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Abstract
We investigate the impact of large climatological biases in the tropical Atlantic on reanalysis and seasonal prediction per-
formance using the Norwegian Climate Prediction Model (NorCPM) in a standard and an anomaly coupled configuration. 
Anomaly coupling corrects the climatological surface wind and sea surface temperature (SST) fields exchanged between 
oceanic and atmospheric models, and thereby significantly reduces the climatological model biases of precipitation and 
SST. NorCPM combines the Norwegian Earth system model with the ensemble Kalman filter and assimilates SST and 
hydrographic profiles. We perform a reanalysis for the period 1980–2010 and a set of seasonal predictions for the period 
1985–2010 with both model configurations. Anomaly coupling improves the accuracy and the reliability of the reanalysis in 
the tropical Atlantic, because the corrected model enables a dynamical reconstruction that satisfies better the observations 
and their uncertainty. Anomaly coupling also enhances seasonal prediction skill in the equatorial Atlantic to the level of the 
best models of the North American multi-model ensemble, while the standard model is among the worst. However, anomaly 
coupling slightly damps the amplitude of Atlantic Niño and Niña events. The skill enhancements achieved by anomaly cou-
pling are largest for forecast started from August and February. There is strong spring predictability barrier, with little skill 
in predicting conditions in June. The anomaly coupled system show some skill in predicting the secondary Atlantic Niño-II 
SST variability that peaks in November–December from August 1st.
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1 Introduction

The Atlantic Niño and the weaker Atlantic Niño-II domi-
nate interannual variability in the equatorial Atlantic 
(Zebiak 1993; Keenlyside and Latif 2007; Ding et al. 2010; 

Lübbecke et al. 2018; Okumura and Xie 2006). These phe-
nomena peak respectively in boreal summer and Novem-
ber–December. They both exhibit dynamics similar to the 
much stronger El Niño Southern Oscillation (ENSO), but 
coupled ocean–atmosphere interactions are less pronounced 
(Jansen et al. 2009; Lübbecke and McPhaden 2013) and pos-
itive and negatives events are more symmetric (Lübbecke 
and McPhaden 2017). Like ENSO, they also have important 
climatic impacts (Okumura and Xie 2006; Lübbecke et al. 
2018; Foltz et al. 2019; Losada et al. 2010).

Unlike with ENSO, little skill has been demonstrated in 
predicting equatorial Atlantic variability (Stockdale et al. 
2006, 2011; Richter et al. 2018; Barreiro et al. 2005). The 
low predictability can be partly explained by the strong sea-
sonal modulation of coupled ocean–atmosphere interactions 
in this basin and the greater influence of largely stochas-
tic wind variability (Richter et al. 2014a; Richter and Doi 
2019; Nnamchi et al. subm.). Furthermore, thermodynamic 
ocean–atmosphere interaction and a range of other mecha-
nisms contribute to equatorial Atlantic variability (Lübbecke 
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et al. 2018; Nnamchi et al. 2015; Brandt et al. 2011; Richter 
et al. 2013); and most of these mechanisms may be less 
predicable than ENSO like dynamics.

Model error is also a potential cause for poor prediction 
skill. In particular, the tropical Atlantic biases in state-of-
the-art models are much larger than the amplitude of the 
interannual variability (Richter et al. 2014b). They are char-
acterised by a large warm SST bias (up to 8 ◦C in the south-
east tropical Atlantic), a too deep thermocline in the east-
ern Atlantic (Richter et al. 2014b), a cyclonic surface wind 
bias in the Angola–Benguela Frontal Zone and a southward 
shift of the intertropical convergence zone (ITCZ) (Rich-
ter et al. 2012). These biases cause an underestimation of 
the thermocline feedback (Deppenmeier et al. 2016) and an 
overestimation of thermodynamic ocean–atmosphere inter-
action (Jouanno et al. 2017); and reducing them enhances 
the simulation of dynamical ocean–atmosphere interaction 
and Atlantic Niño variability (Ding et al. 2015a, b; Dippe 
et al. 2018; Harlaß et al. 2018). Furthermore, Dippe et al. 
(2019) show that reducing this bias improves the predic-
tion of Atlantic Niño variability, although prediction skill 
remains poor—i.e. only beating marginally persistence for 
May start and beating persistence by 0.1 for August start up 
to 4 lead month.

Unfortunately, improvements in simulating tropical 
Atlantic climate have been only moderate during the past 
20 years (Davey et al. 2002; Richter et al. 2012; Toniazzo 
and Woolnough 2014). There is a greater understanding of 
the causes of tropical Atlantic biases: The equatorial Atlan-
tic SST biases are linked to too weak trade winds in boreal 
spring (Richter and Xie 2008; Wahl et al. 2011; Voldoire 
et al. 2019); whereas southeastern tropical Atlantic bias has 
been related to the misrepresentation of (1) the persistent 
low level cloud cover (Zuidema et al. 2016), (2) along shore 
coastal winds (Xu et al. 2014a; Koseki et al. 2018) and (3) 
coastal upwelling (Xu et al. 2014b). Several studies have 
shown that increasing atmospheric model resolution can 
reduce tropical Atlantic biases, especially in the southeast-
ern Atlantic (Small et al. 2015; Milinski et al. 2016; Harlaß 
et al. 2018), whereas de la Vara et al. (2020) have shown 
improvements from increasing oceanic model resolution. 
While detecting the cause of the bias and formulating a 
solution that is computationally tractable is most desirable, 
the remaining bias even in the computationally demanding 
systems (e.g., Harlaß et al. 2018) is still large (about 2–3 ◦C ). 
Thus, the tropical Atlantic warm bias is likely to remain a 
problem for seasonal prediction for a while to come.

Flux correction and anomaly coupling are alternate 
approaches that mitigate climatological biases and their 
impacts, and thereby enhance predictions. In flux correc-
tion a fixed numerical correction is added to the exchanged 
fluxes (Sausen et al. 1988), while in anomaly coupling 
the variables used to compute air–sea fluxes are corrected 

(Kirtman et al. 1997). Although neither approach guar-
antees an improved simulation of variability, anomaly 
coupling has been shown effective in improving the simu-
lation and prediction of equatorial Atlantic interannual 
variability (Ding et al. 2015a; Dippe et al. 2018, 2019). A 
drawback with both approaches is that estimating effective 
numerical corrections is difficult, because coupled feed-
backs in the tropics can strongly amplify errors (Neelin 
and Dijkstra 1995). This is particularly problematic when 
the corrections are estimated from uncoupled ocean gen-
eral circulation model (GCM) and atmospheric GCM sim-
ulations. To overcome this, Toniazzo and Koseki (2018) 
developed an iterative approach to estimate the anomaly 
coupling corrections from a coupled GCM simulation. 
They applied their approach to the Norwegian Earth sys-
tem model (NorESM; Bentsen et al. 2012), which has 
tropical Atlantic biases comparable to those of the mod-
els from the Coupled Model Intercomparison Project 5 
(CMIP5) (Koseki et al. 2018; Toniazzo and Koseki 2018). 
Their technique alleviated the SST and precipitation biases 
in the tropical Atlantic (and elsewhere) without damping 
too much the variability.

In this study, we aim to use Toniazzo and Koseki (2018) 
improved technique to assess whether current model biases 
limit seasonal prediction skill in the equatorial Atlantic. 
This work is based on the Norwegian Climate Prediction 
Model (NorCPM, Counillon et al. 2014, 2016), which 
combines the NorESM and the ensemble Kalman filter 
(EnKF, Evensen 2003) data assimilation method. We will 
use NorESM in its standard and anomaly coupled con-
figurations. NorCPM aims to provide long-term reanaly-
ses and seasonal-to-decadal climate predictions. NorCPM 
demonstrated good skill in controlling the upper ocean 
heat content in the equatorial and north Pacific, the north 
Atlantic subpolar gyre region and the Nordic Seas seas 
by assimilating surface temperature anomalies (SSTAs, 
Counillon et al. 2016). In Wang et al. (2019) NorCPM 
with assimilation of SST reaches skill comparable to the 
top-performing prediction systems of the North American 
Multi Model ensemble (NMME, Kirtman et al. 2014) in 
most regions, but performance in the tropical Atlantic—
were the model has large biases—were found to be poor. 
One can thus expect anomaly coupling to be particularly 
beneficial there, by correcting the model bias, improving 
the representation of the dynamics and enhancing the pre-
diction skill.

This paper is organised as follow. Section 2 presents 
the Norwegian climate prediction model, in its standard 
and anomaly coupled configurations. We then assess the 
impact of the anomaly coupling on the accuracy of a rea-
nalysis for the period 1980–2010 (Sect. 4), and on the 
skill of retrospective hindcasts of Atlantic Niño variability 
(Sect. 5).
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2  Norwegian climate prediction system 
and experimental design

2.1  The Norwegian Earth system model

The NorESM (Bentsen et al. 2012) is a global fully cou-
pled model for climate simulations. It is based on the 
Community Earth System Model version 1.0.3 (CESM1, 
Vertenstein et al. 2012), a successor to the Community 
Climate System Model version 4 (CCSM4, Gent et al. 
2011). Unlike in the Community Atmosphere Model 
(CAM4, Neale et al. 2010), the atmospheric component 
(CAM4-OSLO) features advanced aerosol chemistry 
schemes (Kirkevåg et al. 2013). The ocean component 
(Bentsen et al. 2012) is an updated version of the isopycnal 
coordinate ocean model MICOM (Bleck et al. 1992). This 
study uses the medium-resolution NorESM1-ME (Tjiputra 
et al. 2013), which has the capability to be fully emission 
driven and has contributed output to CMIP5. External 
forcings used here comply with CMIP5’s historical experi-
ment (see Bentsen et al. 2012 for details). The atmosphere 
and land components are configured on a 2◦ finite-volume 
grid that has a latitude longitude resolution of 1.9◦ × 2.5◦ . 
The atmosphere component uses 26 hybrid sigma-pres-
sure levels with a model top at approximately 3 hPa. The 
horizontal resolution of the ocean and sea-ice model is 
approximately 1◦ , but is enhanced in the meridional direc-
tion about the equator and enhanced in both zonal and 
meridional directions at high latitudes. The ocean uses 51 
isopycnal layers and two layers for representing the bulk 
mixed layer with time-evolving thicknesses and densities. 
We refer to this configuration as CTRL. The NorESM 
CTRL has climatological SST, precipitation, and wind 
biases in the tropical Atlantic that are typical of CMIP5 
models (Koseki et al. 2018).

2.2  The anomaly coupled version of NorESM

The anomaly coupling technique developed by Toni-
azzo and Koseki (2018) allows to substantially reduce 
such biases, through correcting the SST and wind stress 
exchanged between the ocean and atmosphere models 
at each coupling steps. The corrections in the anomaly 
coupling vary in space and time according to a monthly 
climatology. They compensate for biases that arise when 
the coupled surface fluxes of energy and momentum act 
to cause systematic departures of local SSTs from the 
observed surface climatology. The correction thus repre-
sents a compensation for the difference between the sea-
surface climatology of the observations and that of the 
(standard) model simulations. In this sense the model thus 

becomes anomaly coupled (hereafter “ACPL”) i.e., the 
ocean model receives wind stress consisting of atmosphere 
model simulated anomalies added to the observed clima-
tology—and likewise for SST received by the atmosphere. 
The corrections are calculated in coupled mode accord-
ing to an iterative scheme that allows to account for the 
effect of coupled feedbacks. For details of this procedure, 
including the target climatology, the reference observa-
tion data set, and a validation of the resulting simulated 
climatology, see Toniazzo and Koseki (2018). Note that 
we do not use Toniazzo and Koseki (2018)’s proposed 
global energy conservation scheme. The global energy 
imbalances are globally uniform and within ±1W/m

2 
that is generally small compared to regional physical flux 
anomalies. While this may become important for inter-
annual or slower modes of variability, we do not expect 
its inclusion to substantially alter seasonal predictions and 
the findings of our paper. Furthermore, we did not identify 
strong regional climate drifts in our seasonal predictions 
system (not shown).

The impact of anomaly coupling on SST and precipita-
tion in our model configuration for the period 1980–2010 
is now depicted (Fig. 1). For precipitation we calculate the 
bias against the Global Precipitation Climatology Project 
monthly precipitation (GPCP) Version 2.3 dataset (Adler 
et al. 2003). In the tropical Atlantic anomaly coupling dra-
matically reduces the SST and precipitation biases. Although 
the scope of the paper focuses is in the tropical Atlantic, it 
is worth mentioning that the SST bias in the tropical Pacific 
is not fully eliminated by anomaly coupling (Fig. S1 for a 
global assessment). The remaining bias can be related to the 
fact that (1) the bias of the individual components (here in 
the ocean model MICOM) is not reduced by the anomaly 
coupling (2) the flux correction term was trained with con-
stant external forcing, while we are now verifying the per-
formance with transient forcing.

Although anomaly coupling corrects the mean bias for 
our region of interest, it does not guarantee an improved 
simulation of variability. We illustrate this by presenting 
the standard deviation of equatorial Atlantic SST anoma-
lies as a function of calendar month from observations and 
free running simulations with the standard and anomaly 
coupled configurations of NorESM (Fig.  2). The sea-
sonality of equatorial Atlantic SST variability provides 
insights into the model’s performance in capturing the 
timing of Atlantic Niño variability. The standard version 
of NorESM shows a marked seasonal peak in variability 
along the equator in July while in observations the peak 
is reached a month earlier and is weaker. With ACPL, 
the maximum occurs in June as in the observation but is 
a little weaker and displaced to the east. In the standard 
NorESM the strong SST variability persist until the end of 
the year while in the observation it decays rapidly during 
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September before showing a second weaker peak during 
November–December associated with the Atlantic Niño-II 
phenomena (Okumura and Xie 2006). Again, the ACPL 
model better captures this secondary maximum in SST 

variability, although it is slightly too far to the east com-
pared to the observations and a little too strong. Overall, 
the anomaly coupled model simulates more realistic vari-
ability compared to the standard version of NorESM.

Fig. 1  The first row is the precipitation bias (in mm per day) of the 
mean of a 5 ensemble member free running versions (i.e. without 
assimilation) of CTRL (a) and ACPL (b) calculated against GPCP 

V2.3 for the period 1980–2010. The second row (panels c and d) is 
the same for SST against HadISST2
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Fig. 2  The annual cycle of SST standard deviation along the equator in the observation (HadISST2) and in free running versions of CTRL and 
ACPL. The simulated standard deviations are estimated for the period 1980–2010 using five members for both CTRL and ACPL
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2.3  Reanalyses and seasonal hindcasts experiment 
description

The Norwegian Climate prediction model (Counillon et al. 
2014, 2016; Wang et al. 2019) assimilates observations 
with the EnKF. Here, we assimilate SST and hydrographic 
profiles as described in Counillon et al. (2014, 2016) and 
Wang et al. (2017). The SST data is from the HadISST2 
data set (HadISST2.1.0.0,  Rayner et al., personal commu-
nication) that provides an ensemble of reconstruction of 
SST for the period 1850–2010. We assimilate the ensemble 
mean and use the ensemble spread, which varies in space 
and time, to quantify the accuracy of the observational data 
set, as is needed for the data assimilation. The hydrographic 
profiles are from EN4.1.1 (Gouretski and Reseghetti 2010). 
The observation error is estimated as described in Karspeck 
(2016) and the localisation radius varies with latitudes as 
described in Wang et al. (2017). The entire ocean state vec-
tor is updated; that is we update the temperature, salinity, 
and layer thickness of all vertical layers. We employ the 
aggregation method (Wang et  al. 2016) for layer thick-
ness. It is a cost-efficient modification of the linear analysis 
update in data assimilation (DA) for physically constrained 
variables, which ensures that the analysis satisfies physical 
bounds without changing the expected mean of the update 
and thus avoid introducing a drift.

Two 30 member reanalyses are performed with CTRL 
and ACPL configurations for the period 1980–2010. The 
initial conditions for both reanalyses are branched in 1980 
from the two corresponding ensemble historical simulations. 
These two ensemble historical simulations are produced by 
selecting random initial condition from a stable preindustrial 
simulations and integrating the ensemble from 1850 to 2005 
using CMIP5 historical forcings and there after the RCP8.5 
is used (Taylor et al. 2012). CTRL historical ensemble simu-
lations of 30 members have been performed for a previous 
study (Counillon et al. 2016, data set available on https ://doi.
org/10.11582 /2019.00035 ). As producing such initial condi-
tions is computationally expensive, ACPL historical simu-
lation is performed differently: using the anomaly coupled 
configuration with fixed monthly climatological correction, 
we perform a 5 ensemble member simulation from 1850 to 
2010; the other 25 ensemble members are spawned from 
these 5 members, by perturbing the SST of the initial condi-
tion in January 1970 with 0.1 ◦C spatially white noise and 
then integrating these 25 members to 1980. The resulting 
ensemble spread in the near surface and intermediate ocean 
depths of the 30 member ACPL simulation has comparable 
amplitude to that of CTRL (not shown); and thus it should 
satisfy a well balanced EnKF (i.e. error versus ensemble 
spread) for seasonal prediction.

We perform anomaly assimilation; that is the climatologi-
cal monthly mean for the observations and the model are 

removed before comparing the two. This option was pre-
ferred over full field assimilation for several reasons. First 
handling model bias in DA is a real challenge because it is 
designed to correct random, zero-mean errors, i.e. the model 
and observations are assumed (erroneously) to be unbiased. 
As a result, the analysis state with full field assimilation 
will still include part of the bias (Dee 2005) and yields a 
too strong reduction of ensemble spread (Anderson 2001). 
Second, full field assimilation can produce a large shock as 
the model often drifts back rapidly to its own climatology (or 
attractor). Third, when models are attracted to their biased 
climatology, full field assimilation will cause recurrent cor-
rections of the model bias, and yield a transfer of bias to the 
non-observed variables (via the multivariate updates). All of 
these can lead to a slow degradation of the performance of 
the data assimilation system during the analysis period (Dee 
2005). For anomaly assimilation we used the climatologi-
cal reference period 1980–2010, a period that is sufficiently 
long for sampling the variability of the tropical Atlantic and 
during which there is enough data to estimate the observed 
climatology accurately. Note that for the hydrographic pro-
files (Gouretski and Reseghetti 2010), the climatological 
mean is calculated from the EN4 objective analysis (Good 
et al. 2013), because profile data are too sparse and hetero-
geneously distributed to estimate a trustworthy climatology. 
The monthly climatological mean of the model is estimated 
from the historical ensemble for the period 1980–2010. For 
CTRL it is calculated from 30 members, while for ACPL it 
is calculated from only 5 members.

We assimilate data every month and only update the 
ocean component. The other components (atmosphere, sea 
ice and land) adjust dynamically between the assimilation 
cycle. In the reanalysis and hindcasts, we apply the same 
external forcing as in the historical simulations. We assess 
the prediction skill based on hindcasts (i.e. retrospective 
predictions). Seasonal hindcasts start on the 15th of Janu-
ary, April, July and October each year during 1985–2010. In 
total, there are 104 hindcasts (26 years with 4 hindcasts per 
year). Each hindcast runs 9 realisations (ensemble members) 
for 13 months. Initial conditions are taken from the first 9 
members of the 30 ensemble member reanalyses. Note that 
this choice has no influence on the results, because with the 
EnKF all members are equally likely.

3  Validation data sets and metrics

For validation of the reanalysis, we use the independ-
ent sea surface height (SSH) altimetry data and the EN4 
objective analysis (Good et al. 2013). Monthly sea surface 
height (SSH) anomalies (i.e., sea level anomalies) are com-
puted from the Global ARMOR3D L4 Reprocessed dataset 
(http://marin e.coper nicus .eu, available from 1993 to present) 

https://doi.org/10.11582/2019.00035
https://doi.org/10.11582/2019.00035
http://marine.copernicus.eu
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produced by Ssalto/Duacs and distributed by AVISO with 
support from the Centre National D’Études Spatiales. The 
product is gridded to a resolution of 1◦ for comparisons with 
our coarser model data.

The EN4 objective analysis is not independent from our 
reanalysis because it uses the same raw observations (i.e. the 
EN4 hydrographic profiles, Gouretski and Reseghetti 2010) 
to construct the 4-dimensional reconstruction. However, 
this comparison is of interest because objective analysis 
and model reanalysis are different by construction. Objec-
tive analysis provides a 4D interpolation of the observations 
without dynamical constraints and reverts to climatology 
when no data are available—as every monthly estimate mini-
mises the error locally in space and time based on the availa-
ble observations. Model reanalysis on the contrary use avail-
able observations to correct the state of a dynamical model 
and provide a dynamical reconstruction (Murphy 1993). An 
advantage of reanalyses is that they propagate dynamically 
the improvements of sparse observations to the unobserved 
regions (Storto et al. 2019), but in a region where the biases 
are very large (such as in the tropical Atlantic) the growth of 
the model error within the assimilation cycle may become 
quantitatively larger than the benefit. The DA settings used 
in NorCPM favour dynamical consistency at the expenses of 
accuracy. Namely, (1) we use anomaly assimilation to mini-
mise dynamical adjustment post assimilation; (2) we add a 

representativity error term to the observation error to ensure 
that the ensemble DA system remains reliable (i.e. ensemble 
spread matches the error of the ensemble mean); and (3) we 
use the k-factor formulation (Sakov et al. 2012) in which 
observational error is artificially inflated if the assimilation 
pushes the update beyond two times the ensemble spread.

For validating the hindcasts, we focus on the performance 
in predicting the ATL3 index (SST anomalies averaged over 
the region 20◦W to 0 ◦ and 3◦S and 3◦N ), which is a good 
indicator of the Atlantic Niño (Zebiak 1993). We have also 
analysed the performance of hindcasts for the ATL2 SST 
index (15◦W–5◦W , 3◦S–3◦N ), an indicator of the Atlantic 
Niño II that occurs during November–December (Okumura 
and Xie 2006). The area of both indices is marked on Fig. 5. 
We benchmark the performance of the two predictions sys-
tems against the persistence forecast and hindcasts from 
the North American Multimodel Ensemble (Kirtman et al. 
2014, https ://www.earth syste mgrid .org/searc h.html?Proje 
ct=NMME). Note that for comparing the skill of NorCPM 
with NMME, we use NOAA OI-SST V2 (Reynolds et al. 
2002), which differs from the data set used for assimila-
tion (HadISST2), making the comparison fairer. The vali-
dation was also repeated with other data set HADISSTV1.1 
(Rayner et al. 2003) with similar results (not shown).

The NMME is a multi-model seasonal forecasting system 
that consists of several coupled climate models from US and 

Table 1  Brief description of NorCPM and 13 NMME models used in this paper

Model Institution Hindcast period Ensemble size Lead 
times 
(months)

References

NorCPM Bjerknes Centre for Climate 
Research

1985–2010 9 1–12 Counillon et al. (2016)

CMC1-CanCM3 Canadian Meteorological Centre 
(CMC)

1981–2010 10 1–12 Merryfield et al. (2013)

CMC1-CanCM4 CMC 1981–2010 10 1–12 Merryfield et al. (2013)
COLA-RSMAS-CCSM3 National Center for Atmospheric 

Research (NCAR)
1982–2017 6 1–12 Kirtman and Min (2009)

COLA-RSMAS-CCSM4 NCAR 1982–2017 10 1–12 Kirtman et al. (in preparation)
GFDL-CM2p1 Geophysical Fluid Dynamics 

Laboratory (GFDL)
1982–2012 10 1–12 Delworth et al. (2006) and Zhang 

et al. (2007)
GFDL-CM2p1-aer04 GFDL 1982–2017 10 1–12 Delworth et al. (2006) and Zhang 

et al. (2007)
GFDL-CM2p5-FLOR-A06 GFDL 1980–2017 12 1–12 Vecchi et al. (2014)
GFDL-CM2p5-FLOR-B01 GFDL 1980–2017 12 1–12 Vecchi et al. (2014)
IRI-ECHAM4p5-Anomaly International Research Institute 

for Climate and Society (IRI)
1982–2012 12 1–8 DeWitt (2005)

IRI-ECHAM4p5-Direct IRI 1982–2012 12 1–8 DeWitt (2005)
NASA-GMAO National Aeronautics and Space 

Administration (NASA)
1981–2012 10 1–9 Vernieres et al. (2012)

NASA-GMAO-062012 NASA 1981–2017 12 1–9 Vernieres et al. (2012)
NCEP-CFSv2 National Centers for Environ-

mental Prediction (NCEP)
1982–2010 24 1–10 Saha et al. (2014)

https://www.earthsystemgrid.org/search.html?Project=NMME
https://www.earthsystemgrid.org/search.html?Project=NMME
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Canadian modelling centres. We select 13 NMME systems 
that provide SST hindcasts from 1985 to 2010 (Table 1). All 
NMME hindcasts start on the first day of each month and 
are 8–12 months long. The NorCPM hindcasts start 15 days 
earlier than the NMME hindcasts, but make use of monthly 
average to perform a centered analysis. As an example, our 
hindcasts starting on the 15th of April have assimilated 
monthly average April data and is compared to the hindcasts 
of NMME starting on the first of May; it will be referred to 
as May hindcast in the following for simplicity. The ensem-
ble size ranges from 6 to 24 among the NMME models. 
Here, we use the first 9 ensemble members of each NMME 
model (except for CCSM3 that only provides 6 ensemble 
members) to have a comparable ensemble size to NorCPM. 
The NMME hindcast data are provided as monthly means 
with a horizontal resolution of 1◦ × 1◦.

The performance of the model reanalyses and hindcasts 
are assessed by calculating anomaly correlation coefficient 
(ACC) and root mean square error (RMSE). Statistical sig-
nificance is estimated by a Students t-test at the significance 
level of 5%. The degrees of freedom are estimated from the 
auto-correlation (equation 8.7, p.149 Von Storch and Zwi-
ers 1999). We also assess the reliability of our ensemble 
prediction systems for the ATL3 index. Reliability refers to 
the property of the ensemble spread to match the accuracy 
of the ensemble mean (Eq. 1). There are advanced formula-
tion for checking the reliability of an ensemble system using 
a probabilistic Attributes Diagrams (Corti et al. 2012), but 
here we will only assess the reliability of the total variance. 
When calculating the RMSE with imperfect observations, 
one should account for observational error variance in the 
reliability budget analysis (e.g., Sakov et al. 2012; Rodwell 
et al. 2016) and ensure that the error variance of the ensem-
ble mean matches the sum of the variance of the ensemble 
( �

ens
 ) and the observation error variance ( �

obs
 ). For this 

purpose, we use the HadISST2, because it provides a more 
accurate estimate of the observation error than the OI-SST 
V2, and it is the product assimilated in ACPL and CTRL 
reanalyses and thus is the data set for which the reliability 
relation should be satisfied:

4  Reanalysis

Here we investigate the accuracy of the reanalyses per-
formed with CTRL and ACPL configurations of NorCPM 
that are used to initialise the hindcasts (Sect. 5) for the 
period 1985–2010. The correlations in the tropical Atlan-
tic are substantially higher than in CTRL (Fig. 3). It should 
be noted that both reanalyses are able to constrain monthly 

(1)RMSE =

√

�
2

obs
+ �

2

ens
.

variability of upper 200m ocean heat content over much 
of the globe (Fig. S2) and correlations are mostly very 
similar exception made of our area of interest. There are 
also some difference in the tropical Pacific: ACPL yields 
an improved representation of the variability in the west-
ern part, but causes a slight degradation in the central part, 
where the bias is amplified (see Figure S1).

The improvements in the tropical Atlantic from anomaly 
coupling are related to Atlantic Niño variability (Fig. 3). 
In particular, the signature of the Atlantic Niño is absent 
in the performance of CTRL reanalysis for upper ocean 
heat content, while it is marked by correlations exceed-
ing 0.5 in ACPL. The discrepancies in correlation coeffi-
cient are also clearly visible in the reanalysis performance 
for subsurface temperature variability at the equator and 
for SSH. The tropical Atlantic can be approximated as a 
1.5 layer system, (i.e., an active less dense layer over a 
much thicker and denser inactive layer), and SSH varia-
tions are closely related to the thickness of the upper layer 
and thermocline-depth variations (Wyrtki and Kendall 
1967; Rebert et al. 1985). The pattern of correlation coef-
ficient improvement in SSH in the tropical Atlantic and 
in temperature at 150–200 m depth in the eastern equato-
rial Atlantic are consistent with a better representation of 
the thermocline variations linked to Atlantic Niño vari-
ability in ACPL compared to CTRL. Correlation with the 
upper 200 m ocean salt content is also improved in ACPL 
(not shown). These results suggest that by improving the 
dynamical representation in our model, we are able to 
make more efficient use of the observations to provide 
a dynamical reconstruction. In the supplementary mate-
rial, one can see that similar results are found for RMSE 
(Fig. S4), where we present the difference of correlation 
and RMSE to better highlight the improvements.

In the last row of Fig. 3, we present the seasonal vari-
ability of the averaged correlation and RMSE of the tem-
perature in the upper 200 m of the ocean in the equatorial 
band. A more detailed verification can be found in the 
supplementary with the spatial and vertical correlation at 
the starting months of the four seasonal hindcasts (see Fig-
ure S5). ACPL reanalysis performs better than CTRL rea-
nalysis from May to October, with the greatest improve-
ments in August and September. The improvements 
coincide with ACPL’s better representation of equatorial 
SST variability, while in CTRL there is excessive vari-
ability from July to November (Fig. 2). ACPL reanalysis 
performs slightly better in January and December, coincid-
ing with the better representation of the secondary maxi-
mum in equatorial SST variability in ACPL. There are no 
improvements in February to April, when the simulated 
variability is weak in both models, in reasonable agree-
ment with the observations.
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5  Hindcasts

The performance of ACPL and CTRL hindcasts in predict-
ing the ATL3 SST index is assessed in terms of anomaly 
correlation and RMSE, and their skill is compared against 
that of the NMME forecasting systems (Fig. 4). Considering 
all four start dates (Fig. 4a), CTRL performs very poorly and 
is less skilful than the NMME systems and most of the time 
than persistence. ACPL improves on CTRL. Up to forecast 
lead month 3, ACPL shows skill comparable to the NMME 
system, though it does not beat persistence. From forecast 
lead month 4 onward, ACPL beats persistence and is as skil-
ful as the best models of the NMME system. The improve-
ments seem at least partially explained by the improved 
accuracy of the initial SST conditions (denoted with a square 
on the y-axes in Fig. 4 and calculated from the monthly aver-
aged of the reanalyses). However, the skill of all the models 

is low, and no model has a correlation skill above 0.5 after 
month lead month 4. Next we investigate how the skill varies 
with start month.

For hindcasts started from February, ACPL achieves a 
correlation skill larger than 0.5 at 4 months lead time (i.e., 
in May), a skill that is better than all NMME systems. CTRL 
and NNME hindcasts do not beat persistence during the 
first 4 months. Thereafter the skill of all systems is low. 
Interestingly, the performance of the SST initial condition 
(marked with the squares) is indiscernible between CTRL 
and ACPL, but the accuracy of the initial 200 m heat con-
tent is improved in ACPL (see Fig. 3 and Fig. S5). A good 
subsurface initialisation can remerge to the surface when 
the shoaling of the thermocline occurs. The evolution of 
skill in ACPL may also be related to the behaviour of the 
model during the hindcast integration. The strong drop in 
skill of ACPL in June coincide with the boreal summer peak 

Fig. 3  First row shows the 
pointwise de-seasoned (with the 
mean seasonal cycle removed) 
correlation of monthly 200m 
ocean heat content of EN4 
objective analysis with CTRL 
(a) and ACPL (b). The second 
row (c, d) shows the tempera-
ture correlation in the vertical 
along the tropical Atlantic 
band (between 3◦S and 3◦N ), 
the third row (e, f) the same 
for SSH correlation. Correla-
tions that are not significant (at 
significance level of 5%) are 
masked. The last row shows the 
averaged correlation and RMSE 
of temperature within the top 
200 m in the equatorial band 
over calendar months (between 
3◦S and 3◦N)
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in equatorial SST variability (Fig. 2) and there is a rapid 
drop of skill in June for all start dates, which resemble the 
spring predictability barrier in May in the tropical Pacific.

Accordingly, for May starts, there is initially some large 
improvements for ACPL compared to CTRL prediction sys-
tem, but the performance drops again very quickly and is 

Fig. 4  The first row shows the 
skill in predicting ATL3 SST 
in terms of a correlation and b 
RMSE for the different predic-
tion systems considering all 
start dates. CTRL is indicated 
by the blue solid line, ACPL 
with the red solid line, persis-
tence by the dashed black, and 
the different models compris-
ing the NMME system by the 
other thin coloured lines. The 
following rows show the skill of 
hindcasts started in c, d Febru-
ary, e, f May, g, h August and 
i, j November. The squares on 
the y-axes indicate the accuracy 
of the monthly averaged ATL3 
index in ACPL and CTRL rea-
nalyses (i.e. lead month 0). The 
skill is calculated using NOAA 
OISST V2. A circle is added 
for CTRL and ACPL when 
correlations are significant at a 
5% significance level. Legend 
for the NMME system is shown 
in Fig. S3
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poorer than in most NMME systems and persistence. This 
is disappointing because June corresponds to the time when 
Atlantic equatorial variability and its impact are at their 
maximum. Also, one would expect to achieve skilful pre-
dictions when starting from May (as few NMME systems 
do). It should be acknowledged that the NMME systems 
achieving skill for May start (CMC1-CanCM3, CMC1-
CanCM4, and NASA-GMAO) assimilate data in the atmos-
pheric component. In NorCPM, we only initialise the ocean 
of these hindcasts on the 15th of April—i.e. 15 days prior to 
the effective start date (May 1st). We notice that ensemble 
members diverge rapidly during that time and that the vari-
ability of the ensemble mean flattens (not shown). This sug-
gests that further initialisation of the atmospheric component 
and moving the assimilation closer to the effective start date 
can be important for improving prediction skill at this time 
of large internal atmospheric variability (Richter and Doi 
2019). It is also possible that updating the ocean without 
the atmosphere component can introduce some imbalances 
(Penny and Hamill 2017), enhance the stochasticity of the 
atmosphere and accelerate the ensemble dispersion.

For the August starts, ACPL shows good improvement 
compared to CTRL for hindcasts. ACPL hindcasts sus-
tain correlation skill between 0.4–0.6 up to 7 months lead 
time (February). Similarly, the RMSE of ATL3 in ACPL is 
reduced compared to CTRL. The skill relates to good sub-
surface initialisation that remerge to the surface when the 
second shoaling of the thermocline occurs, and it is tied to 
the seasonal cycle. The November–December upwelling is 
also associated with a shoaling thermocline and local weak 
intensification of the trade winds that drive upwelling. The 
thermocline anomalies partly originate from reflected Kelvin 
waves, and so from off-equatorial heat content anomalies 
(e.g. Fig. S5). Thus, the predictability comes from the propa-
gation of anomalous heat content anomalies, which repre-
sent a modulation of the seasonal cycle and that become 
expressed as SST anomalies in November–February, when 
there is a local upwelling. In contrast, CTRL hindcasts have 
rapid drop in correlation skill during the first 2 months and 
this is followed by a recovery of skill to a level similar to 
ACPL at lead month 7. In CTRL, the upwelling seasons is 
very strong and delayed, this could explain why the SST 
anomalies are erroneous in the period before November. 
Many of the NMME models, ACPL and CTRL show rela-
tively high skill in January and February, which indicates 
that this mechanism is highly predictable. The skill in Feb-
ruary is larger in CTRL than in ACPL. In NorCPM, there 
is an overly strong ENSO teleconnection with equatorial 
Atlantic in February. In observations the correlation between 
in Nino3.4 and ATL3 is around 0.2 in February while in 
CTRL it is 0.4 and in ACPL it is 0.5. As a result, in NorCPM 
there is a spurious ENSO signal superposed on the observed 
low-frequency signal, degrading the ACPL prediction for 

ATL3 more so than CTRL. It is interesting to notice that 
beyond June month, RMSE is reducing with lead time. This 
occurs for all start dates, and can be seen as a consequence 
of interannual variability getting weaker in these seasons.

For November starts, the initial SST condition is 
improved in ACPL compared to CTRL, but the performance 
of the two systems quickly converge and are similar to that 
of the NMME, until April of the following year—suggesting 
that the system is dynamically relatively stable prior to May. 
The highest skill of all systems is found in January–Febru-
ary as a reemergence of subsurface anomaly. In May and 
June, ACPL system achieves better performance than that 
of NMME systems and CTRL, and its skill approaches that 
achieved from May start.

It is encouraging that ACPL system shows some skill 
in predicting the second equatorial SST variability maxi-
mum occurring in November–December from August starts. 
This variability is related to the Atlantic Niño phenomenon, 
which is centred on the ATL2 region (within 15◦W–5◦W ; 
3◦S–3◦N , Okumura and Xie 2006). We further assess the 
skill of August started hindcasts in predicting such events. 
ACPL hindcasts capture the variability of the ATL2 SST 
index in November–December quite well with a correlation 
of around 0.5. We do not show the skill in predicting the 
ATL2 index as a function of lead time, as ATL2 and ATL3 
are very similar and prediction skill is nearly identical to 
the one shown in Fig. 4g. For comparison with (Okumura 
and Xie 2006), we do show predictions of the ATL2 index 
in November–December (left panel of Fig. 5). ACPL is 
substantially more skilful than CTRL that has correlation 
skill around 0. The difference in correlation skill between 
ACPL and CTRL for November–December average calcu-
lated against NOAA OISST shows that ACPL improves the 
representation of the variability in the equatorial band (right 
panel of Fig. 5).

In Fig.  6, we show the evolution of the reliability 
(meaning satisfying Eq. 1) of the ensemble prediction 
systems as function of lead month for the ATL3 SST 
index. The standard deviation of observation error is about 
0.1 ◦C . In both systems the estimated error is slightly lower 
than the RMSE. This is typical with the ensemble DA 
method, because DA assumes that models are unbiased 
(Dee 2005). This assumption is not satisfied even with 
anomaly assimilation, because it only correct the climato-
logical bias while assimilation assumes that any error type 
is random, which can also influence the higher moments 
(e.g. variance, skewness, kurtosis). Breaking this assump-
tion results in a spurious reduction of the ensemble spread 
(Anderson 2001; Raanes et al. 2019). The dispersion is 
much improved in ACPL compared to CTRL, in particular 
at analysis time when discrepancies between RMSE and 
estimated error is marginal. It is reassuring that assimi-
lation with a prediction system that uses a model with 
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reduced bias improves this property. However, the ensem-
ble spread does not grow at the same pace as the RMSE 
suggesting that the climatological correction term causes 
an artificial damping of the variability. By contrast, the 
RMSE in CTRL at the first lead month is not lower than in 
the rest lead month while the spread is reduced by assimi-
lation. This suggests that assimilation in CTRL does not 
reduce substantially the error compared to climatological 
level but mostly reduces the ensemble spread. At 12 month 
lead time, the reliability is recovered in CTRL.

In Fig. 6, we assess how the probability density function 
of the ATL3 in ACPL and CTRL are aligned with the obser-
vations using a quantile–quantile plot of the index. In CTRL 
prediction system, the regression line is very well aligned 
although it tends to slightly overestimate the low values of 
ATL3. In ACPL, the prediction system underestimates the 
low values and the high value causing a tilt in the regres-
sion lines. We find very comparable results when breaking 
down the analysis for the different seasonal hindcasts or for 
hindcasts at different lead time (not shown).

6  Conclusions

Coupled Earth system models have very large biases and 
the impact of these on the prediction skill is yet to be 
determined. Here we investigate this issue for the tropical 
Atlantic, because this is a region where current models 
exhibit large biases compared to the amplitude of inter-
annual variability and have demonstrated low prediction 
skill. Furthermore, several previous studies have reported 
an influence of model biases on the simulated variabil-
ity and prediction skill in this region (Ding et al. 2015a; 
Dippe et al. 2018, 2019).

To investigate this question, we have used the anomaly 
coupled method of Toniazzo and Koseki (2018) in the 
NorESM model. The method has been shown to effectively 
reduce the systematic biases in the simulated tropical cli-
matology of SST, wind stress and precipitation (Toniazzo 
and Koseki 2018). We compare performance of reanaly-
ses and hindcasts with two versions of the NorCPM, one 
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using the standard version of NorESM (CTRL) and one 
using the anomaly coupled version of NorESM (ACPL). 
With both configurations, we assimilate SST and ocean 
temperature and salinity profile data with the EnKF, and 
we perform 12 month long seasonal predictions, with 9 
ensemble members, and initiated once per season. We 
focus on the period 1985–2010, and we compare of predic-
tion skill against that of the North American Multi-model 
Ensemble.

We show that reducing the climatological biases in the 
tropical Atlantic improves the ocean reanalysis. Using a model 
with reduced bias allows the data assimilation to find a better 
dynamical reconstruction that satisfies the observations and 
their likelihood. The benefits are largest from June to Novem-
ber when simulated equatorial variability is most improved by 
anomaly coupling.

We also show that the performance of the prediction sys-
tem for the Atlantic Niño index (ATL3) is greatly enhanced 
in ACPL compared to CTRL. Beyond 3 months lead time, 
ACPL hindcasts reaches skill comparable to the better NMME 
systems and beats persistence. We show that the skill is most 
improved when the simulated variability and the initial condi-
tion are improved, i.e. during the second half of the calendar 
year. For certain lead times and validity dates, notable in May 
from February initialisation, the ACPL system shows better 
skill than the entire NMME system. The skill however rapidly 
drops in June, which corresponds to the start date with largest 
potential impact but also to the most challenging one. We spec-
ulate that poor skill at that times is related to the poor accuracy 
of the atmospheric state in our system, which is not initialised. 
We plan to move the assimilation close to the effective start 
date of the hindcast and further initialise the atmospheric state.

The reliability of the ensemble prediction system is well 
improved initially with ACPL, as the perfect model hypothesis 
in the data assimilation better holds. However, the reliability 
degrades with integration time as ACPL causes an artificial 
damping of the variability. In fact, the distribution of Atlantic 
Niño with ACPL is found to underestimate the low and high 
values.
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