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Abstract: Endoplasmic reticulum (ER) calcium homeostasis plays an essential role in cellular calcium
signaling, intra-ER protein chaperoning and maturation, as well as in the interaction of the ER with
other organelles. Calcium is accumulated in the ER by sarco/endoplasmic reticulum calcium ATPases
(SERCA enzymes) that generate by active, ATP-dependent transport, a several thousand-fold calcium
ion concentration gradient between the cytosol (low nanomolar) and the ER lumen (high micromolar).
SERCA enzymes are coded by three genes that by alternative splicing give rise to several isoforms,
which can display isoform-specific calcium transport characteristics. SERCA expression levels and
isoenzyme composition vary according to cell type, and this constitutes a mechanism whereby ER
calcium homeostasis is adapted to the signaling and metabolic needs of the cell, depending on its
phenotype, its state of activation and differentiation. As reviewed here, in several normal epithelial
cell types including bronchial, mammary, gastric, colonic and choroid plexus epithelium, as well as
in mature cells of hematopoietic origin such as pumps are simultaneously expressed, whereas in
corresponding tumors and leukemias SERCA3 expression is selectively down-regulated. SERCA3
expression is restored during the pharmacologically induced differentiation of various cancer and
leukemia cell types. SERCA3 is a useful marker for the study of cell differentiation, and the loss of
SERCA3 expression constitutes a previously unrecognized example of the remodeling of calcium
homeostasis in tumors.
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1. Introduction

1.1. ER Calcium Homeostasis and SERCA

Calcium signaling is based on changes of cytosolic and intra-organellar free calcium ion
concentrations. Calcium ions can bind non-covalently to, and thereby allosterically modify, specific
polypeptide sequences in target proteins. The ensuing conformational changes can modify the
enzymatic activity and other functional characteristics of these proteins. The reversible, calcium
concentration-dependent modulation of the three-dimensional structure of specific intracellular
enzymes and other proteins constitutes the basis of intracellular calcium-dependent signal transduction.
This requires that the calcium concentration in various cellular compartments be maintained at precisely
set levels in resting cells, while permitting rapid reversible changes during cell activation [1].

The endoplasmic reticulum (ER) plays a central role in calcium signaling as a source of calcium
that is released into the cytosol upon cell activation [2]. Whereas the ER lumen contains calcium ions
in the high micromolar range (~100 µM), in a resting cell the cytosolic calcium concentration is low
nanomolar (50–100 nM). During activation, calcium is released from the ER into the cytosol via calcium
channels such as the inositol 1,4,5-trisphosphate receptor (IP3 receptor), leading to increased cytosolic
calcium levels and partial ER calcium depletion [3]. ER calcium depletion then induces, via STIM
proteins, calcium influx (called store operated calcium entry) into the cytosol from the extracellular
space, across the plasma membrane through Orai-type calcium channels [4,5]. The calcium release from
the ER combined with store operated calcium influx leads to increased cytosolic calcium levels and
consequent activation of cytosolic calcium-dependent enzymes [6] (Figure 1A). In addition, calcium
plays an important role also in signal transmission between the ER and other organelles [7]. In summary,
the state of calcium-dependent activation of a cell is critically determined by the state of ER calcium
filling and the direction and intensity of the net calcium ion flux that occurs across the ER membrane at
a given time [2].

While calcium release from the ER is accomplished by various calcium channel proteins such
as the IP3 receptor [2,8], calcium is accumulated in the ER by sarco/endoplasmic reticulum calcium
ATPases (SERCA-type calcium pumps). Located in the ER membrane, these enzymes translocate
calcium ions from the cytosol into the ER lumen by active transport, dependent on energy obtained
by ATP hydrolysis [9–11]. The conformational changes taking place during the catalytic cycle of the
enzyme have been elucidated by the detailed structural analysis of the protein [9,12–18]. Calcium
transport by SERCA enzymes constitutes the sole mechanism whereby this ion is accumulated in the
ER, and the more than a thousand-fold calcium concentration gradient between the ER lumen and the
cytosol is thereby generated. By making calcium available in the ER, SERCA enzymes are therefore
indispensable for calcium release from the ER for initiating calcium-dependent cell activation.

The cytosolic calcium concentration in a living cell is controlled by SERCA enzymes in concert
with PMCA-(plasma membrane calcium ATPase) and SPCA (secretory pathway calcium ATPase)-type
calcium pumps, sodium-calcium exchangers (NCX) and the mitochondrial calcium uniport complex
(MCU). Whereas PMCA enzymes and NCX eliminate calcium ions from the cytosol into the extracellular
space across the plasma membrane [19,20], calcium is taken up from the cytosol into the Golgi complex
by SPCA [21,22] and into the mitochondria by the MCU [23,24] (Figure 1B). Because the regulation by
cytosolic calcium levels of the transport activity of these proteins can differ, their simultaneous action
during a calcium-dependent cell activation event can generate highly dynamic situations in terms
of calcium transport, where the relative contribution of individual transport proteins may change
depending on the evolution of the cytosolic calcium concentration. This can lead to crosstalk, partial
redundancy and compensatory phenomena among calcium transporters. Moreover, the existence
of complex positive and negative feedback mechanisms that operate, via calcium, between various
calcium mobilization and elimination systems can lead to the generation of highly dynamic oscillatory
calcium signals that can convey information selectively to different downstream effectors in the
cell [25–31]. The precise understanding of the contribution of individual components of the cellular



Int. J. Mol. Sci. 2020, 21, 3351 3 of 25

calcium homeostatic network in a living cell will require sophisticated in silico modeling [32–44]
combined with further calcium concentration measurements in various intracellular compartments in
cells in a quiescent state and also during various stages of calcium dependent activation, in which
individual calcium transporters have been selectively inactivated or invalidated, while the expression
levels of the other components, such as calcium pumps, exchangers and channels are not changed.

Moreover, calcium in the ER lumen is required also for calcium-dependent intra-ER chaperone
functions involved in the maturation of newly synthesized proteins that travel across this
organelle [45–47]. Thus, excessive ER calcium depletion can compromise protein maturation in
the ER, leading to various compensatory stress responses and possible cell death [48–50]. In addition,
because SERCA enzymes are active also during the calcium release events (limiting net calcium release),
SERCA-dependent calcium transport can blunt the amplitude and the duration of cytosolic calcium
transients and can modify the characteristics (amplitude, frequency, waveform) of oscillatory cytosolic
calcium signals [33,51–57], which in turn will influence calcium-dependent cell activation [58–61].
The modulation of calcium signals by SERCA-dependent calcium sequestration constitutes a unique
mechanism for the control of calcium-dependent cell activation.
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Figure 1. A simplified scheme of cellular calcium compartments, transporters and calcium ion fluxes.
(A) Calcium mobilization during a cell activation event. Upon activation of plasma membrane
receptors, phospholipase C (PLC)-induced hydrolysis of the membrane lipid phosphatidylinositol
4,5-bisphosphate (PIP2) leads to the formation of the second messengers diacylglycerol (DAG) and
inositol 1,4,5-trisphosphate (IP3). Binding of IP3 on IP3-receptor calcium channels located in the ER
membrane leads to channel opening and passive diffusion of calcium ions from the ER lumen into the
cytosol (calcium release). Dissociation of calcium ions from the intraluminal part of STIM proteins
located in the ER membrane leads to their interaction with Orai-type calcium channels located in the
plasma membrane and Orai channel opening. Calcium influx through Orai channels (capacitative
calcium influx) combined with calcium release from the ER leads to increased cytosolic calcium
levels and the activation of calcium-dependent downstream signaling. (B) Elimination of cytosolic
calcium ions after a cell activation event. Cytosolic calcium levels are decreased by the concerted
action of SERCA, SPCA and PMCA-type calcium pumps, sodium/calcium exchangers (NCX) and the
mitochondrial calcium uniporter complex (MCU). In non-muscle cells calcium is actively taken up in
the ER by SERCA2b and SERCA3-type calcium pumps, and calcium (as well as manganese) transport
into the Golgi complex is performed by SPCA-type pumps. Cytosolic calcium can also be taken up by
mitochondria through the MCU and is eliminated from the cell through PMCA-type calcium pumps
and sodium/calcium exchangers (NCX) into the extracellular medium that contains calcium ions in the
low millimolar range. The concerted action of these mechanisms leads to the establishment of resting
cytosolic calcium levels (low nanomolar). Calcium sequestered in the ER (in the high micromolar
concentration range) can interact with STIM proteins, leading to inactivation of capacitative calcium
influx, as well as with calcium-binding ER chaperones such as calreticulin.
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1.2. SERCA Pharmacology

SERCA function has been explored pharmacologically using inhibitors such as thapsigargin [62],
cyclopiazonic acid [63] or 2,5-di-tert-butyl-1,4-benzohydroquinone [64]. SERCA inhibition leads
to calcium leakage from the ER into the cytosol. Using these molecules it has become clear that
SERCA inhibition can lead to ER stress [65,66], apoptosis [67–70], autophagy [71], the inhibition
of cell growth [72], enhancement of cell proliferation [73] or differentiation [74], protection from
apoptosis [75], inhibition of the synthesis or the activity of mature oncoproteins [76–81], as well as
tumor promotion [82], Epstein-Barr virus lytic reactivation [83] or induction of retrovirus expression
in latently infected cells [84], the effects depending on cell type and the extent of SERCA inhibition.
Thapsigargin-derived inactive prodrugs that allow the proteolytic release of active thapsigargin
analogues in the proximity of tumor cells are being explored for the targeted therapy of prostate
carcinoma and other malignancies [85–88]. It has also been reported that several pollutants, drugs and
drug-like molecules can, in addition to their main pharmacological activities, modulate (inhibit
or activate) SERCA enzymes [89–122]. This may be helpful to better understand the toxicity,
the pharmacology and the side effects of these molecules and raises the possibility that some of
these molecules may be repurposed for their SERCA inhibitory activity, or may serve as leads for the
development of new, clinically useful selective SERCA inhibitors. For such drugs to be successfully
developed it will be necessary to take into account the SERCA composition of the targeted cell types.

1.3. SERCA Isoenzymes

Despite the involvement of SERCA-dependent calcium transport in a multitude of physiological
and pathological situations, it has been largely assumed that SERCA pumps in non-muscle cells
accomplish their functions in a constitutive manner, re-establishing resting cellular calcium levels in a
housekeeping enzyme-like fashion. However, it has become clear that SERCA expression can display
cell type-dependent characteristics [123], that various SERCA species may co-exist in a cell [124–126] and
that complex regulatory mechanisms of pathophysiological relevance exist based on the modulation of
the activity [51,70,81,118,125–151] and the expression [74,117,126,132,139,140,142,143,146–148,150–154]
of various SERCA-type calcium pumps.

Three SERCA genes (ATP2A1, 2 and 3) are known in humans that by alternative splicing can
give rise to several isoforms. The expression of the various SERCA isoenzymes is tissue-dependent
and developmentally regulated [155]. Whereas the SERCA1a and SERCA1b isoforms are expressed
in adult and neonatal fast twitch skeletal muscle [156], respectively, SERCA2a is the major isoform
expressed in slow twitch skeletal and cardiac muscle [156], and SERCA2b is expressed ubiquitously in
all non-muscle cell types investigated so far [157]. For SERCA3 six alternative splice isoforms have
been identified that differ in the C-terminal region of the proteins [126,141,144,147,149,158–162].

1.4. Co-Expression of Various SERCA Isoenzymes

In a selected set of specialized cell types (breast, colon, gastric surface epithelium, vascular
endothelial cells, Purkinje neurons, β cells of islets of Langerhans, choroid plexus, and various
cells of hematopoietic origin), SERCA2b and SERCA3-type calcium pumps are expressed
simultaneously [11,124,125,132,161,163–165]. The biological rationale for the co-expression of SERCA2
and SERCA3-type calcium pumps in such a phenotypically and functionally rather disparate set of
cell types is as yet unknown. SERCA2b and SERCA3 display, however, non-redundant functional
characteristics. A major difference between SERCA2b and SERCA3 enzymes is that the calcium affinity
of SERCA3 enzymes is significantly inferior to that of SERCA2b [161,166–169]. Due to the cooperative
binding of two calcium ions to the pumps, calcium transport by SERCA enzymes is strongly activated by
increasing calcium concentrations at the cytosolic side of the enzymes [170–172]. However, the calcium
dependency of this activation is different for SERCA2b vs. SERCA3-type enzymes. Whereas half
maximal calcium transport intensity for SERCA2b is attained at around a 0.2 µM free calcium ion
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concentration [169], half maximal activation of SERCA3 by calcium is reached only at approximately
1.2 µM calcium [158,161,167]. This means that in a resting cell SERCA-dependent calcium transport will
be accomplished mainly by SERCA2b, whereas during cell activation, when cytosolic calcium levels
increase, SERCA3-dependent calcium transport will be stimulated [167,168] (Figure 2). This means
that SERCA3 will tolerate larger calcium increases during an ER calcium mobilization event, and this
may contribute to enhanced downstream signaling and stronger effector responses. Thus, SERCA3 can
be considered a less “stringent” calcium pump than SERCA2b, which may allow larger calcium signals
during a cell activation event [167,168].
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Figure 2. Schematic representation of the evolution of SERCA2b and SERCA3 transport activities
during an IP3-induced calcium release event from the endoplasmic reticulum. Calcium transport
activity (the number of calcium ions transported by a pump molecule per unit time) of the pumps is
stimulated by increasing calcium concentrations. However, due to its higher calcium affinity (KCa

2+

~ 0.2 µM), this stimulation occurs at lower calcium concentrations for SERCA2b than for the lower
calcium affinity SERCA3 pump (KCa

2+ ~ 1.2 µM). The calcium affinity of SERCA2b lies closer to
the calcium concentration of a resting cell, whereas that of SERCA3 is closer to calcium levels that
occur during activation, in particular in specialized ER microdomains, where calcium release is locally
taking place. Consequently, whereas SERCA2b is nearly maximally active already in a resting cell,
SERCA3-dependent transport is at that point only weakly active, becoming activated only later, during
the peak of a calcium release event (when local cytosolic calcium concentrations near the ER approaches
1.2 µM). Note that at the beginning and at the end of the calcium signal (blue areas) neither SERCA2b
nor SERCA3-dependent transport is stimulated significantly by calcium. When SERCA2b is replaced
by SERCA3 during cell differentiation, calcium release is facilitated, allowing more robust calcium
signals. The scenario is depicted in the absence of capacitative calcium influx (in the absence of
extracellular calcium) for simplicity. Upward facing arrow: cytosolic calcium concentration, downward
facing arrows: SERCA calcium transport intensity. Arrow lengths depict transport intensity relative to
maximally stimulated (longest arrows); SERCA2b: grey, SERCA3: blue.

Humans carrying mutations in one SERCA2 allele develop Darier disease, a dermatological
condition characterized by impaired keratinocyte adherence and maturation [155,173], whereas mouse
heterozygous SERCA2 knock-out leads to increased incidence of tumors, including carcinomas,
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of the keratinizing epithelium [174,175]. SERCA3 homozygous knock-out has been shown to lead
to subtle phenotypes related to vascular endothelial or bronchial epithelial cell-regulated smooth
muscle cell relaxation and subtle changes in β-cell function [53,175–179] or platelet activation [180].
These observations show that SERCA2 and SERCA3-type calcium pumps accomplish non-redundant
functions when co-expressed in a cell.

2. Loss of SERCA3 Expression in Tumors

Various fully mature epithelial cell types such as gastric surface epithelium, colonic and
bronchial epithelial cells, breast acinar and choroid plexus epithelial cells express SERCA3 protein
abundantly, whereas in corresponding tumoral tissue SERCA3 expression is strongly decreased or
lost [126,139,140,142,146,150]. The widespread character of SERCA3 loss in different types of tumors
indicates that a general underlying mechanism may exist whereby calcium homeostasis is remodeled
during carcinogenesis. In order to explore this, SERCA3 expression was investigated in neoplasia
in function of tumor type, histological grade and degree of malignant potential in situ and in the
context of the underlying molecular oncogenic mechanisms in vitro. In particular, in order to better
characterize features that distinguish ER calcium homeostasis of normal versus neoplastic cells, SERCA3
expression and ER calcium homeostasis have been investigated in various models of tumor/leukemia
cell differentiation whereby, following various types of molecularly targeted treatments, fully malignant
cells transition towards a differentiated, non-proliferating phenotype. Since the last time this was
summarized [181], progress has been made in this field in several other tumor types, such as lung and
breast carcinoma, benign and malignant choroid plexus tumors or acute B-cell lymphoblastic leukemia.
As detailed below, by conducting such experiments on multiple types of neoplasia, it has become
possible to identify a general trend that connects ER calcium transport to tumor biology, due to the
down-regulation of SERCA3 expression in several types of malignancies.

2.1. Acute Promyelocytic Leukemia

Acute promyelocytic leukemia (APL) cells and cell lines such as NB4 and HL-60 can be
induced to undergo terminal neutrophil granulocytic differentiation by all-trans retinoic acid
(ATRA). ATRA-induced differentiation constitutes the first example of clinically efficient targeted
anti-leukemia therapy [182,183]. ATRA treatment targets the PML-RARα fusion oncoprotein that
blocks the differentiation of myeloid precursors at the promyelocytic stage of neutrophil granulocytic
differentiation and drives APL [184–186]. Following ATRA treatment the cells stop proliferating and
acquire several morphological as well as immunophenotypic and functional characteristics of mature
neutrophil granulocytes such as lobulated nuclei, CD11b expression and the acquisition of phagocytic
and NADPH oxidase activity [148,187]. During ATRA-induced differentiation, the expression of
SERCA3 is induced approximately three-fold [148]. As studied in the HL-60 cell line, the induction of
SERCA3 expression by ATRA was accompanied by enhanced SERCA3-dependent calcium accumulation
in membrane vesicles prepared from ATRA-differentiated cells when compared to untreated control,
whereas SERCA2b protein levels and SERCA2b-dependent calcium accumulation were decreased.
Thus, although total calcium transport activity was not modified significantly, ATRA treatment led
to a shift towards SERCA3-dependent calcium transport. This was determined using the PL/IM430
SERCA3-specific monoclonal antibody, which selectively inhibits SERCA3-dependent calcium transport.
When calcium transport was measured in microsomal membrane preparations prepared from untreated
and ATRA-differentiated HL-60 cells, it was found that whereas in untreated cells SERCA3-dependent
transport accounted for approximately 30% of total SERCA-dependent calcium uptake, this value
increased to approximately 60% following ATRA-induced differentiation [148].

In order to investigate whether changes in SERCA-dependent calcium transport are a simple
passive consequence of ATRA-induced differentiation or whether SERCA activity can influence this
differentiation process, HL-60 and NB4 cells were treated with increasing concentrations of SERCA
inhibitors such as thapsigargin, cyclopiazonic acid or 2,5-di-tert-butyl- 1,4-benzohydroquinone in
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the presence of low concentrations of ATRA, and cell differentiation was compared to that obtained
by a maximally efficient concentration of ATRA. In parallel, calcium release from the ER as well as
capacitative calcium influx induced by various concentrations of SERCA inhibitors were measured
using calcium spectrofluorimetry. Calcium release and capacitative calcium influx values were
expressed as percentage of values obtained by maximally effective concentrations of the respective
SERCA inhibitors. It was found, that inhibition of SERCA-activity that induces an approximately 60%
calcium release from the ER, as well capacitative calcium entry from the extracellular space, strongly
enhanced the differentiation process induced by low concentrations of ATRA [74], and resistance to
ATRA-induced differentiation could also be reversed in ATRA-resistant cells by SERCA inhibitors [74].
ATRA-induced cell differentiation could be enhanced also by ritodrine [74], a clinically relevant
β2-adrenergic agonist that possesses SERCA inhibitory activity [94].

As mentioned earlier, the calcium affinity of SERCA3 is weaker than that of SERCA2b.
The replacement of SERCA2b by SERCA3 during ATRA-induced differentiation is therefore compatible
with the notion of a net decrease of the calcium affinity of the ER calcium sequestration machinery
during differentiation, rendering the ER more tolerant towards calcium release. Considering that
the partial pharmacological inhibition of SERCA-dependent calcium transport has an analogous
effect on ER calcium sequestration because this also facilitates calcium leak from the ER, and because
cytosolic calcium is known to enhance ATRA-induced differentiation of HL-60 cells [188], it is
tempting to hypothesize that the ATRA-induced isoenzyme switch, resulting in more SERCA3 over
SERCA2b, will help the differentiation process by rendering calcium more easily available in the
cytosol and by increasing cytosolic calcium levels, ultimately enabling various calcium-dependent
differentiation-enhancing signaling processes.

These observations when taken together indicate that the induction of SERCA3 expression is part
of the differentiation program of acute promyelocytic leukemia cells, that a functional crosstalk exists
between ER-dependent calcium sequestration and the control of acute promyelocytic leukemia cell
differentiation, and illustrate the possibility of drug repurposing as SERCA inhibitors.

2.2. Pre-B Cell Acute Lymphoid Leukemia

Induction of SERCA3 expression could also be observed in a model of early B lymphocytic
differentiation [139]. When various precursor-B acute lymphoblastic leukemia cell lines that express the
E2A-PBX1 fusion oncoprotein are subjected to pharmacologically induced activation of protein-kinase
C, SERCA3 expression is induced approximately five-fold [139]. This is accompanied by the induction
of expression of several early B lymphoid differentiation markers such as CD19, CD20 or CD22, growth
arrest, and the loss of expression of markers of immaturity (RAG-1, TdT, CD10) [139]. Induction
of SERCA3 expression during the differentiation of leukemic precursor-B cells is a physiologically
relevant phenomenon, because cell lines of mature B phenotype as well as normal non-activated
mature B-lymphocytes express SERCA3 abundantly.

2.3. Megakaryocytic Differentiation

Induction of SERCA3 expression was also observed in leukemic megakaryoblastic cell lines
treated with phorbol esters that induce megakaryocytic differentiation in these cells [189]. Induction
of SERCA3 expression occurred in parallel with that of established megakaryocytic/platelet markers
such as platelet glycoprotein IIIa [189]. Because SERCA3 is strongly expressed in normal mature
megakaryocytes in situ, as well as in circulating platelets [124], this observation indicates that the
induction of SERCA3 expression is part of the normal megakaryocytic differentiation program that is
blocked in leukemic megakaryoblasts [190].

2.4. Down-Regulation of SERCA3 Expression In Vitro

Down-regulation of SERCA3 expression could be induced experimentally in models of cell
activation and immortalization [143,147]. Activation of mature quiescent T lymphocytes by T cell
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receptor engagement leads to the induction of the expression of IL-2 receptor α chain and the
simultaneous secretion of IL-2 by the cells. Secretion of IL-2 in parallel with the acquisition of
functional, high affinity IL-2 receptors leads to auto/paracrine stimulation of T cells, and the cells
acquire a blast-like, proliferative phenotype [58,191–194]. T cell activation can be modelled in vitro
using Jurkat (JurE6-1) T lymphocytic cells treated simultaneously with a phorbol ester (PMA) and a
calcium ionophore (ionomycin) [195]. Double treatment of JurE6-1 cells with PMA and ionomycin
leads to an approximately 80% decrease of SERCA3 expression, while the expression of SERCA2 is
slightly increased [147]. SERCA3 down-regulation, as well as IL-2 secretion, requires simultaneous
treatment with PMA and ionomycin, and single treatments are ineffective. Importantly, SERCA3
down-regulation as well as the induction of IL-2 secretion in PMA plus ionomycin-treated cells are
inhibited by the immunosuppressant cyclosporine-A [147] and the more specific calcineurin inhibitor
FK-506 (tacrolimus; B.P., unpublished observation) [196].

SERCA3 down-regulation has also been reported in mature B lymphocytic cells following the
establishment of latent infection with Epstein-Barr virus [143]. EBV infection of mature resting
B-lymphocytes leads to the acquisition by the cells of an activated, immortalized, continuously
proliferating phenotype [197,198]. Lymphoblastoid cell lines obtained by latent EBV infection of B cells
resemble normal, antigen-activated proliferating lymphoblasts found in lymph node germinal centers,
because several EBV-coded genes, such as EBNA-2 [199] and LMP1 [200], expressed in lymphoblastoid
cell lines during EBV latency, constitutively activate various cellular signal transduction mechanisms
also involved in the antigen-dependent activation of normal, uninfected B-lymphocytes [197,198,201].
Down-regulation of SERCA3 expression could be observed in Burkitt lymphoma cell lines chronically
infected with an immortalization-competent, but not with an immortalization-deficient EBV strain [143].
SERCA3 expression was down-regulated also following the forced expression of LMP1 using an
inducible expression vector in non-infected cells, whereas SERCA2 expression was not modified [143].
Resting mature normal B-lymphocytes express simultaneously SERCA2b and SERCA3-type calcium
pumps. SERCA3 expression is, however, strongly decreased during normal B cell activation in situ,
as seen using immunohistochemistry in lymph node follicle germinal centers [143]. These observations
indicate that SERCA3 down-regulation is part of the immortalization program induced by EBV,
a process that mimics the antigen-induced normal activation program of mature resting B lymphocytes.

2.5. SERCA3 Loss in Gastrointestinal Carcinomas

SERCA3 expression was investigated comparatively in normal colon epithelium and various
benign and malignant colon tumors in situ using immunohistochemistry [126,142,202]. It was found
that whereas normal colonic epithelium expresses high levels of SERCA3 protein, expression was
variable in benign tumors (adenomas) and was decreased in adenocarcinomas [126,142,202]. The loss
of SERCA3 expression was proportional to the histological grade of the malignant tumors, with a
complete loss of expression in high grade, poorly differentiated adenocarcinomas in the colon [126,142].
Interestingly, unlike in neoplastic lesions, SERCA3 expression was maintained in hyperplastic colon
polyps at levels comparable to normal epithelium [126]. Furthermore, whereas gastric surface
epithelium expresses SERCA3 abundantly [126], in gastric cancer the loss of SERCA3 expression has
been reported to be associated with shorter survival [203,204].

The APC/β -catenin/TCF4 molecular oncogenic pathway plays a central role in the transformation
of colonic epithelial cells [205]. When this pathway was inhibited in colon carcinoma cells by the
expression of a dominant negative version of the TFC4 protein [206], SERCA3 expression was induced,
whereas the expression of the SERCA2b isoform was not modified significantly [142]. Moreover,
the loss of SERCA3 expression in colon as well as gastric carcinoma cell lines could also be reversed
in vitro by various cell differentiation-inducing treatments such as short chain fatty acids, other highly
active histone deacetylase inhibitors or post-confluent growth, and this was accompanied by the
induction of expression of various other phenotypic markers of epithelial differentiation [126,204,207].
Short-chain fatty acid-induced expression of SERCA3 was associated to decreased SERCA2b expression,
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increased resting cytosolic calcium levels and to a decreased thapsigargin-releasable intracellular
calcium pool size in gastric carcinoma cells [126] in accordance with the lower calcium affinity of this
enzyme. In addition, when the induction of colon cancer cell differentiation by post-confluent culture
was conducted in the presence of various SERCA inhibitors, an enhanced differentiation response was
observed [126], similarly to ATRA-induced differentiation of acute promyelocytic leukemia cells [74].

These data show that SERCA3 expression is part of the normal differentiation program of
colonic epithelial cells, that SERCA3 expression in colon carcinoma is reversibly suppressed by the
APC/β-catenin/TCF4 oncogenic pathway, that the inhibition of SERCA3 expression can be reversed by
the induction of cell differentiation and that a functional crosstalk exists between SERCA function and
the mechanisms that control differentiation in colon carcinoma cells.

2.6. Lung Cancer

SERCA3 expression in lung adenocarcinoma displayed similar characteristics to colon carcinoma.
Whereas normal bronchial epithelium expresses high levels of SERCA3, expression in various
lung adenocarcinoma tumors and cell lines was variable and often decreased or lost, and the
induction of differentiation of the cell lines by short chain fatty acids or post-confluent growth led to
enhanced SERCA3 expression, whereas the expression of SERCA2 was not modified significantly [140].
The induction of SERCA3 expression was accompanied by decreased calcium release from the
SERCA-dependent intracellular pool, as studied with the pan-SERCA inhibitor thapsigargin in a
calcium fluorimetry format using a genetically engineered calcium indicator [140], suggesting decreased
ER calcium content, in accordance with the lower calcium affinity of the SERCA3 isoenzyme.

Decreased intra-ER calcium levels, as observed in differentiated gastric and lung carcinoma cells,
are compatible with increased SERCA3 expression, for example, in a scenario in which SERCA3
overexpression is part of a process whereby a new, SERCA3-associated ER sub-compartment is created
during cell differentiation, including the formation of new ER membrane surface area and ER lumen
volume. At resting cytosolic calcium levels, calcium sequestration in this new part of the ER will be of
lower intensity when compared to SERCA2b-associated regions, due to the weaker calcium affinity of
SERCA3. Constitutive, passive calcium leak from the ER [208] will therefore not be re-sequestered in
this new, SERCA3-associated ER sub-compartment at low cytosolic calcium levels, leading to a shift
of the dynamic equilibrium of calcium release and reuptake towards increased net release from this
region of a contiguous ER in a resting cell. Considering that the SERCA2b isoform will be nearly fully
activated by calcium already at resting cytosolic calcium levels and thus unable to compensate for
this calcium leakage, a new dynamic equilibrium will be established with higher cytosolic and lower
intra-ER calcium concentrations, even when SERCA2b expression is maintained, rather than decreased
in parallel with the induction of SERCA3 expression.

2.7. Breast Cancer

SERCA3 loss has also been observed in breast cancer tissue using immunohistochemistry [150].
Whereas normal lobular epithelial cells in breast acini express SERCA3 abundantly, SERCA3 expression
is strongly decreased or lost in lobular carcinoma cells, as well as in non-malignant lobular lesions
such as adenosis or lobular neoplasia in situ [150]. In invasive ductal breast carcinomas the loss of
SERCA3 expression correlated with the Elston-Ellis grade of the tumors, as well as with individual
components of this grading system such as marked nuclear pleomorphism and high proliferating index,
and also with hormone receptor negative or triple negative (estrogen receptor-, progesterone receptor-
and HER2-negative) status [150]. When taken together, these observations indicate that SERCA3
expression is already lost at the earliest histologically identifiable anomalies of acinar architecture and
remains low during the further stages of lobular tumorigenesis, and that in ductal carcinomas the
loss of SERCA3 expression is the most marked in highly proliferating, high nuclear grade, hormone
receptor negative tumors. Conversely, the induction of SERCA3 expression by differentiation-inducing
agents has been described on the mRNA level in various breast carcinoma cell lines [209,210], and the
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involvement of SERCA3 in progesterone-induced calcium signaling in breast cancer cell lines has also
been reported [211].

2.8. Choroid Plexus

Located in cerebral ventricles, the choroid plexus is involved in the production and the homeostatic
regulation of the composition of cerebrospinal fluid [212]. The choroid plexus epithelium accomplishes
specialized trans-cellular transport functions of water, ions, vitamins, other nutrients and metabolites
between the blood and the cerebrospinal fluid [212]. Neoplastic lesions of the choroid plexus epithelium
can be divided according to their malignant potential. Whereas grade I papillomas are fully benign,
grade II papillomas are of low malignant potential, whereas choroid plexus carcinomas are fully
malignant [213–216]. It has been shown that whereas normal choroid plexus epithelium expresses
high amounts of SERCA3 protein as detected using immunohistochemistry, expression is strongly
decreased in grade I and II papillomas and undetectable in carcinomas [146]. As shown in Figure 3,
in contrast with tumors, SERCA3 expression in choroid plexus hyperplasia, which is a non-neoplastic
lesion [217,218], was high, similarly to fully differentiated normal choroid plexus epithelium [146].
In addition, treatment of primary normal choroid plexus epithelial cells with short-chain fatty acid-type
differentiation-inducing agents in vitro led to the induction of the expression of SERCA3 [146]. These
data show that SERCA3 expression is part of the normal gene expression program of mature choroid
plexus epithelial cells, that SERCA3 expression is lost already in benign choroid plexus tumors and that
SERCA3 immunohistochemistry may be useful to distinguish hyperplastic lesions from papillomas in
the choroid plexus.
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Figure 3. SERCA3 expression is lost in choroid plexus tumors. SERCA3 expression was investigated
using immunohistochemistry with the 2H3 SERCA3-specific monoclonal antibody (Abnova) on
deparaffinized, formalin-fixed sections of normal choroid plexus tissue (A), choroid plexus hyperplasia
(B), grade I (C) and grade II papilloma (D) and choroid plexus carcinoma (E). Immunostaining was
revealed using an avidin-biotin-peroxydase immunolabeling system with 3,3′diaminobenzidine as
chromogen. Slides were counterstained with hematoxylin (blue). Whereas normal choroid plexus
epithelial cells (A) and hyperplastic epithelium (B) express SERCA3 abundantly (brown coloration),
expression in grade I and grade II papillomas (C,D) as well as in carcinoma (E) is barely detectable or
absent. Original magnification: ×40.
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3. Conclusions

Observations made on multiple different tissue and cell types and their tumors of various degrees
of malignancy show that whereas several normal epithelial cell types, as well as cells of hematopoietic
origin express simultaneously SERCA2b and SERCA3-type calcium pumps, SERCA3 expression is
decreased or lost in corresponding tumors or leukemias. The fact that SERCA3 loss has been found
in a wide range of tumors of different histological origin indicates that deficient SERCA3 expression
is a widespread phenomenon in neoplasia. The degree of SERCA3 down-regulation correlated with
the degree of malignancy of various tumors and was, on the other hand, maintained in hyperplastic
lesions. These observations show that SERCA3 may serve as a useful new marker for the pathologist
for the immunohistochemical analysis of tumors and that the SERCA3 status of tumors may convey
clinically relevant information.

Differentiation of tumor cells induced in vitro by the targeted inhibition of various molecular
oncogenic mechanisms, or using differentiation-inducing agents such as short chain fatty acids and
their analogues, leads to enhanced SERCA3 expression, in parallel with the induction of the expression
of other phenotypic markers of differentiation. SERCA3 expression is part of the normal differentiation
process of several cell types, whereby the cells acquire an ER homeostatic and signaling configuration
required for the specialized effector functions of the fully differentiated, specialized cell, a process
blocked in tumors. Induction of SERCA3 expression during cell differentiation is associated to changes
of ER calcium homeostasis. It may be hypothesized that during cell differentiation, the extension by a
newly formed, SERCA3-associated ER sub-compartment of an originally SERCA2b-expressing ER may
increase net passive background calcium leakage [208] from the organelle at resting cytosolic calcium
concentrations, due to the lower calcium affinity of SERCA3. This may lead to decreased intra-ER
calcium levels and more cytosolic calcium, potentially sensitizing the cell to calcium-dependent
cytosolic processes at a resting state, as well as to capacitative calcium influx and calcium-activated
effector functions upon stimulation by extracellular ligands.

The direct pharmacological inhibition of SERCA-dependent calcium sequestration can enhance
cell differentiation and modulate the expression of oncoproteins, depending on cell type. This indicates
that a functional crosstalk exists between SERCA-dependent calcium sequestration in the ER and
various molecular mechanisms that control cell differentiation. Absence of SERCA3 in tumors points
to a previously unknown link between cellular calcium homeostasis, tumorigenesis and the loss of
terminal differentiation of malignant cells.

The highly inducible nature of SERCA3 expression indicates that SERCA-dependent calcium
sequestration is not static. Changes of the absolute amount of SERCA enzymes as well as changes
of SERCA2/SERCA3 expression ratios can occur readily in a cell. The modulation of SERCA levels
constitutes a unique mechanism whereby the cell can adjust and modulate its calcium homeostasis
depending on its phenotype.

Interestingly, changes of SERCA isoenzyme expression levels are not the sole modifications of
cellular calcium transport that occur during the differentiation of malignant cells. The expression
of PMCA-type calcium pumps also undergoes significant isoform-specific changes during the
differentiation of gastric and colon carcinoma cells [219–221], PMCA isoenzyme composition
of various molecular and histological types of breast carcinoma displays tumor type-specific
characteristics [222–226], the PMCA isoenzyme composition of estrogen receptor-positive breast cancer
cells is modulated by estradiol [227], and normal breast epithelium also undergoes important changes in
terms of PMCA isoenzyme expression during lactation [194,228–233]. Another interesting observation
is that in BRAF mutant melanoma cells a specific PMCA isoform (PMCA4b) is down-regulated in a
BRAF/ERK-dependent manner, and the reintroduction of this isoform can reduce the migratory and
metastatic activities of these cells [234,235].

These observations taken together indicate that the cellular calcium homeostatic network can
undergo complex modifications during oncogenesis or cell differentiation, which may lead to profound
changes in the way a cell generates and processes calcium signals and how it ultimately responds
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to them. The various in vitro differentiation models discussed in this work may constitute a useful
platform for further, integrated functional studies aimed at understanding the relevant differences
that distinguish normal cells from neoplastic ones in terms of their calcium homeostasis and signaling,
as well as studying the process of functional specialization and differentiation of the ER.

The selective association of SERCA2b and SERCA3 with functionally distinct intracellular calcium
pools has been described [180,236–239], and SERCA2b-and SERCA3-associated calcium pools can
be localized at separate regions in a polarized epithelial cell [239]. Considering the differences
in their calcium affinities discussed earlier, the differential distribution of SERCA2b and SERCA3
can lead to situations where calcium uptake into the ER happens in a non-uniform manner. In a
resting cell, calcium will be taken up into the ER mainly by SERCA2b, the higher calcium affinity
isoenzyme, whereas during a calcium activation event, SERCA3-dependent calcium pools will also be
replenished. This can lead to complex cytosolic calcium signals and calcium oscillations [37,56,176,240],
the frequency and amplitude of which can encode information allowing the selective activation of
distinct downstream calcium-activated enzymes [30,59,241,242]. In addition, it is tempting to speculate
that the non-homogeneous distribution of SERCA2b and SERCA3 within a contiguous ER membrane
network can lead to intra-luminal calcium ion gradients and calcium ion migration, which may serve as
an organizing force for the distribution, state of aggregation and regulation of activity of, for example,
intra-ER calcium-binding chaperone proteins [243]. Changes of SERCA composition of a cell can thus
have far-reaching consequences for the structure and the function of the ER.

The regulation of SERCA expression depending on cell type and the state of cellular differentiation,
activation or transformation constitutes a previously unrecognized component of cellular calcium
homeostasis and signaling. Shifts in SERCA isoenzyme levels need to be taken into account when
an integrated investigation of cellular calcium homeostasis is attempted, in particular when cells of
various phenotypes (for example, normal vs. neoplastic, undifferentiated vs. differentiated or quiescent
vs. proliferating) are investigated in a comparative manner. This will contribute to the identification of
new levels of complexities of intracellular calcium homeostasis and signaling and their connections
to oncogenesis.
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Abbreviations

APL acute promyelocytic leukemia
ATRA all-trans retinoic acid
DAG diacylglycerol
E2A E2A immunoglobulin enhancer-binding factor E12/E47
EBNA-2 Epstein-Barr virus nuclear antigen 2
EBV Epstein-Barr virus
ER endoplasmic reticulum
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ERK extracellular signal-regulated kinase
IL-2 interleukin-2
IP3 inositol 1,4,5-trisphosphate
LMP1 Epstein-Barr virus latent membrane protein 1
MCU mitochondrial calcium uniporter
NCX sodium/calcium exchanger
PBX1 pre-B-cell leukemia transcription factor 1
PIP2 phosphatidylinositol 4,5-bisphosphate
PLC phospholipase C
PMA phorbol 12-myristate 13-acetate
PMCA plasma membrane calcium ATPase
PML promyelocytic leukemia protein
RAG-1 recombination activating gene 1
SERCA sarco/endoplasmic reticulum calcium ATPase
SPCA secretory pathway calcium ATPase
STIM stromal interaction molecule
TdT terminal deoxynucleotidyl transferase
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191. Bonifacino, J.S.; Merćep, M.; Sussman, J.J.; Klausner, R.D.; Ashwell, J.D. The T-cell antigen receptor: A complex
signal-transducing molecule. Princess Takamatsu Symp. 1988, 19, 87–104.

192. Stankunas, K.; Graef, I.; Neilson, J.R.; Park, S.-H.; Crabtree, G. Signaling through calcium, calcineurin, and
NF-AT in lymphocyte activation and development. Cold Spring Harb. Symp. Quant. Biol. 1999, 64, 505–516.
[CrossRef] [PubMed]

193. Im, S.H.; Rao, A. Activation and deactivation of gene expression by Ca2+/calcineurin-NFAT-mediated
signaling. Mol. Cells 2004, 18, 1–9. [PubMed]

http://dx.doi.org/10.1007/978-1-4020-6191-2_12
http://dx.doi.org/10.1158/0008-5472.CAN-05-0026
http://www.ncbi.nlm.nih.gov/pubmed/16204033
http://dx.doi.org/10.1016/j.bbrc.2004.07.156
http://dx.doi.org/10.2337/diabetes.51.11.3245
http://dx.doi.org/10.1111/j.1749-6632.2003.tb07229.x
http://dx.doi.org/10.1038/s41467-019-09593-0
http://dx.doi.org/10.1113/jphysiol.2004.067454
http://dx.doi.org/10.1182/blood-2015-10-678383
http://dx.doi.org/10.1002/biof.142
http://dx.doi.org/10.1053/beha.2000.0121
http://www.ncbi.nlm.nih.gov/pubmed/11355929
http://dx.doi.org/10.1007/978-3-540-34594-7_7
http://dx.doi.org/10.3390/cancers11101591
http://www.ncbi.nlm.nih.gov/pubmed/31635329
http://www.ncbi.nlm.nih.gov/pubmed/1330303
http://dx.doi.org/10.1038/nrc.2017.103
http://www.ncbi.nlm.nih.gov/pubmed/29192213
http://dx.doi.org/10.1111/j.1749-6632.1993.tb32278.x
http://www.ncbi.nlm.nih.gov/pubmed/8391236
http://dx.doi.org/10.1042/bj3500723
http://dx.doi.org/10.1080/09537100400016847
http://dx.doi.org/10.1101/sqb.1999.64.505
http://www.ncbi.nlm.nih.gov/pubmed/11232327
http://www.ncbi.nlm.nih.gov/pubmed/15359117


Int. J. Mol. Sci. 2020, 21, 3351 23 of 25

194. Trebak, M.; Kinet, J.-P. Calcium signalling in T cells. Nat. Rev. Immunol. 2019, 19, 154–169. [CrossRef]
[PubMed]

195. Cheadle, C.; Fan, J.; Cho-Chung, Y.S.; Werner, T.; Ray, J.; Do, L.; Gorospe, M.; Becker, K.G. Control of gene
expression during T cell activation: Alternate regulation of mRNA transcription and mRNA stability. BMC
Genom. 2005, 6, 75. [CrossRef]

196. Banerji, S.S.; Parsons, J.N.; Tocci, M.J. The immunosuppressant FK-506 specifically inhibits mitogen-induced
activation of the interleukin-2 promoter and the isolated enhancer elements NFIL-2A and NF-AT1. Mol. Cell.
Biol. 1991, 11, 4074–4087. [CrossRef]

197. Bornkamm, G.W.; Hammerschmidt, W. Molecular virology of Epstein-Barr virus. Philos. Trans. R. Soc. B:
Biol. Sci. 2001, 356, 437–459. [CrossRef]

198. Rowe, D.T. Epstein-Barr virus immortalization and latency. Front. Biosci. 1999, 4, d346. [CrossRef]
199. Strobl, L.J.; Höfelmayr, H.; Stein, C.; Marschall, G.; Brielmeier, M.; Laux, G.; Bornkamm, G.W.; Zimber-Strobl, U.

Both Epstein-Barr Viral Nuclear Antigen 2 (EBNA2) and Activated Notch1 Transactivate Genes by Interacting
with the Cellular Protein RBP-Jκ. Immunobiology 1997, 198, 299–306. [CrossRef]

200. Kieser, A.; Sterz, K.R. The Latent Membrane Protein 1 (LMP1). Mol. Asp. Myeloid Stem Cell Dev. 2015, 391,
119–149.

201. Farrell, P.J. Epstein-Barr virus immortalizing genes. Trends Microbiol. 1995, 3, 105–109. [CrossRef]
202. Gou, W.-F.; Niu, Z.-F.; Zhao, S.; Takano, Y.; Zheng, H. Aberrant SERCA3 expression during the colorectal

adenoma-adenocarcinoma sequence. Oncol. Rep. 2013, 31, 232–240. [CrossRef] [PubMed]
203. Xu, X.-Y.; Gou, W.-F.; Yang, X.; Wang, G.-L.; Takahashi, H.; Yu, M.; Mao, X.-Y.; Takano, Y.; Zheng, H.-C.

Aberrant SERCA3 expression is closely linked to pathogenesis, invasion, metastasis, and prognosis of gastric
carcinomas. Tumor Biol. 2012, 33, 1845–1854. [CrossRef]

204. Meneses-Morales, I.; Izquierdo-Torres, E.; Flores-Peredo, L.; Rodríguez, G.; Hernández-Oliveras, A.;
Zarain-Herzberg, A. Epigenetic regulation of the human ATP2A3 gene promoter in gastric and colon
cancer cell lines. Mol. Carcinog. 2019, 58, 887–897. [CrossRef] [PubMed]

205. Jen, J.; Powell, S.M.; Papadopoulos, N.; Smith, K.J.; Hamilton, S.R.; Vogelstein, B.; Kinzler, K.W. Molecular
determinants of dysplasia in colorectal lesions. Cancer Res. 1994, 54, 5523–5526.

206. Van De Wetering, M.; Sancho, E.; Verweij, C.; De Lau, W.; Oving, I.; Hurlstone, A.F.L.; Van Der Horn, K.;
Batlle, E.; Coudreuse, D.; Haramis, A.-P.; et al. The β-Catenin/TCF-4 Complex Imposes a Crypt Progenitor
Phenotype on Colorectal Cancer Cells. Cell 2002, 111, 241–250. [CrossRef]

207. Flores-Peredo, L.; Rodríguez, G.; Zarain-Herzberg, A. Induction of cell differentiation activates transcription
of the Sarco/Endoplasmic Reticulum calcium-ATPase 3 gene (ATP2A3) in gastric and colon cancer cells.
Mol. Carcinog. 2016, 56, 735–750. [CrossRef]

208. Lizák, B.; Csala, M.; Benedetti, A.; Bánhegyi, G. The translocon and the non-specific transport of small
molecules in the endoplasmic reticulum (Review). Mol. Membr. Biol. 2008, 25, 95–101. [CrossRef] [PubMed]

209. Contreras-Leal, E.; Hernández-Oliveras, A.; Flores-Peredo, L.; Zarain-Herzberg, A.; Santiago-García, J.
Histone deacetylase inhibitors promote the expression ofATP2A3 gene in breast cancer cell lines. Mol.
Carcinog. 2015, 55, 1477–1485. [CrossRef]

210. Izquierdo-Torres, E.; Hernández-Oliveras, A.; Meneses-Morales, I.; Rodríguez, G.; Fuentes-García, G.;
Zarain-Herzberg, A. Resveratrol up-regulates ATP2A3 gene expression in breast cancer cell lines through
epigenetic mechanisms. Int. J. Biochem. Cell Biol. 2019, 113, 37–47. [CrossRef]

211. Azeez, J.M.; Vini, R.; Remadevi, V.; Surendran, A.; Jaleel, A.; Kumar, T.R.S.; Sreeja, S.; Ravindran, V.;
Sreeharshan, S. VDAC1 and SERCA3 Mediate Progesterone-Triggered Ca2+ Signaling in Breast Cancer Cells.
J. Proteome Res. 2017, 17, 698–709. [CrossRef]

212. Shapey, J.; Toma, A.; Saeed, S. Physiology of cerebrospinal fluid circulation. Curr. Opin. Otolaryngol. Head
Neck Surg. 2019, 27, 326–333. [CrossRef] [PubMed]

213. Thomas, C.; Ruland, V.; Kordes, U.; Hartung, S.; Capper, D.; Pietsch, T.; Gerß, J.; Wolff, J.E.A.; Paulus, W.;
Hasselblatt, M. Pediatric atypical choroid plexus papilloma reconsidered: Increased mitotic activity is
prognostic only in older children. Acta Neuropathol. 2015, 129, 925–927. [CrossRef] [PubMed]

214. Wrede, B.; Hasselblatt, M.; Peters, O.; Thall, P.F.; Kutluk, T.; Moghrabi, A.; Mahajan, A.; Rutkowski, S.;
Diez, B.; Wang, X.; et al. Atypical choroid plexus papilloma: Clinical experience in the CPT-SIOP-2000 study.
J. Neuro-Oncol. 2009, 95, 383–392. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/s41577-018-0110-7
http://www.ncbi.nlm.nih.gov/pubmed/30622345
http://dx.doi.org/10.1186/1471-2164-6-75
http://dx.doi.org/10.1128/MCB.11.8.4074
http://dx.doi.org/10.1098/rstb.2000.0781
http://dx.doi.org/10.2741/A433
http://dx.doi.org/10.1016/S0171-2985(97)80050-2
http://dx.doi.org/10.1016/S0966-842X(00)88891-5
http://dx.doi.org/10.3892/or.2013.2837
http://www.ncbi.nlm.nih.gov/pubmed/24213720
http://dx.doi.org/10.1007/s13277-012-0444-x
http://dx.doi.org/10.1002/mc.22978
http://www.ncbi.nlm.nih.gov/pubmed/30657210
http://dx.doi.org/10.1016/S0092-8674(02)01014-0
http://dx.doi.org/10.1002/mc.22529
http://dx.doi.org/10.1080/09687680701670481
http://www.ncbi.nlm.nih.gov/pubmed/18307097
http://dx.doi.org/10.1002/mc.22402
http://dx.doi.org/10.1016/j.biocel.2019.05.020
http://dx.doi.org/10.1021/acs.jproteome.7b00754
http://dx.doi.org/10.1097/MOO.0000000000000576
http://www.ncbi.nlm.nih.gov/pubmed/31433332
http://dx.doi.org/10.1007/s00401-015-1434-z
http://www.ncbi.nlm.nih.gov/pubmed/25935663
http://dx.doi.org/10.1007/s11060-009-9936-y
http://www.ncbi.nlm.nih.gov/pubmed/19543851


Int. J. Mol. Sci. 2020, 21, 3351 24 of 25

215. Jeibmann, A.; Wrede, B.; Peters, O.; Wolff, J.E.; Paulus, W.; Hasselblatt, M. Malignant progression in choroid
plexus papillomas. J. Neurosurg. Pediatr. 2007, 107, 199–202. [CrossRef]

216. Jeibmann, A.; Hasselblatt, M.; Gerss, J.; Wrede, B.; Egensperger, R.; Beschorner, R.; Hans, V.H.J.; Rickert, C.H.;
Wolff, J.E.; Paulus, W. Prognostic Implications of Atypical Histologic Features in Choroid Plexus Papilloma.
J. Neuropathol. Exp. Neurol. 2006, 65, 1069–1073. [CrossRef]

217. Fujimoto, Y.; Matsushita, H.; Plese, J.P.; Marino, R., Jr. Hydrocephalus due to diffuse villous hyperplasia of
the choroid plexus. Case report and review of the literature. Pediatr. Neurosurg. 2004, 40, 32–36. [CrossRef]

218. Hallaert, G.G.; Vanhauwaert, D.J.; Logghe, K.; Broecke, C.V.D.; Baert, E.; Van Roost, D.; Caemaert, J.
Endoscopic coagulation of choroid plexus hyperplasia. J. Neurosurg. Pediatr. 2012, 9, 169–177. [CrossRef]

219. Ribiczey, P.; Tordai, A.; Andrikovics, H.; Filoteo, A.G.; Penniston, J.T.; Enouf, J.; Enyedi, A.; Papp, B.; Kovács, T.
Isoform-specific up-regulation of plasma membrane Ca2+ATPase expression during colon and gastric cancer
cell differentiation. Cell Calcium 2007, 42, 590–605. [CrossRef]

220. Aung, C.S.; Kruger, W.A.; Poronnik, P.; Roberts-Thomson, S.; Monteith, G. Plasma membrane Ca2+-ATPase
expression during colon cancer cell line differentiation. Biochem. Biophys. Res. Commun. 2007, 355, 932–936.
[CrossRef]

221. Ribiczey, P.; Papp, B.; Homolya, L.; Enyedi, Á.; Kovács, T. Selective upregulation of the expression of plasma
membrane calcium ATPase isoforms upon differentiation and 1,25(OH)2D3-vitamin treatment of colon
cancer cells. Biochem. Biophys. Res. Commun. 2015, 464, 189–194. [CrossRef]

222. Curry, M.; Roberts-Thomson, S.; Monteith, G. PMCA2 silencing potentiates MDA-MB-231 breast cancer
cell death initiated with the Bcl-2 inhibitor ABT-263. Biochem. Biophys. Res. Commun. 2016, 478, 1792–1797.
[CrossRef] [PubMed]

223. Jeong, J.; VanHouten, J.N.; Dann, P.; Kim, W.; Sullivan, C.; Yu, H.; Liotta, L.; Espina, V.; Stern, D.F.;
Friedman, P.A.; et al. PMCA2 regulates HER2 protein kinase localization and signaling and promotes
HER2-mediated breast cancer. Proc. Natl. Acad. Sci. USA 2016, 113, E282–E290. [CrossRef] [PubMed]

224. Varga, K.; Pászty, K.; Padanyi, R.; Hegedüs, L.; Brouland, J.-P.; Papp, B.; Enyedi, Á. Histone deacetylase
inhibitor- and PMA-induced upregulation of PMCA4b enhances Ca2+ clearance from MCF-7 breast cancer
cells. Cell Calcium 2014, 55, 78–92. [CrossRef] [PubMed]

225. Roberts-Thomson, S.J.; Curry, M.C.; Monteith, G. Plasma membrane calcium pumps and their emerging
roles in cancer. World J. Biol. Chem. 2010, 1, 248–253. [CrossRef] [PubMed]

226. Lee, W.J.; Roberts-Thomson, S.; Monteith, G. Plasma membrane calcium-ATPase 2 and 4 in human breast
cancer cell lines. Biochem. Biophys. Res. Commun. 2005, 337, 779–783. [CrossRef]
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