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Abstract
When dealing with Bayesian inference the choice of
the prior often remains a debatable question. Empirical
Bayes methods offer a data-driven solution to this
problem by estimating the prior itself from an
ensemble of data. In the nonparametric case, the
maximum likelihood estimate is known to overfit
the data, an issue that is commonly tackled by reg-
ularization. However, the majority of regularizations
are ad hoc choices which lack invariance under
reparametrization of the model and result in incon-
sistent estimates for equivalent models. We introduce
a nonparametric, transformation-invariant estimator
for the prior distribution. Being defined in terms of the
missing information similar to the reference prior, it can
be seen as an extension of the latter to the data-driven
setting. This implies a natural interpretation as a
trade-off between choosing the least informative prior
and incorporating the information provided by the data,
a symbiosis between the objective and empirical Bayes
methodologies.
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1 INTRODUCTION

Inferring a parameter 𝜃 ∈Θ from a measurement x ∈  using Bayes’ rule requires prior
knowledge about 𝜃, which is not given in many applications. This has led to
a lot of controversy in the statistical community and to harsh criticism con-
cerning the objectivity of the Bayesian approach. In the past decades, Bayesian
statisticians have given (at least) two solutions to the dilemma of missing prior
information:

(A) (noninformative) objective priors: Objective Bayesian analysis and reference priors in partic-
ular (Berger & Bernardo, 1992; Berger, Bernardo, & Sun, 2009; Bernardo, 1979) apply mostly
information theoretic ideas to construct priors that are invariant under reparametrization
and can be argued to be noninformative.

(B) empirical Bayes methods: If independent measurements xm ∈  , m= 1, … , M, are given
for a large number M of “individuals” with individual parametrizations 𝜃m ∈Θ, which
is the case in many statistical studies, empirical Bayes methods (Carlin & Louis, 1996;
Casella, 1985; Efron, 2010; Maritz & Lwin, 1989; Robbins, 1956) use this knowl-
edge to construct an informative prior as a first step and then apply it for the
Bayesian inference of the individual parametrizations 𝜃m (or any future parametriza-
tion 𝜃∗ with measurement x∗) in a second step. A typical application is the retrieval of
patient-specific parametrizations in large clinical studies, see Neal and Kerckhoffs (2009).
However, as discussed below, many of these methods fail to be consistent under
reparametrization.

The aim of this article is to extend the construction of reference priors to the
empirical Bayes framework in order to derive transformation invariant and informative
priors from such “cohort data”. We will perform this construction along the lines of
the definition of reference priors in Berger et al. (2009) and use a similar notation.
Likewise, we concentrate mainly on problems with one continuous parameter (Θ⊆Rd,
d= 1), possible generalizations to the multiparameter case d > 1 are addressed shortly
in Section 7.

This article is organized as follows. After introducing the notation in Section 2, we discuss
empirical Bayes methods and the inconsistency of maximum penalized likelihood estimation
(MPLE) under reparametrization, which is the main motivation for our work, in Section 3.
Section 4 provides a solution to this issue by following the same ideas as in the construc-
tion of reference priors, resulting in a prior estimate we term the empirical reference prior.
A rigorous definition and analysis of empirical reference priors is given. Section 5 provides
two algorithms which show how the empirical reference prior can be implemented in prac-
tice (under the assumption of asymptotic normality)—one based on optimization and the
other on a fixed point iteration. In Section 6 we then apply our methodology to a synthetic
data set, illustrating invariance of the empirical reference prior under reparametrizations,
as well as to the famous baseball data set of Efron and Morris (1975), where we com-
pare our approach with the James–Stein estimator. In Section 7 we discuss possible gener-
alizations of our approach to the multiparameter case d > 1, followed by a short conclusion
in Section 8.
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F I G U R E 1 Graphical model and schematic representation of the underlying probabilistic model. Such a
setup will be referred to as empirical Bayes framework

2 SETUP AND NOTATION

We will work in the empirical Bayes framework described above and visualized in Figure 1.
Specifically, denoting the likelihood model by

 = {p(x|𝜃), x ∈  , 𝜃 ∈ Θ} ,  ⊆ R
n, Θ ⊆ R

d, d = 1,

the data X = (x1, … , xM) are generated by a two-stage process, where the “individual”
parametrizations 𝜃1, … , 𝜃M are independent draws from the unknown prior distribution p(𝜃)
and each data point xm ∈  is drawn independently from p(x|𝜃m), m= 1, … , M. Note that 
denotes the model corresponding to the complete observation vector x ∈  ⊆ Rn and that the data
X = (x1, … , xM) consists of M observation vectors x1, … , xM ∈  . This convention is necessary
because our theory requires the introduction of (artificial) independent replications of the entire
experiment, denoted by the model

k =

{
p(x⃗|𝜃) = k∏

i=1
p(x(i)|𝜃), x⃗ = (x(1), … , x(k)) ∈ k, 𝜃 ∈ Θ

}
.

We adopt the standard abuse of notation, denoting all density functions by the letter p and letting
the argument indicate which random variable it belongs to, for example, p(x) is the marginal den-
sity of x, while p(𝜃|x) denotes the posterior density of 𝜃 given x. In addition, 𝜋(𝜃) will denote any
other possible (proposed, guessed, or estimated) prior onΘ from some class of admissible priors,
p(x|𝜋) ∶= ∫ p(x|𝜃)𝜋(𝜃)d𝜃 the corresponding prior predictive distribution and 𝜋(𝜃|x) ∝ 𝜋(𝜃)p(x|𝜃)
the corresponding posterior. Furthermore, 𝜋true(𝜃):= p(𝜃) denotes the “true” data-generating
prior.

The prior may be viewed as a hyperparameter 𝜋 ∈  , in which case we assume condi-
tional independence of 𝜋 and x given 𝜃. The marginal likelihood of 𝜋 given the entire data
X = (x1, … , xM) is given by

L(𝜋) = L(𝜋 | ,X) =
M∏

m=1
p(xm|𝜋), p(x|𝜋) = ∫ p(x|𝜃) 𝜋(𝜃) d𝜃. (1)
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We will also assume both the parametric and the hyperparametric model to be identifiable,
see van der Vaart (1998, section 5.5), that is,

p(x|𝜃1) = p(x|𝜃2) ⇔ 𝜃1 = 𝜃2, 𝜃1, 𝜃2 ∈ Θ, (2)

p(x|𝜋1) = p(x|𝜋2) ⇔ 𝜋1 = 𝜋2, 𝜋1, 𝜋2 ∈  , (3)

since otherwise there would be no chance to recover the true distribution 𝜋true(𝜃)= p(𝜃) from no
matter how many measurements.

3 INCONSISTENCY OF EMPIRICAL BAYES METHODS

Roughly speaking, empirical Bayes methods perform statistical inference in two steps—first, they
estimate the prior from the entire data X = (x1, … , xM), and second, they apply Bayes’ rule with
that prior for each xm separately1. We concentrate on the first step, which is often performed by
maximizing the marginal likelihood L(𝜋), for example, by means of the EM algorithm introduced
by Dempster, Laird, and Rubin (1977). This procedure can be viewed as an interplay of frequentist
and Bayesian statistics: The prior is chosen by maximum likelihood estimation (MLE), the actual
individual parametrizations are then inferred using Bayes’ rule. However, in the nonparametric
case (NPMLE), that is, if no finite-dimensional parametric form of the prior is assumed, it can be
proven that the marginal likelihood L(𝜋) is maximized by a discrete distribution 𝜋MLE

𝜋MLE = arg max𝜋 log L(𝜋) =
N∑
𝜈=1

w𝜈𝛿𝜃̌𝜈 , N ≤ M, w𝜈 > 0,
N∑
𝜈=1

w𝜈 = 1, (4)

with at most M nodes 𝜃̌𝜈 , see Laird (1978, theorems 2–5) or Lindsay (1995, theorem 21). This
typical issue of overfitting the data is often dealt with by subtracting a roughness penalty (or
regularization term) Φ(𝜋) = Φ(𝜋 | ) from the marginal log-likelihood function log L(𝜋), such
that smooth or noninformative priors are favored, resulting in the so-called maximum penalized
likelihood estimate (MPLE):

𝜋MPLE = arg max𝜋 log L(𝜋) − 𝛾Φ(𝜋). (5)

The constant 𝛾 > 0 balances the trade-off between goodness of fit and smoothness or nonin-
formativity of the prior. This approach can be viewed from the Bayesian perspective as choosing
a hyperprior p(𝜋) ∝ e−𝛾Φ(𝜋) for the hyperparameter 𝜋 and performing a maximum a posteriori
(MAP) estimation for 𝜋:

𝜋MAP = arg max𝜋 L(𝜋) p(𝜋) = arg max𝜋 log L(𝜋) − 𝛾Φ(𝜋) = 𝜋MPLE . (6)

Desirable properties of the roughness penalty function Φ(𝜋) = Φ(𝜋 | ) are:

1For theoretical purposes one should rather think of applying Bayes’ rule to some future measurement x∗ to infer its
parametrization 𝜃∗ in order to avoid reusing the data. In practice and for a large number M of measurements this
distinction is of little relevance, since the influence of one data point xm on the prior estimation can usually be neglected.
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(a) noninformativity: without any extra information about the parameter or the prior, we want
to keep our assumptions to a minimum (in the sense of objective Bayes methods);

(b) invariance under transformations of the parameter space Θ (reparametrizations);
(c) invariance under transformations of the measurement space  ;
(d) convexity: Since log L(𝜋) is concave in the NPMLE case (Lindsay, 1995, section 5.1.3), a convex

penalty function Φ(𝜋) would guarantee a concave optimization problem (5);
(e) natural and intuitive justification.

The penalty functions currently used are mostly ad hoc and rather brute force solutions that
confine amplitudes, for example, ridge regression (McLachlan & Krishnan, 2008, section 1.6),
or derivatives (Good & Gaskins, 1971; Silverman, 1982) of the prior, which are neither invari-
ant under reparametrizations nor have a natural derivation. A more contemporary alternative
is to use Dirichlet process hyperpriors p(𝜋), which have similar limitations. In order to incor-
porate the notion of noninformativity, Good (1963) suggested to use the entropy as a roughness
penalty,

ΦH𝜃
(𝜋) = − H𝜃(𝜋) = ∫

𝜋(𝜃) log 𝜋(𝜃) d𝜃, (7)

which is a natural approach from an information-theoretic viewpoint, since high entropy corre-
sponds to high uncertainty and thereby noninformativity of the prior. However, ΦH𝜃

is not invari-
ant under reparametrizations, making it, as Good puts it, “somewhat arbitrary” (Good, 1963,
p. 912):

It could be objected that, especially for a continuous distribution, entropy is some-
what arbitrary, since it is variant under a transformation of the independent variable.

Following Shannon’s derivation of the entropy H𝜃 , we will explain why the concepts of mutual
information and missing information, both of which are invariant under transformations, are far
more natural quantities to use in our setup. Prior to that, let us make the notion of invariance
more precise.

3.1 Invariance under transformations

Invariance under transformations guarantees consistency of the resulting probability density esti-
mate and follows the following principle: If two statisticians use equivalent models to explain
equivalent data their results must be consistent, or, as Shore and Johnson (1980) put it,

[… ] reasonable methods of inductive inference should lead to consistent results
when there are different ways of taking the same information into account (for
example, in different coordinate systems).

Let us start with the definition:

Definition 1. Let X = (x1, … , xM) be data generated by the hierarchical model described in
Section 2 with  = {p(x|𝜃), x ∈  , 𝜃 ∈ Θ ⊆ Rd}. Furthermore, let F = F[,X] be a function
operating on probability densities in Rd.
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(I) We call F invariant under transformations of the parameter 𝜃 or invariant under
reparametrization, if F[,X](𝜋) = F[𝜑,X](𝜑∗𝜋) for any diffeomorphism 𝜑 ∶ Θ →
Θ̃, 𝜃 → 𝜃, where the transformed model 𝜑 is defined by

p(x|𝜃) = p
(

x|𝜃 = 𝜑−1(𝜃)
)
. (8)

(II) We call F invariant under transformations of the measurement x, if F[,X] = F[𝜓 ,X𝜓 ]
for any diffeomorphism 𝜓 ∶  → ̃ , x → x̃, where the transformed model 𝜓 and data
X𝜓 = (x̃1, … , x̃M) are defined by

p(x̃|𝜃) = 𝜓∗p(x|𝜃)|x̃ = | det (𝜓−1)′(x̃)| ⋅ p
(

x = 𝜓−1(x̃) | 𝜃), x̃m = 𝜓(xm). (9)

Here and in the following, 𝜑∗ and 𝜓∗ denote the pushforward of some measure (or density)
under 𝜑 and 𝜓 , respectively.

If we wish to use the function F for the estimation of the prior 𝜋 (as in Equation (5) for F =
log L − 𝛾Φ), invariance of F causes the diagrams in Figure 2 to commute. Note that, if we restrict
the considerations to some class  of admissible priors, then this class needs to be transformed
correspondingly,𝜑 ∶= {𝜑∗𝜋, 𝜋 ∈ }, such that the considered class of priors is consistent under
reparametrization.

One class of functions that fulfills these invariance properties is introduced in the following
theorem, where we also show that the marginal likelihood L(𝜋) is transformation invariant up to
a constant.

Theorem 1. Let X = (x1, … , xM) be data stemming from a model  = {p(x|𝜃), x ∈  , 𝜃 ∈ Θ}
and

Fg(𝜋) = Fg[](𝜋) = ∫Θ∫
𝜋(𝜃) p(x|𝜃) g

(
p(x|𝜃)
p(x|𝜋)

)
dx d𝜃

for some measurable function g : R→R, such that the above integral is well defined. Then Fg
is invariant under transformations of 𝜃 and x. Furthermore, the marginal likelihood L(𝜋) =
L(𝜋 | ,X) defined by (1) is invariant under transformations of 𝜃 and x up to a multiplicative
constant.

Proof. This is a straightforward application of the change of variables formula. ▪

F I G U R E 2 Commutative diagrams illustrating the consistency of the density estimate πest(θ). If the
estimation is performed in a transformed parameter space Θ̃ = 𝜑(Θ) or measurement space ̃ = 𝜓() (the model
, the class  of admissible priors and the data X = (x1, … , xM) are transformed accordingly), the results should
be consistent. Note that, in the empirical Bayes framework, the data X enter in the estimation of the prior, hence
the commutativity of the right diagram is not trivial
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4 OBJECTIVE BAYESIAN APPROACH TO EMPIRICAL
BAYES METHODS

The lack of invariance of common empirical Bayes methods described above will now
be tackled by an approach similar to the construction of reference priors and per-
formed along the lines of Berger et al. (2009). The two key ingredients for defin-
ing reference priors are permissibility, which yields a rigorous justification for dealing
with improper priors, and the maximizing missing information (MMI) property, which is
derived from information theoretic considerations and can be argued to guarantee the least
informative prior.

Permissibility allows for the (positive and continuous) prior to be improper as long as it yields
a proper posterior for each measurement (which is the object Bayesian statisticians are actu-
ally interested in) and these posteriors can be approximated by using proper priors arising from
restricting the prior to compact subspaces Θi ⊆Θ.

In the empirical Bayes framework, where the aim is to approximate the true (proper)
prior 𝜋true(𝜃)= p(𝜃), improper priors are less of an issue and we will limit ourselves to
proper priors. Furthermore, it is completely unclear how to deal with improper priors in
this framework, since the “restriction property” of reference priors is neither achievable nor
desirable, see the remark and example below. For this reason and since the concept of
permissibility has been elaborated extensively in Berger et al. (2009), we will just state its
definition.

Definition 2. A strictly positive continuous function 𝜋(𝜃) is a permissible prior for
model , if

(I) for each x ∈  , 𝜋(𝜃|x) is proper, that is, ∫Θp(x|𝜃) 𝜋(𝜃) d𝜃 < ∞,
(II) for any increasing sequence of compact subsets Θi ⊆Θ, i∈N, with ∪iΘi = Θ, the

corresponding posterior sequence 𝜋i(𝜃|x) is expected logarithmically convergent
to 𝜋(𝜃|x),

lim
i→∞

DKL(𝜋i(⋅|x)||𝜋(⋅|x)) = 0, 𝜋i =
𝜋 1Θi

∫Θi
𝜋(𝜃) d𝜃

.

Here, 1Θi is the indicator function of the subset Θi ⊆Θ and DKL(⋅ ||⋅) denotes the
Kullback–Leibler divergence defined by

DKL(p||q) ∶= ∫Θ
p(𝜃) log

(
p(𝜃)
q(𝜃)

)
d𝜃.

While permissibility is rather a technicality for dealing with improper priors, the MMI property
should be seen as the defining property of reference priors and will now be discussed in more
detail.

As motivated in the introduction, penalizing by means of entropy provides a natural approach
to incorporate the idea of noninformativity about the parameter into the inference process. How-
ever, if we follow Shannon’s derivation of the entropy H𝜃 , we see that it is not the appropriate
notion in our setup. Shannon (1948) derived the entropy H𝜃 from the insight that the proper
way to quantify the information gain, when an event with probability p∈ [0, 1] actually occurs,
is − log(p) ∈ [0,∞]. He then defined the entropy as the expected information gain. However,
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the continuous analogue to this notion, the differential entropy H𝜃 given by (7), faces several
complications:

• The information gain − log(𝜋(𝜃)) from observing the value 𝜃, as well as the entropy H𝜃 itself
can become negative, which is difficult to interpret.

• H𝜃 is variant under transformations of 𝜃, leading to an inconsistent notion of information.
• The information gain − log(𝜋(𝜃)) relies on a direct and exact (error-free) measurement of 𝜃,

which is not plausible in the continuous case.

The last point becomes even more relevant in the empirical Bayes framework, where 𝜃 is not
(and usually cannot be) measured directly, but is inferred from the measurement x of another
quantity. The appropriate notion for the information gain in this setup is the Kullback–Leibler
divergence DKL(𝜋(⋅ |x) ||𝜋) between posterior and prior (Kullback & Leibler, 1951). Its expected
value (from one observation of model ), the so-called expected information or mutual informa-
tion of 𝜃 and x, is always nonnegative and invariant under transformations.

Definition 3. The expected information gained from one observation of model on a parameter
𝜃 with prior 𝜋(𝜃) is given by

[𝜋 | ] = ∫
p(x|𝜋) DKL(𝜋(⋅|x)||𝜋) dx = ∫Θ∫

𝜋(𝜃) p(x|𝜃) log
(

p(x|𝜃)
p(x|𝜋)

)
dx d𝜃.

The expected information has very appealing properties for a penalty term:

Theorem 2. The expected information [𝜋 | ] is concave in 𝜋 and invariant under transforma-
tions of 𝜃 and x.

Proof. Concavity is proven in Cover and Thomas (2006, theorem 2.7.4) while invariance follows
directly from Theorem 1. ▪

As argued in Bernardo (1979), the quantity [𝜋 | k], the expected information on 𝜃 gained
from k independent observations of, describes the missing information on 𝜃 as k goes to infinity:

By performing infinite replications of  one would get to know precisely the value
of 𝜃. Thus, [𝜋 | ∞] measures the amount of missing information about 𝜃 when
the prior is 𝜋(𝜃). It seems natural to define “vague initial knowledge” about 𝜃 as that
described by the density 𝜋(𝜃) which maximizes the missing information in the class
 .2

Following this idea, maximizing the missing information (MMI) results in the least informa-
tive prior, making Φ(𝜋) = −[𝜋 | ∞] an appealing penalty term in (5). It is now tempting to
define empirical reference priors by

𝜋∗ = arg max𝜋
(
log L(𝜋) + 𝛾 [𝜋 | ∞]

)
. (10)

2The notation in this quotation has been adapted to ours. Note that the first statement makes use of the identifiability (2)
of 𝜃.
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However, since [𝜋 | k] typically diverges for k→∞, the following detour around the opti-
mization formulation (10) appears necessary (as we will see in Section 4.3, some simplifications
are possible under certain regularity conditions):

Definition 4. Let  = {p(x|𝜃), x ∈  , 𝜃 ∈ Θ} be a model,  be a class of prior functions 𝜋 with
∫ p(x|𝜃) 𝜋(𝜃) d𝜃 <∞ and X = (x1, … , xM) be the data consisting of M independent samples from
p(x). The function 𝜋 ∈  is said to have

(I) the MMI = MMI(,) property for model  given  if, for any compact set Θ0 ⊆Θ and
any 𝜋̃ ∈  ,

lim
k→∞

([𝜋0 | k] − [𝜋̃0 | k]) ≥ 0, (11)

where 𝜋0 and 𝜋̃0 denote the (renormalized) restrictions of 𝜋 and 𝜋̃ to Θ0;
(II) the MMIL(X) = MMIL(, ,X , 𝛾) property for model given X , and 𝛾 > 0 if𝜋 is a proper

probability density and if, for any proper probability density 𝜋̃ ∈  ,

lim
k→∞

(
(log L(𝜋) + 𝛾[𝜋 | k]) − (log L(𝜋̃) + 𝛾[𝜋̃ | k])

) ≥ 0. (12)

Here, MMIL stands for “maximizing (a trade-off between) missing information and
log-likelihood”. Both definitions are only useful if all the values of the expected information in
(11) and (12) are finite. This can be guaranteed by restricting ourselves to some convenient class
 of admissible priors. Typically, one requires strict positivity and continuity of the priors as well
as the existence of proper posteriors, see Berger et al. (2009, section 3.3), but different choices of
 are also possible.

4.1 The formal definition of empirical reference priors

Similar to Berger et al. (2009), and in accordance with their definition of reference priors, we now
define empirical reference priors, which constitute the main contribution of this article:

Definition 5. A function 𝜋ref(𝜃) = 𝜋ref(𝜃 | ,) is a reference prior for model 
given prior class  , if it is permissible and has the MMI property. A probability den-
sity 𝜋erp(𝜃) = 𝜋erp(𝜃 | , ,X , 𝛾) is an empirical reference prior for model  given
prior class  , data X = (x1, … , xM) and smoothing parameter 𝛾 > 0, if it has the
MMIL(X) property.

Let us now formulate and prove the key properties of empirical reference priors.

Theorem 3 (Invariance of the empirical reference prior). The empirical reference prior is
invariant under transformations of 𝜃 and x in the following sense:

𝜋erp(𝜃 | 𝜑,𝜑,X , 𝛾) = 𝜑∗𝜋erp(𝜃 | , ,X , 𝛾),
𝜋erp(𝜃 | 𝜓 , ,X𝜓 , 𝛾) = 𝜋erp(𝜃 | , ,X , 𝛾),

where we adopted the notation from the definition of invariance and 𝜑 ∶= {𝜑∗𝜋, 𝜋 ∈ }.
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Proof. Since log L(𝜋) is invariant under transformations of 𝜃 and x up to an additive constant by
Theorem 1, this is a direct consequence of Theorems 1 and 2. ▪

Theorem 4 (Compatibility with sufficient statistics). If the model  = {p(x|𝜃), x ∈  , 𝜃 ∈ Θ}
has a sufficient statistic t = t(x) ∈  , then

𝜋erp(𝜃 | , ,X , 𝛾) = 𝜋erp(𝜃 | t, ,T, 𝛾),
where T = t(X) ∈  M and t = {p(t|𝜃), t ∈  , 𝜃 ∈ Θ0} is the corresponding model in terms of t.

Proof. Since t is a function of x and a sufficient statistic for 𝜃, we obtain

p(x|𝜃) = p(x|t(x)) p(t(x)|𝜃).
This implies that the marginal log-likelihoods log L(𝜋) and log Lt(𝜋) agree up to an additive
constant, where Lt(𝜋) =

∏M
m=1 p(tm|𝜋), tm ∶= t(xm), denotes the marginal likelihood in terms of t:

log L(𝜋) =
M∑

m=1
log∫ p(xm|𝜃) 𝜋(𝜃) d𝜃 =

M∑
m=1

log p(xm|tm) + Lt(𝜋).

Since the expected information is also invariant under such transformations, [𝜋 | k] =
[𝜋 | k

t ], see Berger et al. (2009, theorem 5), this proves the claim. ▪

Remark 1. Reference priors have the appealing property that their restrictions to any compact
subset Θ0 coincide with the reference priors on Θ0, see Berger et al. (2009, section 5):

𝜋ref(𝜃 | ,)|Θ0 = 𝜋ref(𝜃 | 0,0), 0 = {p(x|𝜃), x ∈  , 𝜃 ∈ Θ0} , 0 =
{
𝜋|Θ0 , 𝜋 ∈ }

.

However, unlike for objective priors in the absence of data, this property is not desirable in the
empirical Bayes framework, as explained in the example below, and usually will not be fulfilled
by empirical reference priors. Therefore, a definition of MMIL(X) using restrictions of possibly
improper priors (as in the definition of MMI) is not meaningful and we are forced to limit our-
selves to proper priors. This limitation is not too restrictive since the aim of empirical Bayes
methods is to approximate the true prior 𝜋true(𝜃) and improper priors do not play a major role.
For compact parameter spaces Θ (and in all other cases for which the reference prior turns out
to be proper), empirical reference priors provide a meaningful generalization of reference priors,
which then correspond to the case M = 0, the absence of data X .

Example 1. Let the true data-generating prior be the uniform prior 𝜋true ≡ 1
2

on Θ= [0, 2], that
is, 𝜃 ∼Unif([0, 2]), and  be the location model given by x|𝜃 ∼  (𝜃, 0.52). For a “large” data
set X consisting of M = 100 measurements, the empirical reference prior 𝜋erp(𝜃 | , ,X) can be
expected to provide a good approximation of 𝜋true(𝜃), hence its restriction to Θ0 = [0, 1] will be
approximately uniform, see Figure 3. However, the empirical reference prior 𝜋erp(𝜃 | 0,0,X)
on Θ0 has to put much more weight on values close to 1 in order to explain the many measure-
ments xm which are larger than 1.

Hence, unlike for reference priors, the equality 𝜋erp(𝜃 | , ,X)|Θ0 = 𝜋erp(𝜃 | 0,0,X) is
neither fulfilled nor desirable. Of course, in practice, the parameter space Θ should agree with (or
at least include) the domain of the true prior in order to be consistent with the data generating
distribution.
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F I G U R E 3 Inconsistency of the
empirical reference prior under restrictions
of the parameter space:
𝜋erp ∶= 𝜋erp(𝜃 | , ,X)|Θ0

restricted to
Θ0 = [0, 1] does not agree with
𝜋0

erp ∶= 𝜋erp(𝜃 | 0,0,X). Instead, 𝜋0
erp

puts a lot of weight close to the right
boundary in order to explain all the data
points larger than 1. Unlike in the case of
reference priors, this disagreement is
reasonable in the presence of data. For
simplicity, we chose 𝛾 = 1 in this example
[Color figure can be viewed at
wileyonlinelibrary.com]

4.2 Choice of the smoothing parameter 𝜸

So far, it is completely unclear how the smoothing parameter 𝛾 > 0 should be chosen. In fact, even
entirely different ways of performing the trade-off between L(𝜋) and [𝜋 | ∞] are possible. All
theoretical results remain unchanged if we replace

log L(𝜋) + 𝛾[𝜋 | k] by Ψ(log L(𝜋),[𝜋 | k])

in (12), where Ψ ∶ R2 → R can be any concave function that is monotonically increasing in both
arguments. We will stick to the former formulation and choose 𝛾 via likelihood cross-validation
(Silverman, 1986, equation (3.43)),

𝛾∗ = arg max𝛾
M∑

m=1
log p

(
xm | 𝜋erp(𝜃 | , ,X−m, 𝛾)

)
, (13)

where X−m:={xm′ ∈X | m′ ≠m} denotes the data set X with the mth point xm left out.

Proposition 1. The smoothing parameter (13) is invariant under transformations of 𝜃 and x, as
long as the class  of admissible priors is transformed accordingly, 𝜑 = {𝜑∗𝜋, 𝜋 ∈ }.

Proof. From (8), (9), and Theorem 3 we obtain

p
(

x | 𝜋erp(𝜃 | 𝜑,𝜑,X , 𝛾)) = p
(

x | 𝜋erp(𝜃 | , ,X , 𝛾)) ,
p
(

x̃ | 𝜋erp(𝜃 | 𝜓 , ,X𝜓 , 𝛾)
)
= C(x̃) p

(
x = 𝜓−1(x̃) | 𝜋erp(𝜃 | , ,X , 𝛾)) ,

where we adopted the notation from the definition of invariance and C(x) = | det (𝜓−1)′(x̃)| > 0
does not depend on 𝛾 . This proves the claim. ▪

4.3 Empirical reference priors under asymptotic normality

As proven in Clarke and Barron (1994), the reference prior coincides with the Jeffreys prior
(Jeffreys, 1946, 1961),

𝜋J(𝜃) ∝ J(𝜃) ∶=
√| det i(𝜃)|, i(𝜃) ∶= ∫

p(x|𝜃) (∇𝜃 log p(x|𝜃)) (∇𝜃 log p(x|𝜃))⊺ dx, (14)

http://wileyonlinelibrary.com
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under certain regularity conditions, which basically ensure asymptotic posterior normality. Let
us recall the basic results which we state for any dimension d∈N of the parameter space Θ.

Condition 1. The likelihood p(x|𝜃) is twice continuously differentiable in 𝜃 for almost every
x ∈  . There exists 𝜖 > 0 and for every 𝜃 there exists 𝛿 > 0 such that for all j, k= 1, … , d the
functions

E

[||||| 𝜕𝜕𝜃j
log p(x|𝜃)|||||

2+𝜖]
and E

[
sup

{𝜃∶||𝜃−𝜃′||<𝛿}
||||| 𝜕2

𝜕𝜃′j𝜕𝜃
′
k

log p(x|𝜃′)|||||
2]

are finite and continuous in 𝜃. The Fisher information matrix i(𝜃) defined by (14) is positive
definite for each 𝜃 ∈Θ and equals ĩ(𝜃) = −E[D2

𝜃
log p(x|𝜃)], where D2

𝜃
denotes the Hessian matrix

with respect to 𝜃. The model  is identifiable as defined by (2), the parameter space Θ is compact
and  consists of all positive and continuous probability density functions on Θ (this implies that
 is a convex set).

Proposition 2. Under Condition 1, there exist positive constants C1, C2 > 0 such that, as k→∞,

[𝜋 | k] = C1 log(C2k) − DKL(𝜋||J) + o(1), J(𝜃) =
√| det i(𝜃)|. (15)

Proof. See Clarke and Barron (1994). ▪

Since the first term on the right-hand side of (15) does not depend on the prior𝜋(𝜃) and the sec-
ond one is independent of k, the reference prior coincides with Jeffreys prior 𝜋J and the definition
of empirical reference priors recovers the form of the MPLE (5):

Corollary 1. Under Condition 1, Jeffreys prior 𝜋J is the unique reference prior (up to scaling).

Corollary 2. Under Condition 1, the empirical reference prior is given by the following MPLE (5),

𝜋erp = arg max𝜋∈ log L(𝜋) − 𝛾Φ(𝜋), Φ(𝜋) ∶= DKL(𝜋||J), (16)

where the penalty term Φ will be referred to as the missing information penalty.

Theorems 1 and 2 imply desirable properties of the missing information penalty Φ and, in
particular, the existence of a unique empirical reference prior that is invariant under transforma-
tions of 𝜃 and x.

Corollary 3. Under Condition 1, the optimization problem (16) is strictly concave in 𝜋 and
invariant under transformations of 𝜃 and x. Hence, since  is convex, it has a unique solution 𝜋erp.

Proof. For the concavity of log L(𝜋) see Lindsay (1995, section 5.1.3), while the strict convexity of
Φ follows from van Erven and Harremoës (2014, theorem 11). Invariance is a direct consequence
of Theorems 1 and 2. ▪

In order to realize the optimization formulation (16), we now compute analytically the gradi-
ent of the functional to be maximized. In addition, we characterize 𝜋erp as the unique fixed point
of a certain function F∗ ∶  →  , which motivates the fixed point iteration in Algorithm 2.
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Theorem 5. Let Condition 1 hold. Then the gradient of the functional in (16),

Ψ(𝜋) = log L(𝜋) − 𝛾Φ(𝜋) =
M∑

m=1
log∫Θ

p(xm|𝜃) 𝜋(𝜃) d𝜃 − 𝛾DKL(𝜋||J), (17)

with respect to ⟨⋅, ⋅⟩L2(Θ) is given by

(∇𝜋Ψ(𝜋))(𝜃) = v∗(𝜃) − ∫ v∗(𝜃′) d𝜃′, v∗(𝜃) =
M∑

m=1

p(xm|𝜃)
∫ p(xm|𝜃′) 𝜋(𝜃′) d𝜃′

− 𝛾 log 𝜋(𝜃)
J(𝜃)

. (18)

It follows that the empirical reference prior 𝜋erp is the unique fixed point of F∗ ∶  →  ,

F∗(𝜋) ∶= F(𝜋)
∫ (F(𝜋))(𝜃) d𝜃

, F(𝜋) ∶= J exp

(
𝛾−1

M∑
m=1

p(xm|⋅)
∫Θp(xm|𝜃′) 𝜋(𝜃′) d𝜃′

)
. (19)

Proof. We consider perturbations of Ψ(𝜋) in arbitrary directions v∈C(Θ) with ∫ v = 0:

d
d𝜀
𝛹 (𝜋 + 𝜀v) =

M∑
m=1

∫ p(xm|𝜃) v(𝜃) d𝜃
∫ p(xm|𝜃′) 𝜋(𝜃′) d𝜃′

− 𝛾 ∫ v(𝜃) log 𝜋(𝜃)
J(𝜃)

d𝜃 − 𝛾∫ v(𝜃) d𝜃
⏟⏞⏞⏞⏟⏞⏞⏞⏟

=0

=

⟨
v ,

M∑
m=1

p(xm|𝜃)
∫ p(xm|𝜃′) 𝜋(𝜃′) d𝜃′

− 𝛾 log 𝜋(𝜃)
J(𝜃)

⟩
L2(Θ)

,

which proves (18). The above inner product is zero for any v∈C(Θ) with ∫ v = 0 if and only if its
second argument is constant in 𝜃. Hence,

𝜋erp(𝜃) ∝ J(𝜃) exp

(
𝛾−1

M∑
m=1

p(xm|𝜃)
∫Θp(xm|𝜃′) 𝜋(𝜃′) d𝜃′

)
,

which proves the second claim. Note that F∗ ∶  →  , since we assumed the parameter space Θ
to be compact, and that the uniqueness of the fixed point follows from the strict convexity of Ψ
(Corollary 3). ▪

5 PRACTICAL REALIZATION OF THE EMPIRICAL
REFERENCE PRIOR

In this section we demonstrate how the empirical reference prior can be computed in the asymp-
totically normal case (i.e., under Condition 1). We suggest two algorithms, one of which is a
straightforward optimization of the strictly concave functional in (16) and the other being a fixed
point iteration, the convergence of which, however, is not yet fully understood.

For simplicity, we treat only the case where Θ= [a, b] is an interval and is discretized by the
equidistant grid GK defined below. Integrals over Θ will be approximated by the midpoint rule

Q(f ) ∶= b − a
K

K∑
k=1

f (𝜃k), GK =
{
𝜃k ∶= 2k − 1

2K
|k = 1, … ,K

}
.
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Furthermore, we assume that the Jeffreys prior J(𝜃) can be evaluated pointwise in each 𝜃k, either
because its analytic form is available or by a numerical approximation of the integral in (14).
Finally, we consider the computation of 𝜋erp(𝜃) = 𝜋erp(𝜃 | , ,X , 𝛾) only for a given smooth-
ing parameter 𝛾 . The choice of 𝛾 requires another optimization as discussed in Section 4.2, this
time in 𝛾 , where the algorithms below have to be executed many times for the computation of
𝜋erp(𝜃 | , ,X−m, 𝛾)with varying data sets X−m, see the likelihood cross-validation formula (13).
While this “brute force” solution seems computationally challenging, the overall procedure could
be performed in all our examples within just a few seconds (mainly due to the strict concavity
of the optimization problem (16)). A more elegant solution which combines the two optimiza-
tion problems is imaginable, but goes beyond the scope of this article. In the two algorithms
below, we identify each prior 𝜋 with its discretized version 𝜋̂ = (𝜋(𝜃1), … , 𝜋(𝜃K)) (and similar
for J, 𝜋t, etc.).

Algorithm 1.

(I) Formulate the discretized functional

Ψ̂(𝜋) =
M∑

m=1
log Q (p(xm|⋅) 𝜋) − 𝛾 Q

(
𝜋 (log 𝜋 − log J)

)
and its gradient in accordance with (17) and (18).

(II) Optimize Ψ(𝜋) as a function of 𝜋 by an optimization algorithm of your choice (we use the
method of moving asymptotes [MMA] of Svanberg (2001/2002) from the NLopt package
provided by Johnson (n.d.)). Renormalize 𝜋̂ in each iteration step.

Motivated by the fixed point characterization of 𝜋erp in Theorem 5, it is tempting to imple-
ment the fixed point iteration 𝜋t = F∗(𝜋t−1), t ∈N. However, our empirical studies showed that
the resulting sequence (𝜋t)t ∈N often fails to converge, indicating that F∗ is, in general, not a con-
traction. This suggests to decelerate the iteration by choosing 𝜋t = (1 − 𝜏t) 𝜋t−1 + 𝜏t F∗(𝜋t−1) with
step sizes 𝜏t ∈ [0, 1]. While this gave satisfactory results in our examples, it is hard to characterize
the step sizes for which the new sequence converges.

Algorithm 2. Choose a threshold
𝜀> 0.

1. Choose an arbitrary positive probability density 𝜋0, for example, 𝜋0(𝜃)= (b− a)−1.
2. For t ∈N, iterate:

(a) compute 𝜋̃temp(𝜃) = J(𝜃) exp
(
𝛾−1 ∑M

m=1
p(xm|𝜃)

Q(p(xm|⋅) 𝜋t−1)
)

;
(b) normalize: 𝜋temp = 𝜋̃temp∕Q(𝜋̃temp);
(c) choose a step size 𝜏t ∈ [0, 1] and 𝜋t = (1 − 𝜏t) 𝜋t−1 + 𝜏t 𝜋temp;
until Q(|𝜋temp − 𝜋t∗−1|) < 𝜖 for some t∗ ∈ N.

3. Set 𝜋erp = 𝜋t∗ .

6 NUMERICAL COMPUTATIONS

In the following, we apply the empirical reference prior approach to a synthetic data set as well as
to the famous real-life data set of Efron and Morris (1975). Our code implements Algorithm 1 and
is available in the form of a Julia package at https://github.com/axsk/ObjectiveEmpiricalBayes.jl.

https://github.com/axsk/ObjectiveEmpiricalBayes.jl
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6.1 Example with synthetic data

We illustrate the invariance under reparametrization using the location model

x|𝜃 ∼  (𝜃, 𝜎2), 𝜃 ∼ 𝜋true, (20)

with 𝜎 = 0.3 and 𝜋true being an equal mixture of  (1, 0.52) and  (3, 0.52), truncated to the
interval Θ= [0, 4]. We compare the performance of MPLE (5) using Tikhonov regularization
Φ = || ⋅ ||2L2 , also known as ridge regression, and the empirical reference prior (16), applied in
both the untransformed space Θ= [0, 4] and the space Θ̃ transformed by 𝜑 ∶ 𝜃 → 𝜃 = exp(𝜃).
According to (8), the transformed model takes the form

x|𝜃 ∼  (log 𝜃, 𝜎2), 𝜃 ∼ 𝜑∗𝜋true. (21)

Both optimization problems (5) and (16) are solved by Algorithm 1 using the method of mov-
ing asymptotes (MMA) of Svanberg (2001/2002) from the NLopt package provided by Johnson
(n.d.), after discretizing the parameter space with 200 equidistant grid points. All priors are esti-
mated using the same data consisting of M = 100 synthetic measurements. In both cases, the
Jeffreys prior can be computed analytically. We obtain a constant Jeffreys prior for the likelihood
model in (20) and J(𝜃) ∝ |𝜃|−1 for the one in (21).

As expected from the theory in Section 4, we observe how the lack of invariance of conven-
tional penalty terms is resolved by the missing information penaltyΦ , without losing the effect of
regularization, see Figures 4 and 5. In addition, the empirical reference prior is strictly positive on
the whole interval, making Φ preferable to Tikhonov regularization from an objective Bayesian
viewpoint: Excluding certain parameter values completely from a finite number of measurements
appears unreasonable.

F I G U R E 4 Conventional penalty terms, here the Tikhonov-regularization, are variant under
transformations 𝜑 ∶ Θ → Θ̃, resulting in inconsistent prior estimates (see also Figure 2). If the estimation is
performed in a transformed space Θ̃ it gives a different estimate than the pushforward of the estimate in Θ,
𝜋𝜑est ≠ 𝜑∗𝜋est. Dashed lines indicate transformed densities. Here, 𝜋L2 denotes the MPLE using Tikhonov
regularization as penalty. In order to demonstrate the lack of invariance of the density estimate, we chose the
same smoothing parameter 𝛾 in both spaces [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 5 Due to the transformation invariance of the missing information penalty Φ , the empirical
reference prior estimates are consistent under reparametrization (up to a negligible numerical error),
𝜋𝜑erp = 𝜑∗𝜋erp [Color figure can be viewed at wileyonlinelibrary.com]

6.2 Example with real-life data

To illustrate our approach on real-life data, let us consider the historical batting averages (or base-
ball) example of Efron and Morris (1975), which is one of the most famous small data sets in
statistics. The batting averages xm (number of successful hits divided by the number of tries) for
M = 18 major league baseball players early in the 1970 season—to be precise, the first N = 45 at
bats of each—are used to estimate their true success rates 𝜃m ∈Θ= [0, 1], m= 1, … , M, which
are taken as the averages over the remaining season (around 370 at bats for each player). This
example was used by Efron and Morris (1975) to illustrate the strength of the James–Stein (JS)
estimator 𝜃̂JS, a particular parametric empirical Bayes method, compared with the MLE 𝜃̂MLE = x
in terms of the (empirical) mean squared error

MSE ∶= 1
M

M∑
m=1

(𝜃̂m − 𝜃m)2.

Since the JS estimator assumes both the prior and the likelihood model to be normal, the natural
binomial likelihood model Bin given by

(Nxm)|𝜃m
independent∼ Bin(⋅|𝜃m,N), 𝜃m

i.i.d.∼ 𝜋true, m = 1, … ,M, (22)

is replaced by its normal approximation  ,

xm|𝜃m
independent∼  (𝜃m, 𝜎

2), 𝜃m
i.i.d.∼ 𝜋true, m = 1, … ,M, (23)

where 𝜎2 ∶= x(1 − x)∕N is chosen to approximate the variance estimate of the binomial distri-
bution and x ∶= M−1 ∑M

m=1 xm. Note that in the original paper by Efron and Morris (1975) an
additional arcsin transformation is applied to each of the measurements xm in order to stabilize
their variance. For simplicity and following the presentation in Efron (2010, section 1.2), we omit
this technical detail. We will apply our empirical reference prior approach to both, the original
formulation (23) using  as well as the more meaningful likelihood model Bin in (22). In
both cases, the Jeffreys prior can be computed analytically: We obtain a constant Jeffreys prior for
the likelihood model  in (23) and J(𝜃)∝ |𝜃(1− 𝜃)|−1/2 for Bin in (22).

http://wileyonlinelibrary.com
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We compare these two approaches to the JS estimator which assumes a normal prior 𝜋true = (𝜇𝜃, 𝜎2
𝜃
), making it a parametric empirical Bayes method with only the parameters 𝜇𝜃 and

𝜎2
𝜃

of the prior to be estimated. A wonderful derivation of the JS estimator and its applica-
tion to the baseball data set can be found in Efron (2010, section 1.2), with the resulting
estimates

𝜇̂𝜃 = x ∶= 1
M

M∑
m=1

xm, 𝜎̂2
𝜃 =

B𝜎2

1 − B
, 𝜃̂JS,m = x + B(xm − x),

where, for m= 1, … , M, the estimates 𝜃̂JS,m approximate 𝜃m by the individual posterior means
and

B ∶= 1 − (M − 3)𝜎2∑M
m=1 (xm − x)2

.

T A B L E 1 Numerical comparison of four different estimates of the batting success rate θ of
18 major league baseball players based on their batting average x of the first 45 at bats early in
the 1970 season (x =hits/number of at bats)

Name 𝜽̂MLE = x 𝜽̂JS 𝜽̂


erp 𝜽̂
Bin
erp 𝜽

Clemente 0.400= 18/45 0.294 0.303 0.298 0.346= 127/367

Robinson 0.378= 17/45 0.289 0.296 0.292 0.298= 127/426

Howard 0.356= 16/45 0.285 0.289 0.287 0.276= 144/521

Johnstone 0.333= 15/45 0.280 0.282 0.281 0.222= 61/275

Berry 0.311= 14/45 0.275 0.276 0.275 0.273= 114/418

Spencer 0.311= 14/45 0.275 0.276 0.275 0.270= 126/466

Kessinger 0.289= 13/45 0.270 0.269 0.270 0.265= 155/586

Alvarado 0.267= 12/45 0.266 0.264 0.265 0.210= 29/138

Santo 0.244= 11/45 0.261 0.258 0.260 0.269= 137/510

Swaboda 0.244= 11/45 0.261 0.258 0.260 0.230= 46/200

Petrocelli 0.222= 10/45 0.256 0.254 0.255 0.264= 142/538

Rodriguez 0.222= 10/45 0.256 0.254 0.255 0.226= 42/186

Scott 0.222= 10/45 0.256 0.254 0.255 0.303= 132/435

Unser 0.222= 10/45 0.256 0.254 0.255 0.264= 73/277

Williams 0.222= 10/45 0.256 0.254 0.255 0.330= 195/591

Campaneris 0.200= 9/45 0.252 0.249 0.251 0.285= 159/558

Munson 0.178= 8/45 0.247 0.245 0.247 0.316= 129/408

Alvis 0.156= 7/45 0.242 0.242 0.244 0.200= 14/70
MSE

MSE(𝜃̂MLE)
1 0.312 0.312 0.310 (0)

Note: As illustrated in Figure 6, the three empirical Bayes methods perform very similarly, both in terms of
the individual estimates 𝜃̂JS ≈ 𝜃̂


erp ≈ 𝜃̂

Bin
erp and in terms of the overall mean squared error (MSE), and strongly

outperform the “overconfident” maximum likelihood estimate 𝜃̂MLE = x. The ground truth for 𝜃 is taken as
the batting average of each player over the remaining season.
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The results are given in Table 1, while Figure 6 illustrates the data as well as the various point
estimates, together with the three estimated priors

𝜋JS =  (𝜇̂𝜃, 𝜎̂2
𝜃), 𝜋

erp = 𝜋erp(⋅ |  ), 𝜋Bin
erp = 𝜋erp(⋅ | Bin)

(note that those are not density estimates in the classical sense, since the parameters 𝜃m, and not
the measurements xm, are samples from 𝜋true).

All three approaches provide very similar results. The main reason for this is that, as is appar-
ent from Figure 6, the assumption of a normal prior made by the James–Stein approach seems
to be a meaningful parametric choice in this specific example, where the parameter 𝜃 repre-
sents the performance (in terms of batting success rates) of baseball players. If this was not the
case, for example, if another parametrization was chosen by, say, measuring the performance
on a logarithmic scale, our nonparametric approach is likely to outperform the James–Stein
estimator. In fact, our approach would provide exactly the same results for any reparametriza-
tion of the model. To the best of our knowledge, this is a unique feature among all empirical
Bayes methods.

F I G U R E 6 The empirical reference priors 𝜋
erp and 𝜋Bin

erp and the corresponding posterior mean estimates
𝜃̂

erp
m for the likelihood models given by (22) and (23) compared with the maximum likelihood estimates 𝜃̂MLE

m and
James–Stein estimates 𝜃̂JS

m (and prior πJS). While the results of the empirical reference prior approach and the JS
approach are comparable, the normal prior πJS clearly fails to be invariant under reparametrizations. Hence, the
quality of the JS estimates could change drastically if, say, the players’ performance was measured on a
logarithmic scale. The “shrinkage toward the mean” effect of empirical Bayes estimates is well observable. The
first impulse, that a smaller shrinkage would provide better results, is deceptive—this would reduce the
(squared) error for some players, but drastically increase the (squared) error for others, a modification that is
likely to increase the overall MSE [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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7 THE MULTIPARAMETER CASE d > 1

In the case of several parameters, the reference prior 𝜋ref is no longer defined as the prior
which maximizes the missing information, but by the sequential scheme presented in Berger and
Bernardo (1992). This scheme applies the procedure described in Section 4 successively to the
conditional priors 𝜋(𝜃𝛿|𝜃1, … , 𝜃𝛿−1), 𝛿 = 1, … , d, after a convenient ordering of the parameters.
This leads us to three possible generalizations of empirical reference priors to the multiparame-
ter case. The construction from Section 4, in particular the definition of the empirical reference
prior, will be referred to as the one-parameter construction.

(A) Adopt the definitions from Section 4 exactly as they are. In the asymptotically normal case
given by Condition 1, this corresponds to the optimization problem (16),

𝜋erp = arg max𝜋 log L(𝜋) − 𝛾DKL(𝜋||J),
where J(𝜃) =

√| det i(𝜃)| denotes the (arbitrarily scaled) Jeffreys prior. This construction
provides an extension of the Jeffreys prior, not of reference priors. The reasons why reference
priors are favored over Jeffreys prior in dimension d > 1 are marginalization paradoxes and
inconsistencies of the latter, see Bernardo (2005) and references therein. It is yet unclear in
how far these arguments are valid in the presence of data. Hence, this approach might be
justified in the empirical Bayes framework.

(B) In light of (16) and with the intention of generalizing reference priors, replace J by 𝜋ref in
the penalty term:

𝜋erp = arg max𝜋 log L(𝜋) − 𝛾DKL(𝜋||𝜋ref).

This yields an extension of reference priors and agrees with the one-parameter construction
in the asymptotically normal case (Condition 1), but not necessarily in the general case.

(C) Define a sequential scheme similar to the one used for reference priors. For simplicity, we
will restrict the presentation to the case of d= 2 parameters 𝜃1, 𝜃2, Θ=Θ1 ×Θ2, but the con-
struction can easily be extended to any number of parameters. As is common practice for
reference priors, the parameters have to be ordered by “inferential importance”. We will per-
form similar steps to the ones in Bernardo (2005, section 3.8). Note that, as in the case of
reference priors, this scheme lacks objectivity since it requires an ordering of the parameters,
which is a heuristic element and not unambiguous in many applications.

Algorithm 3.

(i) For every (fixed) 𝜃1, the one-parameter algorithm yields the conditional empirical reference
prior 𝜋erp(𝜃2|𝜃1) = 𝜋erp(𝜃2|𝜃1,, ,X).

(ii) By integrating out parameter 𝜃2 we obtain the one-parameter model 1 given by

p(x|𝜃1) = ∫Θ2

p(x|𝜃1, 𝜃2) 𝜋erp(𝜃2|𝜃1) d𝜃2.

Apply the one-parameter construction to 1 to obtain the marginal empirical reference prior
𝜋erp(𝜃1) = 𝜋erp(𝜃1|, ,X).

(iii) The desired empirical reference prior is defined by 𝜋erp(𝜃1, 𝜃2)=𝜋erp(𝜃1)𝜋erp(𝜃2|𝜃1).



20 KLEBANOV et al.

(A) and (B) are straightforward generalizations of the theory presented in Section 4. It would
be interesting to analyze the connection between the approaches (B) and (C).

Remark 2. Note that while all three of the above options are invariant under transformations of
the measurement x, only (A) truly guarantees invariance under transformations of the parame-
ter 𝜃 = (𝜃1, … , 𝜃d), which it inherits from the invariance of the log-likelihood (up to an additive
constant, Theorem 1) and of the Jeffreys prior. The other two options (B) and (C) depend on the
particular choice of how the parameters (or, rather, the parameter components) 𝜃1, … , 𝜃d are
ordered. Hence invariance is only given under reparametrizations that transform each component
separately,

𝜑(𝜃) = (𝜑1(𝜃1), … , 𝜑d(𝜃d)) ,

under the assumptions that their ordering is not altered.

8 CONCLUSION

We successfully applied the approach for the construction of reference priors to determine a
transformation invariant penalty term for MPLE, which favors noninformativity of the prior,
namely the missing information [𝜋 | k], k→∞. This interaction of objective Bayesian analy-
sis and empirical Bayes methods results in a consistent and informative prior estimate, which we
termed the empirical reference prior 𝜋erp. The distinctive feature of 𝜋erp is its invariance under
reparametrization, which is, to the best of our knowledge, unique among all empirical Bayes
methodologies.

The smoothing parameter 𝛾 tunes the amount of information contained in the prior: The data,
represented by the marginal likelihood L(𝜋), yields information about the distribution of 𝜃, but
maximizing L(𝜋) alone overfits the data. The penalty term Φ(𝜋), on the other hand, favors nonin-
formative priors. We performed this trade-off by likelihood cross-validation which we also proved
to be invariant under transformations (Proposition 1).

Besides invariance, our method has further favorable properties such as compatibility with
sufficient statistics and, under the assumption of asymptotic normality, strict concavity of the
resulting optimization problem (16). So far, our approach lacks an explicit formula for the
empirical reference prior.3

We applied our methodology to a synthetic data set to illustrate the invariance property of
the empirical reference prior as well as to a real-life example, the famous baseball data set of
Efron and Morris (1975) collected to demonstrate the advantages of the James–Stein estimator,
a parametric empirical Bayes method which we compare our method to. In the latter case, both
approaches gave nearly identical results, the most natural explanation being that the parametric
choice of the prior used in the James–Stein approach appears to be a good approximation in this
specific example with this specific parametrization. Our nonparametric empirical reference prior
approach is likely to provide better results in situations where the “true” prior 𝜋true cannot be
well-approximated by a Gaussian. Our code for the numerical computations is available at https://
github.com/axsk/ObjectiveEmpiricalBayes.jl.

3An explicit formula for reference priors (Berger et al., 2009, theorem 7) exists, so far, only in the one-parameter case
d= 1 and under rather restrictive assumptions. Furthermore, it requires the numerical approximations of integrals in the
possibly high-dimensional measurement space  as well as the computation or at least some estimate of the limit k→∞.

https://github.com/axsk/ObjectiveEmpiricalBayes.jl
https://github.com/axsk/ObjectiveEmpiricalBayes.jl
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The generalization of our approach to several dimensions is not unambiguous and has been
discussed in Section 7.
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