
Journal of Global Antimicrobial Resistance 22 (2020) 749–753
High rate of antimicrobial resistance and multiple mutations in the
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A B S T R A C T

Objectives: The aim of this study was to characterize molecular mechanisms of resistance to
trimethoprim and other antibiotics in Streptococcus pneumoniae isolates from HIV-infected adults in
Dar es Salaam, Tanzania.
Methods: A total of 1877 nasopharyngeal swabs were collected and screened for pneumococcal
colonization from 537 newly diagnosed individuals with HIV at four clinic visits during a 1-year follow-
up from 2017–2018 as part of the randomized clinical trial CoTrimResist (ClinicalTrials.gov ID:
NCT03087890).
Results: A total of 76 pneumococcal isolates were obtained. Of the 70 isolates that could be serotyped, 42
(60.0%) were vaccine serotypes included in pneumococcal conjugate vaccine 23 (PCV23). The majority of
isolates (73.7%; 56/76) were non-susceptible to penicillin (MICs of 0.06–2 mg/mL). Isolates were
frequently resistant to co-trimoxazole (trimethoprim/sulfamethoxazole) (71.1%) but less so to
azithromycin (22.4%), erythromycin (21.1%), chloramphenicol (18.4%), tetracycline (14.5%), clindamycin
(10.5%) and levofloxacin (0%). Moreover, 26.3% were multidrug-resistant (resistant to �3 antibiotic
classes). Vaccine-type pneumococci were resistant to more classes of antibiotics, were more frequently
resistant to erythromycin, azithromycin, clindamycin and tetracycline, and had higher MICs to penicillin
(median, 0.19 mg/mL; range, 0.002–1.5 mg/mL) compared with non-vaccine serotypes (median, 0.125 mg/
mL; range, 0.012–0.25 mg/mL) (P = 0.003). Co-trimoxazole-resistant isolates carried from 1 to 11 different
mutations in the dihydrofolate reductase (DHFR) gene, most commonly Ile100Leu (100%), Glu20Asp
(91.8%), Glu94Asp (61.2%), Leu135Phe (57.1%), His26Tyr (53.1%), Asp92Ala (53.1%) and His120Gln (53.1%).
Conclusion: Streptococcus pneumoniae isolated from HIV-diagnosed patients were frequently non-
susceptible to penicillin and co-trimoxazole. Most isolates carried multiple mutations in DHFR.

© 2020 The Authors. Published by Elsevier Ltd on behalf of International Society for Antimicrobial
Chemotherapy. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
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1. Introduction

Streptococcus pneumoniae is a common cause of invasive and
non-invasive diseases. Unfortunately, pneumococcal disease
remains a primary cause of morbidity and mortality in immuno-
competent and immunodeficient populations [1,2]. Nasopharyn-
geal colonization with S. pneumoniae is considered a prerequisite
both for invasive and non-invasive pneumococcal diseases [3,4]. In
human immunodeficiency virus (HIV) infection, widespread use of
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co-trimoxazole (trimethoprim/sulfamethoxazole) and other anti-
biotics has been associated with increased carriage of multidrug-
resistant (MDR) bacteria, including MDR S. pneumoniae [5–8].
Infections with penicillin-resistant strains are difficult to treat and
are associated with increased morbidity and mortality as well as
increased healthcare costs [2].

Few studies have been carried out in Tanzania on pneumococcal
nasopharyngeal carriage. Among these, some have found that HIV-
exposed and non-exposed children have high rates of S. pneumo-
niae resistant to commonly prescribed antibiotics, including co-
trimoxazole and penicillin [9–11]. Likewise, nasopharyngeal S.
pneumoniae isolates with non-susceptibility to commonly pre-
scribed antibiotics such as penicillin, macrolides and tetracycline
have been reported previously in healthy children in Democratic
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Republic of Congo [12] and HIV-infected patients in Cameroon
[13].

In recent years, trimethoprim has rarely been used alone in
the treatment of bacterial infections, with the exception of
urinary tract infections. The combination of trimethoprim and
sulfamethoxazole (co-trimoxazole) has been used extensively
instead in the treatment of respiratory tract infections, urinary
tract infections and gastrointestinal tract infections [14]. Resis-
tance to either trimethoprim or sulfamethoxazole renders
bacteria resistant to co-trimoxazole as well. Resistance to
trimethoprim and sulfamethoxazole is conferred by acquisition
of mutations in the dihydrofolate reductase (DHFR) and
dihydropteroate synthase (DHPS) genes, respectively. Studies
have shown that in S. pneumoniae, a single substitution of amino
acid isoleucine at position 100 with leucine in DHFR is sufficient
to confer resistance to trimethoprim [15,16]. A recent report from
Malawi found that substitution of amino acid at position 92 of
DHFR without Ile100Leu could also confer resistance to trimeth-
oprim [17]. However, in previous studies multiple mutations have
been observed in the DHFR gene in S. pneumoniae, although their
role in conferring trimethoprim resistance is not well known.

In Tanzania, no previous study has assessed the molecular basis
of co-trimoxazole resistance in S. pneumoniae isolated from HIV-
infected adults. Moreover, there are limited data on S. pneumoniae
colonization and antimicrobial resistance among HIV-infected
adults from community settings in Tanzania. The aim of this study
was to determine the molecular mechanisms conferring trimeth-
oprim resistance in S. pneumoniae as well as to understand the
antimicrobial resistance patterns of S. pneumoniae colonizing the
nasopharynx of HIV-infected adults from a community setting in
Tanzania.

2. Materials and methods

2.1. Study participants

Newly diagnosed adults with HIV were recruited from six HIV
care and treatment clinics at Amana, Mwananyamala, Temeke
Regional Referral, PASADA, Mbagala and Mnazi Mmoja hospitals in
Dar es Salaam (Tanzania) as part of the randomized clinical trial
CoTrimResist (ClinicalTrials.gov ID: NCT03087890) to assess any
effect of prolonged co-trimoxazole prophylaxis on emerging
antimicrobial resistance in HIV patients (data not yet analyzed).
A total of 537 participants were recruited at baseline between April
2017 and May 2018 and were followed-up for 1 year.

2.2. Microbiological methods

2.2.1. Specimen collection, isolation and identification of
Streptococcus pneumoniae

A total of 1877 nasopharyngeal swabs were collected at
baseline, at Day 14 and at Weeks 24 and 48. Nasopharyngeal
swabs were collected by a trained clinician from each healthcare
facility using Sigma Transwab1 and were transported immediately
in liquid Amies transport medium [Sigma Transwab1 PF with
Liquid Amies; MWE Co (Bath) Ltd., Corsham, UK] in a cool box at
4 �C. Upon receipt in the laboratory, nasopharyngeal samples were
immediately inoculated onto 5% sheep blood agar and were
incubated at 37 �C in 5% CO2 for 24 h. Identification of S.
pneumoniae was made by colonial morphology, presence of α-
haemolysis, optochin susceptibility and bile salt solubility.

2.2.2. Antimicrobial susceptibility testing
Antimicrobial susceptibility testing was performed on Mueller–

Hinton agar supplemented with 5% sheep blood and plates were
incubated at 35 �C in 5% CO2 for 20–24 h. Minimum inhibitory
concentrations (MICs) for penicillin, azithromycin and trimetho-
prim/sulfamethoxazole were determined by Etest (bioMérieux,
Marcy-I’Étoile, France). Antimicrobial susceptibility testing for
chloramphenicol, tetracycline, erythromycin, clindamycin and
levofloxacin was performed by the Kirby–Bauer disk diffusion
method. Antimicrobial susceptibility test results were interpreted
according to Clinical and Laboratory Standards Institute (CLSI)
guidelines. MDR was defined as bacteria resistant to three or more
classes/categories of antibiotics [18].

2.2.3. Nucleic acid extraction
From pure growth, 5–10 colonies were suspended in 500 mL

of phosphate-buffered saline (PBS). DNA was extracted using a
MagNA Pure LC instrument (Roche Diagnostics, Mannheim,
Germany) using a Total Nucleic Acid Isolation Kit (Roche
Diagnostics). Extracted DNA was eluted in 100 mL of elution
buffer. DNA templates were stored at �20 �C until further
analysis.

2.2.4. PCR
PCR for detection of the DHFR gene was performed using

2 � QuantiTect1 Multiplex PCR NoROX Master Mix (QIAGEN) and
amplification was carried out on a GeneAmpTM 9700 Thermo-
cycler (Applied Biosystems, Foster City, CA, USA). The following
set of primers was used as previously described [16]: 50-TGT AAG
CTA TTC CAA ACC AG-30 and 50-CTA CGT TCC ATT AGA CTT CC-30

(PCR product, 760 bp). PCR conditions consisted of initial
denaturation at 95 �C for 15 min, followed by denaturation at
94 �C for 60 s, annealing at 45 �C for 30 s and extension at 72 �C
for 1 min, and a final extension at 72 �C for 7 min. A final reaction
volume of 25 mL consisted of the following: 12.5 mL of 2�
QuantiTect1 Multiplex PCR NoROX Master Mix, 1 mL of each
primer (0.4 mM), 8.5 mL of RNase-free water and 2 mL of DNA
template. Amplified PCR products were analyzed by gel
electrophoresis.

2.2.5. DNA sequencing
Amplified PCR products were purified and both strands were

sequenced using the same primers as for PCR. Sequencing was
performed using an ABI PRISM 3730 DNA Analyzer (Applied
Biosystems) with a BigDyeTM Terminator v.1.1 Cycle Sequencing Kit
(Applied Biosystems). SnapGene1 v.5.0.7 software (GSL Biotech
LLC, Chicago, IL, USA) was used to assemble, edit and analyze the
sequences.

2.2.6. Serotyping of Streptococcus pneumoniae isolates
Serotyping was performed from an overnight growth of S.

pneumoniae on 5% sheep blood agar using a commercial kit for
latex agglutination (ImmulexTM Pneumotest Kit; SSI Diagnostica
A/S, Hillerød, Denmark). The agglutination kit contains latex
particles coated with rabbit antibodies that react with specific
pneumococcal capsular polysaccharides. Performance and inter-
pretation of the test results followed the manufacturer's
instructions.

2.3. Statistical analysis

Categorical variables were presented as the proportion, and
continuous variables were presented using the median and
range. Proportions of resistant bacteria between vaccine- and
non-vaccine serotype isolates were compared by χ2 test, and the
medians of MICs were compared by Wilcoxon rank-sum test
using STATA v.16.0 (StataCorp LLC, College Station, TX, USA). A P-
value of <0.05 was defined as the cut-off for statistical
significance.
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3. Results

3.1. Streptococcus pneumoniae isolates

A total of 76 S. pneumoniae were isolated from 1887
nasopharyngeal swabs. The number of S. pneumoniae isolates
obtained at different time points was as follows: 20 at baseline
(n = 537 swabs); 13 at Day 14 (n = 509 swabs); 17 at Week 24
(n = 436 swabs); and 26 at Week 48 (n = 395 swabs).

3.2. Serotyping of Streptococcus pneumoniae isolates

The majority of isolates (55.3%, 42/76) were serotypes present
in the pneumococcal conjugate vaccine 23 (PCV23), whilst 36.8%
(28/76) were non-vaccine serotypes and 7.9% (6/76) could not be
typed by the method used. The most frequent conjugate vaccine
serotypes were 19 (9/42), 3 (8/42), 7 (6/42) and 15 (4/42) (Fig. 1).

3.3. Antimicrobial susceptibility testing

Table 1 shows the number and percentage of S. pneumoniae
resistant to different antibiotics. The majority of isolates (73.7%;
56/76) were penicillin-non-susceptible (MICs of 0.06–2 mg/mL),
but no isolate was fully penicillin-resistant. Most isolates were also
resistant to co-trimoxazole (71.1%; 54/76). In addition, co-
trimoxazole resistance was significantly more frequent in pneu-
mococci with non-susceptibility to penicillin (82.1%; 46/56) than in
fully penicillin-susceptible isolates (40.0%; 8/20) (P < 0.001).

Rates of resistance to azithromycin, erythromycin, chloram-
phenicol, tetracycline and clindamycin were 22.4% (17/76), 21.1%
(16/76), 18.4% (14/76), 14.5% (11/76) and 10.5% (8/76), respectively.
All isolates were susceptible to levofloxacin. Approximately one-
quarter of the isolates (26.3%; 20/76) were MDR. Vaccine-type S.
pneumoniae were resistant to more classes of antibiotics compared
with non-vaccine serotype S. pneumoniae [median of 3 (range 3–5)
vs. 2.5 (range 0–5); P = 0.03] and were more frequently resistant to
erythromycin (33.3% vs. 7.1%; P = 0.011), azithromycin (33.3% vs.
10.7%; P = 0.031), clindamycin (19.0% vs. 0.0%; P = 0.014) and
tetracycline (23.8% vs. 0.0%; P = 0.005). Although vaccine serotype
isolates displayed significantly higher MICs to penicillin (median,
0.19 mg/mL; range, 0.002–1.5 mg/mL) compared with non-vaccine
serotype isolates (median, 0.125 mg/mL; range, 0.012–0.25 mg/mL)
(P = 0.003), there were no significant differences in the proportions
of isolates with non-susceptibility to penicillin. Neither co-
trimoxazole MICs nor the proportion of co-trimoxazole resistance
Fig. 1. Serotypes distribution among nasopharyngeal Streptococcus pneumoniae
isolates from HIV-infected adults in Tanzania (n = 76).
was significantly different between vaccine and non-vaccine
serotypes.

3.4. Mutations in dihydrofolate reductase (DHFR)

Among the 61 S. pneumoniae isolates with a co-trimoxazole
MIC > 2 mg/mL, 49 were successfully sequenced and had nucleo-
tide sequences available for analysis.

Co-trimoxazole-resistant isolates carried from 1 to 11 different
mutations in the DHFR gene, with the majority (71.4%; 35/49)
having 5 to 9 mutations (Table 2). The most common mutations
conferring resistance to trimethoprim were substitution of
Ile100Leu (100%), Glu20Asp (91.8%), Glu94Asp (61.2%), Leu135Phe
(57.1%), His26Tyr (53.1%), Asp92Ala (53.1%) and His120Gln (53.1%)
(Table 3). There was no difference in the number of mutations in
the DHFR gene between vaccine and non-vaccine serotype
pneumococci (median, 5.5; range, 0–11 for both; P = 0.4). There
was no significant association between co-trimoxazole MICs and
the number or types of mutations observed.

4. Discussion

This study demonstrated that S. pneumoniae isolated from the
nasopharynx of HIV-infected adults were frequently resistant to
commonly prescribed antibiotics in resource-limited settings.
Approximately one-quarter of the isolates were MDR bacteria. The
non-susceptibility of S. pneumoniae to penicillin and co-trimox-
azole is worrisome as these antibiotics are commonly used as first-
line treatment for pneumococcal pneumonia in resource-con-
strained countries.

The high rate of co-trimoxazole-resistant S. pneumoniae
colonizing the nasopharynx observed in this study is in line with
findings from HIV-infected populations in Tanzania [9] and other
resource-limited settings [19,20]. Co-trimoxazole is widely
available over the counter in resource-constrained counties.
Irrational use of co-trimoxazole could possibly explain the
observed finding. Previous studies have indicated that co-
trimoxazole use increases the risk of carriage of co-trimoxazole-
resistant S. pneumoniae [21–23].

Previous studies have found that trimethoprim resistance
mutations, more than sulfamethoxazole resistance mutations, are
correlated with resistance to trimethoprim/sulfamethoxazole (co-
trimoxazole) [15]. In the current study, the DHFR genes of co-
trimoxazole-resistant S. pneumoniae (n = 49) were sequenced to
determine alterations in the chromosomal DHFR gene conferring
pneumococcal resistance to trimethoprim. Overall, substitutions
were detected in up to 11 amino acid positions; these substitutions
were far fewer than those reported previously among 68
trimethoprim-resistant S. pneumoniae in North America [16].
Previous studies have demonstrated that substitution of Ile100Leu
is critical for development of trimethoprim resistance in S.
pneumoniae [15,17,24]. In the current study, it was also found that
all sequenced co-trimoxazole-resistant pneumococcal isolates had
the same mutation of Ile100Leu. Mutations at other locations are
thought to increase the MIC of trimethoprim [17]. Mutations of
Glu20Asp (91.8%), Glu94Asp (61.2%) and Leu135Phe (57.1%) were
also frequently found as documented previously [16,25]. A recent
study in Malawi [17] reported that mutation at residue 92 without
substitution of Ile100Leu was associated with an increase MIC of
trimethoprim-resistant pneumococci. In the current study, a
number of isolates with substitution at residue 92 were found,
but all of them also had the Ile100Leu mutation. This study did not
investigate the mechanism of resistance to sulfamethoxazole, the
other ingredient of trimethoprim/sulfamethoxazole (co-trimox-
azole). However, the study confirmed the high prevalence of
known resistance mutations in the DHFR gene associated with



Table 1
Distribution of Streptococcus pneumoniae resistance to various antibiotics in HIV-infected adult patients.

Antibiotic % (n) P-value*

All (n = 76) Vaccine serotype (n = 42) Non-vaccine serotype (n = 28) Non-typeable (n = 6)

Penicillin-non-susceptiblea 73.7 (56) 78.6 (33) 64.3 (18) 83.3 (5) 0.188
Co-trimoxazole-resistanta 71.1 (54) 76.2 (32) 67.9 (19) 50.0 (3) 0.442
Azithromycin-resistanta 22.4 (17) 33.3 (14) 10.7 (3) 0.0 (0) 0.031
Erythromycin-resistantb 21.1 (16) 33.3 (14) 7.1 (2) 0.0 (0) 0.011
Clindamycin-resistantb 10.5 (8) 19.0 (8) 0.0 (0) 0.0 (0) 0.014
Tetracycline-resistant b 14.5 (11) 23.8 (10) 0.0 (0) 16.7 (1) 0.005
Chloramphenicol-resistantb 18.4 (14) 21.4 (9) 7.1 (2) 50.0 (3) 0.108
Levofloxacin-resistantb 0.0 (0) 0 (0) 0 (0) 0 (0) –

a Determined by Etest.
b Determined by the Kirby–Bauer disk diffusion method.
* P-value for difference between vaccine and non-vaccine serotype isolates (χ2 test).

Table 2
Prevalence of mutations in and median co-trimoxazole minimum inhibitory
concentrations (MICs) of co-trimoxazole-resistant Streptococcus pneumonia isolates
(n = 49) from HIV-infected adult patients in Tanzania.

No. of mutations n (%) Median MIC (range)

1 2 (4.1) 3 (3–3)
2 2 (4.1) 19 (6–32)
3 2 (4.1) 4 (4–4)
4 2 (4.1) 5 (2–8)
5 5 (10.2) 8 (4–32)
6 9 (18.4) 16 (4–32)
7 8 (16.3) 5 (2–16)
8 9 (18.4) 3 (2–32)
9 4 (8.2) 3.5 (2–7)
10 2 (4.1) 10 (4–16)
11 4 (8.2) 7 (4–8)

Table 3
Types of mutation and median co-trimoxazole minimum inhibitory concentrations
(MICs) of co-trimoxazole-resistant Streptococcus pneumoniae isolates (n = 49) from
HIV-infected adult patients in Tanzania.

Mutation Prevalence
[n (%)]

Median MIC (range) (mg/mL) P-
value*

Mutation present Mutation absent

E20D 45 (91.8) 6 (2–32) 3 (3–32) 0.4
H26Y 26 (53.1) 6 (2–32) 4 (2–32) 0.7
P70L 5 (10.2) 4 (3–32) 6 (2–32) 0.5
P70S 17 (34.7) 4 (2–32) 6 (2–32) 0.2
A78T 16 (32.7) 4 (2–16) 6 (2–32) 0.06
Q81H 12 (24.5) 4 (2–32) 7 (2–32) 0.1
Q81Y 11 (22.4) 6 (2–8) 5 (2–32) 0.5
V83I 15 (30.6) 4 (2–32) 6 (2–32) 0.7
Q91H 5 (10.2) 8 (4–16) 4 (2–32) 0.3
D92A 26 (53.1) 6 (2–32) 4 (2–32) 0.9
D92V 3 (6.1) 4 (4–32) 5 (2–32) 0.7
D92G 13 (26.5) 7 (2–32) 4 (2–32) 0.9
E94D 30 (61.2) 6.5 (2–32) 4 (2–32) 0.2
I100L 49 (100.0) 6 (2–32) N/A –

H120Q 26 (53.1) 6 (2–32) 4 (2–32) 0.7
L135F 28 (57.1) 6.5 (2–32) 4 (2–32) 0.4

N/A, not applicable.
* Wilcoxon rank-sum test (Mann–Whitney).
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trimethoprim resistance in S. pneumoniae isolates. Hence, co-
trimoxazole might not be effective to treat pneumococcal infection
in HIV-infected individuals.

The rate of penicillin-non-susceptibility in isolates of S.
pneumoniae (73.7%) in the current study is comparable with that
found among children in the pre-PCV era (67.8–69.2%) [9,10] and
post-PCV era (31–53%) [11] in Tanzania. However, in the current
study a much higher rate was found than in a recent study in Ghana
that reported only 25.9% of penicillin-non-susceptible S.
pneumoniae from the nasopharynx among HIV-infected individu-
als in the PCV era [19]. Although none of the S. pneumoniae isolates
had a high level of resistance to penicillin (>2 mg/mL), the current
finding questions the appropriateness of using penicillin for the
treatment of severe pneumococcal infections such as meningitis in
Tanzania. However, at high intravenous doses, it can still be used to
treat non-meningeal pneumococcal infections. Fully penicillin-
resistant S. pneumoniae have been reported elsewhere in Africa
[26,27]. Although they are currently uncommon in Tanzania, there
is need for continuous surveillance to monitor the emergence of
fully penicillin-resistant strains.

Interestingly, vaccine serotype isolates of S. pneumoniae
showed higher rates of resistance to erythromycin, azithromycin,
clindamycin and tetracycline. The background for this may be that
vaccine serotype were selected for use in vaccines because they
were quite virulent. With a history of such virulence, the ancestor
bacterium of the vaccine serotypes may have caused much illness
and elicited more antibiotic use, which in turn may have selected
for re-emerging drug resistance. Both tetracycline and macro-
lides, particularly erythromycin, have been used extensively as
they are oral medicines with broad-spectrum activity [28]. What
we see now may thus be the result of antibiotic use in the pre-
vaccine era. Our observation is similar to a previous study on
clinical isolates which found that vaccine serotypes displayed
more multidrug resistance compared with non-vaccine serotypes
[29].

The current findings are in line with other studies from different
populations of children in Tanzania [9–11] as well as studies from
Ghana and Cameroon of nasopharyngeal carriage in HIV-infected
adults [13,19] and children [26], which have reported low rates of S.
pneumoniae resistant to erythromycin in the PCV era.

The relatively low rates of resistance to azithromycin docu-
mented in this study are also comparable with the findings
reported previously in semi-urban settings in Tanzania [30,31]. In a
previous study conducted in Tanzania, mass administration of
azithromycin was found to correlate with an increased risk for
nasopharyngeal carriage of azithromycin-resistant S. pneumoniae
[32]. Based on the current findings, both azithromycin and
erythromycin could still be an option for non-severe S. pneumoniae
infections in HIV-infected patients. However, rational use of
macrolides needs to be advocated in the country, as observed in a
previous 6-month cohort study in central Tanzania [32].

5. Conclusions

Streptococcus pneumoniae isolated from HIV-infected adult
patients were frequently non-susceptible to penicillin and resis-
tant to co-trimoxazole. The majority of these isolates displayed
MDR traits. Most isolates carried multiple mutations in the DHFR
gene and all carried the Ile100Leu substitution.
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