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Abstract 

 

The field of computational proteomics is approaching the big data age, driven both by 

a continuous growth in the number of samples analysed per experiment, as well as by 

the growing amount of data obtained in each analytical run. In order to process these 

large amounts of data, it is increasingly necessary to use elastic compute resources 

such as Linux-based cluster environments and cloud infrastructures. Unfortunately, 

the vast majority of cross-platform proteomics tools are not able to operate directly on 

the proprietary formats generated by the diverse mass spectrometers. Here, we 

present ThermoRawFileParser, an open-source, cross-platform tool that converts 

Thermo RAW files into open file formats such as MGF and the HUPO-PSI standard 

file format mzML. To ensure the broadest possible availability, and to increase 

integration capabilities with popular workflow systems such as Galaxy or Nextflow, we 

have also built Conda package and BioContainers container around 

ThermoRawFileParser. In addition, we implemented a user-friendly interface 

(ThermoRawFileParserGUI) for those users not familiar with command-line tools. 

Finally, we performed a benchmark of ThermoRawFileParser and msconvert to verify 

that the converted mzML files contain reliable quantitative results. 



Introduction 

 

The field of computational proteomics is approaching the big data age (1), driven both 

by a continuous growth in the number of samples analysed per experiment, as well as 

by the growing amount of data obtained in each analytical run. At the same time, more 

data is now publicly available in proteomics repositories, which in turn means that 

there is increasing benefit to be had from the reanalysis of millions of mass spectra 

(2-5) to find new biological insights (e.g. novel variants and post-translational 

modifications (6)).  However, in order to process these large amounts of (public) data, 

it is increasingly necessary to use elastic compute resources such as Linux-based 

cluster environments and cloud infrastructures (7).  

 

The development of computational proteomics tools has historically been favoured  

the Microsoft Windows operating systems with tools such as ProteomeDiscover, 

MaxQuant (8), PeaksDB and Mascot Distiller (9). An important driver for this bias has 

been the lack of cross-platform libraries to access instrument output data files (RAW 

files) from major instrument providers (10). Several approaches have been devised to 

overcome this challenge, including the use of dedicated Windows machines in 

workflows (11) for conversion to RAW data to standard file formats such as mzML 

(12), the encapsulation of  Windows tools such as ReAdW (13) and msconvert (14) 

into WineHQ (http://tools.proteomecenter.org/wiki/index.php?title=Msconvert_Wine) 

to make these tools Linux-compatible, and even the creation of reverse-engineered 

RAW file readers (15). 

 

An important breakthrough was achieved in 2016, when Thermo Scientific released 

the first cross-platform application programming interface (API) that enables access 

to Thermo RAW files from all their instruments on all commonly used operating 

systems (e.g. Linux/Unix, Mac OX or Microsoft Windows). Importantly, this provides 

the enticing possibility to move proteomics into Linux/UNIX environments, including 

scalable clusters and cloud environments. This library has already led to a new version 

of the popular MaxQuant framework that is compatible with Linux/UNIX environments 

(16), and it has also been incorporated into the cross-platform, cluster-oriented 

quantification tool moFF (17).  

 

http://tools.proteomecenter.org/wiki/index.php?title=Msconvert_Wine


While the Thermo cross-platform library thus enables specially-developed software to 

access Thermo Raw files on diverse operating systems, most open-source 

computational proteomics workflows (e.g. OpenMS (18), Galaxy-P (19), and the 

Trans-Proteomics pipeline (TPP) (20)) are based on generic, open data formats such 

as Mascot Generic File (MGF) or mzML. In order to allow these tools to benefit 

maximally from the cross-platform access to Thermo Raw files, we here present 

ThermoRawFileParser, an open-source, cross-platform tool that converts Thermo 

RAW files into open file formats such as MGF and mzML similar to other tools such 

as msconvert (14) and RawTools (21). To ensure the broadest possible availability, 

and to increase integration capabilities with popular workflow systems such as Galaxy 

(22) or Nextflow (23), we have also built a Conda package (24) and a BioContainers 

(25) container around ThermoRawFileParser. Finally, we performed a benchmark of 

ThermoRawFileParser and msconvert to verify that the converted mzML files contain 

reliable quantitative results.  

 

Materials 

 

Tool Design and Integration 

 

ThermoRawFileParser (https://github.com/compomics/ThermoRawFileParser) has 

been implemented following a modular design (Figure 1). Every file specific exporter 

is implemented as an independent module, which enables easy extension to include 

more exporters in the future. Currently, the tool can export to MGF 

(MGFSpectrumWriter), mzML (MzMLSpectrumWriter), and JSON (for the metadata 

only) (MetadataWriter). This modular design has already enabled the community to 

extend the library for other novel file formats such as Parquet 

(ParquetSpectrumWriter), which is designed for distributed big data processing 

clusters of Hadoop or Spark. The JSON export of ThermoRawFileParser can 

optionally be used to only extract various metadata elements (including instrument 

settings and scan settings; see https://github.com/PRIDE-Archive/pride-metadata-

standard) (Figure 2). This specific feature is currently used by the PRIDE Database 

to re-annotate thousands of RAW files with the correct instrument metadata. For peak 

picking, data centroiding, and noise removal, ThermoRawFileParser relies on the 

native methods provided by the Thermo API. 

https://github.com/compomics/ThermoRawFileParser
https://github.com/PRIDE-Archive/pride-metadata-standard
https://github.com/PRIDE-Archive/pride-metadata-standard


A key feature of any open-source tool is its ability to integrate with other frameworks 

(26). We have therefore created a BioConda recipe (24) for ThermoRawFileParser 

(https://github.com/bioconda/bioconda-

recipes/tree/master/recipes/thermorawfileparser), which can be used to automatically 

build a Docker Container. This Docker is pushed to the BioContainer project (25), 

which in turn enables easy reuse of the tool by both the Galaxy (22) and the Nextflow 

(23) environments. As an illustration of such integration, we have developed a 

Nextflow workflow for the proteomics community, which converts an entire 

ProteomeXchange project using the ThermoRawFileParser container 

(https://github.com/bigbio/nf-workflows/tree/master/thermo-convert-nf). 

 

In addition to the command-line tool, we have implemented a graphical user interface 

that makes the use of ThermoRawFileParser easier and highly intuitive, enabling the 

user to perform conversions of RAW files (Figure 3). The GUI includes all main options 

of ThermoRawFileParser, and a report system to report errors during the conversion. 

ThermoRawFileParserGUI (Figure 3) is an open source Java program, available in a 

cross-platform package that incorporates ThermoRawFileParser executables for the 

main operating systems. It can be downloaded from 

https://github.com/compomics/ThermoRawFileParserGUI. 

 

Benchmark datasets 

 

Three different public Thermo datasets were used to compare the conversion from 

RAW files into mzML with the ProteoWizard msconvert tool and the 

ThermoRawFileParser: PXD006336 (Orbitrap Q-Exactive), PXD014346 (Orbitrap 

Fusion Lumos), PXD001502 (Orbitrap Velos). We used a Nextflow workflow and the 

Identification-free OpenMS quality control (27) tools to benchmark different metrics 

such as: Number of spectra MS1/MS2, number of peaks by spectrum  

(https://github.com/bigbio/nf-workflows/tree/master/qc-idfree_from_raw).  

 

We used the IPRG2015 dataset (https://www.ebi.ac.uk/pride/archive/projects/ 

PXD006336) (28) to benchmark the quality of the mzML files produced by 

ThermoRawFileParser. This dataset is based on four artificially constructed samples 

https://github.com/bioconda/bioconda-recipes/tree/master/recipes/thermorawfileparser
https://github.com/bioconda/bioconda-recipes/tree/master/recipes/thermorawfileparser
https://github.com/bigbio/nf-workflows/tree/master/thermo-convert-nf
https://github.com/compomics/ThermoRawFileParserGUI
https://github.com/bigbio/nf-workflows/tree/master/qc-idfree_from_raw


of known composition, each containing a constant background of 200ng of tryptic 

digests of S. cerevisiae (ATCC strain 204508/S288c). Each sample was separately 

spiked in with different quantities of six individual protein digests. Samples were 

analysed in three LC−MS/MS using a Thermo Scientific Q-Exactive mass 

spectrometer (12 runs). Both MS and MS/MS data were acquired in profile mode in 

the Orbitrap, with resolution 70 000 for MS and 17 500 for MS/MS. The MS1 scan 

range was 300−1650 m/z, the normalized collision energy was set to 27%, and singly 

charged ions were excluded (28).  

 

Quantification workflow 

 

To perform the quantification benchmark using the PXD006336 dataset, we built a 

workflow using OpenMS (18, 27) in which raw files were converted from Thermo 

Scientific RAW files to mzML using ThermoRawFileParser tool. The resulting spectra 

were searched using MS-GF+ (v2018.01.30) (29), executed via the OpenMS search 

engine wrapper MSGFPlusAdapter, allowing 10 ppm precursor mass tolerance, and 

setting carbamidomethylation of cysteine as fixed, and methionine oxidation as 

variable modification. PSMs were filtered (q-value < 5%) and used for feature 

detection using the semi-targeted approach implemented in the OpenMS tool 

FeatureFinderIdentification (30). Prior to identification, nonlinear retention time 

alignment was performed using the MapAlignerIdentification and the identified 

proteins were then quantified using unique peptides only (31). The workflow for 

comparison was developed using Nextflow (23) and BioContainers (25) to ensure the 

reproducibility of the present results (https://github.com/bigbio/nf-

workflows/tree/master/benchmark-converter-nf). 

 

 

Results and Discussion   

 

We compare msconvert and ThermoRawFileParser conversion to mzML using four 

different metrics: number of MS1, number of MS2, MS1 peak count distribution, MS2 

peak count distribution, identification map, and the precursor charge distribution. We 

observed no major differences between both tools (msconvert and 

ThermoRawFileParser) for the number of MS1/MS2 and the peak count distributions 

https://github.com/bigbio/nf-workflows/tree/master/benchmark-converter-nf
https://github.com/bigbio/nf-workflows/tree/master/benchmark-converter-nf


(PXD006336 – Supplementary Information S1, PXD014346 – Supplementary 

Information S2, PXD001502 – Supplementary Information S3).     

 

We analysed the IPRG2015 (28) dataset (PXD006336) using OpenMS framework and 

MSstats (32). We conducted a high-level analysis of the IPRG2015 dataset to verify 

whether the mzML files obtained by the ThermoRawFileParser pipeline could replicate 

the quantification of the spike-in proteins in the sample using the approach described 

in the original publication (28). In Figure 4, high values correspond to statistically 

significant changes. The x-axis is the log2-fold change between two samples, which 

in statistical language is sometimes called the “practical significance” of a change. 

Similar to best workflows reported in Choi et. al. (28), the estimates of log2 fold 

changes among the spiked proteins (A-F) were close to the true values, while most 

background proteins did not show significant differential expression. We computed the 

number of false positive (FP=3), true positive (TP=27) and positive predictive value 

(PPV=0.9) as defined by Choi et. al. (32). The results are within the 10 tops analysis 

performed in Choi et. al. for intensity-base methods. We performed the same analysis 

using msconvert to transform RAW data to mzML (Supplementary Information S4, 

Figure 1 and Figure 2). The number of peptides and proteins identified with both 

workflows (msconvert and ThermoRawFileParser) were similar.  

 

In addition to msconvert, the recently published RawTools (21) allows to convert RAW 

files into MGF files. It provides multiple options to perform QC metrics. However, 

RawTools is not design as a conversion tool and does not provides support for 

standard HUPO-PSI file formats such as mzML.  

 

 

Conclusions 

 

ThermoRawFileParser is an open-source software tool for the conversion of Thermo 

Raw files into open formats. Because of the growing need for more scalable and 

distributed computational proteomics approaches, ThermoRawFileParser has been 

designed to easily plug into large-scale workflow systems such as Galaxy or OpenMS. 

The current implementation also provides support for native writing into Amazon web 

service object stores (S3), making the tool highly portable to cloud architectures. 



Finally, the modular design of the library, along with its open source nature, allows 

other researchers to contribute to and extend ThermoRawFileParser for new file 

formats in the future. Benchmarking tests on gold standard datasets against the 

ProteoWizard exporter show major improvements in peak detection, and noticeable 

increases in peptide and protein identifications while maintaining quantitative 

accuracy.  
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Figure 1: Modular design of ThermoRawFileParser includes exporters to MGF, 

mzML, Parquet, and Json Metadata. A Conda package and corresponding 

BioContainer is available for reuse in workflow engines such as Nextflow and Galaxy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: JSON representation for one File run in PXD006336 dataset. The JSON file 

contains metadata information about the file (FileProperties), the instrument 

(InstrumentProperties), mass spectrometry information (MSData), sample 

(SampleData) and scan settings (ScanSettings).   

 

 



 

 

Figure 3: ThermoRawFileParserGUI provides a user-friendly user interface to convert 

Thermo Raw files to mzML, mgf and metadata formats.  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 4:  Volcano plot display of the results of the statistical analysis with OpenMS 

and MSstats of LC–MS converted using ThermoRawFileParser. Y axis: minus log10p-

value of a pairwise comparison between two samples, adjusted to control the False 

Discovery Rate in the list of differentially abundant proteins in this comparison. X axis: 

log2-fold change between two samples.  


