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Abstract. A graph G is contractible to a graph H if there is a set X C E(G), such that G/X
is isomorphic to H. Here, G/X is the graph obtained from G by contracting all the edges in X. For
a family of graphs F, the F~-CONTRACTION problem takes as input a graph G on n vertices, and the
objective is to output the largest integer ¢, such that G is contractible to a graph H € F, where
|V(H)| = t. When F is the family of paths, then the corresponding F-CONTRACTION problem is
called PATH CONTRACTION. The problem PATH CONTRACTION admits a simple algorithm running in
time 27 - n©@) | In spite of the deceptive simplicity of the problem, beating the 27 - n®1) bound
for PATH CONTRACTION seems quite challenging. In this paper, we design an exact exponential time
algorithm for PATH CONTRACTION that runs in time 1.99987" -n®(1), We also define a problem called
3-DI1SJOINT CONNECTED SUBCGRAPHS and design an algorithm for it that runs in time 1.88" - n@(1),
The above algorithm is used as a subroutine in our algorithm for PATH CONTRACTION.
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1. Introduction. Graph editing problems are one of the central problems in
graph theory that have received a lot of attention in algorithm design. Some of the
natural graph editing operations are vertex/edge deletion, edge addition, and edge
contraction. For a family of graphs F, the F-EDITING problem takes as input a
graph G, and the objective is to find the minimum number of operations required
to transform G into a graph from F. In fact, the F-EDITING problem, where the
edit operations are restricted to one of vertex deletion, edge deletion, edge addition,
or edge contraction have also received a lot of attention in algorithm design. The
F-EDITING problems encompass several classical NP-hard problems like VERTEX
COVER, FEEDBACK VERTEX SET, LONGEST PATH, etc.

The F-EDITING problem where the only allowed edit operation is edge contrac-
tion, is called F-CONTRACTION. For a graph G and an edge e = uv € E(G), contrac-
tion of an edge wv in G results in a graph G/e, which is obtained by deleting v and
v from G, adding a new vertex w, and making w,. adjacent to the neighbors of u or
v (other than u,v). A graph G is contractible to a graph H, if there exists a subset
X C E(G), such that if we contract each edge from X, then the resulting graph is
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isomorphic to H. For several families of graphs F, early papers by Watanabe, Ae,
and Nakamura [18, 19] and Asano and Hirata [1] showed that F-CONTRACTION is
NP-hard. The NP-hardness of problems like TREE CONTRACTION and PATH CON-
TRACTION, which are the F-CONTRACTION problems for the family of trees and paths,
respectively, follows easily from [1, 3]. A restricted version of PATH CONTRACTION
is the problem P;-CONTRACTION, where ¢ is a fixed constant. P;-CONTRACTION is
shown to be NP-hard even for ¢ = 4, while for ¢ < 3, the problem is polynomial
time solvable [3]. P;-CONTRACTION alone had received lot of attention for smaller
values of ¢, even when the input graph is from a very structured family of graphs (for
instance, see [3, 17, 10, 6, 8, 13] and the references therein).

Several NP-hard problem like SAT, k-SAT, VERTEX COVER, HAMILTONIAN
PATH, etc., are known to admit an algorithm running in time O*(2").! These results
are obtained by techniques like brute force search, dynamic programming over subsets,
etc. One of the main questions that arise in this context is whether we can break the
O*(2™) barrier for these problems. In fact, the hardness of SAT gives rise to the strong
exponential time hypothesis (SETH) of Impagliazzo and Paturi [12, 11], which rules
out existence of an O*((2 — €)™)-time algorithm for SAT, for any ¢ > 0. SETH has
been used to obtain such algorithmic lower bounds for many other NP-hard problems
(see, for example, [4, 14]). Not all NP-hard problems seem to be as “hard” as SAT.
For many NP-hard problems, it is possible to break the O*(2™) barrier. For instance,
problems like VERTEX COVER and (undirected) HAMILTONIAN PATH are known to
admit algorithms running in time O*((2—¢€)™), for some € > 0 [2, 15]. Thus, a natural
question is for which NP-hard problems can we avoid the “brute force search” and
obtain algorithms that are better than O*(2").

In this article, we focus on the problem PATH CONTRACTION, which is formally
defined below.

PATH CONTRACTION
Input: Graph G.
Output: Largest integer ¢, such that G is contractible to P;.

Note that if ¢ is the largest integer such that G is contractible to P;, then the
minimum number of edge contraction operations is (n —¢). PATH CONTRACTION is
known to admit a simple algorithm that runs in time O*(2™). Such an algorithm can
be obtained by coloring the input graph with two colors and contracting connected
components in the colored subgraphs. For a deceptively simple problem like PATH
CONTRACTION, it seems quite challenging to break the O*(2"™) barrier. The prob-
lem 2-DisJOINT CONNECTED SUBGRAPHS (2-DCS)? can be “roughly” interpreted
as solving P;-CONTRACTION. (We can use the algorithm for 2-DCS to solve Pj-
CONTRACTION within the same time bound.) There have been studies, which break
the O*(2™) brute force barrier, for 2-DCS. In particular, Cygan et al. [5] designed an
0*(1.933™) algorithm for 2-DCS. This result was improved by Telle and Villanger,
who designed an algorithm running in time O*(1.7804™) for the problem [16]. The
main goal of this article is to break the O*(2™) barrier for PATH CONTRACTION. Ob-
taining such an algorithm for PATH CONTRACTION was stated as an open problem
in [17].

Our results. We design an algorithm for PATH CONTRACTION running in time
0*(1.99987™), where n is the number of vertices in the input graph. To the best of

IThe O* notation hides polynomial factors in the running time expression.
2See section 3 for formal definitions.
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our knowledge, this is the first nontrivial algorithm for the problem, which breaks the
O*(2™) barrier. To obtain our main algorithm for PATH CONTRACTION, we design
four different algorithms for the problem, which are used as subroutines to the main
algorithm. We exploit the property that certain types of algorithms are better for
certain instances but may be inefficient for certain other instances. Roughly speaking,
we look for solutions using different algorithms, and then the best suited algorithm for
the instance is used to return the solution. When one of the four algorithms is called
as a subroutine, it does not necessarily return an optimum solution for the instance;
rather it only looks for solutions that satisfy certain conditions. These conditions are
quantified by fractions associated with the input graph. We note that for appropriate
values of these “fractions,” each of our subroutines still serves as an algorithm for
PATH CONTRACTION (and thus can compute the optimal solution). We argue that
there is always a solution which satisfies the conditions for one of the subroutines, by
setting the values of the fractions appropriately. A saving over O*(2"), in the running
time achieved by our algorithm, also exploits the property that “small” connected sets
with bounded neighborhood can be enumerated “efficiently.”

In the following we very briefly explain the type of solutions we look for, in our
subroutines. Consider a path P;, such that G can be contracted to P;, where ¢ is
the largest such integer. The solution ¢ can be “witnessed” by a partition W =
{Wy,Wa, ..., Wi} of V(G), where the vertices from W; “merge” to the ith vertex of
P, (a formal definition for it can be found in section 2). Such a “witness” is called
a Pi-witness structure. The first (subroutine) algorithm for PATH CONTRACTION
searches for a solution where the P,-witness structure can be “split” into two connected
disjoint parts which are “small.” Then, it exploits the “smallness” of the parts to
compute solutions efficiently and combines them to compute the solution for the whole
graph. The second subroutine searches for a pair of sets in the P;-witness structure
which are very dense. Then it exploits the sparseness of the remaining graphs to
efficiently compute partial solutions for them. Moreover, the pair of dense parts
are resolved using the algorithm of Telle and Villanger for 2-DiSJOINT CONNECTED
SUBGRAPH [16]. The third routine works with a hope that the total number of vertices
in one of the odd/even sets from W can be bounded. Finally, the fourth subroutine
works by exploiting a similar odd /even property as the third subroutine, but it relaxes
the condition to “nearly” small odd/even set.

To design our algorithm, we also define a problem called 3-D1SJOINT CONNECTED
SUBGRAPHS (3-DCS), which is an extension of the 2-DISJOINT CONNECTED SUB-
GRAPHS (2-DCS) problem. 3-DCS takes as input a graph G and disjoint sets
71,75 C V(G), and the goal is to partition V(G) into three sets (V4,U,Vs), such
that graphs induced on each of the parts are connected and Z; C'V; for i € [2]. We
design an algorithm for 3-DCS running in time O*(1.88™). The fourth subroutine of
our algorithm uses the algorithm for 3-DCS as a subroutine.

As a corollary to our O*(1.88"™)-time algorithm for 3-DCS, we obtain that Ps-
CONTRACTION admits an algorithm running in time O*(1.88™).

2. Preliminaries. In this section, we state some basic definitions and introduce
terminologies from graph theory. We use standard terminology from the book of
Diestel [7] for the graph related terminologies which are not explicitly defined here.
We also establish some notation that will be used throughout.

We denote the set of natural numbers by N (including 0). For k € N, [k] denotes
the set {1,2,...,k}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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We note that all graphs considered in this article are connected graphs on at least
two vertices (unless stated otherwise). For a graph G, the sets V(G) and E(G) denote
the sets of vertices and edges in G, respectively. Two (distinct) vertices u, v in V(G)
are adjacent if the edge uv € F(G). For an edge uv, the vertices u and v are the
endpoints of uv. The neighborhood of a vertex v, denoted by Ng(v), is the set of
vertices adjacent to v and its degree dg(v) is |[Ng(v)|. For a set S C V(G), Ng(S)
denotes the neighborhood of S, i.e., Ng(S5) = (U,cg Na(s)) \ S. The subscripts in
the above notation are omitted when the context is clear.

For a set of edges F' C E(G), V(F) is the set of vertices that are endpoints of
edges in F. For S C V(G), we denote the graph obtained by deleting S from G by
G — S, i.e., the vertex set and edge set of G — S are V(G) \ S and {uv € E(G) |
u,v € S}, respectively. Furthermore, the subgraph of G induced by S is the graph
G[S] =G\ (V(G)\ S). For two subsets S1,S2 C V(G), we say S1,S2 are adjacent if
there exists an edge in G with one endpoint in S; and the other endpoint in Ss.

A path P, = (v1,v9,...,v¢) on t vertices, where ¢ € N is the graph with vertex
set {vi,va,...,v:} and edge set {v;v;41 | ¢ € [t — 1]}. Furthermore, P; is a path
between vy and v;. A graph G is connected if for every distinct vertice u,v € V(G),
there is a path (which is subgraph of G) between v and v. Consider a graph G. A
(vertex inclusionwise) maximal connected subgraph of G is a connected component or
a component of G. A set A C V(QG) is a connected set in G if G[A] is a connected
graph.

Consider a graph G and an edge e = uv € E(G). The graph obtained after
“contracting” the edge e in G is denoted by G/e. That is, V(G/e) = (V(G) U
{weh) \ {u,0} and E(G/e) = {zy | 2,y € V(G)\ {u,v},2y € E(G)} U {w,a] v €
(Ng(u)UNg(v))\{u,v}}, where w, is a newly added vertex. In the above, for an edge
ux € E(G)\ {uv}, the edge w.x € E(G/e) is the renamed edge of ux. For F C E(G),
G/F denotes the graph obtained from G by contracting each (renamed) edge in F.
(We note that the order in which the edges in F' are contracted is immaterial.)

A graph G is isomorphic to a graph H if there exists a bijective function ¢ :
V(G) — V(H), such that for v,u € V(G), uv € E(G) if and only if (¢(v),p(u)) €
E(H). A graph G is contractible to a graph H if there exists F' C FE(G), such that
G/F is isomorphic to H. In other words, G is contractible to H if there is a surjective
function ¢ : V(G) — V(H), with W(h) = {v € V(G) | ¢(v) = h}, for h € V(H), with
the following properties:

e for any h € V(H), the graph G[W (h)] is connected, and
e for any two vertices h,h’ € V(H), hh/ € E(H) if and only if W (h) and W (k')
are adjacent in G.
Let W = {W(h) | h € V(H)}. The sets in W are called witness sets, and W is an
H-witness structure of G.

In this paper, we will restrict ourselves to contraction to paths. This allows us
to use an ordered notation for witness sets, rather than just the set notation. This
ordering of the sets in witness sets is given by the ordering of vertices in the path. That
is, for a P, = (hy, ha, ..., ht)-witness structure, W = {W(hy), W (ha),...,W(ht)} of a
graph G, we use the ordered witness structure notation, (W (hy), W(hs), ..., W(hy)),
or simply (Wi, Wa, ..., Wy).

In the following, we give some useful observations regarding contraction to paths.

Observation 2.1. Any connected graph can be contracted to Ps.

Observation 2.2. Let G be a graph contractible to P;. Then, there is a P;-witness
structure, W = (Wy, ..., W), of G such that W is a singleton set. Moreover, if ¢t > 3,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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then there is a P;-witness structure, W = (Wy,..., W), of G such that both W; and
W, are singleton sets.

We end this section with an observation which will be used to bound the number
of subsets of a set U which are of size at most p|U| for a fixed positive constant
which is strictly less than 1/2. We start with the following inequality for integers n
and k such that k < n:

=07

Using the above inequality we get the following upper bound on summand for k < n/2:

i@ <he(}) <k [(fb)(lfl)]

For a positive constant p < 1/2, such that k¥ < un, the above inequalities can be

written as
Lun] n n
> () < pm - [u’”(l—ﬂ)“’l] :
7

=1

(2.1) Mf (7;) < pm - Lju . (1_L)1H]L = pn[g(p)]",

i=1
where function g(u) is defined as

_ 1
Rk

The following observation is implied by the above inequalities.

g(p)

Observation 2.3. For a set U with n elements and a constant p < 1/2, the number
of subsets of U of size at most un is bounded by O*([g(1)]™). Moreover, all such
subsets can be enumerated in time O*([g(u)]™).

For a graph G, a nonempty set Q C V(G), and integers a,b € N, a connected set
Ain G is a (Q, a,b)-connected set if Q C A, |A| = a, and |[N(A)| < b. Moreover, a
connected set A in G is an (a,b)-connected set if |A| < a and |[N(A)| < b. Next, we
state results regarding (Q, a, b)-connected sets and connected sets, which follow from
Lemma 3.1 of [9]. (We note that their result gives slightly better bounds, but for
simplicity, we only use the bounds stated in the following lemmas.)

LEMMA 2.4. For a graph G, a nonempty set Q C V(G), and integers a,b € N,
the number of (Q,a,b)-connected sets in G is at most 20+t0=1Ql " Moreover, we can
enumerate all (Q,a,b)-connected sets in G in time 20T0=1Q1 . nOW)

LEMMA 2.5. For a graph G and integers a,b € N the number of (a,b)-connected
sets in G is at most 20T . n®W)  Moreover, we can enumerate all such sets in 2010 .
nPW time.

3. 3-DissoiNnT CONNECTED SUBGRAPH. In this section, we define a general-
ization of 2-D1sJOINT CONNECTED SUBGRAPHS (2-DCS), called 3-D1sjoINT CON-
NECTED SUBGRAPHS (3-DCS). We design an algorithm for 3-DCS running in time
0*(1.88™), where n is number of vertices in input graph. This algorithm will be useful
in designing our algorithm for PATH CONTRACTION.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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In the following, we formally define the problem 2-DCS which is studied in [5, 16].

2-D1sJOINT CONNECTED SUBGRAPHS (2-DCS)

Input: A connected graph G and two disjoint sets Z; and Zs.

Question: Does there exist a partition (V1, V) of V/(G) such that for each i € [2],
Z; CV; and G[V;] is connected?

In the following we state a result regarding 2-DCS which will be useful in later
sections.

PROPOSITION 3.1 (see [16, Theorem 3]). There exists an algorithm that solves
the 2-DI1SJOINT CONNECTED SUBGRAPHS problem in O*(1.7804™) time where n is
the number of vertices in the input graph.

In the 3-DCS problem, the input is the same as that of 2-DCS, but we are
interested in a partition of V(G) into three sets, rather than two. We formally define
the problem below.

3-D1sJOINT CONNECTED SUBGRAPHS (3-DCS)

Input: A connected graph G and two disjoint sets Z; and Zs.

Question: Does there exist a partition (Vi,U, V3) of V(G) such that (1) for each
i € [2], Z; CV; and G[V;] is connected, (2) G[U] is connected, and (3) G — U has
exactly two connected components, namely, G[V;] and G[V3]?

We note that the problem definitions for 2-DCS and 3-DCS do not require the
sets Z1, Z3 to be nonempty. If either set is empty, we can guess a vertex for each
of the nonempty sets. Since there are at most n? such guesses, it will not affect the
exponential factor in the running time of our algorithm. Thus, hereafter we assume
that both Z; and Zs are nonempty sets.

To design our algorithm for 3-DCS, we first design an algorithm for a special case
for the problem where the size of Z; U Zs is at most dn, where § = 0.092. (The choice
of § will be clear when we present the proof.) We refer to the special case of 3-DCS
where |Z1 U Zs| < dn as SMALL 3-DCS. In section 3.1, we will design an algorithm
for SMALL 3-DCS running in time O*(1.88"). That is, our goal of section 3.1 will be
to prove the following lemma.

LEMMA 3.2. SMALL 3-DCS admits an algorithm running in time O*(1.88"),
where n is the number of vertices in the input graph.

In the rest of this section, we show how we can use the above lemma to design an
algorithm for the problem 3-DCS, running in time O*(1.88™). We also show how we
can obtain an algorithm for Ps-CONTRACTION running in time O*(1.88"), using our
algorithm for 3-DCS.

In the following theorem, we give our algorithm for 3-DCS, using Lemma 3.2 as
a subroutine.

THEOREM 3.3. 3-DCS admits an algorithm running in time O*(1.88"™), where n
is the number of vertices in the input graph.

Proof. Let (G, Z1,Z5) be an instance of 3-DCS. We consider the following two
cases based on whether or not |Z; U Zs| < dn, where § = 0.092. If |Z; U Z5| < on, then
we resolve the instance in time (O*(1.88™), using Lemma 3.2. Now we consider the
case when | Z1UZs| > dn. The goal is to look for a solution (V1, U, Va) for the instance.
We begin by enumerating all potential candidates for the set U. That is, we compute
theset U = {U' |U' CV(G)\(Z1UZ3)}. As |[V(G)\ (Z1UZ3)] < (1—0)n < 0.908n,
the time required to compute U is bounded by O*(2°-9%87) € 0*(1.88"). Now for each

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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U’ € U, we check the following properties: (1) G[U’] is connected and (2) G — U’ has
exactly two connected components, one containing all the vertices from Z; and the
other containing all the vertices from Z,. If there is U’ € U which satisfies the above
two conditions, then we return that the instance is a yes-instance, and otherwise we
return that the instance a no-instance. The correctness of the algorithm and the
analysis of the claimed running time bound are apparent from the description. ]

Using Theorem 3.3 we obtain our algorithm for Ps-CONTRACTION, in the follow-
ing lemma.

LEMMA 3.4. P;-CONTRACTION admits an algorithm running in time O*(1.88"),
where n is the number of vertices in the input graph.

Proof. Let G be a graph. By Observation 2.2, if G is contractible to Ps, then
there exists a Ps-witness structure W = (W1,...,Ws) of G such that Wy and W
are singleton sets. We guess the pair of vertices which are in the sets W; and Wi,
respectively. Note that there are at most O(n?) choices for such pairs. Let Wy = {z}
and W5 = {y} be the current guess of these sets. If there is witness structure where
Wy = {2z} and W5 = {y}, then the vertices in N(z) and N(y) must belong to the
sets W (t2) and W (t4), respectively. (Otherwise, the contracted graph cannot be an
(induced) path on five vertices.) Note that with the above guess, the problem boils
down to solving 3-DCS on the instance (G — {z,y}, Na¢(z), Na(y)). Thus, we can
use Theorem 3.3 to resolve the instance (G —{z,y}, Ng(x), Na(y)) of 3-DCS in time
(0*(1.88™). This concludes the proof. a

3.1. Algorithm for SmALL 3-DCS. The goal of this section will be to obtain
a proof of Lemma 3.2, i.e., to design an algorithm for SMALL 3-DCS running in time
O*(1.88™). Let (G, Z1, Z3) be an instance of SMALL 3-DCS. Note that |Z,UZ3| < dn,
where § = 0.092.

The intuition behind our algorithm is the following. We start by showing the
existence of a special type of a solution, which we call an immovable tri-partition, for
a yes-instance. Roughly speaking, we use the properties ensured by a special solution
to enumerate “connectors” for the set Z; U Zs in an auxiliary graph. To enumerate
such “connectors,” we employ the algorithm of Telle and Villanger [16]. Then we show
how we use these potential Z; U Z5 “connectors” in an auxiliary graph, to resolve the
instance.

In the following, we introduce some notation and preliminary results that will be
useful in designing our algorithm.

Notation and preliminary results. Consider a graph H and set Z C V(H). A
vertex v € V(H) is called a Z-separator if Z contains vertices from at least two
connected components of G — {v}. A set S C V(H) is a Z-connector it Z C S and
H|[S] is connected. Moreover, if no strict subset of S is a Z-connector, then S is a
minimal Z-connector.

We state a result regarding enumeration of minimal Z-connectors in a graph which
will be used in our algorithm.

PROPOSITION 3.5 (see [16]). Consider a graph H on n vertices and a set Z C
V(H) with at most n/3 vertices. Then, the number of minimal Z-connectors in H

is bounded by (?Z_“_ZJ) - 3(n=121/3 " Moreover, we can enumerate all such minimal

Z-connectors in time O*((TZE') -3(n=12D/3y
In the following remark we state a criterion when we can directly conclude that the
instance is a no-instance of SMALL 3-DCS. The correctness of this remark will easily

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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follow from the problem definition. (Henceforth we shall assume that the premise of
the remark does not hold.)

Remark 3.6. If there is an edge between Z; and Zs, then conclude that (G, Z1, Z2)
is a no-instance of SMALL 3-DCS.

A partition of V(G) into three sets (V1,U,V3) is a solution tri-partition if the
following conditions are satisfied: (1) for ¢ € [2], G[V;] is connected and Z; C V;, (2)
G[U] is connected, and (3) G — U has exactly two connected components, namely,
G[V4] and G[Va].

Now we will define a “special solution”, which will be called an immouvable tri-
partition, and we will show that if there is a solution, then there is also an immovable
tri-partition. Our goal will be to find an immovable tri-partition, if it exists. Roughly
speaking, an immovable tri-partition is a solution in which no vertex from V; UV; can
be “moved” to the set U.

DEFINITION 3.7 (immovable tri-partition). A solution tri-partition (Vi,U, Va)
for (G, Zy,Z3) of 3-DCS is an immovable tri-partition if for every ¢ € [2] and v €
(Vi\Z;) N N(U) is a Z;-separator in G[V;].

In the following claim we show that an immovable tri-partition exists for a yes-
instance.

CrLam 3.8. If (G, Zy, Z>) is a yes-instance of 3-DCS, then there is an immovable
tri-partition.

Proof. Let (V1,U, V) be a solution tri-partition of V(G). If this is an immovable
tri-partition, then we are done. Otherwise, assume that there is v € (V1 \ Z1) NN (U)
such that v is not a Zj-separator in G[Vi]. (The case when there is v € (Vo \ Z2) N
N(U) such that v is not a Zs-separator in G[V3] can be handled analogously.) Let
Cy,Cy,. .., Cq be the connected components of G[V1] — v, where d > 1. Since v is not
a Zi-separator, we know that Z; is contained in one of the connected components.
Let C7 be the connected component which contains Z;. Consider the tri-partition
(V{, U, Va) of V(G) where V{ = V(C;) = V1 \ {v} UV(Ce) U---UV(Cy)) and
U =UU{v}UCyU---UC, This tri-partition is also a solution partition as both
V] = C; and U’ are connected and V; contains Z;. Following the above procedure,
for a given tri-partition we can either find a vertex to move from V3 U V5 to U or
conclude that it is an immovable tri-partition. 0

In the following claims we establish some useful properties regarding immovable
tri-partitions.

Cram 3.9. Let (G,Z1,75) be a yes-instance of 3-DCS and (V1,U,Va) be an
immovable tri-partition. Furthermore, let S1 be a minimal Z;-connector in G[V1] and
Sy be a minimal Zy-connector in G[Va]. Then, no connected component of G[V1] — Sy
or G[Va] — Sy is adjacent to U.

Proof. Consider a connected component C of G[V;] — S1. (The other case can be
argued analogously.) As S is Zj-connector, Z; C S; and G[S;] is connected. Since
(V1,U, V3) is an immovable tri-partition, no v € V(C') can be adjacent to a vertex in
U, as v is not a Z;-separator (see Definition 3.7). This concludes the proof. ]

As was mentioned earlier, we will construct an auxiliary graph and relate a con-
nector in the auxiliary graph to a solution for our instance. We now describe this
auxiliary graph. Arbitrarily fix vertices z; € Z; and 29 € Z5. By G’, we denote the
graph obtained from G by adding the edge z122 to G. (From Remark 3.6 we know

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/04/21 to 129.177.146.15. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

1310 AGRAWAL, FOMIN, LOKSHTANOV, SAURABH, AND TALE

that there is no edge between Z; and Zs in G.) In the next claim we relate immovable
tri-partitions of G with minimal connectors in G'.

CLAM 3.10. Let (G, Z1, Z2) be a yes-instance of 3-DCS and let (V1,U, Va) be an
immovable tri-partition. Furthermore, let Sy be a minimal Zy-connector in G[V1] and
Sy be a minimal Zy-connector in G[Va]. Then, S = 51U Sy is a minimal (Z1 U Zs)-
connector in G'.

Proof. We first argue that S is a (Z1 U Za)-connector in G’. As G'[S1] and G'[S2]
are connected and the edge 2129 has one endpoint in 57 and another in Sy, the graph
G'[S] is connected. Since S contains Z; U Zs, it is a (Z; U Zy)-connector.

It remains to argue that no proper subset of S is a (Z; U Z3)-connector. For
the sake of contradiction, suppose that there is v € S such that S" = S\ {v} is a
(Z1 U Zs)-connector in G'. We assume that v € S;. (The case when v € Sy can be
argued symmetrically.) Let S = S1 \ {v}. Note that G[S7] is not connected, as Sy
is a minimal Z;-connector in G[V4]. Let C be a connected component of G[S]] which
does not contain z; (which exists as G[S7] is not connected). Recall that S; C V4,
Sy C Vo, and V3 NV, = (). Note that there can be no edge between V(C) and Ss in
G’. This contradicts that G'[S] U Sz] is connected. This concludes the proof. d

We say that a minimal (Z; U Z3)-connector S in G’ is realized by an immovable
tri-partition (V1,U, V2) of G if S can be partitioned into two sets, S, Sa, such that Sy
is a minimal Z;-connector in G[V;4] and Ss is a minimal Zs-connector in G[V3]. Note
that Claim 3.10 implies that every immovable tri-partition of V(G) realizes at least
one minimal (Z; U Z3)-connector in G’.

The algorithm. We are now ready to design our algorithm for SmaLL 3-DCS.
Recall that |Z; U Z3] < dn = 0.092n and there is no edge between Z; and Z5 (see
Remark 3.6). Let Z = Z; U Zs. Recall that G’ is the graph obtained from G by
adding the edge z12o. Compute the set S of all minimal Z-connectors in G’ using
Proposition 3.5. (The premise of the proposition is satisfied as |Z| < 0.092n <
n/3.) We construct a set S,y C S of relevant sets as follows. Let S, = {S €
S | G[S] have exactly two connected components G[S1] and G[S2] such that Z; C Sy
and ZQ - SQ}

Consider S € S,. Let Cs be the set of connected components in G — S. Let Cgth
be the set of components in G — S that have a neighbor in both S; and S;. That is,
Coh ={C € Cs | N(C)N Sy # 0 and N(C)N Sy # 0}

Our algorithm does the following. If there is S € S, such that |Cgth| =1, then
the algorithm returns that (G, Z1, Zs) is a yes-instance of SMALL 3-DCS. Otherwise
it returns that the instance is a no-instance.

In the following lemma we prove the correctness of the algorithm.

LeEmMA 3.11. The algorithm presented for SMALL 3-DCS is correct.

Proof. In the forward direction, let (G, Z1, Z2) be a yes-instance of SMALL 3-DCS.
We will show that there is S € S such that [CB| = 1. Consider an immovable tri-
partition (Vi,U, V3) for the instance (its existence is guaranteed by Claim 3.8). Note
that for ¢ € [2], Z; C V; and G[V;] is connected. Furthermore, G[U] is connected
and there are exactly two connected components in G — U, namely, G[V;] and G[V3].
For i € [2], as G[V;] is connected, there is a minimal Z;-connector S;, in G[V;]. Let
S = S1US; (see Figure 1). From Claim 3.10, S is a minimal Z-connector in G’, where
Z = 71 UZy. Thus, S € S. Note that G[S] has exactly two connected components,
namely, G[S1] and G[S2], and thus S € Sy. Recall Cs denotes the set of connected

components in G — S and Cg‘h denotes the set of connected components in G — S
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Fic. 1. An dllustration of various sets in the proof of forward direction of Lemma 3.11.

which have neighbors both in S; and S2. To obtain the proof we will show that
Coh = {G[U]}. Since G[U] is connected and S NU = {), there is a component C € Cg
such that U C V(C). We first show that V(C) \ U = . Toward a contradiction,
assume that V(C)\ U # 0. Then V(C)N (V3 UV3) # 0. Suppose that V(C)NV; # 0.
(The case when V(C) NV, # () can be argued analogously.) Then there is a vertex
v € V(C)NVy such that v € (V1 \ Z1) N N(U). From the above we can contradict the
fact that (V1,U, V) is an immovable-tripartition. Thus we conclude that V(C) = U.
Note that U is adjacent to both V; and V5 in G and G[U] is a connected component of
G—S. Hence, ) C N(U)NV; C Sy and @ € N(U)NV, C Sy. Thus, G[U] € C&. Asno
vertex in V3 UVa can be adjacent to both S; and Sz, we conclude that {G[U]} = C2".

In the reverse direction, assume that there is S € S, such that [C2"] = 1. We
will construct a solution (V4,U, V2) for the instance (G, Z1, Z2) and hence establish
that the instance is a yes-instance of SMALL 3-DCS. Let C* be the unique connected
component in Cgth. As S € S, G[S] has exactly two connected components, C
and Cy, such that Z; C V(Cy) and Zs C V(Cy). For i € [2], let C; be the set
of connected components different from C* that have a neighbor in S;. Note that
C1UCU{C"} = Cs (and they are pairwise disjoint). Let V1 = V(C1)U(Ugee, V(O)),
Va = V(Co) U (Ugee, V(C)), and U = V(C*). Note that (V1,U, Vz) is a partition
of V(G), for each i € [2], G[V;] is connected and Z; C V;, G[U] is connected, and
G — U has exactly two connected components, namely, G[V1] and G[V3]. (In the
above we rely on the connectedness of G.) Hence, (G, Z1,Z5) is a yes-instance of
SMALL 3-DCS. ad

Proof of Lemma 3.2. From Lemma 3.11, we know that the algorithm presented
for SMALL 3-DCS is correct. Thus to establish the proof of the lemma, it is enough
to argue that the algorithm presented for SMALL 3-DCS runs in time O*(1.88"). The
only step of the algorithm that requires exponential time is the computation of set

S of all minimal Z-connectors in G’ where we use Proposition 3.5. As |Z| = |Z; U
Zs| < dn = 0.092n, the time required to compute S is bounded by O*((Tzzlfé:izzl) .

3(n=1210221)/3) "\yhich is bounded by O*(((lgs)") -3(=9n/3)  Using Observation 2.3,
1= \n

56,(1_25)(1*25)) )

obtained that & ~ 0.092 would be the value for which the overall running time of 3-

DCS is optimized. Thus, the running time of our algorithm is bounded by O*(1.88™).0

we can bound the above by O*(( Using a computer program we

4. Exact algorithm for PATH CoNTRACTION. In this section we design our
algorithm for PATH CONTRACTION running in time O*(1.99987™), where n is the
number of vertices in the input graph. To design our algorithm, we design four
different subroutines each solving the problem PATH CONTRACTION. Each of these
subroutines is better than the other when a specific “type” of solution exists for
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the input instance. Thus the main algorithm will use these subroutines to search for
solutions of the type they are the best for. We also design a subroutine for enumerating
special types of partial solutions, which will be used in some of our algorithms for
Para CONTRACTION.

In the following we briefly explain the four subroutines and describe when they
are useful. Let G be an instance for PATH CONTRACTION, where G is a graph on n
vertices. Let ¢ be the largest integer (which we do not know a priori), such that G is
contractible to Py with (W, Wa, ..., W;) as a P-witness structure of G. We let 0S
and ES be the union of vertices in odd and even witness sets, respectively. That is,
0s = U2 Wy, 4 and BS = U/ H Wy,

We now give an intuitive idea of the purposes of each of our subroutines in the
main algorithm, while deferring their implementations to the subsequent sections.
We also describe a subroutine which will help us build “partial solutions,” and this
subroutine will be used in two of our subroutines for PATH CONTRACTION. (We refer
the reader to Figure 2 for an illustration of it.)

BALANCED PC. This subroutine is useful when we can “break” the graph into
two parts after a witness set, such that the closed neighborhood for each of the parts
has small size, or in other words, the parts are “balanced.” The quantification of the
“balancedness” after a witness set will be done with the help of a rational number
0 < a < 1, which will be part of the input for the subroutine. The subroutine will
only look for those P.-witness structures for G for which there is an integer i € [¢],
such that the sizes of both N[U;ci, Wil and N[U;e( ) Wil are bounded by an.
Moreover, the algorithm will return the largest such ¢. Our algorithm for BALANCED
PC will run in time O*(2%™). Note that when o = 1, BALANCED PC is an algorithm
for PATH CONTRACTION running in time O*(2").

2-UnioN HEAvy PC. This subroutine will be used when a “large” part of the
graph is concentrated in two consecutive witness sets and the neighborhood of the
rest of the graph into them is “small.” The quantification of terms “large/small” will

2-UNION HEAVY PC AN o
:_ Wi Wa W3 Wiy Wi Wijh Wi Wia Wi Wi |
| . |
| |

Q=72 =L - oL - o = . L o T T I

:SMALL ObD/EVEN PC

Wo R N Wi_1 :
Wy W3 Wi Wi Wi
R '
1
|
'
1

: small 08 1 ES)

‘d< Bn/2 (small 05) O< Bn/2 (sma

:’f\fﬂ)\'li'é'n'{{]'f"dffl')'/'ﬁ'\'r-'f\f'F"é """""""""""""""""""""""""""""""""""""""""""""""""""""""

W WV, LW, W Wi Wi
2 Wy 1 W, | 1 W, 3 i 2 W, t
'
! .. ..
i
'
1 3 Vi
D< n (i odd) O<en (i even)

Fic. 2. Various subroutines for the algorithm and their usage.
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be done by a fraction 0 < v < 1, which will be part of the input. The algorithm will
only search for those P-witness structure of G where there is an integer i € [t — 1],
such that [W; UWii1| > yn, and |N[Uje[i—1] Will, |N[Uje[t]\[i+1] Wil < (1 =~/2)n.
Moreover, the algorithm will return the largest such t.

SMALL OpD/EVEN PC. Roughly speaking, this subroutine is particularly useful
when one of 0S or ES is “small.” The “smallness” of 0S/ES is quantified by a rational
number 0 < # < 1, which will be part of the input. The subroutine will only look
for those P;-witness structures for G where one of |0S| < fn/2 or |ES| < 8n/2 holds.
Moreover, the algorithm will return the largest integer ¢ > 1, for which such a P;-
witness structure for G exists. SMALL ODD/EVEN PC will run in time O*(¢"),
where ¢ = ¢g(3/2). We note that when § = 1, then one of |0S| < 8n/2 or |ES| < fn/2
definitely holds. Thus, for 5 = 1, SMALL ODD/EVEN PC is an algorithm for PATH
CONTRACTION running in time O*(2") (see Observation 2.3).

NEAR SMALL ODD/EVEN PC. In the case when both 0S and ES are “large,” it
may be the case that for one of 0S/ES, there is just one witness set which is large. That
is, when we remove this large witness set, then one of 0S/ES becomes “small.” The
“smallness” of the remaining 0S/ES (after removing a witness set) will be quantified
by a rational number 0 < € < 1, which will be part of the input. The subroutine will
only look for those Pi-witness structures for G where the size of one of |0S| or |ES]
after removal of a witness set is bounded by en. Moreover, the algorithm will return
the largest such ¢.

Our subroutines BALANCED PC and 2-UNION HEAVY PC use a subroutine called
ENUM-PARTIAL-PC for enumerating solutions for “small” subgraphs. The efficiency
of the algorithm for ENUM-PARTIAL-PC is centered around the bounds for (Q, a, b)-
connected sets. In section 4.1 we (define and) design an algorithm for ENUM-PARTIAL-
PC. In sections 4.2, 4.3, 4.4, and 4.5 we present our algorithms for BALANCED PC,
2-UnioN Heavy PC, SMALL Opp/EVEN PC, and NEAR SMALL ODD/EVEN PC,
respectively. Finally, in section 4.6 we show how we can use the above algorithms to
obtain an algorithm for PATH CONTRACTION, running in time O*(1.99987™).

4.1. Algorithm for ENUM-PARTIAL-PC. In this section, we describe an algo-
rithm which computes a “nice solution” for all “p-small” subsets of vertices of an input
graph. In an input graph G, for aset S C V(G), by ®(S) we denote the set of vertices
in S that have a neighbor outside S. That is, ®(S) ={s € S| N(s)\ S # 0}. A set
S CV(G) is p-small if N[S] < pn. For a p-small set S C V(G), the largest integer tg
is called the nice solution if G[S] is contractible to P;, with all the vertices in ®(.5)
in one of the end bags. That is, there is a P, -witness structure (Wy, Wa, ..., W;,) of
G[S], such that ®(S) C W;,. We formally define the problem ENUM-PARTIAL-PC in
the following way.

ENUM-PARTIAL-PC

Input: A graph G on n vertices and a fraction 0 < p < 1.

Output: A table I' which is indexed by p-small sets. For any p-small set S, T'[S]
is the largest integer ¢ for which G[S] has a P;-witness structure W = (Wy, W,
..., W4), such that ®(S) C W;.

We design an algorithm for ENUM-PARTIAL-PC running in time O*(2°™). We
briefly explain how we can compute nice solutions for the p-small set. Consider a p-
small set S. Note that |S| < pn. Thus, by the method of 2-coloring (as was explained
in the introduction), we can obtain the nice solution in time 2°™. This would lead us to
an algorithm running in time O*(2°"g(p)") (see inequality (2.1)). By doing a simple
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Procedure 4.1 Algorithm for ENUM-PARTIAL-PC

Input: A graph G and a fraction 0 < p < 1.
Output: A table I' such that for every p-small set S, T'[S] is the largest integer ¢ for
which G[S] can be contracted to P, with ®(S) is in the end bag.
Compute § = {S C V(G) | G[S] is connected and |N[S]| < pn} (Lemma 2.5)
for S S do
Initialize T[S] = 1
end for
for S € S (in increasing order of their sizes) do
for every pair (a,b) of positive integers s.t. |S|+a+b < pn and [N(S)| < a
do
7: Compute A, p[S] = {4 C V(G — S) | G — S[4] is connected, Ng(S) C
A, |A| = a, and |Ng_g(A)| = b}, using Lemma 2.4

8: for A e A, ;[S] do

9: I[SUA] = max{T[SUA],T[S]+ 1}
10: end for

11:  end for

12: end for

13: return I’

dynamic programming we can also obtain an algorithm running in time O*(3"). We
will improve upon these algorithms by a dynamic programming algorithm where we
update the values “forward” instead of looking “backward.”

The algorithm. We start by defining the table entries for our dynamic program-
ming routine, which is used for computation of nice solutions. (The pseudocode for
our algorithm is presented in Procedure 4.1.) Let S be the set of connected p-small
sets. That is, S = {S C V(G) | G[5] is connected and |N[S]| < pn}. For each S € S,
there is an entry, denoted by I'[S], in the table which stores a nice solution for S. In
other words, I'[S] is the largest integer ¢ > 1 for which G[S] can be contracted to P,
with a Pj,-witness structure W = (Wq, Ws, ..., W,) of G[S], such that ®&(S) C W,,.
The algorithm starts by initializing I'[S] = 1 for each S € S.

In the following we introduce some notation that will be useful in stating the
algorithm. Consider S € S. We will define a set A[S], which will be the set of all
“potential extenders bags” for S, when we look at contraction to paths for larger
graphs (containing S). For the sake of notational simplicity, we will define A, [S] C
A[S], where the sets in A, [S] will be of size exactly a and will have exactly b
neighbors outside S. We will define the above sets only for “relevant” as and bs. We
now move to the formal description of these sets. Consider S € S and integers a, b,
such that |S| +a+b < pn and |N(S)| < b. We let A,[S] = {4 C V(G- 9) |
G — S[A] is connected, Ng(S) C A, |A| = a, and [Ng_s(A)| = b}.

The algorithm now computes nice solutions. The algorithm considers sets from
S € 8§, in increasing order of their sizes, and does the following. (Two sets that have
the same size can be considered in any order.) For every pair of integers a, b, such that
S|+ a+b < pnand |[N(S)| <b, it computes the set A, [S]. Note that A, ,[S] can
be computed in time O*(2¢+t*~151), using Lemma 2.4. Now the algorithm considers
A e Ay p[S]. Intuitively speaking, A is the “new” witness set to be “appended” to
the witness structure of G[S], to obtain a witness structure for G[S U A]. Thus, the
algorithm sets T'[S U A] = max{T'[S U A],T'[S] + 1}. This finishes the description of
our algorithm.
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In the following few lemmas we establish the correctness and runtime analysis of
the algorithm.

LEMMA 4.1. For each S € S, the algorithm computes T'[S] correctly.

Proof. We prove the statement by induction on the size of sets in S. The base
case is for sets of size 1. That is, for the base case we show that for each S € S, such
that |S| = 1, the algorithm computes I'[S] correctly. Consider a set S € S of size 1.
Note that in this case, I'[S] must be equal to 1. At step 2, the algorithm initializes
I'[S’] =1 for each S’ € S. Note that no other step of the algorithm modifies the value
of T'[S] (as |S| = 1). Thus, the algorithm correctly computes I'[S].

For the induction hypothesis, we assume that the algorithm computes I'[S’] cor-
rectly, for each S’ € S, such that |S’| < r. We will now argue that the computation
of T'[-] for sets of size r + 1 is correct. Consider S € S such that |S| =r + 1. Let gopt
be the nice solution for S and g, be the value of T'[S] computed by the algorithm.
We will show that gout = Gopt-

First, we show that gout > gopt. Consider a Py, .-witness structure W = (W1, Wa,

-y Weon) of G[S] such that ®(S) € W, . Note that gout > 1; thus if gopt = 1, then
Gout = Gopt trivially holds. Now we consider the case when gopt > 2. Let S=25 \ Wom>
a= Wyl and b= [N(W, )|. As S € S, we have |[N[S]| < pn. Thus, S| +a+b<
pn. Since W is a P, -witness structure of G[S], we have N (§) C W, and thus
a > |N(S)|. Also, ® # S € W. (In the above we rely on the fact that Qopt > 2.)
From the above discussions we can conclude that the set A, 4[S] is well defined, and

Weon € AaplS S]. By the induction hypothesis, we known that T'[S] > Gopt — 1 is
correctly computed. Thus, at step 9, the algorithm sets goyr = I'[S] > gopt- Hence, we
conclude that gout > Gopt-

Next, we show that gout < gopt. Note that gope > 1. Thus, if goye = 1, then the
claim is tr1v1ally satisfied. We next consider the case when qout > 2 As Qout > 2,
there is a set 5 € S, with § C S (S # S) and integers a, b, such that |S| +a+b < pn,
IN(S)| < a, such that A = S\ S € Aq[S] and gour = T'[S] + 1. By the induction

-~

hypothesis, T'[S] is computed correctly. Thus, there is a P, ,_i-witness structure

W' = (Wi, Wa,...,W,_1) of G[S] such that ®(5) € W, ;. But then, W =
(W1, Wa, ..., Wy..—1,4) is a Py-witness structure of G[S]. Thus, gour < ¢opt. This

concludes the proof. O

LEMMA 4.2. The algorithm presented for ENUM-PARTIAL-PC runs in time
O*(2Pm).

Proof. Steps 1 and 2 of the algorithm can be executed in time bounded by O*(2°™)
(see Lemma 2.5). We will now argue about the time required for execution of the for-
loop starting at step 5. Toward this, we start by partitioning sets in S by their sizes
and the sizes of their neighborhood. Recall that for any S € S, we have |[N[S]| < pn.
Let Spy = {S € S| |S| = x and |[N(S)| = y}, where z,y € [[pn]], such that
z+y < pn. Consider z,y € [|pn]], where z + y < pn. From Lemma 2.5, |S, |
is bounded by O*(2**¥). For each S € S, ,, the algorithm considers every pair of
integers a,b, such that |S| +a+ b < pn and |N(S)| < a, and computes the set
Aap[S]. Note that A, [S] can be computed in time bounded by O*(20F0=IN(SI)
from Lemma 2.4. Furthermore, the algorithm spends time proportional to |A, ;S]]
at step 9. From the above discussions, we can bound the running time of the algorithm
by the following;:
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O* Z Z 9Tty 2a+b—y = OF Z Z 2rc+a+b — O*(Qpn)

a+y<pn x+a+b<pn e y<pn w+a+b<rm

This concludes the proof. 0

2. Algorithm for BarLancep PC. We formally define the problem BAL-
ANCED PC in the following.

BALANCED PC

Input: A graph G on n vertices and a fraction 0 < a < 1.

Output: Largest integer ¢ > 2 for which G has a P,-witness structure W =
(W1, Wa, ..., Wy) such that there is i € [t] with N[U;cyW;] < an and

N[U]E[t]\[i] W;] < an. Moreover, if no such ¢ exists, then output 1.

We design an algorithm for BALANCED PC running in time O*(2°™). Let (G, «)
be an instance of BALANCED PC.

We begin by explaining the intuition behind the algorithm. Recall that for an
a-small set S C V(G), integer tg is called the nice solution if G[S] is contractible
to P, with all the vertices in ®(S) in the end bag. That is, there is a P, -witness
structure (Wy, Wa, ..., Wy, ) of G[S] such that ®(S) C W;,. Suppose that we know
the value of tg for every a-small set S. Now we see how we can use these nice solutions
for a-small sets to solve our problem (see Figure 3). Recall that we are looking for
the largest integer ¢, such that G is contractible to Py, with W = (W1, Wy, ..., W)
as a Py-witness structure of G, such that there is i € [t] with [U;¢}; 1) W;| < an and
|Ujepp -y Wil < an. Let S = U e Wi As [Ujepigq Wil < anand N(S) € Wi,
the set S is an a-small set. Similarly, we can argue that V(G) \ S is an a-small set.
Thus, for S and V(G) \ S, we know the nice solutions ts and ty )\ s, respectively.
Notice that the solution to the whole graph is actually ts + ty (g s-

The algorithm. The algorithm initializes ¢ = 1. (At the end, ¢ will be the output
of the algorithm.) The algorithm computes table ' =ENUM-PARTIAL-PC(G, «) using
Procedure 4.1. Let S be the set of all connected sets S in G such that |[N[S]| < an.
That is, S = {S C V(G) | G[S] is connected and |N[S]| < an}. For each S € S,
we have an entry denoted by T'[S]. The algorithm considers each S € S for which
V(G)\ S €S. Tt sets t = max{¢t,'[S] + T'[V(G) \ S]}. Finally, the algorithm returns
t as the output. This completes the description of the algorithm.

LEMMA 4.3. The algorithm presented for BALANCED PC is correct.

<an <an
I = -
| GI[S]
|
|
|
| W W, Wz+1 Wiso Wiaq W

Fic. 3. An illustration of construction of the solution using solutions for instances of smaller
sizes.
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Proof. For an instance (G, «), suppose that ¢op is the solution to BALANCED PC
and %o, is the output returned by the algorithm. We will show that #o.t = fopt-

First, we show that fout > lopt. As tour > 2, if topr = 2, then the claim triv-
ially holds. Thus, we assume that tope > 3. Let W = (W, W, ..., W, ) be a
P, ,~witness structure of G, such that there is i € [topt] with [N[U;e( Will < an
and |N[Uje[topt]\[z‘] Wil < an. Let S = Uy W and S = Uje[tom]\[z‘] W;. Note
that S = V(G)\ S and 5,5 € S. Let Wy = (Wy,Ws,...,W;) and Wh =
(Wig1, Wiga,...,Wy,,). Note that W, is a Pj-witness structure of G[S] such that
®(S) € W;. Similarly, W, is a Py, _;-witness structure of G[S] such that ®(S) C
Wit1. From Lemma 4.1, we know that the algorithm has correctly computed the

values I'[S] and T'[S]. From the above discussions we can conclude that I'[S] > ¢ and
r'[S] > topt — . Thus, we can conclude that o > I'[S] + r'[S] > Lopt-

Next, we show that tour < topt. AS topt > 2, if toue = 2, the condition ¢y <
topt is trivially satisfied. Now we consider the case when t,,+ = 3. In this case,
there is a set S € S such that V(G)\ S € S and t = T'[S] + T[V(G) \ S]. From
Lemma 4.1, the algorithm has correctly computed ¢; = I'[S] and ¢ = T[V(G) \ S].
Thus, there is a P, -witness structure Wy = (Wq, Wa, ..., W,,) for G[S] such that
®(S) € Wy, . Similarly, there is a P,-witness structure Wp = (W7, W5, ..., W, ) for
G[V(G) \ S] such that ®(V(G) \ S) € W,,. Recall that ¢t = ¢ + g2. We will show
that W = (Wi, Wo,..., W, , W, ,..., W5, WJ) is a Pi-witness structure of G such
that there is i € [t] with [N[U;c; Wl < an and [N[U;¢q\ i Will < an. Lemma 4.1
and connectedness of GG implies that W is a P;-witness structure of G. Moreover, as
S,V(G)\ S €8, for i = q1, we have [N[U;c;y Will < an and [N[U;c g\ Will < an.
Hence, we can conclude that tou < topt. 0

LEMMA 4.4. The algorithm presented for BALANCED PC runs in time O*(2%").

Proof. The algorithm for BALANCED PC calls Procedure 4.1 on input (G, ) and
iterates over all the values in I". Hence, Lemma 4.2 implies that the running time of
the algorithm presented for BALANCED PC is O*(2%™). d

4.3. Algorithm for 2-UnioN Heavy PC. We formally define the problem
2-UnioN HeEavy PC in the following (also see Figure 4).

2-UNION HEAVY PC

Input: A graph G on n vertices and a fraction 0 < v < 1.

Output: Largest integer ¢ > 3 for which G has a P,-witness structure W =
(W1, Wa, ..., W;) such that there is ¢ € [t — 1] for which the following conditions
hold: (1) [W; UWiy1| 2 yn and (2) [N[Ujc;i—y Wills INIUjepp iy Will < (1=
v/2)n. Moreover, if no such ¢ exists, then output 2.

F1a. 4. An intuitive illustration of the algorithm for 2-UNION HEAvY PC.
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Procedure 4.2 Algorithm for 2-UNioN Heavy PC

Input: A graph G and a fraction 0 < v < 1.
Output: An integer t.
1: Initialize t = 2
2:Let S = {S C V(GQ) | |S] € (1 = v)n and G[S] has exactly two connected
components G[S1], G[S2], s.t. [N[S1]|,|N[S2]| < (1 —v/2)n}
3 Let 8§ = {§ C V(@) | IN[S]] < (1 —~/2)n and G[S] is connected}. Compute
the value of T'[S], for each S € 3‘, by computing the table I' = ENUM-PARTIAL-

PC(G,1-7~/2)
4: for Se€ S do
5. Let Sy and S5 be the two connected components of G[S]
6: if (G—S,Ng(S1), Ng(S2)) is a yes instance of 2-DCS then
7 t = max{t,I'[S1] + T'[S2] + 2}
8  end if
9: end for

10: return t

We design an algorithm for 2-UNION HEAVY PC running in time O*(2(1=7/2)" 4
"), where ¢ = max,<s5<1{1.7804° - g(1 — 6)}. The first term in the running time
expression will be due to a call made to ENUM-PARTIAL-PC with p = (1 —v/2), and
the second term will be due to enumerating sets of size at most (1—+)n and running the
algorithm for solving 2-D1SJOINT CONNECTED SUBGRAPHS for an instance created
for each of them, using the algorithm of Telle and Villanger [16].

We now formally describe our algorithm. The algorithm will output an inte-
ger t, which is initially set to 2. Let S = {S C V(G) | |S] < (1 — 4)n and G[S]
has exactly two connected components G[S1], G[Sz], such that |N[S1]|,|N[Se]| <
(1 —~/2)n}. Let 8 = {§ C V(G) | |N[S]| < (1 — v/2)n and G[S] is connected}.
The algorithm will now compute a table I', which has an entry T'[S], for each S € S.
The definition of T is the same as that in section 4.2, where p = 1 — v/2. That is,
for § € 8, T'[S] is the largest integer ¢ > 1 for which G[S] can be contracted to P,
with a P -witness structure W = (Wy, Wa, ..., W,) of G[§], such that <I>(§) C W,
Compute the value of F[§], for each S € 8, by using ENUM-PARTIAL-PC(G, 1 — v/2).
For each S € S, the algorithm does the following. Recall that G[S] has exactly
two connected components. Let the two connected components in G[S] be G[S]
and G[Sz], where S; U Sy = S. Recall that |[N[S1]],|N[S2]] < (1 — ~v/2)n. Thus,
51,8, € 8. If (G — S,Ng(51), Na(S2)) is a yes-instance of 2-DCS, then the algo-
rithm sets ¢ = max{¢,T'[S1] + I'[S2] + 2}, and otherwise, it moves to the next set in
S.F inally, the algorithm outputs ¢. This completes the description of the algorithm.
See Procedure 4.2.

In the following two lemmas we present the correctness and runtime analysis of
the algorithm, respectively.

LEMMA 4.5. The algorithm presented for 2-UNION HEAVY PC is correct.

Proof. For an instance (G, ), suppose that top is the solution to 2-UNION HEAVY
PC and to, is the output returned by the algorithm. We will show that fou = topt-

First, we show that toue > topt. AS tour > 2, if tope = 2, then the claim trivially
holds. Thus, we assume that tope > 3. Let W = (W1, Wy, ..., W, ) be a P, -witness
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structure of G such that there is i € [tops — 1] for which the following conditions hold:
(1) [W; UWisa] > ym and (2) INU, e Wil INU ey Woll < (1= /2)n.
Let Z =W;UW,;11 and S =V (G)\ Z. As |Z| > yn, we have |S| < (1 — v)n. Also,
as W is a P, -witness structure of G, G[S] has exactly two connected components
G[51] and G[S:], where Sy = ;¢;;_1y W; and S2 = U, ¢y, i1y Wi Note that we
have |N[S1]] < (1 —v/2)n and |N[S2]| < (1 — v/2)n. From the above discussions,
we can conclude that § € S and Sy, S, € 8. By Lemma 4.1, the values of I'[$;] and
I'[S2] are computed correctly, and we can conclude that I'[\Sq1] +T'[S2] > topt —2. Also,
(Wi, Wiy1) is a solution to the instance (G — S, Ng(S1), Na(S2)), and hence it is a
yes-instance of 2-DCS. Thus, toy =t > I'[S1] + T'[S2] + 2 > topt.

Next, we show that tour < ftopt. AS fopr > 2, if tor = 2, the condition
tout < topt is trivially satisfied. Now we consider the case when ¢, > 3. In this
case, there is a set S € S such that (G — S, Ng(S1), Ng(S2)) is a yes-instance
of 2-DCS and oy = I'[S1] + T'[S2] + 2, where G[S1] and G[S3] are the two con-
nected component of G[S]. From Lemma 4.1 it follows that the algorithm has
correctly computed ¢; = I'[S;] and ¢» = T'[S2]. Thus, there is a P, -witness
structure Wy = (Wh,Wa,...,W,,) for G[S1], such that N(S;) C W,. Simi-
larly, there is a P,-witness structure Wy = (W1, Wy,..., W, ) for G[S2] such that
N(S3) C W,;Q. Note that ¢1 + g2 < topt — 2. Let (Z1, Z2) be a solution to 2-DCS in
(G*S, NG(Sl), NG(SQ)) Note that W = (Wl, WQ, ey qu,Zl, ZQ, W(;2, ey WQI, Wll)
= Wi, Wa, ..., Wo , We, 11, Wei42, ..., Wy £qo42) Is a Py -witness structure of G
such that (1) [Wy, 41 UWe, 12| = yn and (2) [N[U;cre Wil INIUj et jgr 120 Will <
(1 —v/2)n. Thus, we can conclude that tout < topt- O

LEMMA 4.6. The algorithm presented for 2-UNION HEAVY PC runs in time
O*(20=7/2m 4 ™) where ¢ = max,<s<1{1.7804° - g(1 — §)}.

Proof. Using Observation 2.3, step 2 of the algorithm can be executed in time
O*((g(1—=~))™), which is bounded by O*(c"). Step 3 of the algorithm can be executed
in time (9*(2(1*7/2)”), by Lemmas 4.1 and 4.2. We now argue about the time required
for the for-loop starting at step 4 (all the remaining steps can be executed in constant
time). The number of sets in S of size at most (1 —d)n is bounded by (g(1—0))™. For
each v < 0 < 1, and each set S € S of size at most (1 — §)n, we resolve the instance
(G — S,Ng(S51), Ng(S2)) of 2-DCS, where G[S1] and G[Ss] are the two connected
components of G — S. Note that the number of vertices in G — S is bounded by dn,
and hence using Proposition 3.1, we can resolve the instance (G — S, Ng(S1), Na(S2))
of 2-DCS in time O*(1.7804°"). From the above discussions we can conclude that
the running time of the algorithm is bounded by O*(2(:=7/2" 4 ¢") where ¢ =
max,<s<1{1.7804° - g(1 — 4)}. o

4.4. Algorithm for SmaLL OpD /EVvEN PC. We formally define the problem
SMALL ODD/EVEN PC in the following.

SMALL OpD/EVEN PC

Input: A graph G on n vertices and a fraction 0 < 5 < 1.

Output: Largest integer ¢t for which G can be contracted to P, with W =
(W1, Wa,...,W;) as a P-witness structure of G, such that |0Syy| < fn/2 or
|ESW| < Bn/2, where OSW = UlG[[t/Z‘H ngfl and ESW = U’LG[Lt/QH ng.

In this section, we design an algorithm for SMALL ODD/EVEN PC running in
time O*(c"), where ¢ = g(5/2).
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Let (G, ) be an instance of SMALL ODD/EVEN PC. The algorithm is fairly
simple. It starts by enumerating all “potential candidates” for 0Syy (resp., ESyy), i.e.,
the set of all subsets of V(G) of size at most Sn/2. Then, for each such “potential
set,” it contracts G appropriately and finds the length of the path to which G is
contracted (and stores 0, if the contracted graph is not a path). Finally, it returns
the maximum over such path lengths.

We now move to a formal description of the algorithm. We start by enumerating
the set of all subsets of V(G) of size at most fn/2. That is, S = {S C V(G) | |5] <
Bn/2}. Note that S can be computed in time O*(g(3/2)™), using Observation 2.3. For
each S € S the algorithm does the following. Let Cs and Cg be the set of connected
components of G[S] and G — S, respectively. Let G be the graph obtained from G
by contracting each C' € Cs U Cg to a single vertex. Set leng = |V (Gg)| if Gg is a
path and leng = 0 otherwise. Finally, the algorithm returns maxgeg leng.

In the following lemma we prove the correctness and runtime analysis of the
algorithm.

LEMMA 4.7. The algorithm presented for SMALL ODD/EVEN PC is correct and
runs in time O*(g(8/2)").

Proof. Clearly, the algorithm presented for SMALL ODD/EVEN PC runs in time
O*(g(8/2)™). Now we prove the correctness of the algorithm.

In the forward direction, assume that G is contractible to P, ,, where (W7, Wa,
ooy W) is a Py, -witness structure of G, such that [0Syy| < Bn/2 or [ESyy| < fn/2,
where 08y, = Uie[[topt]] Wai—1 and ESyy, = Uz‘e[Ltoptj] Wa;. We will show that the
algorithm outputs tou: > topt- We assume that |0Syy| < fn/2. (The case when
|ESyy| < fBn/2 can be argued analogously.) Let S = 0S)y. Note that S € S. The
set of connected components in G[S] is precisely Cs = {G[Wai—1] | ¢ € [[tout/2]]}-
Also, the set of connected components in G — S is precisely Cs = {G[Wai11] | i €
[ltous/2]]}. Thus, Gs is isomorphic to P, ,. Thus, the output of the algorithm
tout = Maxgecsleng: > tope, as S € S and leng = top:.

For the other direction, let t,,: be the output of the algorithm. Note that ¢,,: > 1,
as ) € S and Gy is a single vertex (as G is connected). Consider S € S such that
lens = tout. Note that a P-witness set for G is W = {V(C) | C € CstU{V(C) | C €
Cs}. Thus one of 0Syy = S or ESyy = S must hold. Moreover, as S € S, we have
|S| < Bn/2. This concludes the proof. 0

4.5. Algorithm for NEAR SmaLL Opp /EVvEN PC. We formally define the
problem NEAR SMALL ODD/EVEN PC in the following (also see Figure 5).

NEAR SmALL OpD/EVEN PC

Input: A graph G on n vertices and a fraction 0 < e < 1.

Output: Largest integer ¢ > 3 for which there is a Pi-witness structure W =
(W1, Wa,...,W;) of G, for which there is ¢ € {2,3,...,t — 1}, such that if ¢
is odd, then |0Syy \ W;| < en and otherwise, |[ESyy \ W;| < en. Here, 0Syy =
Uie[[t/21] Wo;—1 and ESyy = Uie[[t/ZJ] Wa;. If no such ¢ > 3 exists, then output
2.

We design an algorithm for NEAR SMALL ODD/EVEN PC running in time O*(c")
where ¢ = max0§5§6{1.88(1_5) - g(8)}. The second term in the multiplicative factor
will be due to enumeration of sets, and the first term will be due to calls made to the
algorithm for 3-D1sJOINT CONNECTED SUBGRAPHS, from section 3.
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F1G. 5. An intuitive illustration of the algorithm for NEAR SMALL OpD/EVEN PC.

Let (G, €) be an instance of NEAR SMALL ODD/EVEN PC. We start by explaining
the intuitive idea behind our algorithm (see Figure 5). Consider a P;-witness structure
W = (Wy,Ws, ...,W;) of G, for which there is i € {2,3,...,t — 2}, such that if
i is odd, then [0Syy \ W;| < en and otherwise, |ESyy \ W;| < en. In the above,
0Syy = Uie[[t/ﬂ] Wa;—1 and ESyy = Uie[[t/2j] Wa;. Let us consider the case when ¢ is
odd (the other case is symmetric). Let S = 0Syy \ W;. (The union of vertices from
yellow sets in Figure 5 is the set S.) As |S| < en, the algorithm starts by enumerating
all “potential candidates” for the set S. All the components of G — S, except for the
component C, containing W;, must each be contracted to a single vertex. Similarly,
each connected components of G[S] must be contracted to a single vertex. Moreover,
the component containing W; must be “split” into three sets. The first and the last
sets in the “split” must contain the neighbors of W;_ and W; 5 in C, respectively. To
obtain such a “split,” we use the algorithm for 3-DISJOINT CONNECTED SUBGRAPHS
that we designed in section 3.

We now formally describe our algorithm. (A pseudocode of our algorithm is
presented in Procedure 4.3.) The algorithm will output an integer ¢, which is initially
set to 2. Let S = {S C V(G) | |S| < en}. For each S € S, the algorithm does the
following. Let Cs and Cs be the sets of connected components in G[S] and G — S,
respectively. Let Hg be obtained from G by contracting component in Cg U Cgs to
single vertices. That is, Hg has a vertex vc for each C' € Cs UCg, and two vertices
ve,ver € V(Hg) are adjacent in Hg if and only if C' and C’ are adjacent in G. If
Hg is not a path, then the algorithm moves to the next set in §. Otherwise, for each
C* € Cg it does the following. Intuitively speaking, C* is the current guess for the
component containing vertices from W; for the witness structure that we are looking
for. Note that C* can be adjacent to at most two components from Cg, as Hg is a
path. Moreover, C* must be adjacent to at least one component from Cg, as G is
connected and S is a strict subset of V(G), i.e., S # V(G). Let Cy be a component
from Cg that is adjacent to C* in G, and Z; = N(Cy) N V(C*). Let Cy € Cs \ {C1}
be a component of G[S] that is adjacent to C*, and Zy = N(Cs2) N V(C*). If such a
(3 does not exist, then we set Zy = 0. If (G[C*], Z1, Z2) is a yes-instance of 3-DCS,
then the algorithm updates t = max{t, |V (Hg)|+2}. After finishing the processing for
each S € §, the algorithm outputs ¢. This finishes the description of our algorithm.

In the following two lemmas we present the correctness and runtime analysis of
the algorithm, respectively.

LEMMA 4.8. The algorithm presented for NEAR SmALL ODD/EVEN PC is
correct.

Proof. For an instance (G, €), suppose that top is the solution to NEAR SMALL
ODD/EVEN PC and t, is the output returned by the algorithm. We will show that

tout = topt~
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Procedure 4.3 Algorithm for NEAR SMALL OpD/EVEN PC.

Input: A graph G and a fraction 0 < e < 1.
Output: An integer t.

1: Initialize t = 2

2: Let S={S CV(Q) ||| < en}

3: for S €S do

4:  Let Cs and Cg be the sets of connected components in G[S] and G — S, resp.

5:  Let Hg be obtained from G by contracting components in Cs U Cg to single
vertices

6: if Hg is a path then

7 for C* € és do

8: Let Cy € Cs be a component of G[S] that is adjacent to C*, and Z; =
N(Cy)nV(C*)

9: Let Cy € Cs \ {C1} be a component of G[S] that is adjacent to C*, and
Zy = N(C2) NV (C*), if such a Cy does not exist, then Zy =0

10 if (G[C*],Zy,Z3) is a yes-instance of 3-DCS then

11: t = max{t, |V (Hg)| + 2}

12: end if

13: end for

14:  end if

15: end for

16: return t

First, we show that toue > fopt. AS tour > 2, if topr = 2, then the claim trivially
holds. Thus, we assume that tepe > 3. Let W = (Wi, Wa, ..., W, ) be a P -
witness structure of G, for which there is i € {2,3,...,topt — 1}, such that if 7 is
odd, then [0Sy, \ W;| < en, and otherwise, |ESyy \ W;| < en. In the above, 0Syy =
Uie[[topt/ﬂ] Wai—1 and ESyy = Uie[Ltopt/ZJ] Wa;. We consider the case when ¢ is odd.
(The case when 7 is even can be argued analogously.) Let S = 08y, \ W;. As |S| < en,
we have S € S. Note that Hg is a path. Let C* € Cg be the connected component
of G — S containing W;. Let Cy € Cg be a connected component of G[S] adjacent to
C*, and Z; = N(Cy)NV(C*). Consider Cy € Cg \ {C4} that is adjacent to C*, and
let Zo = N(C2) NV (C*). If such a Cy does not exist, then set Zs = (). Note that
(G[C*], Z1, Z3) is a yes-instance of 3-DCS, as (W;_1, W;, W;41) is a solution to it. In
the above we rely on the fact that ¢ € {2,3,...,t—1}, and thus each of W,;_; and W,
is nonempty. From the above discussions we can conclude that tous > topt = V(Hg)+2
(as C* is split into three witness sets).

Next, we show that four < topt. As topt > 2, if Loy = 2, the condition toye < topt
is trivially satisfied. Now we consider the case when toy; > 3. There is S € S for
which Hg is a path and there is C* € Cg, for which the instance (G[C*], Z1, Z2) is
a yes-instance of 3-DCS. Let (V;*,U*,V5") be a solution to 3-DCS for the instance
(G[C*], Z1,Z2). Let W = Cs U (Cs \ {C*}) U{V;*,U*,V5}. Note that |W/| =
|[V(Hg)| + 2 and W' is a P, -witness structure for G. Let W = (W, Wy, ..., Wy )
be the ordered witness structure corresponding to the P, ,-witness structure W’ of
G. Note that there is i € {2,3,...,tout — 1} such that V(C*) C W;_1 UW,; U W;4;.
Thus we can conclude that W is a P, ,-witness structure of G, for which there is
1€ {2,3,...,tout — 1}, such that if i is odd, then |0Syy \ W;| < en, and otherwise,
|ESy \ W;| < en. From the above discussions we can conclude that four < topt. 1]
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LEMMA 4.9. The algorithm presented for NEAR SMALL ODD/EVEN PC runs in
time O* ("), where ¢ = maxg<s<.{1.88179 . g(8)}.

Proof. From Observation 2.3, step 2 of the algorithm can be executed in time
O*([g(e)]™). Also, |S| is bounded by O*([g(e)]™). For a set S € S, step 10 can be
executed in time O*(1.88"~191), from Theorem 3.3, and other steps can be executed
in polynomial time. Hence, the running time algorithm can be bounded by O*(¢™),
where ¢ = maxp<s<e {1.88(1_5) . g(é)}. ]

4.6. Algorithm for PATrH CoNTRACTION. We are now ready to present our
algorithm for PATH CONTRACTION. The algorithm calls four of the subroutines
SMALL OpD/EVEN PC, BALANCED PC, 2-UNION HEAVY PC, and NEAR SMALL
ObpD/EVEN PC for appropriate instances, and returns the maximum of their outputs.
In the following theorem, we present the algorithm, which is the main result of this
paper.

THEOREM 4.10. PATH CONTRACTION admits an algorithm running in time
O*(1.99987™), where n is the number of vertices in the input graph.

Proof. We fix a, 8,7 such that they satisfy following inequalities: (1) 2 — « —
B/2+v/2 < a; (2) 1 —v/2 < a. These inequalities will be used in the later parts of
the proof. We set o = 0.9996, 3 = 0.9885, 7 = 0.9864, and e = 1 — 3/2 — ~/2.

The algorithm for PATH CONTRACTION is as follows. Let G be the input graph.
Let t; = SMALL ODD/EVEN PC(G, ), t2 =BALANCED PC(G,a), t3 =2-UNION
Heavy PC(G,7), and t4 = NEAR SMALL ODD/EVEN PC(G,¢€). Furthermore, let
t* = max{2,ty,ta,t3,ts}. The algorithm returns ¢*. This finishes the description of
the algorithm.

By Lemma 4.7, t; can be computed in time O*(1.99987"). By Lemma 4.4, to
can be computed in time O*(1.9995™). From Lemma 4.6, ¢3 can be computed in time
0*(1.9133™). From Lemma 4.9, ¢4 can be computed in time O*(1.9953™). Thus, the
running time of the algorithm is bounded by O*(1.99987").

We now prove the correctness of the algorithm. If the algorithm returns an
integer t, then from Lemmas 4.7, 4.3, 4.5, and 4.8, it follows that G is contractible to
P;. Now we prove the other direction. Suppose G is contractible to P;. We will show
that t* > t.

Let W = (W1, Ws, ..., W;) be a P-witness structure of G. We assume that ¢ > 3,
as otherwise, trivially, t* > ¢ is satisfied. We also assume that |[W;| = |[Wi| = 1 (see
Observation 2.2). Let 08 = [U;g(p1/07 Wai—1 and ES = U,¢(¢/2)) Wai- For i € [t],
we let Qi = Uy Wi and Ri = U;jep -1 Wj- Note that N(Q;) (vesp., N(R;)) is
contained in W;y1 C Q41 (resp., W;—1 C N(R;—_1)). We use the above observation
frequently in the remainder of the proof.

We say that W admits an a-bi-partition, if there is j € [t], such that
|Uiepy Wil < an and [U;gpj—g Will < an. Note that if W is an a-bi-partition,
then |N[U;e;j_1y Will < an and [N[U, i j—1y Will < an. If we show that W is an
a-bi-partition, then using Lemma 4.3 we can conclude that t* > ¢. We will use the
above in later parts of our proof.

If |0S| < Bn/2 or |ES| < fn/2, then SMALL ODD/EVEN PC is better than the
other. Hence, Lemma 4.7 implies that ¢* > ¢. Hereafter we assume that |0S| > On/2
and |ES| > n/2. The above implies that Sn/2 < |08, |ES| < (1 — 3/2)n. Note that
there can be at most two witness sets in VW which are of size more than yn/2, as
v = 0.9864. Next, we consider cases based on the number of witness sets of size more
than yn/2 in W.
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Case 1. All witness sets in W are of size at most yn/2. In this case, we will
show that VW admits an a-bi-parition. In this case the BALANCED PC subroutine is
better than the other. Hence, using Lemma 4.3, we can conclude that t* > ¢. Let
J be the largest integer such that |Q;| < an. Note that j > 2, as |[W;| + |[Wy| <
vn < an. The above also implies that j < ¢, as o = 0.9996. As |Q;j+1]| > an, we
have |Q;| + |W,41| > an, which can be rewritten as |Q;| > an — |[W;41|. Note that
(Qj, Rj+1) is a partition of V(G), and thus, |Q;| + |R;j4+1| = n. Hence,

|Rj41] =n—|Q;] <n—an+|Wjiil
We use this to obtain an upper bound on |R;_1|. By definition,
[Rj—1| = Wj—1| + [W;| + [Rj1a], and hence
[Rj—1| < [Wj—al+ [Wjl+n—an+ [Wji| =n—an+ W]+ Wil + [Wjtl.

Since j — 1,7 + 1 have the same parity (both are odd or both are even), |W;_1| +
|[W41| < (1 — 8/2)n. From the premise of the case we have |W;| < yn/2. From the
above discussions and using ineqality (2.1), we get

|IRj_1] <n—an+(1—-5/2)n+~v/2n=(2—-a—[/24+7v/2)n < an.

Thus, | U;e;; Wil < anand |U;ep o Will < an. Thus, W admits an a-bi-parition.

Case 2. There is exactly one witness set Wy, in W such that |Wj| > yn/2. If
W admits an a-bi-partition, then we can conclude that t* > ¢, using Lemma 4.3.
Thus, we assume that W does not admit an a-bi-partition. Let j be the largest
integer, such that |@Q;| < an. (Recall that all graphs under consideration have at
least two vertices, |W7| = 1, and hence j exists.) As argued previously, we have
(Wi_1|+ W] < (1—8/2)n. If j # k, then |W;| < yn/2, and arguments are similar
to that of the previous case. We now consider a case when j = k. Without loss of
generality, assume that k is odd. Since |0S| < (1 — 3/2)n and yn/2 < |W;|, we have
[0S\ W;| < (1—-8/2—~/2)n = en. In this case the SMALL ODD/EVEN PC subroutine
is better than the other. Thus, from Lemma 4.8 we can conclude that t* > ¢.

Case 3. There are exactly two witness sets W;, Wy, in W, such that |W;|, |Wy| >
yn/2 and j < k. Consider the case when k = j 4+ 1. Note that in the above case, we
have [N[U,cp;—1 Will, INU;epp j+1 Will < (1 —~/2)n. Thus, from Lemma 4.5 we
can conclude that ¢* > t. Now we consider the case when j < k and k # j + 1. We
now consider the case when j is odd and k is even. (The case when j is even and k
is odd can be argued analogously.) Note that [ES\ W;| < (1 — 5/2)n —yn/2 = en.
In this case, the 2-UNION HEAVY PC subsubroutine is better than the other. Thus,
from Lemma 4.8 we can conclude that t* > .

Now we consider the case when j, k are both even or both odd and k& # j + 1.
Note that in the above case k > j 4+ 3. We will conclude that t* > ¢ by showing that
W admits an a-bi-partition (and Lemma 4.3). To this end, we start by arguing that
|Qj+2l, |Rj+1]| < an. Ask > j+3,set WpNQj 42 = 0. Thus, |Qj42| < n—9n/2 < an.
By similar arguments we can obtain that |R;,1| < an. Note that the above implies
that W admits an a-bi-partitioned witness structure. This concludes the proof. 0O

5. Conclusion. We generalized the 2-D1sJOINT CONNECTED SUBGRAPHS prob-
lem to a problem called 3-Di1sJOINT CONNECTED SUBGRAPHS, where instead of par-
titioning the vertex set into two connected sets, we are required to partition it into
three connected sets. We gave an algorithm for 3-D1SJOINT CONNECTED SUBGRAPHS
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running in time O*(1.88™). We believe that this algorithm can be of independent in-
terest and may find other algorithmic applications. We designed an algorithm for
PATH CONTRACTION which breaks the O*(2") barrier. It was surprising that even
for a simple problem like PATH CONTRACTION, there was no known algorithm that
solves it faster than O*(2™). Our algorithm for PATH CONTRACTION relied on the fact
that the number of (Q,a, b)-connected sets can be bounded by O*(2¢+t0=IQl). This
gives us savings in the number of states that we consider in our dynamic programming
routine (for enumerating partial solutions). We designed four different algorithms for
PATH CONTRACTION and used them for appropriate instances, to obtain the main
algorithm for PATH CONTRACTION.

It is interesting to identify other graph contraction problems for which we can
improve upon brute force algorithms. The simple algorithm described in section 1 can
be used to solve the TREE CONTRACTION problem. We believe there is an algorithm
that breaks O*(2") for TREE CONTRACTION. On the other hand, we conjecture that a
brute force algorithm, running in time O*(n™), is optimal for CLIQUE CONTRACTION
under ETH.
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