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How well can near infrared reflectance spectroscopy (NIRS)
measure sediment organic matter in multiple lakes?
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Abstract Loss-on-ignition (LOI) is the most widely

used measure of organic matter in lake sediments, a

variable related to both climate and land-use change.

The main drawback for conventional measurement

methods is the processing time and hence high labor

costs associated with high-resolution analyses. On the

other hand, broad-based near infrared reflectance

spectroscopy (NIRS) is a time and cost efficient

method to measure organic carbon and organic matter

content in lacustrine sediments once predictive

methods are developed. NIRS-based predictive mod-

els are most robust when applied to sediments with

properties that are already included in the calibration

dataset. To test the potential for a broad applicability

of NIRS models in samples foreign to the calibration

model using linear corrections, sediment cores from

six lakes (537 samples, LOI range 1.03–85%) were

used as reference samples to develop a predictive

model. The applicability of the model was assessed by

sequentially removing one lake from the reference

dataset, developing a new model and then validating it

against the removed lake. Results indicated that NIRS

has a high predictive power (RMSEP\ 4.79) for LOI

with the need for intercept and slope correction for
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new cores measured by NIRS. For studies involving

many samples, NIRS is a cost and time-efficient

method to estimate LOI on a range of lake sediments

with only linear bias adjustments for different records.

Keywords Holocene � Lacustrine � Paleolimnology

partial least squares (PLS) � Sediment organic matter

Introduction

Near infrared reflectance spectroscopy (NIRS) is

increasingly included in soil studies to reduce costs

and processing time (Chodak 2008). NIRS is a non-

destructive method where a light beam with known

spectral properties is directed at a sample and the

reflected light is measured in the visible and near

infrared region of the light spectrum (approx. 350 nm

to 2500 nm) (Kaye 1954, 1955). Measured reflectance

values are related to the organic bonds between

molecules in a sample, making it feasible to calibrate

multivariate predictive models to measure organic

compounds in sediment analyses. Themain strength of

NIRS compared to traditional physical and chemical

analyses of sediments is that a single sample could be

used to simultaneously analyze a range of different

chemical or structural parameters (Cozzolino and

Morón 2003) and since it is a non-destructive method

the sample can then be used for other analyses.

The content of organic matter in sediments is

widely used as a stratigraphic property and as, for

example, an indicator of ecosystem productivity in

lake sediment analyses as well as for assessing climate

and environmental changes (Björck et al. 1991; Nesje

and Dahl 2001; Birks and Birks 2006). The principal

analytical method, loss on ignition (LOI), which has

been used for several decades, is an accurate method to

measure soil and sediment organic matter (LOI at

550 �C) and CaCO3 content (LOI at 950 �C) (Dean
1974; Heiri et al. 2001) and although inexpensive in

materials, it is expensive in staff time. Alternative

methods using wet oxidation (Walkley–Blackmethod;

Heanes 1984) are more expensive and time consuming

even when automated, and may over-estimate the

actual organic carbon content (Wang et al. 2012).

NIRS has been successfully applied in previous

studies to measure the physical and chemical compo-

sition of lake sediments, including LOI and

geochemical elements such as C, N and P (Malley

et al. 1999, 2000; Inagaki et al. 2012). The ability of

this method to measure different proxies from a single

analysis results in reduced sampling and laboratory

analysis costs, together with increase time-efficiency

(Nduwamungu et al. 2009). However, the use of NIRS

has been limited to the cores (or lakes) for which the

calibration models have been developed (Rosén et al.

2010). The restriction of the applicability of NIRS

models to the cores, or lakes against which the models

have been calibrated is a strong drawback for a wider

application of the method. It has been assumed that

site-specific variation in sediment chemical composi-

tion or stratigraphy will negatively affect the model

applicability, even rendering it unusable in some

situations. However, there is a growing literature on

the applicability of spectrometric tools to samples that

are outside the calibrated population (Rosén et al.

2011; Meyer-Jacob et al. 2017), although new mea-

surements will generally require some correction

factors based on a subset of samples from the new

core (Roggo et al. 2007). There has been a marked

development of spectroscopic tools to measure sedi-

ment properties with very good results, although

transferability of models is still a remaining challenge

(Table 1).

Here we present LOI predictive models based on

NIRS scans of six contrasting lacustrine sediment

cores from boreal to high Arctic locations to study the

(1) method’s accuracy and feasibility, and (2) test if

the transferability of NIRS models to new samples

with only a simple linear correction as adjustment.

Materials and methods

Lake sediments

A total of 537 lacustrine sediment samples were

analysed from six geographically distinct lakes across

the boreal to high arctic zone (Table 2). For three of

the lakes, the description of the cores has already been

published: Skartjørna in Svalbard (Alsos et al. 2016),

Uhca Rohči at Varanger Peninsula in Northern

Norway (Clarke et al. 2019), and Bolshoye Schuchye

in the Polar Urals (Svendsen et al. 2018). In two cases,

we sampled new cores from lakes for which earlier

lithological studies exist- Gauptjern in Troms (Jensen

and Vorren 2008) and Øvre Æråsvatnet in Nordland
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(Alm 1993). For one lake, Uhca Rohči 1, the lithology

is provided in supplementary material (ESM 1).

NIRS measurements

Approximately 1 g of wet sediment was dried at 50 �C
for 24 h, ground in a mortar and scanned with a

portable spectrometer (Fieldspec 3, ASD Inc, Boulder,

CO). Spectra were measured as reflectance in the

350–2500 nm spectral range with resolution of 1.4 nm

in the 250–1050 nm region and 2 nm in the

1000–2500 nm regions, and automatically interpo-

lated to 1-nm resolution. Each sample was scanned

five times in a black polyacetal sample holder, rotating

and mixing the samples between each scan to incor-

porate all spectral variability for each sample. The

repeated spectra were averaged into a single spectrum

per sample. On average, approximately 500 samples

could be scanned with the NIRS method per week.

Table 1 Examples of previous work done using spectroscopy in sediment analyses from marine and lake cores

Authors Developed NIRS

models

Method Details

Balsam and

Deaton

(1996)

TOC and Carbonates NIRS Marine sediments, atlantic ocean. High applicability (R2[ 0.9)

Malley et al.

(1996)

TOC, TN, TP NIRS Lake sediments, 10 sites, Canada. High applicability (R2[ 0.88)

McTiernan

et al. (1998)

Moisture, organic

matter

NIRS Lake sediments, 1 site, England. High applicability (R2[ 0.9)

Korsman et al.

(1999)

LOI NIRS Lake sediments, 1 site, Sweden. High variability in PCA of sediment spectra

explained by LOI

Malley et al.

(1999)

TOC, TN, TP, diatoms

and carbonates

NIRS Lake sediments, 1 site, Germany. High applicability (R2[ 0.83; TC

R2 = 0.93)

Mecozzi et al.

(2001)

Carbonates FTIRS Marine sediments, Italy. High applicability (R2 = 0.99)

Rosén and

Persson

(2006)

TOC FTIRS Lake sediments, 2 sites, Sweden. Limited applicability (R2[ 0.6)

Leach et al.

(2008)

TOC FTIRS Marine sediments, atlantic ocean. Good applicability (R2 = 0.83)

Vogel et al.

(2008)

TOC, TIC, TN, TS FTIRS Lake sediments, 2 sites, Russia and Albania. R2[ 0.79 (TOC), R2 = 0.98

(TIC), R2[ 0.62 (TN), R2 = 0.21 (TS)

Rosén et al.

(2010)

LOI, TIC, BSi FTIRS Lake sediments, multiple sites, worldwide. Limited geografical transferability

of models

Rosén et al.

(2011)

TOC, TIC, BSi FTIRS Lake sediments, multiple sites, worldwide. High transferability of models

(R2[ 0.9)

Inagaki et al.

(2012)

TOC, TN, TS,

inorganic elements

FTIRS Lake sediments, Japan, 1 site. High applicability (TOC R2 = 0.88, TN

R2 = 0.89, inorganic elements R2 = 0.73)

Hahn et al.

(2013)

TOC, TIC, BSi FTIRS Lake sediments, Patagonia, 1 site. High applicability (R2 = 0.94)

Meyer-Jacob

et al. (2014)

TOC, TIC, BSi FTIRS Lake sediments, Russia, 1 site. High applicability (R2[ 0.86)

Pearson et al.

(2014)

TOC FTIRS Lake sediments, Japan, 1 site. High applicability (R2 = 0.95)

Vogel et al.

(2016)

BSi FTIRS Marine sediments, atlantic ocean. High applicability of a local model

(R2 = 0.97), good transferability from older model (R2 = 0.87)

NIRS near infrared reflectance spectroscopy, FTIRS Fourier-transformed infrared reflectance spectroscopy, TOC total organic carbon,

TN total nitrogen, TP total phosphorus, LOI loss on ignition, TIC total inorganic carbon, BSi biogenic silica
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LOI

Reference LOI values were obtained following the

method by Dean (1974): drying samples at 105 �C
overnight and weighed, followed by combustion in

ceramic crucibles at 550 �C for 2–4 h, then re-

weighed. LOI was calculated as:

LOI %ð Þ ¼ Dry weight gð Þ � 550C remaining weight gð Þ
Dry weight gð Þ

� 100

Statistical analyses were performed in R 3.2.2 (R

Development Core Team 2014) using partial least

squares regression (Martens and Næs 1989) contained

in the ‘‘pls’’ package (Mevik andWehrens 2007). Data

pre-processing tools i.e. derivatives, smoothing and

spectra standardization were applied from the ‘‘pro-

spectr’’ package (Stevens and Ramirez–Lopez 2014).

The following data transformations were tested for the

model development: centering, scaling, smoothing

based on moving averages, standard normal variate

and 1st and 2nd order derivatives (Stevens and

Ramirez–Lopez 2014).

Seven individual models were developed for LOI.

The first model included all the samples from the six

sediment cores (n = 537): calibration and validation

sets were created using the Kennard-Stone algorithm

(Kennard and Stone 1969) to ensure a proper spectral

variability between calibration and validation, where

85% of the total sample was assigned to the calibration

dataset and 15% was assigned to the validation

dataset. The remaining six models were developed

by subtracting one lake from the calibration dataset

and validating the resulting model against this record

(Table 2). All the models were internally cross-

validated with a 10-fold cross validation.

The most parsimonious models were selected based

on a high coefficient of determination (R2), given a

number of latent variables (k) and low root mean

squared error of the cross-validation (RMSECV),

which assesses the error between NIRS measured and

reference values. Finally, each calibration model was

tested against its respective validation set: coefficient

of determination (R2), root mean square error of the

predictions (RMSEP), bias (systematic error) and the

intercept and slope of the linear fit of the predictions

were calculated to assess the applicability of the

model.

Intercept and slope of the linear fit were used to

apply corrections based on the equation y = mx ? b,

where y is the corrected LOI value, m is the slope, b is

the intercept and x is the NIRS measured raw value.

Results

LOI values ranged from very low to very high (1.03%

to 85%), with a high overlap observed in the range of

values between different lakes (Table 2). The dataset

covers a large variation in sediment composition, with

samples ranging from organic-rich gyttja to

Table 2 Summary of LOI values for each lake sediment record included in the NIRS models

Lake Zone Latitude Longitude Lithology n Min Median Mean Max

Øvre Æråsvatnet

(Andøya)

Boreal 69.25�
N

16.05� E Silty gyttja with sand laminae 86 5.1 30.7 42.2 73.9

Uhca Rohči 1 (Varanger) Sub-

arctic

70.32�
N

30.02� E Organic silt to gyttja 62 17.1 59.7 56.5 84.9

Uhca Rohči 2 (Varanger) Sub-

arctic

70.32�
N

30.03� E Silty clay to detrital silty-clay

gyttja

78 15.1 29.2 30.3 38.3

Gauptjern (Troms) Boreal 65.85�
N

19.62o E Silty gyttja to brownish

detrital gyttja

136 11.9 51.4 52.6 83.3

Skartjørna (Svalbard) High

arctic

77.96�
N

13.82� E Clayey and silty laminae 40 4.5 6.0 6.8 10.5

Bolshoye Schuchye (Polar

Urals)

Sub-

arctic

67.87�
N

66.31� E Minerogenic silts with sand

laminae

135 1.0 3.2 3.5 5.2

Sample size (n), minimum (min) and maximum (max) LOI values are given in percentage
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Fig. 1 a Calibration and b validation of the full LOI dataset including 537 samples from six lakes

Table 3 Calibration parameters of the NIRS models for LOI prediction

Model Full Without

Øvre

Æråsvatnet

Without

Uhca

Rohči1

Without

Uhca

Rohči2

Without

Gauptjern

Without

Polar Urals

Without

Skartjørna

Data pre-

treatment

SNV,

derivative

1–2–23

SNV,

derivative

0–2–23

SNV,

derivative

0–2–23

SNV,

derivative

0–2–23

SNV,

derivative

0–2–23

SNV,

derivative

0–2–23

SNV,

derivative

0–2–23

k 15 15 15 15 15 15 15

Calibration R2 0.98 0.96 0.97 0.98 0.97 0.95 0.96

RMSECV 3.3 4.79 4.33 3.43 3.90 4.46 4.64

Validation R2 0.99 0.92 0.87 0.95 0.82 0.22 0.17

RMSEP 2.46 5.47 9.34 19.31 7.64 17.95 7.49

Bias 0.11 0.83 - 8.66 16.99 1.93 13.69 5.47

Intercept - 0.39 6.78 7.07 11.32 - 2.46 12.3 - 7.77

Slope 1.02 0.82 1.05 0.5 1.01 - 7.21 1.34

Validation

(Slope

corrected)

RMSEP 5.27 3.3 4.22 7.31 1.37 4.26

Bias 0 - 0.07 0.16 0 0 1.9

Standard normal variate (SNV), and the numbers after the derivative stand for differentiation order, polynomial order and window

size respectively, number of latent variables (k), coefficient of determination between model fitted and reference LOI measurements

(R2), RMSECV and RMSEP are Root Mean Squared Error of the Cross Validation and Prediction, respectively, bias is the systematic

error between reference and NIRS-measured values and Intercept and Slope represent the coefficients of the linear fit between the

reference and NIRS-measured values
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predominantly minerogenic silts and clay with and

without a significant CaCO3 content (Table 2).

The full model including all the samples from the

six sediment cores performed best (Fig. 1), with good

fit in both the calibration and internal validation

datasets (Table 3). The remaining models showed

good model performance on the calibrations (Fig. 2)

but needed intercept and slope correction on the

external validations (Fig. 3, Table 3). In addition, the

model excluding Gauptjern (Fig. 3d) showed a curvi-

linear response in the highest LOI values, most likely

due to high CaCO3 content (Jensen and Vorren 2008).

Once corrected for intercept and slope, RMSEP values

were reduced to similar levels as the full model

(Table 3), showing that intercept and slope corrections

result in highly precise estimates of sediment LOI on

samples that do not belong to the reference population.

The samples belonging to the polar Urals and

Skartjørna showed a poor coefficient of determination

on the validation set (R2 of 0.22 and 0.17, respectively)

(Fig. 3e, f), although RMSEP values were similar to

the other models after corrected for intercept and slope

(RMSEP 1.37 and 4.26, respectively).

Fig. 2 Calibration plots for the LOI models when substracting

a lake from the database. The solid line represents the perfect fit

(1:1) line. Figures represent the models excluding (a) Øvre

Æråsvatnet (ncal = 434), (b) Uhca Rohči 1 (ncal = 458),

(c) Uhca Rohči 2 (ncal = 442), (d) Gauptjern (ncal = 401),

(e) Polar Urals (ncal = 402) and (f) Skartjørna (ncal = 497)
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Discussion

The high predictive ability of LOI based on NIRS

reported here extends previous studies showing NIRS

as a reliable, non-destructive method for measuring

lake sediment properties, both for within-site samples

(Stenberg et al. 2010; Gholizadeh et al. 2013) or

samples from contrasting sites that are not part of the

calibration model (Rosén and Persson 2006; Rosén

et al. 2011; Meyer-Jacob et al. 2017). A single NIRS

spectrum can be used to simultaneously determine

several sediment properties with no increased costs:

one operation for sample preparation and scan is

enough to estimate several variables, if predictive

models are established (Malley et al. 2000; Cozzolino

and Morón 2006). Cost per sample is further reduced

with a greater number of predictive models available:

sediment samples scanned in previous studies can

retrospectively be analysed through their NIRS spectra

and a new dimension added into the data gathering

even after the samples have been scanned and

analyzed with destructive methods. An added advan-

tage is that, due to the small amount of sediment

required to acquire a spectrum (approximately 1 g),

high-resolution down-core analyses can be performed.

Fig. 3 Validation plots for the LOI models when substracting a

lake from the database. The solid line represents the perfect fit

(1:1) line. Hollow circles represent uncorrected predictions and

solid black circles represent intercept and slope corrected

predictions. Figures represent validation of the excluded lakes

from their respective models (a) Øvre Æråsvatnet (nval = 86),

(b) Uhca Rohči 1 (nval = 62), (c) Uhca Rohči 2 (nval = 78),

(d) Gauptjern samples (nval = 119), (e) Polar Urals (nval = 135)

and (f) Skartjørna (nval = 40)
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While it is expected that NIRS predictions are most

accurate when limited to samples with similar prop-

erties to those included in the calibration dataset

(Foley et al. 1998; Chodak 2008), our study shows that

comprehensive models including enough variability in

stratigraphy or geographical origin can be applicable

to other samples. Thus, we suggest that this is a first

step towards creating worldwide lacustrine spectral

libraries to develop true global models applied to

lacustrine sediments (Viscarra Rossel 2009; Rosén

et al. 2011; Stenberg and Viscarra Rossel 2016).

When sequentially removing a lake from the

calibration set and then testing the model against it,

we found a linear bias in most of the lakes. After

performing the linear corrections, we obtained highly

accurate estimates (R2[ 0.82, RMSEP\ 7.5, except

for the polar Ural and Skartjørna samples), compara-

ble to those of the model including all the lakes

(R2 = 0.98, RMECV = 3.3). The polar Ural and

Skartjørna samples showed a poor coefficient of

determination, but similar RMSEP values to the other

models after intercept and slope corrections. Given the

low variability in the LOI values on these two cores,

the apparent model performance seems to be sub-

optimal: such cases with consistently low values along

the core will raise concerns about the applicability of

the model. However, the NIRS-measured values

reveal similar patterns in LOI between the raw

predictions and the measured LOI values on the core

(Fig. 4), although apparent performance may seem

worse, the general LOI pattern along the core is

correctly detected and the RMSEP shows that the low

R2 values are an effect of the small LOI range in these

two cores.

The prediction of the Gauptjern lake (Fig. 3d)

showed a non-linear fit towards high LOI values. This

is expected when core properties are out of the

predictive ability of the model, due to a number of

parameters such as chemical composition (e.g. CaCO3

content) or particle size distribution (Barthes et al.

2006). The use of a validation subset for each core

along the gradient of chemical/physical properties of

the sediment (e.g. organic matter, carbon content) is a

safe way to identify such issues. Once the problematic

region has been detected, it can be corrected for linear

bias, or the core (or core section) analyzed with

traditional measurements, to incorporate it into the

model. Even raw (uncorrected) LOI predictions from

NIRS models already provide a first assessment of the

LOI patterns down the core (Fig. 4). This helps to

focus more intensive analyses based on other

approaches in core regions with interesting patterns

such as steep changes in LOI, or unusual values.

Fig. 4 LOI on the cores from (a) Øvre Æråsvatnet, (b) Uhca Rohči 1, (c) Uhca Rohči 2, (d) Gauptjern, (e) Polar Ural and (f) Skartjørna
lakes. Gray dashed line represents reference LOI values, solid black line represents NIRS predicted raw values (uncorrected)
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To establish a robust validation of NIRS models in

the future, McTiernan et al. (1998) recommend a

minimum sample size of 20 samples from a single lake

to develop a predictive model. However, we suggest to

scan a higher amount (minimum of 40 to 50) of

samples for each lake, to ensure representativeness of

all intrinsic properties that each sediment origin

presents. Robust models require several hundreds of

samples representing a large range of LOI: once the

predictive model is established, we suggest measuring

a subset of samples (approx. 20% of the original

number of samples) using the classical LOI method-

ology, selecting samples according to their NIRS

predicted value to ensure a proper spread along the

LOI values. In addition, core sections with new

properties (stratigraphy, grain size, etc.) need to be

more intensively sampled and included in the model

afterwards. This will result in accurate correction

factors (i.e. intercept and slope) for high-quality

NIRS-inferred LOI estimates (Table 3). This process

needs to be done for each new sediment core analysed

by NIRS. It is expected that incorporating these

validation samples into the model will improve the

model robustness and increase the applicability for

different samples from different lakes, resulting in a

synergistic effect that will reduce the future need for

intercept and slope corrections.

Conclusions

This study shows that NIRS can be used to estimate

LOI in a wide variety of lake sediment types from six

geographically distinct lakes with only minimal cal-

ibration samples. NIRS therefore has the potential to

become a new standard procedure in lacustrine

sediment research for the simultaneous and high

resolutionmeasurement of several sediment properties

with only a 20% subset of validation samples needed

to be analyzed with traditional methods in order to

adjust the NIRSmeasured values, thus saving time and

costs in sediment analyses. Such transferable models

are especially valuable when large sets of samples (i.e.

several cores from a lake, or long cores) are to be

analyzed. Future work should focus on adding samples

with different stratigraphic properties and geograph-

ical regions to build a more robust library.
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Björck S, Håkansson H, Zale R, KarlenW, Jonsson BL (1991) A

late Holocene lake sediment sequence from Livingston

123

J Paleolimnol (2020) 64:59–69 67

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.18710/OJC4TH
https://doi.org/10.18710/OJC4TH
https://doi.org/10.1111/j.1502-3885.1993.tb00178.x
https://doi.org/10.1111/j.1502-3885.1993.tb00178.x
https://doi.org/10.1177/0959683615612563
https://doi.org/10.1016/0025-3227(96)00037-0
https://doi.org/10.1016/0025-3227(96)00037-0
https://doi.org/10.1255/jnirs.686
https://doi.org/10.1255/jnirs.686
https://doi.org/10.1007/s00334-006-0066-6
https://doi.org/10.1007/s00334-006-0066-6


Island, South Shetland Islands, with palaeoclimatic impli-

cations. Antarct Sci 3:61–72. https://doi.org/10.1017/

S095410209100010X

Chodak M (2008) Application of near infrared spectroscopy for

analysis of soils, litter and plant materials. Pol J Environ

Stud 17:631–642

Clarke CL, Edwards ME, Brown AG, Gielly L, Lammers Y,

Heintzman PD, Ancin-Murguzur FJ, Bråthen K-A, Goslar
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Nazarov D, Regnéll C, Schaefer JM (2018) Glacial and

environmental changes over the last 60,000 years in the

Polar Ural Mountains, Arctic Russia, inferred from a high-

resolution lake record and other observations from adjacent

areas. Boreas. https://doi.org/10.1111/bor.12356

Viscarra Rossel R (2009) The soil spectroscopy group and the

development of a global soil spectral library. NIR News

20:14. https://doi.org/10.1255/nirn.1131

Vogel H, Rosén P, Wagner B, Melles M, Persson P (2008)

Fourier transform infrared spectroscopy, a new cost-ef-

fective tool for quantitative analysis of biogeochemical

properties in long sediment records. J Paleolimnol

40:689–702. https://doi.org/10.1007/s10933-008-9193-7
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