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Abstract

This paper concerns the analysis and implementation of a novel iterative staggered scheme for quasi-static brittle fracture
propagation models, where the fracture evolution is tracked by a phase field variable. The model we consider is a two-field
variational inequality system, with the phase field function and the elastic displacements of the solid material as independent
variables. Using a penalization strategy, this variational inequality system is transformed into a variational equality system,
which is the formulation we take as the starting point for our algorithmic developments. The proposed scheme involves a
partitioning of this model into two subproblems; phase field and mechanics, with added stabilization terms to both subproblems
for improved efficiency and robustness. We analyze the convergence of the proposed scheme using a fixed point argument,
and find that under a natural condition, the elastic mechanical energy remains bounded, and, if the diffusive zone around crack
surfaces is sufficiently thick, monotonic convergence is achieved. Finally, the proposed scheme is validated numerically with
several bench-mark problems.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Phase field; Fracture propagation; Iterative algorithm; Linearization; Convergence analysis; Finite element

1. Introduction

Fracture propagation is currently an important topic with many applications in various engineering fields.
Specifically, phase-field descriptions are intensively investigated. The theory of brittle fracture mechanics goes back
to the works of A. Griffith [1], wherein a criterion for crack propagation is formulated. Despite a foundational
treatment on the subject of brittle fracture, Griffith’s theory fails to predict crack initiation.

This deficiency can however be overcome by a variational approach, which was first proposed in [2,3]. Using
such a variational approach, discontinuities in the displacement field u across the lower-dimensional crack surface
are approximated by an auxiliary phase-field function ¢. The latter can be viewed as an indicator function, which
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introduces a diffusive transition zone of size ¢, the so-called length-scale parameter, between the broken and the
unbroken material. The stress at which a crack nucleates, i.e. the cohesiveness of the phase-field model, depends
on ¢. In the sharp crack limit, a phase-field fracture would only nucleate from a stress singularity, corresponding
to linear elastic fracture mechanics. The enforcement of irreversibility of crack growth finally yields a variational
inequality system, of which we seek the solution {u, ¢}.

In this work, we concentrate on improvements of the nonlinear solution algorithm, which is still a large bottleneck
of phase-field fracture evolution problems. Specifically, high iteration numbers when the crack initiates or is further
growing are reported in many works [4—7]. However, in most studies iteration numbers are omitted. Both staggered
(splitting) schemes and monolithic schemes are frequently employed. Important developments include alternating
minimization/staggered schemes [5,8—11], quasi-monolithic scheme with a partial linearization [12], and fully
monolithic schemes [4,6,7].

The goal of this work is to propose a linearized staggered scheme with stabilizing parameters. In particular, the
proposed scheme is based on recent developments on iterative splitting schemes coming from poroelasticity [13—16].
Iterative splitting schemes are widely applied to problems of coupled flow and mechanics, where at each iteration
step either of the subproblems (i.e., flow or mechanics) is solved first, keeping some physical quantity constant
(e.g., fixed stress or fixed strain), followed by solving the next subproblem with updated solution information. This
procedure is then repeated until an accepted tolerance is reached. Further extensions of this technique involve tuning
some artificial stabilization terms according to a derived contraction estimate in energy norms. Here, the quantity
held constant during solving of the subproblems need not represent any physical quantity present in the model. This
is the central idea in the so-called ‘L-scheme’, which has proven to perform robustly for Richards equation [17,18],
for linear and nonlinear poroelasticity [19,20], and for nonlinear thermo-poroelasticity [21].

The L-scheme is a modified Newton method (or stabilized Picard), in which the Jacobi matrix is replaced by
a diagonal matrix [17]. By this the robustness of this linearization method increases, the L-scheme is globally
convergent, but the quadratic rate of convergence is lost. The L-scheme can also be combined with the Newton
method, by computing first a few iterations with the L-scheme and then switching to Newton [17].

We propose here a variant of the L-scheme, adapted to phase field brittle fracture propagation models. This
scheme is based on a partitioning of the model into two subproblems; phase field and mechanics. Here, the
L-scheme acts both as a stabilization and as a linearization. Assuming that the mechanical elastic energy remains
bounded during the iterations, and that the diffusive zone around crack surfaces is sufficiently thick, we give a proof
of monotonic convergence of the proposed scheme by employing a fixed point argument.

The efficiency and robustness of the proposed scheme are demonstrated numerically with several bench-mark
problems. Moreover, we compare the number of iterations needed for convergence with ‘standard’ staggered
schemes (i.e., without stabilizing terms), and monolithic schemes in which the fully-coupled system is solved
all-at-once. Furthermore, it is well known that when reaching the critical loading steps during the computation
of brittle fracture phase field problems (i.e., when the crack is propagating), spikes in iteration numbers appear. For
this reason, and thanks to the monotonic convergence property of the proposed scheme, we show that a (low) upper
bound on the number of iterations may be enforced, while the computed results are still in very good agreement
with the non-truncated solutions. Thus, using this ‘truncated L-scheme’, we effectively avoid the iteration spikes
at the critical loading steps at the cost of negligible loss of accuracy. We mention that this strategy is not available
with e.g. Newton iteration, as the iterate solutions may behave erratically for any number of iterations before finally
converging. Moreover, the assumption that the mechanical elastic energy remains bounded during the iterations is
verified numerically for all test cases.

The main aims of this work are three-fold: Under a natural assumption, we prove the convergence of a novel
iterative staggered scheme, optimized for phase field brittle fracture propagation problems. Based on these theoretical
findings, we design a robust solution algorithm with monotonic convergence properties. Finally, several numerical
tests are presented in which our variants of the L-scheme are tested in detail.

The outline of this paper is as follows: In Section 2 we present the model equations and coefficients, in Section 3
we introduce the partitioned scheme and derive a convergence proof, in Section 4 we describe in detail our numerical
algorithm in pseudo-code, and in Section 5 we provide several numerical experiments, in particular a single edge
notched tension test, a single edge notched shear test, an L-shaped panel test, and a asymmetrically notched three
point bending test. Finally, in Section 6 we provide some conclusions and summary of the work.
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1.1. Preliminaries

In this section we explain the notation used throughout this article, see e.g. [22,23] for more details. Given an
open and bounded set B C RY, d € {2,3},and 1 < p < oo, let L’(B)={f: B — R : fB | f(x)]Pdx < oo}. For
p =o00,let L°(B) ={f : B — R :esssup,.p|f(x)| < oo}. In particular, L%(B) is the Hilbert space of square
integrable functions with inner product (-, -) and norm || f|| := (f, f)%. For k € N, k > 0, we denote by W*?(B)
the space of functions in L”(B) admitting weak derivatives up to k’th order. In particular, H 1(B) .= W'“2(B) and
we denote by H,(B) its zero trace subspace.

Note that we reserve the use of bold fonts for second order tensors. Hence, if u,v € L?(B), their inner
product is (u,v) = f pu(x)v(x)dx, and similarly, if u,v € (L*(B))? then we take their inner product to be
(u,v) := [ u(x) - v(x)dx. Finally, if u, v € (L*(B))**? then their inner product is (u, v) := [, u(x) : v(x)dx.

We will also apply several classical inequalities, in particular: Cauchy—Schwarz, Young, Poincaré, and Korn. See
e.g. [24,25] for a detailed description of these.

2. Governing equations

What follows is a brief description of the phase field approach for quasi-static brittle fracture propagation, see
e.g. [3,11] for more details. Consider a (bounded open) polygonal domain B C R?, wherein C C R?~! denotes the
fracture, and 2 C R is the intact domain, and a time interval (0, T) is given with final time T > 0. By introducing
the phase field variable ¢ : B x (0, T) — [0, 1], which takes the value O in the fracture, 1 in the intact domain, and
varies smoothly from O to 1 in a transition zone of (half-)thickness ¢ > 0 around C, the evolution of the fracture
can be tracked in space and time. Using the phase field approach, the fracture C is approximated by 2 C RY,
where 2 == {x e R : p(x) < 1}.

Introducing the displacement vector u : Bx (0, T) — R4, the model problem we consider arises as a minimization
problem: An energy functional E(u, ¢) is defined according to Griffith’s criterion for brittle fracture [1], which
is then sought to be minimized over all admissible {u, ¢}. From this minimization problem, the Euler-Lagrange
equations are obtained by differentiation with respect to the arguments, yielding a variational equality system.
Finally, a crack irreversibility condition must be enforced (the crack is not allowed to heal), which takes the form
dr¢ < 0. Thus, the variational equality system, which is the previously mentioned Euler-Lagrange equations,
is transformed into a variational inequality system, which reads as follows: Find (u(t), ¢(¢)) € V x W =
(H}(B))! x W!*°(B) such that for ¢ € (0, T] there holds

(8(9)Ce(u), e(v)) = (b, v), Yv €V, (2.1a)
G,
Gee(Vo, Vi) — —(l =9, ¥) + - )(@|Ce))?, ¥) =0, Ve W, (2.1b)

where G. > 0 is the critical elastic energy restitution rate, 0 < k < 1 is a regularization parameter, the purpose of
which is to avoid degeneracy of the elastic energy (equivalent with replacing the fracture with a softer material), and
2(p) = (1 — k)@? + « is the degradation function (which is a standard choice, see e.g. [7,26]. Note that g(¢) — «
when approaching the fracture zone). The body force acting on the domain B is b : B x (0,T) — R?, and
|Ce(u)|* := Ce(u) : e(u) is the elastic mechanical energy, where e(-) := (V(-)+ V(:)7)/2 is the symmetric gradient,
and C = [Cjjiliju is the fourth order tensor containing the elastic material coefficients, where each Cjji; € L*(B).
We assume that C satisfies the usual symmetry and positive definiteness properties, i.e., (Cu,v) = (u, Cv), and
(Cu, u)% defines an L2-equivalent norm, i.e., there exists constants A,,, Ay > 0 such that

hnllull < (Cuw? <dylul.  for wve (LABY, uv£0. 22)
Note that due to the non-degeneracy of the elastic mechanical energy, the following estimate holds
K = (Ce(u), e(u)). (2.3)
In order to facilitate the following developments we assume continuity in time for {u, ¢, b}. Let now 0 = t* <
t'<...<tVN=Thbea partition of the time interval (0, T'), with time step 6t = " — t"~!, and denote the time
discrete solutions by
u" = u(-, "), (2.4)

@" = (-, t"). (2.5)
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The irreversibility condition now becomes ¢” < ¢"~! (using a backward Euler method), and the time-discrete
version of the problem (2.1a)—(2.1b) reads as follows: Find (4", ¢") € V x W such that

(8@ Ce(), e(v)) = (", v), YveV, (2.6a)
Ge
Gee(Ve", V) — - d- ¢", ) + (1 = )(@"|Ce(u™)I*, ¥)
+AE+y@" =" D" ) =0, Ve W, (2.6b)

where b" := b(-, t"). The last term in the phase field equation (2.6b) is a penalization to enforce the irreversibility
condition, thus transforming the variational inequality (2.1b) into a variational equality, with penalization parameter
y > 0, and where = € L?(B) is given (in practice = will be obtained by iteration, cf. Section 4). Note that we also
used the notation [x]* := max(x, 0). From here on, we shall refer to (2.6a) as the mechanics subproblem, and to
(2.6b) as the phase field subproblem. Regarding the degradation function g, it is easily seen to satisfy the following
Lipschitz condition:

lg(W) =gl =<2 —llY —nll,  Vé,neW. 2.7)

The time-discrete system (2.6a)—(2.6b) was analyzed in [27], and there it was shown that at least one global
minimizer (1", ¢") € V x W exists, provided b" € (L*(B))?, for each n. We mention also that the analysis of
a pressurized phase field brittle fracture model can be found in [28,29].

3. Iterative scheme

In this section we introduce the iterative staggered solution procedure for the fully discrete formulation of
(2.6a)—(2.6b). To this end, let 7, be a simplicial mesh of B, such that for any two distinct elements of 7}, their
intersection is either an empty set or their common vertex or edge. We denote by % the largest diameter of all
the elements in 7y, i.e., h := maxge7;, diam(K), and let Vj, x W;, C V x W be appropriate (conforming) discrete
spaces. We continue now with the same notation for the variables and test functions as before (omitting the usual
h-subscript), since we will from here on mostly deal with the discrete solutions.

For each n, the iterative algorithm we propose defines a sequence {u™', "'}, for i > 0, initialized by
{u1, gz)"_l }. The iteration is then done in two steps: First, the mechanics subproblem is solved, with the degradation
function held constant. Then, the phase field subproblem is solved, with the elastic energy held constant. Note that
there are also artificial stabilizing terms which are held constant during solving of the subproblems. Introducing the
stabilization parameters L,, L, > 0 (to be determined later), the iterative algorithm reads as follows:

e Step 1: Given (u™ ', ™~ b") find u™' such that
au @™, v) = Ly @™ —u"""" v) + (g(p™ THCe(u™), e(v)) = (b", v), Vo € V. (3.1a)
e Step 2: Given (¢™' 7!, u™", 9" ") find ¢™" such that

: : , , G. .
ag(@" ¥) = Ly(@™ — @™ Y + Ges (V™' Vi) — — A ="

+ (1= )@ [Ce™ ), ¥) + (' (5 + y (@™ — ¢" ")), ) =0, Yy € Wy, (3.1b)

where, in order to avoid the [-]*-bracket, we also introduced the function ' € L°°(B) defined for a.e. x € B by

: = n,i _ n—l1
nf@):{l’ it )+ y" ) — 9" ) 2 0, 52

0, if Z()+y@E"'(x)—¢"'(x) <0.
3.1. Convergence analysis

We now proceed to analyze the convergence of the scheme (3.1a)—(3.1b). Our aim is to show a contraction of
successive difference functions in energy norms, which implies convergence by the Banach Fixed Point Theorem
(see e.g. [30]). To this end we define the following difference functions

e =um —u", (3.3)

e; = (p”’i — gp", (3.4
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where {u", ¢"} denotes the (exact) solutions to (2.1a)—(2.1b) at time #". Using the symmetry properties of C, the
following set of difference equations are then obtained by subtracting (3.1a)—(3.1b) solved by {u", ¢"} from the
same equations solved by the iterate solutions:

L.(e, — €7, v) + (g(¢")Ce(el), e(v)) + ((g(¢™" ") — g(@™)Ce(u™"), e(v)) =0, Vv € V. (3.52)
, , . G. - o
Ly(ey =y ¥) + Gea(Vey,, Vi) + —=(ey, ¥) + y (e, )

+ (1 — (e | Ce@™ )", )
+ (1 —x) (¢"Ce(el) : e(u™ +u"), ) =0, Yy € Wy, (3.5b)

Furthermore, we introduce the following assumption related to the elastic mechanical strain.

Assumption 1 (Boundedness of Elastic Strain). We assume there exists a constant M > 0 such that

esssup le(u"(x))| < M, Vn. (3.6)

xeB

Moreover, we assume that M is large enough such that the above bound holds also for the iterate elastic strain, i.e.,

esssup le(u™ (x))| < M, Y(n,i). (3.7)
xXeB

Note that M is nothing else than an upper bound for the elastic strain in the system for the converged solution,
which is arguably finite for any reasonable problem. Note also that with sufficient regularity of the domain,
coefficients, source terms, and initial data, the above assumption is satisfied, i.e., the problem (2.6a)—(2.6b) admits
a solution " € (W"*(B))4, thus implying the existence of M. Alternatively to introducing the constant M, we
could introduce instead a so-called ‘cut-off operator’ in the iterate equations (3.1a)—(3.1b), as seen in e.g. [31,32].
Note that in all numerical tests to be done in the next sections, we provide figures validating the second part of this

assumption (cf. Section 5.5). With the above definitions, we state our main theoretical result.

Theorem 3.1 (Convergence of the Scheme). The scheme (3.1b)—(3.1a) defines a contraction satisfying

L G, G 1 —x)? . L, kM. 4
Lot O b O - 20— legl® + ( = + = ) lle, 11>
2 £ cp K 2 dcpeg

Ly o iciyz Luyici2
< 7”% I+ Tlleu [ (3.8)
if the stabilization parameters L, and L, satisfy
L,>0, L,> 1661 —«)*/k >0, (3.9)

and if the model parameter € satisfies

cpl—«

e>0, &*——

G, «

where & := MAmax/Amin > 0, and where cp, cxk > 0 are the Poincaré and Korn constants, respectively, depending

only on the domain B and spatial dimension d.

(88%(1 — k) —k*) e +cp > 0, (3.10)

Proof. We begin by taking v = ¢’ and ¥ = efp in (3.5a) and (3.5b), respectively, add the resulting equations
together and obtain

L Ge i L i i— i ii i
(7“’ + 7) legIl? + =7 lley — e 1P + Geel| Ve I + v (n'ey., ;)

i nivi2 i Ly i, Lu i—1y2 n i i
+ (1 —w0)(€, |Ce@" D[, ) + S e’ + - lle, — &, I + (¢ Cele,), e(e))

2
Ly iciye Luyici2 n i\ agmd Ly
= 7”% I+ 7”6’; 7 = (1 —x)(@"Cele,) : e(u™" +u"), e,)

— (g™ 1) — g(¢")Ce(u™), e(e')), (3.11)
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where we used the following inner product identity
22—y, 2= [zl + llz = yI* = Iyl (3.12)

Discarding some non-negative terms from the left hand side of (3.11), using the fact that esssup, .5 ¢"(x) < 1,
in addition to the Lipschitz property of the degradation function g (2.7), and non-degeneracy of the elastic energy
(2.3) yields

L GC i L i i— i LM i i i
<7‘” + — +x(l - x)) llet 1 + —“’ne — e 1P+ Gee|| Vel |I* + —||eu||2 + K (Ce(él,), e(e’))

‘”n S 4 L || 2 +(1—K)/|<Ce<e> e(u™’ +u")el |dx
- / |(g(¢"*’*1>—g<<p">><Ce(u"v’>:e(e;)|dx
L i—1 i—1 i i i—1 i
3 Lllelt1? 4 L || 12+ 2(1 — k) Amax M (2||e¢,||+||eq,—eq, ||)||e<eu>||, (3.13)

where we also invoked Assumptlon 1 in the last line, and applied the Cauchy—Schwarz and triangle inequalities.
Using the Young inequality, the properties of elastic tensor (2.2), and rearranging, leads to

L, G 2
— + — +x(l —x) =40 — )Amx M ||€ I+ G 8||Ve I
2 £ 28

+ ﬁ—z(l KA M1 el — e =)
2 max 28 [ [

Ly, i 2 _ P2
t3 lle, II” + K)»mm (1 = )Amax M (28, + 82) ) llee, )l

L i—1 i—1
= Llle 17 + || I%, (3.14)

for some constants 81, §, > 0. Choosmg 5 = K)»rznin/4(1 KAmaxM and 8, = kA2,

—in/ 81 —K)Amax M, and in addition
demanding that

A2 (1 —k)?
L,> 16M2$ﬂ, (3.15)
. K

we can write (3.14) as

L G ( _K)z i i mm
(2 +—+K(1—K)—8M2 P - )|| I> + Geel| Vel II? + || Ak + <Lmin lecel)])?

min

||’ T = lle 1. (3.16)

Next, 'by applymg the Poincaré inequality on IIe; I, and by applying successively the Poincaré and Korn inequalities
on |le! ||, we obtain

le, I < cpllVe,|I>  and |l |I* < cpekllece))])’, (3.17)

where cp, cx are the (squares of the) Poincaré and Korn constants, respectively (depending only on the domain B
and spatial dimension d). Finally, employing these bounds on the left hand side of (3.16), and defining the constant
& = M A max/ min yield

L, G. G (1 —k)” )2 - L, k), -
Ze 4 Ze -8 i Zu 4 Z7min i
< > Tot o ) — 8 lleg I+ =+ depck lle, I
Ly iciya  Luy i
= 5 lleg 17+ lle (3.18)
Thus, for (3.18) to be a contraction estimate, £ must satisfy the following second order inequality
1
P(e) = &2 — CG—P— (882(1 — k) — k%) & + cp > 0. (3.19)
¢ K
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The range of admissible values for ¢ is then determined by the roots of the equation
P(e) =0, (3.20)
which is given explicitly by

4G2k?
cp(l = K)*(882(1 — k) — k?)?

E1a: 16’”1;’((852(1—@—#) 11\/1— (3.21)

Since Eq. (3.20) is convex, and assuming &; 5 are real, the range of admissible values for ¢ is therefore given by
e € (=00 £ U (e2,00)) R (3.22)

In the case of ] = &;, or in the case of &, being complex, the inequality (3.19) holds true for all ¢ > 0. O

Remark 3.1 (Convergence Rate). We note that due to some unknown constants (i.e. cp, cxk and M) in the
convergence rate (3.8), stabilization bounds (3.9) and constraint on ¢ (3.10), it is not known whether these estimates
are optimal.

Remark 3.2 (Constraint on ¢). The above proof implies that the scheme is guaranteed to converge if ¢ = max{e;, ,}
(for real valued roots of (3.20)), which is why we stated in the introduction that the proof of convergence holds if
the diffusive zone around crack surfaces is sufficiently thick. Furthermore, working with a large ¢ is substantiated
by the theory of phase field fracture being based on I' convergence [33,34]. Applying this to phase field fracture
was first done in [2]. Specifically, the setting is suitable when & = o(g); namely when ¢ is sufficiently large.

4. Algorithm

In practice, we apply the stabilizations and penalizations proposed in the previous sections as outlined below. It
is well-known (e.g., [35]) that the choice of y is critical. If y is too low, crack irreversibility will not be enforced.
On the other hand, if y is too large, the linear equation system is ill-conditioned and influences the performance
of the nonlinear solver. For this reason, y is updated in at each iteration step. Better, in terms of robustness, is
the augmentation in such an iteration by an additional L? function =, yielding a so-called augmented Lagrangian
iteration going back to [36,37]. For phase-field fracture this idea was first applied in [38]. Thus, combining the
staggered iteration for the solid and phase-field systems with the update of the penalization parameter = yields the
following algorithm:

Algorithm 1.
At the loading step t".
Choose initial 5°. Set y > 0.
repeat
Iterate on i (augmented Lagrangian loop)
Solve two-field problem, namely
Solve elasticity in Problem (3.1a)
Solve the nonlinear phase-field in Problem (3.1b)
Update

EH—] — [51 + 7/((pn,i-‘rl _ ¢n_l)]+
until
max(|la, ™", vr) — (0", vl llag(e™, ¥)I) < TOL, 4.1)

fork=1,...,dim(Vy), [=1,...,dim(W,).

Set: (u", ") := (™", ™).
Increment 1" — "1,



8 M. Kirkescether Brun, T. Wick, I. Berre et al. / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112752

For the stabilization parameters L,, L,, we have the following requirements (somewhat similar to y): If the
stabilization is too small, the stabilization effects vanish. If the stabilization is too large, we revert to an unacceptably
slow convergence, and potentially, may converge to a solution corresponding to an undesirable local minimum of
the original problem. In order to deal with these issues, we employ here a simple, yet effective strategy: We draw
L =L, = L, from a range of suitable values and compare the results, i.e., L € {1.0e—6, 1.0e—3, 1.0e—2, 1.0e—1}.
Moreover, we include also for comparison the configurations L, =0, L, > 0 and L, = L, = 0 in all the numerical
tests to be done in the following.

Remark 4.1 (Tolerance). In this paper we use TOL = 1075,

Remark 4.2 (Penalization). Despite that we have carried out the convergence analysis and our algorithms using a
penalization method to impose the crack irreversibility, our proposed stabilization is more general, and can be
applied to other forms to imposing crack irreversibility (Dirichlet conditions, primal-dual active set, Lagrange
multipliers; a list of currently used forms can be found in Chapter 7.2 in [39] and other discussions on the crack
irreversibility constraint can be found in [40]) as well. The main reason is that the added stabilization terms in
(3.1b) and (3.1a) are independent of the specific treatment of the variational inequality.

4.1. Nonlinear solution, linear subsolvers and programming code

Both subproblems (phase field and mechanics) may be nonlinear. In our theory presented above, we assumed a
standard elasticity tensor. However, the model (3.1a)—(3.1b) is too simple for most mechanical applications. More
realistic phase-field fracture applications require a splitting of the stress tensor (based on an energy split) in order
to account for fracture development only under tension, but not under compressive forces. Consequently, we follow
here [41] and split o into tensile ¢ and compressive parts ¢~ :

o = 2uset + A (tr(e))],

o™ = 2u,(e — eh) + A, (tr(e) — (tr(e)))I,
and

et =PATPT,

where the elasticity tensor C has been replaced by the Lamé parameters, w, and A;. Moreover, I is the d x d identity
matrix, and (-) is the positive part of a function. In particular, for d = 2, we have

A (u)) 0
AT =ATw) = (1 ,
w ( 0 ()
where Ai(u) and A,(u) are the eigenvalues of the strain tensor e := e(u), and v;(u) and v,(u) the corresponding
(normalized) eigenvectors. Finally, the matrix P is defined as P := P(u) := [v;|v,]; namely, it consists of the column
vectors v;, i = 1,2. We notice that another frequently employed stress-splitting law was proposed in [42].
The modified scheme reads:

e Step 1: given (u™'~!, ¢"~! b") find u™' such that
L™ —u™" v) + (g™ et @), e(v)) + (6~ "), e(v)) = (", v), VoeV,  (42a)
e Step 2 : given (¢!, u™ ¢"7!) find ™ such that

. . . G, :
Lo(@™ — "1 ) + Gee(Vo™, Vi) — —(=¢" ¥
+ (1 =)™ o™ : e™), ¥) + (' (Z + y(e™ —¢" ), ¥) =0, Ve Wy, (4.2b)

These modifications render the displacement system (4.2a) nonlinear, for which we use a Newton-type solver. The
phase field equation is also nonlinear due to the penalization term and the stress splitting. Our version of Newton’s
method is based on a residual-based monotonicity criterion (e.g., [43]) outlined in [7][Section 3.2]. Inside Newton’s
method, the linear subsystems are solved with a direct solver; namely UMFPACK [44]. All numerical tests presented
in Section 5 are implemented in the open-source finite element library deal.Il [45,46]. Specifically, the code is based
on a simple adaptation of the multiphysics template [47] in which specifically the previously mentioned Newton
solver is implemented.
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Fig. 1. Examples 1,2,3: Configurations. Left: single edge notched tension test. In detail, the boundary conditions are: u, = Omm

(homogeneous Dirichlet) and traction free (homogeneous Neumann conditions) in x-direction on the bottom. On the top boundary Itep,
we prescribe u, = Omm and u, as provided in (5.3). All other boundaries including the slit are traction free (homogeneous Neumann
conditions). Single edge notched shear test (middle) and L-shaped panel test (right). We prescribe the following conditions: On the left and
right boundaries, uy = Omm and traction-free in x-direction. On the bottom part, we use u, = uy = Omm and on Iio,, we prescribe uy
= Omm and u, as stated in (5.3). Finally, the lower part of the slit is fixed in y-direction, i.e., uy, = Omm. For the L-shaped panel test
(at right), the lower left boundary is fixed: uy = uy = Omm. A displacement condition for u, is prescribed by (5.4) in the right corner on
a section [, that has 30 mm length.

5. Numerical experiments

In this section, we present several numerical tests to substantiate our algorithmic developments. The goals of all
three numerical examples are comparisons between an unlimited number of staggered iterations (although bounded
by 500) denoted by ‘L’, and a low, fixed number, denoted by ‘LFI’, where we use 30 (Ex. 1 and Ex. 2), and
20 (Ex. 3 and Ex. 4) staggered iterations, respectively. These comparisons are performed in terms of the number
of iterations and the correctness of the solutions in terms of the so-called load—displacement curve, measuring the
forces of the top boundary versus the number of loading steps.

5.1. Single edge notched tension test

This test was applied for instance in [41]. The configuration is displayed in Fig. 1. We use the system
(3.1a)—(3.1b). Specifically, we study our proposed iterative schemes on different mesh levels, denoted as refinement
(Ref.) levels 4, 5, 6 (uniformly refined), with 1024 elements (2210 Dofs for the displacements, 1105 Dofs for the
phase-field, 7 = 0.044), 4096 elements (8514 Dofs for the displacements, 4257 Dofs for the phase-field, 7 = 0.022),
and 16384 elements (33410 Dofs for the displacements, 16 705 Dofs for the phase-field, # = 0.011).

Specifically, we use j, = 80.77kN/mm?, A, = 121.15kN/mm?, and G, = 2.7N/mm. The crack growth is
driven by a non-homogeneous Dirichlet condition for the displacement field on I, the top boundary of B. We
increase the displacement on [, over time, namely we apply non-homogeneous Dirichlet conditions:

uy =ti, ii=1lmm/s, 5.1)

where ¢ denotes the current loading time. Furthermore, we set k = 1071 [mm] and & = 24 [mm]. We evaluate the
surface load vector on the I, as

T=(F,, F)) = f o(u)vds, 5.2)
T'top

with normal vector v, and we are particularly interested in F, for Example 1 and F, for Example 2 (Section 5.2).
Graphical solutions are displayed in Figs. 2 and 3 showing the phase-field variable and the discontinuous
displacement field. Our findings of using different stabilization parameters L are compared in Figs. 4, 5, 6, 7,
and 8. We have compared values of L = L, = L,y ranging from L = 0, corresponding to no stabilization, and
up to L = 1072. For all values of L, the iterative scheme converges, although there number of iterations depends
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Fig. 2. Example 1: Single edge notched tension test: crack path at loading step 59 (left) and 60 (right). We see brutal crack growth in
which the domain is cracked within one loading step.

Fig. 3. Example 1: Single edge notched tension test: 3D plot of the displacement variable u, at the loading steps 59 and 60. At right,
the domain is totally fractured. In particular, we see the initial crack build in the geometry in the right part where the domain has a true
discontinuity. In the left part, the domain is cracked using the phase-field variable. Here, the displacement variable is still continuous since
we are using C? finite elements for the spatial discretization.

on L, as expected from the theory. Our results also demonstrate that the iteration is relatively robust with respect
to stopping after a relatively modest number of iterations (30 in our examples), as only a minor loss of accuracy is
observed. Moreover, in Fig. 5 we also include the stabilization configuration given by L, = 0 but L, > 0. We note
that Example 1 is the only one of our tests in which this particular configuration does not work (i.e., L, cannot
be arbitrarily small). This may be due to the very rapid crack growth occurring in this situation. Different mesh
refinement studies are shown in Figs. 7 and 8. Here, the number of staggered iterations does not increase with finer
mesh levels, which shows the robustness of our proposed methodology.

5.2. Single edge notched shear test

The configuration of this second setting is very similar to Example 1 and was first proposed in a phase-field
context in [41]. We now use the model with strain—energy split (4.2a)—(4.2b). The parameters and the geometry
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Fig. 4. Example 1: Comparison of different L. At left, the forces are shown. At right, the number of staggered iterations is displayed. We
notice that in the left figure all curves are identical, indicating that our proposed numerical solution does not alter the physical solution. In
the right figure, the black curve is hidden behind the red curve, which shows that for small L the number of iterations is not influenced.
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Fig. 5. Example 1: Comparison of different L for an upper bound of 30 iterations. At left the forces are shown. At right the number of
iterations are displayed. In this example, possibly due to brutal crack growth, stabilizing only the phase field subproblem does not work.
More specifically, the green and the black lines will not finish until the end time because the partitioned algorithm does diverge.
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1: Comparison of different L for an open number of iterations and a fixed number of iterations (LFI) with a maximum of
left, the forces are shown. At right, the number of staggered iterations is displayed.
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Fig. 7. Example 1: Using L = le—6 comparing different mesh refinement levels 4, 5, 6. At left, the forces are shown. At right, the number
of staggered iterations is displayed.
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Fig. 8. Example 1: Using L = le—2 comparing different mesh refinement levels 4, 5, 6. At left, the forces are shown. At right, the number
of staggered iterations is displayed.

(see Fig. 1) are the same as in the previous test case. The boundary condition is changed from tensile forces to a
shear condition (see also again Fig. 1):

uy =tu, u=1mm/s, (5.3)
As quantity of interest we evaluate Fy in (5.2). Our findings are shown in the Figs. 9, 10, 11, 12, 13, 14, and 15.
As in Example 1, the load—displacement curves are very comparable to the published literature. In particular, it is
nowadays known that the proposed Miehe et al. stress splitting [41] does not release all stresses once the specimen
is broken (see [48]) and it is also known that we do not see convergence of the curves when both /# and ¢ are refined
(see [12]). Concentrating now more on the L-scheme, the proposed method is robust under mesh refinement (see
Figs. 12-15). In these findings, it is important to notice that the accuracy of the simulation results is not affected
whether a maximum of 500 iterations is allowed or the number of iterations is limited to 20; see Fig. 10. This
indicates that the proposed scheme is not only robust, but also accurate. Since the crack grows more slower than
in Example 1, also L, = 0 works, as computationally justified in Fig. 11. In Fig. 11, the effect of the mechanics
stabilization is studied by varying only L,. Here, we see almost no influence. In Fig. 13, it can be observed that the
number of L-iterations choosing L = le—6 and a maximum of 30 iterations is nearly independent of the mesh level,
which is a very promising result. For L = le—6, the differences are slightly bigger, but the number of iterations
even decreases under mesh refinement; see Fig. 15. We emphasize again that the accuracy of the numerical solution
is, however, not affected.
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Fig. 10. Example 2: Comparison of different L with an open number of staggered iterations (fixed by 500) and a fixed number (L F ) with
30 iterations per loading step. At left, the load—displacement curves displaying the evolution of F, versus the loading time. At right, the
number of iterations is displayed.
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Fig. 11. Example 2: Comparison of different L. Observe that stabilizing the mechanics subproblem in this example has no or little effect.
At left, the load—displacement curves displaying the evolution of F\ versus u, are shown. At right, the number of staggered iterations is

displayed.
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Fig. 12. Example 2: Using L = le—6, comparing different mesh refinement levels 4, 5, 6. At left, the load—displacement curves displaying
the evolution of F, versus the loading time. At right, the number of iterations is displayed.
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Fig. 13. Example 2: Using L = le—6 and fixing the number of iterations by 30, we compare different mesh refinement levels 4, 5, 6. At
left, the load—displacement curves displaying the evolution of F, versus the loading time. At right, the number of iterations is displayed.
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Fig. 14. Example 2: Using L = le—2, we compare different mesh refinement levels 4, 5, 6. At left, the load—displacement curves displaying
the evolution of F, versus the loading time. At right, the number of iterations is displayed.

5.3. L-shaped panel test with monotonic loading

For the configuration of this third example we refer to [5,6,48], which are based on an experimental setup [49].
The exist basically two loading settings: the original one proposed in [49] with a monotonic loading and a cyclic
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Fig. 15. Example 2: Using L = le—2 and fixing the number of iterations by 30, we compare different mesh refinement levels 4, 5, 6. At
left, the load—displacement curves displaying the evolution of F, versus the loading time. At right, the number of iterations is displayed.

fashion proposed in [48]. Both were recently compared in [50]. We use again the model with strain—energy split;
namely (4.2a)—(4.2b).

The geometry and boundary conditions are displayed in Fig. 1. In contrast to the previous examples, no initial
crack prescribed. The initial mesh is 1, 2 and 3 times uniformly refined, leading to 300, 1200, 4800 mesh elements,
with h = 29.1548 mm, 14.577 mm, 7.289 mm, respectively.

We increase the displacement up = u, = u,(t) on I, := {(x,y) € B|470mm < x < 500mm, y = 250 mm}
over time, where I, is a section of 30 mm length on the right corner of the specimen. We apply a loading-dependent,
non-homogeneous Dirichlet condition:

uy,=1-u, u=1mm/s, 00s<t<0.38s, 54

where ¢ denotes the total loading time. The total number of loading steps is 800.

We set (see [5]) Young’s modulus E = 25.85 GPa, Poisson’s ratio v = (.18, and the critical energy release G,
= 95N/m. The time (loading) step size is 8t =103 s. Furthermore, we set k = 107! [mm] and & = 2h. As
before, we observe the number of Newton iterations and we evaluate the surface load vector on I'boom = {(x, y) €
B|0mm < x <250mm, y = Omm} as

T=(F,F) = / o(u)vds,
Thottom

with normal vector v, and now we are particularly interested in F). The crack path displayed in Fig. 16 corresponds
to the literature values; see e.g., [5] or [50]. Our findings with respect to the L-scheme are as follows: Under mesh
refinement, we observe the usual discretization error as in Example 1 and 2; see Fig. 17. In Fig. 18, we summarize
our findings using a maximum of 20 or 500 iterations and various values for the stabilization parameters. Most
importantly, the numerical solution, here evaluated in terms of the force at [}om 1S not influenced (left subfigure
of Fig. 18). The corresponding number of iterations are displayed in the right subfigure of Fig. 18, highlighting that
the maximum number of iterations is taken from # = 0.22 on and resulting in a much higher computational cost.
These results confirm our findings from Example 2.

5.4. An asymmetrically notched three point bending test

In the fourth numerical example, we address an asymmetric three point bending test, which was previously
considered by others as well [5,41,48] and was originally inspired by numerical and experimental setups from [51].

The configuration including geometry data (in mm) is shown Fig. 19. The specimen is deformed using a
smoothly-in-space displacement on the entire top boundary I7,,:

u(t,x,y = 8) = —10.0 x ¢ % exp(—(x — 10.0)2/100).

As before, t = 1073 Z?Oi denotes the loading parameter and in total we compute 20 loading steps.
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Fig. 16. Example 3: crack path of the L-shaped panel test at the loading steps 400 and 800.
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Fig. 17. Example 3: L-shaped panel test on different refinement levels and using the truncated iteration with a maximum of 20 iterations.
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Fig. 18. Example 3: Comparison of various choices for the stabilization parameter L and the truncated iteration and the iteration with a
maximum of 500 steps.

The choice was made in order to avoid a mathematically ill-posed setting by using a ‘true’ point displacement.
As explained in [5], in the most left and right parts of the domain, the phase-field variable is fixed to ¢ = 1 in
order to avoid artificially-induced cracks due to the loading and the boundary conditions.



M. Kirkescether Brun, T. Wick, I. Berre et al. / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112752 17

v i Ul i '

O
O ¢2
tz 8 7.0
@) 6.0
4.0
4 & 3.0
4 6 1 2.0
- - —— —-— 1'0 T T
.
20 5 10 15

Fig. 19. Example 4: Asymmetric notched three point bending test. The geometry, loading and boundary conditions are taken from [51]. The
three holes have each a diameter of 0.5. All units are in mm. At right, the three times uniformly refined mesh is displayed.

The initial mesh is 3, 4 and 5 times uniformly refined yielding 3904, 15616 and 62 464 mesh elements with the
minimal mesh size parameter i3 = 0.135, iy = 0.066 and 75 = 0.033.

As material parameters, we use w, = 8kN/mm?, A, = 12kN/mm?, and G. = 1 x 103 kN/mm. Furthermore,
we set k = 107'°4 [mm] and ¢ = 2h.

In our numerical simulations, we find that our formulation can also deal with more complex crack propagation
problems. However, as also discussed in [41], the mesh must be sufficiently fine such that the crack reaches the
second hole and not the first one (Fig. 20). The forces on the top boundary and the number of iterations are shown in
the Figs. 21, 22, and 23. Overall, we can say that the proposed scheme works again well. However, the simulations
with L = 0 show very competitive behaviors in comparison to L > 0. On the other hand, if L is too big (here we
choose L = 1, the stabilization terms alter the physical model and the final (physical) numerical results are wrong;
namely the crack will start propagating too late.

5.5. Verification of Assumption 1

In this last set of computations, we verify whether Assumption 1 holds true in our computations. We choose
some prototype settings, namely on mesh refinement level 4 (Examples 1 and 2), and level 3 (Example 3), and
level 5 (Example 4) and L, = L, = le—6 (Example 1,2,3) and L, = L, = le—2. In Fig. 24, we observe that
ess sup,..p |e(u"(x))| varies, but always can be bounded from above with M > 0. The value of ess sup, . |e(u" (x))| is
the final strain when the L-scheme terminates. The minimum and maximum values show that there are no significant
variations in ess sup,..p |e(u”(x))| during the L-scheme iterations with respect to the finally obtained value.

6. Conclusions

We have proposed a novel staggered iterative algorithm for brittle fracture phase field models. This algorithm
is employing stabilization and linearization techniques known in the literature as the ‘L-scheme’, which is a
generalization of the Fixed Stress Splitting algorithm coming from poroelasticity. Through theory and numerical
examples we have investigated the performance of our proposed variants of the L-scheme for brittle fracture phase
field problems.

Under natural constraints that the elastic mechanical energy remains bounded, and that the model parameter ¢ is
sufficiently large (i.e., that the diffusive zone around crack surfaces must be sufficiently thick), we have shown that
a contraction of successive difference functions in energy norms can be obtained from the proposed scheme. This
result implies the algorithm is converging monotonically with a linear convergence rate. However, in the convergence
analysis there appears some unknown constants which makes the precise convergence rate, as well as the precise
lower bounds on ¢ and L, unknown.

We provide detailed numerical tests (including a challenging test such as Example 4 with an asymmetrically
notched three point bending setting) where our proposed scheme is employed on several phase field brittle
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Fig. 20. Example 4: crack path of the asymmetric three point bending test when the second hole is reached. Top row: crack path after 20
loading steps for L = 0, le—2, 1 with mesh refinement 5. Bottom row: fixing L = le—2 and observing the mesh refinement levels 3 and 4.
Mesh refinement level 5 is the middle figure in the top row. We see (top row) that L = 1 influences the numerical solution such that the
crack does not yet grow after 20 loading steps. If the mesh is too coarse (bottom row), the crack first reaches the first hole. This has also
been observed and discussed in [41].
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Fig. 21. Example 4: Comparison of the forces (left) over the top boundary and the number iterations for the truncated scheme without
stabilization.

fracture bench-mark problems. For each numerical example we provide findings for different values of stabilization
parameters. For most cases we let L, = L, > 0, but for comparison we include also for the stabilization
configurations L, = 0 with L, > 0, and L, = L, = 0. For the test cases presented here, there is only Example 1
where L, = 0 does not work. This might be due to the very rapid crack growth, which sets Example 1 apart from
Examples 2 and 3. In this regard, we conclude that further work is needed to find an optimal configuration of L,
and L,. For all numerical test we also provide computational justification for the assumption of bounded elastic
mechanical energy. Furthermore, a slight dependency on / in the iteration counts is observed in the numerical tests,



M. Kirkescether Brun, T. Wick, I. Berre et al. / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112752 19

0 700 \

100 Ref 4120 ——
-100 1 .4,L=0
600 f  por g ]
Ref. 5, L=0 ——
-200 + : ° e
-300 | , & 500 i
®
= -400 r 1 :q_} 400 | |
= -500 1 5
w
600 | | g %0 ]
-700 ] § 200 i
8007 | 100
-900 1 I 1
-1000 : : : : 0 Z\\ : :
0 0.005 0.01 0.015 0.02 0.025 0 0.005 0.01 0.015 0.02 0.025
Loading time[s] Loading time

Fig. 22. Example 4: Comparison of the forces (left) over the top boundary and the number iterations (maximum of 500) without stabilization.
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Fig. 23. Example 4: Comparison of the forces (left) over the top boundary and the number iterations on the finest refinement level for
various iterations and choices of stabilization parameters L. As observed in Fig. 20, the choice of L =1 is not recommended because the
influence on the physical model is too high and therefore, the numerical solution is wrong; namely the crack starts propagating much later
than for smaller L.

but this is expected since we use € = 2k, and as our analysis demonstrates, the convergence rate is dependent on .
The variation in iteration numbers with mesh refinement is in any case sufficiently small enough that we conclude
our algorithm is robust with respect to mesh refinement.

Moreover, due to the iteration spikes at the critical loading steps, we have included, for comparison, several results
in which the iteration has been truncated (labeled L F I in Examples 1-4). Due to the monotonic convergence of the
scheme, this strategy still produces acceptable results, while effectively avoiding the iteration spikes. We therefore
conclude, at least for the particular examples presented here, that a truncation of the L-scheme can be employed for
greatly improved efficiency with only negligible (depending on the situation at hand, of course) loss of accuracy.
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