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Abstract: Tridentate, bis-phenolate N-heterocyclic carbenes (NHCs) are among the ligands giving
the most selective and active group 4-based catalysts for the copolymerization of cyclohexene
oxide (CHO) with CO2. In particular, ligands based on imidazolidin-2-ylidene (saturated NHC)
moieties have given catalysts which exclusively form polycarbonate in moderate-to-high yields
even under low CO2 pressure and at low copolymerization temperatures. Here, to evaluate the
influence of the NHC moiety on the molecular structure of the catalyst and its performance in
copolymerization, we extend this chemistry by synthesizing and characterizing titanium complexes
bearing tridentate bis-phenolate imidazol-2-ylidene (unsaturated NHC) and benzimidazol-2-ylidene
(benzannulated NHC) ligands. The electronic properties of the ligands and the nature of their
bonds to titanium are studied using density functional theory (DFT) and natural bond orbital (NBO)
analysis. The metal–NHC bond distances and bond strengths are governed by ligand-to-metal σ-
and π-donation, whereas back-donation directly from the metal to the NHC ligand seems to be less
important. The NHC π-acceptor orbitals are still involved in bonding, as they interact with THF and
isopropoxide oxygen lone-pair donor orbitals. The new complexes are, when combined with [PPN]Cl
co-catalyst, selective in polycarbonate formation. The highest activity, albeit lower than that of the
previously reported Ti catalysts based on saturated NHC, was obtained with the benzannulated
NHC-Ti catalyst. Attempts to synthesize unsaturated and benzannulated NHC analogues based on
Hf invariably led, as in earlier work with Zr, to a mixture of products that include zwitterionic and
homoleptic complexes. However, the benzannulated NHC-Hf complexes were obtained as the major
products, allowing for isolation. Although these complexes selectively form polycarbonate, their
catalytic performance is inferior to that of analogues based on saturated NHC.

Keywords: N-heterocyclic carbene; titanium; hafnium; copolymerization of epoxide with CO2;
density functional theory; natural bond orbitals

1. Introduction

In the past few decades, N-heterocyclic carbenes (NHCs) have emerged as privileged ancillary ligands
that, in particular, have been explored in combination with low-to-medium valent late-transition-metals
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due to their strong σ-donor capacity, structural diversity, and their successful use in organometallic
catalysis [1–8]. In contrast, high-valent early-transition-metal NHC complexes have received much
less attention [9–15], which to a large extent is due to their ease of dissociation from these metal
centers [2,5,9,11,12,14]. However, their dissociation from oxophilic metals was partially prevented by
designing multidentate anionic carbon, nitrogen, and oxygen-functionalized NHC ligands [5,13,15–17].
Anchoring such functionalized NHC ligands to oxophilic metals has proved to be a successful approach
for developing catalysts, notably of group 4 metals, for the (oligo-)polymerization of olefins [18–29],
hydroamination/cyclization of aminoalkenes [30–36], controlled ring-opening polymerization of
rac-lactide [37–40], and more recently, for the copolymerization of epoxides with CO2 [41–45].

Although most of the highly selective and active catalyst systems for the copolymerization of
epoxides with CO2 are based on divalent (Mg, Co, Zn) and trivalent (Cr, Co, Al) metals bearing ligands
such asβ-diketiminates, salens, porphyrins, and multidentate phenolate macrocycles [46–52], the group
4 metals have emerged as a new class of catalyst for this reaction, combining decent catalytic activity
with high selectivity towards the formation of polycarbonates [41–45,53–66]. NHC-based catalysts
of this kind have appeared to be particularly promising under relatively mild copolymerization
conditions [41–45]. However, so far the tetravalent titanium, zirconium and hafnium complexes
for the CO2/cyclohexene oxide (CHO) copolymerization that have selectively given the desired
poly(cyclohexene carbonate) (PCHC), without cyclohexene carbonate (CHC) or homopolymer of CHO
(PCHO) as side products, have exclusively been based on tridentate bis-phenolate NHC-type ligands
with saturated backbones (Scheme 1) [41–45]. Previous attempts to substitute the saturated-NHC
backbone of zirconium catalysts by unsaturated- or benzannulated-NHC backbones in order to evaluate
the effects on the copolymerization catalysis have irremediably led to a catalytically inactive isolable
mixture of zwitterionic and heteroleptic zirconium compounds (Scheme 1) [44]. This suggests that
strong σ-donation from the NHC ligand to the metal is vital for CO2/CHO copolymerization.
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Scheme 1. Previously obtained complexes containing (i) saturated NHC with group 4, and (ii) unsaturated
and benzannulated NHCs ligands (a and b, respectively) with zirconium.

We have continued our efforts to synthesize catalysts based on unsaturated NHC ligands,
and present here, for the first time, bis-phenolate unsaturated- and benzannulated-NHC complexes
of titanium and hafnium. The performance of these complexes in CO2/CHO copolymerization is
compared to those of saturated NHC ligands. Finally, with the help of density functional theory (DFT)
and natural bond orbital (NBO) analysis, the structural and electronic property differences of these
complexes are presented, and the potential impact of these differences on CO2/CHO copolymerization
is discussed.



Molecules 2020, 25, 4364 3 of 21

2. Results and Discussion

2.1. Synthesis of Bis-Phenolate NHC Complexes of Titanium and Hafnium

The N,N′-di(2-hydroxy-3,5-di-tert-butylphenyl) imidazolium chloride (a) and N,N′-di(2-hydroxy-
3,5-di-tert-butylphenyl) benzoimidazolium chloride (b) proligands were prepared according to
previously reported procedures [26,67,68]. The alcohol elimination route involving the direct and
slow addition of proligands a and b to a solution of Ti(OiPr)4 in THF at −30 ◦C was found to be
the most appropriate protocol for the synthesis of both ([κ3-O,C,O]-INHC)TiCl(OiPr)(THF) 1a and
([κ3-O,C,O]-BzNHC)TiCl(OiPr) 1b complexes, respectively, in good yields and without the formation
of side compounds, such as the homoleptic and zwitterionic complexes (Scheme 2). This protocol
slightly diverges from the previously reported one in which N,N′-di(2-hydroxy-3,5-di-tert-butylphenyl)
imidazolidinium chloride salt (c) was used as proligand and the addition was carried out at room
temperature, leading quantitatively to ([κ3-O,C,O]-IsNHC)TiCl(OiPr)(THF) 1c [38].

Molecules 2020, 25, x FOR PEER REVIEW 3 of 22 

 

2. Results and Discussion 

2.1. Synthesis of Bis-phenolate NHC Complexes of Titanium and Hafnium 

The N,N’-di(2-hydroxy-3,5-di-tert-butylphenyl) imidazolium chloride (a) and N,N’-di(2-
hydroxy-3,5-di-tert-butylphenyl) benzoimidazolium chloride (b) proligands were prepared 
according to previously reported procedures [26,67,68]. The alcohol elimination route involving the 
direct and slow addition of proligands a and b to a solution of Ti(OiPr)4 in THF at −30 °C was found 
to be the most appropriate protocol for the synthesis of both ([κ3-O,C,O]-INHC)TiCl(OiPr)(THF) 1a 
and ([κ3-O,C,O]-BzNHC)TiCl(OiPr) 1b complexes, respectively, in good yields and without the 
formation of side compounds, such as the homoleptic and zwitterionic complexes (Scheme 2). This 
protocol slightly diverges from the previously reported one in which N,N’-di(2-hydroxy-3,5-di-tert-
butylphenyl) imidazolidinium chloride salt (c) was used as proligand and the addition was carried 
out at room temperature, leading quantitatively to ([κ3-O,C,O]-IsNHC)TiCl(OiPr)(THF) 1c [38]. 

 
Scheme 2. Synthesis of NHC-Ti complexes 1a, 1b, 2a and 2b. 

The 1H and 13C-NMR spectra show that the proligands are fully deprotonated with the 
concomitant disappearance of both OH and Himidazolium protons and all chemical resonances are shifted 
downfield in agreement with the bonding of bis-phenolate NHC ligands to the titanium metal center 
for both 1a and 1b compounds (Supplementary Figures S1–S4). The only immediately observed 
difference between these two compounds is that the THF molecule in complex 1b is very labile and 
can easily be removed under prolonged vacuum. The 13C-NMR spectra of both compounds 1a and 
1b encompass typical imidazol-2-ylidene and benzimidazolin-2-ylidene NHC-Ccarbene resonances at δ 
184.0 and 195.2 ppm (Supplementary Figures S2 and S4) [14,69], respectively, which are shifted 
upfield compared to that of the structurally analogous bis-phenolate saturated NHC complex of 
titanium ([κ3-O,C,O]-IsNHC)TiCl(OiPr)(THF) 1c (δ 198.6 ppm) [38]. 

As indicated above, the order of addition of the reagents is crucial here, contrasting the case of 
the Zr(OiPr)4(HOiPr) precursor with either a or b proligands in which the homoleptic and 
zwitterionic compounds are observed independently of the addition order [44]. For instance, the 
addition of Ti(OiPr)4 to proligand b in THF at room temperature leads to a mixture of compounds 
containing at least complex 1b (unambiguously deduced from by 1H-NMR analysis, cf. Figure S5) 
along with the zwitterionic ([κ2-O,O]-BzNHC-H)TiCl2(OiPr) 1b’ and homoleptic ([κ3-O,C,O]-
BzNHC)2Ti 1b’’ as minor products (9% and 5%, respectively). Consistent with the observations made 
earlier for the BzNHC-Zr analogue [44], formation of zwitterionic 1b’ was further confirmed by single-
crystal X-ray diffraction (SCXRD) analysis of a crystal sampled from the reaction mixture in toluene 
at –30 °C (Supplementary Figure S6 and Table S1). 

Scheme 2. Synthesis of NHC-Ti complexes 1a, 1b, 2a and 2b.

The 1H and 13C-NMR spectra show that the proligands are fully deprotonated with the concomitant
disappearance of both OH and Himidazolium protons and all chemical resonances are shifted downfield
in agreement with the bonding of bis-phenolate NHC ligands to the titanium metal center for both
1a and 1b compounds (Supplementary Figures S1–S4). The only immediately observed difference
between these two compounds is that the THF molecule in complex 1b is very labile and can
easily be removed under prolonged vacuum. The 13C-NMR spectra of both compounds 1a and
1b encompass typical imidazol-2-ylidene and benzimidazolin-2-ylidene NHC-Ccarbene resonances at
δ 184.0 and 195.2 ppm (Supplementary Figures S2 and S4) [14,69], respectively, which are shifted
upfield compared to that of the structurally analogous bis-phenolate saturated NHC complex of
titanium ([κ3-O,C,O]-IsNHC)TiCl(OiPr)(THF) 1c (δ 198.6 ppm) [38].

As indicated above, the order of addition of the reagents is crucial here, contrasting the case of
the Zr(OiPr)4(HOiPr) precursor with either a or b proligands in which the homoleptic and zwitterionic
compounds are observed independently of the addition order [44]. For instance, the addition of Ti(OiPr)4

to proligand b in THF at room temperature leads to a mixture of compounds containing at least
complex 1b (unambiguously deduced from by 1H-NMR analysis, cf. Figure S5) along with the zwitterionic
([κ2-O,O]-BzNHC-H)TiCl2(OiPr) 1b’ and homoleptic ([κ3-O,C,O]-BzNHC)2Ti 1b” as minor products (9% and
5%, respectively). Consistent with the observations made earlier for the BzNHC-Zr analogue [44], formation
of zwitterionic 1b’ was further confirmed by single-crystal X-ray diffraction (SCXRD) analysis of a crystal
sampled from the reaction mixture in toluene at −30 ◦C (Supplementary Figure S6 and Table S1).

Similarly, the molecular structures of 1a and the THF-adduct of 1b (1b-THF) were both confirmed
by SCXRD analysis (Figure 1a,b). Selected bond lengths, angles and torsion angles are shown in Table 1.
Further crystallographic information and data for 1a and 1b-THF are given in Table S2.
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solvent molecules are omitted for clarity. Anisotropic displacement parameters (ADP’s) are given at
the 50%pobability level.

Table 1. Interatomic distances, angles, and torsion angles from SCXRD data and from
DFT-optimized geometries.

(INHC)TiCl(OiPr)
(THF) (1a)

(BzNHC)TiCl(OiPr)(THF)
(1b-THF) a

(IsNHC)TiCl
(OiPr)(THF) (1c) b

Bond Length (Å)c

Ti-Ccarbene 2.1310(13)/2.144 2.221(2)/2.214 2.166(3)/2.180
Ti-Cl 2.3739(4)/2.337 2.3459(8)/2.325 2.383(1)/2.336

Ti-OiPr 1.7671(11)/1.785 1.758(2)/1.789 1.779(2)/1.774
Ti-THF 2.2573(11)/2.318 2.2865(2)/2.347 2.272(2)/2.351

Angle (◦)c

∠OAr-Ti-OAr 159.14(4)/157.93 159.18(8)/158.70 159.19(9)/158.23
∠Ti-O-CiPr 139.95(9)/143.18 160.5(3)/140.92 154.7(3)/160.48
∠N-Ccarbene-N 105.22(11)/105.40 106.0(2)/106.20 108.8(2)/108.91

Torsion Angle (◦)c

∠OAr-CAr-N-Ccarbene 5.86/8.02 27.04/22.78 3.35/4.61
∠OAr-CAr-N-Ccarbene 6.89/9.71 −25.40/−25.67 3.51/5.54

a Selected bond distances (Å), angles, and torsion angles (◦) for 1b-THF-isomer A and for 1b-THF-isomer B:
Ti-Ccarbene = 2.212(2), Ti-Cl = 2.3422(8), Ti-OiPr = 1.7685(18), Ti-THF = 2.2867(19),: ∠OAr-Ti-OAr = 155.38(8),
∠Ti-O-CiPr = 165.57(19), ∠N-Ccarbene-N = 106.5(2), ∠OAr-CAr-N-Ccarbene = 24.50, ∠OAr-CAr-N-Ccarbene = −26.06. b

Ref. [38]. c SCXRD structure/DFT-optimized structure.

Both 1a and 1b-THF show a slightly distorted octahedral geometry around the Ti(IV) center as a
result of the mer-coordination of the tridentate NHC ligand, with ∠OAr-Ti-OAr bite angles of 159.14(4)◦

and 159.18(8)◦, respectively. This ligand coordination is similar to that observed earlier for other
bis-phenolate NHC-Ti complexes [20,29,38,40,42,70].
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The principal structural features of both 1a and 1b-THF include (i) a mer-NHC chelate deviating
from planarity, with torsion angles ∠OAr-CAr-N-Ccarbene of 5.86/6.89◦ and 27.04/–25.40◦, respectively,
(ii) trans-dispositioning of the carbene moiety and the Cl atom, and (iii) trans-dispositioning of the
OiPr and the THF ligand. Compared to the corresponding titanium complex bearing a saturated NHC,
([κ3-O,C,O]-IsNHC)TiCl(OiPr)(THF) 1c, the torsion angles ∠OAr-CAr-N-Ccarbene are similar for 1a but
far more distorted from planarity for 1b-THF (Table 1) [38]. The Ti–Ccarbene bond length (2.221(2) Å)
in complex 1b-THF is longer than that of 1c (2.166(3) Å), reflected in a shorter Ti-Cl bond distance
(2.3459(8) Å) trans to the NHC. This is consistent with a weaker trans influence from the presumably
less electron-donating benzimidazolin-2-ylidene moiety [2,71–73]. Less electron donation from the
latter ligand and its deviation from planarity might help explain the relatively short Ti-OiPr bond and
the tendency toward sp2 hybridization, suggested by the relatively wide ∠Ti-O-CiPr angle (160.5(3)◦,
165.57(19)◦ for isomer B), for this oxygen atom. The more sp2-like hybridization may bring about
increased π-donation from the OiPr moiety and thus explain the apparent greater trans influence and
the more weakly bound THF molecule in 1b-THF (Ti-THFavg ≈ 2.28 Å) and 1c than in 1a (Table 1).

The latter complex has the shortest Ti–Ccarbene bond distance (2.1310(13) Å) of all reported NHC-Ti
complexes of functionalized NHC ligands (Ti-Ccarbene = 2.14–2.33 Å) [12,14,29]. As expected, the short
Ti–Ccarbene bond is, due to trans influence, reflected in a Ti–Cltrans bond that is longer than in 1b-THF
and only slightly shorter than in 1c. Whereas ligands based on the imidazolidin-2-ylidene moiety are
often reported to be more electron donating than those of the imidazol-2-ylidene moiety [2,71–73],
the short Ti-Ccarbene bond distance of 1a seems to suggest otherwise. The components of the Ti-Ccarbene

bonds of the three ligands have thus been studied and compared using DFT and NBO analysis
(vide infra). Furthermore, the relatively sharp ∠Ti-O-CiPr angle (139.95(5)◦) of 1a seems to suggest
more sp3-like hybridization and less π-donation of the OiPr ligand. The sharp ∠Ti-O-CiPr angle appears
not to be caused by steric repulsion between the imidazol-2-ylidene and OiPr moieties, since the NHC
in 1a is only slightly less planar than that in 1c. Thus, the presumed weaker π-donation from OiPr in
1a is consistent with the short Ti-THF bond (2.2573(11) Å) which, in turn, is consistent with the trans
influence of OiPr being weaker in 1a than in 1b-THF and 1c.

To further investigate the structural differences of the complexes and their relation to the electronic
properties of the NHC ligands, we studied the ligands and the complexes using DFT and NBO analyses.
First, the DFT calculations predict the experimentally obtained bond distances accurately, to within
0.01–0.02 Å (Table 1). More importantly, the trend in calculated Ti-Ccarbene bond distances between the
complexes faithfully reproduces that obtained in X-ray crystallographic analysis. The large variation
in Ti-Ccarbene bond distances (up to 9 pm when comparing the X-ray structures) are thus not the result
of crystal-packing effects but must instead originate from the carbenes themselves. The experimentally
and computationally obtained Ti-Ccarbene distances thus suggest that the strength of the interaction
between the metal and the carbene diminishes in the order a > c > b for the three NHC ligands (Table 1).
Valence and torsional angles are also well reproduced, except for the ∠Ti-O-CiPr angle. However,
this angle varies by more than 20◦ between the three complexes, presumably reflecting a very shallow
bending potential.

Regarding the Ti–ligand bond energies and interactions, the bond “snapping” energies (Table 2),
i.e., the bond energies calculated by dissociating the tridentate ligands heterolytically to frozen-geometry
[TiCl(OiPr)(THF)]2+ fragments M1a–c and dianionic NHC ligands Ma–c (Supplementary Scheme S1),
are consistent with the trend in Ti-Ccarbene bond distances. Orbital interactions between these pairs
of fragments might thus reveal the origin of the trends in both Ti-Ccarbene bond distances and bond
energies. The calculated ligand-to-metal net electron donations (Table 2) are essentially identical for the
three complexes, showing that further resolution is necessary for uncovering the factors determining
the differences in bond distances and energies.

To uncover these factors, we performed NBO [74] analyses of the individual fragments M1a–c and
Ma–c as well as of the metal-ligand orbital interactions in the three complexes. The most important
fragment and complex orbitals obtained in these analyses are shown in Figures 2 and 3.
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Table 2. NHC binding energies, natural charges, and net electron donation to Ti.

Complex Ti-NHC Snapping Energy a

(kcal mol−1)
NHC Fragment Charge b

(e−)
NHC→Ti Net Donation c

(№ of e−)

1a 597.3 −0.76 0.57
1b-THF 587.3 −0.78 0.58

1c 592.7 −0.76 0.58
a The Ti-NHC bond energies, or bond snapping energies, were calculated from the DFT total energies (i.e., not the
free energies; see Table S2) by dissociating the tridentate ligands heterolytically to frozen-geometry fragments M1a–c
and Ma–c. b The NHC fragment charge is the sum of all the natural atomic charges of the tridentate NHC ligand. c

The NHC→Ti net donation is estimated as the number of electrons needed to reach neutrality for a NHC fragment
in which the atomic charges of the two oxygen atoms have been subtracted (Table S3).
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Insight is offered, for example, by the calculated energies of the C σ orbitals of the three
OH-containing free-carbene ligands Ma–cH2 (Table 3 and Supplementary Scheme S1), which suggest
that the σ-donating capacity should be greatest for c, followed by a and b. Whereas this ranking
is consistent with the relative Ti-Ccarbene bond distances of 1a and 1b-THF, additional factors must
explain why this distance is shorter in 1a than in 1c. An explanation might be offered by the interaction
between the π-orbital of the ligand (C-N π) and a metal d-orbital of the same symmetry (Ti dπ).

Table 3. Absolute energies and electron populations of ligand natural orbitals important for the
Ti-NHC interaction.
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The calculated second-order perturbative estimate of the donor-acceptor interaction between
these two orbitals is largest for 1a, followed by 1c, and 1b-THF (Table 4 and Supplementary Table S4),
consistent with the trend in bond distances and bond energies. In other words, π-donation from the
ligand to the metal is suggested to be stronger for a and to modify the trend offered by the ligand
σ-donating capacity suggested by the C σ energies in Table 3. The importance of ligand-to-metal
π-donation has already been noted for NHC complexes of early transition metals [75–79].

Table 4. Second-order perturbative estimates of donor-acceptor interactions in the NBO basis of 1a,
1b-THF and 1c.

Complex Donor Orbital a Acceptor Orbital E2 (kcal mol−1)

C-N π Ti dπ 2.95
1a OiPr LP C-N π* 1.01

OTHF LP C-N π* 1.26

C-N π Ti dπ 2.44
1b-THF OiPr LP C-N π* 0.30

OTHF LP C-N π* 3.28

1c

C-N π Ti dπ 2.75
C-N π C-N π* 0.83

OiPr LP C-N π* 0.39
OTHF LP C-N π* 1.42

a LP refers to lone pair.

Whereas the above-described donation from largely filled ligand π-orbitals to largely empty
dπ-orbitals of the metal is estimated to contribute significantly to the Ti-NHC bonding, the low
occupations of metal d-orbitals of early transition-metal complexes (see, e.g., Figures 2 and 3) suggest
that π-back donation from titanium to the NHC is much less important for the present complexes
than for complexes of mid-to-late transition metals [71,75]. The metal d-orbitals are considered to be
“lone vacant” orbitals in the NBO analysis (Figures 2 and 3), and direct back-donation from the metal
to the C-N π* orbitals does not appear in the analysis and is likely to be small.

In contrast, the C-Nπ* orbitals are reported to sometimes accept electrons from lone pairs of anionic
ligands of early transition metals [76–79]. Weak contributions of this kind, between isopropoxide
oxygen lone pairs and the C-N π* orbitals, are seen also in the present three complexes (Table 4).
In addition, the second-order perturbation analysis also identifies analogous interactions between the
THF oxygen lone pairs and C-N π*. The strongest of these interactions is in 1b-THF, where it is likely
to be one of the driving forces behind the tilting of the NHC ligand toward the THF.

In conclusion, the calculations show that the strength of the interactions between the metal and
the NHC follows the trend portrayed by the calculated and experimental Ti-NHC bond distances
(a > c > b). Although the ligand-to-metal σ-donation is predicted to be stronger for ligand c (followed by
a, and b), the π-donation from a is stronger and contributes to giving the overall trend in metal-ligand
interaction strength and bond distances. Whereas back-donation from the metal to the NHC seems to
be unimportant, weak donor-acceptor interactions from THF and OiPr lone pairs to the C-N π* orbitals
contribute and are probably involved in the tilting of the NHC seen in 1b-THF.

Due to their potential application in polymerization of CHO with CO2 [29,41–43], the bis-isopropoxide
INHC- and BzNHC-titanium complexes 2a and 2b were also synthesized and were found to be readily
accessible, in quantitative yields (Scheme 2), via salt metathesis of LiOiPr with complex 1a and 1b,
respectively, similarly to the saturated NHC-titanium analogue [38].

The NMR spectra of 2a and 2b contain resonances typical of five-coordinate ([κ3-O,C,O]-
NHC)TiX2 complexes including a doublet resonance originating from the Me groups of the two
OiPr moieties (Supplementary Figures S7–S10), which are consistent with C2v-symmetric structures
in solution for both complexes [38,42,43]. The corresponding 13C NMR spectra confirm the
chelation of the NHC ligand to Ti center with typical chemical resonances at δ183.7 and 198.1 ppm
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(Supplementary Figures S8 and S10) [14,69], respectively, shifted upfield compared to the saturated
([κ3-O,C,O]-IsNHC)Ti(OiPr)2 complex 2c [38]. Furthermore, the complete molecular structures of 2a
and 2b were confirmed by SCXRD analysis, showing that these complexes are five-coordinate and adopt a
distorted square-pyramidal geometry according to the Addison and Reedijk geometric parameter (τ5 = 0.49
for 2a and 0.27 for 2b), with one of the OiPr moieties in apical position (Figure 1; see Supplementary Table S6
for crystallographic data) [80]. Both geometries differ from that of saturated ([κ3-O,C,O]-IsNHC)Ti(OiPr)2

complex 2c in which the five-coordinate Ti metal center adopt a trigonal-bipyramidal geometry
(τ5 = 0.51) [38]. The overall structural data for 2a and 2b resemble those previously observed for
1a and 1b-THF, with the following main particularities: (i) an even more pronounced deviation from
planarity for the mer-NHC chelate, with torsion angles ∠OAr-CAr-N-Ccarbene of −12.88/19.19◦ for 2a and
−28.95/30.36◦ for 2b, (ii) a shorter Ti–Ccarbene bond length for 2a compared to 2b and to the saturated
([κ3-O,C,O]-IsNHC)Ti(OiPr)2 complex, and (iii) ∠Ti-O-CiPr angles approaching linearity (162.7(3) for 2a and
158.0(3)◦ for 2b) for the OiPr co-ligand, indicating enhanced π-donation from this ligand for 2a compared
to 2b and to the saturated-NHC analogue 2c (Supplementary Table S6) [38]. The sharper ∠OAr-Ti-OAr

angle (138.19(8)◦) observed for 2b compared to 1b-THF is most likely a result of steric interactions between
the tBu and OiPr moieties (Supplementary Table S6).

Aiming to further explore NHC-hafnium compounds as precursors for the copolymerization of
epoxide with CO2, attempts to synthesize ([κ3-O,C,O]-INHC)HfCl(OiPr)(THF) 3a complex via addition of
proligand a to Hf(OiPr)4(HOiPr) under the same reaction conditions as for titanium, invariably gave a
mixture of unidentifiable compounds. Only when the addition of a to Hf(OiPr)4(HOiPr) was performed
overnight at room temperature and extended reaction time did the 1H NMR spectrum of the reaction
mixture showed three distinct sets of signals attributable to three different compounds (in ratio ≈ 2:1:0.8),
which unfortunately could not be further separated or isolated. The most intense signal set was
tentatively attributed to ([κ3-O,C,O]-INHC)HfCl(OiPr)(THF) 3a, and the two others to the zwitterionic
([κ2-O,O]-BzNHCH)HfCl2(OiPr) 3b’ and the homoleptic ([κ3-O,C,O]-INHC)2Hf 3a” (Scheme 3).Molecules 2020, 25, x FOR PEER REVIEW 10 of 22 
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Similarly, addition of proligand b to Hf(OiPr)4(HOiPr) under identical conditions led to a mixture
of compounds, among which ([κ3-O,C,O]-BzNHC)Hf(OiPr)(THF) 3b is identified to be the major
product according to 1H NMR (estimated yield 86%, Supplementary Figure S11) and 13C-NMR spectra
(with a typical Hf-Ccarbene at δ 201.8 ppm) [14,69]. The minor side-products presumably are the
zwitterionic 3b’ and the homoleptic 3b” (Scheme 3). As previously observed for the reactivity of
proligands a and b with the Zr-alkoxide precursor, the formation of the homoleptic complex cannot
be completely avoided, most likely due to the reaction of a second proligand with the large metal
ions such as Hf4+. In contrast, the smaller Ti4+ leads to release of HCl, which, in turn, cleaves off
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the M-Ccarbene bond in the ([κ3-O,C,O]-NHC)MCl(OiPr)(THF) complex and thus to the formation
zwitterionic species [44]. Even if 3b could not be further purified, the molecular structure was
established by the recovery of single crystals of 3b suitable for SCXRD analysis from a solution of
unpurified 3b in pentane at −30 ◦C (Figure 4). A crystallographic summary for 3b is included with
the selected bond lengths, angles, and torsion angles in the electronic supplementary information
(Tables S5 and S7). As expected, complex 3b exhibits structural features closely related to those of
1b-THF. Similar observations can be made when 3b is structurally compared to its saturated analogue
([κ3-O,C,O]-IsNHC)HfCl(OiPr)(THF) 3c than between NHC-Ti complexes of 1b-THF and 1c [45].
The only exception is the angle ∠Hf-O-CiPr, which is sharper in the case of 3b than in 3c (162.4(3)◦ vs.
171.1(3)◦), indicating slightly diminished π-donation from the OiPr moiety.
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As previously reported for the bis-isopropoxide BzNHC-titanium complex 2b, the Hf analogue
4b was also synthesized via salt metathesis from the reaction of LiOiPr with complex 3b (Scheme 3).
Although many attempts to isolate the 4b in its pure form were unsuccessful, the NMR data
unambiguously allowed identification of 4b as the major product (Supplementary Figure S12).

2.2. Copolymerization of CHO with CO2

The copolymerization of CHO and CO2 was investigated by using unsaturated and
benzannulated NHC-titanium and hafnium complexes in combination with 1 equiv. of
bis(triphenylphosphine)iminium chloride ([PPN]Cl) as ionic co-catalyst in neat CHO (CHO:M = 1250:1)
under mild conditions (PCO2 = 2 bar, at 65 ◦C) for 24 h (Table 5).

The results were compared with the benchmark saturated-NHC complexes
([κ3-O,C,O]-IsNHC)TiCl(OiPr)(THF) 1c and ([κ3-O,C,O]-IsNHC)HfCl(OiPr)(THF) 3c (Table 5) [41–43,45].
As for the benchmark binary catalyst systems, all NHC-Ti and NHC-Hf catalysts gave completely
alternating PCHC selectively (99% in carbonate linkage) without concomitant formation of CHC
or PCHO. Another characteristic feature of the new catalysts was that they all produced PCHCs
of molecular weights below 4.5 kg mol−1, with bimodal distributions and relatively narrow
polydispersities (Ð < 1.6), indicating a controlled polymerization (entries 1−5 and 7−8, Table 5).
A noticeable trend among the NHC-Ti catalysts is that the unsaturated NHC-Ti 1−2a/[PPN]Cl systems
are less active and productive than the benzannulated NHC-Ti 1−2b/[PPN]Cl systems (entries 1−3
and 5, Table 5). To allow for a direct comparison with the benchmark saturated NHC-Ti 1c catalyst,
the reaction time was shortened to 5 h for avoiding recurrent mass transfer issues about half conversion
in neat CHO [41]. It was found that saturated catalyst system 5/[PPN]Cl is twice as active as the
benzannulated NHC-Ti 1b/[PPN]Cl system (entries 4 and 6, TOFs 62 h−1 vs. 116 h−1, respectively).
Even more pronounced differences in activity were observed when comparing the benzannulated
NHC-Hf 3b and 4b/[PPN]Cl and the saturated NHC-Hf 3c (entries 7−9; TOFs 6−7 h−1 vs. 116 h−1).
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Table 5. Copolymerization of CHO-CO2 catalyzed by titanium and hafnium NHC complexes.
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Entry Precursor a,b Yield
(%) c

Productivity
(gPCHC molM−1 h−1)

TOF
(h−1) d

Mn
(kg mol−1) e Ð e

1 1a 37 2745 22 1.8 1.59
2 2a 26 1940 15 - g - g

3 1b 49 3618 28 4.5 1.43
4 1b f 19 6709 62 1.2 1.54
5 2b 48 3557 24 4.0 1.44
6 1c f 52 18,572 116 5.9 1.41
7 3b 10 770 6 - g - g

8 4b 12 897 7 - g - g

9 3c f 49 17,426 116 9.0 1.18
a Catalyst preformation: addition of 1 equiv. of [PPN]Cl to the precursor in CH2Cl2 at 30 ◦C for 15 min and dried 30
min under vacuum. b Copolymerization conditions: 0.08 mol%M, 10 mmol of CHO, PCO2 = 2 bar at 65 ◦C for 24 h.
c Determined by gravimetry. d Turnover frequency. e Determined by GPC-SEC in THF at 30 ◦C against polystyrene
standards. f 5 h. g Not determined. Note: For all runs, the carbonate linkages are ≥99% and the selectivity in PCHC
are >99% without by-products and determined by 1H-NMR spectroscopy in CDCl3.

The trend in catalytic activity (1c > 1b-THF > 1a) might originate from the inherent
stability of the complexes and might also, at least in part, originate from the lability of
the THF molecule and the ease with which this ligand is displaced to form the putative
anionic six-coordinate intermediate upon activation with [PPN]Cl, as previously shown with
the anionic catalysts [([κ3-O,C,O]-IsNHC)HfCl3]− [45] and [([κ4-N,O,O,O]-ATP)TiCl(OiPr)]−

(ATP = amino-tris(phenolate)) [62]. The more active catalysts 1c and 1b-THF have, according
to SCXRD and DFT, longer Ti-THF bonds than 1a, which indicate a weakly bonded THF ligand and a
higher rate of formation of the active species and/or, by analogy to other catalytic systems [46–50,52,81],
a faster dissociation of the growing polymer chains during the copolymerization. The length of the
Ti-THF bond, in turn, does not correlate in a straightforward fashion with the net electron donation
from the NHC moiety to the metal center (which are very similar; see Table 2) or with the length or
strength of the Ti-NHC bond. The latter bond appears to influence the lability of the THF ligand more
indirectly, via the Ti-OiPr bond trans to the THF. For example, the long Ti-Ccarbene bond in 1b-THF
results in a short Ti-OiPr bond and, due to trans influence, a long and presumably weak Ti-THF bond.

3. Materials and Methods

3.1. Experimental Details

All operations were performed with rigorous exclusion of moisture and air, using standard
Schlenk-line system and glovebox techniques under argon atmosphere (MB Braun MB200B-G,
<1 ppm O2 and <1 ppm H2O). Hexane, toluene, THF and dichloromethane were purified, by using
Grubbs columns (MBraun solvent purification system). Pentane, C6D6, CDCl3, and CHO were
degassed and dried overnight over sodium or CaH2, back transferred and then employing the
freeze-pump-thaw procedure. All chemicals were obtained from Sigma-Aldrich/Merck and used
as received. Proligands a, b, and c [26,67,68,82,83], compounds ([κ3-O,C,O]-IsNHC)TiCl(OiPr)(THF)
1c [38] and ([κ3-O,C,O]-IsNHC)HfCl(OiPr)(THF) 3c [25,45] were prepared according to the literature
procedures. [PPN]Cl was recrystallized prior to use [84]. Carbon dioxide purity grade (99.999%)
was purified through copper oxide on alumina and molecular sieves (3 Å).

The NMR spectra (Bruker, Billerica, MA, USA) of air and moisture sensitive compounds were
recorded by using J. Young valve NMR tubes at 25 ◦C on a Bruker-BIOSPIN-AV500 ultrashield 500 plus
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(5 mm BBO with z-gradient BTO, 1H: 500.13 MHz; 13C: 125.75 MHz), and a Bruker Ascend AV850
III HD (5 mm triple resonance CryoProbe, 1H: 850.13 MHz; 13C: 213.77 MHz). 1H and 13C shifts are
referenced to internal solvent resonances and reported in parts per million relative to TMS. DRIFT
spectra (Thermo Nicolet, Madison, WI, USA) were recorded by using a Nicolet protégé 460 ESP FTIR
spectrometer and a DRIFT cell (KBr window) under argon atmosphere. The spectra were averaged over
64 scans; the resolution was ± 4 cm−1. Elemental analysis of C, H and N elements was performed on an
Elementar Vario EL III. GPC-SEC (Viscotek-Malvern, Worcestershire, UK) was measured, to determine
Mn and Mw of the PCHC polymers obtained from the catalytic testing, from Viscotek. Narrow
polystyrene PS-99K (Mw = 99.284 kg mol−1, Mn = 97.381 kg mol−1 and IV = 0.477 dL g−1) and all
calibration standards were obtained from Malvern PolyCAL. Approx. 30 mg of each polymer, obtained
from the catalytic testing, were dissolved in exactly 10 mL THF (containing 250 ppm BHT inhibitor).
The sample solutions (≈ 3.0 mg mL−1 in THF) were filtered through syringe filter Whatmann (0.45 µm
pore size) prior to injection. Chromatographic separation was performed at a column temperature
of 30 ◦C with a flow rate of 1 mL min−1. SEC was performed with a pump supplied by Viscotek
(GPCmax), employing two ViscoGel columns. Signals were detected by means of a triple detection
array (TDA 302) and calibrated against polystyrene standards (Ð < 1.2, from 0.12–940 kg mol−1).

3.2. Synthesis of ([κ3-O,C,O]-INHC)TiCl(OiPr)(THF) 1a

In a glovebox, to a stirred solution of Ti(OiPr)4 (28 mg, 0.098 mmol) in 7 mL THF precooled at
−30 ◦C was added dropwise a solution of one equiv. of a (50 mg, 0.098 mmol) in THF (12 mL) at
−30 ◦C. The colorless mixture immediately turned yellow-orange upon addition of Ti(OiPr)4 and was
stirred 2 h at room temperature, then dried under vacuum. The yellow solid was washed with small
fraction of hexane (3 × 2 mL) and all volatiles were removed under vacuum affording yellow powder
1a. Yield = 86%. Yellow crystals of 1a suitable for SCXRD analysis (Bruker-AXS, Madison, WI, USA)
could be obtained from THF: hexane (1:3) at −30 ◦C after one week. Anal. Calcd for C38H57N2O4Ti:
C, 66.22; H, 8.34; N, 4.06%. Found: C, 65.69; H, 7.82; N, 4.01%. Despite several attempts, no better
elemental analysis data could be obtained. 1H NMR (500.13 MHz, C6D6, 25 ◦C): δ, 7.60 (d, J = 2.2 Hz,
2H, Ar-H), 7.17 (d, J = 2.2 Hz, 2H, Ar-H), 6.99 (s, 2H, NCH), 4.76 (sept, J = 6.1 Hz, 1H, O-CH(CH3)2),
3.58 (m, 4H, THF), 1.93 (s, 18H, tBu), 1.41 (m, 4H, THF), 1.35 (s, 18H, tBu), 0.94 (d, J = 6.1 Hz, 6H,
O-CH(CH3)2) ppm. 13C{1H} NMR (125.77 MHz, C6D6, 25 ◦C): δ, 184.0 (NCN), 151.8 (Cq, Ar), 141.5
(Cq, Ar), 139.9 (Cq, Ar), 127.1 (Cq, Ar), 122.7 (CH-Ar), 116.2 (NCH), 112.3 (CH-Ar), 84.0 (O-CH(CH3)2),
67.9 (THF), 36.3 (Cq, tBu), 34.7 (Cq, tBu), 31.8 (CH, tBu), 30.4 (CH, tBu), 26.0 (O-CH(CH3)2), 25.8 (THF)
ppm. DRIFT (KBr, ν/cm−1, [4000–400]): 2958vs, 2930s, 2906s, 2867m, 1477s, 1447s, 1390vw, 1361w,
1322s, 1270m, 1253w, 1115s, 1105m, 1009m, 923vw, 861s, 844w, 773w, 764vw, 571m, 454w.

3.3. Synthesis of ([κ3-O,C,O]-BzNHC)TiCl(OiPr) 1b

In a glovebox, to a stirred solution of Ti(OiPr)4 (50.5 mg, 0.178 mmol) in 5 mL THF precooled
at −30 ◦C was added dropwise a solution of one equiv. of b (100 mg) in THF (12 mL) at −30 ◦C.
The colorless mixture immediately turned yellow upon addition of Ti(OiPr)4 and was stirred 2 h
at room temperature, then dried under vacuum. The yellow solid was washed with small fraction
of hexane (3 × 2 mL) and all volatiles were removed under vacuum affording yellow powder 1b.
Yield = 84%. Yellow crystals of THF adduct of 1b (1b-THF) suitable for SCXRD analysis could be
obtained from a mixture of THF:pentane (1:3) at −30 ◦C after 2 days. Anal. Calcd for C42H59ClN2O4Ti:
C, 68.24; H, 8.04; N, 3.79%. Found: 68.36; H, 8.08; N, 4.15%. 1H NMR (500.13 MHz, C6D6, 25 ◦C): δ,
7.90 (m, 2H, Arbz-H), 7.73 (d, J = 2.3 Hz, 2H, Ar-H), 7.62 (d, J = 2.3 Hz, 2H, Ar-H), 7.00 (m, 2H, Arbz-H),
4.35 (sept, J = 6.2 Hz, 1H, O-CH(CH3)2), 1.93 (s, 18H, tBu), 1.33 (s, 18H, tBu), 0.80 (d, J = 6.2 Hz, 6H,
O-CH(CH3)2) ppm. 13C{1H} NMR (125.77 MHz, C6D6, 25 ◦C): δ, 195.2 (NCN), 152.9 (Cq, Ar), 141.3
(Cq, Ar), 139.6 (Cq, Ar), 133.3 (Cq, Ar), 126.2 (Cq, Ar), 125.3 (CH-Ar), 122.9 (CH-Ar), 116.2 (CH-Ar),
114.5 (CH-Ar), 86.4 (O-CH(CH3)2), 36.3 (Cq, tBu), 34.7 (Cq, tBu), 31.7 (CH3, tBu), 30.3 (CH3, tBu), 25.6
(O-CH(CH3)2) ppm. DRIFT (KBr, ν/cm−1, [4000–400]): 2960vs, 2928s, 2869m, 1552m, 1483s, 1469m,
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1441s, 1380m, 1364m, 1309m, 1291m, 1269m, 1256 m, 1202vw, 1119s, 1019m, 918w, 857s, 803vw, 752m,
701w, 637w, 576m, 495w, 418w.

3.4. Synthesis of [κ3-O,C,O]-(INHC)Ti(OiPr)2 2a

To a solution of 1a (26 mg, 0.037 mmol) in 5 mL THF precooled at –30 ◦C was added dropwise
1.1 equiv. of LiOiPr (2.7 mg, 0.041 mmol) dissolved in 3 mL THF. The solution was stirred at room
temperature overnight, then dried under vacuum and extracted with hexane. The bright yellow
solution mixture was centrifuged, filtered, and then dried under vacuum affording a pale-yellow
powder 2a. Yield = 78%. Orange crystal of 2a suitable for SCXRD analysis could be obtained from
hexane at −30 ◦C after 2 days. Anal. Calcd for C37H56N2O4Ti: C, 69.36; H, 8.81; N, 4.37%. Found: C,
68.97; H, 8.54; N, 4.00%. 1H NMR (500.13 MHz, C6D6, 25 ◦C): δ, 7.61 (br d, J = 2.3 Hz, 2H, ArH), 7.18
(br d, J = 2.3 Hz, overlapping with benzene signal, ArH), 7.01 (s, overlapping with spinning side band,
NCH), 5.07 (sept, J = 6.0 Hz, 2H, O-CH(CH3)2), 1.92 (s, 18H, tBu), 1.39 (s, 18H, tBu), 1.31 (d, J = 6.0 Hz,
12H, O-CH(CH3)2) ppm. 13C{1H} NMR (213.77 MHz, C6D6, 25 ◦C): δ, 183.6 (NCN), 152.7 (Cq, Ar), 141.5
(Cq, Ar), 139.4 (Cq, Ar), 127.2 (Cq, Ar), 122.3 (CH-Ar), 116.3 (NCH), 112.9 (CH-Ar), 77.9 (O-CH(CH3)2),
36.3 (Cq, tBu), 34.6 (Cq, tBu), 31.9 (CH3, tBu), 30.5 (CH3, tBu), 26.9 (O-CH(CH3)2) ppm. DRIFT (KBr,
ν/cm−1, [4000–400]): 2957vs, 2918s, 2900s, 2861m, 1480vs, 1450s, 1391vw, 1361w, 1321s, 1272m, 1254w,
1197w, 1125m, 1007m, 922vw, 850m, 799vw, 771w, 722w, 662vw, 558w, 454w.

3.5. Synthesis of ([κ3-O,C,O]-BzNHC)Ti(OiPr)2 2b

To a solution of 1b (80 mg, 0.108 mmol) in 5 mL THF precooled at −30 ◦C was added dropwise
1.2 equiv. of LiOiPr (8.3 mg, 0.126 mmol) dissolved in 3 mL THF. The yellow solution was stirred at
room for 2 h, then dried under vacuum and extracted with hexane. The pale orange solution mixture
was centrifuged, filtered, and then dried under vacuum affording a pale-yellow powder 2b. Yellow
crystals of 2b suitable for SCXRD analysis could be obtained from hexane at –30 ◦C after 2 days.
Yield = 94%. Anal. Calcd for C41H58N2O4Ti.1/2THF: C, 70.19; H, 8.63; N, 3.81%. Found: C, 69.64; H, 8.63;
N, 3.79%. 1H NMR (500.13 MHz, C6D6, 25 ◦C): δ, 7.87 (m, 2H, Arbz-H), 7.75 (d, J = 2.3 Hz, 2H, Ar-H),
7.64 (d, J = 2.3 Hz, 2H, Ar-H), 6.96 (m, 2H, Arbz-H), 4.94 (sept, J = 6.1 Hz, 1H, O-CH(CH3)2), 1.92 (s, 18H,
tBu), 1.37 (s, 18H, tBu), 1.27 (d, J = 6.1 Hz, 6H, O-CH(CH3)2) ppm. 13C{1H} NMR (125.77 MHz, C6D6,
25 ◦C): δ, 198.1 (NCN), 153.7 (Cq, Ar), 139.5 (Cq, Ar), 139.0 (Cq, Ar), 133.6 (Cq, Ar), 126.9 (Cq, Ar),
124.5 (CH-Ar), 122.3 (CH-Ar), 116.8 (CH-Ar), 114.2 (CH-Ar), 78.9 (O-CH(CH3)2), 36.3 (Cq, tBu),
34.6 (Cq, tBu), 31.9 (CH, tBu), 30.4 (CH, tBu), 26.5 (O-CH(CH3)2) ppm. DRIFT (KBr, ν/cm−1, [4000–400]):
2960vs, 2928s, 2865m, 1566m, 1485s, 1465m, 1431s, 1370m, 1362m, 1309m, 1325w, 1289m, 1269m, 1256m,
1236w, 1226w, 1198vw, 1163m, 1123s, 1013s, 922vw, 878w, 853s, 797vw, 766w, 752m, 695w, 641w, 616w,
592w, 560m, 485w.

3.6. Synthesis of ([κ3-O,C,O]-BzNHC)HfCl(OiPr)(THF) 3b

In a glovebox, Hf(OiPr)4(HOiPr) (76.4 mg, 0.160 mmol) in 7 mL THF was added dropwise over
one hour to ligand b (80 mg, 0.142 mmol) dissolved in 20 mL THF at room temperature. The solution
immediately turned pale yellow and then completely colorless after stirring for 24 h. The reaction
mixture was dried under vacuum and extracted with hexane. The colorless solution mixture was
centrifuged, filtered, washed with pentane, and then dried under vacuum affording a yellow-white
powder corresponding to compound 3b along with side products. Yield ≈ 86% (based on 1H NMR
data). Colorless crystals of 3b suitable for SCXRD analysis could be obtained from pentane at −30 ◦C
after 3 days. This compound could never be isolated in pure form even after repeated washings with
hydrocarbon solvents. Major compound 3b: 1H NMR (500.13 MHz, C6D6, 25 ◦C): δ, 8.01 (m, 2H, Arbz-H),
7.72 (d, J = 2.4 Hz, 2H, Ar-H), 7.68 (d, J = 2.4 Hz, 2H, Ar-H), 7.01 (m, 2H, Arbz-H), 4.56 (sept, J = 6.1
Hz, 1H, O-CH(CH3)2), 3.47 (m, 4H, THF), 1.89 (s, 18H, tBu), 1.36 (s, 18H, tBu), 1.10 (d, J = 6.1 Hz, 6H,
O-CH(CH3)2), 0.67 (br s, 4H, THF) ppm. 13C{1H} NMR (213.77 MHz, C6D6, 25 ◦C): δ, 201.8 (NCN), 152.2
(Cq, Ar), 141.1 (Cq, Ar), 139.3 (Cq, Ar), 134.2 (Cq, Ar), 126.9 (Cq, Ar), 124.7 (CH-Ar), 123.2 (CH-Ar), 117.9



Molecules 2020, 25, 4364 14 of 21

(CH-Ar), 114.0 (CH-Ar), 73.7 (THF), 70.7 (O-CH(CH3)2), 36.2 (Cq, tBu), 34.6 (Cq, tBu), 31.8 (CH3, tBu),
30.4 (CH3, tBu), 27.0 (O-CH(CH3)2), 25.0 (THF) ppm.

3.7. Synthesis of ([κ3-O,C,O]-BzNHC)Hf(OiPr)2(THF) 4b

In a glovebox, to a solution of 3b (37.2 mg, 0.043 mmol) in 10 mL THF was added dropwise 1.1 equiv.
LiOiPr (3.1 mg, 0.047 mmol) dissolved in 5 mL THF. The solution immediately turned yellow and then
completely colorless after stirring at room temperature for 24 h. The reaction mixture was dried under
vacuum and extracted with hexane. The colorless solution mixture was centrifuged, filtered, washed
with pentane, and then dried under vacuum affording a white powder corresponding to compound 4b as
major compound in quantitative yield along with minor unidentified side compounds. This compound
could never be isolated in pure form even after repeated washings with hydrocarbon solvents.
Major compound 4b: 1H-NMR (500.13 MHz, C6D6, 25 ◦C): δ, 7.98 (m, 2H, Arbz-H), 7.72 (d, J = 2.7 Hz,
2H, Ar-H), 7.68 (d, J = 2.7 Hz, 2H, Ar-H), 7.01 (m, 2H, Arbz-H), 4.63 (br m, 2H, O-CH(CH3)2),
3.42 (br m, 4H, THF), 1.90 (s, 18H, tBu), 1.37 (s, 18H, tBu), 1.31 (6H, O-CH(CH3)2), 1.07 (br m, 4H,
THF) ppm. 13C{1H} NMR (213.77 MHz, C6D6, 25 ◦C): δ, 206.2 (NCN), 153.1 (Cq, Ar), 140.7 (Cq, Ar),
138.7 (Cq, Ar), 134.5 (Cq, Arbz), 127.1 (Cq, Ar), 124.2 (CH-Arbz), 122.7 (CH-Ar), 118.2 (CH-Ar),
113.8 (CH-Arbz), 71.5 (O-CH(CH3)2), 69.1 (THF), 36.3 (Cq, tBu), 34.5 (Cq, tBu), 31.9 (CH3, tBu),
30.4 (CH3, tBu), 28.0 (O-CH(CH3)2), 25.2 (THF) ppm.

3.8. Copolymerization of CHO and CO2

A detailed copolymerization procedure is described as a typical example (Table 5, Entry 1). In a
glovebox, an reaction tube for low-pressure reactions equipped with a magnetic stirring bar, a solution
of the [PPN]Cl cocatalyst (8 µmol) in dichloromethane (ca. 1 mL) was added under vigorous stirring to
a solution of complex 1a (8 µmol) in dichloromethane (ca. 1 mL). The mixture was stirred at ambient
temperature for 15 min and the solvent was removed under vacuum (30 min). The resulting solid
was then dissolved in a precooled (−30 ◦C) solution of CHO (10 mmol). Then to the reaction tube was
added 2 bar of CO2 and the reaction mixture was heated to 65 ◦C. After 24 h, the reaction was cooled
down and the pressure was released. An aliquot of the solution was taken for characterization of crude
material by 1H-NMR spectroscopy in CDCl3. Then, the reaction mixture was quenched with 1 mL
of acidic methanol, precipitated with methanol, and dried for several hours at 80 ◦C until constant
weight. The yield was determined gravimetrically.

3.9. X-ray Crystallographic Details

Suitable crystals for diffraction experiments were selected in a glovebox and mounted in a minimum
of Parabar 10,312 oil (Hampton Research) in a nylon loop and then mounted under a nitrogen cold
stream from an Oxford Cryosystems 700 series open-flow cryostat. Data collection was done on a Bruker
AXS TXS rotating anode system with an APEXII Pt135 CCD detector (Bruker-AXS, Madison, WI, USA)
using graphite-monochromated Mo Kα radiation (λ = 0.710 73 Å). Data collection and data processing
were done using APEX2 [85], SAINT [86], and SADABS [87] version 2012/1, whereas structure solution
and final model refinement were done using SHELXS [88] version 2013/1 or SHELXT [89] version
2014/4 and SHELXL [90] version 2014/7. Details of the crystallographic analyses for 1a, 2a, 1b-THF,
1b’, 2b, and 3b are given in Supplementary Tables S1 and S5 and in CIF files (CCDC reference codes
2026401-2026406). These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif,
or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK, fax: +44 223 336033.

3.10. Computational Methods

All density functional theory (DFT) calculations were performed with the Gaussian 16 suite of
programs [91].

www.ccdc.cam.ac.uk/data_request/cif
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3.10.1. Geometry Optimization

Geometry optimization was performed using the Gaussian 16 implementation of the
generalized-gradient approximation (GGA) functional of Perdew, Burke and Ernzerhof (PBE) [92]
including Grimme’s D3 empirical dispersion term [93] with revised Becke-Johnson damping
parameters [94] (overall labelled PBE-D3M(BJ) for brevity). All atoms except titanium were described by
Dunning’s correlation-consistent valence triple-ζ plus polarization basis sets (termed cc-pVTZ) [95,96],
as retrieved from the EMSL basis set exchange database [97,98]. Titanium was described by the
Stuttgart 10-electron relativistic effective core potential (termed ECP10MDF) in conjunction with
its accompanying primitive basis set (8s7p6d2f1g) contracted to [6s5p3d2f1g]. Both the effective
core potential and the accompanying basis set were retrieved from the Stuttgart/Cologne group
website [99]. Numerical integrations were performed using the Gaussian 16 (99,590) “ultrafine” grid
(keyword int = ultrafine), a pruned grid consisting of 99 radial shells and 590 angular points per
shell, except when solving the coupled-perturbed Hartree-Fock equations (part of the analytical
second-derivatives calculations) for which the pruned (75,302 grid) “fine” grid was used (keyword
CPHF=(Grid=Fine)). Geometries were optimized using tight convergence criteria (max. force 1.5× 10−5

a.u., RMS force 1.0 × 10−5 a.u., max. force 6.0 × 10−5 a.u., RMS force 4.0 × 10−5 a.u.), without symmetry
constraints, using convergence criteria for the self-consistent field (SCF) optimization procedure that
were tightened tenfold compared to the default settings. The tightened criteria were RMS change in
density matrix < 1.0 × 10−9 and max. change in density matrix < 1.0 × 10−7. All stationary points
were characterized by the eigenvalues of the analytically calculated Hessian matrix and confirmed to
be minima.

3.10.2. Single-Point Energy Calculations

All single-point energy calculations were performed with the same PBE-D3M(BJ) functional as
described above for geometry optimization. For titanium, carbon, and hydrogen atoms, the basis
sets were also the same as those used in the geometry optimizations. All other atoms (N, O and Cl)
were described by correlation-consistent valence triple-ζ plus polarization basis sets augmented by
diffuse functions (EMSL: aug-cc-pVTZ) [95,97,98,100]. Numerical integrations were performed with
the “ultrafine” grid of Gaussian 16, and the SCF density-based convergence criterion was set to 10−5

(RMS change in density matrix < 1.0 × 10−5, max. change in density matrix = 1.0 × 10−3).

3.10.3. Natural Bond Orbital Calculations

All natural bond orbital calculations were performed with the NBO7 program [74], using the
wavefunction produced by the Gaussian 16 single-point energy calculation as input. Keywords used
in the NBO7 job include “bndidx”, which requests the print-out of the NAO-Wiberg Bond Index
array, “NBO” which requests the calculation and printing of NBO’s, and “DMNAO” which requests
the natural atomic orbital density matrix. To get a comparable set of orbitals among the complexes,
the Lewis structures were explicitly restricted to those shown in Supplementary Scheme S2 via the
$CHOOSE input section.

4. Conclusions

A series of titanium and hafnium complexes bearing unsaturated and benzannulated tridentate,
bis-phenolate NHC ligands have been synthesized and characterized. The Ti-Ccarbene distances with
which these ligands bind to the metal vary considerably (by 9 pm), and these differences manifest
themselves, via trans influence and other “ripple effects”, in significant variations also in the other
metal-ligand bond distances. These structural differences and their relation to the metal-NHC bonds
and the electronic properties of the ligands have been studied for titanium complexes 1a, 1b-THF,
and 1c using DFT and NBO analyses. The shorter Ti-Ccarbene distance in 1a than in the other two
complexes seems to originate from stronger ligand-to-metal π-donation, whereas the corresponding
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σ-donation is weaker than in 1c. In contrast, back-donation directly from the metal to the NHC ligand
seems to be unimportant in these d0 complexes. Still, the C-N π* NHC orbitals are involved in bonding
as they interact with THF and isopropoxide oxygen lone-pair donor orbitals, an interaction that appears
to contribute to the tilting of the NHC ligand toward the THF in 1b-THF.

The new complexes catalyze the copolymerization of CHO with CO2 under mild reaction
conditions (PCO2 = 2 bar and 65 ◦C) to exclusively give poly(cyclohexene carbonate) product, albeit
with low-to-moderate yields. Among the new complexes, the benzannulated-NHC-coordinated
titanium complex (1b-THF) gives the most active catalyst upon activation with [PPN]Cl. Including
previously reported complexes, the order among the NHC ligands in terms of catalytic activity
is as follows: imidazolidin-2-ylidene (saturated) > benzimidazolin-2-ylidene (benzannulated) >

imidazolin-2-ylidene (unsaturated). Although further mechanistic studies are needed to uncover the
factors governing this order, it might be influenced by the inherent stability of the complexes and
possibly also the lability of the THF ligand, as suggested by the variation in Ti-THF distance among
the complexes.

Supplementary Materials: The following are available online at, Figure S1: 1H-NMR spectrum of complex 1a;
Figure S2: 13C NMR spectrum of complex 1a; Figure S3: 1H NMR spectrum of complex 1b; Figure S4: 13C NMR
spectrum of complex 1b; Figure S5: 1H NMR spectrum of 1b, 1b’ and 1b”; Figure S6: Molecular structure of
zwitterionic compound 1b’; Table S1: Crystal structure and refinement data for 1a, 1b-THF and 1b’; Scheme S1:
Complexes and ligands that have been subjected to DFT calculations; Table S2: DFT energies at the single-point
level of theory; Table S3: Natural atomic charges of complexes 1a, 1b-THF and 1c; Table S4: Second-order
perturbative estimates of donor-acceptor interactions in the NBO basis of 1a, 1b-THF and 1c; Figure S7: 1H
NMR spectrum of complex 2a; Figure S8: 13C NMR spectrum of complex 2a; Figure S9: 1H NMR spectrum of
complex 2b; Figure S10: 13C NMR spectrum of complex 2b; Table S5: Crystal structure and refinement data for
2a, 2b and 3b; Figure S11: 1H NMR spectrum of complex 3b, 3b’ and 3b”; Figure S12: 1H NMR spectrum of
complex 4b; Table S6: Interatomic distances, angles and torsion angles for 5-coordinate complexes 2a, 2b and
2c; Table S7: Interatomic distances, angles and torsion angles for 6-coordinate complexes 3b and 3c; Scheme
S2: Lewis structures used in the NBO analyses; and list of Cartesian coordinates. The following are available
online, Supporting Information (pdf) containing crystal data. CIF files containing crystal data for complexes 1a,
2a, 1b-THF, 1b’, 2b, and 3b.
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