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a b s t r a c t

This paper concerns monolithic and splitting-based iterative procedures for the coupled
nonlinear thermo-poroelasticity model problem. The thermo-poroelastic model problem
we consider is formulated as a three-field system of PDE’s, consisting of an energy
balance equation, a mass balance equation and a momentum balance equation, where
the primary variables are temperature, fluid pressure, and elastic displacement. Due to
the presence of a nonlinear convective transport term in the energy balance equation, it
is convenient to have access to both the pressure and temperature gradients. Hence, we
introduce these as two additional variables and extend the original three-field model to
a five-field model. For the numerical solution of this five-field formulation, we compare
six approaches that differ by how we treat the coupling/decoupling between the flow
and/from heat and/from the mechanics, suitable for varying coupling strength between
the three physical processes. The approaches have in common a simultaneous applica-
tion of the so-called L-scheme, which works both to stabilize iterative splitting as well
as to linearize nonlinear problems, and can be seen as a generalization of the Undrained
and Fixed-Stress Split algorithms. More precisely, the derived procedures transform a
nonlinear and fully coupled problem into a set of simpler subproblems to be solved
sequentially in an iterative fashion. We provide a convergence proof for the derived
algorithms, and demonstrate their performance through several numerical examples
investigating different strengths of the coupling between the different processes.
© 2020 TheAuthors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Problem statement

The field of poroelasticity aims to describe the interaction between viscous fluid flow and elastic solid deformation
ithin a porous material, and it was pioneered through the works of K. Terzhagi [1] and M. A. Biot [2,3]. In the fully-
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saturated, quasi-static regime, the mathematical modeling of such processes constitutes a coupled two-field linear model
where the primary variables are the fluid pressure and the elastic displacement of the solid. This is known as the
quasi-static Biot model.

In many important applications, such as geothermal energy extraction, nuclear waste disposal and carbon storage,
temperature also plays a vital role and must therefore be included in the aforementioned model. Thus, we consider here
a thermo-poroelastic system which can be seen as a generalization of the Biot system to the non-isothermal case; i.e., the
coupled processes are heat, flow, and geomechanics. Since it is the cornerstone of many complex models, we focus on the
following nonlinear and coupled quasi-static thermo-poroelastic equations as described in [4–6]: Find the temperature T ,
the pressure p, and the displacement u such that

∂tψ(p,u, T ) + cf (K∇p) · ∇T − ∇ · (Θ∇T ) = z, in Ω × (0, tf ), (1.1a)

−∇ · θ(u) + α∇p + β∇T = f, in Ω × (0, tf ), (1.1b)

∂tϕ(p, T ,u) − ∇ · (K∇p) = g, in Ω × (0, tf ), (1.1c)

T = 0, u = 0, p = 0, on ∂Ω × (0, tf ), (1.1d)

T (·, 0) = T0, u(·, 0) = u0, p(·, 0) = p0, in Ω. (1.1e)

In the above model, Ω is a bounded (connected and open) domain in Rd, d = 2 or 3, and tf > 0 is the final time. The
unction z is the heat source, g is the mass source, and f is the body force. The functionals ψ and ϕ denote the heat content
nd fluid content, respectively; i.e., ψ(p,u, T ) := a0T − b0p+β∇ ·u, and ϕ(p,u, T ) := c0p− b0T +α∇ ·u, where c0 is the

constrained-specific storage coefficient, a0 is the effective volumetric heat capacity divided by reference temperature, b0
is the thermal dilation coefficient, α is the Biot–Willis constant, and β is the thermal stress coefficient. The parameter cf
is the volumetric heat capacity of the fluid divided by reference temperature, K = (Kij)di,j=1 is the permeability divided by
fluid viscosity, and Θ = (Θij)di,j=1 is the effective thermal conductivity divided by reference temperature. The function θ

denotes the effective stress tensor, i.e., θ(u) := 2µε(u)+λ∇ ·uI, where ε(u) := (∇u+∇u⊤)/2 the symmetric part of ∇u,
and I is the identity tensor. Finally, T0 is the initial temperature, u0 is the initial displacement and p0 is the initial pressure.
For the present purposes we consider (1.1a)–(1.1e) to be given in dimensionless form, i.e., coefficients and variables are
without units.

Note that the above model introduces a nonlinearity in a coupling term, which is the convective transport term in the
energy balance equation (1.1a). The presence of this nonlinear coupling term strongly complicates the problem compared
to the isothermal case (i.e., to the linear Biot model). Note that if b0 = β = 0, the flow and mechanics decouples from
the heat, and Biot’s model is recovered. For the derivation of the constitutive equations of thermo-poroelasticity we refer
to the works [6–8], and particularly to [4–6] where the above model was derived within the framework of the two-scale
asymptotic expansion method (see, e.g., [9] for a review of this technique).

Remark 1.1 (Boundary Condition). We present the problem (1.1a)–(1.1e) with homogeneous Dirichlet boundary conditions
only to keep the following presentation as concise as possible. Extending to non-homogeneous or Neumann boundary
conditions is straightforward. All results presented in the sequel are valid also for Neumann boundary conditions.

1.2. Weak solution and well-posedness of the continuous problem

The common structure of mathematical models that are based on (systems of) scalar conservation laws of the
form (1.1a) where nonlinear gradient terms appear suggests introducing the heat flux, r := −Θ∇T , or the Darcy flux,w :=

−K∇p, as an additional variable. Thus, either the term cf (K∇p) · ∇T becomes
[
−cf (w · ∇T )

]
or
[
−cf ((K ⊗ Θ−1)r · ∇p)

]
,

e.g., [10,11]. Precisely, it is well known that such terms, dealing non-linearly with the coupled convection, can be quite
difficult to approximate correctly in their actual forms. This altogether leads to challenging numerical issues. Furthermore,
the choice to introduce the heat flux or the Darcy flux as a new variable depends strongly on which process (flow or heat)
that dominates and may result in a different treatment of the convective term. Here, to avoid some of these complexities,
we adopt from [12] the mixed form for both the heat and flow subproblems (1.1a) and (1.1b), keeping in mind that Mixed
Finite Element (also Finite Volume) literature has developed techniques to handle convective terms [13,14]. Throughout
the paper we consider the following assumptions to hold true:

(A1) K : Rd
→ Rd×d is constant in time, symmetric, definite and positive; there exist km > 0 and kM such that

km|ζ |2 ≤ ζ⊤K(x)ζ and |K(x)ζ | ≤ kM |ζ |, ∀ζ ∈ Rd
\ {0}.

(A2) Θ : Rd
→ Rd×d is constant in time, symmetric, definite and positive; there exist θm > 0 and θM such that

θm|ζ |2 ≤ ζ⊤Θ(x)ζ and |Θ(x)ζ | ≤ θM |ζ |, ∀ζ ∈ Rd
\ {0}.

(A3) The coefficients a0, b0, c0, cf , α and β are strictly positive constants.
(A4) The coefficients a0, b0 and c0 are such that c0 − b0 > 0 and a0 − b0 > 0.
(A5) The source terms are such that z, g ∈ L2(0, tf ; L2(Ω)) and f ∈ H1(0, tf ; L2(Ω)). Furthermore, z, g and f are piecewise

constant in time with respect to the temporal mesh of Section 2.
1 2 d
(A6) The initial data are such that p0, T0 ∈ H0 (Ω) and u0 ∈ (L (Ω)) .
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efore transcribing the mixed variational formulation of the problem, we introduce some notations:

T := L2(Ω), R := H(div,Ω), P := L2(Ω), W := H(div,Ω), U := (L2(Ω))d,

here we denote by (·, ·) the standard L2(Ω) inner product, and by ∥·∥ the induced L2(Ω) norm. Due to (A1) and (A2),
the tensors K and Θ (and their inverses) define L2(Ω)-equivalent norms, which we denote by ∥v∥K := (Kv, v)1/2 (and
v∥K−1 := (K−1v, v)1/2), and similarly with Θ . With this, we define the variational formulation of (1.1a)–(1.1d) as follows:

efinition 1.1 (The Continuous Formulation [12]). Assuming (A1)–(A6) hold true, the fully coupled mixed-primal formula-
ion of (1.1) reads:

Find (T (t), r(t), p(t),w(t),u(t)) ∈ T × R × P × W × U , such that for a.e. t ∈ (0, tf )

(∂tψ(p, T ,u), S) + cf (w · Θ−1r, S) + (∇ · r, S) = (z, S), ∀S ∈ T , (1.2a)

(Θ−1r, y) − (T ,∇ · y) = 0, ∀y ∈ R, (1.2b)

(∂tϕ(p, T ,u), q) + (∇ · w, q) = (g, q), ∀q ∈ P, (1.2c)

(K−1w, z) − (p,∇ · z) = 0, ∀z ∈ W, (1.2d)

(θ(u), ε(v)) − (βT + αp,∇ · v) = (f, v), ∀v ∈ U, (1.2e)

together with the initial conditions (1.1e).

The above variational problem was analyzed in [12]. There, it was shown that under the assumption that the heat flux
(or Darcy flux) is such that r(t) ∈ (L∞(Ω))d, for t ∈ (0, tf ), the problem (1.2) has a unique weak solution. Moreover,
it was shown that with additional regularity on the data, i.e., f ∈ H2

(
0, tf ; (L2(Ω))d

)
, h, g ∈ H1(0, tf ; L2(Ω)), and

T0, p0 ∈ H1
0 (Ω) ∩ H2(Ω), the fluxes are bounded functions. We also note that in [12] constraints on the parameters

similar to (A4) were needed for the well-posedness of the above variational problem.

1.3. Goal and positioning of the paper

The simulation of thermo-poroelasticity problems is challenging due to the coexistence of different physics which
necessitates a coupled set of equations. For these types of problems, there are typically three different approaches
employed in modeling fluid flow coupled with reservoir geomechanics. They are known as the fully implicit, the explicit
(loosely or weakly) coupling, and the splitting-iterative approaches. The main problem for the applicability of the fully
implicit approach, which solves simultaneously the above three-processes (flow, heat and mechanics) problem, is that
it results in a very large discrete system of equations to be solved at each time step. Moreover, it does not facilitate
the (re-)use of existing codes dedicated to the various subproblems. On the other hand, the fully coupled approach has
excellent stability properties [15,16]. An alternative is a weakly coupled approach, which results in a smaller discrete
system and a lower computational cost compared to the fully implicit (monolithic) approach. On the other hand, accuracy
may be sacrificed, and the sequential approach is only conditionally stable [17,18]. Herein, we adopt an iterative coupling
approach, which provides a compromise between the implicit and explicit: At each iteration it has the cost of the
sequential approach, yet it converges to the fully coupled implicit approach. We implement the idea of iterative coupling
by resolving iteratively the two/three subsystems (depending on the choice of splitting procedure) and by exchanging the
values of the shared state variables in an iterative fashion using a general framework of linearly stabilized schemes [19,20].

We argue that adopting an iterative method for the nonlinear and fully coupled three-processes problem, can be
considered almost essential for efficient simulation, since the fully coupled approach leads to a prohibitively large
system (particularly if MFE methods are adopted [15,21–23]), incorporating different equations that are varied in type
and with nonlinearities. The advantage of the iterative approaches considered in this paper is that, at each iteration,
smaller, easier-to-solve systems are coupled iteratively through algorithms [22,24]. Another advantage that distinguishes
our approaches is the possibility of reusing existing codes for different numerical schemes and coupling techniques
specialized to each component of the problem (see e.g., [25,26]). For classical linear poroelasticity, the iterative coupling
procedures mentioned above has been studied extensively [19,20,27–33]. In particular, two such algorithms have received
considerable attention: The “Undrained Split”(constant fluid mass during structure deformation) and the “Fixed Stress
Split”(constant volumetric mean total stress during solution of flow problem). In [30], these were first shown to be
unconditionally stable. In [20,32] contraction estimates and rates of convergence were derived.

The Undrained Split/Fixed Stress Split algorithms have been generalized in the context of the so-called L-schemes.
In the context of coupled problems, these schemes involve adding an artificial stabilization term to one or more of
the subproblems with a parameter L > 0. Here, the quantity held constant while solving of one of the subproblems
needs not have any physical interpretation. In this sense, the L-scheme generalizes the Undrained Split/Fixed Stress Split
algorithms and, due to the removal of physical constraints on the stabilization terms, allows for further optimization. The
L-scheme can also be employed as a linearization procedure for nonlinear problems, with the parameter L > 0 mimicking
the Jacobian from Newton iteration. To determine the parameter L > 0 for any given problem, derived convergence

estimates are necessary. The L-scheme has been shown to perform robustly for Richards equation [34,35], for both linear
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and nonlinear coupled flow and geomechanics [19,36], for unsaturated/variably saturated porous media [37,38], for two-
phase flow [39], and for nonlinear diffusion problems [40]. In this paper, we utilize the L-scheme framework both as a
decoupling strategy and as a linearization method.

Although the literature on iterative coupling procedures for (isothermal) poroelastic problems is quite extensive,
thermo-poroelastic problems have not received the same amount of attention. Sequential iterative methods for linear
thermo-poroelasticity were considered in [41]. Iterative splitting schemes for separate poroelasticity and thermoelasticity
problems were considered in [42]. Compared to problems of (two-field) coupled flow and mechanics (which can be solved
either sequentially or monolithically) we now have additional options in terms of partial decoupling, i.e., solving two of
the subproblems together decoupled from the third. Combinatorially, this yields six variations of iterative procedures,
ranging from monolithic to fully decoupled. In this work, we focus on the algorithmic developments necessary to handle
the nonlinear coupling structure of the problem and propose and analyze all six iterative algorithms for nonlinear thermo-
poroelasticity. In particular, we employ variations of the L-scheme in all six algorithms, with artificial stabilization terms
dded to both the flow and heat subproblems. By proving a contraction of all schemes, we obtain explicit expressions
or the linearization parameters that guarantee the stability and convergence of all schemes. The main advantage
of the L-scheme is that it treats simultaneously the coupling and the non-linearity effects. Thus, no inner iterative
approaches are required; see e.g., [43] where L-scheme type approaches are developed to treat iteratively a combined
domain decomposition and nonlinearity problem. In most cases, the convergence is linear in the required energy norms.
Furthermore, the necessary constraint on the time step is not severe.

The reason we propose six algorithms is the following: The coupling strength of the heat, flow and mechanics may vary
depending on the physics at hand. Moreover, the practitioner may have access to existing software of various capabilities.
Precisely, to develop robust and efficient solution procedures for the three-processes problem at hand, one should in
principle take into account which process (the mechanics and/or flow and/or heat flow) dominate the full problem. In
practice, one must also take into account implementation time and available frameworks. Thus, to be agnostic towards
the dominating processes and other real-world constraints, we derive a complete framework for this model problem.
The six variations of iterative coupling/decoupling algorithms for thermo-poroelasticity cover all possibilities of varying
coupling strength between the three physical processes involved. Note that the developed algorithms are applicable on
any numerical schemes used to obtain the solutions of the different processes [44,45]. For the convergence analysis, we
derive energy-type estimates from which we infer the convergence of the iterate solutions as well as obtaining strict
lower bounds on the stabilization parameters, and an upper bound on the time step. A “cut-off”operator M is introduced
in the mixed setting in order to make the iterative schemes converge, but we emphasize that this does not affect the
model in practice. Several numerical tests validate our proposed algorithms. In particular, we show that by using the
derived stabilization estimates, the proposed algorithms perform robustly with respect to both mesh refinement and a
wide range of different problem parameters.

The article is organized as follows: In Section 2 we present the fully discrete formulation of the thermo-poroelastic
model, and in Section 3 we present all six iterative algorithms. In Section 4, convergence analysis based on contraction
estimates is derived, from which the well-posedness of the discrete scheme is inferred in addition to the bounds on the
stabilization parameters and time step. In Section 5 we provide several numerical experiments, and finally in Section 6
some concluding remarks.

2. Discrete setting

Let Xh be a simplicial mesh of Ω , matching in the sense that for two distinct elements of Xh their intersection is either
an empty set or their common vertex or edge. Let hK denote the diameter of K ∈ Xh and let h be the largest diameter of
all such triangles, i.e., h := maxK∈Xh hK . For the time partition, we let {tn : n = 0, 1, . . . ,N} be the discrete time steps,
where 0 := t0 < t1 < · · · < tN = tf , and let τ n = tn − tn−1, n ≥ 1, be the difference between consecutive discrete times.
In other words, we have tn :=

∑n
ℓ=1 τ

ℓ, 1 ≤ n ≤ N , and therefrom tf =
∑N

n=1 τ
n.

For the discrete spaces, we let Th,Rh,Ph,Wh and Uh be suitable finite element spaces corresponding to the infinite
dimensional spaces of Section 1.2, where we assume that

divRh = Th and divWh = Ph. (2.1)

For the time discretization we employ a backward Euler scheme. For the sake of simplicity, we take the source terms f,
g and z to be piecewise constant in time. We denote by (T n

h , r
n
h, p

n
h,w

n
h,u

n
h) the discrete counterpart of the solution tuple

to problem (1.2) at time tn.
Before giving the discrete version of the variational formulation (1.2a)–(1.2e), we need to introduce the so-called cut-off

operator M as described in e.g., [10,11] as

M(z)(x) :=

{
z(x), |z(x)| ≤ M,
Mz(x)/|z(x)|, |z(x)| > M,

(2.2)

where M is a (large) positive constant. We note that the introduction of this operator in the following discrete variational
formulation has little or no practical implications, but is necessary in order to facilitate the convergence analysis.
Obviously, if the exact fluxes are bounded, i.e., wn, rn ∈ (L∞(Ω))d, and if we pick M large enough, we have M(wn)(x) =

wn(x) and M(rn)(x) = rn(x). Thus, a precise value for the constant M is not necessary.
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efinition 2.1 (The Coupled mixed × mixed and Galerkin Finite Element Scheme). The discrete formulation of the problem
1.2) reads: Given ψ(p0h, T

0
h ,u

0
h) and ϕ(p

0
h, T

0
h ,u

0
h), then, for n = 1, . . . ,N , find (T n

h , r
n
h, p

n
h,w

n
h,u

n
h) ∈ Th×Rh×Ph×Wh×Uh

such that

(ψ(pnh, T
n
h ,u

n
h), Sh) + τ ncf (M(wn

h) · Θ−1M(rnh), Sh) + τ n(∇ · rnh, Sh)

= τ n(zn, Sh) + (ψ(pn−1
h , T n−1

h ,un−1
h ), Sh), ∀Sh ∈ Th, (2.3a)

(Θ−1rnh, yh) − (T n
h ,∇ · yh) = 0, ∀yh ∈ Rh, (2.3b)

(ϕ(pnh, T
n
h ,u

n
h), qh) + τ n(∇ · wn

h, qh)

= τ n(gn, qh) + (ψ(pn−1
h , T n−1

h ,un−1
h ), qh), ∀qh ∈ Ph, (2.3c)

(K−1wn
h, zh) − (pnh,∇ · zh) = 0, ∀zh ∈ Wh, (2.3d)

2µ(ε(un
h), ε(vh)) + λ(∇ · un

h,∇ · vh)

− (βT n
h + αpnh,∇ · vh) = (fn, vh), ∀vh ∈ Uh. (2.3e)

In the above scheme, we used (M(wn
h) ·Θ

−1M(rnh), Sh) for the approximation of the convective coupling term instead
f the original (wn

h ·Θ
−1rnh, Sh). The reason for this approximation will be clarified later. Eqs. (2.3a)–(2.3b) form the discrete

ixed scheme of the heat subproblem, (2.3c)–(2.3d) form the discrete mixed scheme for the flow subproblem, and (2.3e)
s the discrete form of the mechanics subproblem with the Galerkin finite element method. Together, these subproblems
ake up the nonlinear and fully coupled discrete version of the thermo-poroelastic problem. In the next section, their

terative solution procedure is detailed.

emark 2.1 (Convective Coupling Term). The convective coupling term (wn
h · Θ−1rnh, Sh) can also be approximated by

M(wn
h) · Θ−1R(rnh), Sh), where two different cut-off operators, M and R are used (defined with different constants M

nd R, respectively). In that case, the underlying iterative methods of Section 3 as well as the convergence analysis of
ection 4 remains true with minor modifications in the proofs. For simplicity, we let M = R (and thus M = R).

emark 2.2 (Existence of M). It was shown in [46] for a related poroelastic model that if the flux is bounded on the
ontinuous level, then the discretized flux will inherit this property. Thus, with sufficient regularity of the domain, source
nd initial data, the existence of the constant M is guaranteed.

. The L-type iterative schemes

We now present six iterative (splitting) algorithms for the discrete thermo-poroelastic problem (2.3). These algorithms
nvolve either decoupling all the subproblems and solving each separately at every iteration (three-step algorithm), or
ecoupling only one subproblem from the other two which are then solved together (two-step algorithm), or solving a
inearized problem monolithically at every iteration (one-step algorithm). We use the letters H (Heat), F (Flow), and M
Mechanics), to abbreviate the algorithms, e.g., a two-step algorithm where the heat and flow subproblems are solved
ogether decoupled from the mechanics subproblem is referred to as (HF-M) and similarly for other combinations of
oupling/decoupling of the subproblems. Throughout the rest of the article we will mostly refer to the discrete problems
nd therefore omit the h-subscript on the variables and test functions for cleaner notation. We shall also denote the time
tep simply by τ , keeping in mind it may depend on n.
At the time step n ≥ 1, let (T n−1, rn−1, pn−1,wn−1,un−1) be given. We then approximate the solution at the actual time

tep n ∈ {1, . . . ,N} using the sequence (T n,k, rn,k, pn,k,wn,k,un,k) for k ≥ 0, defined in an iterative fashion, and where the
terate (T n,0, rn,0, pn,0,wn,0,un,0) is an initial guess (e.g., the solutions at the previous time step). All the algorithms involve
dding the stabilization terms LT (T n,k

− T n,k−1, S) and Lp(pn,k − pn,k−1, q) to the left hand sides of Eqs. (2.3a) and (2.3c),
espectively, where LT , Lp > 0 are the stabilization parameters (to be chosen later). Furthermore, to make the notation
asier, we introduce the parametrized fluid and heat content functionals: For a given LT , Lp > 0, we define

ψLT (p,u, T ) := (a0 + LT )T − b0p + β∇ · u, (3.1a)

ϕLp (p,u, T ) := (c0 + Lp)p − b0T + α∇ · u. (3.1b)

e are now able to present our six iterative algorithms:

.1. The monolithic scheme (HFM)

At the each iteration k ≥ 1 of the L-type monolithic scheme, we solve the linearized thermo-poroelastic problem:
iven (T n,k−1, pn,k−1,wn,k−1), find (T n,k, rn,k, pn,k,wn,k,un,k) such that

(ψLT (T
n,k, pn,k,un,k), S)

n,k−1 −1 n,k n,k

+ τ cf (M(w ) · Θ M(r ), S) + τ (∇ · r , S)
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= τ (zn, S) + (ψ(T n−1, pn−1,un−1), S)

+ LT (T n,k−1, S), ∀S ∈ Th, (3.2a)

(Θ−1rn,k, y) − (T n,k,∇ · y) = 0, ∀y ∈ Rh, (3.2b)

(ϕLp (T
n,k, pn,k,un,k), q) + τ (∇ · wn,k, q)

= τ (gn, q) + (ϕ(T n−1, pn−1,un−1), q)

+ Lp(pn,k−1, q), ∀q ∈ Ph, (3.2c)

(K−1wn,k, z) − (pn,k,∇ · z) = 0, ∀z ∈ Wh, (3.2d)

2µ(ε(un,k), ε(v))
+ λ(∇ · un,k,∇ · v)

= (fn, v) + (βT n,k
+ αpn,k,∇ · v), ∀v ∈ Uh. (3.2e)

This algorithm is continued until a fixed tolerance is reached. Clearly, in the above algorithm, the L-scheme acts only
s a linearization procedure, where we approximate the convective transport term by M(wn,k−1) · Θ−1M(rn,k). One can
lso approximate this term by M(wn,k) ·Θ−1M(rn,k−1), the analysis presented next remains true and follows exactly the
ame lines. The complexity in this algorithm is that it requires solving a large system generated by (3.2), which combines
quations varied in type, and this at each iteration k ≥ 1. This encourages the development of efficient techniques for the
esolution of these coupled systems.

.2. The partially decoupled schemes

In the second set of iterative schemes, we only decouple the flow (F), mechanics (M) or heat (H) from the remaining two
rocesses, which are being solved monolithically. Thus, we transform the monolithic solver (HFM) into a two-level iterative
pproach in which two simpler subproblems are solved sequentially. For the partially and fully decoupled schemes, we
o not consider cyclical permutations of the order in which the subproblems are solved to yield different algorithms. The
artially decoupled setting delivers the following three iterative approaches:

.2.1. (HF-M): Coupled heat and flow
Decoupling the mechanics calculation from the coupled flow and heat flow calculation, the first two-level iterative

cheme reads as follows: At the iteration k ≥ 1, do:
• Step 1: Given (T n,k−1, pn,k−1,wn,k−1,un,k−1), find (T n,k, rn,k, pn,k,wn,k) such that

(ψLT (T
n,k, pn,k,un,k−1), S)

+ τ cf (M(wn,k−1) · Θ−1M(rn,k), S) + τ (∇ · rn,k, S)
= τ (zn, S) + (ψ(T n−1, pn−1,un−1), S)

+ LT (T n,k−1, S), ∀S ∈ Th, (3.3a)

(Θ−1rn,k, y) − (T n,k,∇ · y) = 0, ∀y ∈ Rh, (3.3b)

(ϕLp (T
n,k, pn,k,un,k−1), q) + τ (∇ · wn,k, q)

= τ (gn, q) + (ϕ(T n−1, pn−1,un−1), q)

+ Lp(pn,k−1, q), ∀q ∈ Ph, (3.3c)

(K−1wn,k, z) − (pn,k,∇ · z) = 0, ∀z ∈ Wh. (3.3d)

• Step 2: Given (pn,k, T n,k), find the displacement un,k such that

2µ(ε(un,k), ε(v))
+ λ(∇ · un,k,∇ · v)

= (fn, v) + (βT n,k
+ αpn,k,∇ · v), ∀v ∈ Uh. (3.3e)

3.2.2. (HM-F): Coupled heat and mechanics
The second scheme in this subsection is obtained by decoupling the flow calculation from the remaining coupled

thermo-elasticity calculation. This iterative scheme reads: At the iteration k ≥ 1, do:
• Step 1: Given (T n,k−1, pn,k−1,wn,k−1), find (T n,k, rn,k,un,k) such that

(ψLT (T
n,k, pn,k−1,un,k), S)

+ τ c (M(wn,k−1) · Θ−1M(rn,k), S) + τ (∇ · rn,k, S)
f
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= τ (zn, S) + (ψ(T n−1, pn−1,un−1), S)

+ LT (T n,k−1, S), ∀S ∈ Th, (3.4a)

(Θ−1rn,k, y) − (T n,k,∇ · y) = 0, ∀y ∈ Rh, (3.4b)

2µ(ε(un,k), ε(v))
+ λ(∇ · un,k,∇ · v)

− β(T n,k,∇ · v) = (fn, v) + α(pn,k−1,∇ · v), ∀v ∈ Uh. (3.4c)

• Step 2: Given (T n,k,un,k, pn,k−1), find (pn,k,wn,k) such that

(c0 + Lp)(pn,k, q) + τ (∇ · wn,k, q)

= τ (gn, q) + (ϕ(T n−1, pn−1,un−1), q)

+ Lp(pn,k−1, q) + b0(T n,k, q) − α(∇ · un,k, q), ∀q ∈ Ph, (3.4d)

(K−1wn,k, z) − (pn,k,∇ · z) = 0, ∀z ∈ Wh. (3.4e)

.2.3. (FM-H): Coupled flow and mechanics
The last two-level scheme is obtained by decoupling the poro-elasticity calculation (solved monolithically) from the heat

low. Note that a similar scheme was proposed in [47] for two-phase flow. This iterative scheme reads: At the iteration
≥ 1, do:

• Step 1: Given (pn,k−1,un,k−1, T n,k−1), find (pn,k,wn,k,un,k) such that

(ϕLp (T
n,k−1, pn,k,un,k), q) + τ (∇ · wn,k, q)

= τ (gn, q) + (ϕ(T n−1, pn−1,un−1), q)

+ Lp(pn,k−1, q), ∀q ∈ Ph, (3.5a)

(K−1wn,k, z) − (pn,k,∇ · z) = 0, ∀z ∈ Wh, (3.5b)

2µ(ε(un,k), ε(v))
+ λ(∇ · un,k,∇ · v) − α(pn,k,∇ · v)

= (fn, v) + β(T n,k−1,∇ · v), ∀v ∈ Uh. (3.5c)

• Step 2: Given (pn,k,wn,k,un,k, T n,k−1), find (T n,k, rn,k) such that

(a0 + LT )(T n,k, S)

+ τ cf (M(wn,k) · Θ−1M(rn,k), S) + τ (∇ · rn,k, S)
= τ (zn, S) + (ψ(T n−1, pn−1,un−1), S)

+ LT (T n,k−1, S) + b0(pn,k, S) − β(∇ · un,k, S), ∀S ∈ Th, (3.5d)

(Θ−1rn,k, y) − (T n,k,∇ · y) = 0, ∀y ∈ Rh. (3.5e)

.3. The fully decoupled schemes

In this set of iterative coupling schemes, we simply split the three processes, providing three subproblems to be
olved sequentially. Fixing the mechanics calculation in the third level, two approaches are then derived in which either
he problem of flow or heat transfer is solved first followed by solving the other system and then the mechanics using
he already calculated information. These schemes lead to solving much simpler subsystems through the algorithm. In
ddition, they enable the reuse of existing codes for each component of the problem.

.3.1. (H-F-M): Decoupled heat–flow–mechanics
At each iteration all three subproblems are decoupled, and are solved in the order heat → flow → mechanics. This

terative scheme reads: At the iteration k ≥ 1, do:
• Step 1: Given (pn,k−1,wn,k−1, T n,k−1,un,k−1) find (T n,k, rn,k) such that

(ψLT (T
n,k, pn,k−1,un,k−1), S)

+ τ cf (M(wn,k−1) · Θ−1M(rn,k), S) + τ (∇ · rn,k, S)
= τ (zn, S) + (ψ(T n−1, pn−1,un−1), S)

+ LT (T n,k−1, S), ∀S ∈ Th, (3.6a)

(Θ−1rn,k, y) − (T n,k,∇ · y) = 0, ∀y ∈ Rh. (3.6b)
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• Step 2: Given (pn,k−1, T n,k,un,k−1) find (pn,k,wn,k) such that

(ϕLp (T
n,k, pn,k,un,k), q) + τ (∇ · wn,k, q)

= τ (g, q) + (ϕ(T n−1, pn−1,un−1), q)

+ Lp(pn,k−1, q) + b0(T n,k, q) − α(∇ · un,k−1, q), ∀q ∈ Ph, (3.6c)

(K−1wn,k, z) − (pn,k,∇ · z) = 0, ∀z ∈ Wh. (3.6d)

• Step 3: Given (pn,k, T n,k) find un,k such that

2µ(ε(un,k), ε(v)) + λ(∇ · un,k,∇ · v)

= (f, v) + (βT n,k
+ αpn,k,∇ · v), ∀v ∈ Uh. (3.6e)

.3.2. (F-H-M): Decoupled flow–heat–mechanics
At each iteration all three subproblems are decoupled, and are solved in the order flow → heat → mechanics. This

terative scheme reads: At iteration k ≥ 1, do:
• Step 1: Given (pn,k−1, T n,k−1,un,k−1) find (pn,k,wn,k) such that

(ϕLp (T
n,k−1, pn,k,un,k−1), q) + τ (∇ · wn,k, q)

= τ (g, q) + (ϕ(T n−1, pn−1,un−1), q)

+ Lp(pn,k−1, q), ∀q ∈ Ph, (3.7a)

(K−1wn,k, z) − (pn,k,∇ · z) = 0, ∀z ∈ Wh. (3.7b)

• Step 2: Given (pn,k,wn,k, T n,k−1,un,k−1), find (T n,k, rn,k) such that

(ψLT (T
n,k, pn,k,un,k−1), S)

+ τ cf (M(wn,k) · Θ−1M(rn,k), S) + τ (∇ · rn,k, S)
= τ (h, S) + (ψ(T n−1, pn−1,un−1), S)

+ LT (T n,k−1, S) + b0(pn,k, S) − β(∇un,k−1, S), ∀S ∈ Th, (3.7c)

(Θ−1rn,k, y) − (T n,k,∇ · y) = 0, ∀y ∈ Rh. (3.7d)

• Step 3: Given (pn,k, T n,k), find un,k such that

2µ(ε(un,k), ε(v)) + λ(∇ · un,k,∇ · v)

= (fn, v) + (βT n,k
+ αpn,k,∇ · v), ∀v ∈ Uh. (3.7e)

4. Convergence analysis

The starting point for our analysis is the existence and uniqueness of a solution to (2.3). To this aim, we will make use
of the following Lemma (cf. [11]), stating the Lipschitz property of the cut-off operator M:

Lemma 4.1 (Property of M). The “cut-off” operator M defined as in Eq. (2.2) is uniformly Lipschitz continuous, i.e.,

∥M(z1) − M(z2)∥(L∞(Ω))d ≤ ∥z1 − z2∥(L∞(Ω))d . (4.1)

Thus, we haveM(wn) − M(wn,k)

(L∞(Ω))d ≤

wn
− wn,k


(L∞(Ω))d , (4.2a)

and M(wn)

(L∞(Ω))d ≤ M. (4.2b)

The proof of the next Theorem is based on showing that the scheme (3.2) is a contraction and then, by applying the
Banach fixed-point theorem [48], deduce convergence of the scheme. In what follows, we will frequently use the following
polarization and binomial identities:

2 2 2 2 2
4(u, v) = ∥u + v∥ − ∥u − v∥ , and 2(u − v, u) = ∥u∥ + ∥u − v∥ − ∥v∥ . (4.3)
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inally, we define the difference functions between the solutions at the iteration k and k−1 of problem (3.2), respectively
s

(ekT , e
k
r, e

k
p, e

k
w, e

k
u)

:= (T n,k
− T n,k−1, rn,k − rn,k−1,

pn,k − pn,k−1,wn,k
− wn,k−1,un,k

− un,k−1). (4.4)

ence, we can state the first of our main results:

heorem 4.2 (Convergence of the Monolithic L-scheme HFM). Assuming
(A1)–(A6) holds true, and the time step is small enough, i.e.,

τ <
2(a0 − b0)

c2f M2

(
kM
θm

+ 1
)

−
θm

4cΩ,d

. (4.5)

Then, the monolithic L-scheme HFM (Algorithm 3.1) defines a contraction satisfying(
a0 − b0 +

LT
2

+
τθm

4cΩ,d
−
τ c2f M

2

2

(
kM
θm

+ 1
))ekT2 +

τ

2

ekr2Θ−1

+

(
c0 − b0 +

Lp
2

)ekp2 + τ
ekw2K−1

+ 2µ
ε(eku)2 + λ

∇ · eku
2

≤
LT
2

ek−1
T

2 +
Lp
2

ek−1
p

2 +
τ

2

ek−1
w

2
K−1 . (4.6)

Therefrom, the limit is the unique solution of the problem (2.3).

Remark 4.1 (Bound on Time Step). Note that a0 − b0 > 0 due to (A4) and that

c2f M
2
(
kM
θm

+ 1
)

−
θm

4cΩ,d
> 0, (4.7)

y the choice of M sufficiently large (thus, the right hand side of (4.5) is a positive number). If a priori bounds on the
luxes are available, and these are small enough such that M can be chosen to yield equality in (4.7), then there is no
onstraint on the time step.

roof. We begin by deriving the error equations satisfied by (ekT , e
k
r, e

k
p, ekw, eku), i.e., subtract Eqs. (3.2) for k from the ones

or k − 1, and obtain

(ψLT (e
k
T , e

k
p, e

k
u), S) + τ (∇ · ekr, S)

+ τ cf (M(wn,k−1) · Θ−1
[M(rn,k) − M(rn,k−1)], S)

+ τ cf ([M(wn,k−1) − M(wn,k−2)] · Θ−1M(rn,k), S)

= LT (ek−1
T , S), ∀S ∈ Th, (4.8a)

(Θ−1ekr, y) − (ekT ,∇ · y) = 0, ∀y ∈ Rh, (4.8b)

(ϕLp (e
k
T , e

k
p, e

k
u), q) + τ (∇ · ekw, q) = Lp(ek−1

p , q), ∀q ∈ Ph, (4.8c)

(K−1ekw, z) − (ekp,∇ · z) = 0, ∀z ∈ Wh, (4.8d)

2µ(ε(eku), ε(v)) + λ(∇ · eku,∇ · v)

− (βekT + αekp,∇ · v) = 0, ∀v ∈ Uh. (4.8e)

We choose now S = ekT , y = τekr, q = ekp, z = τekw, and v = eku as test functions in Eqs. (4.8a)–(4.8e), respectively. Then,
summing the resulting equations and using the identity (4.3), together with applying the Cauchy–Schwarz and Young
inequalities and some algebraic manipulations, we get,(

a0 − b0 +
LT
2

)ekT2 + τ
ekr2Θ−1 +

(
c0 − b0 +

Lp
2

)ekp2
+ τ

ekw2K−1 + 2µ
ε(eku)2 + λ

∇ · eku
2

≤
LT ek−1

2 +
Lp ek−1

2

2 T 2 p
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(

T

T

+ τ cf
M(wk−1) · Θ−1ekr

 ekT+ τ cf
ek−1

w · Θ−1M(rk−1)
 ekT ,

≤
LT
2

ek−1
T

2 +
Lp
2

ek−1
p

2 + τ cfM
(ϵ1
2

+
ϵ2

2

) ekT2
+ τ cfM

1
2ϵ1

ekr2Θ−1 + τ cfM
kM
θm

1
2ϵ2

ek−1
w

2
K−1 , (4.9)

or any ϵ1, ϵ2 > 0. From Eq. (4.8b), and by Thomas’ lemma [49], there exists ŷ ∈ Rh and a constant cΩ,d > 0 depending
only on the domain and spatial dimension such that ∇ · ŷ = ekT with

ŷ ≤ cΩ,d
ekT. Thus, taking ŷ as a test function in

4.8b) we deduceekT2 = (ekT ,∇ · ŷ) = (Θ−1ekr, ŷ)

≤
ekrΘ−1 ·

1
√
θm

ŷ
≤
ekrΘ−1 ·

cΩ,d
√
θm

ekT , (4.10)

which leads to
θm

cΩ,d

ekT2 ≤
ekr2Θ−1 . (4.11)

Replacing (4.11) in (4.9) while choosing ϵ1 = cfM and ϵ2 = cfMkM/θm leads to(
a0 − b0 +

LT
2

+
τθm

4cΩ,d
−
τ c2f M

2

2

(
kM
θm

+ 1
))ekT2 +

τ

4

ekr2Θ−1

+

(
c0 − b0 +

Lp
2

)ekp2 + τ
ekw2K−1

+ 2µ
ε(eku)2 + λ

∇ · eku
2

≤
LT
2

ek−1
T

2 +
Lp
2

ek−1
p

2 +
τ

2

ek−1
w

2
K−1 . (4.12)

The contraction of the residuals follows if the time step τ satisfies (4.5). This proves the convergence of the monolithic
L-scheme. The limit is then the unique solution of (2.3). □

The well-posedness of the discrete variational problem (2.3) is established by Theorem 4.2, where the solution at time
tn, n ≥ 0, is denoted by (T n, rn, pn,wn,un). Thus, we can now prove the convergence of the decoupled schemes to this
solution. We begin with analyzing the partially decoupled schemes, introduced in Section 3.2. To this end, we let the
difference functions defined in (4.4) now be the differences between the solutions at the iteration k of problem (3.3), and
the solutions to (2.3), i.e.,

(ekT , e
k
r, e

k
p, e

k
w, e

k
u) := (T n,k

− T n, rn,k − rn, pn,k − pn,wn,k
− wn,un,k

− un). (4.13)

he second of our main results is given through:

heorem 4.3 (Convergence of the Partially Decoupled Schemes). Assuming
(A1)–(A6) holds true, the stabilization parameters are such that

Lp ≥
4α2

3( 2µd + λ)
and LT ≥

4β2

3( 2µd + λ)
, (4.14)

and the time step satisfies (4.5), then the partially decoupled L-scheme HF-M (Algorithm 3.2.1) is a contraction given by(
a0 − b0 +

LT
2

+
τθm

4cΩ,d
−
τ c2f M

2

2

(
kM
θm

+ 1
))ekT2

+
τ

4

ekr2Θ−1 +

(
c0 − b0 +

Lp
2

)ekp2 + τ
ekw2K−1

≤
LT
2

ek−1
T

2 +
Lp
2

ek−1
p

2 +
τ

2

ek−1
w

2
K−1 . (4.15)

Furthermore,

µ

2

ε(eku)2 +
λ

4

∇ · eku
2 ≤

2α2

3( 2µd + λ)

ekp2 +
2β2

3( 2µd + λ)

ekT2 . (4.16)
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roof. We start by taking the difference of Eqs. (3.3a)–(3.3e) at iteration k with the corresponding equations solved by
(T n, rn, pn,wn,un). This leads to the following set of difference equations:

(ψLT (e
k
T , e

k
p, e

k−1
u ), S) + τ (∇ · ekr, S)

+ τ cf ([M(wn,k−1) − M(wn)] · Θ−1rn, S)
+ τ cf (M(wn,k−1) · Θ−1

[M(rn,k) − M(rn)], S)

= LT (ek−1
T , S), ∀S ∈ Th, (4.17a)

(Θ−1ekr, y) − (ekT ,∇ · y) = 0, ∀y ∈ Rh (4.17b)

(ϕLp (e
k
T , e

k
p, e

k−1
u ), q) + τ (∇ · ekw, q) = Lp(ek−1

p , q), ∀q ∈ Ph, (4.17c)

(K−1ekw, z) − (ekp,∇ · z) = 0, ∀z ∈ Wh, (4.17d)

2µ(ε(eku), ε(v)) + λ(∇ · eku,∇ · v)

− (αekp + βekT ,∇ · v) = 0, ∀v ∈ Uh. (4.17e)

The aim now is to show a contraction of successive error functions, thereby implying convergence of the sequences
(T n,k, rn,k, pn,k,wn,k,un,k) as k → ∞ for n ≥ 1. Taking as test functions q = ekp, z = τekw, S = ekT , y = τekr , and v = ek−1

u in
(4.17a)–(4.17e), respectively, and adding the resulting equations together leads to(

a0 +
LT
2

)ekT2 +
LT
2

ekT − ek−1
T

2 + τ
ekr2Θ−1

+

(
c0 +

Lp
2

)ekp2 +
Lp
2

ekp − ek−1
p

2 + τ
ekw2K−1

+ 2µ
1
4

ε(eku + ek−1
u )

2 + λ
1
4

∇ · (eku + ek−1
u )

2
=

LT
2

ek−1
T

2 +
Lp
2

ek−1
p

2 + 2b0(ekT , e
k
p)

+ 2µ
1
4

ε(eku − ek−1
u )

2 + λ
1
4

∇ · (eku − ek−1
u )

2
− τ cf ([M(wn,k−1) − M(wn)] · Θ−1M(rn), ekT )

− τ cf (M(wn,k−1) · Θ−1
[M(rn,k) − M(rn)], ekT ), (4.18)

where we used the identities (4.3). On the other hand, by taking the difference of Eq. (4.17e) at iteration k and k − 1,
esting with eku − ek−1

u , and using the Cauchy–Schwarz inequality we get

2µ
ε(eku − ek−1

u )
2 + λ

∇ · (eku − ek−1
u )

2
= α(ekp − ek−1

p ,∇ · (eku − ek−1
u )) + β(ekT − ek−1

T ,∇ · (eku − ek−1
u ))

≤
(
α
ekp − ek−1

p

+ β
ekT − ek−1

T

) ∇ · (eku − ek−1
u )

 . (4.19)

Let now ξ ∈ (0, 1) and rewrite the above estimate as

2µ
ε(eku − ek−1

u )
2 + λ

∇ · (eku − ek−1
u )

2
≤
(
α
ekp − ek−1

p

+ β
ekT − ek−1

T

) (ξ√d
ε(eku − ek−1

u )


+ (1 − ξ )
∇ · (eku − ek−1

u )
). (4.20)

e now follow [19] and choose ξ =
2µ

2µ+ dλ
, which together with the Young inequality yields

µ

2

ε(eku − ek−1
u )

2 +
λ

4

∇ · (eku − ek−1
u )

2
≤

2α2

3( 2µd + λ)

ekp − ek−1
p

2 +
2β2

3( 2µd + λ)

ekT − ek−1
T

2 . (4.21)
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Combining this with Eq. (4.18) leads to

(a0 +
LT
2
)
ekT2 +

(
LT
2

−
2β2

3( 2µd + λ)

)ekT − ek−1
T

2 + τ
ekr2Θ−1

+ (c0 +
Lp
2
)
ekp2 +

(
Lp
2

−
2α2

3( 2µd + λ)

)ekp − ek−1
p

2 + τ
ekw2K−1

+
µ

2

ε(eku + ek−1
u )

2 +
λ

4

∇ · (eku + ek−1
u )

2
≤

Lp
2

ek−1
p

2 +
LT
2

ek−1
T

2 + 2b0(ekT , e
k
p)

− τ cf ([M(wn,k−1) − M(wn)] · Θ−1M(rn), ekT )

− τ cf (M(wn,k−1) · Θ−1
[M(rn,k) − M(rn)], ekT ). (4.22)

We thus need to impose some constraints on the stabilization parameters, i.e., Lp ≥
4α2

3( 2µd + λ)
and LT ≥

4β2

3( 2µd + λ)
.

ith this, we can discard some positive terms on the left hand side of (4.22), and use the Cauchy–Schwarz and Young
nequalities, together with the Lipschitz property of M to obtain(

a0 − b0 +
LT
2

− τ cfM(
ϵ1

2
+
ϵ2

2
)
)ekT2 + τ

ekr2Θ−1

+

(
c0 − b0 +

Lp
2

)ekp2 + τ
ekw2K−1

≤
Lp
2

ek−1
p

2 +
LT
2

ek−1
T

2
+ τ cfM

kM
θm

1
2ϵ1

ek−1
w

2
K−1 + τ cfM

1
2ϵ2

ekr2Θ−1 , (4.23)

or some ϵ1, ϵ2 > 0, and where kM and θm are given by (A1)–(A2). From (4.17b) we obtain in the same way as in (4.11)
θm

cΩ,d

ekT2 ≤
ekr2Θ−1 . (4.24)

Replacing (4.24) in (4.23) while choosing ϵ1 = cfMkM/θm and ϵ2 = cfM , we get(
a0 − b0 +

LT
2

+
τθm

4cΩ,d
−
τ c2f M

2

2

(
kM
θm

+ 1
))ekT2 +

τ

4

ekr2Θ−1

+

(
c0 − b0 +

Lp
2

)ekp2 + τ
ekw2K−1

≤
Lp
2

ek−1
p

2 +
LT
2

ek−1
T

2 +
τ

2

ek−1
w

2
K−1 . (4.25)

Thus, if the time step τ satisfies (4.5), we can write (4.25) as

F k
≤

1
1 + δ

F k−1, (4.26)

where

F k
:=

Lp
2

ekp2 +
LT
2

ekT+
τ

4

ekw2K−1 , (4.27)

and

δ := min
{

2
Lp

(c0 − b0),
2
LT

(
a0 − b0 +

τθm

4cΩ,d
−
τ c2f M

2

2

(
kM
θm

+ 1
))

,
1
2

}
> 0. (4.28)

Going back to (4.17e), we choose v = eku as test function, which leads to

2µ
ε(eku)2 + λ

∇ · eku
2 = α(ekp,∇ · eku) + β(ekT ,∇ · eku)

≤ (α
ekp+ β

ekT) ∇ · eku


≤ (α
ek+ β

ek)(ξ√d
ε(ek )+ (1 − ξ )

∇ · ek
) , (4.29)
p T u u
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or some ξ ∈ (0, 1). Following the same steps which led to (4.21), and choosing as before ξ =
2µ

2µ+ dλ
, we get by the

Young inequality

µ

2

ε(eku)2 +
λ

4

∇ · eku
2 ≤

2α2

3( 2µd + λ)

ekp2 +
2β2

3( 2µd + λ)

ekT2 . (4.30)

his shows a contraction of the residuals and therefore completes the proof. □

emark 4.2 (The Other Partially Decoupled Schemes). For the partially decoupled schemes HM-F and FM-H (Algorithms
.2.2 and 3.2.3 respectively) the contractions are obtained similarly as for the scheme HF-M with minor changes in the
onvergence rate. The constraint on the time step (4.5) and lower bounds on the stabilization parameters (4.14) remain
nchanged.

Before we state the last of our main results, we let the difference functions defined in (4.13) now be the difference
etween the solutions at the iteration k of problem (3.7) and the solutions to (2.3). The last of our main results then reads:

orollary 4.3.1 (Convergence of the Fully Decoupled Algorithms). Under the assumptions of Theorem 4.3, the fully decoupled
-scheme F-H-M (Algorithm 3.3.2) defines a contraction:(

a0 −
b0
2

+
LT
2

+
τθm

4cΩ,d
−
τ c2f M

2

2

(
kM
θm

+ 1
))ekT2

+

(
c0 − b0 +

Lp
2

)ekp2 +
τ

2

ekw2K−1 +
τ

4

ekr2Θ−1

≤

(
LT
2

+
b0
2

)ek−1
T

2 +
Lp
2

ek−1
p

2 . (4.31)

Furthermore, the estimate (4.16) holds true.

Proof. We follow the same lines as in the proof of Theorem 4.3 and take the difference of Eqs. (3.7a)–(3.7d), solved by
(T n, rn, pn,wn,un), and obtain the difference equations for the fully decoupled scheme F-H-M. We then promptly obtain
estimate (4.31), from which the contraction is inferred by choosing the stabilization parameters and the time step. The
second estimate follows in exactly the same manner. □

Remark 4.3 (The Fully Decoupled Scheme H-F-M). The contraction (4.31) holds true for Algorithm 3.3.1 by exchanging in

there the coefficients in the right-hand side, i.e.,
Lp
2

becomes
Lp
2

+
b0
2

and
LT
2

+
b0
2

becomes
Lp
2
.

. Numerical experiments

In the following, we present three numerical test cases using the algorithms from Section 3. The first is a constructed
roblem, posed on the unit square domain, with prescribed solutions for the temperature, pressure and displacements.
ere, we consider five different parameter regimes, exhausting all possibilities of weak/strong coupling between the
ubproblems, and compare the number of iterations needed for convergence with decreasing mesh sizes for both stabilized
nd non-stabilized algorithms. Since analytical solutions are available, we present also discretization errors.
Next, we present two implementations of Mandel’s problem [50], which is originally a benchmark problem in linear

oroelasticity, extended here to nonlinear thermo-poroelasticity. For the original Mandel problem, analytical solutions for
he pressure and displacement field are known. Due to the similarity of the thermo-poroelastic equations with the linear
iot’s equations, and due to the lack of benchmark problems for thermo-poroelasticity, we choose to use this problem
or our second and third numerical test cases. Even though the analytical solutions are no longer valid when including
emperature, we have sufficiently weak temperature effects in the first implementation of Mandel’s problem that the
omputed pressure and displacement field matches the (isothermal) analytical solutions. The second implementation of
andel’s problem includes a heat source, which has a significant effect on both the pressure and displacement. Regarding

he spatial discretization, we choose the following finite element spaces:

Rh,Wh := {ψ ∈ H(div;Ω) : ∀K ∈ Xh, ψ |K∈ RT0(K )}, (5.1a)

Th,Ph := {ϕ ∈ L2(Ω) : ∀K ∈ Xh, ϕ|K∈ P0(K )}, (5.1b)

Uh := {η ∈ (H1(Ω))d : ∀K ∈ Xh, η|K∈ [P1(K )]d}, (5.1c)

here RT0(K ) denotes the lowest-order Raviart–Thomas finite-dimensional subspace associated with the element K ∈ Xh,
nd Pl(K ) is the space of polynomials on K ∈ Xh of total degree less than or equal to l. Thus, the spaces (Th,Rh) and
P ,W ) are the lowest order Raviart–Thomas mixed finite element spaces for the mixed flow and heat flow subproblems,
h h
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Table 1
Smooth solution: Parameter regimes for varying strong/weak coupling between subproblems.

PR1 PR2 PR3 PR4 PR5

α 1.0 0.1 0.1 1.0 0.1
β 1.0 0.1 1.0 0.1 0.1
b0 1.0 1.0 0.1 0.1 0.1

respectively. Note that both spaces satisfy the condition (2.1), see e.g., [51] for more details on (mixed) finite elements.
The vector valued space Uh is the first order Lagrange finite element space for the mechanics problem. We employ the
following stopping criterion for the iterative algorithms, given in terms of the relative and absolute tolerances, aTOL and
rTOL, i.e.,(T k, rk, pk,wk,uk) − (T k−1, rk−1, pk−1,wk−1,uk−1)


≤ aTOL + rTOL

(T k, rk, pk,wk,uk)
 , (5.2)

where we set aTOL = rTOL = 1e − 6 for all the computations. For the solution of the linear subproblems, we make use
of a direct sparse linear solver from the Python library SciPy [52], i.e., scipy.sparse.linalg.spsolve. The present
approaches can also be combined with iterative solvers adapted to the various subproblems. All numerical tests are
implemented in a finite element code written in Python, the complete source code is accessible at https://github.com/
matkbrun/FEM.

Remark 5.1 (Stability). The discretization defined by (5.1a)–(5.1c) does not satisfy inf–sup stability unless Uh is chosen as
the space of piecewise quadratic polynomials [53]. We employ here a different stabilization strategy, which is iterative
coupling using artificial stabilization parameters. Such strategies (e.g., the Fixed Stress Splitting algorithm) have proven
very successful for stabilizing problems of poroelasticity [28].

Remark 5.2 (Parameter Robustness). We believe that if the differences c0 − b0 and/or a0 − b0 are very small, the problem
may become difficult to treat. In such cases it can be advantageous to formulate the mechanics problem like the Stokes
equations, as done in [54]. However, such an investigation is outside the scope of the present paper. For more details on
parameter robustness for the related problem of poroelasticity, see [53,55].

5.1. Test case 1: Example with manufactured solution

As a first test case, we let the domain be a regular triangularization of the unit square, i.e., Ω = [0, 1] × [0, 1] ⊂ R2,
and prescribe the following smooth solutions for the temperature, pressure and displacement:

T (x, t) = tx1(1 − x1)x2(1 − x2), (5.3a)

p(x, t) = tx1(1 − x1)x2(1 − x2), (5.3b)

u(x, t) = tx1(1 − x1)x2(1 − x2)[1, 1]⊤, (5.3c)

where x := (x1, x2) ∈ R2, t ≥ 0. The flux fields are then computed by

r = −Θ∇T , and w = −K∇p, (5.3d)

while right hand sides, i.e., z, g and f, can be calculated explicitly using Eqs. (1.1a)–(1.1c). We prescribe homogeneous
initial conditions and homogeneous Dirichlet boundary conditions, for the temperature, pressure and displacement. All
computations are done on a fixed time step, i.e., τ = 1.0, and continued until criterion (5.2) is satisfied.

For the analysis and comparison of our algorithms, we consider dimensionless equations, i.e., all parameters are set to
1.0e − 1, except for the three coupling coefficients {α, β, b0}, which we vary in order to weaken/strengthen the coupling
between the three subproblems. In particular, we consider five different parameter regimes, PR1–PR5, specified in Table 1:

We also set a0 = c0 = 2b0, thus satisfying (A4). We emphasize that the parameter regimes PR1–PR5 are not intended
to have any physical meaning, they are only constructed in order to test the convergence properties of the proposed
algorithms. Table 2 shows number of iterations needed for convergence using the six algorithms from Sections 3.1, 3.2
and 3.3 for a single time step with decreasing mesh sizes and stabilization parameters chosen according to equality
in (4.14).

We see that for the parameter regimes 1, 3 and 4 we have higher iterations numbers than for parameter regimes 2 and
5, for all six algorithms. This is because LT ∼ β2 and Lp ∼ α2, and larger stabilization results in higher iteration numbers.
Furthermore, as expected, the strongly coupled parameter regime (PR1) yields the highest iteration numbers, in particular
for the algorithms HF-M, H-F-M and F-H-M. Apart from this, the algorithms are performing robustly both with respect
to different coupling regimes and decreasing mesh sizes. For comparison we also provide in Table 3 the results without
stabilization, i.e., L = L = 0.
T p

https://github.com/matkbrun/FEM
https://github.com/matkbrun/FEM
https://github.com/matkbrun/FEM
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mooth solution: Number of iteration with decreasing mesh sizes for parameter regimes PR1–PR5. Stabilization from theory (i.e., LT and Lp chosen

according to equality in (4.14)).
PR1 PR2 PR3 PR4 PR5 PR1 PR2 PR3 PR4 PR5

h HFM HF-M

1/4 7 3 8 8 3 31 4 11 11 4
1/8 7 3 7 7 3 35 4 13 13 4
1/16 6 3 7 7 3 40 4 13 13 4
1/32 6 3 7 7 3 41 4 13 13 4
1/64 6 3 7 7 3 41 4 13 13 4

h HM-F FM-H

1/4 9 6 8 11 4 9 6 11 8 4
1/8 9 6 7 11 4 9 6 11 7 4
1/16 9 6 7 11 4 9 6 11 7 4
1/32 9 6 7 11 4 9 6 11 7 4
1/64 9 6 7 11 4 9 6 11 7 4

h H-F-M F-H-M

1/4 20 6 11 11 4 20 6 11 11 4
1/8 22 6 12 12 4 22 6 12 12 4
1/16 24 6 13 13 4 24 6 13 13 4
1/32 24 6 13 13 4 24 6 13 13 4
1/64 24 6 13 13 4 24 6 13 13 4

Table 3
Smooth solution: Number of iterations with decreasing mesh sizes for parameter regimes PR1–PR5. No stabilization (i.e., LT = Lp = 0).

PR1 PR2 PR3 PR4 PR5 PR1 PR2 PR3 PR4 PR5

h HFM HF-M

1/4 3 3 3 3 3 – 4 16 16 4
1/8 3 3 3 3 3 – 4 19 19 4
1/16 3 3 3 3 3 – 4 20 20 4
1/32 3 3 3 3 3 – 4 20 20 4
1/64 3 3 3 3 3 – 4 20 21 4

h HM-F FM-H

1/4 11 6 4 22 4 11 6 21 4 4
1/8 11 6 4 23 4 11 6 23 4 4
1/16 12 6 4 24 4 11 6 24 4 4
1/32 12 6 4 24 4 12 6 24 4 4
1/64 12 6 4 25 4 12 6 24 4 4

h H-F-M F-H-M

1/4 34 6 17 16 4 34 6 16 17 4
1/8 38 5 19 19 4 38 5 19 19 4
1/16 44 5 20 20 4 44 5 20 20 4
1/32 46 5 20 20 4 46 5 20 21 4
1/64 46 5 21 20 4 46 5 20 21 4

We see here that the fully monolithic algorithm (HFM) has low iteration counts for all parameter regimes since this
s only a linearization scheme, which does not require stabilization (cf. Theorem 4.2). For the two-level (Section 3.2)
nd three-level (Section 3.3) algorithms, which involves some splitting as well as linearization, we see that iteration
ounts for different parameter regimes correspond to the various coupling/decoupling of the subproblems present in
he algorithms: Splitting of subproblems that are strongly coupled yields high iteration numbers compared to solving
he strongly coupled subproblems together. This is in contrast to employing stabilization, which greatly improves the
obustness of the algorithms with respect to variations in parameters. For the strongly coupled parameter regime (PR1),
e even have no convergence for algorithm HF-M when no stabilization is applied.
Furthermore, in order to check the robustness of the proposed schemes with respect to the nonlinear coupling, we

djust the coefficient of the convective term, cf , in order to make this dominate the flow/heat coupling. Table 4 shows
he number of iterations needed for convergence when cf = 1.0e1 for both the strongly coupled parameter regime (PR1)
and the weakly coupled parameter regime (PR5). We also compare the results when no stabilization is applied. Note that
e here only use a single mesh with h = 1/16.
For the weakly coupled parameter regime (PR5), there is no difference in iteration numbers between the stabilized

and non-stabilized algorithms, even with a dominating nonlinearity. For the strongly coupled parameter regime (PR1),
the stabilized algorithms have a significantly lower iteration count. This might be due to the fact that the nonlinearity
appears as a coupling term.
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Table 4
Smooth solution: Number of iterations with strong nonlinear effects, i.e., cf = 10, and mesh size h = 1/16.

Parameters PR1 PR5 PR1 PR5

# HFM HF-M

Non-stabilized 4 4 – 5
Stabilized 7 4 41 5

# HM-F FM-H

Non-stabilized 11 4 10 4
Stabilized 9 4 8 4

# H-F-M F-H-M

Non-stabilized 48 5 36 4
Stabilized 25 5 22 4

Table 5
Smooth solution: Discretization errors using algorithm H-F-M applied on the weakly coupled parameter regime (PR5), and with cf = 0.1. Stabilization
from theory. Convergence rate is of first order for all variables, except for that of the displacement which is of second order. We note that these
rates are optimal.
h eh,T rT eh,r rr eh,p rp eh,w rw eh,u ru
1/4 8.5e−3 – 3.5e−3 – 8.5e−3 – 3.5e−3 – 5.6e−3 –
1/8 4.4e−3 1.93 1.8e−3 1.94 4.4e−3 1.93 1.8e−3 1.94 1.4e−3 4.0
1/16 2.2e−3 2.0 9.3e−4 1.94 2.2e−3 2.0 9.3e−4 1.94 3.6e−4 3.89
1/32 1.1e−3 2.0 4.7e−4 1.98 1.1e−3 2.0 4.7e−4 1.98 9.1e−5 3.96
1/64 5.5e−4 2.0 2.3e−4 2.04 5.5e−4 2.0 2.3e−4 2.04 2.3e−5 3.96

Since analytical solutions are available for this problem, we provide also the discretization errors, denoted by
(eh,T , eh,r, eh,p, eh,w, eh,u), measured in the L2-norm. Due to almost no variation in discretization errors between the six
algorithms and between the different parameter regimes (less than 5%), we provide in Table 5 the discretization errors
using algorithm H-F-M applied on the weakly coupled parameter regime (PR5). We also include the convergence rates,
defined by rT := ehj,T/ehj+1,T , and similarly for the other variables.

5.2. Test case 2: Mandel’s problem

We refer to [56] for a detailed description of Mandel’s problem. Formulas for the analytical pressure and displacements
can be found in [44]. We provide here only a brief description. Mandel’s problem is posed on a rectangular domain
representing a poroelastic slab of extent 2a in the horizontal direction, 2b in the vertical direction, and infinitely long
in the third direction. The poroelastic slab is contained between two rigid plates, where at the initial time a downward
force of magnitude 2F is applied to the top plate, with an equal but opposite force applied to the bottom plate. The
top and bottom boundaries are treated as impermeable, while zero pressure (and temperature) is prescribed at the right
and left boundaries. Due to the nature of Mandel’s problem, the pressure, temperature and horizontal component of the
displacement varies only in the horizontal direction, while the vertical component of the displacement varies only in
the vertical direction. From symmetry considerations, it suffices to consider only the top right quarter rectangle, i.e., the
computational domain is [0, a] × [0, b].

We perform now all computations with dimensional equations and realistic choices of physical parameters. In
particular, we take mechanics and flow parameters identical to [20], and heat parameters identical to [41]. However,
in [41] the flow-heat coupling coefficient b0 is taken to be identically zero, hence in order to preserve this coupling we
instead choose a suitably small number (which satisfies (A4)). All parameters are listed in Table 6.

In terms of our previous notation, we now have

K = µ−1
f K̂, a0 = T−1

ref â0, cf = T−1
ref ĉf , Θ = T−1

ref Θ̂, µ =
E

2(1 + ν)
and λ =

Eν
(1 + ν)(1 + 2ν)

, (5.4)

nd the constraints (A4) should be understood as Prefc0 − Trefb0 > 0 and T−1
ref â0 − Prefb0 > 0, respectively. The magnitude

of the compressive force is F = 2×108 Pa m, and the physical dimensions of the quarter rectangle is given by a = 100m
and b = 10m, of which we make a regular triangularization. We impose the compressive force as a Dirichlet boundary
condition on the top boundary (x2 = b) for the vertical component of the displacement. We denote by n1 and n2 the
number of subdivisions of the domain in the x1 and x2 directions, respectively. For the first implementation of Mandel’s
problem we prescribe homogeneous boundary conditions and zero source term and initial condition for the heat problem.
Fig. 1 shows the solution profiles for the pressure, temperature and displacements for selected time steps, with the
analytical (isothermal) solutions for the pressure and displacement included for comparison.

The computed solutions for pressure and displacement matches the analytical solutions, even though the analytical
solutions are only valid for the linear isothermal problem. This is because the induced temperature effect in the system is
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Table 6
Mandel’s problem: Physical parameters are taken from [20,41].
Symbol Quantity Value Unit

E Bulk modulus 5.94e9 Pa
ν Poisson’s ratio 0.2 –
c0 Storage coefficient 6.06e−11 Pa−1

α Biot’s coefficient 1.0 –
µf Fluid viscosity 1.0e−3 Pa s
K̂ Permeability 9.87e−14 I m2

Θ̂ Effective thermal conductivity 1.7 I W m−1 K−1

b0 Thermal dilation coefficient 3.03e−11 K−1

β Thermal stress coefficient 9.9e6 Pa K−1

â0 Effective volumetric heat capacity 0.92e3 J m−3 K−1

Tref Reference temperature 298.15 K
Pref Reference pressure 2.0e6 Pa
ĉf Volumetric heat capacity fluid 4.18e6 J m−3 K−1

τ Time step 10 s

Fig. 1. Mandel’s problem: Solution profiles for Mandel’s problem at t ∈ {100 s, 500 s, 1000 s}, computed using the monolithic scheme HFM, with
z = 0 W m−3 K−1 , and n1 = n2 = 40.
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Fig. 2. Mandel’s problem: Solution profiles at t ∈ {100 s, 500 s, 1000 s}, computed using the monolithic scheme HFM, with z = 2×10−4 W m−3 K−1 ,
nd n1 = n2 = 40.

able 7
andel’s problem: Number of iterations with decreasing mesh sizes for Mandel’s problem. Stabilization from theory.
Heat source z = 0 z = 2e−4 z = 0 z = 2e−4 z = 0 z = 2e−4

n1 = n2 HFM HF–M HM–F

10 18 18 14 14 14 14
20 18 18 13 12 13 12
40 18 18 13 12 13 12

n1 = n2 FM–H H–F–M F–H–M

10 18 18 14 13 14 14
20 18 18 13 13 13 12
40 18 18 13 13 13 12

small enough that the heat decouples from the flow and mechanics. For the second implementation of Mandel’s problem
we prescribe a constant source term for the heat problem, i.e., z = 2× 10−4 W m−3 K−1 and zero initial condition. Fig. 2
shows the solution profiles for the pressure, temperature and displacements at selected time steps.

The temperature source now interacts with the other processes and thus has an effect on the pressure and horizontal
component of the displacement. Furthermore, the temperature change in the system is now increasing with increasing
time. Table 7 shows the number of iterations for Mandel’s problem using the derived algorithms.



1982 M.K. Brun, E. Ahmed, I. Berre et al. / Computers and Mathematics with Applications 80 (2020) 1964–1984

6

n
t

. Conclusions

Based on previous developments of iterative splitting schemes from linear poroelasticity, we have proposed six
ovel iterative procedures for nonlinear thermo-poroelasticity. These algorithms are using stabilization and linearization
echniques similar to [19,34], which is known in the literature as the ‘L-scheme’. The thermo-poroelastic problem we
consider can be viewed as a coupling of three physical processes (or subproblems): Flow, geomechanics and heat.
Solving this system either monolithically (all three subproblems simultaneously), partially decoupled (two subproblems
simultaneously), or fully decoupled (each subproblem separately), yields six possible combinations of coupling/decoupling,
which we have used to design our six algorithms. All of these involve a linearization of the convective term and added
stabilization terms to both the flow and heat subproblems. In this sense, our use of the L-scheme is both as a stabilization
for iterative splitting and a linearization of nonlinear problems.

For any given situation, the coupling strength between the three subproblems may vary. A-priori, the expectation is
that solving together subproblems that are strongly coupled yields better efficiency and accuracy than splitting strategies.
On the other hand, if the coupling between two or more subproblems is weak, a splitting procedure might be beneficial.
For this reason, and due to the fact that splitting the three-way coupled multi-physics problem into smaller subproblems
allows for combining existing codes that separately can handle any of the three processes involved (or two of them
combined), six different algorithms are presented. These six algorithms cover all possibilities of strong/weak coupling
between the three subproblems. Using the well-posedness of the continuous problem, we obtained lower bounds on the
stabilization parameters and proved the convergence of our proposed algorithms under a constraint on the time step. In
practice, however, we find that this bound is not tight; as long as the fluxes are not becoming unbounded (e.g., due to a
singularity), a ‘reasonable’ time step can safely be chosen.

Our algorithms are tested in detail with several numerical examples. In particular, we find that all six algorithms are
performing robustly with respect to both mesh refinement and different parameter regimes (i.e., strong/weak coupling
between the subproblems and strong/weak nonlinear effects), using the stabilization revealed by our analysis. We also
find that using no stabilization results in the algorithms being more sensitive to the parameter regimes, i.e., splitting
subproblems that are strongly coupled yields high iteration numbers compared to solving these subproblems together.
This phenomenon is also observed in the stabilized algorithms, but to a significantly lesser extent. In particular, our
conclusion is that with no stabilization, each of the algorithms is suitable only for a certain parameter regime (i.e., one that
corresponds to the coupling/decoupling structure present in the algorithm). This is in contrast to the stabilized algorithms,
which can handle a much wider range of different parameter regimes.
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