cells

[40]. Their study concludes that the HEK 293T cell culture derived exosomes can cross the

BBB in an in vitro monolayer model only when the brain microvascular endothelial cells are

induced by TNF-α and at much longer incubation times [40]. The differences between the

analyses could be a result from the different isolation method, the incubation time, the model

system and/or the EV origin.

EVs originating from plasma do not contain phosphatidylserine
31P NMR analysis revealed that the main lipid components of the isolated EVs are PC and SM

(Fig 3). This is the first time, to our knowledge, that EV species that do not contain
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phosphatidylserine (PS) have been reported. Previously, it has been reported that PS is one of

the three most common phospholipids found in exosomes [20] with concentrations varied

between 15.6% (for HepG2/C3a, [43]) and 1.1% (for adipocytes, [44]). In our experiment, PS

has been observed in neither 31P NMR nor MS analysis, indicating that the concentration of

PS in ventral blood EVs originating from plasma is negligible.

The lack of PS has functional implication in the role of human ventral blood EVs. PS is

known to be located in the outer leaflet of activated blood cells, apoptotic bodies, micro-parti-

cles and micro-vesicles released from the plasma membrane [20]. PS presence activities mono-

cytes that remove these particles from blood circulation [45]. Presence of PS on the surface of

the EVs would cause them to be rapidly removed from circulation, which is not compatible

with the role of exosomes in endocrine-like cell signaling [46]. The absence of PS then suggests

that isolated EVs are not a waste byproduct, but an active component of blood plasma. It may

also be that while PS may exist to some extent in freshly exported cell-derived EVs, these are

removed by monocyte or macrophage activity from the blood and tissue, respectively.

EVs contain a notably high abundance of lysophospholipids and

monounsaturated fatty acyl chains

MS analysis (Fig 4) revealed the presence of lyso lipid species. Lyso-PC (16:0) was the third

most abundant PC phospholipid. Other phospholipid species also showed a high abundance of

lyso isoforms, with lyso-PI (18:0) and lyso-PE (16:0 and 18:0) being among the highest abun-

dant lipid species within each head-group. Lyso-PI enrichment in exosomes has been reported

previously [33]. However, there are no reports of the significant presence of lyso-PC and lyso-

PE species in isolated exosomes.

Autotaxin is a secreted lipase that produces lysophosphatidic acid (LPA) and bind to exo-

somes [47]. Generation and delivery of LPA has been suggested to be mediated by exosomes

and autotaxin [47]. The same study suggests that LPA is synthesised from lysophosphatidyl-

choline (LPC) on exosome membranes. This finding supports our observed overrepresenta-

tion of LPC/LPA for the plasma derived exosome membranes analyzed in our study. In

addition, our results support the notion that exosomes could function as a repository of lyso-

species protecting them from lipases and thereby degradation [48].

For the two most abundant phospholipids, PC and SM, we have obtained detailed lipid spe-

cies profiles (Fig 4). These revealed that the most abundant PC lipid is 16:0/18:1 and two out of

three of the most abundant SM species are d18:1/16:0 and d18:1/19:0, i.e. lipid species contain-

ing one monounsaturated fatty acid chain. The high abundance of the lipid species containing

one fully saturated and one monounsaturated fatty acid chains has been previously recognized

as a key characteristic of exosomes from PC-3 cells [33] and Olie-neu cells [49]. These observa-

tions may also reflect the fact that 16:0 and 18:1 fatty acids are common substitutions on the

lipids of eukaryotic cells. Lyso-species and monounsaturated phospholipids are essential in the

management of curvature stress in the lipid bilayer [50,51]. It is possible that these components

are vital in the correct formation and maintenance of small, high-curvature EVs. The manage-

ment of curvature stress by lyso-PC species becomes more prominent in the perspective of

missing PS, a structurally important, conically shaped lipid.

Conclusion

We have successfully isolated and characterized EVs (predominantly exosomes) originating

from human plasma. We concluded that the isolated EVs have a BBB permeability similar to

liposomes but unlike liposomes they accumulate in endothelial cells. One of the most striking

characteristics of the isolated exosomes is their lack of PS and high abundance of lyso species
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for PC, PI and PE phospholipids. New insight into lipid composition of EVs/exosomes and the

functional relevance of this is one of the necessary steps for improving our understanding of

their biological and pharmacological properties.
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sis factor-α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes

induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin. Journal of

Neuroscience Research. 1995; 41(6):717–26. https://doi.org/10.1002/jnr.490410602 PMID: 7500373

40. Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, et al. Elucidation of Exosome Migration across

the Blood-Brain Barrier Model In Vitro. Cell Mol Bioeng. 2016; 9(4):509–29. Epub 07/07. https://doi.org/

10.1007/s12195-016-0458-3 PMID: 28392840.

PLOS ONE Plasma-derived exosome-like vesicles; phospholipid content and blood brain barrier permeability

PLOS ONE | https://doi.org/10.1371/journal.pone.0232442 September 21, 2020 14 / 15

https://doi.org/10.3402/jev.v3.23430
http://www.ncbi.nlm.nih.gov/pubmed/25279113
https://doi.org/10.1021/la501789z
http://www.ncbi.nlm.nih.gov/pubmed/25050712
https://doi.org/10.1007/s13361-017-1608-0
https://doi.org/10.1007/s13361-017-1608-0
http://www.ncbi.nlm.nih.gov/pubmed/28265968
https://doi.org/10.1021/acs.analchem.6b00021
http://www.ncbi.nlm.nih.gov/pubmed/27186799
https://doi.org/10.1006/abio.1996.9907
http://www.ncbi.nlm.nih.gov/pubmed/9025966
https://doi.org/10.1038/s41598-017-06855-z
http://www.ncbi.nlm.nih.gov/pubmed/28808346
https://doi.org/10.1016/j.ejps.2010.03.007
http://www.ncbi.nlm.nih.gov/pubmed/20298779
https://doi.org/10.2147/IJN.S117210
https://doi.org/10.2147/IJN.S117210
http://www.ncbi.nlm.nih.gov/pubmed/27799765
https://doi.org/10.1042/bj20031594
http://www.ncbi.nlm.nih.gov/pubmed/14965343
https://doi.org/10.1016/j.bbalip.2013.04.011
http://www.ncbi.nlm.nih.gov/pubmed/24046871
https://doi.org/10.1074/jbc.M207550200
http://www.ncbi.nlm.nih.gov/pubmed/12519789
https://doi.org/10.1002/pmic.201200348
http://www.ncbi.nlm.nih.gov/pubmed/23404715
https://doi.org/10.1016/j.ejca.2016.10.011
http://www.ncbi.nlm.nih.gov/pubmed/27914242
https://doi.org/10.7150/thno.18133
http://www.ncbi.nlm.nih.gov/pubmed/28255367
https://doi.org/10.1371/journal.pone.0145686
https://doi.org/10.1371/journal.pone.0145686
http://www.ncbi.nlm.nih.gov/pubmed/26690353
https://doi.org/10.1002/jnr.490410602
http://www.ncbi.nlm.nih.gov/pubmed/7500373
https://doi.org/10.1007/s12195-016-0458-3
https://doi.org/10.1007/s12195-016-0458-3
http://www.ncbi.nlm.nih.gov/pubmed/28392840
https://doi.org/10.1371/journal.pone.0232442


41. Soares Martins T, Catita J, Martins Rosa I, A B da Cruz E Silva O, Henriques AG. Exosome isolation

from distinct biofluids using precipitation and column-based approaches. PloS one. 2018; 13(6):

e0198820–e. https://doi.org/10.1371/journal.pone.0198820 PMID: 29889903.

42. Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud P-O, Deli MA, et al. In vitro models of the blood–

brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for

their use. Journal of Cerebral Blood Flow & Metabolism. 2016; 36(5):862–90. https://doi.org/10.1177/

0271678X16630991 PMID: 26868179

43. Chapuy-Regaud S, Dubois M, Plisson-Chastang C, Bonnefois T, Lhomme S, Bertrand-Michel J, et al.

Characterization of the lipid envelope of exosome encapsulated HEV particles protected from the

immune response. Biochimie. 2017; 141:70–9. Epub 2017/05/10. https://doi.org/10.1016/j.biochi.2017.

05.003 PMID: 28483690.

44. Durcin M, Fleury A, Taillebois E, Hilairet G, Krupova Z, Henry C, et al. Characterisation of adipocyte-

derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small

extracellular vesicles. Journal of extracellular vesicles. 2017; 6(1):1305677. Epub 2017/05/06. https://

doi.org/10.1080/20013078.2017.1305677 PMID: 28473884; PubMed Central PMCID: PMC5405565.

45. Segawa K, Nagata S. An Apoptotic ’Eat Me’ Signal: Phosphatidylserine Exposure. Trends in cell biol-

ogy. 2015; 25(11):639–50. Epub 2015/10/07. https://doi.org/10.1016/j.tcb.2015.08.003 PMID:

26437594.

46. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev

Mol Cell Biol. 2018; 19(4):213–28. Epub 2018/01/18. https://doi.org/10.1038/nrm.2017.125 PMID:

29339798.

47. Jethwa SA, Leah EJ, Zhang Q, Bright NA, Oxley D, Bootman MD, et al. Exosomes bind to autotaxin

and act as a physiological delivery mechanism to stimulate LPA receptor signalling in cells. Journal of

Cell Science. 2016; 129(20):3948–57. https://doi.org/10.1242/jcs.184424 PMID: 27557622

48. Sagini K, Costanzi E, Emiliani C, Buratta S, Urbanelli L. Extracellular Vesicles as Conveyors of Mem-

brane-Derived Bioactive Lipids in Immune System. International journal of molecular sciences. 2018;

19(4):1227. https://doi.org/10.3390/ijms19041227 PMID: 29670015

49. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of

exosome vesicles into multivesicular endosomes. Science. 2008; 319(5867):1244–7. Epub 2008/03/

01. https://doi.org/10.1126/science.1153124 PMID: 18309083.

50. Antonny B, Vanni S, Shindou H, Ferreira T. From zero to six double bonds: phospholipid unsaturation

and organelle function. Trends in cell biology. 2015; 25(7):427–36. Epub 2015/04/25. https://doi.org/10.

1016/j.tcb.2015.03.004 PMID: 25906908.

51. Fuller N, Rand RP. The influence of lysolipids on the spontaneous curvature and bending elasticity of

phospholipid membranes. Biophysical journal. 2001; 81(1):243–54. https://doi.org/10.1016/S0006-

3495(01)75695-0 PMID: 11423410.

PLOS ONE Plasma-derived exosome-like vesicles; phospholipid content and blood brain barrier permeability

PLOS ONE | https://doi.org/10.1371/journal.pone.0232442 September 21, 2020 15 / 15

https://doi.org/10.1371/journal.pone.0198820
http://www.ncbi.nlm.nih.gov/pubmed/29889903
https://doi.org/10.1177/0271678X16630991
https://doi.org/10.1177/0271678X16630991
http://www.ncbi.nlm.nih.gov/pubmed/26868179
https://doi.org/10.1016/j.biochi.2017.05.003
https://doi.org/10.1016/j.biochi.2017.05.003
http://www.ncbi.nlm.nih.gov/pubmed/28483690
https://doi.org/10.1080/20013078.2017.1305677
https://doi.org/10.1080/20013078.2017.1305677
http://www.ncbi.nlm.nih.gov/pubmed/28473884
https://doi.org/10.1016/j.tcb.2015.08.003
http://www.ncbi.nlm.nih.gov/pubmed/26437594
https://doi.org/10.1038/nrm.2017.125
http://www.ncbi.nlm.nih.gov/pubmed/29339798
https://doi.org/10.1242/jcs.184424
http://www.ncbi.nlm.nih.gov/pubmed/27557622
https://doi.org/10.3390/ijms19041227
http://www.ncbi.nlm.nih.gov/pubmed/29670015
https://doi.org/10.1126/science.1153124
http://www.ncbi.nlm.nih.gov/pubmed/18309083
https://doi.org/10.1016/j.tcb.2015.03.004
https://doi.org/10.1016/j.tcb.2015.03.004
http://www.ncbi.nlm.nih.gov/pubmed/25906908
https://doi.org/10.1016/S0006-3495%2801%2975695-0
https://doi.org/10.1016/S0006-3495%2801%2975695-0
http://www.ncbi.nlm.nih.gov/pubmed/11423410
https://doi.org/10.1371/journal.pone.0232442

