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Abstract: Lung cancer is the deadliest cancer worldwide, mainly due to its advanced stage at the
time of diagnosis. A non-invasive method for its early detection remains mandatory to improve
patients’ survival. Plasma levels of 351 proteins were quantified by Liquid Chromatography-Parallel
Reaction Monitoring (LC-PRM)-based mass spectrometry in 128 lung cancer patients and 93 healthy
donors. Bootstrap sampling and least absolute shrinkage and selection operator (LASSO) penalization
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were used to find the best protein combination for outcome prediction. The PanelomiX platform
was used to select the optimal biomarker thresholds. The panel was validated in 48 patients and
49 healthy volunteers. A 6-protein panel clearly distinguished lung cancer from healthy individuals.
The panel displayed excellent performance: area under the receiver operating characteristic curve
(AUC) = 0.999, positive predictive value (PPV) = 0.992, negative predictive value (NPV) = 0.989,
specificity = 0.989 and sensitivity = 0.992. The panel detected lung cancer independently of the
disease stage. The 6-protein panel and other sub-combinations displayed excellent results in the
validation dataset. In conclusion, we identified a blood-based 6-protein panel as a diagnostic tool
in lung cancer. Used as a routine test for high- and average-risk individuals, it may complement
currently adopted techniques in lung cancer screening.

Keywords: lung cancer; plasma biomarker; targeted proteomics; parallel reaction monitoring;
molecular diagnostics

1. Introduction

Identifying solid cancers by a simple blood analysis has been a long-standing goal in cancer
research as the detection of cancer during the regular screening can offer the patients immediate
treatment solutions. While blood-based early diagnostics for cancer still remains a challenge, several
proteins circulating in the blood have been useful for monitoring treatment response and/or tumor
recurrence [1]. So far, only prostate-specific antigen is routinely measured in blood for early diagnosis
of cancer [2].

Recently, Cohen and colleagues published the results of CancerSeek, a blood test that assesses the
presence of 8 protein markers and 1933 genetic alterations in cell-free DNA to diagnose common solid
tumors [3]. While the results were promising, the utility of this assay to advance cancer management
has not yet garnered widespread adoption [4]. The median sensitivity of CancerSeek in lung cancer
was ~59%, the second lowest among the 8 cancer types investigated [3].

Lung cancer is the most common malignancy in terms of incidence and the deadliest cancer
worldwide [5,6]. The high lung cancer mortality is mainly based on an advanced level of progression
at the time of diagnosis. Thus, the 5-year survival rate drops significantly from 83% for stage IA to 6%
for stage IV tumors [7]. Only 15% of newly diagnosed lung tumors are diagnosed at an early stage [8].
In this context, lung cancer screening using low-dose computerized tomography (LDCT) can reduce
lung cancer-specific mortality by 20% compared to chest radiography [9]. However, the high percentage
of false-positive results and the malignancy risk associated with cumulative radiation exposure are
serious limitations of LDCT. Therefore, a non-invasive, highly sensitive and specific method for early
detection of lung cancer is essential to improve prognosis and reduce potential overdiagnosis.

Previously, we have performed multi-omics discovery studies to find 4254 proteins associated to
lung cancer. They were further narrowed down to 559 proteins as biomarker candidates potentially
detectable in human blood [10,11]. For high-throughput screening, we have applied mass spectrometry
(MS)-based proteomics technology that has greatly impacted clinical biomarker studies [12–14] and
published a pilot study showing the efficacy of targeted proteomics for biomarker verification using
selected reaction monitoring [13], where 95 potential protein biomarkers were screened in plasma
samples from non-small cell lung cancer patients. We expanded this screening to a total of 559 biomarker
candidates and concluded that 323 of them are detectable in human plasma by mass spectrometry.
In the presenting study, we sought to develop a panel of proteins that clearly distinguishes lung cancer
patients from healthy donors in plasma samples. Hence, we screened 351 proteins consisting of the
323 aforementioned biomarker candidates plus 28 additional plasma proteins [15], using parallel
reaction monitoring (PRM), which dramatically increases the measurement specificity and simplifies
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the assay development [16]. A biomarker panel consisting of six proteins was identified with an
outstanding sensitivity in distinguishing lung cancer patients from healthy individuals.

2. Results

2.1. Patient and Healthy Donor Demographics

The cohort was composed of 57.92% male and 42.08% female, with 14.93% non-smokers,
57.92% former smokers and 27.15% current smokers. The mean age was 63.56 (±10.03 standard
deviation (SD)) and the median age was 63 (Table S1). No significant differences in age, gender and
smoking status were found between healthy and cancer individuals.

2.2. Broad Selection of Potential Tumor Predictors in Plasma

Previous multi-omics discovery efforts performed in our laboratories suggested 559 proteins to
be associated with lung cancer and potentially detectable in human blood (see Text S1: Discovery
study summary) [10,11,17,18]. The detectability of each protein in human plasma was previously
verified [13] resulting in a set of 323 proteins to be further verified in a larger cohort. In this study,
the plasma levels of the 323 proteins were quantified by LC-PRM in plasma from lung cancer patients
and healthy donors. An additional 28 well-known plasma proteins were also screened [15]. The list
of the 351 proteins is shown in Table S2. Differential analysis of the PRM data indicated that plasma
levels of 229 proteins were significantly different between lung cancer and healthy groups (Table S3).

2.3. Pathways Analysis and Interaction Network of the Differentially Expressed Proteins

In silico pathway analysis was performed to investigate whether the 229 differential proteins
could cluster into functional pathways. As shown in Figure 1, proteoglycan (syndecan and glypican)
and integrin networks were among the top 10 significantly enriched pathways, according to Pathway
Commons. These networks are actively involved in tumor extracellular matrix (ECM) remodeling
and cell–matrix interaction [19,20]. Signaling events mediated by estrogen receptor, hepatocyte
growth factor (HGF) and platelet-derived growth factor (PDGF) receptors, all known to drive tumor
growth [21–23], were also enriched. Importantly, the enrichment of interferon-gamma (IFN-γ) and
tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) pathways may reflect the host
immune responses towards the presence of the tumor. Additionally, plasma proteins were enriched
in pathways related to glucose and fatty acid metabolism, alterations that are commonly observed
in cancer. Gene ontology (GO) analysis reported “wound healing” and “response to wounding” as
enriched pathways, probably due to a putative resemblance between ECM remodeling and ECM
produced during wound healing [19].

The protein interaction network shown in Figure S1 describes the connection observed between
the differentially expressed proteins. The epidermal growth factor receptor (EGFR), a known lung
cancer driver, and the growth factor receptor-bound protein 2 (GRB2), an adaptor protein involved in
many oncogenic signaling pathways appeared as main hubs in this network [24].

2.4. Refinement of Biomarker Selection

From the 229 differentially abundant proteins in plasma from lung cancer and healthy subjects,
90 proteins showed a correlation ≥ 0.9 or ≤−0.9 with one or more proteins, whereas 139 proteins
displayed weaker correlations. The dendrogram of correlations is shown in Figure S2. When a
threshold of dissimilarity or “distance” between proteins was set to 0.1 (as an absolute value), 19 groups
with highly correlated proteins were identified. Accordingly, 19 surrogate proteins were chosen (see the
Materials and Methods Section for details) and 71 proteins were excluded from further analysis.
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Figure 1. Pathway enrichment analysis of the differentially expressed proteins in plasma from lung 
cancer patients and healthy donors. The enrichment analysis was done using Pathway Commons, 
Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO) databases. The top 10 
significantly enriched pathways are shown. The analysis was done based on the concentrations of the 
229 differentially expressed proteins in plasma from lung cancer patients (n = 128) and healthy 
volunteers (n = 93). 
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tubulin alpha-4A chain (TUBA4A), glutathione S-transferase omega-1 (GSTO1), peroxiredoxin-6 
(PRDX6), rho GDP-dissociation inhibitor 2 (ARHGDIB) and cadherin-13 (CDH13) (hereafter referred 
to as 6-protein combination/panel/classifier) (Table S4). The concentrations of the 6 proteins were 
significantly different in plasma from lung cancer patients and healthy donors (Figure 2). The PRM 
readouts of the proteins measured in samples from one lung cancer patient and one healthy donor, 
compared to the internal standards, are shown in Figure S3. These proteins were individually selected 
as the most predictive ones, independently of the combination, in 74.51% of the cases for FLNA, 
76.91% for TUBA4A, 44.42% for GSTO1, 54.74% for PRDX6, 45.11% for ARHGDIB and 81.43% for 
CDH13 (Table S4). The proteins that were selected as predictive in more than 75% of all combinations 

Figure 1. Pathway enrichment analysis of the differentially expressed proteins in plasma from lung
cancer patients and healthy donors. The enrichment analysis was done using Pathway Commons,
Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO) databases. The top
10 significantly enriched pathways are shown. The analysis was done based on the concentrations of
the 229 differentially expressed proteins in plasma from lung cancer patients (n = 128) and healthy
volunteers (n = 93).

Least absolute shrinkage and selection operator (LASSO) variable selection was implemented
with 158 proteins. The combination that was retained the most (23 times) was filamin-A (FLNA),
tubulin alpha-4A chain (TUBA4A), glutathione S-transferase omega-1 (GSTO1), peroxiredoxin-6
(PRDX6), rho GDP- dissociation inhibitor 2 (ARHGDIB) and cadherin-13 (CDH13) (hereafter referred
to as 6-protein combination/panel/classifier) (Table S4). The concentrations of the 6 proteins were
significantly different in plasma from lung cancer patients and healthy donors (Figure 2). The PRM
readouts of the proteins measured in samples from one lung cancer patient and one healthy donor,
compared to the internal standards, are shown in Figure S3. These proteins were individually selected
as the most predictive ones, independently of the combination, in 74.51% of the cases for FLNA,
76.91% for TUBA4A, 44.42% for GSTO1, 54.74% for PRDX6, 45.11% for ARHGDIB and 81.43% for
CDH13 (Table S4). The proteins that were selected as predictive in more than 75% of all combinations
were TUBA4A, tissue factor pathway inhibitor (TFPI) and CDH13 (hereafter referred to as 3-protein
combination).
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Figure 2. Plasma levels of the 6 protein biomarkers identified as a lung cancer diagnostic panel. Scatter
plots of (a) filamin-A (FLNA), (b) tubulin alpha-4A chain (TUBA4A), (c) glutathione S-transferase
omega-1 (GSTO1), (d) peroxiredoxin-6 (PRDX6), (e) rho GDP-dissociation inhibitor 2 (ARHGDIB)
and (f) cadherin-13 (CDH13) concentrations obtained from lung cancer patients (n = 128) and healthy
volunteers (n = 93) using the LC-PRM assay targeting proteotypic peptides. Data points and their
median are shown. **** Adjusted p < 0.0001 using the non-parametric Kruskal–Wallis test.

2.5. Performance Analysis of the Models

We compared the performance of the models towards the commercially available Xpresys® Lung
(XL) test (Biodesix, Boulder, CO, USA) that consists of five diagnostic proteins [25]. The values of
the performance indicators were the best with the 6-protein combination compared to the 3-protein
combination, XL panel and the univariable models (Table 1): the lowest Akaike Information Criterion
(AIC = 30.876), the highest area under the receiver operating characteristic curve (AUC = 0.999) (shared
with the 3-protein combination), the highest positive predictive value (PPV = 0.992), the highest
negative predictive value (NPV = 0.989), the highest specificity (0.989) (shared with ARHGDIB) and
the highest sensitivity (0.992). The use of TUBA4A, TFPI and CDH13 as a classifier showed a slightly
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higher AIC (31.402) and slightly lower PPV (0.984), NPV (0.968), specificity (0.978) and sensitivity
(0.977) values. When considering FLNA, TUBA4A, GSTO1, PRDX6 and ARHGDIB as sole classifiers,
the performance indicators also showed excellent predictive power. Only CDH13 and TFPI performed
worse, but still with a good predictive power (AUC = 0.845 and 0.851, respectively).

Table 1. Performance of the logistic regression models in tumor prediction.

Model AIC AUC PPV NPV Specificity Sensitivity

6-protein combination 30.876 0.999 0.992 0.989 0.989 0.992
3-protein combination 31.402 0.999 0.984 0.968 0.978 0.977

FLNA 65.647 0.990 0.967 0.908 0.957 0.930
TUBA4A 41.556 0.997 0.984 0.948 0.978 0.961
GSTO1 45.427 0.996 0.976 0.947 0.968 0.961
PRDX6 51.763 0.993 0.976 0.957 0.968 0.969

ARHGDIB 54.303 0.981 0.992 0.929 0.989 0.945
CDH13 219.090 0.845 0.791 0.747 0.699 0.828

TFPI 204.860 0.851 0.836 0.737 0.785 0.797
Xpresys® XL panel 45.592 0.996 0.969 0.957 0.957 0.969

ALDOA 43.946 0.994 0.969 0.947 0.957 0.961
COL18A1 250.790 0.767 0.752 0.630 0.677 0.711

FTL 297.720 0.554 0.579 NaN 0.000 1.000
LGALS3BP 295.220 0.601 0.601 0.500 0.258 0.813

THBS1 161.780 0.924 0.871 0.794 0.828 0.844

FLNA = Filamin-A; TUBA4A = Tubulin alpha-4A chain; GSTO1 = Glutathione S-transferase omega-1; PRDX6 =
Peroxiredoxin-6; ARHGDIB = Rho GDP-dissociation inhibitor 2; CDH13 = Cadherin-13; TFPI = Tissue factor
pathway inhibitor; ALDOA = Fructose-bisphosphate aldolase A; COL18A1 = Collagen alpha-1(XVIII) chain;
FTL = Ferritin light chain; LGALS3BP = Galectin-3-binding protein; THBS1 = Thrombospondin-1; AIC = Akaike
Information Criterion; AUC = Area under the receiver operating characteristic curve; PPV = Positive predictive
value; NPV = Negative predictive value; NaN = Not a number (cannot be calculated since no patient was classified
as not having a cancer).

Compared to the 6-protein model, the logistic regression model derived using the proteins of the
XL panel had a higher AIC (45.592), suggesting a worse fit to the data. However, the AUC was very
high (0.9962) and the PPV, NPV, specificity and sensitivity were only slightly lower than the ones of the
6-protein and 3-protein models (Table 1). We did not detect any statistically significant differences
between AUC, sensitivities or specificities of the XL panel and the 6-protein combination.

Table S5 shows the lung cancer prediction of the 6-protein panel in the different subject groups of
the training cohort, classified by cancer type, stage, grade and by smoking history. One patient with
stage I adenocarcinoma (ADC), a current smoker, was falsely predicted as not having lung cancer.
Another current smoker was falsely classified as having lung cancer. As the number of cases per
category are quite small, no clear statement can be made on whether a specific cancer type, stage,
grade or smoking history of a subject is influencing the predictive ability of the biomarker panel.

We then tested the ability of the 6-protein panel to predict cancer stage. As shown in Table 2,
the 6-protein panel distinguished between healthy and lung cancer individuals but could not predict
cancer stage. An unweighted Cohen’s Kappa of 0.59 (95% confidence interval (CI), 0.52–0.66) and
a weighted Cohen’s Kappa of 0.73 (95% CI, 0.73–0.73) were found, suggesting a moderate degree
of agreement between predicted and clinically annotated stages. Importantly, the 6-protein panel
classified 22 out of 23 stage I patients as lung cancer individuals, demonstrating its strong diagnostic
performance in early-stage cases.
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Table 2. Number of clinically annotated and predicted healthy and lung cancer patients, including
their stages, as obtained using the 6-protein classifier.

Cancer stages Clinically Annotated Stages

No cancer Stage NA * Stage I Stage II Stage III Stage IV

No cancer 92 1 1 0 1 0

Predicted stages

Stage NA * 0 2 0 1 0 0
Stage I 0 2 9 1 2 6
Stage II 0 0 0 0 0 1
Stage III 0 0 0 1 0 0
Stage IV 1 6 13 8 16 57

Sum 93 11 23 11 19 64

* NA = not available.

2.6. Determination of Biomarker Thresholds for Outcome Prediction

We used the PanelomiX platform to select the best thresholds for the 6 biomarkers identified.
Three panel optimization options were used: optimizing the sensitivity at ≥95% specificity, optimizing
the specificity at ≥95% sensitivity and optimizing global accuracy. When choosing to optimize the
accuracy or the specificity, only one threshold per biomarker was selected by Panelomix, resulting in
one combination per optimization. When optimizing the sensitivity, 19,644 combinations were found,
with the first one being the same as the threshold combination selected when optimizing the specificity.
Therefore, two threshold combinations were considered: the one obtained when optimizing the panel
accuracy (TA combination) and the combination common to sensitivity and specificity optimization
(TS combination) (Table 3). If any 3 proteins were positive using TA thresholds, then the subject was
classified as having lung cancer. For TS, any 5 of the 6 proteins have to be positive in order to classify
an individual as having lung cancer.

Table 3. Threshold values and positivity of the biomarkers when optimizing the global accuracy (TA)
or the sensitivity or specificity (TS) of the panel, as defined by PanelomiX platform.

Protein Biomarker TA TS

FLNA >0.48091298 >0.48091298
TUBA4A >1.6875327 >0.18983749
GSTO1 >5.363042 >5.363042
PRDX6 >5.9975386 >4.038682

ARHGDIB >0.5091874 >0.5091874
CDH13 <69.826614 <148.1571

Applying the thresholds on the original dataset, the performance metrics of the panel were
excellent: a sensitivity of 0.992 and a specificity of 0.989 for TA combination, and a sensitivity of 0.977
and a specificity of 1.0 for TS combination.

2.7. Panel Performance on the Validation Dataset

The models were then tested on a validation dataset using plasma from 48 lung cancer patients
and 49 healthy donors. The models’ estimates of the logistic regression and Panelomix thresholds
obtained from the training set were applied to the validation set for cancer prediction. NPV, PPV,
sensitivity, specificity and AUC of the XL and the 6-protein panels were calculated for the new dataset
(Table 4). When comparing the results obtained from the logistic regression models, values of all
the performance metrics of the 6-protein combination were at least as high as the values of the XL
panel. Interestingly, the highest specificity (0.918) was obtained for the 6-protein panel, as predicted by
the TS thresholds. All the possible sub-combinations of the 6-protein panel were also tested on the
validation dataset. Many of them displayed excellent performance, as shown by the forest plots of
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NPV, PPV, sensitivity, specificity and AUC (Figures S4–S8). Table S6 shows the lung cancer prediction
in the different subgroups classified by cancer type, stage, grade and by smoking history. One patient
with stage I ADC and two large cell carcinoma (LCC) patients (stage I and stage III), both having
grade III tumors, were falsely classified as being lung cancer-negative. The 3 patients were former
smokers. Among the healthy subjects, 6 were falsely classified as having lung cancer: 1 current smoker,
4 former smokers and 1 subject who never smoked. As stated before, due the small number of cases,
it is not possible to conclude whether a specific cancer type, stage, grade or smoking history affects the
predictive ability of the 6-protein panel.

Table 4. Performance of the classification models on the validation dataset.

Performance Metrics
6-Protein Panel Xpresys® XL Panel

TA Thresholds TS Thresholds Logistic Regression Logistic Regression

NPV (95% CI) 0.840 (0.709–0.928) 0.849 (0.724–0.933) 0.935 (0.821–0.986) 0.930 (0.809–0.985)

PPV (95% CI) 0.851 (0.717–0.938) 0.909 (0.783–0.975) 0.882 (0.761–0.956) 0.833 (0.707–0.921)

Sensitivity (95% CI) 0.833 (0.698–0.925) 0.833 (0.698–0.925) 0.938 (0.828–0.987) 0.938 (0.828–0.987)

Specificity (95% CI) 0.857 (0.728–0.941) 0.918 (0.804–0.977) 0.878 (0.752–0.954) 0.816 (0.680–0.912)

AUC (95% CI) 0.845 (0.773–0.918) 0.876 (0.810–0.942) 0.908 (0.850–0.965) 0.877 (0.812–0.942)

3. Discussion

At present, more than half of lung cancer patients are diagnosed at a metastatic stage [26].
Early diagnosis is a prerequisite for improved patient survival and treatment outcome. When compared
to chest radiography, the use of LDCT for lung cancer screening clearly demonstrated a mortality
benefit [9,27]. However, several issues are associated with imaging techniques, mainly the high
percentage of false-positive results (96.4% and 94.5% in the LDCT and the radiography groups,
respectively) [9]. If combined with a highly accurate measurement method, blood samples may
represent an ideal minimally invasive, easily collected material for cancer diagnostics.

The purpose of this study was to identify a panel of protein biomarkers to be used as a non-invasive
diagnostic tool in lung cancer. For this purpose, 351 potential biomarkers were screened, that have
been discovered and preliminarily verified in human plasma [13]. Here, based on PRM measurement
followed by logistic regression analysis, we identified a blood-based 6-protein panel as a potential
diagnostic tool in lung cancer. In order to make this panel easy to use by medical practitioners, we also
adopted a threshold-based approach, attributing a cut-off value per biomarker, then a score per sample
to classify it as lung cancer or healthy.

The biomarker panel displayed excellent performance in the test cohort, supported by the AUC
(0.999), PPV (0.992), NPV (0.989), specificity (0.989) and sensitivity (0.992) values. The results were
confirmed in a validation dataset which also showed that other sub-combinations of these 6 proteins
displayed excellent discriminative power. Importantly, the 6-protein panel non-invasively detected
lung cancer at different stages of the disease (including stage I), suggesting its high potential as a
screening tool.

The performance of our biomarker panel was compared to a commercially available, MS-based
lung cancer diagnostic test, Xpresys® Lung (XL) test. The XL test is a multiprotein plasma classifier
consisting of five diagnostic plasma proteins, originally designed to differentiate benign from malignant
lung nodules among indeterminate pulmonary nodules [25,28,29]. While limited, based on different
primary objectives and target populations, direct comparison with the XL test in the same pool of
plasma samples can provide a useful benchmark for our panel. In the training set, the values of all
performance metrics tended to be better with our 6-protein panel; however, the differences were not
statistically significant, suggesting that both panels displayed a good diagnostic accuracy in our cohort.

The origin of circulating proteins differs from molecule to molecule. For example, the outer
parts of membrane proteins overly expressed on cancer cells can be shed into body fluids, as in
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the case of the detectable serum human epidermal growth factor receptor 2 (HER2) in breast cancer
patients [30,31]. The invasive cancer cell structure can disrupt tissue architecture and creates gaps
between cellular compartments, leading to a leak of interstitial fluids into the circulation, as in the
case of high prostate-specific antigen (PSA) serum level in prostate cancer patients [32]. An elevated
level of a protein in the blood can result from its increased secretion from the diseased tissue
(e.g., alpha-fetoprotein in liver cancer) [33] or it can be caused by the inflammation associated with
cancer (e.g., increased production of serum amyloid A in lung cancer patients) [34]. Any of these
proteins, or more likely a combination of them, could be used as tumor markers if they are detectable
and specific to cancer.

Here, we showed that the differentially abundant proteins in plasma from lung cancer and healthy
subjects were mainly involved in pathways associated with tumor growth, ECM remodeling, invasion
and immune responses. Only 55 proteins of the 229 candidate biomarkers were reported as secreted
in the Uniprot database. However, all of the 229 proteins were previously identified in extracellular
vesicles or in exosomes (according to Vesiclepedia and Exocarta), suggesting that they may be shed
by cells and released into the blood via plasma vesicles. Our data strongly suggest that the changes
observed in the plasma proteome from lung cancer patients may be derived not only from the tumor
itself but also from the tumor microenvironment and host tissues. Our findings are thus in line with
previous proteomics data obtained in plasma from a mouse model of mammary cancer [35].

The 6-protein diagnostic panel consisted of FLNA, PRDX6 and ARHGDIB, associated with tumor
growth, cell invasion and metastasis [36–41], GSTO1, having an antioxidant defense role (together
with PRDX6) [38,41–43], TUBA4A, found enriched in serum exosomes from NSCLC patients [44],
and the tumor suppressor CDH13 [45]. The increased levels of GSTO1 and PRDX6 in plasma of lung
cancer patients may reflect their protective role in the cancer redox environment, or may be associated
with the activation of antioxidant pathways resulting from cigarette smoking. Interestingly, IDH1,
which also plays a protective role in the tumor-associated redox process, has been recently proposed as
a promising plasma biomarker for the diagnosis of lung ADC [46].

The cohort used in this study consisted of patients from different lung cancer stages and a majority
of healthy donors with a smoking history, similarly to the intended use population for this blood-based
classifier. Therefore, the obtained high NPV cannot be due to the low prevalence of lung cancer,
which is of 58% in our study cohort (128 lung cancer patients and 93 healthy subjects). However,
since the PPV increases with the incidence rate of the disease, the panel’s accuracy has yet to be
demonstrated in the appropriate screening population, where the lung cancer incidence rate is about
53.5 and 47.6 per 100,000, among men and women, respectively [47].

Our discovery phase studies have carefully selected 559 candidate proteins with a strong
pre-screening evidence including serum analysis of xenograft mouse models. This led to the high
success rate (41%) of candidate biomarkers at the high-throughput PRM screening. However, all the
clinical samples used in this study were collected and processed by one organization, which may
introduce an unknown bias. External validation on several datasets obtained from a wide range of
samples collected, processed and analyzed by different investigators from different centers will help to
randomize potential bias, and thus reduce false discovery. Limitations of this study include its inability
to demonstrate that the biomarker panel is detecting only lung cancer among other malignancies,
and that the results are not due to other lung conditions commonly associated with lung cancer,
such as chronic obstructive pulmonary disease [4]. Therefore, the panel needs to be validated in
independent cohorts including patients with different cancer types and donors with and without
underlying non-malignant lung diseases to precisely estimate its diagnostic power.

Since we concluded a defined set of six proteins, now we can modify the LC-PRM method to
perform much faster quantitative analysis. In this present study, we used three multiplexed (117 targets
per each method) PRM with 66-min LC separation, resulting in a total of 3.3-h separation time to
screen 351 targets. The LC separation time can be reduced to less than 5 min for six targets with
increased datapoints and higher mass resolution. This will increase both throughput and assay
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sensitivity, and thus allow us to expand the sample size including various clinical status required for
further validation.

4. Materials and Methods

4.1. Study Cohort

The training cohort consisted of 128 lung cancer patients and 93 healthy donors followed within
Luxembourg’s hospitals. The validation cohort comprised 48 patients and 49 age, sex and smoking
status-matched non-cancer subjects, not included in the training cohort. All the participants provided
blood samples following informed consent according to the Helsinki Declaration. The study was
approved by the national research ethics committee “Comité National d’Ethique de Recherche”
and the national commission for data protection “Commission Nationale pour la Protection des
Données”. Blood samples were collected and processed following the standard operating procedures
of the Integrated Biobank of Luxembourg to prepare plasma samples. Diagnosis, staging and
grading of the disease were done by experienced pathologists, according to the IASLC/ATS/ERS
histological classification of lung tumors (2011) and TNM classification of lung carcinoma (2009) [48,49].
The clinicopathological features of the subjects are summarized in Tables S7 and S8.

4.2. Plasma Depletion and Processing

For the training cohort, high abundance proteins were removed from 40 µL of plasma using
an Agilent 1260 Infinity Bio-inert LC system equipped with a Human 14 Multiple Affinity Removal
Column (4.6 × 100 mm) (Agilent Technologies, Diegem, Belgium) according to the manufacturer’s
procedure. After elution, buffer A was exchanged to 100 mM NH4HCO3/10% ACN (pH 8) and the
volume was reduced to 100 µL using a spin concentrator 5K (Agilent). Proteins were denatured with
1% sodium deoxycholate (SDC), reduced with 10 mM dithiothreitol for 30 min at 37 ◦C, alkylated
with 25 mM iodoacetamide for 30 min at room temperature, followed by quenching with 10 mM
n-acetyl-L-cysteine. All reagents were prepared in 50 mM tris buffer. The processed sample was
diluted to reduce the SDC concentration to 0.5% and incubated with 13 µg of sequencing grade trypsin
(Promega, Leiden, The Netherlands) for 16 h at 37 ◦C, then with 10 U of PNGase F for 1 h at 37 ◦C
followed by an additional 2 µg of trypsin for 3 h at 37 ◦C. SDC was removed by precipitation with
1% formic acid and centrifugation. Digested samples were cleaned up with Sep-Pak C18 cartridges
(Waters, Milford, MA, USA) and dried in vacuo. Samples were reconstituted with 200 µL of 0.1%
formic acid/4% acetonitrile. Minor modifications to the protocol were made for the samples of the
validation cohort (Text S2: Supplementary Materials and Methods).

4.3. LC-PRM Analysis

Stable isotope labeled (SIL) (13C6
15N4 for the C-terminal arginine and 13C6

15N2 for the C-terminal
lysine) synthetic peptides were used as internal standards (AQUA QuantPro grade, Thermo Fisher
Scientific, Bremen, Germany). For each peptide, LC-MS attributes (retention time, precursor m/z and
the most intense fragment ions) were determined to build the LC-PRM method. Samples were analyzed
using scheduled LC-PRM assays for 351 peptides (Table S2). An Ultimate 3000 RSLCnano system
coupled to a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific) was used as described
previously [16]. Precise, relative quantification was obtained from the intensity ratio of light and SIL
peptides. Details of LC-MS and data processing generated with the validation cohort are available in
Text S2: Supplementary Materials and Methods.

4.4. Model Development and Statistical Analysis

The LC-PRM signal was converted into plasma protein concentration in fmol/µL based on
the internal standard peptides. Values of undetected proteins were replaced by minimal protein
concentration/

√
2. Non-parametric Kruskal–Wallis test and Bonferroni adjusted p-values were used to
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compare protein concentrations in lung cancer and healthy samples. Proteins with p-value < 0.00014
(=0.05/351; Bonferroni corrected) were further considered for analysis. Correlations between proteins
were investigated using Spearman’s correlation coefficient. Hierarchical clustering of proteins was
performed using a dissimilarity function (= 1 − absolute value of correlation) to discriminate all
correlated groups. One protein per group of highly correlated proteins was selected to represent the
group, based on high intensity, lower missing values in lung cancer samples and absence of interference
in PRM signals.

Bootstrap sampling and least absolute shrinkage and selection operator (LASSO) penalization
were used to find the best combination of proteins for outcome prediction. LASSO with 10-fold
cross-validation was performed on 4,500,000 bootstrapped datasets, using the “glmnet” package of
R. To assess the predictive power of proteins and protein combinations, the NPV, PPV, sensitivity,
specificity, AUC and AIC of the logistic regression models were calculated on the original dataset.
A bootstrap test was used to compare AUC of different models. For comparing sensitivities and
specificities, the McNemar χ2 test was used, as recommended [50]. For model validation, sensitivity,
specificity, NPV, PPV, AUC and their 95% CI were calculated on the validation dataset.

Multinomial logistic regression was used to predict the probability of each cancer stage (6 levels,
including 4 cancer stages, 1 unknown stage and 1 healthy condition) using the 6-protein panel. The level
with the highest probability was chosen as the final predicted cancer stage (or healthy condition).
The Cohen’s kappa test was used to evaluate the degree of agreement between clinically annotated
and predicted staging [51].

Continuous variables were compared using the Kruskal–Wallis test. Binary or categorical variables
were compared using Pearson’s Chi-Squared test.

4.5. Use of PanelomiX for Threshold Selection

The PanelomiX platform was used to select thresholds for the candidate biomarkers to have
the optimal classification performance of the combination [52]. First, a threshold value was defined
for each of the proteins, then a score was assigned to each subject. A patient’s score is the number
of biomarkers fulfilling the disease condition (referred to as “positive” biomarker). A subject was
classified as a lung cancer patient if their score was at least equal to a panel threshold score identified
by Panelomix. Thresholds obtained from the training set were applied to the validation set for cancer
prediction and the performance metrics were calculated.

4.6. Pathway Analysis and Protein Interaction

The enrichment analysis was done using Pathway Commons, KEGG and GO databases and
“hsapiens_entrezgene_protein-coding” as a reference set. The statistical evaluation of the enrichment
was performed using the hypergeometric test and the method of Benjamini and Hochberg for p-value
adjustment. A pathway was considered significantly enriched if the p-value was <0.05 and if it
contained at least 2 genes from the query list. The Functional Enrichment Analysis tool “FunRich” was
used to visualize protein–protein interactions.

5. Conclusions

In this study we identified a protein-based diagnostic panel to detect lung cancer using a
non-invasive material (blood), a non-radiative, highly sensitive and highly specific method. If used
as a routine test for high- and average-risk individuals (e.g., smokers and former smokers), it may
efficiently complement LDCT in lung cancer screening. This would reduce the number of false-positive
cases that often lead to additional invasive tests and unnecessary costs and expose the patients to
physical and mental hardships.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1629/s1:
Figure S1: Interaction network of differentially expressed proteins in the plasma of lung cancer patients versus
healthy donors, Figure S2: Dendrogram of correlation «distances», Figure S3: PRM readouts of the 6 proteins
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included in the diagnostic panel, Figure S4: Forest plot showing the NPV values of all the possible sub-combinations
of the 6-protein panel, Figure S5: Forest plot showing the PPV values of all the possible sub-combinations of
the 6-protein panel, Figure S6: Forest plot showing the sensitivity values of all the possible sub-combinations of
the 6-protein panel, Figure S7: Forest plot showing the specificity values of all the possible sub-combinations of
the 6-protein panel, Figure S8: Forest plot showing the AUC values of all the possible sub-combinations of the
6-protein panel, Table S1: Patient and healthy donor demographics, Table S2: List of target proteins consisting of
323 potential biomarker candidates (in bold) and 28 typical plasma proteins, and their surrogate peptides and
precursors m/z, Table S3: List of the 229 proteins differentially expressed in plasma from lung cancer patients
and healthy donors, as measured by LC-PRM, Table S4: Protein combinations selected more than 10 times in
LASSO as the most predictive ones in distinguishing lung cancer from healthy samples, and the percentage of
appearance of individual proteins in 4,500,000 bootstrapped datasets, Table S5: The lung cancer prediction of the
6-protein panel in the training cohort classified by lung cancer type, stage, grade and by smoking history, Table S6:
The lung cancer prediction of the 6-protein panel in the validation cohort classified by lung cancer type, stage,
grade and by smoking history, Table S7: Clinicopathological features of lung cancer patients in the training (T)
and in the validation (V) cohorts, Table S8: Clinicopathological features of healthy donors in the training (T) and
in the validation (V) cohorts, Text S1: Discovery study summary, Text S2: Supplementary Materials and Methods.
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