
1. Introduction
Changes in the Earth's orbital parameters cause variations in insolation related to the Milankovitch cycles 
on the time scales of precession (∼23 ky), obliquity (∼41 ky) and eccentricity (∼100 ky) (Milankovic, 1920). 
In the early 1980s, it became clear that the orbital parameters strongly correlate with the dramatic varia-
tions in marine sediment δ18O records during the Pleistocene (Imbrie et al., 1984). As marine δ18O relates 
to ice sheet volume and temperature (Elderfield et al., 2012), Pleistocene glacial-interglacial variations were 
postulated to be paced by the Milankovitch cycles (Hays et al., 1976; Imbrie et al., 1984). δ18O proxy records, 
however, show a pronounced change in dominant Milankovitch periodicities from the Early to Late Pleisto-
cene at the Mid Pleistocene Transition (MPT). The Early Pleistocene (here taken as 2.0–1.2 Ma) is referred to 
as “the 41 ky world” (Raymo & Nisancioglu, 2003) due to the dominance of the 41 ky obliquity periodicity in 
the proxy records. The Late Pleistocene (here taken as 0.8–0 Ma) is referred to as “the 100 ky world” because 
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cancellation, particularly in the Early Pleistocene. We, therefore, conclude that the δ18O incompletely 
archives climatic cycles, challenging our understanding of long-term climate variability.
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of the dominance of periodicities between 80 and 120 ky, and has all three Milankovitch cycles represented 
in deep-sea δ18O records.

The transition from the 41 ky to the 100 ky world (i.e., the MPT) is not yet fully understood. Most hypoth-
eses explain the MPT by changes in global or hemispheric ice sheet volume, where smaller ice sheets are 
considered to respond on shorter timescales (i.e., 23 and 41 ky cycles), whereas larger ice sheets respond on 
longer timescales (i.e., 100 ky cycles). A higher atmospheric pCO2 is reconstructed for the Early Pleistocene 
as compared to the Late Pleistocene, particularly for the glacials (Hönisch et al., 2009; Seki et al., 2010). 
This comparatively high Early Pleistocene atmospheric pCO2 is associated with smaller ice sheets, while 
lower atmospheric pCO2 favors colder climates and larger ice sheets in the Late Pleistocene. The relative-
ly smaller Early Pleistocene ice sheet volume could also be related to the existence and slow erosion of a 
relatively soft regolith bed beneath the Laurentide ice sheet, inhibiting the build-up of larger ice volume 
pre-MPT (Clark et al., 2006; Clark & Pollard, 1998). Sea ice may have played a role: the activation of the “sea 
ice switch” during the MPT due to general Pleistocene climate cooling could have paced a ∼100 ky rhythm 
of the ice ages post-MPT through its influence on atmospheric temperature and moisture fluxes (Gildor 
& Tziperman, 2000). Alternatively, the change in periodicity could be explained by climate variability on 
timescales beyond the Pleistocene, where the MPT triggered a different cyclic variability through the albedo 
discontinuity at the snow-ice edge (Crowley & Hyde, 2008). Recently, however, studies increasingly stress 
the importance of long-term atmospheric pCO2 and temperature decline, interacting with regolith removal 
and/or Southern Ocean iron fertilization as the driver of the MPT (Berger et al., 1999; Chalk et al., 2017; 
McClymont et al., 2013; Willeit et al., 2019).

2. The Antiphase Hypothesis
An alternative view of both “the 41 ky world” and the MPT is that part of the change in periodicity observed 
in the δ18O proxy records is due to the cancellation of the cyclic precessional signals in the interior ocean 
(Nisancioglu, 2004; Raymo et al., 2006). We build on this work and test the feasibility of cancellation of 
the hemispherically antiphased precessional signal in deep-sea δ18O records (the “Antiphase Hypothesis”; 
Shakun et al., 2016), and note strong spatial variations in the occurrence of such cancellation. According to 
the Antiphase Hypothesis, precessional cancellation occurs before the MPT only (i.e., in the Early Pleisto-
cene). This contrast in the occurrence of precessional cancellation across the MPT is explained by variations 
in the relative δ18O source signal strengths from the two main deep-water formation regions (in the North 
Atlantic and Southern Ocean)—which influence the strength of precession relative to obliquity at depth. 
Consequently, the change in source-signal strengths is recorded in the δ18O of marine sediments as an ap-
parent change in dominant periodicity.

There are several lines of evidence in favor of the Antiphase Hypothesis. For example, one would expect 
a prominent precessional influence throughout the Pleistocene based on classic Milankovitch theory. In 
addition, evidence for precession-driven Northern Hemispheric ice volume (Raymo et al., 2006; Shakun 
et al., 2016) implies a prominent precession component in δ18O records throughout the Pleistocene. Also, 
Antarctic and Southern Hemisphere records support the theory that a dynamic Antarctic ice sheet varied in 
phase with precession from ∼3.3 Ma (as recorded off Wilkes Land; Patterson et al., 2014), and contributed 
with a southern sourced precession signal to the sea level variability (e.g., as evidenced by sea level records 
off New Zealand; Grant et al., 2019). Under the Antiphase Hypothesis, both of these dynamical expectations 
would hold, as long as both poles contribute a precession δ18O signal to the interior ocean. Given new proxy 
data, we will be able to verify to what extent deep-sea δ18O indeed represents surface climatic oscillations 
by using proxies of ice volume not influenced by interior cancellation of precession—such as δ18O records 
from Antarctic ice core records across the MPT (Dahl-Jensen, 2018).

The Antiphase Hypothesis (Nisancioglu, 2004; Raymo et  al.,  2006) argues for a cancellation of the pre-
cession signal in global ice volume, and that a benthic stack of δ18O would record these changes (e.g., 
Lisiecki & Raymo, 2005). While glacial-interglacial changes bring about a global shift in the water cycle 
and atmospheric δ18O, the melting of ice sheets imparts a regional signal in seawater δ18O that is evident 
in the North Atlantic during the last deglaciation (Waelbroeck et al., 2011). Recent evidence also indicates 
that the growth of ice sheets occurs via moisture derived from a wide oceanic region but within the same 
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hemisphere (Rhines & Huybers, 2014), again suggesting that changes in ice sheet volume are reflected in 
water masses formed in their respective hemispheres. Here we go beyond the original Antiphase Hypoth-
esis to incorporate this new evidence, to investigate how hemispherically asymmetric signals mix in the 
ocean, and to determine the deep-sea locations where these signals can destructively interfere. Ultimately, 
we wish to determine whether our hypothesized regional variations can explain the dominance of 41 ky 
variability in the early Pleistocene benthic δ18O stack.

3. Methodology
3.1. Model and Experimental Setup

Assuming that deep-water formation mostly occurs during the winter season in both hemispheres, we hy-
pothesize that the mixing of deep-water from the two main deep-water formation regions (the Southern 
Ocean and North Atlantic; Figure 1) can lead to cancellation of the precessional signal in deep-sea δ18O 
sediment records. This is due to the hemispheric antiphasing of the precessional signal in insolation for a 
given season (Milankovic, 1920), and because of the inflow of meltwater from the ice sheets into the South-
ern Ocean and North Atlantic deep-water formation regions (Figure 1). Indeed, sediment records of δ18O 
archive the influence from northern and southern deep-water sources on glacial-interglacial timescales 
(e.g., Völpel et al., 2019). Our approach builds on the study by Raymo et al. (2006), who noted the potential 
for precessional variations in hemispheric ice volumes to cancel out in globally integrated proxies such as 
ocean δ18O or sea level, leaving the in-phase obliquity (41,000 years) component of insolation to dominate 
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Figure 1. Scaled mean insolation forcing (W m−2) at 65°N (May–July) and 65°S (November–January) with the 
corresponding power density spectrum (W2 m−4 ky) of the northern (i.e., North Atlantic, within 50–80°N and 
100°W–20°E) and southern (i.e., Southern Ocean, south of 60°S) source regions. These two source regions are named N 
and S on the map.
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the records. In our experimental setup, we go beyond the study by Raymo et al. (2006) by (1) using a 3D 
model over the idealized model of Imbrie and Imbrie (1980), and (2) exploring the spatial distribution of the 
potential for precessional cancellation in the ocean interior.

To do this we use a three-dimensional water mass tracer model (Total Matrix Intercomparison, TMI; Geb-
bie & Huybers, 2012) and investigate the relative impact of hemispheric ice volume derived surface ocean 
imprints on the recorded signals at deep sea coring sites. The model's North Atlantic and Southern Ocean 
surface water end-members are imprinted with their respective solar insolation (at 65°N and 65°S) over 
the past 200 ky (Figure 1) as tracer dye values at each 200 y time step (for details on experiment design, see 
Text S1). Note that the spectrum of the forcing contains a similar power for the obliquity and precessional 
cycles. We apply the TMI model to explore the fate of the cyclic northern and southern surface forcing sig-
nals in the interior ocean (Text S2). In particular, we assume that it is the signal near deep-water formation 
sites (Figure 1) that is primarily transferred to the deep ocean. The respective deep-water volume contribu-
tion of the northern and southern sources to the interior are kept constant and represent over ∼75% of the 
total bottom water volume in the model (Figure S1).

The importance of boundary conditions for the interior tracer distribution has been explored extensively 
with the TMI model, including on paleoclimatic time scales (Oppo et al., 2018). However, the deep-water 
formation sites and overturning rates may have varied over the Pleistocene (Hasenfratz et al., 2019; Kleiven 
et al., 2003). We evaluate the potential effects of changes in circulation strength (advection and diffusion) 
on both irregular and orbital timescales and find only minor spatial effects in the results (Text S3 and Fig-
ure S5). In addition, we note that deep water temperature may not be perfectly correlated with seawater δ18O 
on orbital time scales which makes the signals recorded in the deep ocean sediments more difficult to inter-
pret. Changes in surface hydrological cycling (such as evaporation and therefore the source signal of the ice) 
and their effects on deep water δ18O are not explicitly modeled in this study, but are assumed to be related to 
ice-sheet volume in the respective hemispheres as may be appropriate on millennial and longer timescales. 
Furthermore, as we explore the relative strength of northern and southern source signals (Section 3.2), any 
potential differences in absolute δ18O ice sheet signals are accounted for (Text S4 and Figure S6).

3.2. Variations of Relative Southern Versus Northern Influence

To explore how the relative amplitude of the southern versus northern deep-water signals affects preces-
sional cancellation in δ18O proxy records, here we introduce the concept of the south-to-north (S/N) ratio. 
The S/N ratio depends on the interplay between: (i) the respective deep-water volume contribution of the 
northern and southern sources and their overturning rates; (ii) the δ18O source signature of the northern 
and southern ice sheets; and (iii) the amplitude and the variability of the northern and southern ice sheet 
volumes. In this study, we combine these factors into an aggregate S/N ratio to account for the fact that the 
TMI model has fixed deep-water volume contributions. We scale the amplitude of the southern source by 
a factor between 0.125 and 6 to achieve various S/N ratios. Shifts in the S/N ratio can have implications for 
other water column tracers as well, especially if changes occur in the deep-water volume contributions from 
the northern and southern source regions (Marinov et al., 2008). Such changes would induce variations in 
the interior storage of carbon and atmospheric pCO2 (Marinov et al., 2008; Toggweiler, 1999)—and there-
fore the greenhouse effect, which again would influence ice sheet volume and temperature.

As we anticipate that the S/N ratio is key for precessional cancellation, we expect a profound change in the 
S/N ratio during the MPT—causing precessional cancellation in the δ18O records before the MPT, but not 
after. Indeed, the influence of the southern and northern hemisphere on global climate variability varied 
greatly over the past 35 My (De Vleeschouwer et al., 2017), showing potential for large shifts in the S/N ratio. 
Since deep-sea δ18O records are strongly correlated with sea level changes (Spratt & Lisiecki, 2016), recon-
structions of glacial-interglacial ice sheet volume variability expressed as sea level equivalents (s.l.e.) can be 
used to understand past changes in the S/N ratio. Before the Early Pleistocene “41 ky world” (i.e., prior to 
∼2 Ma), we expect a large S/N ratio of greater than six because it precedes the onset of Northern Hemisphere 
glaciation (Mudelsee & Raymo, 2005). For the Early Pleistocene, a best (but uncertain) estimate of the S/N 
ratio is in the range of 0.2–0.5; the northern ice sheet contributed ∼20–40 m s.l.e. to glacial-interglacial sea 
level variability (Berger et al., 1999; Willeit et al., 2015). At the same time, total sea level generally varied by 
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at most ∼50 m, of which the Antarctic ice sheet contributed 4–8 m s.l.e. (Sutter et al., 2019; Figure 2). After 
the MPT, global ice sheet volume increased (Berger et al., 1999; Elderfield et al., 2012), with a glacial-inter-
glacial sea level variability reaching ∼120 m (Spratt & Lisiecki, 2016). The Antarctic ice sheet likely did not 
contribute more than ∼15 m s.l.e. to glacial-interglacial sea level changes during the Late Pleistocene due to 
the relative stability of the East Antarctic ice sheet (DeConto & Pollard, 2016; Sutter et al., 2019; Figure 2). 
Additionally, the transition of the East Antarctic ice sheet from land-based to marine-based during the MPT 
(Raymo et al., 2006) may have contributed to a decrease in the S/N ratio as the southern ice sheet became 
in phase with the northern ice sheets.

4. Results
4.1. Cancellation of Precession

Cancellation, or weakening, of the precessional amplitude relative to obliquity amplitude occurs in the 
ocean interior for any nonzero S/N ratio (Figure 3 and Figure S2), suggesting that such cancellation could 
occur at any point in Earth's history where deep waters from the two hemispheres (with an antiphased 
signature) mix in the interior ocean. Our estimate of the Pleistocene S/N ratio is less than 0.5 based on sea 
level reconstructions (Figure 2). For the Early Pleistocene, the estimated S/N ratio of ∼0.2–0.5 indicates that 
cancellation of precession may have played a major role in δ18O records, particularly at depth in the Pacific 
basin (Figure 3 and Figure S2). In the Late Pleistocene, S/N decreased to values <<0.2 for which we do not 
expect widespread cancellation (Figure 3 and Figure S2), giving an explanation for the reappearance of 
precession in the post-MPT δ18O records.

A stronger amplitude of the southern sourced signal (i.e., high S/N ratio) generally pushes the region of can-
cellation northward in all ocean basins (Figure S2). At the same time, the spatial extent of the bottom water 
cancellation is greatly reduced when it migrates from the Pacific into the Atlantic basin. The dominant 
contribution of the southern source waters in the Pacific (Gebbie, 2012; Figure S1) results in widespread 
Pacific cancellation only when the amplitude of the southern source is relatively weak (S/N < 1). For high 
S/N ratios (S/N > 6, as expected before the onset of glaciation in the Northern Hemisphere), precessional 
cancellation is limited to the mid-Atlantic interior ocean (Figure 3). Also for an S/N ratio of ∼1–2, we expect 
no cancellation of precession in the Pacific and very limited cancellation in the Atlantic and Indian Oceans 
(Figure S2). The amplitude of the southern source signal relative to the northern deep-water source is there-
fore key in the development of cancellation. An improved estimate of end-member values (i.e., δ18O from 
ice released into the ocean) for the Early and Late Pleistocene would help to determine the importance of 
cancellation for each of these distinct periods.
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Figure 2. Concept of the decrease in S/N ratio across the MPT from the Early to the Late Pleistocene, as based on 
s.l.e. reconstructions. The S/N ratio is determined by the relative contribution of the northern versus southern signals 
(Figure 1). MPT, mid-Pleistocene transition.
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There is a notable exception to the dominance of southern source waters in the mid- and high-latitude 
North Atlantic. Here, the >75% contribution of northern source waters dominates the interior signal and 
prevents cancellation of the precessional signal relative to obliquity north of ∼40°N under the assumption 
of a modern-day circulation (Figure 3). Our numerical results suggest a more general rule that cancellation 
requires the product of the S/N ratio and the ratio of North Atlantic Deep Water (NADW) to Antarctic 
Bottom Water (AABW) water masses to be close to one. Both of these quantities are uncertain for the early 
Pleistocene. Here, we keep this water-mass ratio at the modern day level and vary the S/N forcing ratio. 
If the influence of a southern source water-mass was much larger than today in the early Pleistocene, for 
example, with a weaker influence of NADW and/or stronger influence of AABW, cancellation would be 
possible also in the mid- and high-latitude North Atlantic. Interestingly, a weak precessional amplitude off 
the southwestern African coast is present for nearly any S/N ratio (Figure S2). The area prone to cancel-
lation of precession has a vertical structure (Figure 3 and Figures S3 and S4). This shows that most of the 
interior ocean is prone to cancellation, or weakening of the precessional signal relative to obliquity, but that 
the cancellation is not spatially uniform.

We conclude that in the South Atlantic, Indian and Pacific Ocean basins, the Early Pleistocene absence of a 
strong precessional power in δ18O records could be explained by the mixing of North Atlantic and Southern 
Ocean sourced deep-water masses. Moreover, this result is robust with respect to changes in circulation 
strength (Text S3 and Figure S5). If the S/N ratio decreased during the Pleistocene, as suggested by recon-
structions of ice sheet volume variability, such cancellation would disappear in the Late Pleistocene—ex-
plaining the appearance of a precessional component in deep-sea δ18O records as observed across the Mid 
Pleistocene Transition.
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Figure 3. Ratio of precessional to obliquity spectral power, as received from the northern and southern sources 
(Figure 1). Data are normalized by the 41 ky obliquity power at each grid point (Text S1) and presented for the S/N 
ratios 0.125, 0.2, 0.5, and 6 as denoted to the lower left of the respective maps. The area where the spectral power is less 
than 0.2 is hatched (in orange) to show the potential extent of cancellation of precessional power relative to obliquity. 
White regions received no signal from either the northern or southern sources. Data are presented at the bottom layer, 
an Atlantic section (at 30°W) and a Pacific section (at 180°). The vertical axis of the sections is in hundreds of meters. 
The full range of S/N experiments are presented in Figure S2 (bottom layer), Figure S3 (Atlantic), and Figure S4 
(Pacific).
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4.2. Comparison of Artificial and Real Sediment Cores

To test the model results of spatially varying cancellation, we analyze the power spectra of deep-sea sedi-
ment core ODP849 (mid-Pacific) and DSDP607 (North Atlantic) with depth-derived age-models (Huybers, 
2007) and artificial modeled sediment cores taken at the same locations (Figure 4). The artificial sediment 
cores show the asymmetry in basin response to different S/N ratios. The mid-Pacific core shows cancella-
tion for S/N ratios 0.375 and 0.5. In contrast, the North Atlantic core shows that cancellation is not strong 
enough to explain the lack of a precessional signal when considering the Pleistocene range of S/N ratios. 
This asymmetry is a direct consequence of the circulation and water mass contributions in the model, with 
the Pacific dominated by southern source waters and the North Atlantic dominated by northern source wa-
ters, especially north of 30N where core DSDP607 is located (Figure S1). Cancellation is more sensitive to 
differences in source signal strengths (Figure 3) than to changes in circulation rate (Figure S5)—highlight-
ing that changes in S/N ratio are decisive for the cancellation at a particular core location.

The real sediment cores, on the other hand, show the absence of precessional power at both sites during the 
Early Pleistocene (Figure 4). This result indicates that cancellation of precession could have played a major 
role in the interior Pacific during the Early Pleistocene (0.2 ≤ S/N ≤ 0.5, Figure 3 and Figure S2). However, 
the absence of precessional power at the North Atlantic site appears to be at odds with the model results, 
given that the simulated North Atlantic and mid-Pacific δ18O time series respond differently to a change 
in S/N ratio. This inconsistency could be explained by east-west asymmetries in water-mass distribution 
across the mid-Atlantic ridge, or by potential circulation changes in the early Pleistocene. For instance, the 
North Atlantic can exhibit cancellation if the influence of southern source waters increased (Figure S2). 
Such an increased southern influence could develop through shoaling of the upper Atlantic overturning 
cell—increasing the volume contribution of the southern source waters to the North Atlantic. Shoaling and 
northward extension of southern source waters is indeed reconstructed for cold periods during the Pleis-
tocene (Böhm et al., 2014). Another important factor is the potential for changes in the relative strength 
of the precession and obliquity signal in the two end-members. As postulated by (Raymo et al., 2006), the 
Antarctic ice sheet transitioned from a largely land-based ice sheet to a marine-based ice sheet at the MPT. 
This is not only expected to have changed the amplitude of the Southern Hemisphere signal, but also the 
relative strength of obliquity and precession. Typically, marine based ice sheets are expected to respond less 
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Figure 4. Power spectrum of the model sensitivity experiments and sediment core δ18O data at core sites ODP849 and DSDP607, after Figure S1 in Raymo 
et al. (2006). Cancellation is defined at a normalized precessional power <0.2, and is indicated by the gray area. Spectral noise is subtracted from the sediment 
core data in order to reveal the dominant frequencies (Text S5).
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to precession given that the relative contribution from seasonal surface melt is reduced. Thus, the absence 
of a pronounced precessional power in Early Pleistocene deep sea δ18O records may reflect a combination 
of multiple causes, and resolving the changes in the glacial cycles at the MPT relies on careful consideration 
of the location and depth of the marine sediment cores.

5. Conclusion and Discussion
Our modeling results show that the cancellation of the precessional signal in deep sea marine sediment 
records, as expected from the Antiphase Hypothesis, may have played a major role during the Early Pleisto-
cene in the interior of the Pacific Ocean (0.2 ≤ S/N ≤ 0.5, Figure 3, Figure S2, and Figure 4). The cancellation 
of precession causes an incomplete recording of hemispheric antiphased glacial-interglacial cycles in the 
deep-sea δ18O records. We also show that the localities where the cancellation is evident varies with differ-
ent S/N ratios, representing different contributions from northern and southern deep water, ice volume 
variability, and δ18O signatures of the ice sheets.

The basin asymmetry reveals a possible challenge with the interpretation of global stacks of δ18O records: if 
interpreted as a whole (Lisiecki & Raymo, 2005), any interbasin asymmetries in spectral power sensitivity 
to changes in S/N ratio are not considered. Unfortunately, the number of sediment cores available today 
is not sufficient to test the spatial variation of the cancellation suggested by the model: only five sediment 
cores meet the two critical requirements of resolving the Early Pleistocene and not being orbitally tuned. 
Moreover, these five cores are concentrated in only two regions: the tropical East Pacific (e.g., ODP849) and 
the North Atlantic (e.g., DSDP607). The spectra of the δ18O time series from the ODP849 and DSDP607 sed-
iment cores both show the absence of precessional power in the Early Pleistocene (Figure 4 and Text S5). 
This is matched by the simulated power spectra for the tropical East Pacific. However, in the simulated 
power spectra for the North Atlantic site, the precessional signal is strong for all the S/N ratios investigated, 
indicating that the deep sea site is dominated by northern sourced water in the model. While the potential 
for precessional cancellation is widespread in the global ocean, our analysis emphasizes that better con-
straints on the ocean circulation and water-mass ratio are necessary to quantify precessional cancellation 
at individual core sites.

Data Availability Statement
The model experiment data are publicly accessible in NetCDF format at the NIRD Research Data Archive at 
https://doi.org/10.11582/2021.00001 (Morée et al., 2021). The TMI model used in this study is documented 
in Gebbie & Huybers (2012).
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